
· · ·

Image mapping system for simulating ceramic
environments

Inmaculada Remolar · Miguel Chover ·
Cristina Rebollo · Cristina Gasch

Received: date / Accepted: date

Abstract Minimizing costs and increasing sales are a goal for every busi-
ness nowadays. This fact, together with the development of new technologies,
have driven the emergence of virtual applications where the customers can
configure the product they are interested in only interacting with the images
where the products appear. Many applications are available on Internet or app
stores for this purpose. In all of them, a high realism is required. However, this
fact is directly related to a high cost of storage of data and to the difficulty of
generating the images of the scenes where the product is exposed. This paper
presents a virtual configurator addressed to tile factories that solves these
problems maintaining a high realism. The developed application generates
the configurable images by rendering 3D modeled environments and the
customization is performed taking advantage of the graphics hardware. It is in
charge of performing the tiling of any size tiles in real time. The presented
image mapping system is based on the real measurements of the walls or floor
of the environment that appear in the image and on the dimensions of the tile
to map. Taking these data into account, the application performs the final
appearance adapting the final image to the requirements of the user. The
presented method reduces the amount of stored information maintaining the
realism of the customized images.

Keywords image composition virtual composing virtual design automatic
tiling

I. Remolar
Institute of New Imaging Technologies, Universitat Jaume I, 12006 Castellón, Spain
E-mail: remolar@uji.es
Phone number: +34 964 38 77 68
Fax number: +34 964 38 76 78

M. Chover
E-mail: chover@uji.es

C. Rebollo
E-mail: rebollo@uji.es

C. Gasch
E-mail: cgasch@uji.es

Noname manuscript No.
(will be inserted by the editor)

mailto:remolar@uji.es
mailto:chover@uji.es
mailto:chover@uji.es
mailto:rebollo@uji.es
mailto:rebollo@uji.es
mailto:cgasch@uji.es
mailto:cgasch@uji.es

2 Inmaculada Remolar et al.

1 Introduction

In the business world it is usual that companies try to reduce costs to increase
their competitiveness. One important way to achieve this is taking advantage
of the technological media. In companies that are dedicated to the manufacture
of products, most of them are digitally modeled and rendered in a first stage.
These rendered images are shown to the potential customers and only if a
product is sold, it is finally manufactured. This is a good method to save
money to the companies that avoid accumulating products in their stores. If
the product can have various finishes, virtual simulators allow the user to
configure it on demand [28]. This kind of applications are available on
Internet and on app stores. They make it possible that the user can change
the appearance of an object on the image only clicking over it and later, over
a texture that can be applied on the product. The object changes its looking
in real time, appearing configured with the selected material [12, 18].

Realism is a must in virtual simulators. The image has to show the product
completely immersed in the scene and, independently of the finish of the
configurable object, this environment has to be as realistic as possible, looking
even as a real world picture. Different commercial fields use these applications:
furniture industry, painting, clothes, tiles, ... However, all of them requires the
same thing, that the objects quickly change their appearance on demand in
the represented environment maintaining the realism.

Some of the most popular virtual simulators have been analyzed, regardless
of the business for which they are addressed. They have been classified in two
main groups. On one hand, applications that offer to the customers the
possibility of reproducing their own scenario and seeing it in 3D. On the other
hand, applications based on images that allow the user to personalize the
scenario selecting parts of the image.

In the first group, applications are basically focused on establishing the
disposition of the walls that form a room on a 2D plane [24, 9]. Then, users
place the objects offered by the virtual simulators in the scene and configure
them according to their preferences and requirements. Usually, the possibility
of changing the display mode from a 2D aerial view to a 3D view is offered to
the user. However, these virtual simulators generally suffer from lack of realism,
because they do not offer a photorealistic rendering of the environment.

The second group in our classification, the virtual simulators based on
images, show the realism that do not have the previous one. After analyzing
the most popular ones, they generally provide different scenarios to show all the
possibilities of the product that is been promoting. In all of them, the object
to be configured appears immerse in environments adapted to it. The images
that are available at these virtual configurators usually are taken from real
photographs of scenarios where the object to configure appears. Moreover, in
some virtual simulators, the users are allowed to upload their own photographs
in order to change the appearance of some objects that appear in them, usually
walls or floors [17, 1].

Image mapping system for simulating ceramic environments 3

Within the virtual simulators based on images, some applications take ad-
vantage of the technology and offer realistic images that have been previously
rendered from 3D modeling applications. Realism is obtained in these cases
by adjusting the physical illumination, the shadows or some characteristics of
the assigned materials. This solution is one of the most popular nowadays be-
cause it offers the possibility of representing environments with different styles
without the necessity of recreating them in the reality [21]. In order to cus-
tomize the object, the images need to be processed to isolate the areas where
the product appears. Some analyzed applications generate in a pre-process
masking images that perform this function. Other analyzed methods in this
group require user interaction to identify the configurable object. The user
clicks over the area where the configurable object appears and using image
based techniques, the object is isolated [27]. Finally, other applications require
that the user draws over the image some lines that will demarcate the area to
personalize [5].

In the field of the ceramic, the different sizes of the tiles and the different
possible dispositions over the walls or floors have to be considered. The virtual
simulators addressed to this product have to control the arrangement of the
tiles in addition to the rest of the steps that have to be performed to obtain
the required realism. Different methods have been implemented to make this
possible, but all of them require that the developed application stores a high
amount of images that produces a high cost of data storage.

This paper presents a virtual simulator based on images, designed for the
ceramic industry that allows to change the model and disposition of the tiles re-
ducing the storage cost and maintaining a photorealistic finish. This developed
simulator is based on images obtained from rendering 3D environments. The
realism of these images have been previously achieved managing the modeling
software and adjusting the illumination and materials of the objects. More-
over, the presented method is scalable: more tile models can be uploaded to the
virtual simulator and the application automatically performs the tiling only
taking their dimensions into account. It has been developed taking advantage
of the shader programming, so the temporal cost of the performed operations
is negligible.

The article is organized as follows. Section 2 reviews the techniques used
by the most popular virtual designers based on images. Section 3 analyzes the
elements involved in the presented method and the way they are combined to
obtain the final image is explained in Section 4. Section 5 presents the
evaluation of the method and finally, the conclusions and future work are
analyzed in Section 6.

2 Related work

Virtual environments are widely used for e-commerce [16]. As it is said in [3],
the possibility of users designing the products on-line exploits the interactivity
of the web and enables users to design their own virtual products thus enabling

4 Inmaculada Remolar et al.

the product development team to learn their own preferences for new products.
Virtual configurators represent some environments where the product to sell is
immerse. They have been traditionally very popular in fields such as furniture,
clothes, painting and tiles, among others This section analyzes the simulators
that offer photorealistic images where the user can change the configuration
of the product that is on sale.

The virtual configurator presented in this paper is focused on ceramic in-
dustry so, after analyzing the methods used by similar applications available
on Internet or the digital app markets, the ones addressed to tiles are also
studied in this section.

2.1 Virtual simulators based on images

The simulators based on images offer the possibility of choosing scenarios
according to different styles: modern, classic, ethnic, ... This assortment allows
customers to configure the products they are interested in and see how they
look in scenarios that fit better to their preferences.

Focusing the analysis on simulators based on images, two different groups
have been classified: based on real photographs and based on rendered 3D
scenarios.

Based on real photographs The realism in the images is guaranteed if they are
photographs taken from real environments. In order to identify where the
customizable object appears in them, some actions have to be performed [10,
23]. Some applications propose to apply a pre-process to the set of images to
solve this problem. The most popular solution is to use alpha channel masks
that cut off the configurable object in the images. These masks allow the
application to extract some slices from the images and, lately, re-build a new
one from them [31]. To perform this collage, some images where the object
appears configured with all the possible materials have been created. All of
them are stored in the database of the applications [22]. The main disadvantage
of this solution is the high storage cost. Every area in the image that can be
changed needs two alpha channels masks in addition to one realistic render
per every material that can be applied to it.

Other applications offer to the user the possibility of uploading photographs
to the system [29, 14]. In order to perform the customization of the environ-
ment, some actions are required by the application. In most of the analyzed
virtual simulators, the user has to point over a middle tone in the area of the
object to allow to cut off the area where the configurable object appears [6].
These applications usually require that the uploaded photography have some
especial characteristics, such as a white or clear background where the object
appears highlighted. Once the pixels that cover the configurable object have
been identified, their color is changed by the finish chosen by the user.

More advanced applications, such as fractal graphics [5], build a 2D mesh
over the target object. The user draws the contour of that object creating con-

Image mapping system for simulating ceramic environments 5

trol points that finally are jointed in a Bezier curve [12, 18]. A 2D mesh is built
in real time over the demarcated area. Finally, texture mapping techniques are
used to map the material selected by the user over this mesh. This solution
requires more user interaction than the ones presented before. The main dis-
advantage is that the good quality of the results depends on the ability of the
user defining this zone.

Based on images generated by rendering 3D environments Some virtual sim-
ulators obtain their environments from renders generated from 3D modeled
scenes. Photorealism is obtained adjusting the lighting and material charac-
teristics. This way of obtaining the set of images are easier and cheaper than
to photograph real scenarios: only a computer and some modeling software
are required [4]. Moreover, most of the render engines, such as V-Ray, Mental
Ray, Arnold, Renderman, ... offer the possibility of rendering as separate im-
ages different elements of the lighting: direct, indirect or global illumination,
or even some material characteristics: diffuse, specular, reflection, refraction,
etc. These render elements allow to perform image composition [13]. This is
a technique that has been widely used by the artists due to they can later
control the final render: changing some parameters in the used image editing
software, such as, for example, Photoshop or Nuke, allows to obtain different
visual results. This is a very popular solution, because working with render
elements separately makes it possible to have a greater control, freedom and
ease to post product the final image [11].

Nevertheless, the render element that stores the diffuse characteristic of
the material has to be managed with the same processes as the described in
the previous section. Also alpha masks have to be applied to this image to
separate the object to customize from the rest of the scene. This diffuse render
element will be built from some snippets obtained from other renders, where
the selected finish appears. Finally, the image editor software adds to the
obtained diffuse element the rest of render elements adapting some visual
parameters for each one and, as a result, the final image is achieved. The
combination is performed by applying operations pixel by pixel, that vary
according to the involved render element and the desired result. This technique
performs very realistic images, because the render elements that store lighting
and material characteristics have been carried out managing the render engine
in advance.

However, its main disadvantage is the high storage cost. Besides all these
render elements, the method requires, as in the previously described ones, two
alpha masks for every area in the image that can be customized in addition to
one realistic render per every material that can be applied to it. Moreover, an
administrator user can not add new variations of the rendered environment in
an easy way. If one new finish is required and has to be added to the
application, the realistic image has to be rendered, together with the two alpha
channel masks, if it is a new area. This fact makes that adding a new finish
cannot be done by a user without any knowledge of 3D modeling programs.

6 Inmaculada Remolar et al.

2.2 Virtual tile designer

Tile factory is characterized by the large amount of models that offers and the
assortment of sizes per tile. Besides this, there are also many dispositions a
tile that can be shaped on the walls or floors. So, it is usual that customers
want to see the final result of their choice in a scenario similar to the one they
want to remodel.

The most of the virtual applications that deals with ceramic add the re-
quirement of choosing the disposition of the selected tiles: users have to select
the scenario, the area to customize, the tile and, finally, the tiling disposition
[25, 26, 7]. Usually, some patterns are available in the virtual designers, and
they condition the way tiles are distributed on the selected areas. Finally, the
gasket that appears between the tiles are other requirement in some applica-
tions. This grout that frame the tiles can be configured, so users can select
their thickness or color.

The analyzed applications use different methods to achieve the change of
the tiles or disposition. Some of them add a new realistic image to the data
stored per every possible collocation of a tile model on the wall or floor. This
fact makes that the application considerably increases the storage cost: a same
tile can be manufactured in different sizes so an image has to be included per
each size to take this possibility into account.

Other applications are based on texture mapping techniques [32, 8]. They
include some masks that make it possible to map some tile dispositions on
the surfaces. These masks have been generated in the 3D modeling software.
They store the mapping coordinates (u, v) in the red and green channel so the
texture can be applied to the final image extracting these coordinates. The
image of the tile is the texture to map on the customizable wall or floor that
appears in the image.

One texture mapping mask is required per every possible disposition, so
the storage cost is reduced in regard to the method analyzed before. Only one
beauty or final render is required per every tile in addition to the mask images
that reflects the possible dispositions of it. However, if a new size is introduced
in the application for a tile, a new disposition mask has to be generated and
added to it. This fact makes that the updating of the tile models requires of
the intervention of a 3D expert that reproduce the new tile disposition.

The application presented in this paper adapts the analyzed techniques
and improves them resolving their main problems. It is based on images ob-
tained from rendering 3D modeled scenes. Moreover, some render elements are
generated from every modeled environment in order to adapt and change the
characteristics of the lighting and materials on demand. The disposition of the
tiles is calculated by the application: the tiling is performed taking the real
measurements of the objects involved into account. This technique
considerably reduces the amount of images managed by the application and
makes it possible to upload tiles of any size to the virtual simulator, without
the necessity of rendering a new image.

Image mapping system for simulating ceramic environments 7

Fig. 1: An example of a 3D scene used to test the presented method.

3 Image elements

The developed application has been addressed to ceramic, so the 3D modeled
scenarios represent bathrooms, kitchens or other rooms where tiles usually ap-
pear on the walls or floors. In this work, the different scenes have been modeled
representing all the objects and elements with real-world measurements. This
fact allows us to obtain a realistic render when physically lighting is applied.
This kind of lighting produces that the final render simulates a photorealistic
ren- der, as Fig. 1 shows.

Rendering different illumination components separately makes it possible
to simulate a post-production process [21, 19]. Then, once the 3D scene has
been modeled and accurately illuminated, different elements based on the light-
ing and material components are rendered. After analyzing them, the final
image is decomposed in the following rendering elements:

F inal Image = Lighting + Ref lection + Dif f use (1)

The lighting render includes information from direct and indirect lights in
the scene. Also shadows are included in this render (Fig 2).

Other render element that is separately generated is the reflection one.
Different kinds of reflections have been considered, depending on the materials
applied to the 3D objects. In the presented virtual simulator, users have the
possibility of changing the material of some parts of the image on demand, so
the reflections in these changing areas must vary according to the new assigned
material. Different levels of reflections have been rendered and stored in images
in order to apply the appropriate one to the material chosen in real time by
the user.

8 Inmaculada Remolar et al.

Fig. 2: Lighting render component.

(a) Glossy reflections. (b) Diffuse reflections.

Fig. 3: Reflection render elements.

These images are obtained varying the glossy component of the applied
material in the 3D scene. Fig. 3 shows two examples of reflections. The glossy
reflections can be appreciated on the Fig. 3(a) and diffuse reflections of the
same scene can be observed in Fig. 3(b).

The last render element that is required to compose the beauty or final
image is the diffuse one. The diffuse component represents the basic color of
the objects. This is addressed to render this part of the materials, where only
plain colors appear. Some processes have been defined to obtained this element
that will be the base over the rest of render elements will be applied. The
processes have been divided in three steps: performing the tiling disposition of
the walls and floor, calculating (if are required) the gaskets between tiles and,
finally, adding the diffuse component of the atrezzo to compose the diffuse
element.

Image mapping system for simulating ceramic environments 9

3.1 Tiling disposition

The possibility of adding tile models of any size and quickly checking how
they look when are tiled on the walls or floors, has been one of the main
requirements of the presented application. In a real scenario, the number of
tiles that maps a surface depends on the dimensions of that surface and the
tile to be mapped. In the presented method, the same restrictions have been
considered. In order to simulate this process, the application takes into account
the real measurement of the modeled walls or floor and the real size of the
tiles to map on them. On one hand, the measurements of the surfaces to be
mapped are obtained by the application from the rendered images. On the
other hand, the dimensions of the tiles are data introduced to the system
(tileSize.x, tileSize.y).

After establishing a point on the surface that is considered as a starting
point for tiling (0, 0), eg the lower left corner of the wall, the application
requires knowing the distance of the pixel that is been analyzed with respect
to that starting point. This distance (position.x, position.y) is calculated and
stored in centimeters, because also the dimensions of the tile have been
stored in these units. Once they are obtained, it is easy to calculate the point of
the tile (tilePos) that has to be mapped on this pixel. It is obtained by
performing a simple operation

tileP os = mod(position, tileSize) (2)

However, the application has to transform these centimeters in uv
coordinates, uvTile, that have the values in the range [0,1]. This is achieved
performing the operation:

uvT ile = tileP os/tileSize; (3)

Every tile has to be analyzed and processed according to its size to obtain
the appropriate mapping coordinates. Then, the procedure that simulates the
real tiling on walls or floors described before has been designed and imple-
mented taking advantage of the GPU programming. The presented implemen-
tation analyzes all the pixels of the customizable surface and establishes the
pixel color according to the coordinates of the tile texture that has to be
mapped. This process is performed in parallel to all the pixels in the area to
customize.

Following the described process, the application has to calculate the dis-
tance of the pixel to the one considered as origin of tiling. To obtain this datum,
some maps have been generated to make easier to measure the customizable
surfaces.

Initially, an image that makes it possible to obtain the distance in centime-
ters to the origin of the tiling has to be mapped on the customizable surfaces.
This image has to store the (position.x, position.y) values. Considering that
the initial point of the measurement is the low-leftmost pixel, a RGB image has
been designed where the red channel stores the position.x value and the green
channel, the position.y. The image has been created of 256x256 resolution
assuming that its measurement is 50x50 centimeter in the scene (Fig. 4).

10 Inmaculada Remolar et al.

Fig. 4: Base texture of 256x256 resolution, equivalent to a square of 50x50
cm.

Fig. 5: Image obtained after mapping and tiling this image on the scenario.

The red and green channels store the distance of the pixel to the origin, from
0 to 50. The precision of this distance is 50/256 cm
(measurement/resolution), i.e., 0, 19 centimeters.

This texture is mapped and repeated on the customizable surfaces of the
3D scenario using real-world coordinates, so the RGB information is available
in the rendered image. As the tiling has been performed using real-world coor-
dinates, every pixel on the image has available two measurements in the range
[0, 50] centimeters: the one stored in the red channel provides information
about the width of the surface, and the one in the green one provides
information about the height. This render is shown in Fig. 5. In order to
obtain realistic images, objects that are considered atrezzo in the scene reflect
the texture mapped on the walls and floor. These data will be considered to
compute the highlights in the case of the objects are reflective.

Image mapping system for simulating ceramic environments 11

Fig. 6: Detail of the design of the texture that measures the meters in the
image. It can cover up to 8 meters.

The measurements that are available in the image provides information
of the centimeters, but to complete the process, other texture has been
generated to compute information about meters. The second map has been
created to manage this unit of measurement and to obtain how many meters
there are from the analyzed pixel to the origin of the customizable surface. The
purpose of this image is to know how many images of 50 cm have been mapped
on the surface, both width and height. Then, the new map has been built
representing areas of 256x256 (same resolution than image shown in Fig 4).
with the same number in the red and green channels. It varies storing from 0
in the first area to 15 in the last one in the red and green channels (Fig. 6).
Considering that every 256x256 area covers 0, 5 meters, the new image has
been designed to measure up to 8 meters. That is enough for the kind of
environments are been represented in the presented virtual simulator. Then,
the resolution of this new map is 4096x4096.

Other image of the scenario is rendered by mapping this last image on the
walls and on the floor of the 3D scene, where the tiles can be applied (Fig. 7).
This render has been obtained maintaining the real-world coordinates in the
mapping process and the same starting point for tiling. Also the objects that
appear in the scene have to reflect the textures mapped on the wall and floor.

Reading the value red and green of every pixel, the distance of it to the ori-
gin of the wall or floor can be computed in meters, and the measurement
represents real-world measurements. In order to compute the position of a
pixel, our application reads the red and green value of the image shown in
Fig. 7, and transform this value to centimeters.

Let tcBig be the data where this image is stored. As each considered area
covers 50 cm, i.e., 0, 5 meters, the performed operation is as follows:

12 Inmaculada Remolar et al.

Fig. 7: Render that allows to obtain the measurements of the surface to be
per- sonalized in meters.

tcBigm.xy = (tcBig.xy) ∗ 0.5; (4)

Finally, in order to give more precision, the same channels of the image
shown in Fig. 5 are read for the same pixel. As the data that are retrieved
represent centimeters, the previous measurement has to be converted to this
unit (Equation 5).

tcBigm2cm.xy = tcBigm.xy ∗ 100.0; (5)

If the image that stores the centimeter information (Fig. 5) has been
previously stored in tc, the operation that obtains the final measurement is
shown in Equation 6.

(position.x, position.y) = tcBigm2cm.xy + tc.xy; (6)

Once the application has obtained the position of the pixel (position.x,
position.y), the tiles have to be processed in order to obtain the mapping
coordinates. Every tile has determined measurements, depending on the
model of the tile and, even for the same image, different dimensions can be
managed by the application. An example is shown in Fig. 8.

Once the distance of the pixel to the starting tiling point is known, the
exact coordinate of the tile that has to be textured on it is easily calculated.
Finally, these measurements are converted to mapping coordinates and the
problem is solved in real time by simple mathematical operations, as it was said
before (Equation 2, 3).

Image mapping system for simulating ceramic environments 13

Fig. 8: A tile used in our application.

The pseudo-code that develops this process is shown in Algorithm 1. The
function CalculateTileCoordinates is evaluated per every pixel in the image,
pixelPos, taking the values red and green of it. Also, the function requires the
dimensions of the tile, tileSize, that has been selected to map: the height and
width measurements.

Let ImageCM be the mask that measures the centimeters and ImageM be
the image that measures the meters. Both of them are evaluated in the
position of the pixel (pixelPos) (lines 1-2). Once the data retrieved are
converted to centimeters (lines 3-4), the distance of this point to the starting
mapping point of the wall or floor is obtained. Finally, knowing the
measurement of the tile to map, it is easy to calculate the mapping
coordinates to be taken into account, uvTile, (lines 5-6).

Algorithm 1 Calculating the uv mapping coordinates.

//every 256x256 area in the ImageM render corresponds to 50 cm

DEF m2cm ← 50.0

procedure CalculateTileCoordinates (pixelPos, tileSize)

//upload the images that allow to measure the walls and floor

1 vec4 tc ← texture2D (ImageCM, pixelPos)
2 vec4 tcBig ← texture2D (ImageM, pixelPos)

//calculate the distance to the origin in cm where the pixel is situated

3 vec2 tcBig2cm ← tcBig.xy × m2cm
4 vec2 position ← (tc.xy + tcBig2cm)

//calculate the point of the tile that has to be mapped on the pixel (in cm)

5 vec2 tilePos ← position mod tileSize

//changing the position from cm units to uv mapping coordinates

6 vec2 uvTile ← tilePos/tileSize

return uvTile
end procedure

This algorithm has a constant computational cost [20]. The input

parameters correspond with fields that stores two values: on one hand, the
horizontal and the vertical position of the pixel to analyze and, on the other
hand, the dimensions of the tile to map on the chosen surface. The location
of the pixel is used to obtain the RGB values in the textures ImageCM and
ImageM, that helps to calculate the real distance of the pixel to the mapping
starting point. Then, mathematical operations are performed to obtain the
final result. All of them have a constant cost, so the final theoretical
computational cost is also constant.

14 Inmaculada Remolar et al.

Fig. 9: Detail of the gaskets on the wall.

a. Gaskets of the tiles

In the tile industry, the gaskets between the different tiles are really important.
Some tile models have in their final disposition this complement, so these
gaskets have to be evident in the render. They help to visually show the size
and collocation of the tiles in the case they are required. Gaskets are also
computed in real time in the presented method.

Taking the mapping coordinates into account, it is determined if the evalu-
ated point is a tile border and it is part of the gasket. Then, it has to be painted
lighter than the rest of the tile. The gasket color can be chosen by the user of
the application. However, that color is mixed with the color of the tiles,
showing a smooth transition, as can be seen in Fig. 9. In this case, the color
of the gasket has been initialized to (0.1,0.1,0.1) because when these values
mix with the tile color, a subtle lightening of the final color is produced.

Algorithm 2 Calculating the gaskets between tiles.

procedure GasketCalculation(vec2 uvTile, vec2 tilesize)

//obtaining the mapping coordinates of the left-most and top-most vertex of
the tile

1 vec2 tcTileLeft ← CalculateTileCoordinates (vertexOntheLeft, tilesize)
2 vec2 tcTileTop ← CalculateTileCoordinates (vertexOntheTop, tilesize)

//checking if the current pixel is part of the gasket (very close to the left or
to the top)

3 if ((abs (uvT ile.x - tcTileLeft.x) > 0.2)) || (abs (uvT ile.y - tcT ileT op.y) > 0.2))
4 return vec3(0.1, 0.1, 0.1)
5 else
6 return vec3(0.0, 0.0, 0.0)
7 endif

end procedure

The implementation of this process is shown in Algorithm 2. The imple-

mented function, GasketCalculation, returns the values that have to be added
to the pixel color that is evaluated. In order to check if the evaluated pixel is
part of the gasket, only the sides left and top of the tile are going to be
considered, to avoid painting a gasket twice, because of the regular
disposition of the tiling. First of all, the mapping coordinates of the left-most
vertex, vertexOntheLeft, and the top-most vertex, vertexOntheTop, are
obtained (line 1-2). Then, if the mapping coordinates of the pixel, uvTile, is
closer than a certain distance to the values previously obtained (line 3), this
point is considered part of the gasket.

Image mapping system for simulating ceramic environments 15

Fig. 10: Diffuse render element of the atrezzo.

The implemented function returns the color that has to be added to the
pixel color to simulate the line surrounding the tiles (line 4). The distance that
has been considered to be the thickness of the gasket has been 0.2. However,
if thicker gasket is required, this number can be increased.

The computational cost of this algorithm is constant. The function
CalculateTileCoordinates, called in this code, has a constant cost, as has
been previously analyzed. Apart from this, the algorithm includes only two
comparisons among two values. All of this determines the constant cost of the
code showed in Algorithm 2.

3.2 Composing the atrezzo

The diffuse element is composed by combining different layers independently
processed: the configurable areas and the attrezo. On one hand, the images
of customizable surfaces are generated on demand, taking into account the
tile model selected by the user and following the process explained before. The
presented application considers two customizable surfaces: a wall and the
floor. However, the amount of surfaces that can be personalized is easily
scalable.

On other hand, the diffuse components of the materials that form the
atrezzo of the scenario (Fig. 10) are stored in the database. This image has to
store some transparent areas, so the file format that has been chosen to store
all the required masks is png format.

6 Image composition

The diffuse layer mainly conditions the final appearance. Once this one has
been obtained, the developed method adds the lighting information and the
reflection characteristics of the materials. In order to accelerate the processes,
the advantages in GPU has been taken into account [15]. Then, the imple-
mented method has been developed with shader programming, performing all
the operations at pixel level.

Any 3D modeling software can be used that has the required rendering
utilities and allows us to obtain the different images that will be finally com-
bined to obtain the target composition. The implementation has been devel-
oped following the GLSL specification, performing all the operations per-pixel
to compose the final image. It takes into account multiple base textures and

16 Inmaculada Remolar et al.

(a) Unmasking the floor. (b) Unmasking the wall.

Fig. 11: Masks used to discriminate some areas in the image.

combines them with the other components: masks, reflections and lighting
textures to produce the final color.

The user of the virtual simulator determines the area to customize only
clicking over the image in the area where this surface appears. In order to
determine the surface that has been selected, some masks have been rendered
from the 3D scene and have been included in the application. These masks
will be used in the merging process and they have to be combined with the
final tiling disposition image to extract the area in the image covered by the
customizable surface. The masks have been rendered as an alpha mask: the
parts of the image to be discarded are rendered in black color and the areas
that have to remain, rendered in white. They are managed as simple alpha
channels in the post-production process.

Fig. 11 shows the two different masking images used in the virtual scene
of the example. The walls and some parts of the atrezzo will be discarded if
mask shown on Fig 11(a) is used. The image shown on Fig. 11(b) masks the
floor and the atrezzo. The windows and holes that appear on the walls have
been rendered in black in both images to avoid of changes.

The pseudocode of the fragment shader that makes it possible to perform
the final composition is shown in Algorithm 3. Let p be a screen position in
the image where the final color in the image is going to be created. Regarding
the tiles, let floorTileWidth and floorTileHeight be the width and height of
the tile to be mapped on the floor and wallTileWidth and wallTileHeight be
the size of the one to be tilled on the wall. The images of both tiles are stored
in floorTileImage and wallTileImage. Let groundMaskImage and
wallMaskImage be the images where the discriminatory masks are stored.
Moreover, the diffuse component of the atrezzo that is in the scenario has been
rendered in the image atrezzoImage. Finally, let gasketsFloor and
gasketsWall be a boolean that determines if the tile model requires that
gaskets are visible on the surface of the floor or the wall.

As the processes in every position in the image is performed in parallel,
the developed algorithm calculate the tiling for the wall and the floor simul-
taneously. Also, if the gasket is required for the model of tile selected by the
user, the final image where they are drawn are computed. Then, the black and

Image mapping system for simulating ceramic environments 17

←

←

white masks are applied to these images in order to extract only the areas that
are necessary. Both resulting images are combined with the one that contains
only the atrezzo in order to compose the diffuse element. Finally, the stored
render elements that contains the global illumination and the reflection one
are combined with the diffuse component to obtain the final color.

Algorithm 3 Calculations performed per pixel at GPU level.

FOR every p

//Calculate the tile mapping coordinates (u,v) of the pixel p according to the dimensions of
the tile used for the floor and the one used for the wall

vec2 tcT ileF loor ←CalculateT ileCoordinates(p, vec2(f loorTileWidth, f loorTileHeight))
vec2 tcT ileW all ←CalculateT ileCoordinates(p, vec2(wallTileWidth, wallTileHeight))

//Obtain the information of the RGB color for the pixel

texfloor ← texture2D (floorTileImage, tcTileFloor)
texwall ← texture2D (wallTileImage, tcT ileW all)

//Read the pixel information in the alpha mask images

maskFloor ← texture2D (groundMaskImage, p)
maskWall ← texture2D (wallMaskImage, p)

//Calculate the gaskets for the floor if they are required

if gasketsFloor then
texfloor.xy texfloor.xy+

GasketCalculation (tcTileFloor, (f loorTileWidth, f loorTileHeight))
endif

//Calculate the gaskets for the wall if they are required

if gasketsWall then
texwall.xy texwall.xy+

GasketCalculation (tcTileWall, (wallTileWidth, wallTileHeight))
endif

//Compose the diffuse render element

f loorColor ← texfloor × maskF loor
wallColor ← texwall × maskW all

//Read the information of the diffuse atrezzo color for the pixel p

atrezzoColor ← texture2D (atrezzoImage, p)

//Compose the diffuse component for the pixel p

diffuseElement ← floorColor + wallColor + atrezzoColor

//Obtain the information of the rest of render elements in the pixel p

global_Ilumination ← texture2D (global_IluminationImage, p)
reflectionElement ← texture2D (reflectionIluminationImage, p)

//Calculate the final appearance of the pixel

finalColor ← diffuseElement × global_Ilumination × reflectionElement

//Returns the result of the fragment shader

glFragColor ← finalColor

END FOR

18 Inmaculada Remolar et al.

Algorithm 3 codes the main function of the presented method. The user of the

application clicks on the area of the image where the surface to
configure appears, the image of the tile and finally, the size of that tile.
This code is performed per every pixel of the image, creating a thread
per every one of them in GPU. Let n be the number of pixels of the
images. This value can vary according to the resolution of the images
that are used in the application (with x height). Finally, analyzing the
theoretical computational cost [2] [20], it can be said that the
computational cost of the presented application is O(n), i.e., it depends
on the resolution of the images (or number of pixels) that have been
previously rendered and used for performing the computations.

5 Evaluation and Results

In order to evaluate our virtual simulator, three scenes have been modeled
using 3DS Max 2017. In both of them, a wall and the floor can be customized,
and 30 tiles with 3 different sizes have been included in the application that
can be chosen by the user to personalize the floor. The same amount of tiles
with also 3 sizes are available for the walls.

Every image rendered from the 3D scene has been stored in png format
with a resolution HD, 1920x1080 with 72 ppp. The size of each rendered image
is 606 KB. The tile images have been stored in jpg format, with a resolution
of 512x512 with 72 ppp. The size of every one is 130 KB.

The other modeled scenes represent a living room and a terrace. The images
generated to perform the test for the other 2 scenes are shown in Fig. 12 for the
living room and in Fig. 13 for the terrace.

Due to the fact that the application has been addressed to be available on
Internet or app stores, one of its main advantage is the low storage cost
compared with the most popular solutions. The presented method has been
compared with the most popular one based on images, as is the used in [22]. We
have called this technique the Rendered Images Method, because it renders
all the possible finishes in advance, applying masks to obtain the desired
combinations.

The data required to perform the virtual configurator where the three
modeled environments appear are analyzed in Table 1. As it is said, the final
user can choose among a set of 30 tiles of 3 different sizes for the walls, i.e.,
90 different models, and other different 90 models for tiling the floor.

In the case of adding a new tile model that is manufactured in two sizes,
two images of 1080x1920 resolution beauty renders have to be uploaded by
the Rendered Images Method. However, only the image of the tile has to be
uploaded in the case of the presented method, because the two sizes used the
same image. Tile factories usually sell hundreds of tile models, so this fact
makes that the more models are loaded the greater the difference in the
storage cost of the methods.

Other main advantage of the presented method is the saving in the render
time of the images. Depending on the configuration of the global illumination
and on the characteristic of the assigned materials, the time for rendering an
image can take some hours. The time of mapping the new texture has to be
added to the time spent in obtaining a new image. In the presented method, the

Image mapping system for simulating ceramic environments 19

(a) Lighting render element. (b) Diffuse render of atrezzo.

(c) Glossy reflections. (d) Diffuse reflections.

(e) Mapping of centimeters. (f) Mapping of meters.

(g) Unmasking the wall. (h) Unmasking the floor.

Fig. 12: Renders to configure the modeled living room.

20 Inmaculada Remolar et al.

(a) Lighting render element. (b) Diffuse render of atrezzo.

(c) Glossy reflections. (d) Diffuse reflections.

(e) Mapping of centimeters. (f) Mapping of meters.

(g) Unmasking the wall. (h) Unmasking the floor.

Fig. 13: Renders to configure the modeled terrace.

Image mapping system for simulating ceramic environments 21

Table 1: Storage comparison between both methods.

Rendered Images Method

Type of images Number of images Data size/scene Final size Data stored

3, 55 MB

Mask images 2 (alpha mask)/scene 2, 36 MB 7, 10 MB

2 (mapping mask)/scene

Render elements 4 images/scene 2, 36 MB 7, 10 MB

(lighting+diffuse+2*reflections)

Tile images 60 images 7, 6 MB 7, 6 MB

21, 8 MB

render elements that are required are rendered in parallel: the render engine
extract every element in the same rendering process.

Finally, regarding the realism obtained with the presented method, some
new finishes are shown from Fig. 14 to 16 where different tiles have been
mapped. The one mapped on the wall on the living room does not require to
add gaskets to the surface.

7 Conclusions and future work

The design of a virtual simulator addressed to tile factories has been presented
in this paper. Different scenarios can be quickly customized by changing the
tiles that map the floor or the wall. The user of the application selects a
customizable surface, a tile (image and size) and in an almost negligible time
the surface changes its appearance. The virtual simulator has been
implemented taking advantage of the GPU, so shader programming language
has made that the computation time is almost insignificant.

The presented method simulates the real world tiling. Depending on the
real-world measurements of the configurable surface and the size of the tile
model to map on them, a pixel is represented with a determined color.
Analyzing some mapping masks previously generated, the method obtains
the distance of the pixel to the mapping starting point. This measurement,
converted to centimeters, makes possible to determine the mapping
coordinates of the tile image, so the color of the pixel is obtained.

Moreover, some render elements that stores different image characteristics
are also stored in the application. The combination of these elements with the
diffuse one obtained by the shaders, makes it possible to obtain very realistic
images. Varying the combination of the render element allows the user to get
different finishes of the same scenario, making the application very versatile.

Beauty images
Mask images

90 images/scene
2 images/scene

53, 27 MB
1, 18 MB

159, 78 MB 163, 33 MB

Presented Method

Type of images Number of images Data size/scene Final size Data stored

Beauty images 0 images 0 MB 0 MB

22 Inmaculada Remolar et al.

Fig. 14: Final composition of the bathroom with the tiles that are shown.

Fig. 15: Final composition of the living room, using the tiles shown in the
figure.

Image mapping system for simulating ceramic environments 23

Fig. 16: Final composition of the terrace scene with the tiles shown.

Other advantage of the presented application is the ease of adding a new
size for a tile model or even a new tile image. Only has to be indicated to the
virtual simulator the dimensions of the new tile and the application will
calculate the mapping coordinates for this new size and will show it mapped
on the customizable surfaces when it is required.

Different fields can be improved in this virtual simulator as a future work.
One line of improvement that we are currently working on is to visualize the
environments in some VR devices, in order to achieve the immersion of the
user in the scene. Some 360 scenarios have to be rendered instead of some
images. The interaction will be performed by the devices that present some
VR glasses, as the Vive Vr Glasses [30], that make it possible for the user to
interact with the environment. The selection of the different tile models and
the area to configure can be easily performed by them.

Acknowledgements This work was supported by the Spanish Ministry of Science and
Technology (Project TIN2016-75866-C3-1-R).

References

1. Behr Paint Colours, http://www.behr.com/consumer ca/colors/paint, Accessed October
2017

2. Card S K.; Moran, W P, Newell A (1980). The keystroke-level model for user performance
time with interactive systems. Communications of the ACM. 23(7): pp 396–410

http://www.behr.com/consumer

24 Inmaculada Remolar et al.

3. Dahan E, Hauser J.R (2012) The virtual customer, Journal of Product Innovation Man-
agement, 19(5):332-353

4. Ebert D, Kenton F, Peachey D, Perlin K, Worley S (2002) Texturing and Modeling: A
Procedural Approach 3rd, 600, Morgan Kaufmann Publishers Inc. San Francisco, CA,
USA

5. Fractal Graphics, http://www.fractalgraphics.com Accessed, October 2017
6. Gevers T, Smeulders A.W.M (1999) Color-based object recognition. Pattern Recognition,

32:453-464
7. Grupo Halcon, http://ambients.halconceramicas.com, Accessed October 2017
8. Heckbert P (1986) Survey of texture mapping, IEEE Computer Graphics and Applica-

tions, 6(11):56-67
9. Ikea Home Planner, http://www.ikea.com, Accessed October 2017
10. Khurana P, Sharma A, Singh S.N, Singh P.K (2016) A survey on object recognition and

segmentation techniques, Proceedings of 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), pp 3822-3826

11. Lengyel J, Snyder J (1997) Rendering with Coherent Layers, Proceedings of the 24th
annual Conference on Computer Graphics and Interactive Techniques, pp 233-242

12. Linares J, Santonja J, Chover M (2003) Realistic Image Mapping System and its
Multimedia and Internet Integration, Industrial & Project Presentations, pp 27-34

13. Molnar S, Eyles J, Poulton J (1992) PixelFlow: High-Speed Rendering Using Image
Composition, Proceedings of the 19th annual Conference on Computer Graphics and In-
teractive Techniques, pp 231-240

14. Moore B., http://www2.benjaminmoore.com/en-ca/for-your-home/personal-colour-
viewer, Accessed October 2017

15. Pharr M, Fernando R (2005) GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation, Addison-Wesley Professional

16. Remolar I, Chover M, Quirós R, Gumbau J, Ramos F, Castelló P, Rebollo C (2010)
Virtual Trade Fair: A Multiuser 3D Virtual World for Business, Proceedings of 2010
International Conference on CyberWorlds, pp 208-214

17. Rodda Color Visualizer, http://www.roddapaint.com/professionals/color/color-
visualizer, Accessed October 2017

18. Santonja J, Linares J, Chover M (2002) An image mapping system for simulating ce-
ramic tiles on real photographs, International Conference on Computer Vision and Graph-
ics, 1:121-128

19. Schied C, Dachsbache C (2015) Deferred attribute interpolation for memory-efficient
deferred shading, Proceedings of the 7th Conference on High-Performance Graphics, pp
43-49

20. Schnitzer S, Gansel S, Durr F, Rothermel K (2014) Concepts for execution time
prediction of 3D GPU rendering. Proceedings of the 9th IEEE International Symposium
in Industrial Embedded Systems (SIES), pp. 160-169

21. Soler C, Hoel O, Rochet F (2010) A deferred shading pipeline for real-time indirect
illumination, Proceeding SIGGRAPH 2010 Talks, Article 18

22. Spark Vision Digital Showroom, http://www.spark-vision.com/digitalshowroom, Ac-
cessed November 2017

23. Sukanya C, Roopa G, Vince PA (2016) Survey on Object Recognition Methods, Inter-
national Journal of Computer Science Engineering and Technology, 6(1):48-52

24. Sweet Home 3D, http://www.sweethome3D.com/es/index.jsp, Accessed October 2017
25. Tile Giant, https://www.tilegiant.co.uk/idesign/, Accessed October 2017
26. Tile planner, http://www.tileplanner.com/es/, Accessed October 2017
27. TitanLux, https://www.titanlux.es/en/inspiracion, Accessed October 2017
28. Trentin A, Perin E, Forza C, Increasing the consumer-perceived benefits of a mass-

customization experience through sales-configurator capabilities, Computers in Industry,
65(4):693-705 (2014)

29. Valspar Painting, http://www.valsparpaint.com/en/explore-colors/painter/, Accessed
November 2017

30. Vive VR Glasses, https://www.vive.com/, Accessed October 2017
31. Wang Z, Ziou D, Armenakis C, Li D, Li Q (2005) A comparative analysis of image fusion

methods, IEEE Trans. Geosci. Remote Sens, 43(6):1391-1402
32. Xin L (2015) On Computing Mapping of 3D Objects: A Survey, ACM Computing

Surveys (CSUR) Surveys, 47(2)

http://www.fractalgraphics.com/
http://ambients.halconceramicas.com/
http://www.ikea.com/
http://www2.benjaminmoore.com/en-ca/for-your-home/personal-colour-
http://www.roddapaint.com/professionals/color/color-
http://www.spark-vision.com/digitalshowroom
http://www.sweethome3d.com/es/index.jsp
http://www.tilegiant.co.uk/idesign/
http://www.tileplanner.com/es/
http://www.titanlux.es/en/inspiracion
http://www.valsparpaint.com/en/explore-colors/painter/
http://www.vive.com/

	Inmaculada Remolar Miguel Chover
	1 Introduction
	2 Related work
	3 Image elements
	6 Image composition
	5 Evaluation and Results
	7 Conclusions and future work
	References

