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Abstract

This dissertation proposes a new approach to segment the upper airways. This proposal al-
lows the extraction of curvilinear structures based on the principal curvatures. The proposal
allows extracting these structures from 2D and 3D images. Among the main novelties is the
proposal of a new stopping criterion to stop the propagation of the contrast enhancement al-
gorithm (multiscale top-hat morphological operator). In the same way, the proposed stopping
criterion is used to stop the anisotropic diffusion algorithms. In addition, a new criterion is
proposed to select the principal curvatures that make up the curvilinear structures, which is
based on the criteria proposed by Steger, Deng et. al. and Armande et. al. Furthermore, a
new algorithm to perform the non-maximum suppression that allows reducing the presence
of discontinuities in the border of curvilinear structures is proposed. To extract the edges of
the curvilinear structures, a linking algorithm is used that includes a new distance criterion to
reduce the appearance of gaps in the final structure. Finally, based on the obtained results, a
morphological algorithm is used to close the gaps and a region growing algorithm to obtain
the final upper airways segmentation is applied.
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Chapter 1

Introduction

“You never change things by fighting the existing reality. To change something, build a new model

that makes the existing model obsolete.”

– Buckminster Fuller.

Medicine area is being revolutionized thanks to the rapid development and proliferation of
medical imaging technologies. Medical imaging allows scientists and physicians to acquire
potentially life-saving information by looking non-invasively into the human body. The role
of medical imaging has expanded beyond the simple visualization and inspection of anatomic
structures. It has become a tool for surgical planning and simulation, intra-operative naviga-
tion, radiotherapy planning, and for tracking the progress of diseases. The analysis or study
of medical imaging has depended mainly on the interpretative capacity of doctors and radi-
ologists, but this task is very time consuming and require a great experience of specialists to
reduce the subjectivity in diagnosis[13–15].

In our case, the upper airways segmentation is of significant importance because one of the
most prevalent chronic disorders is airway disease. It is a major cause of morbidity and mor-
tality worldwide [16, 17]. In order to understand its underlying mechanisms and to enable
assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investi-
gation of the airways in a large number of subjects is of great research interest. Due to its high
resolution in temporal and spatial domains, Computed Axial Tomography (CAT or CT) has
been widely used in clinical practices for studying the normal and abnormal manifestations
of airways diseases[18]. For example, evaluation of the upper respiratory airway obstruction
(URAO) is of significant importance, as its physiological effects on ventilation rapidly evolve
to secondary body malfunctions. Given the nature and location of the lesions, the invasive han-
dling of the condition with direct bronchoscopy is undesirable; an imaging approach based on
CT is preferred. Objective and quantitative evaluation of the obstruction therefore requires the
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application of image processing and analysis techniques[19, 20].

1.1 Motivation

Sleep disorders are a widely recognized consequence of many neurological pathologies, how-
ever, the significance of sleep disorders is underestimated in our society. There are approxi-
mately 90 different types of sleep disorders ranging from insomnia to more serious conditions
such as restless legs syndrome, narcolepsy and sleep apnea [21, 22]. And the incidence and
prevalence of sleep disorders are very high compared to other medical illnesses.

Sleep apnea is a condition characterized by the episodic cessation of breathing during
sleep. This generates several complications in the health condition of the patients (see Figure
1.1). Obstructive sleep apnea syndrome (OSA) is the most common sleep apnea, affecting
4% of adults [22, 23], and is secondary to sleep-induced obstruction of the upper airways
combined with simultaneous respiratory efforts. OSA results in reduced oxygen saturation
which may give rise to hypertension, cardiac arrhythmia, nocturnal angina, and myocardial
ischemia. OSA also results in impaired sleep quality leading to excessive daytime sleepiness,
deterioration of memory and judgment, altered personality, and reduced concentration[23, 24].

Figure 1.1: Complications generated by sleep apnea disorders.

Among patients with OSA, the sites of obstruction and the narrowing of the upper airways
can differ greatly. The retropalatal region, an area posterior to the soft palate (RP), and ret-
roglossal region, an area posterior to the base of tongue (RG), are commonly restricted sites
[25]; however, multiple sites of obstruction and narrowing are not uncommon [23].

The consequences of sleep disorders such as medical illness, surgical illness, and accidents
may cause serious burden not only in individual health but also in society both medically and
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socioeconomically [24, 26]. By reviewing economical costs of sleep disorders, it is possible
to see the seriousness of this condition (see Table 1.1). In addition, Hillman et. al. present an
analysis of direct and indirect costs of sleep disorders and the fractions of other health impacts
attributable to sleep disorders. They include in their study direct health costs of sleep disorders
(principally, obstructive sleep apnea, insomnia, and periodic limb movement disorder) and of
associated conditions. Also, they are considered indirect financial costs of associated work-
related accidents, motor vehicle accidents, and other productivity losses [26].

Table 1.1 presents a consolidation of the costs presented by Hafner et. al. [9] in their
comparative analysis of several countries (United States, United Kingdom, Japan, Germany
and Canada). Table 1.1 shows the great economic impact associated with sleep disorders using
the gross domestic product (GDP1) as a reference measure.

Country/Year 2015) 2020 2025 2030 Cumulative costs 2030

U.S. 411.0 433.8 456.1 467.7 7030.7
UK 50.2 53.8 57.6 58.7 877.4
Japan 138.6 145.9 151.7 156.2 2357.2
Germany 60.0 62.3 64.7 69.1 1021.4
Canada 21.4 21.9 22.5 23.4 355.1
Total 681.2 717.7 752.6 775.1 11641.8

Table 1.1: Estimated annual costs in GPD (U.S. $billions) (Adapted from [9])

Based on the medical and socioeconomic impact that is generated by sleep disorders, it is
important to be able to make a diagnosis to detect and treat these disorders. Normally, doctors
diagnose sleep apnea based on medical and family histories, a physical exam, and sleep study
results. In the physical exam, the doctor checks mouth, nose, and throat for extra or large
tissues. Children who have sleep apnea might have enlarged tonsils (Doctors may need only
a physical exam and medical history to diagnose sleep apnea in children). Adults who have
sleep apnea may have an enlarged uvula or soft palate. The uvula is the tissue that hangs from
the middle of the back of the mouth. The soft palate is the roof of the mouth in the back of the
throat.

When the medical and family history and the physical exam are not enough, sleep studies
are required. Sleep studies are tests that measure how well the patient sleep and how his body
responds to sleep problems. These tests can help the doctor to find out whether the patient has
a sleep disorder and how severe it is. Sleep studies are the most accurate tests for diagnosing

1GDP of a country provides a measure of the monetary value of the goods and services it produces in a
specific year.
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sleep apnea. There are different kinds of sleep studies. If the doctors think the patient has sleep
apnea, they may recommend a polysomnogram (poly-SOM-no-gram; also called a PSG) or a
home-based portable monitor.

The American Academy of Sleep Medicine (AASM) provides standards and guidelines
for diagnostic polysomnography that include the following:

• Sleep stages are recorded via an electrooculogram (EOG), electroencephalogram (EEG),
and electromyogram (EMG).

• Heart rhythm is monitored with a single-lead electrocardiogram (EKG).

• Leg movements are recorded via an anterior tibialis electromyogram.

• Breathing is monitored, including airflow at the nose and mouth (using both a thermal
sensor and a nasal pressure transducer), effort (using inductance plethysmography), and
oxygen saturation.

• The breathing pattern is analyzed for the presence of apneas and hypopneas.

Figure 1.2 shows a superimposed recordings of the electrooculogram (EOG), electroencephalo-
gram (EEG), electromyogram (EMG), ECG (EKG), sympathetic nerve activity (SNA), respi-
ration (RESP), and blood pressure (BP) during rapid eye movement (REM) sleep in a patient
with OSA [1]. The regions marked in the data obtained for EMG and RESP show the intervals
in which obstructions occurred and therefore low activity in the sampled signal.

Figure 1.2: Superimposed recordings data in a patient with OSA (adapted from [1]).

The home-based portable monitor is a home-based sleep test with a portable monitor. The
portable monitor records some of the same information as a PSG. For example, it may record:
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The amount of oxygen in the blood, air movement through the nose while the patient breathe,
heart rate, chest movements that show whether patient is making an effort to breathe. The
sleep specialists may use the results from a home-based sleep test to help diagnose sleep
apnea. They also may use the results to decide whether you need a full PSG study in a sleep
centre.

Although polysomnography (PSG) is the method used to confirm the diagnosis of OSA,
CT and MRI images have established themselves as important supporting methods in the clin-
ical diagnosis, preoperative evaluation, and post-treatment follow-up of patients who do not
respond well to initial therapy. Both CT and MRI images can provide an excellent evaluation
of the various anatomical planes of the obstruction site, which enables better clinical assess-
ment as well as better planning for a possible surgical approach [27]. For this reason and
considering that patients with sleep-disordered breathing often have physiologic and anatomic
abnormalities of the upper airways that are demonstrable while awake, the use of CT images
is an excellent tool to identify the anatomic features that predispose patients to these kind of
sleep disorders.

In the initial studies in which airway dimensions were measured using CT, the researchers
relied on manual tracing of the airway images. These techniques are extremely time con-
suming and prone to error. Therefore, computer-aided and automated techniques have since
been developed to measure airway lumen and wall dimensions. In many airway diseases, the
important site of airflow obstruction is the small airways [28, 29]. It has been reported that
airway lumens as small as a 0.5mm diameter can be measured using CT [30], but, there are
large errors associated with the measurements of small airways when the data are obtained
using routine clinical scanning parameters. While many methods have been proposed for the
segmentation of the lower airways from CT images [31–45], the segmentation of the nasal
cavity and paranasal sinuses has not been addressed. Similarly, no one has proposed a method
for nasal passage segmentation from MR images.

Medical image segmentation algorithms often face difficult challenges such as poor im-
age contrast, noise, and missing or diffuse boundaries [46]. For example, tissue boundaries
in medical images may be smeared (due to patient movements), missing (due to low Signal
Noise Ratio (SNR) of the acquisition apparatus), or nonexistence (when blended with similar
surrounding tissues). Under such conditions, without a prior model to constrain the segmenta-
tion, most algorithms (including intensity and curve-based techniques) fail-mostly due to the
under-determined nature of the segmentation process. Similar problems arise in other imaging
applications as well and they also hinder the segmentation of the image. These image segmen-
tation problems demand the incorporation of as much prior information as possible to help the
segmentation algorithms to extract the tissue of interest.
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Based on the above, several tests were performed to segment the CT images to obtain
the upper airways using well known algorithms such as thresholding, region growing, fast
marching (FM), Chan and Vese (CV), and Level set. For example, in Figure 1.3 the result
obtained using fast marching algorithm is shown. As can be seen in the left image (axial
view) and in the right image (coronal view), in thin regions (thin tissue) or narrow passages
the segmentation algorithm does not propagate generating an under-segmentation.

Figure 1.3: Upper airways segmented using FM.

In addition, Figure 1.4 presents an example, which is the result of applying the segmenta-
tion algorithm proposed by Chan-Vese. The image on the left (axial view) allows to see in the
top part an over-segmentation generated by the algorithm.

Figure 1.4: Upper airways segmented using CV.

In conclusion, the segmentation obtained is not complete in the region of interest (upper
airways), due to the conditions already mentioned as the presence of low contrast and the exis-
tence of regions with thin tissue, which are difficult to overcome using traditional techniques.
Because of this, the challenge in this research is overcoming the difficulties described, using
principal curvatures, in order to segment the upper airways in a more accurately way from CT
medical images.
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1.2 Objective

The aim of this thesis work is to develop an image segmentation algorithm using principal
curvatures to segment upper airways from CT images.

To meet this objective the revision of important issues is required. First, contrast enhance-
ment and smoothing of CT images is reviewed.

• Contrast in a CT image is determined by the differential absorption of X-rays by neigh-
boring structures. Problem of automatic upper aiways (nose, nasal cavity, paranasal
sinuses, nasopharynx and pharynx) segmentation is hard, because low contrast exists
between the interior of the airways and its surrounding tissue making very difficult the
segmentation process[47, 48].

• In a medical setting, it is often the case that the acquired images suffer from noise,
which may ultimately affect the accuracy of analysis and diagnosis, therefore, image
smoothing is of critical interest.

Choosing an appropriate method for contrast enhancement or smoothing is not straightfor-
ward, due to lack of dependable measures that quantify the quality of the output image.

Second, since the segmentation algorithm is based on principal curvatures, it is necessary
to review the selection criteria, the detection and its corresponding extraction.

• Principal curvatures are part of the feature extraction of an image. Therefore, its defini-
tion and the computational forms to calculate them must be reviewed.

• According to several authors, principal curvatures allow defining the contour of a surface
or hypersurface. Then, the detection and extraction of the curvatures can be considered
as a problem of edge detection.

Finally, to compare the results obtained with the proposed algorithm, it is necessary to have
a set of reference images. Therefore, the project includes the manual or semi-automatic seg-
mentation of five images in order to have a reference measurement.

• Evaluation of segmentation methods has been problematic because, manual segmenta-
tion of airways is a difficult and very time consuming task due to the complexity of the
3D structure of the upper airways. Without a prior model to constrain the segmenta-
tion, most algorithms (including intensity and edge based techniques) will fail. Similar
problems arise in other imaging applications as well, hindering the segmentation of the
image.
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1.3 Proposed solution

To fulfill the objective of this thesis, a general solution was defined, which is presented in Fig-
ure 1.5. As you can see, the solution is composed of four blocks that allows to segment the CT
images to obtain the upper airways. Each block is marked according to the user intervention
level as automatic (without intervention) or semi-automatic (some parameters entered by the
user are required). The first corresponds to the image enhancement and smoothing that per-
mits to reduce the noise and increase the contrast. The second deals with the feature detection
with emphasis on the principal curvatures and the shapes classification that can be identified
(peaks, valleys, saddles, ridges, etc.). The third block allows to extract the edges that belong
to the surface or hypersurface, for this, techniques based on edges and ridges are used. Finally,
the fourth block corresponds to the segmentation based on the edges obtained by means of the
previous steps.

Figure 1.5: Main structure of proposed solution.

The most important algorithms that make up the proposed solution are presented in Figure
1.6. The first corresponds to the algorithm for contrast enhancement based on morphological
operators. Specifically, a multi-scale top-hat algorithm is used. The biggest drawback with
multi-scale techniques is the definition of the number of iterations. Therefore, a stopping
criterion is proposed based on the Contrast Improvement Ratio (CIR) metric. An improvement
to the CIR metric to include negative values was made, which is called (CIRR). Subsequently,
the stopping criterion called CIRRindex was defined.

The second algorithm corresponds to the image smoothing. Tests were performed with
linear and non-linear algorithms, and algorithms based on partial derivative equations (PDEs),
specifically diffusion equations, were tested. The non-linear anisotropic diffusion algorithm
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proposed by Mirebeau was selected. As it is a diffusion algorithm, it also presents difficulties
to determine the number of iterations. Based on this, there are some solutions (stopping crite-
ria) that are included directly in the diffusion equation, however there are some proposals that
do not depend on the diffusion equation, for example, Joao, Gambaruto, Tiago, and Sequeira
(JGTS) proposed a criterion based on Mean Square Error (MSE). From the review of the state
of the art and the tests performed with the stopping criterion used in the contrast enhancement,
it was identified that it could also be applied to the anisotropic diffusion.

Figure 1.6: Main algorithms included in the proposed solution.

The third algorithm allows to compute the gradient of the 3D images. The 3D version
of interpolation algorithm proposed by Savitzky-Golay was implemented. In addition, the
derivative Gaussian filter proposed by Deriche was used. Tests were carried out with the
two implementations and it was found that Savitzky-Golay generates less attenuation of the
theoretical values of the gradient.

The fourth algorithm allows determining the principal curvatures using the Hessian matrix.
A criterion is proposed that allows to select the ridge points of the surface. This criterion was
compared against that proposed by Steger and that proposed in the PCBR algorithm. The
results show that the proposed criterion allows to obtain greater continuity in the surface of
the curvilinear structures. The fifth algorithm corresponds to the non-maximum suppression.
It is proposed to include more information of each point so as not to generate gaps in the
objects surface. The results were compared with the non-maximum suppression algorithm
proposed by Canny. The results at first glance are crude, but they allow to maintain the surface
without many gaps. This is due to the inclusion of the information of the normal direction and
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the direction of the plane tangent to the surface.

The sixth algorithm corresponds to the link of the points on the surface. The procedure
is similar to the one proposed in the PCBR algorithm, including a distance criterion between
the points found as belonging to the surface. This allows to reduce the presence of gaps and
therefore of holes in the surface. The disadvantage is that it does not generate contours of
width equal to a voxel.

Finally, to fill in the gaps that may appear on the surface, a morphological closing operator
is used. Based on the contours, a region growing algorithm is used to extract the objects of
interest.

1.4 Contributions

The main contributions of this thesis are:

1. A new stopping criterion is proposed to multi-scale top-hat contrast enhancement.

2. The stopping criterion is used in image smoothing that use isotropic or anisotropic dif-
fusion.

3. A new criterion to detect edges or ridges is proposed.

4. A new non-maximum suppression criterion is proposed.

5. One modification to linking algorithm proposed by Steger to detect edges is proposed.

6. An automatic implementation to compute derivatives using Savitzky-Golay is imple-
mented.

7. A new algorithm to segment curvilinear structures is proposed.

1.5 Thesis outline

The main contents of this thesis are presented in six chapters, as shown in Figure 1.7. In each
chapter is included the state of the art that support the proposed algorithm or the improvement
of the selected algorithm, then, it presents the method used and the tests that allow to see its
advantages.
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Figure 1.7: Thesis outline according to the proposed solution.

Chapter 2 provides a background description on upper airways such as anatomy, physi-
ology and common diseases. Then, a brief description about image segmentation techniques
are presented. Finally, a basic concepts about differential geometry such as surfaces and cur-
vatures are reviewed.

Chapter 3 provides a description of state of the art about contrast enhancement, mainly
morphological operators. First, the improvement of contrast is described using multi-scale
morphological operators in gray-level images (head-neck CT images). Second, an improve-
ment in the Contrast Improvement Ratio (CIR) criterion called Contrast Improvement Ratio
Revisited (CIRR) is proposed. Third, the proposed stopping criterion for the multi-scale Top-
Hat algorithm is presented. Finally, the experiments and their results are presented for both
2D and 3D images.

Chapter 4 provides a description of the state of the art about smoothing using partial
derivative equations (PDEs) primarily. The linear and nonlinear diffusion techniques are pre-
sented, both isotropic and anisotropic. Then the selected diffusion algorithms are presented,
as well as the stopping criterion that is not associated with the diffusion equation but is inde-
pendent of the algorithms. Finally, the tests for each of the algorithms are performed and the
best one is selected to be applied to the images resulting from the contrast enhancement. The
tests are applied to 2D and 3D images.

Chapter 5 presents a description of the state of the art about features and shapes detec-
tion, this includes detection of corners, edges, blobs and shapes. Subsequently, the proposed
method to select the main characteristics using the principal curvatures is presented. Finally,
experiments are carried out using 2D and 3D images to show the improvement in the detection
of edges or ridges.

Chapter 6 presents a description of the state of the art on the features extraction, includ-
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ing the most relevant algorithms. Then two important elements are presented for features
extraction such as the non-maximum suppression and the linking. Subsequently, the proposed
method for the non-maximum suppression is presented and compared with traditional tech-
niques. In addition, the proposed linking algorithm is presented. Finally, the tests carried out
in 2D and 3D images that demonstrate the advantages of the proposed solution are presented.

Chapter 7 presents a brief description of the state of the art on segmentation methods with
emphasis on upper airways. Then the proposed method to extract the region from the upper
airways is presented. Finally, tests with 3D images are realized and the results are compared
with previously segmented images.



Chapter 2

Preliminar concepts

“[The golden proportion] is a scale of proportions which makes the bad difficult [to produce] and the

good easy.”

– Albert Einstein.

In this chapter are presented the concepts related to upper airways physiology and the main
diseases present in this area of the body. Then, a brief description of image segmentation
techniques is made. Finally, the most relevant concepts about surfaces and curvatures are
presented.

2.1 Upper airways

Principal organs of the respiratory system are the two lungs, which are in the right and left sides
of the chest (thoracic cavity) and are separated from each other by the heart. Air passes into
and out of the lungs through a series of cavities, tubes, openings and passages called the upper
airways[49]. The flow of air depends on other organs, including the muscular diaphragm and
the muscles and bones that make up the wall of the thoracic cavity. Part of each lung consists
of tubes called the lower airways; they end in the microscopic saclike alveoli, which make up
most of the lungs. The lower airways transport air to and from the alveoli [2, 50].

The respiratory system is comprised of several elements including the central nervous
system, the chest wall, the pulmonary circulation, and the respiratory tract. For example,
many pulmonary vessels transport blood throughout the lungs. The main functions of the
respiratory system include:

1. External respiration: exchange of gases (oxygen and carbon dioxide) between air and
blood.
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2. Internal respiration: exchange of gases between blood and tissue fluid.

3. Transport of gases to and from the lungs and the tissues.

The respiratory tract can be divided into four distinct segments [51]: the naso-oropharynx
(upper respiratory tract or upper airways), the conducting airways (lower respiratory tract or
lower airways), the respiratory bronchioles, and the alveoli. In general, upper airways include
all structures located above the trachea, while lower airways are below the trachea and into
the lungs. In this case, the segment that is relevant in the segmentation process corresponds to
the upper respiratory tract.

2.1.1 Upper airways anatomy and physiology

The upper airway starts at the nostrils, extends through the nasal conchae to the nasopharynx,
over the uvula to the hypopharynx and larynx, or, at the lips, extends through the oral cavity,
over the tongue and below the hard and soft palates, to the hypopharynx and larynx. Figure
2.1 shows the structures that conform the upper airways.

Figure 2.1: Upper Airways. Left image shows main structures and right image shows main
divisions (taken from [2]).

The upper airways main functions are warm, filter, and humidify air. According with the
literature and the summary presented in table 2.1, upper airways can be separated in five sec-
tions as is ilustrated in Figure 2.1: Nasal Cavity, Nasopharynx, Oropharynx, Laryngopharynx
and Larynx. In this section the main structures without consider special order or importance
level are described.
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Structure Description Function

Nose
Hollow spaces in nose. Supported by bone
and cartilage

provides an entrance for air in which air is
filtered by coarse hairs inside the nostrils.

Nasal Cavity
Space posterior to the nose that is divided
medially by the nasal septum.

Paranasal Sinuses
Sinuses are air-filled spaces within the
maxillary, frontal, ethmoid, and sphenoid
bones of the skull.

Open to the nasal cavity and are lined with
mucus membrane that is continuous with
that lining the nasal cavity.
Reduce the weight of the skull and serve
as a resonant chamber to affect the quality
of the voice.

Oral Cavity Hollow spaces in mouth

Pharynx (behind the
tongue)

Chamber posterior to oral cavity; lies
between nasal cavity and larynx

Connection to surrounding regions.
Common passageway for air and food.
Aids in producing sounds for speech.

Glottis Opening into larynx Passage of air into larynx

Larynx (voice box)

Cartilaginous organ that houses the vocal
cords (voice box). Is composed of a
framework of muscles and cartilage bound
by elastic tissue.

Sound production. Helps keep particles
from entering the trachea and also houses
the vocal cords.

Trachea (windpipe)
Flexible tube that connects larynx with
bronchi.

Passage of air to bronchi

Table 2.1: Upper airways structures.

2.1.1.1 Nasal cavity

Nasal cavity is the space between the roof of the mouth and the cranial base, divided ver-
tically in the middle by the nasal septum. Each cavity is wide caudally, and narrow cranially.
The roof of the nasal cavity is thin cribriform plate (0.5 mm) and is formed by the nasal spine
of the frontal bones, nasal bones, cribriform plate of the ethmoid bone, and anterior body of
the sphenoid bone. The floor of the nasal cavity is the hard palate, formed by the palatine
processes of the maxillae and the horizontal processes of the palatine bones. The lateral walls
of the nasal cavities are formed by the maxilla, palatine, and ethmoid bones. The lateral nasal
wall contains the maxillary and ethmoid ostia, plus three or four turbinates. The lateral walls
of the nasal cavity also contain three projections called the inferior, middle, and superior nasal
turbinates, which separate the nasal cavity into four air chambers, namely the inferior nasal
meatus, middle nasal meatus, superior nasal meatus, and the spheno-ethmoidal recess (see
Figures 2.2 and 2.3)[18, 52].
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Figure 2.2: Nasal cavities.

2.1.1.2 Nasal septum

The nasal septum divides the nasal cavity into two separate compartments (see Figure 2.3),
increasing the total mucosal surface area. It consists of an anterior cartilaginous portion, which
provides support for the nasal tip, and a posterior bony portion formed by the perpendicular
plate of the ethmoid and the vomer[18, 53].

Figure 2.3: External nose and nasal septum.

The major portion of the nasal septum is formed by the perpendicular plate of the ethmoid
bone posteriorly and the septal cartilage anteriorly. The vomer completes the posteroinferior
portion of the septum. The septum is lined by relatively thin, ciliated respiratory mucosa,
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which may regularly undergo squamous metaplasia. The underlying thin lamina propria, al-
though containing seromucinous glands, is tethered to the septal cartilage, restricting reactive
polyp formation[51, 54].

Structural deviations of the septum lead to internal nasal asymmetry, which in turn causes
compensatory change in turbinate morphology, resulting in changes in nasal airway resistance
[55]. The percentage of nasal septal deformities changes with age. A multinational study has
shown that septal deformities are present in approximately 90% of adult patients. A straight
septum is twice as frequent in females than in males [56].

In addition, small anterior deviations at the level of the nasal valve can lead to significant
nasal airway obstruction, whereas large deviations in the posterior portion of the nasal cavity
may have no effect on airflow resistance. Also, weakening or collapse of the septal cartilage
that results from a septal abscess, surgical intervention, or Wegener granulomatosis leads to
loss of nasal tip support compromising the nasal valve and nasal airflow [56].

2.1.1.3 Nose

This part of upper airways is above the hard palate and contains the peripheral organ of smell.
Some authors indicated that nose includes the external nose and nasal cavities, in our case
is considered how another part of upper airways. For this reason, nose is divided into right
and left cavities by the nasal septum (see Figures 2.4 and 2.3). The functions of the nose
and nasal cavities are: olfaction (the sense of smell), respiration (breathing), filtration of dust,
heating and humidification of inspired (inhaled) air, and finally, reception and elimination of
secretions from the nasal mucosa, paranasal sinuses, and nasolacrimal ducts[54].

Figure 2.4: Nose anatomy (adapted from http://physiotherapy.org.nz).

http://physiotherapy.org.nz
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Some nose anatomical structures are defined as follow as these are not always used with
standard meaning.

Nasal Root: The most depressed, superior part of the nose along the nasal ridge. Nasion:
The midline point just superior to the nasal root overlying the naso-frontal suture. Nasal
Bridge: A saddle-shaped area that includes the nasal root and the lateral aspects of the nose.
It lies between the glabella and the inferior boundary of the nasal bone, and extends laterally to
the inner canthi. Nasal Ridge: The midline prominence of the nose, extending from the nasal
root to the tip (also called the dorsum of the nose). Nasal Base: An imaginary line between
the most lateral points of the external inferior attachments of the alae nasi to the face. Nasal
Tip: The junction of the inferior margin of the nasal ridge and the columella. Commonly,
it is the part of the nose furthest from the plane of the face. In rare circumstances, such as
markedly prominent and convex nasal profiles, other parts of the ridge may be further removed
from the facial plane. Ala: The tissue comprising the lateral boundary of the nose, inferiorly,
surrounding the naris. Columella: The tissue that links the nasal tip to the nasal base, and
separates the nares. It is the inferior margin of the nasal septum[2, 51, 54]. Additionally,
information from NIH is used 1.

2.1.1.4 External nose

The external nose is a pyramidal structure, situated in the midface. It presents a root (or
bridge), a dorsum, and a free tip or apex (see Figure 2.4). The two inferior openings are
the nostrils (or nares), bounded laterally by the ala and medially by the nasal septum. The
superior part of the nose is supported by the nasal, frontal, and maxillary bones; the inferior
part includes several cartilages. The continuous free margin of the nasal bones and maxillae
in a dried skull is termed the piriform aperture[54].

The external nose varies considerably in size and shape, mainly because of differences in
the nasal cartilages. The dorsum of the nose extends from its superior angle, the root (see
Figure 2.4), to the apex (tip) of the nose[2, 53].

2.1.1.5 Paranasal sinuses

Paranasal sinuses are air filled hollow sacs seen around the skull bone. These sacs precisely
surround the nasal cavity. Figure 2.5 shows four paired sinuses: Maxillary, Frontal, Ethmoidal
and Sphenoidal. Each of these sinuses are named according to the facial bones in which it is
located. The sinuses are located within the bones of the face and around the nasal cavity and

1National Human Genoma Research Institute (https://elementsofmorphology.nih.gov)

https://elementsofmorphology.nih.gov
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eyes. Normal sinus anatomy is complex, and can be difficult to appreciate on static images
alone [52, 53].

Figure 2.5: Paranasal sinuses.

Frontal Sinus These paired sinuses reside between the internal and external cranial tables
and drain either via a nasofrontal duct into the frontal recess or more directly into the anterior
infundibulum, or less often, into the anterior ethmoid cells, which in turn will open into the
infundibulum of the bulla ethmoidalis (see Figures 2.5 and 2.4) [18, 52, 54]. The frontal sinus
is the second largest sinuses with 2 – 2.5 cm.

Ethmoid Sinus This paired complex of sinuses contains 3-18 cells that are grouped as ante-
rior, middle, or posterior, according to the location of their ostia (see figure 2.5). There is an
inverse relationship between the number and size of the cells. Generally, the posterior cells are
both larger and fewer than the anterior cells. Each ethmoid labyrinth lies between the orbit and
the upper nasal fossa. The left and right groups of ethmoid cells are connected in the midline
by the cribriform plate (nasal roof) of the ethmoid bone. The cribriform plate is an important
landmark in evaluation of sinonasal tumour stage-violation of the cribriform plate signifies
direct extension of the tumour into the anterior cranial fossa. The crista galli is a distinctive
pointed bony landmark that extends from the midline of the cribriform plate upward into the
floor of the anterior cranial fossa. The perpendicular plate of the ethmoid bone extends down-
ward from the cribriform plate to contribute to the nasal septum. The medial wall of each
ethmoid labyrinth is formed by a thin lamella of bone from which arise the middle, superior,
and supreme turbinates. The lateral ethmoid wall is formed by the thin lamina papyracea,
which separates the ethmoid cells from the orbit. The roof of the ethmoid complex is formed
by a medial extension of the orbital plate of the frontal bone, which projects to articulate with
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the cribriform plate. This is often referred to as the fovea ethmoidalis[18, 52, 54].

Sphenoid Sinus The average adult sphenoid sinus measures 20 mm high, 23 mm long, and
17 mm wide. The relationship of the posterior extension of the sphenoid in relation to the sella
turcica is variable. The sphenoid sinus septum is usually in the midline, and anteriorly aligned
with the nasal septum (see Figure 2.5). However, it can also deviate far to one side creating
two unequal sinus cavities. With the exception of the sinus roof, the other sinus walls are
of variable thickness depending on the degree of pneumatization. The sphenoid roof is thin,
often measuring only 1 mm. (planum sphenoidale), and is vulnerable to perforation during
surgery. The sinus roof relates to the floor of the anterior cranial fossa, anteriorly; the optic
chiasm and the sella turcica, posteriorly. The lateral sphenoid wall is related to the orbital
apex, the optic canal, the optic nerve, and the cavernous sinus, containing the internal carotid
artery. The sinus floor is the roof of the nasopharynx, and the anterior sinus wall is the back
of the nasal fossa[18, 52, 54].

Maxillary Sinus The maxillary sinus lies within the body of the maxillary bone. Behind
the orbital rims, each sinus roof/orbital floor slants obliquely upward so that the highest point
of the sinus is in the posteromedial portion, lying directly beneath the orbital apex (see Figure
2.5). The medial antral wall is the inferior lateral wall of the nasal cavity (“party wall”). The
curved posterolateral wall separates the sinus from the infratemporal fossa. The anterior sinus
wall is the facial surface of the maxilla that is perforated by the infraorbital foramen below
the orbital rim. The floor of the sinus is lowest near the second premolar and first molar
teeth and usually lies 3-5 mm below the nasal floor. The lower expansion of the antrum is
intimately related to dentition. The location of the maxillary sinus ostia, is high on the medial
wall. They drain through the ethmoidal infundibulum and then the nasal fossa. This pattern of
drainage in the erect position is accomplished by intact ciliary action. The maxillary hiatus is
a bony window leading to the interior of the maxillary sinus. The hiatus is normally partially
covered by portions of four bones: the perpendicular plate of the palatine bone, posteriorly;
the lacrimal bone, anterosuperiorly; the inferior turbinate, inferiorly, and above the turbinate
attachment, the uncinate process of the ethmoid bone[18, 52, 54]. The maxillary sinus is the
largest sinuses with 3.5 cm high and 2.5 – 3 cm wide.

2.1.1.6 Turbinates

The nasal turbinates serve to increase the surface area within the nasal mucosa to facilitate
moistening of inspired air. The turbinates are three, rarely four, scroll-like projections from
the lateral nasal wall (see Figure 2.6).
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The lower two, referred to as the inferior and middle turbinates, are functionally the most
significant. Each turbinate consists of a bony frame with overlying respiratory epithelium.
These turbinates interrupt the flow of air into the nasal passage, forcing it through narrow
passages that are covered with moist nasal respiratory mucosa. The total surface area available
in the nasal mucosa is estimated to be about 180 cm2, of which 10 cm2 is olfactory mucosa
and 170 cm2 is the richly vascularized respiratory mucosa[18, 53, 54].

Figure 2.6: Tubinates cross section.

The inferior turbinate has an important role in the defense of the lungs and the physiology
of the nose. Trimming of the anterior portion of the inferior turbinate can lead to a decrease
in the total nasal resistance to airflow [54] by enlarging the nasal valve, but this should be
considered only after potential causes for its enlargement have been investigated. In inferior
turbinate reduction surgery, in efforts to preserve turbinate function, one should consider the
fact that the area fraction of glands in the lateral mucosa significantly exceeds that of the
medial and inferior mucosal layers, whereas that of venous sinusoids varies significantly, with
the greatest difference inferiorly.

2.1.1.7 Pharynx

The pharynx is a tube formed by skeletal muscle and lined by mucous membrane that is
continuous with that of the nasal cavities. The pharynx is divided into three major regions: the
nasopharynx, the oropharynx, and the laryngopharynx (see Figure 2.7).

The nasopharynx is flanked by the conchae of the nasal cavity, and it serves only as an air-
way. At the top of the nasopharynx are the pharyngeal tonsils. A pharyngeal tonsil, also called
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an adenoid, is an aggregate of lymphoid reticular tissue similar to a lymph node that lies at the
superior portion of the nasopharynx. The function of the pharyngeal tonsil is not well under-
stood, but it contains a rich supply of lymphocytes and is covered with ciliated epithelium that
traps and destroys invading pathogens that enter during inhalation. The pharyngeal tonsils are
large in children, but interestingly, tend to regress with age and may even disappear[2]. The
uvula is a small bulbous, teardrop-shaped structure located at the apex of the soft palate. Both
the uvula and soft palate move like a pendulum during swallowing, swinging upward to close
off the nasopharynx to prevent ingested materials from entering the nasal cavity. In addition,
auditory (Eustachian) tubes or pharyngotympanic tubes that connect to each middle ear cavity
open into the nasopharynx (this connection is why colds often lead to ear infections)[51].

The nasopharynx functions to transmit humidified air from the nasal cavity down to the
oropharynx. The nasopharynx lies above the soft palate and behind the posterior nares or
conchae of the nasal cavities. Except for the soft palate, the walls of the nasopharynx are
rigid and therefore the nasopharyngeal cavity does not obliterate. The pharyngeal isthmus
connects the nasopharynx with the more caudal oropharynx. During swallowing, the pharyn-
geal isthmus may be sealed off from the oropharynx when the soft palate elevates and the
superior pharyngeal constrictor muscle contracts. The nasopharynx also contains lymphoid
tissues and mucous glands that serve both immune and non-immune host-defense functions.
The nasopharyngeal tonsil is a mucosa-associated lymphoid tissue (MALT) located in the roof
and posterior wall of the nasopharynx [18, 51].

Figure 2.7: Divisions of the pharynx.

The oropharynx is a passageway for both air and food. It is extends from the soft palate to
the upper border of the epiglottis (see Figure 2.7) and it is bordered superiorly by the nasophar-
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ynx and anteriorly by the oral cavity. Its anterior border is the pharyngeal part of the tongue
and its posterior border is the epithelial mucosa that abuts the body of the second and upper
part of the third cervical vertebrae. The oropharynx may be viewed as an “intersection” in the
aerodigestive tract because it can transmit inspired air into the trachea and liquid or masticated
food into the esophagus. The fauces is the opening at the connection between the oral cav-
ity and the oropharynx. As the nasopharynx becomes the oropharynx, the epithelium changes
from pseudostratified ciliated columnar epithelium to stratified squamous epithelium[18]. The
oropharynx contains two distinct sets of tonsils, the palatine and lingual tonsils. A palatine
tonsil is one of a pair of structures located laterally in the oropharynx in the area of the fauces.
The lingual tonsil is located at the base of the tongue. Similar to the pharyngeal tonsil, the
palatine and lingual tonsils are composed of lymphoid tissue, and trap and destroy pathogens
entering the body through the oral or nasal cavities[51].

The soft palate serves to block swallowed food and liquid from regurgitating up into the
nasopharynx, but it also contains mucous glands and taste buds. The soft palate mucous glands
are innervated by (i) the lesser palatine nerve (a branch of the maxillary nerve), which contains
the secretomotor efferent branches of the postganglionic parasympathetic fibers whose cell
bodies are located in the pterygopalatine ganglion, and (ii) postganglionic sympathetic fibers
from the carotid plexus. The taste buds are innervated by afferent taste fibers that run in the
lesser palatine nerve and through the pterygopalatine ganglion without synapsing to join the
greater petrosal nerve, a branch of the facial cranial nerve[2].

The laryngopharynx is inferior to the oropharynx and posterior to the larynx (see Figure
2.7). It continues the route for ingested material and air until its inferior end, where the diges-
tive and respiratory systems diverge. The stratified squamous epithelium of the oropharynx
is continuous with the laryngopharynx. Anteriorly, the laryngopharynx opens into the larynx,
whereas posteriorly, it enters the esophagus[2, 18].

2.1.1.8 Larynx

The larynx is a cartilaginous structure inferior to the laryngopharynx that connects the pharynx
to the trachea and helps regulate the volume of air that enters and leaves the lungs. The
structure of the larynx is formed by several pieces of cartilage[2]:

• Three large cartilage pieces—the thyroid cartilage (anterior), epiglottis (superior), and
cricoid cartilage (inferior)—form the major structure of the larynx.

• The thyroid cartilage is the largest piece of cartilage that makes up the larynx. The
thyroid cartilage consists of the laryngeal prominence, or “Adam’s apple,” which tends
to be more prominent in males.
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• The thick cricoid cartilage forms a ring, with a wide posterior region and a thinner
anterior region.

• Three smaller, paired cartilages—the arytenoids, corniculates, and cuneiforms—attach
to the epiglottis and the vocal cords and muscle that help move the vocal cords to pro-
duce speech.

The epiglottis, attached to the thyroid cartilage, is a very flexible piece of elastic cartilage
that covers the opening of the trachea. When in the “closed” position, the unattached end
of the epiglottis rests on the glottis. The glottis is composed of the vestibular folds, the true
vocal cords, and the space between these folds. A vestibular fold, or false vocal cord, is one
of a pair of folded sections of mucous membrane. A true vocal cord is one of the white,
membranous folds attached by muscle to the thyroid and arytenoid cartilages of the larynx
on their outer edges. The inner edges of the true vocal cords are free, allowing oscillation
to produce sound. The size of the membranous folds of the true vocal cords differs between
individuals, producing voices with different pitch ranges. Folds in males tend to be larger than
those in females, which create a deeper voice. The act of swallowing causes the pharynx and
larynx to lift upward, allowing the pharynx to expand and the epiglottis of the larynx to swing
downward, closing the opening to the trachea. These movements produce a larger area for
food to pass through, while preventing food and beverages from entering the trachea[2, 50].

2.1.2 Airways diseases

According to Yataco et al., [57], with the increase in respiratory sleep disorders, such as
snoring, upper airway resistance syndrome (UARS) and obstructive sleep apnea syndrome
(OSAS), the need for better diagnostics and treatment of these disorders became apparent
[58]. Treatment of OSAS is important as it is considered a high morbidity, progressive disease
[59]. For example, OSAS may affect up to 2% of children, and is associated with lymphoid
hyperplasia, craniofacial anomalies, and neurological disorders. Specifically, upper airway
obstruction (UAO) is one of the most serious emergencies faced by critical care physicians.
Early diagnosis followed by restoration of airflow is essential to prevent cardiac arrest or
irreversible brain damage that occurs within minutes of complete airway obstruction [60].
Although a long list of causes may be responsible for acute UAO, management must begin
almost immediately after recognition of the problem. If there is an actual or potential obstruc-
tion sufficient to cause ventilatory or oxygenation impairment, an intervention to secure the
airway is indicated by whatever method appropriate at the time. No single method is suitable
in all instances; selection depends on the assessment of the circumstances[59, 60]. The timing



2.1 Upper airways 25

of the intervention, medical, or surgical, is determined based on the condition of the patient.
In practice, an elective procedure before acute decompensation is always preferable.

Exist many diseases associated with the upper airways, but in this case only three of them
are reviewed: upper airway obstruction, sleep apnea, and tracheal stenosis.
2.1.2.1 Upper airways obstruction

UAO may be functional or anatomic and may develop acutely or subacutely. Relaps-
ing polychondritis constitutes a good example of functional UAO caused by lack of a firm
cartilaginous structure to support the tracheal wall. Squamous cell carcinoma of the larynx
represents an anatomic example of UAO. Although UAO occurs at any level of the upper
respiratory tract, laryngeal obstruction has a particular importance because the larynx is the
narrowest portion of the upper airway. The narrowest portion of the larynx is at the glottis in
adults and the subglottis in infants [58].

Some key recomendations must be considered in critical care of UAO[61]:
• UAO is a life-threatening emergency that requires prompt diagnosis and treatment.

• Severe UAO can be surprisingly asymptomatic at rest if it develops gradually. Sudden
clinical deterioration is unpredictable.

• Patients with possible UAO must never be sedated until the airway is secured. Minimal
sedation may precipitate acute respiratory failure.

• Achievement of airway patency in total airway obstruction and reestablishment of ven-
tilatory airflow is the first and foremost goal of the treating physicians.

• Critical care physicians must be aware that pharmacologic interventions (epinephrine,
steroids, and heliox) provide temporary support but cannot significantly improve me-
chanical UAO.

• Bronchoscopy constitutes the most accurate diagnostic tool and frequently provides the
best way to correct UAO.

• Cricothyroidotomy is the surgical intervention of choice to reestablish airflow when
medical interventions have failed.

Three of the most common causes of UAO are: anaphylaxis, croup, and epiglottitis. Addition-
ally, the airway can also be obstructed if the patient inhale a foreign object[59].

1. Anaphylaxis: is a severe allergic reaction that can appear within just minutes of coming
into contact with an allergen. An allergen is something that triggers an allergy. Anaphy-
laxis can be fatal. During an anaphylactic reaction, your airways can swell, obstruct-
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ing your breathing. Peanuts and bee stings are among the most common anaphylaxis-
causing allergens.

2. Epiglottitis: is a condition that occurs as a result of the epiglottis becoming swollen.
The epiglottis is a flap of cartilage that covers the opening of your windpipe. Swelling
can be caused by anything from an infection to simply drinking coffee that is too hot.
Epiglottitis can block the flow of air to your lungs so it can be potentially life threatening.

This condition is more often found in children aged 1-5 years, who present with a sudden
onset of the following symptoms:

• Sore throat

• Drooling, difficulty or pain during swallowing, globus sensation of a lump in the
throat

• Muffled dysphonia or loss of voice

• Dry cough or no cough, dyspnea

• Fever, fatigue or malaise (may be seen with any URI)

• Tripod or sniffing posture

3. Croup: is a condition that usually causes a harsh, barking cough. The barking cough
is caused by an inflamed windpipe and vocal cords. The swollen windpipe causes the
vibration of your vocal cords to sound different. Croup is not considered to be a severe
condition and it can usually be treated at home.

4. Foreign Objects: Inhaling a foreign object, like a bean, nut or bead, can cause a UAO.
A foreign object can get stuck the throat or other air passage, causing an obstruction.
While foreign objects can be inhaled accidentally at any age, this is most commonly
seen in toddlers and small children.

2.1.2.2 Sleep apnea

Sleep apnea is a common breathing disorder that occurs during sleep. One can get the view of
the prevalence of the condition from the fact that 3% of the children are affected by OSA in
USA, meaning millions of children alone in USA. And that is not counting the adult popula-
tion, 2-4% of which is said to be affected by OSA as well [62].

Sleep apnea can be obstructive, central and mixed (sometimes referred to as ‘complex’).
The most common type is obstructive sleep apnea (OSA), which is characterized by repet-
itive narrowing and/or collapse of the pharyngeal airway (for upper airway anatomy refer to
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Figure 2.1)[63]. The other type, central sleep apnea (CSA), shows a lack of drive to breathe,
thus resulting in insufficient ventilation. Additionally, both of these pathologies can occur
simultaneously, this being referred to as complex or mixed apneas. Sleep apneas cause im-
proper gas exchange, frequent catecholamine surges and impaired sleep continuity[63, 64].
The subsequent blood gas disturbance and arousal from sleep stimulate stimulate the sympa-
thetic nervous system resulting in surges of blood pressure. All of the mentioned consequences
impart stress on the cardiovascular system and thus may lead to serious cardiovascular prob-
lems In addition, when talking about sleep apnea in children, it can lead to problems such as
learning disabilities, attention deficit disorder and failure to thrive[62].

However, sleep apnea is a disease which has not been getting an adequate amount of atten-
tion in the research community for a long time. But, the strain on the cardiovascular system
and other serious problems, such as daytime sleepiness and even neurocognitive dysfunction,
that it causes may be severe in advanced cases of the illness, as such it can significantly affect
the heart especially and lead to cardiac arrest. Thus, it has been receiving a lot of attention
recently.

Sleep apnea is mainly due to the fact that it is quite widespread and may cause rather severe
problems, mainly associated with the cardiovascular system[63]. There are many treatment
options available, starting from external breathing assisting devices, such as the continuous
pharyngeal pressure device, certain medication, up to various surgical intervention methods.

Obstructive sleep apnea (OSA) OSA is a common disorder that is characterized by repet-
itive pharyngeal airway collapse which results in either hypopnea (partially reduced ventila-
tion) or apnea (totally reduced, or absent, ventilation). As a result, hypoxemia (insufficient
amount of oxygen in the organism) and hypercapnia (larger than normal concentration of CO2

in the bloodstream) manifest themselves, despite the patient’s continuing efforts to breathe
(and stimulate them even further)[60]. Despite the continuing efforts to breathe in, the airway
is only opened when the patient awakens. Then hyperventilation occurs, in order to restore the
blood gas balance, which was disturbed during the (hypo)apnea event. After this, the patient
returns to sleep and the event takes place again. Due to the repetitive nature of these respiratory
events, sleep is significantly fragmented, causing insufficient amount of sleep. That results in
fatigue in wakefulness, and even in neurocognitive dysfunction which impairs the ability of
many day-to-day tasks, such as driving a car. In addition to this, the repeated hyperventilation
results in great strain on the cardiovascular system, thus potentially causing serious problems
in it, especially if the cardiovascular system is not fully healthy before all sleep apnea related
events start[65].

Common symptoms of OSA include snoring, daytime sleepiness, irritability, or difficulty
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with focus or concentration. If left untreated, OSA can lead to secondary health issues such
as[61, 65]: heart attack, high blood pressure, stroke, heart failure, irregular heartbeats and
weight gain[64].

The current treatment options for OSA range from lifestyle changes, to external device-
based treatments, such as continuous positive airway pressure (CPAP), to surgery.

• Lifestyle changes such as losing weight, exercising regularly, or consuming less alcohol
before sleep may help improve sleep. If lifestyle changes alone do not resolve OSA,
CPAP is typically prescribed.

• CPAP is the most common treatment for OSA. CPAP is an effective treatment that
uses a mask to deliver air pressure and keep the airway open. While CPAP is often
successful, some people are unable to use or adhere to this treatment. Oral appliances
may be prescribed as an alternative to CPAP.

• Oral appliances keep the airway open by holding the jaw forward during sleep.

• Surgical options may be considered by some people who are unable to use or adhere
to CPAP or oral appliances. Traditional sleep apnea surgery is intended to make the
airway larger by removing or altering facial or airway anatomy. These anatomy altering
surgeries can be painful and involve lengthy recovery times.

Central sleep apnea (CSA) Contrary to OSA, which is chiefly identified by efforts to
breathe in when there are obstructions in the airway. Central sleep apnea (CSA) is described
by the lack of drive to breathe during sleep. The effect it has is similar to OSA, as it results
in frequent (depending on the number of events during sleep) night time awakenings, thus
also causing daytime sleepiness and strain on the cardiovascular system [61, 64]. In fact, even
though CSA and OSA are often separated in their description, frequently they overlap and oc-
cur simultaneously in patients [65]. Central apneas might lead to upper airway closure, which
in turn may be connected with OSA, in a way that there is reduced drive in all dilator muscles.

Mixed apneas Mixed (complex) apneas are a combination of obstructive and central apneas,
meaning that it consists of a complete pause of respiration, shortly followed by an obstructive
respiratory effort. Mixed apneas can in general be described by the percentage of CSA vs
OSA that the patient has. Furthermore, it has been observed that after commencing CPAP
(continuous positive airway pressure) treatment, patients develop CSA symptoms when they
previously had only OSA, meaning that when the airway collapsibility is reduced, the patient’s
apnea shifts more to the CSA side [61, 65].
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2.2 Image segmentation

The process of partitioning an image into meaningful regions is called image segmentation
[15, 19, 43, 44, 48, 66–74]. For the regions to be meaningful, they should represent objects
or their parts. Difficulties arise when properties within objects vary or boundaries of objects
become blurred [75]. The problem is worsened when sensor inaccuracies exist, noise, sam-
pling artifacts, spatial aliasing or partial volume effect is present in the image, generating that
the boundaries of structures to be indistinct and disconnected [76]. These variations, which
are often unpredictable, make it impossible to develop an automatic method that can segment
all images correctly. Because a high accuracy is demanded in the segmentation of medical
images, the user has a critical role in examining the results and correcting the possible errors.
For this reason, one challenge is to extract boundary elements belonging to the same structure
and integrate these elements into a coherent and consistent model of the structure [76].

Segmentation of medical images is an important step in various applications such as visu-
alization, quantitative analysis and image-guided surgery [33]. Numerous segmentation meth-
ods have been developed in the past two decades for extraction of organ contours on medical
images. Low-level segmentation methods, such as pixel-based clustering, region growing, and
filter-based edge detection, require additional pre-processing and post-processing as well as
considerable amounts of expert intervention or information of the objects of interest [62].

Image segmentation is perhaps the most studied area in image analysis. A large number
of papers on this topic is published annually in image analysis journals and conference pro-
ceedings [15, 19, 46, 48, 72, 74, 77–81]. The developed methods often take into consideration
various properties of images or objects, and when such properties deviate from the anticipated
ones, errors occur. Even for a limited class of images, for instance MRI brain images, vari-
ous methods have been developed, none of which is guaranteed to work correctly on a new
image. This may be because there are sensor variations; variations in the brain’s shape, size,
and intensity distribution; and variations in intensities of tissues surrounding the brain. Since
an error-proof image segmentation method cannot be developed, user assistance is needed to
correct the obtained errors. At present, the best one can hope for is to have a segmentation
method that can correctly find most areas of an object of interest, and in areas where it makes
a mistake, allow the user to correct them.

The computerization of medical image segmentation plays an important role in medical
imaging applications. It has found wide application in different areas such as diagnosis,
localization of pathology, study of anatomical structure, treatment planning, and computer-
integrated surgery. However, the variability and the complexity of the anatomical structures
in the human body have resulted in medical image segmentation remaining a hard problem
[46, 78].
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Segmentation of biomedical images in computer-assisted medical diagnosis is a prelimi-
nary operation aimed at detection and localization of regions of interest (ROI) in the images
for their more detailed examination. The aim of image segmentation consists in reduction of
total image examination time. Manually performed image segmentation is a tiresome oper-
ation itself; that is why it is reasonable to include computer-aided image segmentation into
advanced image processing procedures as their integral part. In general, two basic types of
image segmentation tasks in biomedical image processing arise [62]:

• segmentation of anatomical objects of known location and form, co-occurring with other
anatomical objects in the given examination being to be neglected.

• detection and contouring of pathomorphological structures of a priori unknown localiza-
tion and form, distinguished due to their specific biophysical or biochemical properties
manifested by differences in color and/or in texture respecting the environment.

Specifically, airways tree segmentation methods must allow an accurate, automated identifi-
cation of the human airway tree as depicted in CT examinations. The researchers indicate that
the segmentation is a building block for most computerized airway related analyses. Addi-
tionally, they consider that there is a relatively high contrast between the airway lumen and
the airway wall, allowing straightforward way of extracting an airway tree from CT images.
For example, using a three-dimensional (3D) region-growing procedure specifically designed
to identify lumen regions. However, in the presence of partial volume effects and/or image
noise (artifacts), a purely region-growing based operation frequently leads to leakage into the
lung parenchyma (i.e., a sudden explosion) under a given (fixed or constant) threshold. This
leakage often occurs in small airways and in cases with severe lung disease (e.g., emphysema),
thereby leading to an early termination of the progressive airway tree detection process. Al-
though schemes (e.g., front propagation [82–84]) have been developed to prevent leakage
associated with region growing, there is no strategy available that can completely prevent it
from occurring.

When applying a region-growing approach, a threshold and a seed location needs to be
specified. Given the fact that CT examinations may be acquired under different scanning con-
ditions and/or depict different diseases, it is difficult, if not impossible, to determine an optimal
threshold for all cases. To determine an appropriate threshold, Mori et al. [85] proposed an
intuitive approach of gradually increasing the threshold until a sudden “explosion” appears,
indicating the occurrence of a leakage. Similarly, Nakamura et al. [86] proposed to adaptively
change the threshold based on CT values [Hounsfield (HU)] of the seed area projected from
adjacent images. When specifying a seed for region growing, the general idea is to locate
the trachea regions that are typically defined as regions with low intensity and circular shapes
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[31, 85]. Whereas it is difficult to guarantee that the regions satisfying these criteria are al-
ways representative of the trachea, robust and efficient identification of the trachea region is
not always an easy task. Hence, an interactive selection of a seed is often implemented for this
purpose[32–34, 86].

Despite these limitations, the region-growing approach is very simple and efficient in im-
plementation. Hence, many of the available airway segmentation methods [31–44, 87] employ
this procedure as an initial step for large airway identification and thereafter implement addi-
tional procedures to identify smaller airways while preventing potential leakage.

In general, there are different taxonomies to classify segmentation methods, for example,
depending on the level of user intervention (automatic or semi-automatic)2 or (supervised and
unsupervised), according to the main characteristics (based on morphology, based knowledge
or rule based on machine learning based on matching templates, based on the shape analysis)
[88], and according to the desired segment regions (regions based methods, edge-based meth-
ods and hybrids methods) [69]. In addition, if you want to delve into the different techniques
for image segmentation, two important reviews are described by Kirbas et. al. [70] and Lesage
et. al. [68].

Finally, according to the review of the state of the art performed, it was identified that
there are not many works on the upper airways segmentation. Works found are described in
Chapter 7, however, most of them use proprietary software (especially Mimics) to perform the
segmentation and they perform it manually or semi-automatically. The obtained result is used
for executing the simulation of airflow and thus able to determine where the airflow resistance
affects the normal breathing process.

2.3 Differential geometry

Differential calculus interprets derivatives by approximating the tangential line at any given
point. Differential geometry describes curvature in a similar way by approximating surface
curves using tangential circles. Do Carmo [89] presents the fundamental theorem of the local
theory of curves states as following:

Theorem 1. Given differentiable functions k (s)> 0 and τ (s), using scalar s∈ I, there exists a
regular parametrized curve α : I →R3 such that s is the arc length, k (s) is the curvature,
and τ (s) is the torsion of α . Moreover, any other curve ᾱ satisfying the same conditions,

2

Fully automated algorithms require no manual initialization or interaction and use the same settings for all scans
processed. Semi-automated algorithms require user initialization or interaction, which varied from placing a
single seed point or selection of certain parameters.
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differs from α by a rigid motion; that is, there exists and orthogonal linear map ρ of R3,
with positive determinant, and a vector c such that ᾱ = ρ ◦α + c.

The basic condition is that at every point along a continuous curve there exists an tangential
circle that has radius equivalent to the instantaneous radius of the curve in much the same way
the derivative describes the instantaneous slope of a curve[90].

Figure 2.8: Tangent circles to a 2D curve.

Figure 2.8 shows a continuos curve and two points where curvature is cumputed. Yellow
circles are the tangent circles to the curve at the shown points. Curvature is given as 1/r where
r denotes the radius of the fitted circle.

In differential geometry, curves that are “above” the surface are positive, while curves
“below” the surface are negative. Then, in Figure 2.8, curvature has positive values at the left
circle and negative value at the right circle.

2.3.1 Surfaces

A mathematical surface, S, is a mapping from a two-dimensional parameter domain into a
higher-dimensional space, such as R3 [91, 92]:

S = u× v → Rd (2.1)

The surface must be locally minimum of class C2, that is, differentiable up to order 2. This
allows computation of the principal curvatures, which help classify the type of surface and
provide insight into its intrinsic and extrinsic shape variation. The principal curvatures are
directly related to the regional variation of the surface’s normal directions [91].

A surface can be defined as any 2-dimensional set of points within Rn. Thus, a general
surface is parameterized using:

r (x,y) = (r1 (x,y) ,r2 (x,y) , ...,rn (x,y)) (2.2)
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This type of mapping from an open set in R2 into R3 is known as a Monge patch and is
parameterized as:

r (x,y) = (x,y,F (x,y)) (2.3)

where F (x,y) is the original image and r (x,y) is a 2-D surface in R3.

2.3.2 Curvatures

Classical differential geometry provides a complete local description of smooth surfaces and
guides the selection of surface characteristics. Principal curvatures, mean curvature, gaussian
curvature and principal directions are identified as the local second-order surface character-
istics that possess several desirable invariance properties and represent extrinsic and intrinsic
surface geometry respectively [93–95]. Curvatures and the tensor of curvature are well stud-
ied in classical differential geometry (see for example reference [89]). The curvature tensor is
closely related to the surface normal and normal curvature evaluation.

2.3.2.1 Types of curvature

There are several different measures of a surface curvature [89] and while each can be useful,
no single type of curvature detects all possible surface anomalies. Thus, it is often necessary
to calculate several kinds of surface curvature to obtain an accurate impression of the surface’s
behavior.

In this context, surfaces of volumetric images as existing as the interfaces of homogenous
intensity regions. This assumption locates the surface at high gradient points in the image.
In addition, this also allows constructing the local frame for the surface directly from the
gradient.

Based on the above, at any given point on a parametric surface, i.e. a surface of the form
r = r (x,y), it is possible to calculate a unit normal vector. This surface normal (unit normal
vector) is the line perpendicular to the tangent plane at a given point along a surface. The unit
normal vector n⃗ is calculated from the first derivatives of the surface function in 2.2 using:

n⃗ =

∂ r
∂x ×

∂ r
∂y∣∣∣ ∂ r

∂x ×
∂ r
∂y

∣∣∣ (2.4)

Now, if a plane containing the normal is rotated about the normal, the intersections of this
plane with the surface result in an infinite number of section curves each of which could have a
different value for the curvature at the point [96]. However, there are two mutually perpendic-
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ular locations of the normal plane where the curvature is a maximum and a minimum. These
curvature values are defined to be the principal curvatures, kmax and kmin (frequently defined
using the first and second fundamental forms). Then, surface normal is used in computing
the fundamental forms and can also be used by itself to show the direction where surface is
“facing”. In addition, from the principal curvatures can be calculated the Gaussian curvature
and the mean or average curvature.

Gaussian curvature is given by

K = kmaxkmin (2.5)

and is the most often cited form of curvature. However, from experiments performed, it is not
very suitable to define surface contours. Notice that if either one of the principal curvatures
is zero, the Gaussian curvature is also zero, even though the other principal curvature may be
fluctuating wildly.

Mean curvature is given by

H =
kmax + kmin

2
(2.6)

The problem with displaying only the mean curvature is that minimal surfaces always have
H = 0. Another measure of curvature is the absolute curvature, it is given by

A = |kmax|+ |kmin| (2.7)

In general, differential geometry states that local surface shape is uniquely determined by
the first and second fundamental forms. Gaussian and mean curvature combine these first
and second fundamental forms in two different ways to obtain scalar surface features that are
invariant to rotations, translations, and changes in parameterization [89, 92, 94, 95].

2.3.2.2 Fundamental forms and shape operator

The fundamental forms are used to determine the metric properties of surfaces [92–94]. Mod-
ern mathematics favors an equivalent formulation of this knowledge in terms of the metric
tensor and the Weingarten mapping (the “shape” operator).

First fundamental form The first fundamental form expresses differential surface length.
It describes the way of measuring the distances on a surface. An apparatus that enables one to
measure the distances is called metric. This is why the first fundamental form is often referred
to as the metric form.

To define the fundamental forms of a surface an explicit surface parameterization x(u,v)
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is given. Then, the first fundamental form I of a surface defined by x(u,v) is given by the
following quadratic form:

I (u,v,du,dv) = dx ·dx =
[

du dv
][ g11 g12

g21 g22

][
du
dv

]
= duT

[
g
]

du (2.8)

where the [g] matrix elements are defined to be

g11 = E = xu · xu

g22 = G = xv · xv

g12 = g21 = F = xu · xv

(2.9)

where the subscripts denote partial differentiation

xu (u,v) = ∂x
∂u

xv (u,v) = ∂x
∂v

(2.10)

xu and xv are referred to as the u tangent vector and the v tangent vector functions, respec-
tively, and they may or may not be orthogonal to each other. These two tangent vectors are
said to lie in (and form a basis for) the tangent plane T (u,v) of the surface at the point x(u,v).

The [g] matrix is refers as the first fundamental form matrix or, more simply, as the metric
(or metric tensor) of the surface. Since the vector dot product is commutative, this [g] matrix
is symmetric and only has three independent components.

The first fundamental form I (u,v,du,dv) measures the small amount of movement |dx|2 on
the surface at a point (u,v) for a given small movement in the parameter space (du,dv). This
function is invariant to surface parameterization changes and to translations and rotations of
the surface. The first fundamental form and the metric depend only on the surface itself. They
do not depend on how the surface is embedded in 3-D space, and they are therefore referred
to as intrinsic properties of a surface. In fact, the metric functions E, F, and G determine all
intrinsic properties of a surface [94].

In 3D case, Toriwaki [11] considers a 3D continuous image f (x,y,z) and a 4D hyper-
surface S : u = f (x,y,z). At an arbitrary point P on this surface, there exist three principal
curvatures. He denotes them by k1, k2, and k3. They are calculated as follows. If the first and
the second derivatives of a 3D gray-tone continuous image u = f (x,y,z) are denoted by fx, fy,
and fxx, and fxy, etc. Then, two matrices, F1 and F2 are considered. F1 corresponds to the first
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fundamental form and it is given by

F1 =

1+ f 2
x fx fy fx fz

fy fx 1+ f 2
y fy fz

fz fx fz fy 1+ f 2
z

 (2.11)

where to each component of the diagonal is added one to eliminate the presence of critical
points (when the product of diagonal’s components is zero).

Second fundamental form In contrast to the first fundamental form, the second fundamen-
tal form of a surface is dependent on the embedding of the surface in 3-D space and it is
therefore considered as an extrinsic property of the surface [94, 95]. The second fundamental
form II is given by

II (u,v,du,dv) =−dx ·dn =
[

du dv
][ b11 b12

b21 b22

][
du
dv

]
= duT

[
b
]

du (2.12)

where the [b] matrix elements are defined to be

b11 = L = xuu ·n
b22 = N = xvv ·n

b12 = b21 = M = xuv ·n
(2.13)

where n is the unit normal vector (see section 2.3.2.1). The double subscript implies second
partial derivatives

xuu (u,v) = ∂ 2x
∂u2

xvv (u,v) = ∂ 2x
∂v2

xuv (u,v) = ∂ 2x
∂u∂v

(2.14)

The [b] matrix is the second fundamental form matrix and it is also symmetric if the surface
is well behaved (i.e., if the mixed partial derivatives are equal). The Gauss-like L, M, and, N
notation is introduced again as above. These definitions allow discussing about the “state”
equation for surfaces [89, 94].

The second fundamental form measures the correlation between the change in the normal
vector dn and the change in the surface position dx at a surface point (u,v) as a function of a
small movement (du,dv) in the parameter space.

The differential normal vector dn always lies in the tangent plane T (u,v). The ratio of
II (u,v,du,dv)/I (u,v,du,dv) is known as the the normal curvature function knormal . Normal
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curvature at a surface point varies only as a function of the direction of the differential vector
(du,dv) in the parameter space. If dn and dx are aligned for a particular direction of (du,dv),
that direction is called a principal direction of the surface at that surface point. The extrema
of the normal curvature function at a given point occur in these directions and are referred to
as principal curvatures.

In 3D case, Toriwaki [11] presents the second fundamental form F2 and it is given by

F2 =
−1
D

 fxx fxy fxz

fyx fyy fyz

fzx fzy fzz

 (2.15)

where

D =
(
1+ f 2

x + f 2
y + f 2

z
) 1

2 (2.16)

Third fundamental form In differential geometry, the third fundamental form is a surface
metric denoted by III. Unlike the second fundamental form, it is independent of the surface
normal. The third fundamental form is expressible entirely in terms of the first fundamental
form and second fundamental form. If H be the mean curvature of the surface and K be the
Gaussian curvature of the surface (see section 2.3.2.1), then

III −2 ·H · II +K · I = 0 (2.17)

Shape operator A good way to measure how a regular surface S bends in R3 is to estimate
how the surface normal n changes from point to point. To do this, a linear operator called
the shape operator (or Weingarten map) is used to calculate the bending of S. In general, the
shape operator can be used to compute how the surface normal changes along the surface. All
other curvatures can be derived from the shape operator which in turn is calculated using the
first two fundamental forms.

The fundamental forms can also be expressed using symmetric matrices. Here, the matrix
form will be used to define the shape operator. Define F1 and F2 for 2D case using:

F1 =

[
E F
F G

]
(2.18)

F2 =

[
L M
M N

]
(2.19)
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Then, the shape operator can be calculated using:

W = F−1
1 F2 =

[
FM−GL FN −GM
FL−EM FM−EN

](
F2 −EG

)−1
(2.20)

The eigenvalues of W are just the principal curvatures k1 and k2 at point x(u,v). In par-
ticular the determinant of the shape operator at a point is the Gaussian curvature, but it also
contains other information, since the mean curvature is half the trace of the shape operator.
Which are given respectively by

K = det

[
k1 0
0 k2

]
= k1k2 (2.21)

H =
1
2

tr

[
k1 0
0 k2

]
=

1
2
(k1 + k2) (2.22)

2.3.2.3 Principal curvatures and vectors

As mentioned above, the principal curvatures provide the maximum and minimum curvature
at any given point. The principal vectors are the directions in which these extrema occur.
The principal curvatures k1 and k2 are a perfectly valid pair of surface curvature descriptors,
which are analytically equivalent to the mean and Gaussian curvature pair. For surfaces, the
principal curvatures are the two eigenvalues of the 2×2 matrix shape operator in R2. And for
hypersurfaces, principal curvatures k1, k2, and k3 are the three eigenvalues of the 3×3 matrix
shape operator in R3. The principal vectors in each case are derived from the corresponding
eigenvectors.

The great interest with the principal curvatures is that they allow to classify the points
of the surface according to the following categories: valley, crest, flat, pit, peak, saddle and
minimal [3, 10, 11, 97–100](see Figure 2.9, where first quadrant (I) is a cup (k1 = k2), second
quadrant (II) is a saddle (−k1 = k2), third quadrant (III) is a cap (−k1 =−k2), fourth quadrant
(IV) is a saddle (k1 = −k2), dotted lines are used to show the opposite sign and same sign in
regions where k1 = k2, on the axes are the parabolic surfaces, and at the centre is the plane
where k1 = k2 = 0 [3]).

It is important to mention that the relationship between the principal curvatures depends
initially on the dimension of the image (n-dimension). For the 2D case, only two principal
curvatures must be considered, being themselves the maximum and the minimum depending
on the ordering form. In the 3D case, there are three principal curvatures and in the same way
as in the 2D case, the maximum and the minimum must be selected.



2.3 Differential geometry 39

Figure 2.9: Shape space categories using k1 and k2. (taken from [3])

For 2D case, there are several shape classifications [3, 10, 97–100], however, all coincide
with the classification presented in Figure 2.9. For example, Table 2.2 presents the classifica-
tion shapes proposed by Haralick et. al. [10] in the classical paper “The topographic primal
sketch”.

Pixel label No Zero-Crossing Pixel label One Zero-Crossing

∥∇ f∥ k1 k2 Label

0 0 0 Flat

+ - - Concave hill

+ - 0 Concave hill

+ - + Saddle hill

+ 0 0 Slope

+ + - Saddle hill

+ + 0 Convex hill

+ + + Convex hill

∥∇ f∥ k1 k2 Label

0 - - Peak

0 - 0 Ridge

0 - + Saddle

0 + - Saddle

0 + 0 Ravine

0 + + Pit

Table 2.2: Pixel label proposed by Haralick et. al. [10].

Consequently, a point of the valley is mathematically a point of the image’s surface such
that k1 > 0 and k2 = 0. In practice, the luminance variations and the noise in real images make
the detection of pure valleys almost impossible ( k1 > 0 and k2 = 0 ).

For 3D case, principal curvatures k1 , k2 , and k3 of a hypersurface S have relations among
them as shown below [11].

1. Signs and orders in their sizes (20 cases).
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2. Orders in sizes of their absolute values and zero and non-zero (26 cases).

3. The sign of the sum k1 + k2 + k3 (3 cases).

According to Toriwaki et. al. [11] and Hirano et. al. [12], in total, there exist 1560 cases of all
these combinations. However, Hirano et. al. [12] assume that k1 ≥ k2 ≥ k3 and indicate that
this does not generates loss of generality. While Toriwaki et. al. [11] assume |k1| ≥ |k2| ≥ |k3|
without loss of generality. In both cases, they consider that 20 cases are enough to characterize
the hypersurfaces (see Table 2.3). These curvatures can be used to represent the local shape of
the surface S at a point P and its vicinity.

Table 2.3: A possible set of principal curvatures in a 4D sur-
face. (taken from [11, 12]).

No. Simple curvature criteria Absolute value criteria Average curvature criteria

1 k1 > k2 > k3 > 0 |k1|> |k2|> |k3|> 0 k1 + k2 + k3 > 0

2 k1 > k2 > k3 = 0 |k1|> |k2|> |k3|= 0 “

3 k1 > k2 = k3 > 0 |k1|> |k2|= |k3|> 0 “

4 k1 > k2 = k3 = 0 |k1|> |k2|= |k3|= 0 “

5 k1 = k2 > k3 > 0 |k1|= |k2|> |k3|> 0 “

6 k1 = k2 > k3 = 0 |k1|= |k2|> |k3|= 0 “

7 k1 = k2 = k3 > 0 |k1|= |k2|= |k3|> 0 “

8 k1 = k2 = k3 = 0 |k1|= |k2|= |k3|= 0 k1 + k2 + k3 = 0

9 k1 > k2 > 0 > k3 |k1|> |k2|> |k3|> 0 k1 + k2 + k3 > 0

10 “ |k1|> |k2|= |k3|> 0 “

11 “ |k1|> |k3|> |k2|> 0 “

12 “ |k1|= |k3|> |k2|> 0 “

13 “ |k3|> |k1|> |k2|> 0 “

14 “ “ k1 + k2 + k3 = 0

15 “ “ k1 + k2 + k3 < 0

16 k1 > k2 = 0 > k3 |k1|> |k3|> |k2|= 0 k1 + k2 + k3 > 0

17 “ |k1|= |k3|> |k2|= 0 k1 + k2 + k3 = 0

18 “ |k3|> |k1|> |k2|= 0 k1 + k2 + k3 < 0

19 k1 = k2 > 0 > k3 |k1|= |k2|> |k3|> 0 k1 + k2 + k3 > 0

20 “ |k1|= |k2|= |k3|> 0 “

21 “ |k3|> |k1|= |k2|> 0 “

22 “ “ k1 + k2 + k3 = 0
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Table 2.3: A possible set of principal curvatures in a 4D sur-
face. (taken from [11, 12]).

No. Simple curvature criteria Absolute value criteria Average curvature criteria

23 “ “ k1 + k2 + k3 < 0

24 k1 = k2 = 0 > k3 |k3|> |k1|= |k2|= 0 “

25 k1 > 0 > k2 > k3 |k1|> |k3|> |k2|> 0 k1 + k2 + k3 < 0

26 “ “ k1 + k2 + k3 = 0

27 “ “ k1 + k2 + k3 < 0

28 “ |k1|= |k3|> |k2|> 0 “

29 “ |k3|> |k2|> |k1|> 0 “

30 “ |k3|> |k1|= |k2|> 0 “

31 “ |k3|> |k1|> |k2|> 0 “

32 k1 > 0 > k2 = k3 |k1|> |k2|> |k3|> 0 k1 + k2 + k3 > 0

33 “ “ k1 + k2 + k3 = 0

34 “ “ k1 + k2 + k3 < 0

35 “ |k1|= |k2|= |k3|> 0 “

36 “ |k2|= |k3|> |k1|> 0 “

37 k1 = 0 > k2 > k3 |k3|> |k2|> |k1|= 0 “

38 k1 = 0 > k2 = k3 |k2|= |k3|> |k1|= 0 “

39 0 > k1 > k2 > k3 |k3|> |k2|> |k1|> 0 “

40 0 > k1 > k2 = k3 |k2|= |k3|> |k1|> 0 “

41 0 > k1 = k2 > k3 |k3|> |k2|= |k1|> 0 “

42 0 > k1 = k2 = k3 |k1|= |k2|= |k3|> 0 “

In general, in the case of an image in a continuos space, the curvature of an hypersurface
can be computed using the first partial derivatives and the second derivatives of the function
obtained. In other words, the principal curvatures and principal directions correspond respec-
tively to the eigenvalues and the eigenvectors of the Weingarten matrix [10, 89, 100]. Alterna-
tively, Taubin [101] proposed to compute principal curvatures and principal directions using
eigen-analysis of an integral matrix. In addition, Monga, Benayoun and Faugeras [102–104]
show that is possible to compute locally the gaussian, average, and principal curvatures, and
also the principal directions, without fitting a surface patch. They use the gradient direction g⃗
to define the tangent plane of the surface. Then, they define a local parametrization by giving
two arbitrary perpendicular vectors in the plane. To find the principal directions, they define a
unit vector t⃗ in the tangent plane of the surface, characterized by its angle θ around the normal
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g⃗. They have shown how to compute the curvature k−→t of the surface in the direction t⃗ (θ)
using the Hessian matrix H of the 3D image function at this point by

k−→t =
−tT Ht
∥−→g ∥

(2.23)

also, they have shown how to compute the principal directions, which are the directions where
the surface curvature is extremal, by a search of the extrema of k−→t (θ). Finally, Koller et.
al [105], Sato [73, 106], Frangi et. al. [107, 108] calculate the principal curvatures and
principal directions using the Hessian matrix, which describes the second-order structures of
local intensity variations around each point of a multi-dimensional image.



Chapter 3

Contrast enhancement using multi-scale
morphological operator

“Vision is computationally intensive; conventional computers are too slow to perform complex visual

tasks in real time.”

– Azriel Rosenfeld.

In order to segment the upper airways, it is very important to improve the contrast between
the soft tissue areas and airways. Normally, when a segmentation algorithm is applied, there
is an over-segmentation due to the low-contrast between the aforementioned regions. In addi-
tion to low-contrast, upper airways are composed of several regions with complex structures
(p.e. paranasal sinuses, nasal cavities and nasal walls) that can be affected by partial volume,
artefacts and noise. Therefore, to reduce the impact of low-contrast presence on CT images
it is necessary to include enhancement techniques. However, the application of these tech-
niques depends directly on the type of images (highly application dependent), the quality of
the original images and the structures that are desired to enhance [109, 110]. In other words,
an enhancement technique that works well for CT images may not work as well for MR im-
ages, and in the same way, a technique that works well to enhance the venous system may not
work for the respiratory system. Traditional approaches to solving the above tasks have used
mainly linear systems tools, nowadays a new understanding has been matured that linear ap-
proaches are not well suitable or even fail to solve problems involving geometrical aspects of
the image. Therefore, there is a need for nonlinear geometric approaches. A powerful nonlin-
ear methodology that can successfully solve the above problems is mathematical morphology
[111]. For the above reasons and challenges, this chapter presents the use of an enhancement
technique for head-neck CT images based on multi-scale morphological transformations to
improve the contrast in upper airways region. Additionally, a stopping criterion is proposed
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for the multi-scale enhancement algorithm based on the contrast improvement ratio (CIR).

3.1 State of the art

Medical imaging is the result of applying a process that allows creating visual representations
of the interior of a body in order to support the clinical analysis and the medical interven-
tion. Medical imaging seeks to reveal internal structures where different organs are in various
depths, but normally the image does not have enough quality to be analyzed by the physician.
For instance, in an image taken from the chest by CT, X-ray, ultrasound or MR organs such
as skin, heart, lung, bone, ligaments, vessels, cartilage, and lymphatic fluid appear simulta-
neously in an image while overlapping or hiding by other structures [109, 112]. In general,
the existence of several objects overlapping in an image and the close proximity of adjacent
voxel values in medical images make the diagnostic process a difficult task [112]. To reduce
the impact of partial volume, artefacts, noise, and low-contrast in the segmentation process are
necessary to include an image enhancement technique.

Image enhancement is an important approach in digital image processing, which is a
problem-oriented procedure [113]. In addition, image enhancement is a process that prin-
cipally focuses on processing an image in such a way that the processed image is more suit-
able than the original one for an specific application [109]. The goals of image enhancement
include the improvement of the visibility, perceptibility and detectability. First, visibility is
defined as how clearly objects can be seen, or how far you can see clearly, usually because
of the lighting conditions. This is determined by the degree to which something is seen by
an observer. Second, perceptibility is the capability to see or notice some regions inside the
image. Finally, detectability is the ability to notice features that are partly hidden or not clear
inside the image or region. To achieve these goals is necessary to include tasks such as clean-
ing the image from various types of noise, enhancing the contrast among adjacent regions
or features permiting to improve the visual appearance of the image or to provide “better”
representation for subsequent automated image processing (analysis, detection, segmentation,
and recognition) [114]. For instance, image enhancement is usually followed by (or is done
simultaneously with) detection of features such as edges, peaks, and other geometric features
which is of paramount importance in low-level vision [111].

A vast range of image enhancement techniques can be find in the literature [109, 113–
118]. Each of them has an aim in the image enhancement, for example, contrast enhancement,
intensity transformation, edge enhancement or digital mosaic production. In order to increase
the visibility and detectability in CT images of the upper airways, contrast enhancement is
used to obtain better differentiation between the airways and surrounding soft tissue.
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Most contrast enhancement algorithms operate by amplifying local variations in colour or
intensity within an image, because the human visual system has limited ability to detect small
variations in pixel intensity or colour within homogeneous regions in an image, these varia-
tions will be very difficult to perceive. One side effect of this contrast enhancement process
is that any noise which is present in an image is typically amplified too. Fortunately, most
contrast enhancement methods have parameters which can be manually adjusted to specify
the amount of enhancement to be performed, so the appropriate contrast level for image dis-
play can be obtained. In addition, the contrast enhancement is not done until the restoration
processes are completed (p.e. noise or geometric distortions reduction).

In particular, the contrast enhancement of image refers to the amount of gray differenti-
ation that exists between various features in digital images. It is the range of the brightness
present in the image. The images having a higher contrast level usually display a larger degree
of gray scale difference as compared to lower contrast level. The contrast enhancement is a
process that allows image features to show up more visibly by making best use of the intensity
presented on the display devices. For example, in certain images, there may be exhaustive
utilization of the entire dynamic range of grayscale of the image but the contrast over a small
region may be poor. These types of images suffer from poor local contrast [67, 109, 115, 119].
In conclusion, an image with poor contrast has variations which are gradual and difficult to
detect visually. While an image with high contrast will typically have large intensity or colour
variations separating different objects in an image, so it is easy to visually locate object bound-
aries and distinctive features within objects.

The methods proposed to enhance image are broadly classified into two categories, in-
cluding spatial domain and frequency domain methods. The term spatial domain refers to the
image plane itself, and approaches in this category are based on direct manipulation of pixels
in an image. Frequency (transform) domain processing methods operate on transforms of the
image (such as the Fourier, wavelet, and cosine transforms) [109, 113–118]. While traditional
approaches for solving the above tasks have used mainly tools of linear systems, nowadays
a new understanding has matured that linear approaches are not well suitable or even fail to
solve problems involving geometrical aspects of the image. Thus there is a need for nonlin-
ear geometric approaches. In conclusion, contrast enhancement algorithms can be classified
in terms of two properties: an algorithm utilizes either spatial or frequency domains, and it
incorporates either linear or nonlinear operations.

The most widely used methods include various contrast manipulations and histogram
equalization [67]. Classic contrast manipulation is usually based on globally defined stretch-
ing function (or called transfer function). Histogram clipping might be needed before pixel-
by-pixel stretching. Traditionally histogram equalization is also global technique in the sense
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that the enhancement is based on the equalization of the histogram of the entire image. How-
ever, it is well recognized that using only global information is often not enough to achieve
good contrast enhancement (for example, global approaches often cause an effect of intensity
saturation) [120].

Jobson et. al. developed a technique called retinex model [121], in which the contribution
of each pixel within the local window is weighted by computing the local average based on
Gaussian function. A later version, called multiscale retinex model [122], gives better results
but it is computationally more intensive. Shinkar et. al. developed a technique for contrast
enhancement based on wavelet decomposition and reconstruction and it has been used for
medical image enhancement, especially for mammography images [120].

A more recently developed technique is based on mathematical morphology that was
invented in the early 1960s by Georges Matheron and Jean Serra who worked on the au-
tomatic analysis of images occurring in mineralogy and petrograph [123, 124], to analyze
binary images from geological. In biomedical data as well as to formalize and extend ear-
lier or parallel work [74, 125] on binary pattern recognition based on cellular automata and
Boolean/threshold logic. Then, in the late 1970’s it was extended to gray-level images [124].
After this, in the mid 1980’s it was brought to the mainstream of image/signal processing and
related to other nonlinear filtering approaches [111]. Finally, in the late 1980’s and 1990’s
it was generalized to arbitrary lattices [126]. The above evolution of ideas has formed what
we call nowadays the field of morphological image processing, which is a broad and coher-
ent collection of theoretical concepts, nonlinear filters, design methodologies, and applica-
tions systems [111]. For example, in [127] a morphological filter is proposed for sharpening
medical images. In this method, after locating edges by gradient-based operators, a class of
morphological filter is applied to sharpen the existing edges. In fact, morphology operators,
through increasing and decreasing colors in different parts of an image, have an important
role in processing and detecting various existing objects in the image [112]. Another exam-
ple is presented in [109], where locating edges in an image using morphology gradient has
comparable performance with that of classic edge-detectors such as Canny and Sobel.

3.1.1 Morphological approaches

Mathematic morphology (Serra, 1982) is a powerful non-linear tool for extracting image com-
ponents, which is useful in the representation and description of region shape, such as bound-
aries, skeletons, and the convex hulls. It is based on set theory and is a powerful tool for
extracting structural characteristics in an image and is useful for characterizing shape infor-
mation [124]. An image is regarded as a set (binary image) or a function (greyscale image),
acted upon by a collection of nonlinear operators using structuring elements. This set of op-
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erators is based on set theory and defined on an abstract structure known as an infinite lattice.
Additionally, the structuring element, which indicates the shape characteristics in an image, is
generally a small and simple binary image, such as a disc, square or line segment [119].

These operators were first systematically examined by Matheron and Serra in 1964 [128]
and they are an extension of Minkowski’s set theory [124, 126]. Morphological operators in-
clude erosion, dilation, opening, closing, rank filters (including median filters), top hat trans-
forms, and other derived transforms. These operations can be defined on binary or greyscale
images in any number of dimensions. The extension of morphologic transformations from
binary image processing to gray scale processing using max and min operations is done by
Sternberg and Haralick et. al. [117]. Besides, they can also be defined with Euclidean
(isotropic) or non-Euclidean (geodesic) metrics [129]. The main application areas for the
tools of mathematical morphology have been medical imaging, material sciences, and ma-
chine vision, where morphological transformations are particularly useful for image analysis
and image enhancement [130][129].

Morphological operations rely on set theory, thus a set of operators as union, intersection,
inclusion and complement can be applied, they are used in the preliminary and final processing
on images such as thickening, thinning, filtering or enhancing [131]. Besides these operations,
top-hat and bottom-hat transformations are also well-known for morphological filtering in
image processing and enhancing. Top-hat transformation is an operation that extracts small
elements and details from the given images. The top-hat transform is computed by subtracting
the image’s opening from the original image, while the bottom-hat transform is calculated as
the difference between the image’s closing and the original image [131].

Morphological methods generally include exploring of complete image by a structuring
element and at each coordinates the structuring element performs some operation with the
neighboring elements [130]. These methods use mathematical principles and relationships
between categories to extract the components of an image, which are useful in describing the
shape of regions [112].

3.1.1.1 Morphological operators

If A(x,y) and B(u,v) describe the gray-level image and the structural element respectively,
erosion and dilation operators are defined as:

A⊖B = min
u,v

{A(x+u,y+ v)−B(u,v)} (3.1)

A⊕B = max
u,v

{A(x+u,y+ v)−B(u,v)} (3.2)
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The erosion operator reduces the size of objects. This operator increases the size of holes
in an image and removes very small details of that image. Removing bright areas under the
mask makes the final image looks darker than the original image. The dilation operator acts
in reverse; in other words, it increases and decreases the size of objects and holes in the image
respectively. The opening operator is equivalent to the application of the erosion and dilation
operations on the same image respectively (Eq. 3.1) while the closing operator acts in reverse
(Eq. 3.2):

A◦B = (A⊖B)⊕B (3.3)

A ·B = (A⊕B)⊖B (3.4)

The opening operator removes weak connections between objects and small details while the
closing operator removes small holes and fills cracks[109, 112].

3.1.1.2 Top-Hat transforms

Top-hat transform is a well known and commonly used morphological operation for locally ex-
tracting structures from given images (Meyer, 1979). Structural extraction is unrelated to grey
level correction and is independent of background brightness. Top-hat morphological process-
ing uses gray scale opening to extract regional maxima or objects which differ in brightness
from the surrounding background in images with uneven background intensity. There are two
types of top-hat operations: white top-hat (WTH) and black top-hat (BTH). WTH and BTH
extract structures brighter and darker than the surrounding areas, respectively. The top-hat is
an operation that highlights the local peaks of the image, meanwhile, bottom-hat operation
permits to highlight the valleys of image. In both cases the sizes of extracted structures are
smaller than that of the structuring element [118, 119, 132].

As was mentioned before, the WTH is used to extract bright or white features of image
related to the used structuring element. It is given as the difference of the original image and
the opened image [118]. It is defined as:

WT H ( f ) = f − ( f ◦g) (3.5)

where f is the image and g is the structuring element.

The high intensity regions, i.e., the features that cannot accommodate the structuring ele-
ment are removed by performing a structural opening. The resulting image contains all resid-
ual features (i.e. peaks and ridges) removed. Then, substracting the residual features to the
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original image has the effect of accentuating high-intensity (high) structures [132].

Similarly, the BTH is used to extract the darker or black features of image related to the
used structuring element. The BTH is the difference between the closed image and the original
image [118]. It is defined as:

BT H ( f ) = ( f ·g)− f (3.6)

Using a structural closing the dual residual features (i.e. valleys and roughs) are obtained.
Then, original images is subtracted from the resulting image to accentuate low-intensity (dark)
structures[132]. To obtain the final morphological contrast enhancement using top-hat trans-
forms to enlarge the contrast between the white and black regions of image, the WTH and
BTH are used. One way of image enhancement based on top-hat transform (ETH) is adding
the white image regions on and subtracting the black image regions from the original image
as follows [117, 128]:

ET H ( f ) = ( f +WT H ( f ))−BT H ( f ) (3.7)

ET H ( f ) is the final enhanced image.

3.1.2 Multiscale Top-Hat transforms

The algorithm works through the extraction of two types of features from the image: multi-
scale image regions at each scale and multiscale image regions between neighboring scales
[118, 133].

The first type of multi scale image features is the extracted multi-scale image regions at
each scale. At each scale, the extracted white image regions should be brighter than other
image regions, which means the gray values of the extracted white image regions should be
large. So, the real white image regions of all scales should be the large gray values of all scales.
Then, the extracted white multi-scale image regions at all scales could be the maximum gray
values of all scales as follows[118, 133]:

fC
w = max

0≤i≤n
{WT Hi} (3.8)

where, fC
w is the extracted white multi-scale image regions at all scales.

Similarly, the extracted black image regions at each scale should be brighter than other
image regions, which means the gray values of the extracted black image regions should be
large. So, the real black image regions of all scales should be the large gray values of all scales.
Then, the extracted black multi scale image regions at all scales could be the maximum gray
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values of all scales as follows [118, 133]:

fC
b = max

0≤i≤n
{BT Hi} (3.9)

where, fC
b is the extracted black multi scale image regions at all scales.

The second type of multi scale image features is the detail image regions between neigh-
boring scales. These detail image regions represent the white and black detail image features
at different scales. The white detail image regions between neighboring scales i and i+1 can
be expressed as follows [118, 133]:

WT Hi(i+1) =WT Hi+1 −WT Hi (3.10)

Because the gray values of white image regions should be large in the result of WT H,
the final multi scale white detail image regions should be the maximum gray values of all the
extracted white detail image regions as follows [118, 133]:

f D
w = max

0≤i≤n

{
WT Hi(i+1)

}
(3.11)

where, f D
w represents the final multi scale white detail image regions.

Similarly, the black detail image regions between neighboring scales i and i+ 1 can be
expressed as follows [118, 133]:

BT Hi(i+1) = BT Hi+1 −BT Hi (3.12)

Because the gray values of black image regions should be large in the result of BT H, the
final multi scale black detail image regions should be the maximum gray values of all the
extracted black detail image regions as follows [118, 133]:

f D
b = max

0≤i≤n

{
BT Hi(i+1)

}
(3.13)

where, f D
b represents the final multi scale black detail image regions.

An efficient image enhancement algorithm should not only enlarge the contrast between
the bright and black image regions, but also enhance the image details. Therefore, to efficiently
enhance images, the extracted white and black detail image regions are added on the extracted
white and black image regions as follows [118, 133]:

fw = fC
w + f D

w (3.14)
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fb = fC
b + f D

b (3.15)

Using the final extracted white and black image regions ( fw and fb) through multi scale
top-hat transform, image f could be enhanced following [118, 133]:

fEnh = f + fw − fb = f +
(

fC
w + f D

w

)
−
(

fC
b + f D

b

)
(3.16)

fEnh = f +
(

max
0≤i≤n

{WT Hi}+ max
0≤i≤n

{
WT Hi(i+1)

})
−
(

max
0≤i≤n

{BT Hi}+ max
0≤i≤n

{
BT Hi(i+1)

})
(3.17)

where fEnh denotes the resulting multi-scale enhanced image obtained.

3.1.3 Contrast measures

Theoretically, any enhanced image should allow better perception of desirable features in
comparison to the original image. The performance of image enhancement algorithms is often
difficult to quantify. In addition, it is not easy to find one correct and effective measure to
quantify the quality of the enhanced image.

3.1.3.1 Contrast Improvement Ratio (CIR)

Contrast which is defined as the difference in visual properties of pixels makes an object
distinguishable from other objects and the background. In gray-scale images, contrast is de-
termined by the difference in the brightness of the object and its surroundings. CIR (Wang
et al., 2003 [134]) measures the effect of contrast enhancement on image quality [119]. In
this method, the mean value of luminance is computed in two different concentric rectangu-
lar windows centered on each pixel. More specifically, CIR defines the local contrast as the
following ratio:

c(x,y,z) =
|p−a|
|p+a|

(3.18)

where p and a are the average values of gray levels in the center window and the surround-
ing window of the voxel location (x,y,z) respectively [134]. The inner window is a 3x3x3 and
the outer one is a 7x7x7 box. Here c(x,y,z) is the contrast measurement and is in the range
of [0,1]. Finally, CIR is defined as the following ratio using the enhanced and original image
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local contrast measurements.

CIR =
∑

(x,y,z)∈R
(c(x,y,z)− ĉ(x,y,z))2

∑
(x,y,z)∈R

c2 (x,y,z)
(3.19)

where R is the region of interest and c and ĉ are the local contrast measurements in original
and enhanced images respectively [112].

3.1.3.2 Mean Squared Error (MSE)

The MSE is a measure of the quality of an estimator. It is always non-negative, and values
closer to zero are better. According to Wang and Bovik [Wang and Bovik 2009], MSE remains
the standard criterion for the assessment of signal quality and fidelity; it is the method of
choice for comparing competing signal processing methods and systems, and, perhaps most
importantly, it is the nearly ubiquitous preference of design engineers seeking to optimize
signal processing algorithms. The goal of a signal fidelity measure is to compare two signals
by providing a quantitative score that describes the degree of similarity/fidelity or, conversely,
the level of error/distortion between them. To define MSE, it is assumed that given I and Ie be
the original and enhanced image, respectively, where the size of image is m×n. Then, MSE
is computed as

MSE =
1

m×n

m−1

∑
i=0

n−1

∑
j=0

(Ie (i, j)− I (x,y))2 (3.20)

3.1.3.3 Peak Signal-to-Noise Ratio (PSNR)

One problem with MSE is that it depends strongly on the image intensity scaling. To avoids
this problem, PSNR scales the MSE according to the image range. Let I be an image with L
gray levels andm×n the size of image. Then, PSNR is defined as:

PSNR = 10log10

(
(L−1)2

MSE

)
(3.21)

PSNR = 10log10

(
∑∑(L−1)2

∑∑(Ie (i, j)− I (x,y))2

)
(3.22)

A bigger value of PSNR indicates that the corresponding algorithm enhances images better
and produces less noise.
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3.1.3.4 Edge Content (EC)

Let I be an image, EC is computed as

EC =
1

m×n

m−1

∑
i=0

n−1

∑
j=0

|∇I| (3.23)

Contrast changes exist over the entire image and EC takes into account all the contrast
changes even for pixels which are very close (adjacent) to each other.

3.2 Method proposed

To enhance the contrast of head-neck CT images, the use of multiscale top-hat morphological
operators is proposed. The implementation was made using the equation 3.17. Enhancement
using the multiscale top-hat morphological operator allows increased contrast in regions, espe-
cially at the edges, where the original image has low contrast. But one difficulty is to determine
the appropriate iterations number to stop the algorithm execution, as well as to identify that the
obtained image has better contrast characteristics than the original image. At each iteration,
the radius of the structural element is increased. For 2D images, a disc is used, whereas for 3D
images a sphere (ball) is used. Normally, the way to stop the algorithm is to define a number
of iterations which is given by the user.

For the first tests performed, the size of the structural element was defined between 1 and
20. Afterwards, the images were examined in search of the image that presented a better
contrast definition. However, this task is quite manual and depends directly on the user’s
experience. In addition, this selection is quite subjective. For this reason, the literature was
revised in search of a stopping criterion to stop the contrast enhancement algorithm.

In the revised literature, a stopping criterion proposed by Hassanpour et. al. [112] was
found. They proposed the use of CIR to determine the final image in the iterative process. In
each step, the contrast improvement is measured by CIR through comparing the previous and
the current enhanced images. This procedure continues while the returned values from CIR
have evolved in an increasing manner. It is CIR that compares the images resulted from two
consecutive stages. When CIR returns a smaller value, the procedure ends and the resulting
image is the previous one. This can be defined as:

CIRi −CIRi−1 > 0 (3.24)

where i indicates the iteration. If the value of the present comparison is larger than the
previous one, the process continues (difference is greater than zero). On the other hand, if
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CIR returns a smaller value, this means that the contrast of the new enhanced image is less
than that of the previous image (difference is less than zero). Therefore, the image of the
previous step is selected as the best enhanced image.

Nevertheless, the results were not satisfactory for the initial tests, for this reason, the equa-
tions of the contrast measurement and the stopping criterion were revised, which led us to
propose a variation in the CIR equation and to propose a new stopping criterion to stop the
contrast enhancement algorithm.

3.2.1 Contrast Improvement Ratio Revisited (CIRR)

After several experiments was detected that not for all cases traditional CIR works fine. The
problem occurs when p and a values have different sign. In these cases the contrast mea-
surement is not in the range [0,1]. The above generates an error in the final value of CIR. To
correct this calculation error it is necessary to validate the signs of p and a as follows:

c(x,y,z) =


|p−a|
|p+a| i f sign(p) = sign(a)

|(a+(a−p))−a|
|(a+(a−p))+a| i f p < 0 and a > 0
|p−(p+(p−a))|
|p+(p+(p−a))| i f p > 0 and a < 0

(3.25)

Finally, CIRR is defined in the same way that CIR as follow:

CIRR =
∑

(x,y,z)∈R
(c(x,y,z)− ĉ(x,y,z))2

∑
(x,y,z)∈R

c2 (x,y,z)
(3.26)

The initial tests showed better results with this modification of the original criterion.

3.2.2 Stopping criterion proposed

Based on the criteria proposed by Hassanpour et. al. [112] and João et. al. [135], the following
stopping criterion is proposed.

In each step, the contrast enhancement is measured by CIRR through comparing the ab-
solute difference between previous and current enhanced images. This value is divided by the
absolute value of CIRR of current iteration to obtain the CIRR index. The index is computed
as:

CIRR indexi =
|CIRRi −CIRRi−1|

|CIRRi|
(3.27)
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and the enhancement process is iterated while CIRR indexi is greater that a specific con-
stant ε defined by the user. In general, the stopping criterion is defined as:

|CIRRi −CIRRi−1|
|CIRRi|

> ε (3.28)

The choice of ε is influenced by the need for a small value to identify a convergence of
solution, and large enough to make the iterative procedure less computationally demanding.
According to João et. al. [135], who defined a stopping criterion for anisotropic diffusion, ε

value can be 10−2.

3.3 Experimental results

The experimentation process was divided into two parts. In the first part, the level of contrast
using the MSTH technique and the behavior of the stopping criteria, the proposed one (BF)
and the one defined by Hassanpour et al. (HSS) using 2D images is obtained. In the second
part, based on the results achieved previously, the MSTH technique and the stopping criteria
are applied to 3D images.

In addition to the use of the stopping criteria, a qualitative measure of contrast enhance-
ment, the Canny edge detection filter [136] is applied to the original and resulting images.
This allows to observe if with the improvement of contrast a greater amount of edges can be
detected. For this, Canny filter is used with predefined parameters.

3.3.1 2D case

Evaluation was conducted on five traditional 2D images that are used in image processing
(baboon, barbara, boat, cameraman and lena). In this evaluation a disk-shaped structuring
element (SE) was used. The minimum size (radius) of SE was 1 and the maximum was
defined to 20. This was made in this way to evaluate the behavior of the HSS and BF stopping
criteria.

Table 3.1 shows the result of applying the multi-scale top-hat morphological enhancement
algorithm for four images (baboon, barbara, cameraman and lena). In the table 3.1 are pre-
sented the results of evaluating CIRR for each iteration, called value and the HSS and BF
indexes for each one. CIRR value was computed using an inner window of radius 1 and outer
window of radius 2 (inner window is a 3x3 and the outer one is a 5x5 square).

According to the definition of the HSS and BF indices, the values in which the enhance-
ment algorithm should be stopped are highlighted in table 3.1. In red, the stop iterations are
presented for the HSS criterion and in blue for the BF criterion. For the baboon image case,
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HSS requires two iterations, whereas BF requires five iterations. For barbara image, HSS
needs one iteration and BF eight iterations. For cameraman image, two and five iterations are
required respectively. Finally, for lena image, they take three and seven iterations.

Table 3.1: HSS and BF indexes using CIRR contrast mea-
sure.

Iter baboon barbara cameraman lena
CIRR CIRR CIRR CIRR

value
index

value
index

value
index

value
index

HSS BF HSS BF HSS BF HSS BF

1 0.0229 0.0229 1.0000 0.0136 0.0136 1.0000 0.0176 0.0176 1.0000 0.0031 0.0031 1.0000

2 0.0607 0.0378 0.6230 0.0238 0.0102 0.4276 0.0550 0.0374 0.6802 0.0107 0.0076 0.7088

3 0.0951 0.0344 0.3618 0.0327 0.0089 0.2730 0.0809 0.0259 0.3205 0.0219 0.0112 0.5126

4 0.1126 0.0175 0.1556 0.0374 0.0047 0.1253 0.1038 0.0228 0.2201 0.0307 0.0088 0.2863

5 0.1267 0.0141 0.1115 0.0453 0.0079 0.1747 0.1225 0.0187 0.1530 0.0411 0.0103 0.2511

6 0.1365 0.0098 0.0719 0.0514 0.0061 0.1187 0.1314 0.0089 0.0678 0.0485 0.0074 0.1531

7 0.1435 0.0069 0.0483 0.0582 0.0069 0.1181 0.1378 0.0064 0.0463 0.0550 0.0065 0.1178

8 0.1493 0.0058 0.0392 0.0649 0.0067 0.1033 0.1437 0.0059 0.0414 0.0605 0.0055 0.0910

9 0.1531 0.0038 0.0248 0.0701 0.0051 0.0729 0.1484 0.0047 0.0314 0.0661 0.0057 0.0859

10 0.1580 0.0049 0.0309 0.0741 0.0041 0.0551 0.1513 0.0029 0.0195 0.0716 0.0054 0.0759

Two variables that arise when calculating the CIRR measure are the size of the inner and
outer windows. Therefore, the HSS and BF indexes were calculated by varying these variables.
The curves representing the behavior of the HSS and BF indexes for the baboon and lena
images are shown in Figure 3.1 and the number of iterations for all images is presented in
Table 3.2. It can be observed that the behavior does not vary significantly using the BF index
while the HSS index shows a greater variation. It can be concluded that the BF index is less
sensitive to the size of the windows to calculate the CIRR value. In addition, it is recommended
to select small windows size to reduce the time required to compute the CIRR values.

According to Table 3.2, the images with the highest variation in the iterations number
using HSS index are barbara and lena. While for the iterations number using BF index the
greater variation is presented for the boat. This behavior that is identified through Figure 3.1
and Table 3.2 may be explained by the following reasons:

• The stopping criterion proposed by Hassanpour et. al. [112] only takes into account the
increasing part in the function and this means that the number of iterations is smaller
than the BF criterion proposed.
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• According to the function behavior, the steady state of the contrast enhancement has not
achieved a stabilization point generating in the case of HSS a sub-image enhancement.

• When the size of the windows used for the calculation of CIRR is small, for example, 1
or 2, the HSS criterion is more sensitive, as can be seen in the case of the barbara image.

• In the case of the BF index proposed, it has a more uniform behavior independent of
the windows size used. The BF criterion includes more information in the enhancement
stabilization process.

a) HSS behavior for baboon image c) BF behavior for baboon image

b) HSS behavior for lena image d) BF behavior for lena image

Figure 3.1: HSS and BF computation using different window sizes.
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Image Technique
[inner, outer] radius

[1,2] [1,3] [2,3] [3,7]

baboon
HSS 2 2 2 4

BF 5 5 6 7

barbara
HSS 1 2 4 4

BF 8 8 8 11

boat
HSS 2 2 2 4

BF 8 6 8 8

cameraman
HSS 2 2 3 2

BF 5 5 6 6

lena
HSS 3 2 4 4

BF 7 7 7 9

Table 3.2: Required iterations using HSS and BF indexes.

To obtain more information about the impact of the results achieved when applying the
MSTH filter and the stopping criteria, a set of tests was performed using the 2D images. The
objective is to compute the edges of the images using the Canny algorithm with predefined
parameters. In addition, a fixed size of the inner and outer window (1 and 3 respectively)
to calculate CIRR was used. The results obtained are shown in Table 3.3, in which the first
column corresponds to the original image and the edges obtained, the second column is the
resulting image when the HSS stopping criterion is used, and finally, the third column corre-
sponds to the results of applying the BF criterion.

Table 3.3: Edges of original, HSS, and BF images.

Image Original Enhanced + HSS [1,3] Enhanced + BF [1,3]

baboon
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Table 3.3: Edges of original, HSS, and BF images.

Image Original Enhanced + HSS [1,3] Enhanced + BF [1,3]

edges

barbara

edges

boat

edges
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Table 3.3: Edges of original, HSS, and BF images.

Image Original Enhanced + HSS [1,3] Enhanced + BF [1,3]

cameraman

edges

lena

edges

As can be seen in Table 3.3, the edges map of the obtained images using the BF stopping
criterion presents more details than the images obtained using the HSS criterion. In addition,
the original images have fewer edges than the enhanced images.

Additionally, the profile of one of the rows of the lena image was defined, both for the
original image and those obtained using the HSS and BF stopping criterion. Figure 3.2 shows
the zoom in the eye area for the three images respectively. In Figure 3.3, the profile for row
100 between columns 200 and 400 is shown.
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Figure 3.2: Zoom of lena image in eye region.

Figure 3.3 presents the profile behavior of images in Figure 3.2, the greatest enhancement
of the lena image using the stopping criterion BF is obtained (green line).

Figure 3.3: Profile enhancement behavior of lena images.

3.3.2 3D case

For the 3D tests, ten medical images of head-neck were used. These images have different
sizes and resolution. Based on the results obtained in the 2D images, it was decided to use
3x3x3 and 5x5x5 windows (inner window radius is 1 and the outer one is 2) to compute
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the HSS and BF stopping criteria. A ball was used as the structural element (SE) of the
morphological operator. The radius of the ball is increased at each iteration to obtain multi-
scale contrast enhancement.

The number of iterations initially defined to see the behavior of the stopping criteria is 10.
Table 3.4 shows the results obtained for images 1, 3, 5 and 7. For each image the value of the
contrast measure (CIRR) and the values of the HSS and BF indexes. In addition, Table 3.4
highlights the values in which the stopping criteria are reached, in red the values for HSS and
in blue the values for BF.

Table 3.4: HSS and BF indexes using CIRR contrast mea-
sure.

Iter image1 image3 image5 image7

CIRR CIRR CIRR CIRR

value
index

value
index

value
index

value
index

HSS BF HSS BF HSS BF HSS BF

1 0.0392 0.0392 1.0000 0.0289 0.0289 1.0000 0.0319 0.0319 1.0000 0.0377 0.0377 1.0000

2 0.0753 0.0361 0.4792 0.0601 0.0312 0.5191 0.0641 0.0322 0.5027 0.0734 0.0357 0.4861

3 0.1015 0.0262 0.2581 0.0833 0.0232 0.2783 0.0857 0.0216 0.2525 0.0988 0.0253 0.2567

4 0.1137 0.0122 0.1073 0.0951 0.0118 0.1241 0.0966 0.0109 0.1125 0.1122 0.0134 0.1198

5 0.1226 0.0089 0.0724 0.1053 0.0102 0.0969 0.1065 0.0099 0.0932 0.1233 0.0111 0.0903

6 0.1271 0.0046 0.0361 0.1109 0.0056 0.0502 0.1129 0.0064 0.0563 0.1295 0.0062 0.0478

7 0.1301 0.0029 0.0225 0.1145 0.0036 0.0315 0.1174 0.0046 0.0390 0.1339 0.0044 0.0325

8 0.1322 0.0021 0.0158 0.1171 0.0026 0.0225 0.1206 0.0032 0.0262 0.1364 0.0025 0.0187

9 0.1338 0.0016 0.0122 0.1192 0.0020 0.0170 0.1242 0.0035 0.0285 0.1378 0.0014 0.0099

10 0.1348 0.0010 0.0071 0.1205 0.0014 0.0113 0.1269 0.0028 0.0219 0.1388 0.0010 0.0075

In Table 3.4 is observed that the behavior of the stopping criterion HSS for images 1 and 7
is totally decreasing and the contrast enhancement algorithm is stopped after the first iteration,
whereas for images 3 and 5 it stops at the second iteration. For the stopping criterion BF the
behavior is more constant and the execution of the contrast enhancement algorithm is stopped
at iteration 4 for all the images.

To complement the analysis performed for 2D images, the behavior of the stopping cri-
terion is calculated using different sizes for the inner and outer window in the computation
of the CIRR contrast measurement. Figure 3.4 shows the results obtained for image 1 and 3
using both stopping criteria. In the case of HSS, it can be observed that as the outer radius
increases compared to the inner radius, the stopping criterion is more reliable. For example,
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using radio (1, 3) for an inner and outer window (red line in Figure 3.4) gives a maximum in
the second iteration. In the case of BF, the behavior is the same for radio windows (1, 2) as
for radio windows (1, 3). The required number of iterations is equal to 4.

a) HSS behavior for image1 c) BF behavior for image1

b) HSS behavior for image3 d) BF behavior for image3

Figure 3.4: HSS and BF computation using different window sizes.

The result of applying the different radii for the inner and outer window in the calculation
of the CIRR contrast measure that is used by the two stopping criteria of the MSTH contrast
enhancement algorithm is presented in Table 3.5. As can be seen, the results obtained by
stopping criterion BF is the same for the 10 test images, that is, it is constant regardless of the
size of the image and its spacing. On the other hand, the stopping criterion HSS varies when
the window radius is (1, 2) for images 1, 2, 7 and 8. For other windows radii, the number of
iterations is the same for all images except for the image10.

Table 3.5: Iterations required using HSS and BF stopping
criteria

Image Stopping criteria
[inner, outer] radius

[1,2] [1,3] [2,3] [3,7]

image1
HSS 1 2 3 3

BF 4 4 5 6
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Table 3.5: Iterations required using HSS and BF stopping
criteria

Image Stopping criteria
[inner, outer] radius

[1,2] [1,3] [2,3] [3,7]

image2
HSS 1 2 3 3

BF 4 4 5 6

image3
HSS 2 2 3 3

BF 4 4 5 6

image4
HSS 2 2 3 3

BF 4 4 5 6

image5
HSS 2 2 3 3

BF 4 4 5 6

image6
HSS 2 2 3 3

BF 4 4 5 6

image7
HSS 1 2 3 3

BF 4 4 5 6

image8
HSS 1 2 3 3

BF 4 4 5 6

image9
HSS 2 2 3 3

BF 4 4 5 6

image10
HSS 2 3 3 3

BF 4 4 5 6

In addition, as mentioned above, it appears that the number of iterations using the stopping
criterion HSS is half of the iterations required using the stopping criterion BF.

Table 3.6 presents a comparative analysis of the 10 original images, those obtained using
the stopping criterion HSS and those obtained using the criterion BF. In addition, it presents
the edges obtained using the Canny algorithm with predefined parameters.

Table 3.6: Edges of original, HSS, and BF images.

Image Original Enhanced+HSS [1,2] Enhanced+BF [1,2]
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Table 3.6: Edges of original, HSS, and BF images.

Image Original Enhanced+HSS [1,2] Enhanced+BF [1,2]

image1

image2

image3
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Table 3.6: Edges of original, HSS, and BF images.

Image Original Enhanced+HSS [1,2] Enhanced+BF [1,2]

image4

image5

image6
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Table 3.6: Edges of original, HSS, and BF images.

Image Original Enhanced+HSS [1,2] Enhanced+BF [1,2]

image7

image8

image9
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Table 3.6: Edges of original, HSS, and BF images.

Image Original Enhanced+HSS [1,2] Enhanced+BF [1,2]

image10

In the case of the stopping criterion BF, which allows propagating more iterations in the
contrast enhancement algorithm, a number of edges obtained are greater than in the other
cases.

To see the behavior of the two stopping criteria in more detail, for image1 a slice was taken
and the image was zoomed in, as can be seen in Figure 3.5. The slice 170 of image1 was taken
because it presents several areas where airways are separated by thin tissue.

In the Figure 3.6, it can be appreciated slightly that the obtained image using the number
of iterations generated by the criterion BF allows obtaining a better contrast.

The profile of the slice 170 of image1 and its enhanced images was analyzed for column
100 as shown in Figure 3.6. Column 100 was selected because it has areas of thin tissue
between the airways and low contrast.

It can be seen that the profile of the enhanced image using the stopping criterion BF (green
line) is better than that obtained using the criterion HSS (red line). There is a significant
improvement in the areas that separate the cavities from the airways.



3.3 Experimental results 69

Figure 3.5: Zoom of the slice 170 of image1 (left:original image, middle:HSS enhanced im-
age, right:BF enhanced image).

Figure 3.6: Profile of the image1 and its enhanced images (blue line:original image, red line:
HSS-enhanced image, green line: BF-enhanced image).

Additionally, it can be seen in figure 3.6 that the improvement in the contrast when us-
ing the stopping criterion HSS does not allows obtaining a significant difference in the areas
mentioned.





Chapter 4

Smoothing using nonlinear anisotropic
diffusion

“Sucess is not final, failure is not fatal: it is the courage to continue that counts.”

– Winston Churchill.

The conventional image denoising techniques, such as averaging filter, median filter or 2D
Gaussian filter are efficient in reducing the amount of noise, but also have the disadvantage
of blurring the image edges [67, 137]. For this reason, numerous edge preserving techniques
based on Partial Differential Equations (PDEs) have been developed [137]. In this case, the
image affected by noise is smoothed by the diffusion techniques which modify it via a PDE.
Diffusion filters and their discrete implementation using finite differences were introduced in
the image processing area by Perona and Malik [138]. The general diffusion scheme includes
both the Gaussian filter and the nonlinear isotropic and anisotropic diffusion, formalized by
the same compact mathematical base.

Specifically, nonlinear anisotropic diffusion filtering is a procedure based on nonlinear
evolution PDEs which seeks to improve images qualitatively by removing noise while preserv-
ing details and even enhancing edges. However, well-known implementations are sensitive to
parameters which are necessarily tuned to sharpen a narrow range of edge slopes; otherwise,
edges are either blurred or staircased [139].

For the above reasons, the purpose of this chapter is to select a nonlinear anisotropic diffu-
sion filter which sharpen edges over a wide range of slope scales and which reduce noise while
conserving feature boundaries. To this end, a comparative analysis of five diffusion methods
is performed. Four of them are anisotropic nonlinear diffusion methods and the fifth is the
Perona Malik method.

Another purpose of this chapter is to define a stopping criterion for the diffusion process.
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To meet this goal, two stopping criteria were compared. The first is the stopping criterion
proposed by Joao et. al. [135], which is based on the Mean Squared Error (MSE). The second
is a proposed method based on the CIRR contrast measure. According to the performed tests,
better results were found using the proposed algorithm.

4.1 State of the art

Medical images typically suffer from one or more of the following imperfections, low res-
olution (in the spatial and spectral domains), high level of noise, low contrast, geometric
deformations and/or presence of imaging artifacts. These imperfections can be inherent to
the imaging modality (e.g., X-rays offer low contrast for soft tissues, ultrasound produces
very noisy images, and metallic implants will cause imaging artifacts in CT) or the result of a
deliberate trade-off during acquisition. For example, finer spatial sampling may be obtained
through a longer acquisition time. However that would also increase the probability of patient
movement and thus blurring. To remove noise while preserving details and even enhancing
edges techniques based on Partial Differential Equations (PDEs) have been used. The idea
of using the PDE diffusion equations in image denoising and restoration arose from the use
of the Gaussian filter in multiscale image analysis. Convolving an image with a two or three
dimensional Gaussian filter is equivalent to the solution of the diffusion equation in two or
three dimensions [137].

The applications of PDEs to image processing date back to the 1960s [140, 141]. However,
the research work about PDEs in image processing and computer vision can be traced back
to the earliest Nagao et. al. (1979) and Rudin et. al. (1992), study of image smoothing and
image enhancement. But this technique did not draw much attention until the introduction of
the concept of scale space by Koenderink [142] and Witkin [143] in the 1980s. Then, Perona
and Malik’s work on anisotropic diffusion [138] further drew great interest from researchers
towards PDE-based methods. Nowadays, PDEs have been successfully applied to many prob-
lems in image processing and computer vision [144–148], e.g., denoising [138], enhancement
[149], inpainting [150], segmentation [151], stereo and optical flow computation.

Nonlinear anisotropic diffusion is a variant of the heat equation, generalized in two re-
gards: nonlinearity and anisotropy. Nonlinearity in diffusion means that diffusion tensors
are automatically generated from the processed image. Anisotropy means that the smooth-
ing induced by the PDE can be favored in some directions and prevented in others. This is
specified by local eigenvectors and eigenvalues of the diffusion tensor field [152]. Diffusion
coefficients are thus location and direction dependent, generalizing the approach of Perona
and Malik [138] which is only location dependent.
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Nonlinear anisotropic diffusion is a powerful image processing technique, which allows
to simultaneously remove the noise and enhance sharp features in two or three dimensional
images. Anisotropic diffusion is understood here in the sense of Weickert [153], meaning that
diffusion tensors are anisotropic and reflect the local orientation of image features.

Weicket [154] proposed two nonlinear anisotropic diffusion algorithms. The first one is
called Edge Enhancing Diffusion (EED), which allows smoothing while preserving the edges.
The second one is called Coherence Enhancing Diffusion (CED), which allows smoothing
based on the structures (flow-like) present in the images. Based on the filters defined by
Weicket, several methods have been proposed. For example, Bazan et. al.[155] proposed
a new approach based on nonlinear anisotropic diffusion and bilateral filtering for electron
tomography of mitochondria. Dong et. al. [156] introduced a source term in the CED filter
to restore the initial image and contrast lost by pure diffusion filters. Surya [] proposed an
adaptive coherence enhancement diffusion filter (CED) combining anisotropic diffusion and
diffusion functions derived from the structural tensor. Mirebeau et. al. [157] proposed two
variants to the Weickert’s algorithms. The first is associated with the EED algorithm, which is
called Conservative variant of EED (cEED). The second is called Conservative variant of CED
(cCED). The main distinction lies in the definition of the diffusion parameters of the diffusion
tensor.

The methods proposed by Perona-Malik (nonlinear isotropic), Weickert (EED and CED)
and Mirebeau et. al. (cEED and cCED) to fulfil the first objective of this chapter were selected.
This consists of comparing and selecting the method that allows smoothing head-neck CT
images containing the upper airways without attenuating the border information.

This chapter is an attempt to summarize PDE’s and their solutions applied to image diffu-
sion. The chapter first presents in section 4.1.1 the fundamental of PDEs in image processing.
Next, the diffusion process is covered in section 4.1.2. Then, smoothing using anisotropic
diffusion based on PDEs is presented in section 4.1.3. The chapter also covers in section 4.2 a
brief description of the nonlinear diffusion methods selected. Then, in section 4.3 and section
4.4, stopping criteria of diffusion process and the proposed criterion are presented. Finally,
experimental results are presented in section 4.5.

4.1.1 PDEs in image processing

Many mathematical approaches have been investigated for applications in image processing
and computer vision (e.g., fractals and self-similarity, wavelets, pattern theory, stochastic point
process, random graph theory) [146]. In particular, methods based on PDEs have been ex-
tremely popular in the past few years [158–160]. In image processing, methods based on
PDEs consider to images as approximations of continuous objects, namely functions. The
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basic idea is to deform a given function (image) with a PDE, and obtain the desired result as
the PDE solution. Sometimes, as in the case of color images, a system of coupled PDEs is
used. The challenge behind this technique is in the design and analysis of these PDEs [146].
Ideas on the use of PDEs in image processing go back at least to Gabor and, a bit more re-
cently, to Jain[146, 158]. However, the field really took off thanks to the independent works
of Koenderink [142] and Witkin [143]. These researchers rigorously introduced the notion of
scale space, that is, the representation of images simultaneously at multiple scales [146].

In general, a PDE is an equation stating a relationship between function of two or more
independent variables and the partial derivatives of this function with respect to these indepen-
dent variables. The dependent variable f is used as a generic dependent variable throughout.
In most problems in engineering and science, the independent variables are either space (x,y,z)
or space and time (x,y,z, t). The dependent variable depends on the physical problem being
modeled. The order of a PDE is the order of the highest derivative in the relation. Hence for a
positive integer m, the general form of an mth-order PDE in a domain Ω ⊂ Rn is given by

F
(
x,u,∇u(x) ,∇2u(x) , · · · ,∇mu(x)

)
= 0, f or x ∈ Ω (4.1)

Here F is a function which is continuous in all its arguments, and u is a Cm-function in
Ω. A Cm-solution u satisfying the above equation in the pointwise sense in Ω is often called a
classical solution.

PDEs can be classified as linear or nonlinear. Linear PDE is one in which all of the par-
tial derivatives appear in linear form and none of the coefficients depends on the dependent
variable, i.e., there is no product of the dependent variables or its derivatives. The coefficients
may be functions of the independent variables, in which case the PDE is a linear with variable
coefficients. On the other hand, nonlinear PDE contains coefficients that depends on the de-
pendent variable, or the derivatives appear in a nonlinear form. In addition, if a PDE is linear
in its highest order derivatives, it is called a quasi-linear PDE.

Additionally, PDE is called homogeneous if the equation does not contain a term indepen-
dent of the unknown function and its derivatives. In other words, when the dependent variable
(and it derivatives) appear in terms with degree exactly one. A PDE is non-homogeneous if
it contains a term that does not depend on the dependent variable, that is, when contain terms
which only depend on the independent variable.

According to Suri et. al. [161], PDE’s have recently dominated the fields of computer
vision, image processing and applied mathematics due to the following abilities:

1. to transform a segmentation modeling problem into a PDE framework.

2. to embed and integrate regularizers into these models.
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3. to solve PDE’s using finite difference methods (FDM).

4. to link between PDE’s and the level set framework for implementing finite difference
methods.

5. to extend the PDE framework from 2-D to 3-D or even higher dimensions.

6. to control the degree of PDE in the image processing domain.

7. to provide solutions in a fast, stable and closed form.

8. to handle interactively image segmentation in the PDE framework.

In particular, several methods have been presented in noise removal and smoothing using
PDEs. This has been used for quite some time but recently, robust techniques for image
smoothing have been developed (see Perona and Malik [138], Gerig et al. [162], Alvarez et
al. [163], Kimia et al. [164], Sapiro et al. [146], Caselles et al. [145], Weickert [153], Black
et al. [165], Arridge et al. [166], Bajla et al. [167], Olver et al. [168], Scherzer et al. [169],
Romeny et al. [170] and Nielsen et al. [171]).

4.1.1.1 PDEs classification

An important ingredient of a systematic theory of PDEs is a classification scheme which iden-
tifies classes of equations with common properties. The “class” of an equation determines the
nature of boundary and initial conditions which may be imposed, the nature of singularities
which solutions may have and the nature of methods which can be used to approximate a
solution. For example, a few problems are governed by a single first-order PDE, numerous
problems are governed by a system of first-order PDEs, some problems are governed by a sin-
gle second-order PDE, numerous problems are governed by a system of second-order PDEs,
and a few problems are governed by fourth-order PDEs. The classification of PDEs is most
easily explained for a single second-order PDE. The general quasilinear (i.e., linear in the
highest-order derivative) second-order nonhomogeneous PDE in two independent variables
is:

A fxx +B fxy +C fyy +D fx +E fy +F f = G (4.2)

where the coefficients A to C may depend on x, y, fx, and fy, the coefficients D to F
may depend on x, y, and f , and the nonhomogeneous term G may depend on x and y. The
classification of Equation 4.2 depends on the sign of the discriminant, B2 −4AC, as follows:
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Class B2 −4AC Example

Elliptic B2 −4AC < 0 ∂ 2 f
∂x2 +

∂ 2 f
∂y2 = 0 Laplace equation

Parabolic B2 −4AC = 0 ∂ f
∂ t = α

∂ 2 f
∂x2 Diffusion equation

Hyperbolic B2 −4AC > 0 ∂ 2 f
∂ t2 = c2 ∂ 2 f

∂x2 Wave equation

Table 4.1: Types of PDEs and examples

This classification depends only on the coefficients of the highest order derivatives.

4.1.1.2 Physical problems

Physical problems fall into one of the following three general classifications: equilibrium
problems, propagation problems and eigenproblems. Each of these three types of physical
problems has its own special features, its own particular type of governing partial differential
equation, and its own special numerical solution method. A clear understanding of these
concepts is essential if meaningful numerical solutions are to be obtained.

First, equilibrium problems are steady-state problems in closed domains D(x,y) in which
the solution f (x,y) is governed by an elliptic PDE subject to boundary conditions specified
each point on the boundary Ω of the domain. Equilibrium problems are jury problems in which
the entire solution is passed on by a jury requiring satisfaction of all internal requirements
(i.e., the PDE) and all the boundary conditions simultaneously. A classical example of an
equilibrium problem governed by an elliptic PDE is steady heat diffusion (i.e., conduction) in
a solid. The governing PDE is Laplace equation.

Second, propagation problems are initial-value problems in open domains (open with re-
spect to one of the independent variables) in which the solution f (x, t) in the domain of interest
D(x, t) is marched forward from the initial state, guided and modified by boundary conditions.
Propagation problems are governed by parabolic or hyperbolic PDEs. The majority of propa-
gation problems are unsteady problems. The diffusion equation is an example of an unsteady
propagation problem. A classical example of a propagation problem governed by a parabolic
PDE is unsteady heat diffusion in a solid. The governing PDE is the diffusion equation.

Finally, eigenproblems are special problems in which the solution exists only for special
values (i.e., eigenvalues) of a parameter of the problem. The eigenvalues are to be determined
in addition to the corresponding configuration of the system.

In conclusion, parabolic and hyperbolic PDEs govern propagation problems and elliptic
PDEs govern equilibrium problems.
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4.1.1.3 Initial values and boundary conditions

A differential equation governs a family of solutions. A particular member of the family of
solutions is specified by the auxiliary conditions imposed on the differential equation. The
typical problem in PDEs consists of finding the solution of a PDE (or a system of PDEs) sub-
ject to certain boundary and/or initial conditions. The nature of boundary and initial conditions
which lead to well-posed problems depends in a very essential way on the specific PDE under
consideration.

An initial condition is a requirement for which the dependent variable is specified at some
initial state, and a boundary condition is a requirement that the dependent variable or its deriva-
tives must satisfy on the boundary of the domain of the PDE.

Four types of boundary conditions are:

1. The Dirichlet bounday condition. If the dependent variable along the boundary is
prescribed.

• f is specified on the boundary.

2. The Neumann boundary condition. If the value of the derivative normal (gradient) to
the boundary is specified.

• ∂ f
∂x is specified on the boundary.

3. The Robin boundary condition. If the imposed boundary condition is a linear combi-
nation of the Derichlet and Neumann types.

• a f +b∂ f
∂x is specified on the boundary.

4. The Mixed boundary condition. Frequently the boundary condition along a certain
portion of the boundary is of Dirichlet type and, on another portion of the boundary is
of a Newmann type.

One of the above types of boundary conditions must be specified at each point on the bound-
ary of the closed solution domain. Different types of boundary conditions can be specified on
different portions of the boundary. For unsteady or steady propagation problems, the auxiliary
conditions consist of an initial condition (or conditions) along the time (or timelike) boundary
and boundary conditions on the physical boundaries of the solution domain. No auxiliary con-
ditions can be applied on the open boundary in the time (or timelike) direction. In conclusion,
proper specifications of the type and number of auxiliary conditions is a necessary condition
to obtain a well-posed problem.
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Finally, the relationship between image processing and PDEs was proposed by Koenderink
[142], who indicated that “any image can be embedded in a one-parameter family of derived
images (with resolution as the parameter) in essentially only one unique way if the constraint
that no spurious detail should be generated when the resolution is diminished, is applied”.
Koenderink proposed that the structure of this family is governed by the well known diffusion
equation, which is a parabolic, linear, partial differential equation of the second order. Since
then, the PDE models have been increasingly used in many image processing tasks such as
restoration, multiscale representation, inpainting, smoothing and edge detection [138, 172]. In
particular, the diffusion equation has been successfully used for image smoothing, restoration
and regularization [138, 146, 153, 163, 173, 174]. The diffusion equation is an important
partial differential equation that describes the distribution of heat in a given region over time.

4.1.2 Diffusion process

Most people have an intuitive impression of diffusion as a physical process that equilibrates
concentration differences without creating or destroying mass. This physical observation can
be cast in a mathematical formulation [175] using a diffusion equation. This equation is a par-
tial differential equation based on repetition which describes density fluctuations in a material
undergoing diffusion. The equation can be written as:

∂u(x, t)
∂ t

= ∇ · (D(u(x, t) ,x)∇u(x, t)) (4.3)

where u(x, t) is the density of the diffusing material at location x = (x,y,z) and time t.
D(u(x, t) ,x) denotes the collective diffusion coefficient for density u at location x. If the
diffusion coefficient does not depend on the density, i .e., D is constant, then Equation 4.3 is
reduced to the following linear equation:

∂u(x, t)
∂ t

= D∇
2u(x, t) (4.4)

Equation 4.4 is also called the heat equation and also describes the distribution of a heat
in a given region over time. Equation 4.4 can be derived from the continuity equation, which
states that a change in density in any part of the system is due to inflow and outflow of material
into and out of that part of the system. Effectively, no material is created or destroyed:

∂u
∂ t

+∇ · j = 0 (4.5)

where j is the flux of the diffusing material. Equation 4.4 can be obtained from the last
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equation when combined with the Fick’s first law, which assumes that the flux of the diffusing
material in any part of the system is proportional to the local density gradient:

j =−D ·∇u(x, t) (4.6)

This equation states that a concentration gradient ∇u causes a flux j which aims to com-
pensate for this gradient. The relation between ∇u and j is described by the diffusion tensor D.
It is a positive definite symmetric matrix that provides the directionality of diffusion (smooth-
ing). In other words, the interesting part is the tensor itself. An eigenvector decomposition
of D will produce an orthogonal system of diffusion directions together with the variance of
diffusion (the eigenvalues) in each of the directions.

When j and ∇u are parallel the diffusion is called isotropic, otherwise, is defined anisotropic
( j and ∇u are not parallel).

Rewriten equation 4.5, the continuity equation can be expressed as:

∂u
∂ t

=−∇ · j (4.7)

If this equation is pluged into Fick’s law, the diffusion equation is obtained as:

∂u
∂ t

= div(D ·∇u(x, t)) (4.8)

Equation 4.8 represents the partial derivative equation (PDE) that governs the smoothing
process, where u(x, t) is the image at time t, div represents the divergence operator, ∇u(x, t)
is the gradient of the image, and D corresponds to the diffusion tensor. According to the liter-
ature, if the diffusion tensor is constant over the whole image in every direction, the difussion
process is called isotropic. In the other hand, the diffusion process is called anisotropic if the
diffusion tensor is different for each location [152, 170, 176, 177].

The whole effect of the diffusion depends upon the choice of the diffusion tensor D:

1. D is scalar and D ̸= D(u). This is the simplest form. The diffusion equation is linear
[D ̸= D(u)] and isotropic (D is scalar). In this case, it can be shown that the diffu-
sion corresponds to low-pass nonadaptive filtering with a Gaussian kernel whose width
increases with the square root of time

(
σ ∝

√
2t
)
.

2. D is scalar and D = D(u). When the diffusion equation is nonlinear, that is, the dif-
fusivity depends on the local image structure [D = D(u)], more interesting results are
achieved. Nonlinear isotropic diffusion was introduced to image processing by Perona
and Malik (1990) [138]. Its most important application is edge-preserving smoothing.
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Nonlinear diffusion can be compared to adaptive (low-pass) filtering in the sense that
the smoothing kernel depends on the local image structure.

3. D is tensor and D = D(u). The diffusion tensor introduces anisotropy to the diffusion
by treating different orientations differently: diffusion is allowed in some directions and
inhibited in others. It makes sense to align the principal axes of the diffusion with the
orientations of the image. In other words, D is constructed such that its eigenvectors
follow the local orientation of the image. This leaves many options for D because we
can still adjust the eigenvalues of D. In images where orientation carries the bulk of the
information (like fingerprints and seismic images), interesting results are obtained when
diffusion (i.e., smoothing) is allowed only along the structure. This can be achieved by
properly setting the eigenvalues of D.

Based on the concepts described above and according to Weickert and Brox (2002) [160],
the diffusion process (filtering) of some image f = ( f (x,y,z))T may be based on one of the
following evolutions:

1. Homogeneous diffusion ([160] in the scalar case):

∂tu =△u (4.9)

2. Linear isotropic diffusion ([178] in the scalar case):

∂tu = div
(

g
(
|∇ f |2

)
·∇u

)
(4.10)

3. Nonlinear isotropic diffusion [162]:

∂tu = div
(

g
(
|∇u|2

)
∇u
)

(4.11)

4. Linear anisotropic diffusion ([160] in the scalar case):

∂tu = div
(
D
(
∇ f ·∇ f T)

∇u
)

(4.12)

5. Nonlinear anisotropic diffusion [175]:

∂tu = div
(
D
(
∇u ·∇uT)

∇u
)

(4.13)
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All diffusion methods use f as the initial condition:

u(x,0) = f (x) (4.14)

Some authors use u as the initial condition, but this is because they simply consider that the
image u(x) is the noisy input image.

The function g denotes a scalar-valued diffusivity, and D is a tensor (positive definite
diffusion matrix). The diffusivity g

(
s2) is a decreasing function in its argument. Moreover,

they assume that the flux function g
(
s2)s is nondecreasing in s. One may use [179]

g
(
s2)= α +

1√
β 2 + s2

(4.15)

with some small positive numbers α and β .

4.1.3 Smoothing using diffusion

The field of image restoration (sometimes referred to as image deblurring or image decon-
volution) is concerned with the reconstruction or estimation of the uncorrupted image from
a blurred and noisy one. Essentially, it tries to perform an operation on the image that is the
inverse of the imperfections in the image formation system. In the use of image restoration
methods, the characteristics of the degrading system and the noise are assumed to be known a
priori . In practical situations, however, one may not be able to obtain this information directly
from the image formation process. The goal of blur identification is to estimate the attributes
of the imperfect imaging system from the observed degraded image itself prior to the restora-
tion process. The combination of image restoration and blur identification is often referred
to as blind image deconvolution [11]. Noise filtering techniques that maintain image contrast
while decreasing image noise have the potential to optimize the quality of computed tomogra-
phy (CT) images. To smooth CT images using diffusion techniques there are two alternatives,
one using isotropic diffusion and the other using anisotropic diffusion.

Isotropic diffusion can be divided into linear and nonlinear. Linear, when D is a constant
and independent of x, it leads to a linear diffusion equation, with a homogeneous diffusivity.
In this case, all locations in the image, including the edges are smoothed equally. Nonlinear,
when D is a constant and dependent of image locations x, it leads to a nonlinear diffusion
equation, with a homogeneous diffusivity according to each location. In this case, image
smoothing depends of image locations [153, 160].

In the same way, anisotropic diffusion can be divided into linear and nonlinear. Linear,
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when the diffusion tensor D is a function of x , i.e., depends on the space. In this case, all
locations in the image, including the edges are smoothed equally but with different value in
each direction. Nonlinear, when the diffusion tensor D is a function of x, i.e., it depends
on the space. But in this case, all locations in the image, including the edges are smoothed
nonequally in each location.

4.1.3.1 Linear Isotropic Diffusion Filters

The linear isotropic diffusion (heat) equation is the oldest and best investigated PDE method
in image processing. To determine the linear isotropic diffusion equation first begins with the
general diffusion equation, which is defined as [180]:

∂tu(x, t) = div(D(|∇u(x, t)|) ·∇u(x, t)) on Ω(0,∞) (4.16)

with u as initial condition,

u(x,0) = u(x) on Ω (4.17)

and using Neumann boundary condition. Where u(x) denote a grayscale (noisy) input
image, D is the diffusion tensor (function of x), and u(x, t) be initialized with u(x,0) = u(x).
In addition, t > 0 and x ∈ Ω, where Ω ⊂ Rd is open. The unknown is u : Ω× [0,∞) → R,
u = u(x, t), and the gradient ∇ is taken with respect to the spatial variables x = (x1, . . . ,xd).

According to Weickert [152], the diffusion filter utilizes the unit matrix as diffusion tensor:

D(|∇uσ |) = I (4.18)

replacing the diffusion tensor D (Equation 4.18) in diffusion equation (Equation 4.16), the
linear isotropic diffusion process can be defined by the equation

∂tu(x, t) = div(I ·∇u(x, t)) = ∇ · (∇u(x, t)) = ∇
2u(x, t) =△u(x, t) (4.19)

This diffusion process has the properties of [151]:

(i) linearity, the diffusion filter strength at all locations is the same

(ii) isotropy, the diffusion filter strength in different directions at any location is the same.

Equation 4.19 is solved using a Gaussian function as:

u(x, t) =

 G√
2t ∗u(x)

(
x ∈ Rd, t > 0

)
0

(
x ∈ Rd, t < 0

) (4.20)
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is called the fundamental solution of the heat equation. Where G√
2t is the Gaussian kernel.

It is defined as [152, 180, 181]:

G√
2t (x) =

1

(4πt)d/2 e

(
− |x|2

4t

)
x ∈ Rd, t > 0 (4.21)

The standard deviation σ =
√

2t of a Gaussian determines its shape and represents the
strength of its related Gaussian filter (the larger the standard deviation, the stronger the Gaus-
sian filter). This is the most well-known form of diffusion filtering called homogeneous
isotropic linear diffusion and more commonly known as Gaussian smoothing (GS).

In addition, the linear diffusion process can be defined by the equation

∂tu(x, t) = div(c ·∇u(x, t))
u(x,0) = u(x)

(4.22)

where c is a diffusivity parameter that is constant across the image, making it a linear
isotropic equation. This is solved in the same way using a Gaussian function:

u(x, t) = G√
2ct ∗u(x)

u(x,0) = u(x)
(4.23)

where G√
2ct is the Gaussian kernel. It is defined as [152, 180, 181]:

G√
2ct (x) =

1
4πct

e

(
− |x|2

4ct

)
x ∈ RN, c > 0, t > 0 (4.24)

In summary, the lineal isotropic diffusion filter can be seen as an evolution process with
an artificial time variable t denoting the diffusion time where the input image is smoothed at a
constant rate in all directions. In addition, the resulting image at diffusion time can be obtained
by convolving the original image using a Gaussian kernel with standard deviation σ =

√
2t or

σ =
√

2ct [142, 143, 152]. Since this process deals with digital images, solving the linear dif-
fusion equation requires discretization in both spatial and time coordinates. Normally, central
differences are the typical choices for the spatial derivatives.

Thus, linear diffusion can be regarded as a low-pass filter. The correspondence between
the diffusion time variable t and the standard deviation σ clearly depicts the effect of t on the
evolving images. The higher the value of t, the higher the value of σ , and the more smooth
the image becomes. As the diffusion process evolve to coarser scales, the evolving images
become more and more simplified since the diffusion process removes the image structures at
finer scales.
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Figure 4.1 uses the radii (of the circles) to represent the value of the standard deviation
of the Gaussians. The circles themselves represent the “isotropic” property of the diffusion
process, i.e., the Gaussian filter at each location has the same strength (circular shape) in all
directions. The property of linearity is reflected by the uniform size of all circles [151].

Figure 4.1: Linear isotropic diffusion

This technique goes back to Marr and Hildreth [182], Witkin [143], and Koenderink [142].
It is widely used in image processing community, since it is equivalent to convolving the
original image with Gaussians of increasing size. Nevertheless, it smoothes noise within a
region in the same way as it blurs semantically important structures like edges, lines, or other
details [152]. Additionally, according to Barbu [180], the main disadvantage of this classical
procedure is that the denoising operator has no localization property, that is, the solution to
the heat equation (Equation 4.16) propagates with infinite speed. In other words, if u0 = 0
outside a certain domain Ωt , it does not follow that the same thing happens for u(t) outside
Ωt ⊂RN . This means that the flux instantly affects the image u0 and this can destroy the edges
(see [183]).

4.1.3.2 Nonlinear Isotropic Diffusion Filters

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create a
scale space representation that consists of gradually simplified images where some image
features such as edges are maintained or even enhanced. The earliest nonlinear diffusion
model proposed in image processing is the so-called anisotropic diffusion by Perona and Ma-
lik [138, 184].

The goal of nonlinear diffusion filtering is to reduce smoothing in the presence of edges
[138, 185]. In order to avoid the blurring of these edges, one should construct a diffusion filter
which reduces the diffusivity at those locations which are good candidates for being an edge
[152].
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Nonlinear diffusion filtering creates a family of simplified images {u(x, t)} | t ≥ 0 of some
scalar initial image u(x) by solving the PDE [185]:

∂u
∂ t

= div(g(|∇u|)∇u) on Ω(0,∞) (4.25)

with u as initial condition,

u(x,0) = u(x) on Ω (4.26)

and reflecting (homogeneous Neumann) boundary conditions:

∂νu = 0 on ∂Ω(0,∞) (4.27)

where ν denotes the outer normal on the image boundary.
Equation 4.25 denotes the evolution of image u(x) per unit time. Here, g(·) is the con-

ductance function that controls the diffusivity. This can be achieved by a monotonically de-
creasing diffusivity function g which correlates the amount of smoothing with the image gra-
dient magnitude |∇u| (strong diffusivity in areas that have small gradients and weak in areas
that have large gradients). The diffusivity g(|∇u|) is a nonnegative function that controls the
amount of diffusion. Usually, it is decreasing in |∇u|.

This ensures that strong edges are less blurred by the diffusion filter than noise and low-
contrast details. The diffusivity parameter should be made dependent on some characterization
of image structure.

The diffusion time t determines the amount of simplification: For t = 0 the original image
u is recovered, and larger values for t result in more pronounced smoothing. As a consequence,
the diffusivities become variable in both space and time. As the evolution proceeds, the areas
that have large discontinuities are preserved, whereas those that have small discontinuities
such as plain areas or noise are smoothed out. The Neumann boundary condition indicates
that there is no orthogonal diffusion to the image borders ∂Ω. In theory, a globally constant
image is the solution of the equation [186].

The original Perona-Malik [138] equation proposed for nonlinear diffusion was:

∂u
∂ t

= ∇ · (g(|∇u|)∇u) (4.28)

with homogeneous Neumann boundary conditions and the initial condition u(x,0) = u(x),
u denoting the input image.

The diffusivity now becomes a function of gradients, so at the edge point the diffusion is
completely inhibited and in smooth regions diffusion is allowed. However, computing gra-
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dients for a noisy image is an ill-posed problem [174, 186]. This problem occurs mainly
because, in most cases, the variational function that is correlated with Equation 4.25 is not
convex [175]. A solution was pointed out by Cottet and Germain [187], that suggest the use
of Gaussian smoothing before computing gradients. This modification lays the foundation for
a well-behaved nonlinear isotropic diffusion process.

In addition, forward and backward diffusions simultaneously exist, which indicates that
there are potentially multiple solutions to the equation. Fortunately, various regularization
strategies in the research are sufficiently good to turn it well-posed for practical use [175].

Figure 4.2 shows a nonlinear isotropic diffusion using the Gaussian filters whose strengths
are represented by the size of the circles. The direction indifference of the circles corresponds
to the isotropy property and the different sizes of circles represent the nonlinearity property
[151].

Figure 4.2: Nonlinear isotropic diffusion

Some examples of nonlinear isotropic diffusion are presented in Table 4.2.

Table 4.2: Examples of nonlinear isotropic diffusion

Technique Equations

Perona-Malik [138]
∂tu = div(g(∇u(x, t)) ·∇u(x, t))

g1 (∇u) = e−
(
|∇u|

K

)2

g2 (∇u) = 1

1+
(
|∇u|

K

)2

Catté et.al. [174] ∂tu = div(g(∇uσ (x, t)) ·∇u(x, t))

Torkamani-Azar et.al. [188]
∂tu = div(g{∇ [h(x)]}(∇uσ (x, t)) ·∇u(x, t))

c(x, t) = g{∇ [h(x)∗u(x)]} ·∇u(x, t)
h(x) =

(
β

2

)
· exp [−β · (|x|+ |y|)]
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Table 4.2: Examples of nonlinear isotropic diffusion

Technique Equations

Weickert [175] g(x, t) =

 1, |∇uσ (x, t)|= 0

1− e
− Cm

(∥∇u(x,t)∥/k)2m |∇uσ (x, t)|> 0

Black et.al. [165, 189] g(x, t) =

 1
2

[
1− (|∇u(x, t)|/σe)

2
]2
, |∇u(x, t)| ≤ σe

0 otherwise

Monteil and Beghdadi [190] g(x, t) = 1
2 [1− tanh(γ · (∥∇u(x, t)∥− k))]

Charbonnier et. al. [191] g(∥∇u∥) = 1√
1+ ∥∇u∥2

k2

4.1.3.3 Linear Anisotropic Diffusion Filters

Anisotropy in diffusion means that the smoothing induced by the PDE can be favored in
some directions and prevented in others. The anisotropic diffusion approach is basically a
modification of the linear diffusion (or heat equation) to eliminate specially his inability to
preserve edges [192]. The term anisotropic is reserved for the case where the diffusivity is a
tensor-valued function, varying with both the edge location and its orientation.

In addition, one way of introducing regularization to the Perona-Malik model is through
anisotropic diffusion. Förstner and Gülch [193] and Bigün and Granlund [194] concurrently
introduced the matrix field of the structure tensor for image processing, and it is the basis for
today’s anisotropic diffusion models.

Specifically, in linear anisotropic diffusion process the constant eigenvalues are responsi-
ble for the linear part of the name, while the steering of the eigenvectors is what provided the
word anisotropic in the nomenclature. The diffusion matrix-based equation is defined as

∂u
∂ t

= div
(

D
(
|∇u|2

)
·∇u

)
(4.29)

where D is the diffusion matrix. The eigenvectors of the diffusion matrix provide the
required steering while the eigenvalues as a function of gradients, add the non-linearity char-
acter. To keep a well-defined problem, in the solution is used a Gaussian function that provides
a mathematical tractability to the whole process. To obtain a linear anisotropic diffusion the
eigenvalues of the diffusion matrix are kept fixed.

The linear anisotropic diffusion equation has a convolution solution with a non-uniform
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Gaussian of the form (2D-case):

Gλuλv (u,v) =
1√

2πλu
e
− u2

2λ2u
1√

2πλv
e
− v2

2λ2v (4.30)

where (u,v) are the rotated coordinates obtained using eigenvectors of the diffusion matrix.
The eigenvalues λu, λv represent the standard deviations of the Gaussian in u and v direction,
respectively. Normally, for noisy images, one of the eigenvalues is set to be much smaller than
the other one, resulting in a non-uniform Gaussian function with more generalized elliptical
support [195].

Figure 4.3 shows a linear anisotropic diffusion process illustrated by the shapes and sizes
of the Gaussian filters. The “anisotropy” property is reflected by the oval shape of the filter
kernels that represents different filter strengths in different directions. The linearity is reflected
by the uniform size and shape of the ovals.

Figure 4.3: Linear anisotropic diffusion

4.1.3.4 Nonlinear Anisotropic Diffusion Filters

The idea of nonlinear anisotropic diffusion was pioneered by Nitzbeg et. al. [196] and Cottet
et al. [187]. Later on, Weickert [154] put forward a formal method for enhancing the elongated
structure, referred to as coherence-enhanced diffusion (CED).

Nonlinear anisotropic diffusion filtering is a procedure based on nonlinear evolution PDEs
which seeks to improve images qualitatively by removing noise while preserving details and
even enhancing edges. In the anisotropic case not only the amount of diffusion is adapted
locally to the data but also the direction of smoothing. It allows for example to smooth along
image edges while inhibiting smoothing across edges. This can be achieved by replacing the
scalar-valued diffusivity function by a matrix-valued diffusion tensor [185].

The eigenvectors of the diffusion tensor define the principal directions of smoothing and
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the corresponding eigenvalues define the amount of smoothing. Weickert based the diffusion
tensor on the structure tensor [175], which describes structures in the image using first order
derivative information.

In general, any nonlinear anisotropic diffusion can be described by the equation

∂u
∂ t

= div(D(∇u)∇u) (4.31)

where u is the smoothed image that is initialized with the input image f (that is u(x,0) =
f (x)), and D represents a matrix-valued diffusion tensor that describes the smoothing di-
rections and the corresponding diffusivities [184]. In this case, the diffusion tensor D is a
function of x , i.e., depends on the space. Additionally, D is a positive definite symmetric
matrix [153, 160]. The idea is to adaptively choose the diffusion coefficient D such that intra-
regions become smooth while edges of inter-regions are preserved [177]. As D must be a
nonnegative function of gradient magnitude so that small variations in intensity such as noise
or shading can be well smoothed, and edges with large intensity transition are retained. It is
generally given by an exponential function or an inverse quadratic function, and determined
by the gradient magnitude with respect to a predetermined edge strength threshold [177].

Thus the given image u is usually convolved with a Gaussian kernel Gσ with a relatively
small standard deviation σ as a presmoothing step. Cottet and Germain [187] and Weickert
[152] devise a diffusivity matrix of the form:

Dσ =
[

v1 v2 v3

] λ1 0 0
0 λ2 0
0 0 λ3


 vT

1

vT
2

vT
3

 (4.32)

where the vectors vi are the eigenvectors of the structure tensor and the parameters λi are
functions of the eigenvalues of the structure tensor. The images’s structure tensor is defined as
[175]:

Jρ (∇uσ ) = Gρ ∗
(
∇uσ ·∇uT

σ

)
(4.33)

where Gρ is the Gaussian kernel with standard deviation ρ (integration scale), over which
the orientation information is averaged, and ∇uσ is the gradient of the image u at scale σ .
Principle axis transformation gives the eigenvectors and eigenvalues of Jρ (∇uσ ) [197].

Figure 4.4 shows a nonlinear anisotropic diffusion process illustrated by ovals of different
sizes and different orientations. The ratio of two dimensions of the ovals can be arbitrarily
different. The orientations of the ovals can also be random. This is the diffusion filter with
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the ultimate freedom in terms of the changes of filter strength location-wise or direction-wise
[151].

Figure 4.4: Nonlinear anisotropic diffusion

Two specializations of nonlinear anisotropic diffusion were introduced by Weickert, edge-
enhancing diffusion (EED) and coherence-enhancing diffusion (CED) [153]. Both were ini-
tially defined in two dimensions. EED was designed to smooth noise while enhancing edges
and CED was designed to enhance line-like textures. CED is essentially one dimensional dif-
fusion [154], since there is either diffusion in one direction or almost no diffusion at all. In
addition, Mirebeau et. al. [157] proposed a conservative variant of both the EED and CED
method. These variants are called cEED and cCED respectively.

4.2 Nonlinear algorithms selected

In the same way that several researchers, three-dimensional properties of EED and CED are
reviewed [155, 195, 197]. In addition, determine how EED and CED can be used in restoration
of images which contain upper airways information is crucial. The main reason is that in this
kind of images appear plate-like (line-like), vessel-like (tubular-like), and flow-like structures.
Additionally, how to combine the advantages of EED and CED. First, EED in three dimensions
becomes plate enhancing diffusion, it filters noise from homogeneous areas and enhances
plate-like structures. Second, CED preserves small structures and enhances tubular structures.

Medical images consist of many structures of different shape, size and contrast. If plain
EED would be applied to medical images, it would filter noise and preserve plate-like struc-
tures, such as the boundaries of larger organs, but it would also blur vessels and smaller struc-
tures. On the other hand, applying plain CED would preserve smaller structures and filter
vessels, but would not filter the noise and plate-like structures properly [197].
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4.2.1 Perona-Malik filtering (PM-isotropic)

The most popular nonlinear anisotropic diffusion technique is the influential denoising scheme
developed by Perona and Malik in 1987[138]. Their approach reduces diffusivity at those lo-
cations having a larger likelihood to represent image edges. The Perona-Malik filter is char-
acterized by the following nonlinear diffusion equation:

∂u
∂ t = div(g(|∇u(x, t)|) ·∇u(x, t)) , x ∈ Ω

u(x,0) = u(x) , x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω

(4.34)

with the noisy image u(x) as the initial condition. Obviously, the diffusivity coeffi-
cient that controls how much image smoothing is performed in x = (x1, . . . ,xd) is C (x, t) =
g(|∇u(x, t)|). The value of C (x, t) should be lower when x is part of an edge, and higher when
it is not. The function g that controls the blurring intensity should be monotonous decreasing
for this reason. Perona and Malik considered two diffusivity function variants, which are:

g1 (∇u) = e−
(
|∇u|

K

)2

(4.35)

g2 (∇u) =
1

1+
(
|∇u|

K

)2 (4.36)

where K > 0 represents the diffusivity conductance, being the parameter that controls the
diffusion process.

The Perona-Malik diffusion algorithm produces good smoothing results while preserving
image edges for a long time. Thus, the boundaries remain stable for high values of time
variable t.

4.2.2 Edge enhancing diffusion filtering (EED)

The nonlinear diffusion model proposed by Perona and Malik [138] employs a scalar-valued
diffusivity function to guide the smoothing process. The diffusivities are reduced at the image
locations where the magnitude of image gradient |∇u| is large, and as a result, the edges
are preserved or even enhanced. In [153], Weickert suggested an alternative approach that
additionally takes direction of the image gradients into account. The suggested model is an
anisotropic nonlinear diffusion model with better edge enhancing capabilities [184].



92 Smoothing using nonlinear anisotropic diffusion

In general, any anisotropic nonlinear diffusion can be described by the equation
∂u
∂ t = div(D(∇u(x, t)) ·∇u(x, t)) , x ∈ Ω

u(x,0) = u(x) , x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω

(4.37)

where u is the input image and D represents a matrix-valued diffusion tensor that describes
the smoothing directions and the corresponding diffusivities [? ] .

Similarly, for Perona-Malik type nonlinear diffusion, D(∇u) = g(|∇u|) I. Such a choice
reduces the amount of smoothing at image edges, but in an equal amount in all directions. In
actual anisotropic setting, the diffusion tensor D is defined as a function of the structure tensor,
to 2D case, is given by

J (∇u) = ∇u ·∇uT =

[
u2

x uxuy

uxuy u2
y

]
(4.38)

The structure tensor J (∇u) can be interpreted as an image feature describing the local
orientation information. It has an orthonormal basis of eigenvectors v1 and v2 with v1∥∇u
and v2⊥∇u, and the corresponding eigenvalues λ1 = |∇u|2 and λ2 = 0. It is important to
note that noise significantly affects the tensor estimation [184]. Thus the given image u is
usually convolved with a Gaussian kernel Gσ with a relatively small standard deviation σ as
a presmoothing step and the structure tensor is computed accordingly by using

∇uσ = ∇(Gσ ∗u) (4.39)

The main idea behind edge enhancing diffusion is to use the structure tensor as an im-
age/edge descriptor to construct a diffusion tensor that reduces the amount of smoothing across
the edges while smoothing is still carried out along the edges. In order to perform this, We-
ickert [153] proposed to utilize same orthonormal basis of eigenvectors v1∥∇uσ and v2⊥∇uσ

estimated from the structure tensor J (∇uσ ) satisfying

λ1 (|∇uσ |)
λ2 (|∇uσ |)

→ 0, f or |∇uσ | → ∞ (4.40)

eigenvalues are chosen using

λ1 (|∇uσ |) =

 1 i f |∇uσ |= 0

1− e
− 3.31488

(|∇uσ |/λ )8 otherwise
(4.41)
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λ2 (|∇uσ |) = 1 (4.42)

where λ denotes the contrast parameter.
Such a choice preserves and enhances image edges by reducing the diffusivity λ1 perpen-

dicular to edges for sufficiently large values of |∇uσ |. Specifically, the diffusion tensor is
given by

D =

[
(uσ )x −(uσ )y

(uσ )y (uσ )x

]
·

[
λ1 (|∇uσ |) 0

0 λ2 (|∇uσ |)

]
·

[
(uσ )x −(uσ )y

(uσ )y (uσ )x

]−1

(4.43)

EED in three dimensions becomes plate enhancing diffusion, it filters noise from homo-
geneous areas and enhances plate-like structures[197]. Diffusion decreases if the gradient
magnitude increases compared to the contrast parameter λ , indicating a plate-like structure.
If the gradient magnitude is much smaller than λ , isotropic diffusion is performed. EED filter
enhances the plane-like structures while reducing the noise. The eigenvalues of the 3-D EED
diffusion tensor are defined as [198]

λ1 =

 1 i f |∇uσ |= 0

1− e
− 3.31488

(|∇uσ |/λ )8 i f |∇uσ |> 0
(4.44)

λ2 = 1 (4.45)

λ3 = 1 (4.46)

with a threshold parameter C = 3.31488 as defined in [153, 175].

4.2.3 Conservative edge enhancing diffusion filtering (cEED)

An undesirable side effect using EED filter is that the image is blurred close to the angles of its
contour set. Mirebeau et. al. [157] considered that such salient features should be preserved,
hence they introduced a Conservative variant of EED (cEED) for which µ1 can be small, when
appropriate, so as to prevent diffusion around the angles of its countour set.

µi = 1− (1−α)e−
(

λ

λi

)m

(4.47)

If all eigenvalues are set equal µ1 = · · · = µd , then the diffusion tensors are isotropic, in
other words scalar multiples of the identity. The following isotropic variant of EED is close
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in spirit to the Perona-Malik model: diffusion is prevented in the neighborhood of the image
contours, regardless of direction. This construction is implemented purely for comparison
with the anisotropic ones, and does not take advantage of the innovative numerical scheme
developed by Mirebeau et. al. [157]

µi = 1− (1−α)e
−
(

λ

λd

)m

(4.48)

cEED filter enhances the plane-like structures while reducing the noise.

4.2.4 Coherence enhancing diffusion filtering (CED)

It is essentially a one-dimensional smoothing strategy in a multidimensional image, it is of
outmost importance to have a precise realization of the desired smoothing direction. When
the goal consists, e.g., of closing gaps in an interrupted line-like structure, it is clear that slight
deviations from the correct smoothing direction will destroy any desired filter effect and result
in a deterioration of the line by introducing blurring artifacts [199].

This direction sensitivity constitutes an additional problem for the design of appropriate
algorithms for diffusion filtering that has not been addressed in the computer vision literature
so far [199].

Three-dimensional nonlinear diffusion filters have been investigated first by Gerig et al.
[162] in the isotropic case, and by Rambaux and Garçon (referenced by Weickert [175]) in the
edge-enhancing anisotropic case. A generalization of coherence-enhancing anisotropic diffu-
sion to higher dimensions was first proposed by Weickert [154]. A recent three-dimensional
PDE-based filter by Krissian et al. [200] and a 3-D reaction-diffusion process by Payot et. al.
[201] may be related to these anisotropic diffusion techniques [154].

Weickert [153, 199] provided a unified tensor diffusion formulation which evolves the
initial image under a parabolic nonlinear PDE given by,

∂u
∂ t = div

(
D
(
Jρ (∇uσ )

)
·∇u

)
, x ∈ Ω

u(x,0) = u(x) , x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω

(4.49)

where u(x, t) is the evolving image, t denotes the diffusion time, and

D =

(
a b
b c

)
(4.50)
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is the diffusion tensor, a positive definite symmetric matrix that may be adapted to the local
image structure [199].

This local image structure is measured by the so-called structure tensor (scatter matrix,
second-moment matrix, Förstner interest operator) [9, 16, 23, 26, 34] which is given by

Jρ (∇uσ ) = Gρ ∗
(
∇uσ ·∇uT

σ

)
(4.51)

The function Gρ denotes a Gaussian with standard deviation ρ , and uσ =Gρ ∗u is a regularized
version of u that is obtained by convolution with a Gaussian Gσ . The eigenvectors of Jρ give
the preferred local orientations, and the corresponding eigenvalues denote the local contrast
along these directions. The resultant sequence of images {u(·, t)}T

t=0, for a finite time T
represents a nonlinear scale space. Here the diffusion tensor D is dependent on the image
information via the structure tensor Jρ (∇uσ ). The structure tensor is highly robust under
isotropic additive Gaussian noise [24], and it can be implemented efficiently [21] [199].

The matrix that represents of structure tensor Jρ is defined as

Jρ (∇uσ ) =

[
J11 J12

J12 J22

]
(4.52)

In a two-dimensional image the structure tensor encode local information with first order
directional derivatives and using equations 4.51 and 4.52, a new representation is obtained
which is given by

Jρ (∇uσ ) =

[
Gρ ∗ (uσ )

2
x Gρ ∗ (uσ )x (uσ )y

Gρ ∗ (uσ )x (uσ )y Gρ ∗ (uσ )
2
y

]
(4.53)

The eigenvalues of structure tensor Jρ matrix can be calculated as,

µ1,2 =
1
2

(
J11 + J22 ±

√
(J11 − J22)

2 +4J2
12

)
(4.54)

or, in an equivalent way,

µ1,2 =
1
2

(
trace

(
Jρ

)
±
√

trace2
(
Jρ

)
+4det

(
Jρ

))
(4.55)

and the first eigenvector (cosα,sinα)T satisfies(
cosα

sinα

)
∥

(
2J12

J22 − J11 +
√
(J11 − J22)

2 +4J2
12

)
(4.56)
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Weickert [154, 199] proposed the following particular choices for steering smoothing for
coherence enhancement diffusion (CED), where diffusion tensor D of CED uses the same
eigenvectors as the structure tensor, and its eigenvalues are assembled via

λ1 := γ (4.57)

λ2 :=

 γ i f µ1 = µ2

γ +(1− γ)e
−β

(µ1−µ2)
2

else,
(4.58)

with β > 0 is known as the coherence factor (if the coherence is inferior to β the flux is
increasing with the coherence while if the coherence is larger then β the flux decreases as the
coherence grows), γ ∈ (0,1) is a small parameter added to keep the tensor diffusion matrix D
positive definite.

Note that (µ1 −µ2)
2 measures the coherence within a window of scale ρ . This particu-

lar choice obtained good diffusion results when the structures are oriented in one particular
direction, however can smooth out corners and other singularities as multiple directional in-
formation is lost.

Finally, the condition number of D is thus bounded by 1/γ, and the entries of D are

a = λ1 cos2 α +λ2 sin2
α

b = (λ1 −λ2)sinα cosα

c = λ1 sin2
α +λ2 cos2 α

(4.59)

CED filter enhances curvilinear structures and small blob-like structures. In addition, this
approach can complete interrupted lines and gaps as well as preserving edges. However, a
problem of CED filtering is that it is susceptible to noise. For more details on coherence-
enhancing anisotropic diffusion in m-dimensions see [154].

4.2.5 Conservative coherence enhancing diffusion filtering (cCED)

A more reliable coherence detector is λm−λi ≫ λ +λi, which leads to a Conservative variant
of CED (cCED). Precisely [157]: (note that µd = α)

µi = α +(1−α)e
−
(

λ+λi
λd−λi

)m

(4.60)
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4.3 Diffusion stopping criteria

Filtering process involves the solution of the anisotropic diffusion equations as a time-marching
problem, a possible approach is to halt the filtering when a certain set of metrics falls below
a predefined threshold [135]. In addition, the definition of the number of iterations (diffusion
time t) based on the metrics selected to stop the diffusion process is crucial to obtain a good
image reconstruction[202]. For example, if t is too small, the reconstructed signal is very
noisy; if t is too large it is smooth and discontinuities are lost. In conclusion, automatically
stopping the diffusion process is a challenging task. Normally, the stopping criterion depends
on the image characteristics and on the parameters of the diffusion equation.

Several authors have addressed this issue in the past in an attempt to devise an optimal
stopping criterion [202, 203]. A brief review of previous works on the stopping criteria is
presented below.

• Sporring and Weickert (1999) [204]

This is focused on the maximal entropy change by scale to estimate the size of image
structures. They argued that the minimal change by scale indicates especially stable
scales with respect to evolution time, and conjectured that these scales could be good
candidates for stopping times in nonlinear diffusion processes. In addition, this is based
on the signal to noise ratio (SNR) and the relative variance at time t and the initial image
[203]. The authors pointed out that the monotonically decreasing ’relative variance’,
0 ≤ var(u)/var(u0)≤ 1, could be used to measure the distance of u from the initial state
u0 and, by prescribing an appropriate value for the relative variance, it can constitute a
good criterion for stopping the nonlinear diffusion [202].

• Capuzzo and Ferretti (2001) [205]

They determine the optimal time by finding the minimum of a performance index which
balances the computing and stopping costs. This is then applied to the regularized
Perona-Malik equation. Their method requires a constant that is found by experimen-
tation using a typical image with similar details and discontinuities as the image to be
processed. This is a rather vague requirement and they demonstrate that one only needs
some approximation to the constant [203].

• Mrazek and Navara (2003) [206]

They choose the stopping criteria so that the correlation of the signal u(T ) and noise
u(0)−u(T ) in the filtered image is minimized. This method is applicable to any images
where the noise to be removed is uncorrelated with the signal, under the assumptions
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that the filter used is suitable for the given type of data, and that neither the additive
noise nor the filtering procedure alter the average gray value; no other knowledge (e.g.
the noise variance, training data etc.) is needed [206]. This method is applied to several
nonlinear filters both isotropic and anisotropic [203]. In addition, this requires no prior
estimation of the noise statistics [207].

Proposed method is called decorrelation criterion. This selects the time T as the time
that minimizes the correlation

T ≡ argmin
t

cov(u(0)−u(t) ,u(t))√
var(u(0)−u(t)) ·var(u(t))

(4.61)

• Gilboa, Sochen and Zeevi (2004)[116]

Stopping criterion is based on obtaining of minimal SNR, i.e. one stops the process
when filtering more signal than noise. This is done by estimating the covariance of
the image and the noise. This method require an estimate of the standard deviation of
the noise σn0 of the input noisy image u(0), which is considered to be a priori known
[207]. They also compare the advantages and disadvantages of the approaches that use
the covariance [203]. The condition for selecting the value of parameter T is

T = argmin
t

∂t cov(N̄,u(0)−u(t))
∂t var(u(0)−u(t))

(4.62)

The variance of noise N̄ of the original image is considered a priori known.

• Bazán and Blomgren (2007) [202]

This stopping criterion is inspired by observation of the behavior of the correlation be-
tween the noise-free image and the filtered image, corr ( f ,u), and the correlation be-
tween the noisy image and the filtered image, corr (u0,u). Although the former measure
is only available in experimental settings it helps validate the usefulness of the latter.

The nonlinear diffusion process starts from the observed (noisy) image, u0(x), and cre-
ates a set of filtered images, u(x, t), by gradually removing noise and details from scale
to scale until, as t → ∞, the image converges to a constant value. During this process the
correlation between the noise-free image and the filtered image increases as the filtered
image moves closer to the noise-free image. This behavior continues until it reaches a
peak from where the measure decreases as the filtered image moves slowly towards a
constant value. During the same process the correlation between the noisy image and
the filtered image decreases gradually from a value of 1.0 (perfect correlation), to a
constant value, as the filtered image becomes smoother [155].
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By comparing both measures, they observed that as corr ( f ,u) reaches its maximum (the
best possible reconstructed image), the curvature of corr (u0,u) changes sign. They sug-
gested that a good stopping point of the diffusion process is where the second derivative
of corr (u0,u) reaches a maximum [155].

• Tsiotsios and Petrou (2013) [207]

The method examines directly the quality of the edges in every iteration. It evaluates,
in every iteration, the quality of a percentage of the true edges of the image, taking into
consideration the contrast and the noise brightness fluctuations around them, and leads
to a judicious choice of the stopping time T that corresponds to the maximum overall
quality of the edges [207]. This method require an estimate of the standard deviation of
the noise σn0 of the input noisy image u(0), which is considered to be a priori known
[207]. The proposed method has five steps that finally compute the stop time T as

T = argmax
t

1
N

N

∑
i=1

Qi (t) (4.63)

where N is the number of edgels and Q(t) reflects the quality of the edges within the
image, in every iteration.

• Joao, Gambaruto, Tiago and Sequeira (2016) [135]

The relative residual error of Mean Square Error (MSE) measure is the metric chosen
for this purpose, specifically

|MSEt+1 −MSEt |
|MSEt+1|

< ε1 (4.64)

where ε1 = 10−2. The choice of ε1 is influenced by the need for a small value to iden-
tify a convergence of solution, and large enough to make the iterative procedure less
computationally demanding.

In addition, They propose to use Structural Similarity Index Metric (SSIM) in combi-
nation with above criterion, using a threshold value of SSIM < ε2 and ε2 = 0.7. The
choice of ε2 is influenced by the importance of allowing the image to evolve and deviate
from the original, and yet not to allow too large a distortion that will make the image
unrecognizable compared to the original.

In conclusion, the optimal number of iterations is obtained when |MSEt+1 −MSEt |/ |MSEt+1|<
10−2 and SSIMβ (t +1)< 0.7.



100 Smoothing using nonlinear anisotropic diffusion

This, depending on the size of each image and respective data set, can be rather compu-
tationally expensive; therefore, a parallel implementation was used, which proved to be
effective.

4.4 Stopping criterion proposed

Sporring and Weickert pointed out that the monotonically decreasing ’relative variance’, 0 ≤
var(u)/var(u0) ≤ 1, could be used to measure the distance of u from the initial state u0 and,
by prescribing an appropriate value for the relative variance, it can constitute a good criterion
for stopping the nonlinear diffusion.

The CIRR measure is an increasing function that reaches its steady state when t → ∞. The
residual error of the CIRR measure is a decreasing function of values between one and zero.
Then, applying the same idea presented by Sporring and Weickert, it can be indicated that
the residual error of the CIRR measure can be used as a stopping criterion to halt diffusion
processes.

The residual error of CIRR measure is computed as:

CIRR indext =
|CIRRt −CIRRt−1|

|CIRRt |
(4.65)

where t is the diffusion time. Diffusion process is iterated while CIRR indext is greater
that a specific constant ε defined by the user. In general, the stopping criteria is defined as:

|CIRRt −CIRRt−1|
|CIRRt |

> ε (4.66)

The choice of ε is influenced by the need for a small value to identify a convergence of
solution, and large enough to make the iterative procedure less computationally demanding.
According to João et. al. [135], who defined a stopping criterion for anisotropic diffusion, ε

value can be 10−2.

4.5 Experimental results

Nonlinear anisotropic diffusion algorithms require several parameters such as diffusion time,
lambda, noise scale and feature scale. Therefore, to select the most appropriate diffusion al-
gorithm to preserve the edge information is a complex task. For this reason, the experiments
were divided into two parts. The first part is related to the automatic definition of the diffu-
sion time for both two-dimensional and three-dimensional images using the stopping criterion
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presented by Joao et. al. [135] and the proposed criterion. The second part is associated with
the selection of the algorithm that generates better results with respect to the image quality
measures as Mean Square Error (MSE), Peak Signal-Noise Ratio (PSNR), and Contrast Im-
provement Ratio Revisited (CIRR). As a qualitative measure of smoothing, the Canny edge
detection filter is used [136]. The filter is applied to the resulting images by using each of the
stopping criteria.

4.5.1 2D case

In the first part, the stopping criterion proposed by Joao et. al. [135] is based on the MSE
quality measure, this criterion is called JGTS. The proposed criterion is based on the CIRR
measure and it is called BF. These two stopping criteria are evaluated.

4.5.1.1 Original images

Five images were selected that are used traditionally in image processing. The images are the
baboon, barbara, boat, cameraman and lena. Each of them has different characteristics that
allow evaluating the quality of the smoothing obtained for each of them according to each
stopping criterion.

Initially smoothing is calculated using each of the selected diffusion algorithms (Isotropic,
CED, cCED, EED, cEED). The number of iterations (diffusion time) applied is initially set to
10. In each iteration the MSE, PSNR and CIRR quality measures are calculated. The results
for the baboon image are presented in Tables 4.3, 4.4 and 4.5 respectively.

Table 4.3: MSE measure - baboon.

Iteration Isotropic CED cCED EED cEED

1 5.3973 65.5733 51.4294 89.5345 19.3840

2 11.6884 138.7730 114.5920 175.5490 43.7887

3 18.4879 199.1690 168.3340 240.0070 68.1375

4 25.8533 248.2130 215.3060 289.1190 91.5854

5 33.6677 289.3180 254.8620 327.9470 113.9010

6 41.8621 322.1530 287.1910 359.6730 135.1300

7 50.3696 349.7260 316.1980 385.8300 155.3750

8 59.1242 373.7520 341.0820 407.9260 174.5190

9 68.0437 394.3030 362.3720 426.9830 192.5880

10 77.0767 412.0270 381.8430 443.7070 209.6550
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Table 4.4: PSNR measure - baboon.

Iteration Isotropic CED cCED EED cEED

1 40.8090 29.9635 31.0187 28.6109 35.2564

2 37.4532 26.7078 27.5393 25.6868 31.7172

3 35.4619 25.1386 25.8691 24.3286 29.7969

4 34.0056 24.1826 24.8002 23.5200 28.5125

5 32.8587 23.5171 24.0678 22.9728 27.5655

6 31.9126 23.0502 23.5491 22.5717 26.8233

7 31.1091 22.6935 23.1312 22.2668 26.2170

8 30.4132 22.4050 22.8022 22.0250 25.7124

9 29.8029 22.1725 22.5393 21.8267 25.2845

10 29.2616 21.9815 22.3120 21.6598 24.9157

Table 4.5: CIRR measure - baboon.

Iteration Isotropic CED cCED EED cEED

1 0.0001 0.0023 0.0017 0.0030 0.0006

2 0.0003 0.0051 0.0041 0.0064 0.0014

3 0.0005 0.0077 0.0063 0.0092 0.0023

4 0.0008 0.0099 0.0083 0.0115 0.0032

5 0.0010 0.0118 0.0101 0.0134 0.0040

6 0.0013 0.0134 0.0116 0.0150 0.0048

7 0.0016 0.0147 0.0130 0.0164 0.0056

8 0.0019 0.0159 0.0142 0.0175 0.0064

9 0.0022 0.0170 0.0153 0.0185 0.0072

10 0.0025 0.0179 0.0163 0.0194 0.0079

Based on the data obtained for each image, the behavior of each quality measure is plotted
as shown in Table 4.6. On the left side of each figure is the behavior of the MSE quality
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measure, in the middle the behavior of the PSNR measure is presented and in the right part
the behavior of the CIRR measure.

Table 4.6: MSE, PSNR and CIRR measures.

MSE, PSNR and CIRR behavior for 2D images

It is observed that the behavior of the MSE and CIRR quality measures are increasing
while the PSNR quality measure is decreasing. The MSE measure is increasing because each
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time the original image is smoothed, the difference between it and the smoothed image is
greater. In addition, it can be seen that each of the curves tends to a stable state when the
number of iterations grows. This allows that MSE measure can be used as a stopping criterion
in the diffusion process. In the case of the PSNR measure, its behavior is decreasing because
the signal-to-noise ratio is decreasing. This is because image smoothing reduces signal infor-
mation. For its part, the CIRR measure is increasing and visually has a similar behavior to the
MSE measure, therefore, CIRR can be used as a stopping criterion as it does with the MSE
measure.

According to the defined stopping criteria (JGTS and BF), Table 4.7 presents the number
of iterations required in the smoothing process for each of the diffusion algorithms. As can
be observed, the number of iterations required according to each criterion does not differ
significantly from the different images used. For example, in the algorithm CED and EDD
the number of iterations required is the same for the two stopping criteria, except for the
cameraman and baboon image respectively.

Table 4.7: Number of iterations using JGTS and BF stopping
criteria.

Image Index Isotropic CED cCED EED cEED

baboon
JGTS 10 6 6 5 8

BF 10 6 7 6 9

barbara
JGTS 10 6 7 6 9

BF 10 6 6 6 9

boat
JGTS 8 7 7 7 7

BF 10 7 8 7 9

cameraman
JGTS 8 7 7 6 7

BF 9 6 7 6 8

lena
JGTS 6 7 7 6 6

BF 7 7 7 6 7

As the number of iterations defined by each stopping criteria is almost the same, the
smoothed images have few differences. In the same way, the detected edges would not go
significantly. To see the results obtained with a greater level of detail, the image of lena was
selected. The results for each diffusion algorithm appear in the rows of Table 4.8. The first
column corresponds to the images obtained using the JGTS stopping criterion. The second
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column presents the images obtained by using the BF stopping criterion. Columns three and
four present the edges of the images of columns one and two respectively.

With the results obtained using the two stopping criteria, it can be concluded initially that
the two criteria satisfy the requirements to stop the diffusion algorithms.

Table 4.8: Edges of images obtained using JGTS and BF
stopping criteria.

Diffusion JGTS BF Edges - JGTS Edges - BF

Isotropic

CED

cCED

EED

cEED
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The second part corresponds to the selection of the algorithm that smoothes the images
better. In order to discriminate the selected algorithms and to identify which of them improves
the image without losing too much level of detail, the image of lena was selected. Based on the
information of the image quality measurements presented in Figure 4.5, it can be identified that
the behavior of MSE and CIRR indicate that the algorithm that best maintains the information
is isotropic, followed by cEED, cCED, CED and EED respectively. In addition, according to
the values obtained from the PSNR measure, the order of the algorithms remains the same.

Figure 4.5: MSE, PSNR and CIRR measures of smoothed image of lena.

After exploring the lena image, the eye region was identified to zoom in and see in a greater
level of detail the effect of the smoothing algorithms. Table 4.9 presents the original image
and the images obtained when applying the three algorithms that show a better behavior with
respect to the selected quality measures. As can be seen, the original image differentiates a
semi-circular region in the centre of the eye. This region is maintained when applying isotropic
softening and cEED, however, when cCED softening is applied, that region becomes blurred.
The latter behavior is maintained when applying the CED and EED algorithms (see Table 4.8).

Table 4.9: Zoom in of eye region of smoothed image of lena.

Diffusion JGTS BF

Original
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Table 4.9: Zoom in of eye region of smoothed image of lena.

Diffusion JGTS BF

Isotropic

cEED

cCED

In addition, it is observed that the isotropic algorithm presents a lower smoothing in some
regions compared to the cEED and cCED algorithms, for example, in the upper left region of
the images, it is seen that the isotropic algorithm presents a more stepped variation than the
results of the cEED and cCED algorithms.

To visually identify the impact of the smoothing algorithms, row 266 of the lena image
was selected. Figure 4.6 shows the behavior of the original image and the images obtained
from applying each smoothing algorithms. As can be seen, the isotropic diffusion algorithm
generates a profile very close to the original image and therefore the image quality measures
are better. The cEED algorithm maintains the intensity in the areas where edges are present
and in regions with low-intensity variation it makes good smoothing, for example, in the
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interval [386, 398]. The other smoothing algorithms generate a loss of information at the
edges and attenuate their intensity, causing some of them to be eliminated, for example in the
intervals [260, 272] and [320, 335].

Figure 4.6: Profile behavior of smoothing algorithms using lena image.

Based on the elements mentioned above, the initial alternative to smooth the images by
preserving the edge information corresponds to the nonlinear anisotropic diffusion algorithm
cEED.

4.5.1.2 Contrast-enhanced images

In this part of the tests, the five original images with contrast enhancement are used. The algo-
rithm used to improve the image contrast was the multiscale top-hat morphological operator
(MSTH).

The sequence of the tests is the same as in the previous section. First, the smoothing of the
images was done using each of the five algorithms (Isotropic, CED, cCED, EED, and cEED),
for which it was defined the number of iterations equal to 10. Then, for each of the iterations,
the image quality using MSE, PSNR and CIRR is obtained. Finally, based on the MSE and
CIRR measures, the JGTS and BF stopping criteria were calculated respectively.

The results for the images with contrast-enhancement are presented in Table 4.10. In
parenthesis, the number of iterations obtained for the original images is placed when the value
obtained for the images with contrast enhancement is different. The JGTS stopping criterion
presents a difference in the number of iterations required by the smoothing algorithms on nine
occasions, whereas the BF criterion does it on twenty-one occasions. From the nine variations
of the JGTS criterion on four occasions, the number of iterations required by the smoothing
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algorithm was increased, while from the twenty-one variations of the BF criterion, only on
one occasion did the number of iterations increase.

Image Index Isotropic CED cCED EED cEED

baboon
JGTS 10 6 6 5 10 (8)

BF 10 4 (6) 5 (7) 4 (6) 9

barbara
JGTS 10 7 (6) 7 6 10 (9)

BF 9 (10) 5 (6) 5 (6) 4 (6) 7 (9)

boat
JGTS 7 (8) 7 7 6 (7) 7

BF 10 5 (7) 6 (8) 5 (7) 8 (9)

cameraman
JGTS 10 (8) 6 (7) 7 6 7

BF 7 (9) 5 (6) 5 (7) 4 (6) 6 (8)

lena
JGTS 5 (6) 7 7 6 5 (6)

BF 9 (7) 5 (7) 5 (7) 5 (6) 7

Table 4.10: Number of iterations using JGTS and BF stopping criteria.

Figure 4.7 shows the behavior of the MSE, PSNR and CIRR image quality measures for
lena image (original and contrast-enhancement). Figure 4.7 a) shows the curves obtained for
the quality measures when applying each of the smoothing algorithms to the original image.
Figure 4.7 b) presents the behavior of the quality measures when applying the smoothing
algorithms to lena image with contrast enhancement.

As can be seen in Figures 4.7 a) and 4.7 b), the behavior of the curves has the same
tendency, but the values are different.

In the case of the MSE measure, the scale of values increases when the image has contrast-
enhanced, however, the slope of the curves is smaller. This circumstance causes the JGTS
index to reduce the number of iterations required to stop the diffusion in the smoothing algo-
rithms. For the PSNR measure, the values are reduced when the image presents an contrast-
enhancement, although the slopes of the curves remain invariant. The CIRR measure presents
a small change in the behavior of the curves of the quality measures obtained when using the
image with contrast-enhancement. This change is reflected in the slope reduction, generating
a steady state in the diffusion process and reducing the number of iterations required to stop
the smoothing algorithms. The most significant changes are given for the CED, cCED and
EED algorithms as shown in Table 4.10.
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a) MSE, PSNR and CIRR of original image

b) MSE, PSNR and CIRR of MSTH image

Figure 4.7: MSE, PSNR and CIRR of original and contrast-enhancement image of lena.

Initially, it can be concluded that the CIRR quality measure allows obtaining better results
on the image quality, therefore, the BF stopping criterion proposed allows to have a better
precision to stop the execution of the smoothing algorithms.

However, more information is required to indicate that the BF stopping criterion presents
better results than the JGTS criterion. Therefore, the edges of the images obtained by each
of the smoothing algorithms are calculated using the two stopping criteria. To calculate the
edges, the algorithm proposed by Canny was used using predefined and equal parameters for
all images. The results are presented in Table 4.11. Each of the rows corresponds to their order
to the image of lena with contrast-enhancement, the images obtained by using the isotropic,
CED, cCED, EED and cEED algorithms, respectively. The second column corresponds to the
resulting images when using the JGTS stopping criterion. The third column to the images
obtained when using the BF stopping criterion proposed and the two last columns present the
edges of the images of column two and three respectively.

As shown in Table 4.11, the images obtained when using the JGTS stopping criterion
generate a smaller number of edges with respect to the images obtained when using the BF
stopping criterion.
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Table 4.11: Smooth images and edges of lena with contrast-
enhancement.

Image JGTS BF Edges - JGTS Edges - BF

lena-MSTH

Isotropic

CED

cCED

EED

cEED
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To determine in a more objective way which smoothing algorithm generates better results
a zoom of the eye region of lena is shown in Table 4.12. In the rows the images are shown in
the following order, image with contrast-enhancement, and smoothed images obtained after
apply isotropic, cEED and cCED smoothing algorithms respectively.

Table 4.12: Zoom in of eye region of smoothed image of
lena-MSTH.

Image JGTS BF

Enhanced

Isotropic

cEED
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Table 4.12: Zoom in of eye region of smoothed image of
lena-MSTH.

Image JGTS BF

cCED

The behavior of the smoothing algorithms presents the same behavior as with the original
image of lena. Specifically, the isotropic algorithm presents less smoothing in some regions
with respect to the results obtained when using the cEED and cCED algorithms. Furthermore,
the cCED algorithm generates a more blurred region in the central area of the eyes with respect
to the results produced by the isotropic and cEED algorithms. In addition, the cEED algorithm
generates more homogeneous smoothing regions outside the edges of the regions of interest
than the cCED algorithm.

Figure 4.8: Lena profile of original image, enhanced image, isotropic, CED, cCED, EED, and
cEED.

Figure 4.8 shows the profile behavior of row 266 of the original image, contrast-enhanced
image, and the images obtained from applying each smoothing algorithms. In the same way
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as for the original image, the isotropic diffusion algorithm generates a profile very close to the
lena-MSTH image and therefore the image quality measures are better. The cEED algorithm
maintains the intensity in the areas where edges are present and in regions with low-intensity
variation it makes good smoothing. The other smoothing algorithms generate a loss of infor-
mation at the edges and attenuate their intensity, causing some of them to be eliminated.

In conclusion, the isotropic and cEED smoothing algorithms preserve information in bound-
ary regions between different regions. In addition, using the BF stopping criterion allows
obtaining more edges than when using the JGTS criterion. This can be seen in Table 4.13,
which presents the edges of the images obtained by using the isotropic and cEED smoothing
algorithms applying each of the stopping criteria.

Smoothing JGTS BF

Isotropic

cEED

Table 4.13: Edges of Isotropic and cEED smothing algorithms.

4.5.2 3D case

For the tests with 3D images were selected ten CT images of head-neck. It is proceeded in
a similar way to the 2D case, ie, the original images are used first to evaluate the quality
measures and to apply the smoothing algorithms in order to identify which stopping criterion
performs better. Contrast-enhanced images are then used to identify if there is any change in
the behavior of the smoothing algorithms and in the stopping criteria.

4.5.2.1 Original images

Using the ten original CT images, the isotropic, CED, cCED, EED and cEED smoothing
algorithms are applied. Each algorithm is applied during ten iterations. For each iteration, the
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MSE, PSNR and CIRR quality measures are calculated. The results obtained for the "image1"
are presented in Tables 4.14, 4.15 and 4.16.

Table 4.14 presents the behavior of the MSE measure for each of the smoothing algo-
rithms. As it is observed, initially the MSE values are lower for the isotropic, CED and cCED
algorithms, however, the behavior of the EED and cEED algorithms is changing as the algo-
rithms evolve. As a result, after the fifth iteration, the algorithms that have the lowest value
for the MSE measure are the EED, cEED and isotropic, respectively.

Table 4.14: MSE measure of image1.

Iteration Isotropic CED cCED EED cEED

1 112.001 77.337 68.603 155.403 152.838

2 174.797 207.413 184.993 279.909 273.805

3 214.714 349.871 312.740 383.744 374.220

4 246.135 497.161 445.154 480.766 467.881

5 273.531 646.661 580.202 574.370 558.264

6 298.858 797.932 717.965 666.805 647.565

7 322.910 951.567 858.653 758.583 736.321

8 346.146 1105.830 999.920 849.815 824.650

9 368.806 1259.880 1141.160 941.174 913.183

10 391.134 1413.370 1282.890 1032.330 1001.610

Table 4.15 presents the behavior of the PSNR measure for the smoothing algorithms an-
alyzed. The results obtained after the ten iterations tend to be similar for the CED, cCED,
EED and cEED algorithms, whereas the isotropic algorithm generates the highest value for
the PSNR measure.

Table 4.15: PSNR measure of image1.

Iteration Isotropic CED cCED EED cEED

1 43.064 47.737 48.105 42.150 42.193

2 41.064 43.076 43.400 39.578 39.628

3 40.244 40.586 40.890 38.231 38.285

4 39.748 38.929 39.225 37.271 37.327
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Table 4.15: PSNR measure of image1.

Iteration Isotropic CED cCED EED cEED

5 39.390 37.705 37.993 36.517 36.574

6 39.101 36.737 37.011 35.890 35.948

7 38.855 35.932 36.195 35.355 35.412

8 38.637 35.255 35.511 34.889 34.946

9 38.439 34.676 34.928 34.475 34.531

10 38.255 34.172 34.418 34.103 34.159

Table 4.16 shows the evolution of the CIRR measure for the smoothing algorithms. This
table differs in the behavior obtained for the 2D case because the EED and cEED algorithms
have a better behavior than the isotropic, CED and cCED algorithms. The results are con-
sistent with the definition of the quality measure and with the characteristics of the diffusion
algorithms.

Table 4.16: CIRR measure of image1.

Iteration Isotropic CED cCED EED cEED

1 0.02397 0.00283 0.00255 0.0260 0.0259

2 0.03242 0.00652 0.00598 0.0358 0.0357

3 0.03857 0.00991 0.00920 0.0432 0.0431

4 0.04339 0.01297 0.01213 0.0490 0.0488

5 0.04706 0.01575 0.01482 0.0534 0.0533

6 0.04989 0.01827 0.01730 0.0570 0.0569

7 0.05202 0.02059 0.01959 0.0597 0.0595

8 0.05361 0.02274 0.02172 0.0618 0.0617

9 0.05494 0.02473 0.02369 0.0636 0.0635

10 0.05592 0.02659 0.02554 0.0649 0.0648

Table 4.17 shows the behavior of the MSE, PSNR and CIRR quality measures for images
1, 3, 5, 7 and 9. The algorithms to be selected are those that generate the lowest value for
the MSE measure and a higher value for PSNR and CIRR measures. However, it should be
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considered that as the image is smoothed the value of the PSNR measure decreases, for that
reason, the EED and cEED algorithms present a lower value than the other algorithms.

Table 4.17: MSE, PSNR, and CIRR measures.

Image MSE, PSNR, and CIRR behavior for 3D images

image1

image3

image5

image7

image9

The number of iterations defined by each of the stopping criteria for the ten test images is
presented in Table 4.18. As can be seen, isotropic diffusion is similar using the two stopping
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criteria except for image3 and image4. In the case of the EED and cEED diffusion, the number
of iterations defined by BF criterion is half the number of iterations required by the JGTS
criterion. JGTS stopping criterion generates a greater number of iterations required to stop
the diffusion in all the test images with respect to BF criterion. In addition, the number of
iterations defined by the BF criterion is the same for the isotropic, EED and cEED diffusion
algorithms.

Image Index Isotropic CED cCED EED cEED

image1
JGTS 5 10 10 8 8

BF 4 7 7 4 4

image2
JGTS 5 10 10 8 8

BF 4 7 7 4 4

image3
JGTS 10 10 10 9 9

BF 4 9 9 4 4

image4
JGTS 10 10 10 10 10

BF 4 9 9 4 4

image5
JGTS 5 10 10 8 8

BF 4 8 8 4 4

image6
JGTS 5 10 10 8 8

BF 4 8 8 4 4

image7
JGTS 5 10 10 9 9

BF 4 8 8 4 4

image8
JGTS 5 10 10 9 9

BF 4 8 8 4 4

image9
JGTS 6 10 10 9 9

BF 4 6 7 4 4

image10
JGTS 6 10 10 9 9

BF 4 6 7 4 4

Table 4.18: Number of iterations using JGTS and BF stopping criteria.

To see the impact of the number of iterations in the diffusion algorithms, the edges of the
image1 for the images generated by each of them were calculated. The algorithm proposed
by Canny was used for this purpose. As the largest variation in the number of iterations was
presented in the EED and cEED diffusion algorithms, it is expected that there is a significant
variation in the edges.

The results of the edges are presented in Table 4.19. In the rows is found each of the
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diffusion algorithms. In the second column the images obtained by using the JGTS stopping
criterion for each diffusion algorithm. In the third column the images using the BF crite-
rion. In the fourth and fifth columns, the edges correspond to the second and third columns
respectively.

Table 4.19: Edges of images obtained using JGTS and BF
stopping criteria.

Diffusion JGTS BF Edges - JGTS Edges - BF

Isotropic

CED

cCED

EED

cEED
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As can be seen in Table 4.19, there is no variation in the edge detection in the images
obtained using the EED and cEED diffusion by applying the two stopping criteria. In addition,
isotropic diffusion presents results similar to EED and cEED diffusion. On the other hand,
the diffusion CED and cCED allow detecting a greater number of edges with respect to the
other three algorithms, independent of the stopping criterion used. This is due to the fact
that the CED and cCED algorithms apply less smoothing in the internal regions of the image
structures.

In conclusion, the edges detected in the images obtained using each one of the diffusion al-
gorithms are equal independent of the stopping criterion used. Therefore, it is considered that
the BF stopping criterion is more efficient than the JGTS criterion because it allows stopping
the diffusion in a smaller number of iterations.

4.5.2.2 Contrast-enhanced images

Using the images with contrast enhancement diffusion is calculated using the algorithms de-
fined for ten iterations. For each iteration, the quality measures of the images are evaluated,
which are presented in Table 4.20. For visualization reasons, only information for image1,
image3, image5, image7 and image9 is presented. The behavior of the MSE measure does not
present significant changes, except for the image3. The curves of the PSNR measure show
greater changes, for example, for all the images, the PSNR curves obtained from the isotropic
diffusion have a higher value than when using the other algorithms. In addition, the cEED and
EED algorithms present a better PSNR value with respect to the CED and cCED algorithms.
The curves of the CIRR measurement maintain the same form as for the case of the original
images.

Table 4.20: MSE, PSNR, and CIRR behavior for 3D
enhanced-images.

Image MSE, PSNR, and CIRR measures

image1
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Table 4.20: MSE, PSNR, and CIRR behavior for 3D
enhanced-images.

Image MSE, PSNR, and CIRR measures

image3

image5

image7

image9

The number of iterations defined by each of the stopping criteria for the different smooth-
ing algorithms is presented in Table 4.21. In addition, the number of iterations required for
the original images is presented in parenthesis. This in order to compare the variation in
each of the cases. As can be seen, the variation in the number of iterations required for the
isotropic, EED and cEED algorithms using the BF stopping criterion was reduced by one for
most cases. On the other hand using the criterion JGTS reduced the number of iterations but
not in the same proportion. For the CED and cCED smoothing algorithms, the changes were
more varied for the two stopping criteria.

The isotropic algorithm presents a number of iterations of four and three for the JGTS and
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BF criteria respectively, which implies that there is no greater variation for this case. The only
exceptions correspond to image3 and image4 where the number of iterations defined by the
JGTS criterion in seven and ten respectively, while for the BF criterion is three for the two
images.

The CED and cCED algorithms require a greater number of iterations in comparison to
the others. In the case of the JGTS criterion for most cases, it was nine whereas for the BF
criterion it was six.

In the EED and cEED algorithms, the number of iterations defined by the JGTS criterion
is double or more with respect to BF criterion. For the JGTS criterion the average is seven and
for the BF criterion, is three.

Image Index Isotropic CED cCED EED cEED

image1
JGTS 4 (5) 9 (10) 9 (10) 6 (8) 6 (8)

BF 3 (4) 6 (7) 6 (7) 3 (4) 3 (4)

image2
JGTS 4 (5) 9 (10) 9 (10) 6 (8) 6 (8)

BF 3 (4) 6 (7) 6 (7) 3 (4) 3 (4)

image3
JGTS 7 (10) 9 (10) 10 7 (9) 7 (9)

BF 3 (4) 8 (9) 8 (9) 3 (4) 3 (4)

image4
JGTS 10 10 10 9 (10) 9 (10)

BF 3 (4) 9 9 3 (4) 3 (4)

image5
JGTS 4 (5) 9 (10) 9 (10) 6 (8) 6 (8)

BF 3 (4) 8 7 (8) 3 (4) 3 (4)

image6
JGTS 4 (5) 9 (10) 9 (10) 7 (8) 7 (8)

BF 3 (4) 8 7 (8) 3 (4) 3 (4)

image7
JGTS 4 (5) 9 (10) 9 (10) 7 (9) 7 (9)

BF 3 (4) 7 (8) 7 (8) 4 4

image8
JGTS 4 (5) 9 (10) 9 (10) 7 (9) 7 (9)

BF 3 (4) 6 (8) 7 (8) 4 4

image9
JGTS 4 (6) 9 (10) 9 (10) 7 (9) 7 (9)

BF 3 (4) 6 6 (7) 3 (4) 3 (4)

image10
JGTS 4 (6) 9 (10) 9 (10) 7 (9) 7 (9)

BF 3 (4) 6 6 (7) 3 (4) 3 (4)

Table 4.21: Number of iterations using JGTS and BF stopping criteria.

Table 4.22 presents the result of calculating the edges for each one of the images produced
by the smoothing algorithms using each of the stopping criteria.
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The changes in the edges of the images obtained from the isotropic algorithm are smaller,
however, it is observed that more edges are generated in the image obtained when BF criterion
is used.

The edges of the images obtained from the EED and cEED algorithms using the BF cri-
terion present better results than those obtained using the JGTS criterion. It is important to
remember that the number of iterations defined by BF criterion is half of the JGTS criterion.

Table 4.22: Edges of images obtained using JGTS and BF
stopping criteria.

Diffusion JGTS BF Edges - JGTS Edges - BF

Isotropic

CED

cCED

EED
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Table 4.22: Edges of images obtained using JGTS and BF
stopping criteria.

Diffusion JGTS BF Edges - JGTS Edges - BF

cEED

The difference between the edges of the images produced by the CED and cCED algo-
rithms are not significant. But as in the previous case, the BF criterion requires fewer iterations
than the JGTS criterion.



Chapter 5

Features and shapes detection

“Geometry is not true, it is advantageous.”

– Henri Poincare.

Generally, feature detection is a necessary phase for further image processing such as ob-
ject recognition, image retrieval, etc. In the literature, many kinds of feature such as segments,
outlines, corners, interest points have been studied. However, these features are highly sen-
sitive to noise and do not describe the local structures of object which are widely useful for
generic object recognition. As an aim of this thesis is the segmentation of the upper airways
from head-neck 3D images, it is necessary to detect features or shapes related to thin tissue,
elongated structures, and objects with low contrast in the presence of noise and nearby struc-
tures with similar intensity. Ridges satisfy these demands.

5.1 State of the art

Features and shapes detection is a fundamental and important problem in computer vision
and image processing. It is a low-level processing step which serves as the essential part
for computer vision based applications [76]. Feature and shapes detection is referred as the
identification of interested image primitives and structures (e.g. points, lines/curves, regions,
and curvilinear structures), for the purpose of highlighting salient visual cues in digital images
[76]. It use pixel intensities as the input and image structures indicating different characteristic
properties as the output.

Feature detection aims to locate significant feature regions on images depending on their
intrinsic characteristics and applications. These regions can be defined in global or local neigh-
borhood and distinguished by shapes, textures, sizes, intensities, statistical properties, and so
on [208]. Although the application scopes of visual features are widely different, it is the ulti-
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mate goal to extract features or shapes with high stability effectively and efficiently. Generally,
the difficulties in features and shapes detection are caused by the changes in scale, viewpoint,
illumination, image quality, etc [76]. Local feature detection methods analyze local intensity
patterns to find regions that satisfy desired uniqueness or stability criteria. These methods
detect image features such as edges, lines, corners, circles, ellipses, and so on. In general,
local features detectors show their advantages of robustness to object occlusion or image de-
formation. Global features describe an image as a whole and can be interpreted as a particular
property of the image involving all pixels. In addition, global features include contour repre-
sentations, shape descriptors, and texture features. Global descriptors generally used in image
retrieval, object detection and classification.

Shapes detection methods analyze local structures, which are called curvilinear structures.
They represents a line or a curve with some width, and it differs from conventional line or
curve features, which are usually extracted based on edges. Curvilinear structures are more
structured features and contain more information than edges. They can be found in most nat-
ural images, and their detection is particularly useful. For instance, the human body contains
various types of line, sheet, and blob structures. For example, blood vessels, bone cortices, and
nodules are characterized by line, sheet, and blob structures, respectively [73, 209]. Three-
dimensional local structures have been shown to be useful for 3D modeling of anatomical
structures to improve their extraction and quantification [73, 105, 107, 210–214].

This chapter presents a brief review of features and shapes detection methods. Next, a new
method to detect local structures based on principal curvatures is presented. Then, proposed
method is compared with PCBR algorithm [215] using 2D images. Finally, tests using 3D
synthetic images and 3D medical images with proposed method are performed.

5.1.1 Local features

As mentioned by Tomasi et.al. [216], several definitions of a “good feature” have been pro-
posed in the literature, based on an a priori notion of what constitutes an “interesting” window.
According to Schmid et. al. [217] a “interest point” mean any point in the image for which
the signal changes two-dimensionally. Tuytelaars et. al. [218], mentioned that the term local
feature (also known as interest points, key points, and salient features) can be either points,
regions or even edge segments. They can be defined as a specific pattern which unique from
its immediately close pixels, which is generally associated with one or more of image proper-
ties [76, 218]. These properties such as edges, contours, corners and regions are much related
to human visual perception [76, 219, 220]. Tuytelaars et. al. [218] emphasized that most
local feature detectors are in fact extractors, and that the features themselves are usually co-
variant, in general, distortions of the image. However the term “detector” can be used for
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all procedures which extract some relevant features, irrespective of their invariance properties
[221].

For example, Moravec propose to use windows with high standard deviations in the spatial
intensity profile [222], Marr, Poggio, and Ullman prefer zero crossings of the Laplacian of the
image intensity [223], and Kitchen, Rosenfeld, Dreschler, and Nagel define corner features
based on first and second derivatives of the image intensity function [224], [225] .

By Hassaballah et. al. [226], image features can be divided into global features and local
features. Global features (e.g., color and texture) aim to describe an image as a whole and can
be interpreted as a particular property of the image involving all pixels. While, local features
aim to detect keypoints or interest regions in an image and describe them. Schmid et. al. [217]
divided methods into three categories: contour based, intensity based and parametric model
based methods. Rodehorst et. al. [227] classify methods into three categories: contour based,
intensity based and model based.

5.1.2 Features detectors

Interest operators detect salient image features, which are distinctive in their neighborhood
and they are reproduced in corresponding images in a similar way [227]. A wide variety of
interest point and corner detectors exist in the literature [76, 218, 226, 228, 229]. Based on
these advances, over the last decades image feature detectors and descriptors have become
popular tools, for example, in the image processing, computer vision and image recovery,
additionally, they are being applied widely in a large number of applications[226].

Tuytelaars and Mikolajczyk [218] describe a set of characteristics that the detectors must
satisfy. These are listed below.

5.1.3 Characteristics of Feature Detectors

As mentioned by Tuytelaars et. al. [218], good features detectors should have the following
properties:

• Repeatability: Given two images of the same object or scene, taken under different
viewing conditions, a high percentage of the features detected on the scene part visible
in both images should be found in both images.

• Distinctiveness/informativeness: The intensity patterns underlying the detected features
should show a lot of varia- tion, such that features can be distinguished and matched.

• Locality: The features should be local, so as to reduce the probability of occlusion and
to allow simple model approximations of the geometric and photometric deformations
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between two images taken under different viewing conditions (e.g., based on a local
planarity assumption).

• Quantity: The number of detected features should be sufficiently large, such that a rea-
sonable number of features are detected even on small objects. However, the optimal
number of features depends on the application. Ideally, the number of detected features
should be adaptable over a large range by a simple and intuitive threshold. The density
of features should reflect the information content of the image to provide a compact
image representation.

• Accuracy: The detected features should be accurately localized, both in image location,
as with respect to scale and possibly shape.

• Efficiency: Preferably, the detection of features in a new image should allow for time-
critical applications.

Hassaballah et al. [226] included:

• Generality: the feature detection algorithm should be able to detect features that can be
used in different applications.

Additionally, Dickscheid et. al. [221] included others important properties of a good detector:

• Robustness: The features should be robust against typical distortions such as image
noise, different lighting conditions, and camera movement.

• Sparseness: The amount of data given by the features should be significantly smaller
compared to the image itself, in order to increase efficiency of subsequent processing.

• Speed: A feature detector should be fast.

• Completeness: Given that the above requirements are met, the information contained in
an image should be preserved by the features as much as possible. In other words, the
amount of information coded by a set of features should be maximized, given a desired
degree of robustness, sparseness, and speed.

Tuytelaars et. al. [218] indicate that repeatability, arguably the most important property of all,
it can be achieved in two different ways: either by invariance or by robustness.

• Invariance: When large deformations are to be expected, the preferred approach is to
model these mathematically if possible, and then develop methods for feature detection
that are unaffected by these mathematical transformations.
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• Robustness: In case of relatively small deformations, it often suffices to make feature
detection methods less sensitive to such deformations, i.e., the accuracy of the detec-
tion may decrease, but not drastically so. Typical deformations that are tackled using
robustness are image noise, discretization effects, compression artifacts, blur, etc. Also
geometric and photometric deviations from the mathematical model used to obtain in-
variance are often overcome by including more robustness.

Finally, according to Dickscheid et. al. [221], complementarity of features plays a key role
when using multiple detectors in an application. It is strongly related to completeness, as the
information coded by sets of complementary features is higher than that coded by redundant
feature sets.

5.1.4 Local features detectors

In the literature different detectors and descriptors have been presented. Achieved results
vary according to the used images and parameters, therefore assesses of the performances are
required. Previous works describing and comparing feature detectors have been reported by
Ziou et. al. [230], Schmid et. al., 2000 [217], Zuliani et. al., 2004 [231], Mikolajczyk et. al.,
2005 [232], Rodehorst et. al., 2006 [227], Moreels et. al., 2007 [233], Tuytelaars et. al., 2007
[218], Gauglitz et. al. [228], Miksik et. al., 2012 [234], Li et. al., 2015 [76], and Hassaballah
et. al., 2016 [226].

To better describe the recent progress in feature detection methods, related concepts are
firstly clarified.

1. Edge refers to pixel at which the image intensities change abruptly. Image pixels are
discontinuous at different sides of edges.

2. Contour/boundary has ambiguous definitions. Since the main focus is centered on low-
level characteristics, they are defined as intersecting lines/curves of different segmented
regions.

3. Corner refers to the point at which two different edge directions occur in the local
neighborhood. It is the intersection of two connected contour lines.

4. Region refers to a closed set of connected points. Nearby and similar pixels are grouped
together to compose the interest region.

These significant descriptors can facilitate the pattern classifiers with their compactness and
discrimination. Frequently used features are corners, edges and blobs (see Figure 5.1).
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Figure 5.1: Local features detectors

In general, good features describe information contained in an image compactly and ef-
fectively, and facilitate higher-level processes such as matching, segmentation or recognition.
Based on the classification presented in Figure 5.1, below the most relevant feature detection
methods are briefly described.

5.1.4.1 Edge detection

Edge refers to sharp changes in image brightness. According to Kitchen et. al. [235], edge
is the boundary between two adjacent regions in an image, each region homogeneous within
itself, but differing from the other with respect to some given local property. Thus, an edge
should ideally be line-like. [235]. Li et. al. [76], proposed that contour/boundary can be
viewed as the generalized definition of edge which indicates the intersection of different re-
gions.

Edge detection has been a challenging task in low level image processing. One of the
reasons is because, the development of the optimal or ideal edge detection scheme is difficult
for the absence of evident and clear ground truth data, on which to evaluate performances
unambiguously [236, 237]. Other, due to the presence of noise and quantization of the original
image, during edge detection it is possible to locate intensity changes where edges do not exist.
For similar reasons, it is also possible to completely miss existing edges. The degree of success
of an edge-detector depends on its ability to accurately locate true edges. For similar reasons,
it is also possible to completely miss existing edges [238]. Additional, edge localization is
another problem encountered in edge detection. The addition of noise to an image can cause
the position of the detected edge to be shifted from its true location. Further, difficulty in any
edge detection system arises from the fact that the sharp intensity transitions which indicate an
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edge are sharp because of their high-frequency components. As a result, any linear filtering or
smoothing performed on these edges to suppress noise will also blur the significant transitions.

Differential operation is used to capture the strength and position of discontinuities in im-
age brightness. Recently efforts have been devoted to multi-resolution edge analysis, sub-pixel
edge detection and hysteresis thresholding [76]. In additon, other approaches are available for
edge detection, some are based on error minimization, maximizing an object function, neural
network, fuzzy logic, wavelet approach, bayesian approach, morphology, and genetic algo-
rithms [239].

As shown in Figure 5.1, edge detection methods can be classified in differentiation-based
and learning-based. Differentiation-based filters are convolved to identify edge points. Learn-
ing based methods are modeled as a machine learning based framework to discriminate edge
points from smooth regions [76].

First, differentiation-based methods depend on the derivatives order. First-order differen-
tiation based gradient operators appear in pairs for the two-dimensional case (e.g., Prewitt,
Sobel). By those operators, gradients at different orientations are computed. Local maxi-
mas of gradient magnitudes are recorded as edges. Second-order differentiation filters such
as Laplacian of Gaussian (LoG) find zero-crossings as the edge positions. Gaussian smooth-
ing is necessary since differential operation is sensitive to noise. Directional differentiations
such as Oriented Energy (OE) [240] adopt a batch of filters at different orientations to obtain
brightness changes. An early survey on differentiation based edge detection is given in [238].

Canny edge detector [136, 241] is based on the computational theory of edge detection.
The edge detection is modeled as an optimization problem with three criteria such as good
detection, good localization and single-pixel response. The steps of Canny edge detection
are filtering, hysteresis thresholding, edge tracking and non-maximal suppression. Edge re-
sponses are firstly obtained by filtering with gradient operators. The edges are then traced and
determined by hysteresis thresholds. Only the pixels with maximal magnitude in the gradient
direction can be recorded as edge points. Canny edge detector still outperforms several new
detectors and is still widely applied today. An extended Canny edge detection theory (D-ISEF)
has been proposed recently by McIlhagga in [242], with the objective to amend the computa-
tional theory of Canny in order to generate theoretically finite edge curves. McIlhagga finds
that the optimal step edge detector, according to the Canny criteria, is the derivative of an
Infinite Symmetric Exponential Filter (ISEF), proposed by Shen and Castan [243].

Second, learning-based detection methods require boundaries that are manually marked
and provided in the training and validation set. Multiple low-level image cues are extracted and
combined into the model for edge response prediction. Figure 5.1 lists the typical statistical
learning based edge detection methods. Some of them are described below.
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Probability of boundary (Pb) edge detection [244] use features extracted from an image
patch (local information includes brightness gradient, texture gradient and color gradient) to
estimate the posterior probability of a boundary passing through the center point. A boundary
model based on such local information is likely to be integral to any perceptual organization
algorithm that operates on natural images, whether based on grouping pixels into regions or
grouping edge fragments into contours.

Multi-scale probability of boundary (MS-Pb) [245] integrates the multi-scale edge re-
sponses of Pb. It combines strengths from both large-scale detection (robust but poor local-
ization) and small-scale detection (detail-preserving but sensitive to clutter). The localization
cues represent the distance from pixels to the closest peak Pb responses at respective scales.
And the relative contrast cues indicate the normalized edge responses in local regions.

Global probability of boundary (gPb) [246, 247] is a high-performance contour detector
using a combination of local and global cues. It linearly combines Pb edge responses in three
scales and the global information into contour detection. Multi-scale image cues are combined
into an affinity matrix which defines the similarity between pixels. Spectral clustering is used
to globally compute the eigenvectors of the affinity matrix which correspond to the contour
information.

Texture based probability of boundary (tPb) [248] called Sledge is related to research on
tracking edges for boundary detection. It uses the average of texture variations in randomly
placed pairs of windows to estimate salient edge responses.

NMX [249] detects boundaries by iterating two separate steps—namely, classifying each
image edge independently based on fixed edge descriptors, and grouping detected boundaries
for the next iteration. In this case, edge features are fed into the AnyBoost classifier whose
optimization criterion is based on the approximation of F-measure for boundary detection.

Sketch tokens [250] is an approach to both learning and detecting local contour-based
representations for mid-level features. Lim et. al., called sketch tokens to features (standard
shapes such as straight lines and junctions to richer structures such as curves and sets of
parallel lines) that are learned using supervised mid-level information in the form of hand
drawn contours in images. Patches of human generated contours are clustered to form sketch
token classes and a random forest classifier is used for efficient detection in novel images.

Boosted edge learning (BEL) [251] is a supervised learning algorithm for edge and bound-
ary detection. In the learning stage, the algorithm selects and combines a large number of
features (such as histograms of DoG responses and Haar wavelets) across different scales in
order to learn a discriminative model. It is based on the probability Boosting by decision
trees. Generic features such as histograms of DoG responses and Haar wavelets are generated
at different locations and scales. Those generic features are sequentially selected by Boosting
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decision trees to construct the discriminative model for edge determination.
Structured forest based edge detection (SFE) [252, 253] is based on the learning of ran-

domized decision trees. The inputs are color and gradient channels as well as pairwise differ-
ences. Each structure forest labels edge pixels inside the patch. The final edge responses are
the aggregation of random forests.

Discriminative sparse coding (DSC) [254] is a multiscale method to minimize least-squares
reconstruction errors and discriminative cost functions under ℓ0 or ℓ1 regularization con-
straints. It is applied to edge detection, category-based edge selection and image classification
tasks. In general, DSC is an algorithm used to learn the sparse representation of images.

Sparse code gradient (SCG) [255] is an algorithm that uses sparse coding to automatically
produce generic features. In the algorithm, an extra linear classifier is trained to combine
multi-scale reconstruction errors of sparse coding and obtain the edge responses. Sparse codes
serve as the input local cues and support vector machine (SVM) classification is used to learn
the model to discriminate edges from non-edges.

5.1.4.2 Corner detection

Corner is an important local feature in images. It is defined as the intersecting point of two
connected straight edge lines [76, 256, 257]. In addition, it is a point that has high curvature
and lie in the junction of different brightness regions of images [258].

In image understanding, it mathematically refers to the point at which two dominant and
different gradient orientations exist. Wealthy information can be obtained at the neighborhood
of corners. Compared with edges, corners are unique in local regions, which are favored for
wide baseline matching. Corner detection along with multi-scale analysis is a straightforward
and important way to identify interest points. Reversely, corner can also be viewed as interest
point at a fixed scale.

According to Noble [259], all corner detectors have used a measure of ’cornerness’ C,
defined as the product of gradient magnitude and the rate of change of gradient direction with
gradient magnitude (a measure of ’cornerness’). That is, declare a corner if the cornerness is
above threshold and the pixel is an edge point.

Generally, corner detection methods can be further divided into three classes. First, clas-
sical gradient based corner detection is based on gradient calculation. Second, template based
corner detection is based on the comparison of pixels. In recent years, templates are combined
with machine learning techniques (i.e., decision trees) for fast corner detection. Finally, con-
tour based detection is based on the results of contour and boundary detection. It relies on
the prediction of edge responses to identify corners. Next, the most relevant methods for each
category will be described.
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Gradient based corner detectors are the most popular methods in the literature. Moravec’s
detector [222] is specifically interested in finding distinct regions in the image that could be
used to register consecutive image frames. It has been used as a corner detection algorithm
in which a corner is a point with low self-similarity. The detector tests each pixel in a given
image to see if a corner is present. It considers a local image patch centered on the pixel and
then determines the similarity between the patch and the nearby overlapping patches. The
similarity is measured by taking the sum of square differences (SSD) between the centered
patch and the other image patches.

Harris corner detector [260] is a mathematical operator that finds features in an image. It is
popular because it is rotation, scale and illumination variation independent. It is an improve-
ment of Moravec’s corner detector [222] based on the convolution operator with simple linear
gradient masks. The masks are used to get two directional linear gradients using convolution
operator. The directional response obtained is used to construct the covariance matrix (M).
The final cornerness function is defined by:

cornerness = det(M)− k · trace(M)2 (5.1)

or using the eigenvalues λ1,λ2 of M (2D case)

cornerness = λ1λ2 − k (λ1 +λ2)
2 (5.2)

where parameter k is chosen manually, often set up as k = 0.04.

It can be seen from the above that Harris corner detector is based on the auto-correlation
of gradients on shifting windows.

There are other gradient based corner detection methods proposed in early papers, such
as KLT [216] and Shi-Tomasi corner detector [261]. According to Li et. al. [76], the main
difference lies in the cornerness measurement function. Since the calculation of gradients is
sensitive to noise, gradient based corner detection suffers from the disadvantages of noise-
sensitivity. Besides, the matrix for measurement function needs to be computed inside the
window, which makes the computational complexity quite high. That is another drawback
of traditional gradient based corner detection. To tackle with the high complexity, recently
efforts have been devoted on the approximation of gradient based cornerness measurements.

Low-complexity corner detector (Lococo) [262] is proposed based on the classical corner
detectors Harris and KLT. These algorithms are redesigned to reduce their complexity. Firstly,
box kernels are used to approximate the first-order Gaussian derivative kernel. Second, gra-
dient based integral images are borrowed to compute the cornerness responses in overlapping
windows in a fast way. Finally, an efficient non-maximal suppression is proposed based on
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the Quick-sort algorithm for further time saving.

Sub-pixel low-complexity corner detector (S-Lococo) [263] is a version of Lococo where
the detected feature points are interpolated for sub-pixel accuracy of the feature point location.

Template based corner detectors find corners by comparing the intensity of surrounding
pixels with that of center pixels. Templates are firstly defined and placed around the cen-
ter pixels. The cornerness measurement function is devised from the relations of surround-
ing/centering pixel intensities.

Smallest Univalue Segment Assimilating Nucleus (SUSAN) [264] is a method introduced
by Smith and Brady. It is a generic low-level image processing technique where every pixel
inside the circular mask is compared with the center pixel and the intensity difference is
recorded. USAN measurement is defined as the number of pixels with absolute intensity
difference smaller than a threshold. Points with smallest USAN value are recorded as corners.
The computational cost for template based corner detection is mainly caused by the multiple
times of comparison, which is relatively lower than that of gradient based methods.

Features from Accelerated Segment Test (FAST) [265, 266] is a corner detector originally
developed by Rosten and Drummondn. It is based on a circular template of diameter 3.4
pixels contains 16 pixels. In this detection scheme, candidate points are detected by applying
a segment test to every image pixel by considering the template around the corner candidate
pixel as a base of computation. A point is considered as a corner only if there are at least S
contiguous pixels in the circle which are brighter or darker than the value determined by the
center pixel intensity and a threshold t. A decision tree (machine learning algorithm) is learnt
to determine the order of pixels for comparison, to accelerate template based corner detection.

FAST-Enhanced Repeatability (FAST-ER) [267] is a corner detector based on FAST. It is
a generalization which allows the detector to be optimized for repeatability. It increases the
thickness of circular template in order to increase the stability of detected corners. In this
case, the segment test detector is represented as a ternary decision tree, thus the detector can
be generalized by defining a feature detector to be a ternary decision tree which detects points
with high repeatability. The repeatability of such a detector is a non-convex function of the
configuration of the tree, so the tree is optimized using simulated annealing.

Adaptive and Generic Accelerated Segment Test (AGAST) [268] is another kind of FAST
derivations. It applies backward induction to construct an optimal decision tree for speed
improvement. Besides, a collection of different decision trees are trained with different sets
of specified train images. This collection makes AGAST more generic for different envi-
ronments. Templates are quite important in determining corners and circular templates are
chosen since they are isotropic. In addition, interpolation is needed to calculate pixel intensity
in sub-pixel level for high accuracy.
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Contour based corner detectors find corners as the intersecting points of two adjacent
straight edge lines (corners based on contour/boundary detection). These methods aim to find
the points with maximum curvature in the planar curves which compose of edges. Traditional
kinds of contour based corners are specified in binary edge maps, which are the achieved
results of edge detection and tracking. Curve smoothing and curvature estimation are two es-
sential steps. Smoothing curves helps to reduce the noise caused by quantized point locations
and Gaussian filters are the most widely used smoothing function. A recent survey on contour
based corner detection with binary edge maps is presented in [269]. Contour based corners are
more applied in shape analysis and shape based image compression, rather than wide baseline
matching.

Difference of Gaussian - curve (DoG-curve) [270] is a technique developed for detecting
and localizing corners of planar curves. DoG filters are convolved with curves points to find
curvature corner points [271]. The detector uses the contour’s gradient vectors. The gradient
correlation matrix (GCM) formulated using Lagrange multipliers only requires calculation of
the first derivative of the planar curves. The eigen-structure and determinant of the GCMs
encode the geometric features of these curves, such as curvature features and the dominant
points. This is advantageous as avoiding the higher order derivatives reduces the effect of
noise. In addition, the determinant of the GCMs has a strong corner response, and it is used as
a “cornerness” measure of planar curves. A small Region of Support (RoS) radius may then
be used to improve corner localization and to prevent nearby features from merging. Conse-
quently, the detector offers a high detection rate along with good localization performance.

Anisotropic directional derivative (ANDD) filter [272] is based on Gaussian kernels that
are applied to preserve the curves while reduce curve representation noise. The ANDD rep-
resentation at a pixel is a function of the oriented angle and characterizes the local directional
grayscale variation around the pixel. The anisotropic Gaussian directional derivative kernels
[273, 274] are used to extract fine multidirectional intensity variations of a grayscale image
for corner detection and classification. A universal corner model (UCM) is used to describe
simple (L-type) corners and composite or high-order corners, including Y-type, X-type, and
star-like corners. The anisotropic directional derivative (ANDD) representation of the UCM
is derived analytically. It is shown that the ANDD representation of a corner is expressed as
the sum of several basic components and whose number indicates the type of the corner. Each
ANDD filter is an anisotropic Gaussian convolution kernel followed by a directional derivative
operator, which can conciliate the conflict between noise robustness and detail preservation.

Hyperbola fitting [275] is a technique based on fitting algebraic shape models to contours
in the edge image. Edge responses are computed and used to fit the hyperbolic polynomial
curves. Fast corner detection is accomplished by thresholding the algebraic features from the



5.1 State of the art 137

fitted curve based shape models. The algorithm computes the edge image, then for each (x,y)
point in the edge image, compute the shape model, i.e., the coefficients of the hyperbolic curve
fit a local region about (x,y) that approximates the local shape of the image contours. After
that, extract estimates of the corner location and the lines that best approximate the image
contours. Then, compute a vector of features which are functions of the edge image data and
extracted curve coefficients. Finally, apply a threshold on the feature vectors to identify the set
of salient features in the image. According to the authors, the main benefit of this approach is
the performance (in space and time) because no image pyramid (space) and no edge-linking
(time) is required.

A contrario junction detection (ACJ) [276] is a procedure involving an automatic decision
step and permitting a geometrically accurate description of junction properties, including type,
localization and scale. The normalized gradients and discrete orientations are used to compute
the edge strength in branches. Probabilistic principles are set up for robust junction detection.
The accuracy of corner localization relies on edge detection. Along with the improvement in
edge detection performance caused by multi-cue integration and machine learning, the contour
based corner detection has been promoted.

5.1.4.3 Blob detection

Blob is defined as a region inside which the pixels are considered to be similar to each other,
meanwhile be different from the surrounding neighborhoods. The definition of blobs is based
on constancy of interest properties, thus blob detection is further referred as the identification
of interest point (keypoint)/ interest region (keyregion). Blobs are represented by regions of
regular/irregular shapes [76].

Interest points as local extremas in scale-location spaces, which furthermore denote reg-
ular circular or square regions. Interest regions are referred as segmented regions (in most
cases irregular) with defined constancy. Interest point detection aims to find local extremas
in pyramid spaces and interest region detection aims to identify regions with constancy by
segmentation techniques. As shown in Figure 5.1, blob detection methods can be divided in
interest point detection and interest region detection [76].

Interest point detection Interest point can provide informative representation for digital
images. It refers to local extrema in 3D scale spaces with locations and scale as axes. Thus
interest point can be mathematically denoted as (x,y,σ). Here (x,y) indicates the location and
σ indicates the scale. Corner can be viewed as interest point at the fixed scale. Furthermore,
feature descriptors can be obtained inside square or circular regions centered at (x,y) with the
size determined by σ [277, 278]. A variety of interest point detection methods are proposed
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and the existing literature for evaluation are given in [229, 232]. Below are briefly described
some of them.

Laplacian of Gaussian (LoG) detector is a method of finding the derivative or maximum
rate of change in a pixel area. Commonly, the Laplacian is approximated using standard
convolution kernels that add up to zero. LoG is simply the Laplacian performed over a region
that has been processed using a Gaussian smoothing kernel to focus edge energy. Given
an input image I (x,y), the scale space representation of the image defined by L(x,y,σ) is
obtained by convolving the image by a variable scale Gaussian kernel G(x,y,σ) where

L(x,y,σ) = G(x,y,σ)∗ I (x,y) (5.3)

and

G(x,y,σ) =
1

2πσ2 e
−(x2+y2)

2σ2 (5.4)

For computing the Laplacian operator, the following formula is used

∇
2L(x,y,σ) = Lxx (x,y,σ)+Lyy (x,y,σ) (5.5)

where Lxx, Lyy are the second partial derivatives.

Difference of Gaussians (DoG) detector is an approximation of the Laplacian of Gaus-
sians, but computed in a simpler and faster manner using the difference of two smoothed or
Gaussian filtered images to detect local extrema features. The idea with Gaussian smoothing
is to remove noise artifacts that are not relevant at the given scale, which would otherwise
be amplified and result in false DoG features. The DoG function D(x,y,σ) can be computed
without convolution by subtracting adjacent scale levels of a Gaussian pyramid separated by
a factor k.

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I (x,y) (5.6)

D(x,y,σ) = L(x,y,kσ)−L(x,y,σ) (5.7)

Feature types extracted by DoG can be classified in the same way as for the LoG operator.

Determinant of Hessian (DoH) method, also referred to as Hessian Matrix method, is used
to detect interest objects from a multi-scale image. The determinant of the Hessian matrix
is at a maxima and the Hessian matrix operator is calculated using the convolution of the
second order partial derivative of the Gaussian to yield a gradient maxima. The DoH method
uses integral images to calculate the Gaussian partial derivatives very quickly. Performance
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for calculating the Hessian Matrix is therefore very good, and accuracy is better than many
methods. The Hessian matrix for the Gaussian smoothed images is

H (x,y,σ) =

[
Lxx (x,y,σ) Lxy (x,y,σ)

Lxy (x,y,σ) Lyy (x,y,σ)

]
(5.8)

The scale-normalized determinant of Hessian matrix σ4 det(H) is the measurement func-
tion for interest point detection.

Harris-Laplace method [279] is a scale invariant corner detector that relies on a combi-
nation of Harris corner detector and a Gaussian scale space representation. Although Harris-
corner points have been shown to be invariant to rotation and illumination changes, the points
are not invariant to the scale. Therefore, the second-moment matrix utilized in that detector is
modified to make it independent of the image resolution. The scale adapted second-moment
matrix is used in the Harris-Laplace detector and it is represented as

M (x,y,σI,σD) = σ
2
Dg(σI)

[
I2
x (x,y,σD) IxIy (x,y,σD)

IxIy (x,y,σD) I2
y (x,y,σD)

]
(5.9)

where Ix and Iy are the image derivatives calculated in their respective direction using a
Gaussian kernel of scale σD. The parameter σI determines the current scale at which the
Harris corner points are detected in the Gaussian scale-space.

Hessian-Laplace method [280] also operates on local extrema, using the determinant of
the Hessian at multiple scales for spatial localization, and the Laplacian at multiple scales for
scale localization. Hessian-Laplacian [232, 279] combines LoG and DoH for interest point
detection.

Scale Invariant Feature Transform (SIFT) [281] is the most well-known method for finding
interest points and feature descriptors, providing invariance to scale, rotation, illumination,
affine distortion, perspective and similarity transforms, and noise. It locates interest points
with DoG pyramid and Hessian matrix. The local extremas in DoG pyramid are recorded as
potential keypoints and a 3D quadratic function is to approximately locate the interpolated
location of candidate keypoints. The measurement function computed with the trace and de-
terminant of Hessian matrix is used to eliminate keypoints with strong edge responses and
sub-pixel localization. Histograms of gradient orientation are the feature description. SIFT
has been widely used in wide baseline matching, structure from motion, visual tracking and
object recognition.

The Speeded-Up Robust Features method (SURF) [282, 283] operates in a scale space and
uses a fast Hessian detector based on the determinant maxima points of the Hessian matrix.
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SURF uses a scale space over a box neighborhood to localize bloblike interest point features.
To find feature orientation, a set of HAAR-like feature responses are computed in the local
region surrounding each interest point within a circular radius, computed at the matching
pyramid scale for the interest point.

Center Surround Extrema method (CenSurE) [284] provides a true multi-scale descriptor,
creating a feature vector using full spatial resolution at all scales in the pyramid, in contrast to
SIFT and SURF, which find extrema at subsampled pixels that compromises accuracy at larger
scales. CenSurE defines an optimized approach to find extrema by first using the Laplacian at
all scales, followed by a filtering step using the Harris method to discard corners with weak
responses. The major innovation of CenSurE over SIFT and SURF is the use of bilevel center-
surround filters, including Difference of Boxes (DoB), Difference of Octagons (DoO) and
Difference of Hexagons (DoH) filters, octagons and hexagons are more rotationally invariant
than boxes.

DART [285] is a method for scale-space extrema detection that is composed of three steps:
(i) an efficient computation of the approximated determinant of Hessian matrix at each scale.
DART uses weighted triangle responses to approximate the second derivative of Gaussian
function, which corresponds to the elements of Hessian; (ii) extrema search in scale-space;
and (iii) finding the keypoint with sub-pixel and sub-scale accuracy as in [286].

Rank-SIFT method [287] applies supervised learning as RankSVM to select stable interest
SIFT points. The score to measure stability is modeled and RankSVM is used to solve the
ranking function for interest point detection. Rank-SIFT use a set of differential features, and
based on them it adopts a data-driven approach to learn a ranking function to sort local interest
points according to their stabilities across images containing the same visual objects.

Rank Order Laplacian of Gaussian (ROLG) [288] is based on weighted rank order filter
and LoG. It is used to detect the image local structures where a significant majority of pixels
are brighter or darker than a significant majority of pixels in their corresponding surroundings.
LoG filter can be expressed as the subtraction between weighted averages. Weighted median
responses are used to replace the weighted average and generate the interest point detection.

Classical interest points such as LoG, DoG, DoH are based on the partial differentiation on
Gaussian scale spaces. However, in the last years, interest points detectors based on nonlinear
partial differential equations (PDEs) have emerged. The most representative are KAZE, A-
KAZE and WADE.

KAZE method [289] is a multiscale 2D feature detection and description algorithm in
nonlinear scale spaces. It finds local extremas by nonlinear diffusion filtering. The nonlinear
scale space is built using efficient Additive Operator Splitting (AOS) techniques to solve the
nonlinear partial differential equations for diffusion function. Based on the consideration that
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Gaussian smoothing leads to image blurring, diffusion filtering provide multi-scale image
spaces mean-while preserve natural image boundaries. Based on the derivation, Scharr filters
are used to approximate the first and second order derivatives of diffusion function. The main
drawback of KAZE feature is of high computational cost.

Accelerated-KAZE method (A-KAZE) [290] uses a recent numerical schemes called Fast
Explicit Diffusion (FED) for building a nonlinear scale space considering anisotropic diffu-
sion. To speed-up the construction of the nonlinear scale space, FED scheme is embeded into
a fine to coarse pyramidal framework. The pyramidal strategy and FED schemes allow for fast
nonlinear scale space construction, suitable for robust feature detection and description. Key-
points are located by finding the extrema of the second-order derivatives of the image over the
nonlinear multiscale pyramid built from the principle of image diffusion. A-KAZE deploys a
technique similar to SURF to estimate the direction of a patch [291].

WADE [292] interest point detection framework is based on wave propagation. Wave
equation is prior to highlight and isolate salient symmetries, therefore WADE is priori to
detect interest point with symmetries.

Inspired by the computational speed of decision trees based corner detector, interest point
detection based on binary comparison and decision tree classification has arised. In addi-
tion, with the proliferation of camera-enabled mobile devices that have limited computational
resources, new features have appeared that aim to reduce computational complexity while
keeping up to the performance of methods such as SIFT and SURF [290]. According to Li et.
al. [76], these methods are defined as templated based methods.

Oriented FAST and Rotated BRIEF (ORB) [293] is a very fast binary descriptor based on
BRIEF, which is rotation invariant and resistant to noise. It uses FAST corner detector at each
scale of image pyramid. Harris cornerness measurement is borrowed to suppress non-maximal
potential interest points. ORB detector is widely adopted, especially by embedded robotics
systems and for real-time applications, due to greatly reduced computational requirements
[291].

Binary Robust Invariant Scalable Keypoints (BRISK) [294] is a local binary method us-
ing a circular-symmetric pattern region shape and a total of 60 point-pairs as line segments
arranged in four concentric rings. The method uses point-pairs of both short segments and
long segments, and this provides a measure of scale invariance, since short segments may
map better for fine resolution and long segments may map better at coarse resolution. The
BRISK algorithm uses a novel FAST detector adapted to use scale space, reportedly achieving
an order of magnitude performance increase over SURF with comparable accuracy [295].

Fast Retina Keypoint (FREAK) [296] uses a foveal-inspired multiresolution pixel pair
sampling shape with trained pixel pairs to mimic the design of the human eye as a coarse-to-
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fine descriptor, with resolution highest in the center and decreasing further into the periphery
[295]. FREAK uses the same interest point detector as BRISK, with binary descriptors mo-
tivated from human retina. Binary features are quite favored from the engineering point of
view, since they are less time consuming and storage saving.

Interest region detection Image is represented based on its local structures by a set of local
feature descriptors extracted from a set of image regions called interest regions. They refer to
the regions segmented from neighboring area by exploiting the constancy of image properties.
The definition of pixel constancy can be on pixel intensity, zero gradient, etc. Regions which
remain stable along a large threshold range are chosen as interest regions. Ellipses or paral-
lelograms are used to fit the segmented interest regions. The mathematical representation of
interest regions depends on the parameters of fitted ellipses or parallelograms. Different from
interest point detection, interest region detection often do not need extra multiscale pyramid
construction. Below are briefly described some methods of interest region detection.

Maximally Stable Extremal Region (MSER) [297] is essentially an efficient variant of the
watershed algorithm, except that the goal of MSER is to find a range of thresholds that leave
the watershed basin unchanged in size. MSER obtains interest regions, which are connected
components based on thresholding the pixel intensities. The word “extremal” refers to the
property that all pixels inside the MSER have either higher (bright extremal regions) or lower
(dark extremal regions) intensity than all the pixels on its outer boundary. The “maximally
stable” in MSER describes the property optimized in the threshold selection process [218,
295].

Intensity Extrema-Based Region (IBR) [298] starts from points of local intensity extrema
and detects region boundaries by tracing lines out from these points and finding extrema of
a function of intensity differences along the lines [229]. The intensity profiles along rays
emanating from a local extremum are investigated. A marker is placed on each ray in the
place, where the intensity profile significantly changes. Finally, an ellipse is fitted to the
region determined by the markers.

Salient region [299] is based on probability distribution of pixel intensities. Essentially,
Salient Regions are regions that locally assume maximal signal complexity and at the same
time exhibit self-dissimilarity in scale space [300]. The signal complexity is measured by the
Shannon entropy (denoted by H) of the local intensity histogram. The self-dissimilarity is
approximated by the change of the probability density function (pdf ) in scale space (denoted
by W ). A region’s scale saliency Y is defined as the product of the two factors H and W , all of
which are functions of scale s and position x [300].

Principal Curvature Based Region (PCBR) [215] detects stable watershed regions within
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the multi-scale principal curvature image. It is based on MSER operating in watershed regions
of principal curvature images. The principal curvature image is extracted from eigenvalues of
Hessian matrices. To detect robust watershed regions, enhanced watershed segmentation is
borrowed and used in cleaned binary principal curvature images. Cleaned principal curvature
image is obtained combining a grayscale morphological close with “eigenvector flow” hystere-
sis threshold. Robustness across scales is achieved by selecting the maximally stable regions
across consecutive scales. PCBR typically detects distinctive patterns distributed evenly on
the objects and it shows significant robustness to local intensity perturbations and intra-class
variations. In general, the PCBR detector employs the first steps of Steger’s curvilinear detec-
tor algorithm [301]. It forms an image of the maximum or minimum eigenvalue of the Hessian
matrix at each pixel. This is called the principal curvature image, as it measures the principal
curvature of the image intensity surface. This process generates a single response for both
lines and edges, producing a clearer structural sketch of an image than is usually provided by
the gradient magnitude image.

Beta-Stable Features (β -stable features) [302] are based on a Laplacian scale-space de-
scription of the image. The concept of β -stability is a variation on the theme of a feature’s
lifetime, and it is built on the notion of convexity: rather than selecting features that persist
over a wide interval of scales. Features are computed a scale chosen so that the number of
convex and concave regions of the image brightness function remains constant within a scale
interval of length β . This shift in selection criterion leads to robustness to high-frequency
perturbations of the image, in addition to the invariance advantages deriving from the use of
the Laplacian.

Maximally Stable Colour Regions (MSCR) [303] is an extension of MSER with color in-
formation. The colorful distance is derived by the Poisson statistics of image pixels. Agglom-
erative clustering is applied to successively grouping neighboring pixels with similar colors.
The selection of time-steps is stabilised against intensity scalings and image blur by modelling
the distribution of edge magnitudes.

Medial Feature Detector (MFD) [304] is a boundary based framework. It is able to de-
tect regions of arbitrary scale and shape, without scale space construction. Firstly, a weighted
distance map is generated with image gradients. After that, a global weighted medial axis is
computed in the weighted distance map. Regions are segmented by medial axis decomposi-
tion. Finally, a shape fragmentation factor is defined to select the interest regions.

Boundaries of image segments tend to align with (a portion of) an object’s boundaries
and help reveal its shape. Boundary information becomes more integrated into interest region
detection recently. However, leveraging segments for local features is not straightforward:
despite their boundary-preserving nature, bottom-up segmentation algorithms are typically
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sensitive to global image variations, such that images with similar content can produce a
dramatically different set of image segments [305]. According to Li et. al. [76] the most
important algorithms to detect boundaries are MFD, FLOG and BPLR.

Fan Laplacian of Gaussian (FLOG) [306] is used for automatic scale selection and final
interest region localization. Cui et. al. propose a unified framework to extract and match both
the edge junctions and the salient points along the edges for general structured scenes. The
keypoints are selected from the edges that are efficiently and carefully detected to favor accu-
rate surface boundaries. The repeatability of keypoints is guaranteed by a multiscale selection
scheme. The point neighborhood is divided into multiple fan-shaped subregions, namely Fan
features, by a method of edge association which does not rely on the continuity and complete-
ness of edges. To achieve scale invariance for each Fan feature, a Fan Laplacian of Gaussian
(FLOG) filter to select its characteristic scales is proposed. In particular, scale and affine
invariant fan feature is based on the extracted edge fragments. It firstly applies Harris mea-
surement to selecting salient edge points as candidate interest points along boundaries. Edge
fragments are associated with candidate interest points to determine the shape of subregions.

Boundary Preserving Local Region (BPLR) [305] is based on the learning based Pb edge
detector. The distance transform (DT) is computed for each boundary segment. Candidate
circular regions are generated by densely sampled with maximal DT values. The minimum
spanning tree algorithm is used to group the neighboring circular regions and generate the
densely placed boundary preserving local regions. Compared with interest point detection,
more parameters like rotation angles, aspect ratio are obtained by interest region detection.
Feature descriptors extracted with segmented regions can be normalized with more geometri-
cal parameters therefore are mostly affine-invariant.

5.1.5 Shape-based features

Most image analysis methods require, at some point, the detection of various structures in
images. These structures may be complex, like objects or passerby in a scene, or simpler,
like round cells in microscopy images. In any case, suitable prior knowledge is required to
characterize the structure of interest, normally, it permits to describe the shape, color or pose
of the structure.

The first characterization of structures that was found corresponds to the proposal of
Shapiro et. al. [4], who identified three kinds of three-dimensional parts: sticks, plates and
blobs. Sticks are long, thin parts having only one significant dimension. Plates are flatish wide
parts consisting of two nearly flat surfaces connected by a thin edge between them. Plates have
two significant dimensions. Blobs are neither thin nor flat. They have three significant dimen-
sions. All three kinds of parts are “near convex”. That is a stick can not bend very much, the
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surfaces of a plate can not fold too much, and a blob can be bumpy, but can not have large
concavities. Figure 5.2 shows examples of sticks, plates, and blobs shapes.

Figure 5.2: Examples of sticks, plates, and blobs shapes (taken from [4]).

In addition, Shapiro et. al. indicated that to describe an object it is important to have
into account a list the parts, their types (stick, plate, or blob), their relative sizes, and how the
parts fit together. The type of connection can be end-end, end-interior, end-center, end-edge,
interior-center, or center-center where "end" refers to an end of a stick, "interior" refers to the
interior of a stick or surface of a plate or blob, "edge" refers to the edge of a plate, and "center"
refers to the center of mass of any part.

A most recent description of types of three-dimensional parts is presented by Merveille
[5], who included the relation between the dimensions. Figure 5.3 shows the different type
of structures in the 2D and 3D space, according to their sizes in the different dimensions.
The reader should keep in mind that these illustrations are simplified drawings based on the
geometric properties of each structure. In real applications, curvilinear structures and plane-
like structure are usually not straight.

In general, the structures can be classified as blob-like, line-like (curvilinear, vessel-like,
tube-like), and plate-like (sheet-like, plane-like) structures.

Based on the eigenvalues of the Hessian matrix, a local pattern is classified as plate-like,
line-like or blob-like structures. The method was originated by Koller et al. [105] and was
further developed by Lorenz et al. [307] and Frangi et al. [107] for vessel enhancement
purpose. Sato et al. [73, 308] also developed a line enhancement filter based on the eigenvalues
of the Hessian matrix, and generalized their filter for blob enhancement. One known problem
of this kind of method is too much blurring can occur during the multiscale smoothing lead to
false detections, especially for close-by structures.
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Figure 5.3: Examples of blobs, planes, and line (curvilinear) structures in 2D and 3D space
(taken from [5]).

According to Sato et. al. [308], Frangi et. al. [107], Danielsson et. al. [309], and others,
after deriving the eigenvalues, their relative signs and magnitudes are exploited to distinguish
between sheet-like, line-like or blob-like structures. Relations between eigenvalues and local
structures are:

Blob-like : λ1 ≈ λ2 ≈ λ3

Line-like: λ1 ≫ λ2 ≈ λ3

Sheet-like : λ1 ≈ λ2 ≫ λ3

The orientation of the eigenvectors can be used as a robust estimate of the local orientation.

5.1.5.1 Blob-like detection

According to Lindeberg [310], blobs are bright regions on dark backgrounds or vice versa. In
addition, blobs are parts that have all three signicant dimensions.

Automated detection of blob-like structures is desirable in many applications. Examples
include, lung nodule detection in chest radiographs and thoracic CT scans [311, 312], lymph
node detection in chest/abdominal CT images, and cell counting or tracking in biological
images [313, 314]. The localization and distribution of these blob-like structures are required
for further analysis in these applications [315, 316].

As shown in Section 5.1.4.3, there are many blob-like detectors defined for different pur-
poses, most of which are compared in [76, 232, 279, 317]. Scale normalized Laplacian (SNL)
based on the Laplacian of Gaussian (LOG) [318], Salient regions based on entropy [299],
shift invariant feature transform (SIFT) based on the difference of Gaussians (DOG) [281],
and speeded-up robust features (SURF) based on the determinant of Hessian (DOH) [283]
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have attracted the most attention in the literature.

5.1.5.2 Sheet-like detection

3-D sheet model consists of the medial surfaces of sheets and the width associated with each
point on these surfaces (see Figures 5.2 and 5.3). Examples of sheet-like structures in medical
images are airway walls, temporal muscle, knee muscle, articular cartilage, thin bones such as
sternum, ribs, most of the skull bones, and the vertebral cortical shell [106, 319–321].

Thickness measurement of sheet-like or plate-like thin anatomical structures is an impor-
tant procedure in clinical practice. Accurate thickness measurement of sheet-like structures
has become increasingly important in clinical applications as well as in fundamental research.
Several methods for thickness quantification have been proposed [322–325].

Westin et al. [322] suggested using the structure tensor and adaptive thresholding to seg-
ment thin structures. Given λ1,λ2,λ3 (0 ≤ λ1 ≤ λ2 ≤ λ3) as the eigenvalues of the structure
tensor, the planar measure was defined as

Cplane =
λ3 −αλ2

λ3
(5.10)

and used in adaptive thresholding. In theory, it has a value of 1 for plane structures and 0 for
others. A challenge is that adaptive thresholding is usually sensitive to noise and leakages,
and is not well-suited to inhomogeneous intensity [319, 323].

Descoteaux et al. [323] introduced a multi-scale sheetness measure that was inspired by
the Frangi filter [107]. Their measure combined three ratios Rsheet , Rblob, Rnoise to enhance
sheet-like structures and eliminate noise and blobs. The multi-scale sheetness measure is used
as the energy function in the level set method. Being a variational approach, their method is
sensitive to initialization, and consequently the segmentation result could be trapped in local
minima.

Krcah et al. [325] proposed to use the sheetness measure [323] as the boundary term in
the graph cut method for the segmentation of the femur bone. Using only this measure may
produce oversegmentation due to the strong response to the sheetness measure at step edges.

Reinbacher et al. [324] presented an interactive method based on total variation to segment
thin volumetric structures. Edge direction and volume constraint were introduced to the con-
vex functional which can be efficiently solved to obtain the global optimal segmentation result.
However, the interactive segmentation of complex 3D structures, which is usually spread over
a large volume, may require extensive user interaction.
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5.1.5.3 Vessel-like detection

Another useful feature is called a line-like, vessel-like or curvilinear structure. This represents
a line or a curve with some width, and it differs from conventional line or curve features,
which are usually extracted based on edges. Curvilinear structures are more structured features
and contain more information than edges. They can be found in most natural images, and
their detection is particularly useful, for example, when trying to find roads or rivers in aerial
images, blood vessels or bones in medical images, and characters in text images [208].

Humans have a well developed ability to detect curvilinear structures in noisy images.
Good algorithms for performing this process would be very useful in machine vision for im-
age segmentation and object recognition [326]. These algorithms typically require dedicated
processing techniques. One is the ability to enhance, track, and detect low-contrast curvilinear
features in a variety of image analysis applications [327, 328].

According to [329], [330], and [331], in life sciences and health care, a number of image
processing solutions have been proposed to extract curvilinear structures, mostly within the
context of blood vessel detection [107, 332]. Other solutions proposed including airways in
lung images [43], neurons [333, 334], dendritic spines [335, 336], microtubules [337, 338],
milk ducts, fibrous tissue [339], spiculations [340, 341], and many other similar entities [342].

There are several papers that present a review of the main algorithms to detect curvilinear
structures, mainly focused on the detection of tubular structures. In this case, Steger [301],
Jang et. al. [209], Kirbas et. al. [70, 343] and Lesage et al. [68] will be considered as
basic elements to present a brief classification of the existing methods to detect curvilinear
structures.

The first one is presented by Steger [301], who groups the different approaches to extract
curvilinear structures from 2D and 3D images in four categories.

• Gray-value based approaches only use the gray values of the original images or some
sort of local differences to extract line points [344, 345].

• Differential geometric approaches regard the image as a surface in 3D or 4D space, and
try to extract lines as ridges by using various differential geometric features [301].

• Special filters enhance linear structures, so that lines can easily be obtained by thresh-
olding.

• Some approaches use an explicit line model to detect lines and their width.

Second, according to Jang et. al. [209], methods are based on one of following three ap-
proaches:
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• Locally parallel edge based approach [105, 346, 347].

• Ridge based differential geometric approach [10, 301, 318, 348–350].

• Active contour model based approach [351, 352].

Third, Kirbas et. al. [70, 343] presented an extensive vessel segmentation review classify-
ing the various methods according to which approach they belong to: pattern recognition,
model-based, tracking, artificial intelligence-based, neural network-based, and miscellaneous
tube-like object detection approaches. In the vessel extraction domain, pattern recognition
techniques are concerned with the detection of vessel structures and the vessel features au-
tomatically. Kirbas and Quek divide pattern recognition techniques into seven categories
(see references inside [70]): multiscale approaches, skeleton-based (centerline detection) ap-
proaches, region growing approaches, ridge-based approaches, differential Geometry-based
approaches, matching filters approaches, and mathematical morphology schemes. Model-
based approaches are divided into deformable models (parametric deformable models-active
contours (Snakes), geometric deformables models and deformable template matching ap-
proaches), parametric models and generalized cylinders approaches.

Finally, a more exhaustive review can be found in Lesage et al. [68], who classified var-
ious vessel lumen segmentation methods in contrast-enhanced imaging modalities (such as
magnetic resonance angiography and computed tomography angiography), analyzing the dif-
ferent models, features and extraction schemes. In addition, recent approaches are described
in Rudyanto et. al. [45], Lo et. al. [43, 87] and Novoa et. al. [353].

A brief summary of models and features is provided of related vessel/airway segmentation
techniques following closely the classification and work of Lesage et. al. [68].

Models Models correspond to the prior assumptions made on the target vessels, e.g. elon-
gation and hyper-intensity. Figure 5.4 shows the classification of vessel models. The main
difference is between appearance (photometric) and geometric information.

Methods utilizing pure photometric models use prior knowledge about the expected lumi-
nance of the vessels [354–356], and/or the background [355, 357–360] as well as the image
noise [357, 361] to distinguish between vessel structures and non-vessel structures.

Methods utilizing geometric models have into account the shape of the vessel. A key
characteristic is the elongation. Depending on the application, additional knowledge (specific
vessel radius ranges and bifurcations for instance) might be incorporated. Therefore, the meth-
ods may encode information about their elongation, properties of their centerline [362–364],
and/or their cross-section [108, 362, 365–367].
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Figure 5.4: Vascular models classification.

Photometric and geometric information are often combined into hybrid models, incorpo-
rating assumptions about the spatial appearance of vessels such as Gaussian- or bar-like cross
section profiles [105, 301, 368, 369], appearance as a ridge in scale space [[370? , 371], or
template-based approaches [[107, 372, 373]. The models typically focus solely on regular ves-
sel segments, while models about bifurcations or anomalies can only be found rarely, although
exceptions – typically adapted to specific kinds of disease – can be found [354, 362, 373–375].

Features Features are the vessel- dedicated image measures used to estimate the models
on the image, e.g. local intensity curvatures. In general, features are the detectors/filters
used to evaluate a vascular model on the image data. Figure 5.5 shows a vascular features
clasiffication.

Figure 5.5: Vascular features classification.
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Methods using information about the basic image intensity, first order, and/or second order
image derivatives to match against the expected model, often embedded in a Gaussian scale-
space framework [[71, 376] to account for tubular structures of varying size. Features used
in the literature are isotropic features where no assumption about the directionality of the
vessel is made [212, 377–379], features making use of the local geometry typically based on
derivative features [[107, 214, 307, 354, 373, 380], or model fitting [[361, 364, 372, 381] with
few other techniques.

Another approach is utilizing features based on 2D cross-sectional measurements that re-
quire the orientation as an input parameter [[105, 355, 375, 382? –384]. Similarly as with
the different models, bifurcations or anomalies are often not considered explicitly. However,
exceptions – typically adapted to specific diseases – can be found in [354, 371, 373].

5.2 Proposed method

The proposed method to detect the characteristics of the upper airways is based mainly on the
work done by Haralick et. al. [10], Monga et. al. [104, 385, 386], Thirion et. al. [387, 388],
Koenderink [142, 389], Steger [301, 390], and Deng et. al. [215].

Haralick et. al. [10] proposed the definition of the types of structures obtained when using
the curvatures. The distintion can be made as follows:

Slope if λ1 = λ2 = 0
Convex if λ1 ≥ λ2 ≥ 0, λ1 ̸= 0
Concave if λ1 ≤ λ2 ≤ 0, λ1 ̸= 0
Saddle hill if λ1 ∗λ2 < 0
The complete table is shown in Table 2.2, where is presented the topographic classes ac-

cording to gradient magnitude, eigenvalues and first directional derivatives taken in the direc-
tions which extremize second directional derivatives.

Monga et. al. [104, 385, 386] proposed a technique to extract crest lines in a 3D image.
This tecnique have five steps:

• Computation of the first, second and third order partial derivatives of the image I (x,y,z)

• Extraction of the 3D edge points using the gradient.

• For each point of the 3D edge map, computation of:

– the two principal curvatures and the corresponding principal curvature directions.

– the extremality criterion (derivative of the maximum curvature along the corre-
sponding principal direction).
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• Building of an extremality criterion image C (x,y,z).

• Determination of an image Z (x,y,z) set using the extremality criterion (to 1 at each edge
point and to 0 otherwise).

Thirion et. al. [387, 388] indicated that a pre-filtering is required to smooth the image because
third order differentials are very sensitive to noise. In addition, the principle of the crest lines
characterization is to compute a criterion called extremality, whose zero-crossings exactly cor-
respond to the crest lines position on the iso-surface. Furthermore, they have designed a new
algorithm, called Marching Lines, which can extract very precisely (with sub-voxel precision)
the position of the crest lines. Finally, they define based on Monga and Benayoun a crest line
as a locus of points whose maximal curvature (i.e. the maximum absolute value of the two
principal curvature), is a local maximum in the corresponding principal direction. Thirion
and Gourdon [391] indicated that depending on what principal curvature is used (largest or
second), and if it is a local maximum or minimum, four different kinds of extremal lines can
be found [392]:

• lines of maximum largest principal curvature (these are called crest lines).

• lines of minimum largest principal curvature.

• lines of maximum smallest principal curvature.

• lines of minimum smallest principal curvature.

Koenderink [142, 389, 393] define the curvedness as the distance from the origin in the (λ1,
λ2)-plane. They have proposed:

c =

√
λ1 +λ2

2
(5.11)

positive values of c for describing the magnitude of the curvedness at a point. It is a
measure of how highly or gently curved a point is. At a point that has no curvedness the value
becomes zero. Therefore, this variable can be used to recognise a plane surface. In addition,
Koenderink et. al. [389], indicated that a positive curvature indicates a concave shape and a
negative curvature indicates a convex shape.

Steger [301, 390] indicated that the direction of the line is determined from the Hessian
matrix. Line points are then found by selecting pixels that have a high second directional
derivative perpendicular to the line direction. The advantage of this approach is that lines can
be detected with sub-pixel accuracy without having to construct specialized directional filters.
Furthermore, the approach only uses the first and second directional derivatives of an image
for the extraction of the line points. This makes the approach computationally very efficient.
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Deng et. al. [215] proposed a PCBR algorithm, which detects stable watershed regions
within the multi-scale principal curvature image. To detect robust watershed regions, they
“clean” a principal curvature image by combining a grayscale morphological close with a new
“eigenvector flow” hysteresis threshold. The PCBR detector employs the first steps of Steger’s
curvilinear detector algorithm. It forms an image of the maximum or minimum eigenvalue of
the Hessian matrix at each pixel. They call this the principal curvature image, as it measures
the principal curvature of the image intensity surface. This process generates a single response
for both lines and edges, producing a clearer structural sketch of an image than is usually
provided by the gradient magnitude image. In the examples presented by Deng et. al. [215],
the curvatures are obtained using the surface generated by 2D images.

In this case, the proposed algorithm uses as input the image containing the gradient mag-
nitude information. This tecnique to detect edges have two steps:

• Computation of the principal curvatures (eigenvalues) and the corresponding principal
curvature directions (eigenvecetors) using the Hessian matrix for each point of the edge
map.

• A criterion is used to discriminate the curvature that detects the ridge lines.

In the first step, the Hessian matrix is defined as

H (x,y) =

[
Ixx (x,y) Ixy (x,y)
Ixy (x,y) Iyy (x,y)

]
(5.12)

where I is the gradient magnitude image.

In the second step, the criterion used to discriminate the curvature is based in Deng et.
al. [215] where positive curvatures are considered as high response only for dark lines on
a light background (Equation 5.13) and negative curvatures to detect light lines in a darker
background (Equation 5.14), the principal curvature in two-dimensional images is given by
either

P(x,y) = max(λ1 (x,y) ,0) (5.13)

or

P(x,y) = min(λ2 (x,y) ,0) (5.14)

where λ1 (x,y) and λ2 (x,y) are the maximum and minimum eigenvalues, respectively, of
Hessian matrix H at (x,y). Deng et. al. [215] do not specify which is the ordering criterion of
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the eigenvalues used in their PCBR algorithm. Tests performed seem to indicate that it is an
ordering by value.

Eberly et. al. [394] indicated that if the eigenvalues of the Hessian are sorted accord-
ing to their magnitude, a d-dimensional ridge or ravine must have the first d eigenvalues of
the same sign and must have a local maximum or minimum in the direction given by the d
corresponding eigenvectors.

Considering the above elements and using |λ1| ≥ |λ2|, equations 5.15 and 5.16 are pro-
posed to use as a criterion to discriminate the features based on the curvature.

P(x,y) = min(λ1 (x,y) ,0) (5.15)

or

P(x,y) = max(λ1 (x,y) ,0) (5.16)

The absolute values in Equation 5.15 correspond to the ridges when light lines are detected
and the values of Equation 5.16 permit to detect valleys corresponding to dark lines.

5.3 Experimental results

The experimentation process was divided into three parts. In the first part, tests are performed
on 2D images to determine which is the best ordering criterion of the eigenvalues of the Hes-
sian matrix. In the second part, the selected criterion is applied to synthetic 3D images. Finally,
in the third part, the selection criterion for 3D medical images is applied.

5.3.1 Ordering criterion of Hessian eigenvalues

To determining the ordering criterion of the Hessian matrix eigenvalues and hence the criterion
to discriminate curvatures, six test images were selected as shown in Table 5.1. The gradient
and its magnitude were computed using the algorithm proposed by Savitzky-Golay, since it
presents a better response than the traditional techniques [395] (Gaussian filters and Gaussian
recursive filters). The polynomial order is of degree 2 and the window size is of radius 1.

Table 5.1: Test 2D images. First and third columns - original
images, second and fourth columns - gradient magnitude.

Image Gradient magnitude Image Gradient magnitude
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Table 5.1: Test 2D images. First and third columns - original
images, second and fourth columns - gradient magnitude.

Image Gradient magnitude Image Gradient magnitude

Using λ1 ≥ λ2 as a criterion for ordering the eigenvalues, tests were performed for each of
the images. The results obtained for the geometric figures and lena images are shown in table
5.2. The gradient magnitude is found in the first column. In the second column, the behavior
of the maximum value defined in Equation 5.13 can be observed. In red color the highest
values of the curvatures are presented and in black the smaller ones. In addition, the zoom of
the curvatures with their direction vectors is shown. In the third column, the behavior of the
curvatures using equation 5.14 is presented. The highest values of the curvatures are shown in
red color while the lowest values are in black.

Table 5.2: Curvatures using λ1 ≥ λ2 as ordering criterion.

∇I λ1, [v1,v2] λ2, [v2,v1]
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Table 5.2: Curvatures using λ1 ≥ λ2 as ordering criterion.

∇I λ1, [v1,v2] λ2, [v2,v1]

Based on the results presented in Table 5.2 (see zoom images), it can be concluded that
when the ordering criterion is λ1 ≥ λ2, the curvatures obtained using Equation 5.14 show a
better behavior.

Now using the ordering criterion |λ1| ≥ |λ2| and the equations 5.13 and 5.14 proposed by
Deng et. al. [215] the curvatures are selected. The results obtained are shown in Table 5.3.

Table 5.3: Curvatures using |λ1| ≥ |λ2| as ordering criterion.

∇I λ1, [v1,v2] λ2, [v2,v1]
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Table 5.3: Curvatures using |λ1| ≥ |λ2| as ordering criterion.

∇I λ1, [v1,v2] λ2, [v2,v1]

The second column of Table 5.3 shows the results using the equation 5.13. The red features
correspond to the higher values of curvatures while the black ones are the lowest. The cur-
vatures present good location, however compared with the previous results generate a greater
amount of information around the edges. The third column presents the results using Equa-
tion 5.14. As can be seen, an incomplete edge detection is generated. It also detects a double
border around the gradients of the original image.

In conclusion, using the equations proposed by Deng et. al. [215] give better results when
the ordering criterion of the eigenvalues is λ1 ≥ λ2. Furthermore, Equation 5.14 presents a
better behavior to detect the curvatures.

On the other hand, the proposed criterion to detects features based on principal curvatures
must be evaluated. To meet this aim, tests with defined images are performed. The obtained
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results are compared with those generated using the Deng et. al. equation.
Table 5.4 shows the results obtained. The first and third row present the results obtained

using the criterion defined by Deng et. al.[215]. The second and fourth row present the results
generated by the proposed criterion. The first column of Table 5.4 shows the images that
include all eigenvalues (λ1 or λ2 according to the case). The second column corresponds to
the images of the curvatures where eigenvalues (λ1 or λ2 according to the case) are less than
zero. The third column shows a zoom of the curvatures and directions. The fourth column
corresponds to the number of pixels selected when the discrimination criterion is used.

Table 5.4: Ordering and discrimination criteria.

λi λi < 0 Zoom in N. points

λ2, λ1 ≥ λ2 11206

λ1, |λ1| ≥ |λ2| 7805

λ2, λ1 ≥ λ2 114383

λ1, |λ1| ≥ |λ2| 74329

As can be seen in the fourth column, the number of pixels detected is lower when the
proposed criterion is used. This is related to the precision in the pixels location belonging to
the ridges, as shown in the third column.
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In conclusion, the proposed criterion to detect curvatures presents a better behavior that
the criterion proposed by Deng et. al. [215]. Curvatures corresponding to the crests of the
gradient magnitude are better located with the proposed criterion.

5.3.2 3D synthetic images

For this second part, a test set of five 3D images representing different types of geometric
objects were constructed. Based on the results obtained in the first part, the ordering criterion
and the feature detection criterion (discrimination criterion) to each image is applied. The
results obtained are presented in Table 5.5.

Table 5.5: 3D synthetic images curvatures.

Ellipsoid Cube Cylinder Elliptic Hyperbolic

It can be observed that the detected curvatures have a good location. The curvature is
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affected in the contours that have corners, as can be seen in the image of cube, ellipsoid,
cylinder and elliptic. The value of the curvatures is reduced in areas with corners, so in these
images the curvature looks black or gray, while in areas with high curvature it looks red.

5.3.3 3D medical images

In this part, tests are performed with 3D medical images. Ten images were selected for testing.
Each test includes the computation of gradiente magnitude and curvatures using the Hessian
matrix. For the calculation of both the gradient and the curvatures, the Savitzky-Golay al-
gorithm was used with a polynomial of degree 2 and a radius mask 1. Then, the proposed
criterion was used to detect the curvatures.

Table 5.6 presents the results obtained for five images (slice 110). The first column corre-
sponds to the original image. The second column shows the gradient magnitude map. Finally,
the third column presents the curvatures obtained when applying the proposed criterion.

Table 5.6: Gradients and curvatures of 3D medical images.

original (slice 110) ∥∇∥ Curvatures

image1

image3
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Table 5.6: Gradients and curvatures of 3D medical images.

original (slice 110) ∥∇∥ Curvatures

image5

image7

image9

Based on the obtained results, it is possible to see that the ordering criterion of the eigen-
values and the proposed selection criterion to detect the curvatures maintain a behavior as in
the previous cases (2D images and 3D synthetic images). To observe with a greater level of
detail, Table 5.7 shows the zoom in of a region of interest (blue box) within the image of
gradient magnitude.
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Table 5.7: Zoom in of gradients and curvatures of 3D medi-
cal images.

∥∇∥ ∥∇∥- Zoom in Curvatures - Zoom in

image1

image3

image5

image7
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Table 5.7: Zoom in of gradients and curvatures of 3D medi-
cal images.

∥∇∥ ∥∇∥- Zoom in Curvatures - Zoom in

image9





Chapter 6

Features and shapes extraction

“Geometry has two great treasures; one is the Theorem of Pythagoras; the other, the division of a line

into extreme and mean ratio. The first we may compare to a measure of gold; the second we may

name a precious jewel.”

– Johannes Kepler.

From a given edge o curvature map the most direct high-level representation consists in
computing closed contours, linking edge points by proximity, similarity, continuation, closure
and symmetry. Apparently, this is a very simple and almost a trivial action for the human be-
ing, however, it becomes a difficult task when it is automatically performed. In general, ridges,
edges or curvatures extraction is mainly a two-stage process: non-maximum suppression fol-
lowed by edge linking. This often results in broken edges where the object’s boundaries are
not well defined.

Non-maximum suppression thins the ridges of curvature map by suppressing all values
along the line of curvature that are not peak values of a ridge. While the linking process
associates the maximum points to obtain the contour of the objects that belong to the image.

However, common problems of thinning algorithms are that in general they distort the
shape of the objects, as well as big gaps can not be properly closed. In the case of linking
algorithms, they do not guarantee to produce closed contours and they are sensitive to user-
defined parameters, for example, if hysteresis algorithm is used, its threshold values are hard
to define.

To solve above problems, in this chapter a non-maximum suppression algorithm and a
hysteresis algorithm are proposed. Each of the algorithms is defined for both 2D and 3D
images. In the case of the NMS algorithm, it is sought that no gaps in the suppression are
generated using not only the curvature magnitude and the normal direction to the surface but
also using the tangent direction. In the case of the linking algorithm, the previous information
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is used and a distance criterion is added between the neighbors that make up the surface
contour.

The chapter is organized as follows. In section 6.1 a brief state of the art of the edge de-
tection and extraction techniques is presented, the most relevant algorithms for non-maximum
suppression are explored and edges linking algorithms are reviewed. In section 6.2 the pro-
posed algorithms are presented. Finally, section 6.3 shows the tests and the obtained results
by applying the algorithms proposed, both for 2D and 3D images.

6.1 State of the art

One of the important elements in image processing is the features extraction. In this case,
the extraction is made from the curvatures found in the previous chapter. Normally, the most
used techniques refer to the edges extraction or the ridges extraction using gradient magnitude
images. Therefore, this section presents in the first instance some definitions of a ridge and
the characteristics or geometrical properties that it has. Then, the principal techniques found
in the literature to edges and ridges extraction are addressed. As shown, two important steps
in most techniques are the non-maximum suppression and the edges or ridges linking.

6.1.1 Ridge definition

In an intuitive way, a ridge is to be thought of as the path you follow on a mountain, where
there’s always a drop both to your left and to your right [100, 396]. However, various mathe-
matical definitions of ridge exist [100, 394].

In one of the oldest studies of this kind, Saint-Venant identified ridges as loci of minimum
gradient magnitude along level curve of a relief. This approach arises from a deep mathemat-
ical study, but its immediate application to images produces discontinuous ridges [396, 397].

According to Haralick [100], the first intuitive notion is that a digital ridge (valley) occurs
when there is a simply connected sequence of pixels having gray-tone intensity values which
are significantly higher (lower) in the sequence than those neighboring the sequence. Signif-
icantly higher or lower may depend on the distribution of brightness values surrounding the
sequence as well as the length of the sequence. In addition, to determine ridges and valleys
is needed to use the neighborhood of a pixel to estimate a continuous surface whose direction
derivatives can be computed analytically.
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6.1.2 Geometrical properties of the surface of a ridge point

According to Eberly [394], each ridge definition has its advantages and disadvantages, but it
is desirable that the ridge satisfy certain properties.

First, the process which identifies ridges should be local. That is, a ridge point should be
detrmined solely by the information in a local neighborhood of the point.

Second, the ridges should be invariant under the following transformations:

• translations in the spatial variables

• rotations in the spatial variables

• uniform magnification in the spatial variables

• monotonic transformations of the intensity function.

Geometrical properties of the local surface associated to a point (x,y) in an image are char-
acterized by two main curvatures λ1,λ2, according to two main directions v1,v2. These cur-
vatures are in fact the eigenvalues of the Hessian matrix, two corresponding directions are its
eigenvectors. The Hessian matrix approximates locally the surface to a quadric. The relations
of sign and greatness of the curvatures decide whether the point (x,y) is a ridge point, a peak
or a saddle point, etc [308, 396].

According to feature detection criterion proposed in chapter 5, the curvatures along a ridge
can not change sign because ridges were only detected (saddle point were not considered)
using Equations 5.15 and 5.16.

6.1.3 Extraction schemes

In this section, schemes proposed in the literature to effectively perform edges or ridges de-
tection and extraction are reviewed in a chronological way.

6.1.3.1 Nevatia and Babu feature extractor

Nevatia and Babu [398] proposed a technique of edge detection and line finding for linear
feature extraction. Edge detection is by convolution with small edge-like masks. The result-
ing output is thinned and linked by using edge positions and orientations and approximated
by piecewise linear segments. The technique proposed by Nevatia and Babu contains the
following steps:

1. Determine edge magnitude and direction by convolution of an image with a number of
edge masks.
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2. Thinning and thresholding these edge magnitudes

• Using the magnitudes and the directions of neighbors during thinning retaining
only edges whose magnitude is a local maximum

• The presence of an edge at a pixel is decided by comparing the edge data with
some of the eight neighboring pixels. An edge element is said to be present at a
pixel if:

(a) The output edge magnitude at the pixel is larger than the edge magnitudes
of its two neighbors in a direction normal to the direction of this edge. (The
normal to a 30◦ edge is approximated by the diagonals on a 3×3 grid)

(b) The edge directions of the two neighboring pixels are within one unit (30◦) of
that of the central pixel.

(c) The edge magnitude of the central pixel exceeds a fixed threshold.

Further, if conditions a) and b) are satisfied, the two neighboring pixels are dis-
qualified from being candidates for edges.

3. Linking the edge elements based on proximity and orientation.

4. Tracing boundaries using linking information.

5. Approximating the linked elements by piecewise linear segments.

In conclusion, to extract ridges or edges, Nevatia and Babu use thinning and thresholding,
linking, and tracing boundaries.

6.1.3.2 Canny edge detector

It is an edge detection operator that uses a multi-stage algorithm to detect a wide range of
edges in images [136, 241, 399]. Canny edge detector should have a good detection because it
responds to edge, not noise. Then, it has a good localization because edges are detected near
true edges. Finally, it has a single response because only one detector response per edge is
obtained. The algorithm includes the following steps:

1. Smoothing

• Blurring of the image to remove noise by convolving the image with the Gaussian
filter.

2. Finding derivatives, magnitude and orientation of gradient
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• Filter image with x,y derivatives of Gaussian

• Find magnitude and orientation of gradient

• The edges should be marked where the gradients of the image has large magni-
tudes.

3. Non -maximum suppression

• Thin multi-pixel wide “ridges” down to single pixel width.

• Only local maxima should be marked as edges. Finds the local maxima in the
direction of the gradient, and suppresses all others, minimizing false edges.

4. Double thresholding and edge tracking (linking) by hysteresis

• Potential edges are determined by thresholding (two thresholds: low and high are
used). Canny recommended an upper:lower ratio between 2:1 and 3:1

• Final edges are determined by suppressing all edges that are not connected to a
very certain (strong) edge. Use the high threshold to start edge curves and the low
threshold to continue them.

In conclusion, Canny uses non-maximum suppression followed by edge linking (tracking)
using hysteresis to features extraction.

6.1.3.3 Förstner features extractor

Förstner [400] proposed a framework for low level features extraction. Its main goal is to
explicitely exploit the information content of the image as far as possible. Feature extraction
is based on local statistics of the image function. The main steps of the extractor proposed by
Förstner are:

1. Estimation of Noise Characteristics

The noise characteristics are decisive for thresholding. Thresholding always is per-
forming a hypothesis test of some kind. Therefore, thresholds should depend on the
distribution of the test statistic and the significance level.

2. Information Preserving Restoration

Restoration in general aims at recovering the original signal from a given signal, undoing
the effects of blur and noise.
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3. Feature Detection

The classification of all image pixels into the three classes (point, line or region) can
be interpreted as feature detection in the sense that only the existence and approximate
location of the features is of primary concern.

4. Feature Location

The precise location of the point- and line-type features requires generic models which
in principle allow to estimate the real-valued position of points and edges of the ideal
image using the appropriate local scale of the feature. Location of edges can be seen to
be special junctions with two edges of the same orientation meeting. Förstner use four
steps to find features location. First, locating point-type features, second, classifying
junctions and circular symmetric features, third, locating edges, and fourth, classifying
edge- and line-type features.

6.1.3.4 Armande, Montesinos and Monga 3D thin net detector

Armande, Montesinos and Monga [401] proposed an algorithm to extract 3D thin nets that
can be written as follows:

1. Computation of the first, second and third order partial derivatives of the 3D volumetric
image. They estimate these derivatives using recursive Gaussian filter and its derivatives
[402].

2. Computation of the three principal curvatures k1,k2,k3 as well as the three principal
curvature directions t1, t2, t3.

3. Identification of the maximum, medium and minimum curvatures kmax,kmed,kmin.

4. Computation of the DMC.

5. Extraction of the zero-crossings of the DMC.

6. Computation of the DmC.

7. Extraction of the zero-crossings of the DmC.

8. Intersection of the two zero-crossings DMC, DmC images where kmax and kmed are
greater than a given positive threshold.

Where DMC is the directional derivative of the maximum principal curvature and DmC is the
directional derivative of the medium principal curvature.
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6.1.3.5 Steger line detector

Steger [403] indicated that the extraction of lines with asymmetrical profiles usually results
in biased line positions and widths, as was shown for lines with equal polarity in [301, 404].
Bias can be removed from the extracted line positions and widths for lines with equal polarity
how it is shown in [301, 404]. Steger [403] proposed a technique to extract edges. Edges are
considered as bright lines in the gradient image. Furthermore, by a scale-space analysis it is
shown why line and edge junctions often cannot be extracted. From this analysis, a method to
extract complete junction information is derived. The steps proposed in the Steger algorithm
are:

1. Modeling lines as curves s(t) that exhibit a characteristic 1D profile in the direction
perpendicular to the line, i.e., perpendicular to n(t) = s′ (t).

2. Extracting lines points in 2D using the first directional derivative in the direction n(t).
direction n(t) can be obtained for each pixel from the eigenvector corresponding to the
eigenvalue of largest magnitude of the Hessian matrix of the smoothed image.

3. Extracting the line position with subpixel accuracy using the Hessian and the gradient
result in a second-degree Taylor polynomial in each pixel

4. Extracting the line width

• the edges on the right and left side of the line are extracted by extracting edge
points on a search line of length 2.5σ in the direction ±n(t).

• The length of the search line is restricted.

5. Linking the individual line points into lines by an extension of Canny’s hysteresis thresh-
olding algorithm [136, 241] which takes the direction of the lines into account and cor-
rectly handles junctions [301].

Edge extraction only need two modifications to be made to the linking algorithm. First, the
responses of the line detector are substituted by the response of the edge operator at the cor-
responding point. Second, how to implement the algorithm efficiently. The line detector only
needs to be applied to the region of the image in which the response of the edge detector is
higher than the lower hysteresis threshold. With these modifications, the resulting edge detec-
tor is only about 15% slower than the typical edge detection cycle of running the edge operator,
doing a combined non-maximum suppression and hysteresis threshold operation, and linking
the edge points into contours.
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6.1.3.6 Aylward and Bullitt ridge detector

Aylward and Bullitt [405] proposed a ridge traversal method that uses an iterative step-maximize
procedure. It can be written as follows:

1. Given an initial ridge point x0, the ridge will extend in the positive t⃗0 and negative −t⃗0
tangent directions. Each direction is traversed independently.

• For the default implementation, at the i− th point xi traversed on a ridge the ap-
proximate tangent direction t⃗i is defined as v⃗3 the maximum eigenvalued eigenvec-
tor of the Hessian at xi. The direction of ridge traversal is maintained by multiply-
ing v⃗3 by the sign of the dot-product of v⃗3 and the previous tangent direction ⃗ti−1

t⃗i = sign
(
v⃗3 · ⃗ti−1

)
v⃗3 (6.1)

2. The approximate normal directions at xi (defined as v⃗1 and v⃗2 in the default imple-
mentation) specify an (N −1)−D plane that the local ridge passes through. Under the
assumption of smoothness, if that normal plane is shifted by a small amount β in the tan-
gent direction, the ridge should continue to pass through that shifted normal plane—the
ridge will exist as a local maximum in that shifted normal plane. The ridge criteria are
tested at that (N −1)−D maximum, and if the criteria are met, that maximum becomes
the next ridge point xi+1. Otherwise, the ridge traversal process terminates in that direc-
tion and, if not previously performed, the ridge extending in the direction −t⃗0 from x0

is traversed.

3. To assure the ridge continuity they define two additional criteria that must be met at
each shifted normal plane’s local maximum for that maximum to be accepted as the
ridge point xi+1.

• One, to terminate traversal when T-junctions are encounter, the next tangent di-
rection ⃗ti+1 must point in the “same direction” as the current tangent direction t⃗i.
They have chosen 0.7 as the minimum acceptable t⃗i · ⃗ti+1 value indicating the “same
direction”.

• Two, to terminate traversal when a large spatial discontinuity is encountered, xi+1must
be “close” to xi. They assume that centerline resolution at the inner scale of the
data is desired. They, therefore, do not allow the Euclidean distance between any
two continuous ridge points to be greater than one voxel.
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They use Brendt’s line-search method [406] to find local extremes. They use cubic splines
to calculate subvoxel values and first and second derivatives. Also, the image is not blurred
as a preprocessing step. Scaled calculations are made as necessary during the traversal pro-
cess—this is more efficient if tubes are relatively sparse in the image, and this is required if
the dynamic-scale implementation is used.

6.1.3.7 PCBR detector

Deng, Zhang, Mortensen, Dietterich and Shapiro [215] proposed a structure-based interest
region detector called Principal Curvature-Based Regions (PCBR) (see Chapter 5). The PCBR
detector employs the first steps of Steger’s curvilinear detector algorithm [390]. It forms an
image of the maximum or minimum eigenvalue of the Hessian matrix at each pixel. They
called this the principal curvature image, as it measures the principal curvature of the image
intensity surface. This process generates a single response for both lines and edges, producing
a clearer structural sketch of an image than is usually provided by the gradient magnitude
image. PCBR detector can be written as follows:

1. Smooth each image using an incremental Gaussian scale.

• They first double the size of the original image to produce their initial image, and
then produce increasingly Gaussian smoothed images.

2. Compute principal curvatures in scale space using Hessian matrix

3. Select principal curvature image using Equation 5.13 or 5.14.

4. “Clean” the principal curvature image with a grayscale morphological close operation

5. Hysteresis thresholding method based on local eigenvector flow

• Eigenvector-flow hysteresis thresholding requires two thresholds (high and low)
just as in traditional hysteresis thresholding.

6. The watershed transform is applied to the cleaned principal curvature image and the
resulting watershed regions define the PCBR regions. PCBR utilizes line and edge
features to construct structural interest regions.

PCBR detector uses hysteresis thresholding based on local eigenvector flow to extract the
principal curvatures.
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6.1.4 Non-Maximum suppression (NMS)

Based on the algorithms presented in the previous section, it is possible to observe that there
are two elements in common to extract the maximum points (in this case ridges or edges). The
first corresponds to non-maximum suppression and the second to the hysteresis. Afterwards,
most detectors follow the same basic process: non-maximum suppression that eliminates pix-
els that are not local maxima, and a thresholding step that obtains the final set of points.

According to ter Haar Romeny [144] a natural way to define edges from a continuous
grey-level image I : R2 → R is as the union of the points for which the gradient magnitude
assumes a maximum in the gradient direction. This method is usually referred to as non-
maximum suppression (see e.g. Canny [136, 241] or Korn [6]). Weickert [153] indicates
that applying sophisticated thinning and linking mechanisms (non-maximum suppression and
hysteresis thresholding), edges are identified as locations where the gradient magnitude has
a maximum. According to Lindeberg [318], an edge point is defined as a point at which the
gradient magnitude assumes a maximum in the gradient direction (see e.g. Canny [136, 241] or
Korn [6]). In conclusion, NMS can be positively formulated as local maximum search, where
a local maximum is greater than all its neighbors (excluding itself) [407]. In this section, some
NMS algorithms are reviewed in more detail.

6.1.4.1 Canny’s NMS algorithm

Nixon et. al. [408] indicated that Canny edge detection operator [136, 241] is perhaps the most
popular edge detection technique at present. It was formulated with three main objectives:

• optimal detection with no spurious responses

• good localization with minimal distance between detected and true edge position

• single response to eliminate multiple responses to a single edge.

The first requirement aims to reduce the response to noise. This can be effected by optimal
smoothing; Canny was the first to demonstrate that Gaussian filtering is optimal for edge de-
tection (within his criteria). The second criterion aims for accuracy: edges are to be detected,
in the right place. This can be achieved by a process of non-maximum suppression (which is
equivalent to peak detection). Non-maximum suppression retains only those points at the top
of a ridge of edge data, while suppressing all others. This results in thinning: the output of
non- maximum suppression is thin lines of edge points, in the right place. The third constraint
concerns location of a single edge point in response to a change in brightness. This is because
more than one edge can be denoted to be present, consistent with the output obtained by earlier
edge operators.

Canny [136, 241] uses the edge direction estimated from gradient of a Gaussian-smoothed
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image surface using a simply differentiating in the x and y directions. The gradient magnitude
is then non-maximum suppressed in the gradient direction. It uses a nine-pixel neighbourhood
as shown in Figure 6.1.

Figure 6.1: Kernel for non-maximum suppression used by Canny.

The normal to the edge direction is shown as an red arrow, and it has components (ux,uy).
Canny uses three points for non-maximum supression, one of which is px,y and the other two
are estimates of the gradient magnitude at points displaced from px,y by the vector u= (ux,uy).
Then, Canny considers for any vector u the two points in the 8-pixel neighbourhood of px,y

which lie closest to the line through px,y in direction u. The gradient magnitude at these two
points together with the gradient at the point px,y are used to estimate the value at a point on
the line. Canny uses the value of the interpolated gradient in both sides of the line. The point
px,y is marked as a maximum if his gradient magnitude is greater than the magnitude of its
neighbors.

6.1.4.2 Korn’s NMS algorithm

Korn [6] proposes the use of confidence intervals to determine the neighbours of the analyzed
pixel. Korn considers the use of four major regions, as shown in Figure 6.2. Each region
has its opposite in the direction contrary to the gradient. This allows consider all the possible
options to find the two neighbours to the central pixel.
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Figure 6.2: Search paths for the detection of maxima[6].

The search for extrema in the image must be performed in the direction α , which is the
direction of maximal gray value change (gradient magnitude). The angles α = 0 and α = 90
degrees denote the directions of the x- and y-axis, respectively. For applications in machine
vision, Korn defines four search paths sk, which are marked in Figure 6.2 by heavy arrows.
The search for extrema is performed in the matrix of the magnitudes of the gray value gradient.
With the exception of boundary pixels, the following differences are computed for every point
P(i, j) in this matrix (see Table 6.1):

1. P(i, j)−P(i, j−1), search path s1

2. P(i, j)−P(i+1, j−1), search path s2

3. P(i, j)−P(i−1, j), search path s3

4. P(i, j)−P(i−1, j−1), search path s4

searching for maxima on the search path sk, (k = 1,2,3,4).

(i−1, j−1) (i, j−1) (i+1, j−1)
(i−1, j) (i, j) (i+1, j)

Table 6.1: Pixel coordinates.

If a maximum Msk (i, j) of the gradient magnitude has been detected on search path sk, the
corresponding angle α of the gradient at pixel (i, j) is checked. The angle α and the search
path sk must be compatible using the ranges of tolerance for the gradient direction α . For
example, if a maximum of the gradient magnitude is found for search path s1, at position
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(i, j), then the condition 67 < α ≤ 112 degrees or 247 < α ≤ 292 degrees must be satisfied
for the gradient direction α at position (i, j).

For large changes of the direction α of the gray value gradient (e.g., corners, branching of
edges), the accuracy of α is often very bad. As a consequence, a maximum can be ignored be-
cause the corresponding angle α does not lie inside the prescribed range of tolerance, causing
a gap. Thus, a connected chain of maxima can be terminated by such a gap.

According to Korn [6], gaps can be detected using the following procedure:

• Beginning with a central pixel P(i, j) ̸= 0 in a 3x3 window the neighbors which differ
from zero are counted. The result is a number N with 0 ≤ N ≤ 8. The two interesting
cases are N = 1 and N = 2.

– If N = 1, there must be a gap.

– If N = 2, there are two neighbors P1 ̸= 0 and P2 ̸= 0 of P(i, j).

The absolute value of the difference DC of the columns and the difference DR of the
rows of P1 and P2, is considered to indicate a gap, provided the following condition
is true: (DC ̸= 2 and DR ̸= 2) and ((DC +DR)< 2).

6.1.4.3 Devernay’s NMS algorithm

Non-maximum suppression method proposed by Devernay [7] is based on one of the two
methods commonly used for edge detection, the suppression of the local non-maxima of the
magnitude of the gradient of image intensity in the direction of this gradient, the other one
being to consider edges as the zero-crossings of the Laplacian of image intensity. NMS algo-
rithm consists of:

1. Let a point (x,y), where x and y are integers and I (x,y) the intensity of pixel (x,y).

2. Calculate the gradient of image intensity and its magnitude in (x,y).

3. Estimate the magnitude of the gradient along the direction of the gradient in some neigh-
borhood around (x,y).

4. If (x,y) is a local maximum then estimate the position of the edge point in the direction
of the gradient as the maximum of an interpolation on the values of gradient norm at
(x,y) and the neighboring points.

5. If (x,y) is not a local maximum of the magnitude of the gradient along the direction of
the gradient then it is not an edge point.
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Figure 6.3: Examples of linear and quadratic interpolation[7].

Devernay uses for step (4) a typical 3x3 neighborhood and the values of the magnitude are
linearly interpolated between the closest points in the neighborhood. For example, in Figure
6.3 (left), the value at C is interpolated between the values at A7 , A8 and the values at B
between those at A3 and A4. Devernay has also tried to use quadratic interpolation to compute
these (the value at A would be interpolated between those at A7 , A8, and A1 as in Figure
6.3 (right)) and compared the results with the linear interpolation. After this edge detection
process one usually does hysteresis thresholding [241] on the gradient norm and linking to get
chains of pixels.

6.1.4.4 Multiple Directional Non-Maximum Suppression

Sun and Vallotton [8] proposed an algorithm for linear feature detection using multiple di-
rectional non- maximum suppression (NMS). NMS is a process for marking all pixels whose
intensity is not maximal as zero within a certain local neighborhood. This local neighbor-
hood can be a linear window at different directions. Figure 6.4 shows four examples of linear
windows at angles of 0◦, 45◦, 90◦, and 135◦.

Figure 6.4: 2D linear windows at different directions [8].

Additional directions, such as those at 22.5◦, 67.5◦, 112.5◦, and 157.5◦, could also be used
for obtaining the multiple directional non-maximum suppression. Furthermore, “×” in Figure
6.4 indicates the center of the linear windows. The length of the linear window shown is 9.
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For 3D images, the linear windows used need to be oriented in 3D space. Figure 6.5 shows
examples of the union of 3 and the union of 9 linear windows. Additional directions could
also be used for obtaining the multiple directional non-maximum suppression for 3D images.

Figure 6.5: 3D linear window at different directions [8].

The steps of the linear feature detection algorithm proposed by Sun and Valotton [8] are
the following:

1. Carry out 4 or 8 (3 or 9 for 3D case) directional non-maximum suppression on the
images, and combine the multiple NMS outputs into one image. The symmetry check is
performed during the process of NMS. Multiple local maxima can also be found within
a linear window.

2. Remove small objects.

3. Obtain and link the end points of different linear objects when the end points are close
to each other.

4. Thin the obtained image if necessary.

6.1.5 Linking and thinning algorithms

Virtually all edge detection techniques use some form of thresholding with the exception of
the Marr-Hildreth technique, where edges are marked at any zero-crossing in the output of a
LoG filter. Normally, the edge detection algorithms refer to the algorithm proposed by Canny,
which includes a thresholding algorithm using hysteresis (also known as “double threshold-
ing”) in the edge detection to link edge points.

In thresholding with hysteresis, two thresholds Tlow and Thigh are used, and starts from
pixels or voxels x with f (x) ≥ Thigh. Values below Tlow are discarded, those above Thigh are
preserved. The interesting points are those of intermediate value between Tlow and Thigh. These
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points are preserved if they form a connected segment which is linked to a point above Thigh.
The use of hysteresis reduces the probability of streaking, i.e., the break-up of edges because
of fluctuations in the operator response above and below a single threshold. The values of Tlow

and Thigh can be determined by a global histogram estimate.

This procedure ensures segmentation of connected regions, since a number of “certain”
foreground elements are selected while its neighbors may have a lower value. At the same
time, noisy background voxels are suppressed by the higher threshold Thigh.

In general, as previously mentioned, the Canny’s hysteresis algorithm is the most used to
linking edges, however, there are other algorithms that will be presented below.

6.1.5.1 Canny’s hysteresis algorithm

The algorithm proposed by Canny [241] is based on local estimates of image noise and there-
fore falls into adaptive thresholding algorithms. Edge tracking is done by hysteresis threshold-
ing. Two thresholds, Tlow and Thigh with Tlow < Thigh, are defined and applied to the gradient
magnitude |g|. If |g|> Thigh for some pixel, this pixel always belongs to an edge. Pixels with
|g|> Tlow are edge pixels if they are adjacent to other edge pixels. The algorithm proceeds as
follows:

• Select the next pixel with |g|> Thigh that is not yet assigned to an edge and assign it to
a new edge.

• Track the edge as long as the adjacent pixels are found with |g|> Tlow .

This process is repeated until no further pixels with |g| > Thigh are found. The method finds
connected edge segments. At intersections, it will track only one of the continuing curves.
The other curve will be found as well if at least one of its edge pixels has a gradient larger than
Thigh. The value for Thigh should be high enough to make sure that none of the starting pixels is
a noise pixel. However, since the continuation of an edge is only found between neighboring
pixels, the threshold Tlow should be low so as not to hinder tracking.

The Canny edge detector (or similar tracking approaches) will create edges as a subset of
all edge locations with a certain strength. Since the locations to be considered for an edge are
local maxima of the gradient magnitude, edges may be false if noise has distorted the course of
the edge. Low-pass filtering before computing the gradient prevents some of these erroneous
responses, but it may also lead to false local maxima locations if smoothing causes the nearby
edges to fuse.



6.1 State of the art 181

6.1.5.2 Monga, Deriche, Malandain, and Cocquerez’s hysteresis algorithm

They have extended the hysteresis thresholding introduced by Canny for 2D edge detection
[241] to 3D and slightly improved it by adding a constraint [385, 409, 410].

Canny’s algorithm is improved in the following way. The expansion in connected compo-
nents is performed in any direction (by using 8-connectivity in 2D or 26-connectivity in 3D).
The idea is to move along a direction orthogonal to the gradient i.e. within the hyperplane tan-
gent to the contour. Let M0 be the edge point involved,

−→
G (M0) be its gradient direction, V be

the set of its neighbourhoods (in 26-connectivity for instance). The expansion is performed by
examination of all points M ∈V such that the distance between M and the hyperplane tangent
at point M0 is less than a threshold s:∣∣∣ ⃗MM0×

−→
G (M0)

∣∣∣∥∥∥−→G (M0)
∥∥∥ < s (6.2)

The choice of s is related to the curvature of the contour to be obtained. They noticed
that when choosing s enough high, the expansion in connected components is done for all
neighbors of M0.

This improvement is essentially useful in the case where the images are very noisy i.e.
many 3D medical images. Particularly it allows to push down the low threshold without
introducing too much false edge points.

This thresholding strategy is particularly efficient in the 3D case because it enables to get
good connected edge points. This is of great interest to regroup these points in order to built
surfaces.

6.1.5.3 Steger’s hysteresis algorithm

Steger [390] proposed an algorithm to link the individual line points into lines. In the algorithm
two hysteresis thresholds are applied to the eigenvalues of the dark lines in the gradient image,
which are equivalent to the third directional derivative in the direction perpendicular to the
original line. The algorithm to line and edge extraction in 2D images proposed by Steger can
be described as follows.

Starting from the pixel with maximum second derivative, lines will be constructed by
adding the appropriate neighbor to the current line. Because the maximum point typically does
not lie at the endpoints of the line, this is done for both directions of the line (the orientation
of the line is (nx,ny) = (cosα,sinα)), that the line point detection algorithm will yield a
fairly accurate estimate for the local direction. Since it can be assumed of the line, only three



182 Features and shapes extraction

neighboring pixels that are compatible with this direction are examined. Figure 6.6 shows
two examples of pixels analyzed in the linking process. If the current pixel is (cx,cy) and the
current orientation of the line is in the interval [−22.5◦,22.5◦], only the points (cx +1,cy),
(cx +1,cy −1), and (cx +1,cy +1) are examined. Two of the eight possible cases given in
Figure 6.6 show where pixels are checked for possible line continuation and they are marked
as light gray squares. The choice regarding the appropriate neighbor to add to the line is based
on the distance between the respective sub-pixel line locations and the angle difference of the
two points.

Figure 6.6: Two of the eight possible neighborhoods examined during the Steger’s linking
process.

In addition, if there are multiple responses to the line in the direction perpendicular to the
line, e.g., the pixels (cx,cy +1) and (cx,cy −1), they are marked as processed if they have
roughly the same orientation as (cx,cy) .

In sum up, new lines will be created as long as the starting point has a second directional
derivative that lies above a certain, user-selectable upper threshold. Points are added to the cur-
rent line as long as their second directional derivative is greater than another user-selectable
lower threshold. This is similar to a hysteresis threshold operation proposed by Canny [241].
However, the algorithm sometimes fails to extract junction points, for this reason, Steger pro-
poses an algorithm to extract missed junctions.

In 3D case, linking of surfaces points into surfaces is a much more complicated problem
than linking line points into lines because each surface point has more than two neighbors.
However, the fundamentals of the algorithm, i.e., the hysteresis threshold operation, can be
adapted to the case of 3D surfaces.

To add appropriate neighbors to the current surface, all 26 neighboring voxels of the cur-
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rent surface point are examined whether they are compatible with the current point. Two cri-
teria are used to determine compatibility: First, the surface normals of the neighboring point
must not form an angle larger than a certain threshold, 30◦, with the normal of the current sur-
face point. This heuristic removes most, but not all, of the extraneous surface points extracted
perpendicularly to the surface. Therefore, another criterion is also checked: the distance of the
neighboring point to the plane spanned by the two smaller eigenvectors of the current surface
point. If p denotes the current surface point, n the surface normal, with ∥n∥2 = 1, and q the
neighboring point, this distance is given by

d = |(q− p) ·n| (6.3)

He define that value of d must be closer than
√

2 to the plane. This second criterion was also
used in [411] to link 3D edges.

By combining the two criteria, almost all of the extraneous surface points are eliminated.
After determining the appropriate neighbors, edges connecting the current surface point and
the neighbors are created, the neighbors are inserted into a queue of points waiting to be
processed if they are not marked as belonging to the current surface, and the current point is
marked as processed and belonging to the current surface. This allows junction points to lie
on multiple surfaces, and thus ensures that no gaps occur at junction areas.

6.1.5.4 PCBR’s hysteresis algorithm

Deng, Zhang, Mortensen, Dietterich and Shapiro [215] proposed a hysteresis thresholding
method for 2D images based on local eigenvector flow called eigenvector-flow hysteresis
thresholding. They use two thresholds (high and low) just as in traditional hysteresis method.
The high threshold (set at 0.04) indicates a strong principal curvature response. Pixels with
a strong response act as seeds that expand to include connected pixels that are above the low
threshold. Unlike traditional hysteresis thresholding, the low threshold is a function of the
support that each pixel’s major eigenvector receives from neighboring pixels. Each pixel’s
low threshold is set by comparing the direction of the major (or minor) eigenvector to the
direction of the 8 adjacent pixels’ major (or minor) eigenvectors. This can be done by taking
the absolute value of the inner product of a pixel’s normalized eigenvector with that of each
neighbor. If the average dot product over all neighbors is high enough, we set the low-to-high
threshold ratio to 0.2 (for a low threshold of 0.04 · 0.2=0.008); otherwise the low-to-high ra-
tio is set to 0.7 (giving a low threshold of 0.028). The threshold values are based on visual
inspection of detection results on many images.

This eigenvector-based active thresholding process yields better performance in building
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continuous ridges and in handling perturbations, which results in more stable regions.

6.2 Proposed methods

The proposed method for extracting surfaces includes non-maximum suppression and hystere-
sis thresholding. Therefore, the algorithms proposed for NMS and hysteresis are presented
below.

6.2.1 Non-maximum suppression

Non-maximum suppression methods have some problems. First, in Canny’s method there
are discontinuities between edges in the contour because NMS does not take into account the
edge direction during suppression, it takes only into account the gradient direction (to locate
neighbors) and gradient magnitude (to suppress neighbors). These contours can be closed by
domain experts who have knowledge of anatomy. Second, in Korn’s method is included a
procedure to detect gaps, however, this criterion is based on masks that do not solve all cases.
Third, multiple directional non-maximum suppression proposed by Sun and Valloton include
more direction in the analysis, however, they do not specify additional criteria to suppress
neighbors (it is similar to Canny’s method).

Figure 6.7: Non-maximum suppression neighbors.

As mentioned by Lindeberg [318], a natural extension of the notion of non-maximum sup-
pression is to define an edge as a curve on the edge surface such that some suitably selected
measure of edge strength is locally maximal with respect to this curve. Normally, this hap-
pens when the curve does not have bifurcations or corners that affect the maxima analysis,
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because the curve has a maximal at some point when this point has the same direction that his
neighbors. For this reason, the most important analysis occurs when there are neighbors in
different directions to the analyzed point. Figure 6.7 shows a possible situation of neighbors
to which the NMS algorithm should be applied. If the point analyzed is p(x,y), according to
Canny the two neighbors that are orthogonal to the direction of the normal are analyzed, in
this case, p(x,y+1) and p(x,y−1). Then, if and only if the magnitude of p(x,y) is greater
than the magnitude of p(x,y+1) and p(x,y−1), it is selected as maximum. As a result, the
bifurcations and corners are eliminated generating gaps in the line.

For 3D images, Monga et. al. include the gradient direction of the surface in each point
analyzed in order to increase the connectivity and obtain a surface with fewer holes. However,
the expansion is executed for all points belonging to the observation window.

In this case, an NMS algorithm is proposed that allows the use of the Canny and Monga
et. al. results, generating two conditions for non-maximum suppression. Figure 6.8 shows an
example of a possible situation of neighbors analysis in the NMS algorithm. If the point ana-
lyzed is p(x,y) and its normal direction to the surface is n = ν1, the two orthogonal neighbors
p(x,y+1) and p(x,y−1) are analyzed. The difference between the normal of the analyzed
point and the normal ones of the neighbors is evaluated. In this case, the values β1 and β2 are
obtained. It is determined if the angle is less than a threshold (30◦). To calculate the differ-
ence, the dot product between the unit vectors is used. The absolute value that is in the range
[0,1] is taken, being the value of 1 when they present the same normal direction and 0 when
they are orthogonal. For this case, since the maximum difference allowed between angles is
30◦, a threshold of 0.866 is taken.

Figure 6.8: Non-maximum suppression using normal directions.

Therefore, NMS algorithm contains two restrictions. The first corresponds to the similar-
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ity of the normal direction of the neighbors. The second is the previously described condition,
that is, the neighbors magnitude is less than that of the evaluated point. This allows eliminat-
ing only the neighbors that are in the same normal direction and that have a smaller value of
magnitude. In conclusion, the above conditions allow reducing the surface thickness by elim-
inating neighbors that are not maxima. In addition, it does not eliminate possible bifurcations
or corners reducing the presence of holes in the surface.

Additionally, the proposed algorithm allows another restriction to be included. This re-
striction corresponds to the tangent direction of the surface, which can be evaluated in the
same way as the normal direction to the surface. Figure 6.9 shows an example of the possible
neighbors that are analyzed in the previous example. At first glance, this may seem redundant,
but it is not. Mainly, when processing 3D images that present singularities (umbilical points).

Figure 6.9: Non-maximum suppression using normal directions and tangent directions.

6.2.2 Hysteresis thresholding

According to Steger [390], the first thing that strikes the eye is that because Canny’s original
approach to hysteresis thresholding [136, 241] does not take into account the edge direction
during the linking of edge points, it gets sidetracked into a maze of edges at the top of the
container and in the shadow at the bottom of the container. This is undesirable since these
edges have to be weeded out before or during the model matching.

For the above reason, the model of Canny and Monga et. al. do not completely comply
with the linking of the curves that are to be extracted from the image. In the case of 2D images,
the line linking algorithms proposed by Steger and by PCBR take into account the direction
of the edge. These two algorithms present some differences. The first corresponds to that
in Steger’s algorithm the minimum and maximum thresholds for the hysteresis are obtained
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through the angles that form the directions of the edges, while in PCBR they are defined
dynamically according to the strength of the principal curvature and surface directions. The
second refers to the fact that the Steger algorithm includes a metric of the distance between
pixels or voxels analyzed while the PCBR algorithm does not take it into account.

The proposed hysteresis algorithm includes characteristics of the Steger and PCBR pro-
posals. In the 2D case, the proposed algorithm includes the evaluation of the three neighbors
that are in the curve direction. The pixel with the greatest curvature and whose direction is in
the confidence interval is selected. The double responses proposed by Steger are not taken into
account initially. The average point product of all the neighbors is not considered to define
the thresholds, simply the upper threshold is defined in such a way that sufficient seed points
are included to cover the curves that make up the image. One way to obtain this threshold
automatically is by means of the histogram or by applying the Otsu thresholding algorithm or
by simply inspecting the image and identifying the maximum curvatures and defining a value
based on this exploration.

Figure 6.10 shows one of the possible configurations. Based on the tangent direction
on the curve d = ν2, the neighboring pixels of the point p(x,y) are selected, in this case d
lies between 0◦ and 22.5◦ which corresponds to the point p(x+1,y), by therefore, its two
neighbors p(x+1,y+1) and p(x+1,y−1) are selected. Then, the closest direction for each
pixel is evaluated using the dot product between the direction of the curve at that point and the
point analyzed. The selected pixel will be the one that is in the confidence interval and has the
greatest curvature magnitude. If a next point is not found, the algorithm stops at that direction.

Figure 6.10: Possible configuration in hysteresis flow.

The two pixels that do not correspond to the line are analyzed to determine if they are
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possible bifurcations or corners of the selected pixel. To do this, the direction of the selected
pixel is evaluated with respect to its neighbors, if they are in the same direction they are
eliminated, otherwise, they are marked as possible bifurcations or corners (this step is similar
to the double responses defined by Steger).

When a pixel is found that corresponds to the end of the line, the line is traversed in the
opposite direction from the starting point. To facilitate this process, the storage structure of the
line (queue) is inverted and the last node is taken to start the expansion in the other direction.
Finally, all the lines found and that have a minimum length conform the image edges.

In 3D case, linking surface points into surfaces is a much more complicated problem than
linking line points into lines because each surface point has more than two neighbors. This
means that the surface linking algorithm should link all points into a surface that have a re-
sponse larger than a lower threshold and are connected to at least one point having a response
larger than an upper threshold.

In the first instance, using the upper threshold, the seed points are selected to initiate the
process of linking voxels to the surface. The plane tangent to the surface is defined from
each seed point. The tangent plane defines the neighbors that must be explored to determine
whether or not they belong to the surface. In 3D there is a 26-neighbourhood system instead of
having a 8-neighbourhood system. There are 13 configurations that depend on the orientation
of the normal vector to the surface. Each of the configurations is determined by the angles
formed by the eigenvector n = v1 associated with the eigenvalue of greater magnitude. Figure
6.11 presents three possible tangent planes to the surface in the hysteresis process. In each
example, the pixel analyzed in yellow and its neighbors in gray are shown. In the image on
the left, the normal direction n = v1 is (90◦,0◦). In the central image the normal direction is
(90◦,45◦) and in the image on the right the direction is (45◦,45◦). In each case, the normal
direction is given by n = v1, where v1 is the eigenvector of the eigenvalue of greater magnitude
and d = v2 corresponds to the tangent direction to the surface given by the eigenvector of the
eigenvalue of smaller magnitude.

Figure 6.11: Different hysteresis configurations in 3D.
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Based on the 8-neighbors found in the previous step, the orthogonal neighbors to each of
them are evaluated. The same criteria defined in the non-maximum suppression algorithm are
used. Figure 6.12 presents two examples of analyzed orthogonal neighbors. The voxel that
is in red is the one found in the 8-neighbors and the blue voxels correspond to its orthogonal
neighbors. The image on the left corresponds to the normal direction (90◦,0◦) while the image
on the right corresponds to the normal direction (90◦,45◦).

Figure 6.12: Examples of neighbors analyzed in hysteresis algorithm.

In some cases it was identified that the neighbors found as part of the surface have a
distance greater than

√
2, which implies that they generate holes in the extracted surface. To

solve this problem, proceed as follows. First of all, the 8-neighbors must be traversed in
a circular and contiguous way finding the voxel that belongs to the surface to be extracted.
Second, the distance between each of the voxels found must be evaluated to identify possible
gaps using the distance between them. If the distance is greater than

√
2 the two voxels closest

to the tangent of the surface in each of the directions analyzed are marked as part of the surface.
Figure 6.13 shows an example of this possible situation. The image on the left side shows two
contiguous directions of the 8-neighbors analyzed. The voxels marked in red correspond to
the voxels that are identified as part of the surface whose distance is greater than

√
2. In the

image on the right side corresponds to mark the two voxels closest to the plane tangent to
the surface, which are in yellow. It is clear that this procedure generates a redundant voxel
in the contour of the surface, but this cost reduces in a simple way the possibility of holes
in the surface. There are other alternatives to solve this problem, for example, a more time-
consuming computation solution is to use an interpolation algorithm between the three points,
i.e. the two voxels found as part of the surface (red voxels) and the voxel analyzed (central
voxel of the 8-neighbors), this permits identify which voxel (yellow voxels) is closest to the
plane or surface formed by these three points and add it to the surface.
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Figure 6.13: Example of possible holes in the surface.

Additionally, in order to apply the criteria defined in the non-maximum suppression algo-
rithm in the hysteresis algorithm, the vectors must be reoriented using a rotation matrix that
corresponds to a rotation around the y-axis of 180◦ and a rotation around the z-axis of 90◦.

6.3 Experimental results

To test the proposed algorithms for the non-maximum suppression and hysteresis several tests
are performed for both 2D images and 3D images. In 2D case, constructed images (synthetic
images) and images traditionally used in computer vision and image processing are used. In
3D case, synthetic images were also constructed and medical images of the upper airways are
used. In the first place, the tests with 2D images are presented and in second place the tests
with 3D images.

6.3.1 Non-maximum suppression tests

In the non-maximum suppression tests both for 2D images and for 3D images the three con-
ditions of suppression were considered. First, when the magnitude of the curvature (CM) is
only used. Second, when the normal direction to the surface (CM + CN) is added. Finally,
when the tangent direction of the surface (CM + CN + CD) is also included. The tests begin
with 2D images and then the tests with 3D images are presented.

6.3.1.1 2D images

Tests with 2D images start with the synthetic image that presents three geometrical figures,
the square, the triangle and the circle. These figures were drawn by hand, therefore, their
delineation is not smooth. This allows to evaluate what happens with "irregular" edges.

Table 6.2 presents the results obtained by applying the three criteria for NMS. The second
column corresponds to the principal curvatures image. The third column presents the NMS
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taking into account only the curvatures magnitude of the orthogonal neighbors. The fourth
column shows the NMS using the curvatures magnitude and the normal direction to the sur-
face. The fifth column presents the results by using the magnitude, the normal direction and
the direction of the tangent plane to the curvatures. With respect to the rows, the second shows
the curvatures magnitude and the region of interest (blue box) to make a zoom that allows to
appreciate with a greater level of detail the results of applying the NMS algorithm. The third
row presents both the magnitude and the direction vectors (normal and tangent). The fourth
row corresponds to the zoom of the region of interest defined in the second row. The fifth row
shows the zoom of both the magnitude and the direction vectors. Finally, in the sixth row, the
number of non-zero pixels that make up the image is assigned.

Table 6.2: Non-maximum suppression results for 2D syn-
thetic image.

Original CM CM+CN CM+CN+CD

Image

Directions

Image+Zoom

Curvatures+Zoom

N. Pixels 7805 4847 5416 5416
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As can be seen in Table 6.2, using only the curvatures magnitude in a similar way to
the NMS proposed by Canny, gaps are obtained. While in the other two cases the gap is
eliminated. The main problem when taking into account the normal direction and the tangent
direction is that a greater number of pixels is maintained that must be processed by the linking
algorithm. However, this problem becomes an advantage, because it is not initially required
an algorithm to fill gaps. In sum up, this allows junction points to lie on multiple lines, and
thus ensures that no gaps occur at junction areas.

Next, tests are carried out with 2D images, which are traditionally used in computer vision.
These images were used in the previous chapters. Tests that are going to be performed are the
same as in the case of the synthetic image. From the image of the curvatures and the directions
obtained when using the Hessian matrix, the NMS process is performed taking into account
the three previously mentioned criteria. Table 6.3 shows the results obtained using the lena
image. The columns and rows of Table 6.3 are the same as for Table 6.2. Selected region to
zoom corresponds to Lena’s left eye.

Table 6.3: Non-maximum suppression results for Lena’s im-
age.

Original CM CM+CN CM+CN+CD

Image

Directions

Image+Zoom
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Table 6.3: Non-maximum suppression results for Lena’s im-
age.

Original CM CM+CN CM+CN+CD

Curvatures+Zoom

N. Pixels 119518 61677 72090 72328

In the row of images with zoom (see Table 6.3), if only the curvature magnitude is used
in NMS algorithm, gaps appear. While the resulting images when using the normal direction
and the tangent address do not generate those gaps. However, when considering the normal
direction and the tangent direction a greater number of pixels (in this case 72328) is generated.

Table 6.4 shows the number of pixels that each 2D image has before applying the NMS
algorithms and after it is applied using the different suppression criteria. As can be seen, the
variation between the algorithm that only considers the curvature magnitude and the other two
is approximately 11% on average. While the difference between the algorithms that consider
(CM + CN) and (CM + CN + CD) is 0.2% on average.

Table 6.4: Number of pixels before and after applying the
NMS algorithms to 2D images.

Original CM CM+CN CM+CN+CD

geometric 7805 4847 5416 5416

baboon 120310 83763 100273 100524

barbara 118779 73852 87923 88183

boat 115407 64910 80207 80436

cameraman 31177 16477 20224 20273

lena 119518 61677 72090 72328

average 40.9% 29.8% 29.6%

It can be concluded at this point, that there is no significant difference between the last two
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NMS algorithms for the analyzed 2D images. In addition, it can be stated that when curvature
magnitude is only used, gaps appear at the edges, while for the other two NMS algorithms,
no.

6.3.1.2 3D images

The tests performed with 3D images are divided into two sets. The first corresponds to the
synthetic images used in the previous chapters. The second corresponds to the head-neck
medical images defined in the previous chapters. In the same way as in the previous section,
the three criteria of voxels selection not to be suppressed is applied, that is, the curvature
magnitude (CM), the normal direction to the surface (CN) and the tangent direction to the
surface (CD).

Table 6.5 presents the results obtained for the ellipsoid and the hyperbolic paraboloid. For
each of the images, the three NMS algorithms are applied. The results obtained are presented
in the rows of Table 6.5. Additionally, a region of interest was selected for each of the images
in order to see the behavior of the algorithms with a greater level of detail. For both the
ellipsoid and the hyperbolic paraboloid, the upper left quadrant was selected. In addition, the
slice 16 of the ellipsoid is shown in the axial plane and for the hyperbolic paraboloid, the slice
129 was selected.

Table 6.5: Non-maximum suppression results for 3D syn-
thetic images.

ellipsoid zoom hyperbolic paraboloid zoom

Image

original



6.3 Experimental results 195

Table 6.5: Non-maximum suppression results for 3D syn-
thetic images.

ellipsoid zoom hyperbolic paraboloid zoom

CM

CM+CN

CM+CN+CD

The reduction in the number of voxels using the curvature magnitude is greater. In the case
of the ellipsoid, the edges are much more defined and with fewer voxels around the curvatures
with high magnitude (red color). The lowest voxel reduction is presented when using the three
criteria to select the voxels to be eliminated. The ellipsoid in all three cases does not have
gaps, this is because the contours do not have bifurcations or significant corners. In the case
of the hyperbolic paraboloid, the results are different, the use only of the curvature magnitude
generates a loss of edges while the other two cases generate a complete contour.

Table 6.6 presents the number of voxels of original images and images obtained when ap-
plying the NMS algorithms. Comparing the averages of reduction with that of the 2D images,
this is reduced for all cases. In addition, the difference between the algorithm that only uses
the curvature magnitude and the other two algorithms is reduced in percentage. This differ-
ence changes from 11% to 9%. Additionally, the difference between the algorithms that use
as criteria (CM + CN) and (CM + CN + CD) is increased from 0.2% to 5% approximately.
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Table 6.6: Number of pixels before and after applying the
NMS algorithms to 3D synthetic images.

Original CM CM+CN CM+CN+CD

ellipsoide 6632 4278 4870 5588

cube 51216 30228 31000 38704

cylinder 80794 54959 61195 63499

elliptic paraboloid 44611 27494 31921 33510

hyperbolic paraboloid 10234 7793 9582 9766

average 34.13% 25.02% 18.21%

In conclusion, as in the case of 2D, the results when applying the NMS algorithm us-
ing only the curvature magnitude generates gaps in the surface, while when adding direction
information this does not happen.

Table 6.7 presents the results of applying the NMS algorithms in medical images. Table
shows the results obtained for image1 and image3. In the original images, a region of interest
is marked in a blue box. In these tests it can be observed that the NMS algorithm that uses
only the curvature magnitude as the one that uses the curvature magnitude and the normal
direction to the surface generate discontinuities in the edges of the surface. This means that
the algorithm that considers the three criteria for eliminating non-maximum voxels allows
obtaining better results in the continuity of the surface.

Table 6.7: Non-maximum suppression results for 3D medi-
cal images.

image1 zoom image3 zoom

original

CM
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Table 6.7: Non-maximum suppression results for 3D medi-
cal images.

image1 zoom image3 zoom

CM+CN

CM+CN+CD

Table 6.8 quantitatively shows the reduction of voxels when applying the NMS algorithms.
As you can see the behavior in the reduction is similar to the 3D synthetic images.

Table 6.8: Number of pixels before and after applying the
NMS algorithms to 3D medical images.

Original CM CM+CN CM+CN+CD

image1 3.78634e+06 2.22882e+06 2.72729e+06 3.13605e+06

image3 4.17945e+06 2.37147e+06 2.89012e+06 3.39652e+06

image5 2.27787e+06 1.31016e+06 1.58116e+06 1.84454e+06

image7 3.19246e+06 1.93176e+06 2.34403e+06 2.66253e+06

image9 4.46121e+06 2.49975e+06 3.03941e+06 3.58097e+06

average 42.1% 30.1% 18.3%

NMS strategy using the three selection criteria enables to get good connected edge points
in the 3D case. The probability of gaps is greatly reduced since a greater number of voxels is
maintained. The hysteresis algorithm to link edges will allow discarding the points that do not
belong to the surface and leave a thinner contour that will be processed by the segmentation
algorithm.
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6.3.2 Hysteresis tests

Tests of the hysteresis algorithm proposed are divided into two parts. The first one allows to
evaluate the behavior in 2D images and the second part evaluates the 3D images.

6.3.2.1 2D images

The first part of the tests with 2D images is done with the synthetic image. This allows seeing
the behavior of the algorithm in the zones that have an acute form and that can generate
ruptures because the normal direction has great variations. In the second part, traditional
images are used which present multiple forms that will allow evaluating the behavior of the
hysteresis algorithm.

Table 6.9 shows the results of applying the hysteresis algorithm to the images generated by
the non-maximum suppression algorithms that generated best results (CM + CN and CM + CN
+ CD). The first row shows the original image (image obtained using NMS). The second row
shows the zoom of the region marked in the blue box for each image. The third row presents
the result after applying the hysteresis algorithm. The fourth row contains the number of pixels
that belong to the detected region.

Table 6.9: Hysteresis results for a 2D synthetic image.

CM+CN CM+CN+CD

Image

Image+Zoom

Hysteresis

N. Pixels 3623 3623
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As you can see, the results present regions without gaps. This indicates that the proposed
algorithm works properly when there are regions whose angles are less than 90◦. Also in the
corners of the square, there are no gaps. In conclusion, there are no gaps in the corners or
bifurcations in the analyzed synthetic image.

Proceeding in the same way for traditional 2D images, Table 6.10 presents the results ob-
tained for the Lena image. In this case, the number of pixels that form the regions obtained
differs slightly. For the image obtained by using the NMS algorithm that considers the CM
+ CN, a pixel total of 27035 is obtained while 27074 pixels are obtained for the other im-
age. However, in the region of interest that is expanded, no difference can be seen. What is
important to note is that double responses are presented in one of the locations that appear
expanded. This is because the algorithm detects these regions as possible bifurcations of the
edge and maintains them as part of the region. This can be corrected by using an additional
algorithm to detect the length of the possible bifurcations and if it is less than two pixels, it
can be eliminated from the detected region.

Table 6.10: Non-maximum suppression results for Lena’s
image.

CM+CN CM+CN+CD

Image

Image+Zoom

Hysteresis

N. Pixels 27035 27074
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As it happened in the synthetic image, the hysteresis algorithm presents a good follow-up
of the curvatures to detect the image edges.

Table 6.11 shows the number of pixels detected by the hysteresis algorithm for each of the
processed images. As it is appreciated, there is no great variation between the results obtained
when applying the algorithm to the two images resulting from applying the NMS algorithms.
Even for the synthetic image and the cameraman image, the results are equals. The above
implies that closing image edges permits to obtain accurate results when applying hysteresis
algorithm proposed.

Table 6.11: Number of pixels after applying the hysteresis
algorithm to 2D images.

Original CM+CN CM+CN+CD

geometric 7805 3623 3623

baboon 120310 67169 67239

barbara 118779 48378 48437

boat 115407 42118 42167

cameraman 31177 7761 7761

lena 119518 27035 27074

Average 62.17% 62.14%

6.3.2.2 3D images

As mentioned before, the extraction of edges in 3D images is more complex. The proposed
hysteresis algorithm allows detecting the bifurcation points and the corners present in the
surface contour. To prove these characteristics, two tests were carried out. The first part with
the synthetic images and the second part with the medical images.

Table 6.12 shows the results obtained by applying the proposed hysteresis algorithm to
the image containing an ellipsoid. As input images to the proposed algorithm, the images
obtained when applying the NMS algorithms are used using two and three suppression criteria
respectively. The first column shows the result of the hysteresis algorithm for the first image
and the second column shows a zoom to a region of interest to see the results. The region
of interest corresponds to the upper left quadrant of the ellipsoid’s image. The third column
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shows the results of the hysteresis algorithm when using the second image. Similarly, the
fourth column shows a zoom to the region of interest as mentioned before.

Table 6.12: Non-maximum suppression results for 3D syn-
thetic image.

CM+CN zoom (CM+CN) CM+CN+CD zoom (CM+CN+CD)

ellipsoid

Hysteresis

As can be seen, the results in the region of interest are practically the same for the two
input images. However, the total number of pixels is different. In the first image, 3348 pixels
are obtained, while the number of pixels for the second image is 3459. This is due to the
fact that in some regions of the ellipsoid for the second image, a greater number of double
responses was generated that reduce the possibility of gaps in the surface contour.

Table 6.13 shows the number of pixels obtained for the surfaces of the synthetic images
used in the tests. It can be seen that except for the cube, the number of pixels obtained using
as input images input that use the three suppression criteria is greater.

Table 6.13: Number of pixels after applying the hysteresis
algorithm to 3D synthetic images.

Original CM+CN CM+CN+CD

ellipsoide 6632 3348 3459

cube 51216 25795 25795

cylinder 80794 43116 43120
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Table 6.13: Number of pixels after applying the hysteresis
algorithm to 3D synthetic images.

Original CM+CN CM+CN+CD

elliptic paraboloid 44611 22752 23613

hyperbolic paraboloid 10234 6664 6965

Looking in more detail at the images obtained, two elements were found to be taken into
account. The first is that not in all cases the surfaces are completely closed. Particularly, for
the cube a hole was detected in the region where the two planes of the surface are located,
that is, in the area of the corners. The second element is the disappearance of contours in
regions in which the edges are abrupt and close, that is, voxels are eliminated in areas with
high concavity and the whose distance between edges is less than three voxels.

With respect to medical images, Table 6.14 shows the results obtained for image1. As
can be seen, the best response obtained by the hysteresis algorithm to detect the edges of the
surface was using the image that applies the three criteria for suppression.

Table 6.14: Hysteresis results for 3D medical image.

CM+CN zoom (CM+CN) CM+CN+CD zoom (CM+CN+CD)

image1

Hysteresis

However, although the results obtained are quite good, not all the edges of the surfaces
are closed. It is recommended to use a closing technique to be able to complete the surface
of the upper airways. It must be taken into account that the closing techniques use a window
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of radius one, which implies that the minimum separation between the edges must be three
voxels in order not to cause closure of the walls present in the upper airways.

Table 6.15 shows the number of voxels obtained for each of the medical images. As in 2D
images and synthetic 3D images, the largest number is presented when NMS algorithm with
the three selection criteria is used.

Table 6.15: Number of pixels after applying the hysteresis
algorithm to 3D medical images.

Original CM+CN CM+CN+CD

image1 3.78634e+06 1.89114e+06 1.98679e+06

image3 4.17945e+06 1.95456e+06 2.07518e+06

image5 2.27787e+06 1.03343e+06 1.08745e+06

image7 3.19246e+06 1.49914e+06 1.56956e+06

image9 4.46121e+06 1.91569e+06 2.02822e+06

In conclusion, the proposed hysteresis algorithm permits to obtain good results, however
there are gaps in the contours. The gaps are reduced by the algorithm when using the distance
criterion between the contiguous maxima found when visiting the 8-neighbors.





Chapter 7

Upper airways segmentation using
principal curvatures

“Any sufficiently advanced technology is indistinguishable from magic.”

– Arthur C. Clarke.

This chapter briefly introduce the most common categories of image segmentation meth-
ods used for medical image segmentation to segment upper airways. Two inherent chal-
lenges in these problems are similar appearance of different tissues and the complex shapes of
anatomical structures [412].

7.1 State of the art

The segmentation tasks have requirements that may vary for different applications regarding
the type of extracted information, accuracy requirements, and the degree of automation. This
has to be outlined for each application individually. However, a set of general requirements
can be identified that typically have to be addressed by the methods in order to be clinically
applicable:

• Deliver correct 3D reconstructions of the structures in a volume of interest.

• Have the ability to segment thin or small structures with low contrast.

• Differentiate structures from other adjacent structures with the same gray values.

• Robustly handle cases where parts of the structure are disturbed; e.g. due to imaging
artifacts such as motion artifacts or beam hardening or due to disease such as tumors, cal-
cifications, aneurysms, or stenosis where the appearance and geometry of the structures are
disturbed.
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• Require only minimal or no user interaction, which can usually be distinguished as auto-
matic (unsupervised), interactive (semi-supervised), and supervised.

7.1.1 Image segmentation

Image segmentation is perhaps the most studied area in image analysis. A large number of pa-
pers on this topic is published annually in image analysis journals and conference proceedings[15,
19, 48, 72, 74, 77–80]. The developed methods often take into consideration various proper-
ties of images or objects, and when such properties deviate from the anticipated ones, errors
occur. Even for a limited class of images, for instance MRI brain images, various methods
have been developed, none of which is guaranteed to work correctly on a new image. This
may be because there are sensor variations; variations in the brain’s shape, size, and intensity
distribution; and variations in intensities of tissues surrounding the brain. Since an error-proof
image segmentation method cannot be developed, user assistance is needed to correct the ob-
tained errors. At present, the best one can hope for is to have a segmentation method that can
correctly find most areas of an object of interest, and in areas where it makes a mistake, allow
the user to correct them.

The computerization of medical image segmentation plays an important role in medical
imaging applications. It has found wide application in different areas such as diagnosis,
localization of pathology, study of anatomical structure, treatment planning, and computer-
integrated surgery. However, the variability and the complexity of the anatomical structures in
the human body have resulted in medical image segmentation remaining a hard problem [78].

Segmentation of biomedical images in computer-assisted medical diagnosis is a prelimi-
nary operation aimed at detection and localization of regions of interest (ROI) in the images
for their more detailed examination. The aim of image segmentation consists in reduction of
total image examination time. Manually performed image segmentation is a tiresome oper-
ation itself; that is why it is reasonable to include computer-aided image segmentation into
advanced image processing procedures as their integral part. In general, two basic types of
image segmentation tasks in biomedical image processing arise[62]:

• segmentation of anatomical objects of known location and form, co-occurring with other
anatomical objects in the given examination being to be neglected.

• detection and contouring of pathomorphological structures of a priori unknown localiza-
tion and form, distinguished due to their specific biophysical or biochemical properties
manifested by differences in color and/or in texture respecting the environment.

This section includes the most simple techniques typically referred to as thresholding and re-
gion growing. Then, more recent techniques are introduced where a segmentation is found by
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means of optimizing an energy functional. In this context we talk about continuous variational
and discrete combinatorial methods [413].

7.1.1.1 Thresholding and region growing

Early, and simple, techniques for segmentation mainly used the assumption that relevant ob-
jects in an image can be identified based on intensity values. The most simple approach iden-
tifies objects using a single threshold value, such that pixels above and below the threshold
are object pixels and background pixels respectively. This works fine for high contrast objects
with a sharp edge, but the method often fails as soon as the edges are smooth, of varying
intensity and influenced by noise [48, 67, 68, 70, 72, 74, 414].

Global thresholding is the simplest segmentation technique. In upper airways, all regions
below a chosen pixel intensity (threshold) are identified as air, and all above as tissue. The key
decision to be made by the operator or algorithm is the value of the threshold intensity. The
Otsu algorithm [415] or variants are often used. Global thresholding performs satisfactorily
for many segmentation tasks in conventional CT and MRI images [414]. However the nasal
cavity, having a number of intricate and narrow passages and adjacent paranasal sinuses, is
susceptible to either under-segmentation (real boundaries between tissue and air are ignored
by the segmentation algorithm, and distinct air-filled cavities are merged into one) or over-
segmentation (the algorithm returns spurious boundaries where anatomically none exist)[416].

7.1.2 Upper airways segmentation methods

Upper airways segmentation is of significant importance because one of the most prevalent
chronic disorders, airway disease is a major cause of morbidity and mortality worldwide
[16, 417]. In order to understand its underlying mechanisms and to enable assessment of
therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the
airways in a large number of subjects is of great research interest. Due to its high resolu-
tion in temporal and spatial domains, Computed Axial Tomography (CT) has been widely
used in clinical practices for studying the normal and abnormal manifestations of airways
diseases[18]. For example, evaluation of the upper respiratory airway obstruction (URAO)
is of significant importance, as its physiological effects on ventilation rapidly evolve to sec-
ondary body malfunctions. Given the nature and location of the lesions, the invasive handling
of the condition with direct bronchoscopy is undesirable; an imaging approach based on CT
is preferred. In addition, objective and quantitative evaluation of the obstruction therefore
requires the application of image processing and analysis techniques[19, 20].
Several automated segmentation methods have been proposed to segment the airways from CT
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images. Evaluation of these methods has been problematic because, manual segmentation of
airways is a difficult and very time consuming task due to the complexity of the 3D structure
of the airways, specially, upper airways and airway tree. In addition, problem of automatic
upper aiways (nose, nasal cavity, paranasal sinuses, nasopharynx and pharynx) segmentation is
hard, because low contrast exists between the interior of the airway and its surrounding tissue
making very difficult the segmentation process[47, 48]. Without a prior model to constrain the
segmentation, most algorithms (including intensity and edge based techniques) fail. Similar
problems arise in other imaging applications as well, hindering the segmentation of the image.

Proposed algorithms to segment the upper airways are quite scarce, despite the need for a
complete segmentation of the entire airway. Some of them have no formal specification what
technique was used for segmentation, it seems that it was done manually. The result was used
for executing simulation of airflow and thus able to determine where the airflow resistance
affects the normal breathing process. The techniques found are presented below.

7.1.2.1 Vos et al. segmentation

Vos et al. [418] indicate that all patients underwent a low-radiation dose CT scan to evalu-
ate the upper airway geometry. Scanning was performed with patients awake, in supine and
neutral position during one breath hold at the end of a normal inspiration. The dataset contain
around 350–400 images with an in-slice pixel size of around 0.4mm and an inter-slice dis-
tance of 0.5mm. The segmentation of the upper airway is done using a commercial software
package (Mimics 9.1, Materialise). It is based on the Hounsfield unit (HU) assigned to each
pixel in the series of DICOM images. The HU is a value for the electron density of the tissue
and reaches from -1024 to 3071. Characteristic values on the Hounsfield scale are -1024 and
1000 HU, respectively corresponding with air and bone.

Mimics is made up of several modules that allow semi-automatic segmentation of muscles,
bones, airways, blood system and heart chambers among others. In addition, it allows to find
centerline of tubular organs. Mimics’s segmentation is based on a set of atlases and a crude
input mask (see Figure 7.1). The crude input mask is obtained using thresholding and the
segmentation is mainly performed using region growing or dynamic region growing.
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Figure 7.1: Example of Mimics’s muscle segmentation [adapted from
http://www.materialise.com].

However, as shown in Figure 7.2, they do not segment all of the upper airways, they initiate
segmentation from the oropharynx to the lungs.

Figure 7.2: Models of upper airway for three different patients.

Vos et al. perform an analysis of the 3D models obtained from the segmentation. They
define three anatomical parameters that can be measured in the upper airways: the volume,
the length and the minimal cross-sectional area. From these measurements they calculate the
mean cross-sectional area of the upper airways.

7.1.2.2 Van Holsbeke et. al. segmentation

In the same way that Vos et. al., Van Holsbeke et al. [59] indicate that the acquired DICOM
images were processed using a commercial software package (Mimics 15.0, Materialise). Sub-
sequently, a segmentation of the upper airway was done using the Hounsfield Unit (HU) of

http://www.materialise.com
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each voxel in the DICOM images as a discriminator parameter, making a binary distinction
between air and solid structures (in other words using thresholding segmentation). Segmen-
tation was performed from the nares to the first thoracic vertebra. The segmented region was
then converted to a 3D model using a contour interpolation algorithm to reduce the staircasing
effect. Using an appropriate smoothing algorithm with volume compensation, the 3D model
was converted to a smooth realistic model without loss of patient-specific morphology of the
upper airway. This model was then used for detailed analysis of the anatomical parameters,
volume meshing, and simulation.

Figure 7.3 shows an example of the upper airways segmentation results using Mimics.
Studied regions of the upper airway. The first segment (Zone 1) is formed between nostril to
bottom of inferior turbinate. Second segment (Zone 2) between bottom of inferior turbinate
to choanae. Third segment (Zone 3) between choanae to tip of uvula. Fourth segment (Zone
4) between uvula to epiglottis. Finally, fifth segment (Zone 5) between epiglottis to the first
thoracic vertebra.

Figure 7.3: Upper airway segmented and divided into regions.

Van Holsbeke et al. [59] indicate that the dataset used contain an average of 350 to 400
DICOM images, all images having an in-plane spatial resolution of 0.3 mm and reconstructed
with a slice increment of 0.5 mm.

7.1.2.3 Xu et. al. segmentation

Xu et. al. [58] made the upper airway segmentation using a software package based on
3DVIEWNIX. This software was developed by the Medical Image Processing Group of the
University of Pennsylvania and used for various operations of visualization, segmentation,
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registration, prefiltering, interpolation, standardization, and quantitative analysis of the MR
images.
After field inhomogeneity correction, the airway is segmented by manual identification of seed
pixels in selected slices, followed by semi-automated identification of airway voxels based
on a fuzzy connectedness algorithm. The segmented and interpolated 1-bit axial slices are
exported from 3DVIEWNIX for computational fluid dynamic (CFD) model preprocessing at
a voxel size of 0.2×0.2×0.2mm3. Figure 7.4 shows an example of upper airway segmented
model. Anatomical locations along the airway are shown for reference, including the overlap
region (OL), where tonsils below and lateral to the oropharynx and nasopharynx overlap the
adenoids superior and posterior to the nasopharynx, causing an area minimum.

Figure 7.4: Upper airway segmented model.

7.1.2.4 Jeong et. al. segmentation

Jeong et. al. [419] indicate that the scanned images are transferred to Bionix Body Builder
software (Version 3.0, CANTIBio Inc., Suwon, Korea). The segments of interest are recon-
structed into 3D images. The airway region is isolated from other structures by the built-in
threshold and segmentation function. A threshold level range of 0–800 is applied to the area
consisting of air. The frontal, ethmoidal and paranasal sinuses and oral cavity are erased by
manual editing.

Figure 7.5 shows an example of upper airway segmented. In addition, the regions of the
nasal airway are designated following the nomenclature proposed by Proctor [18]. Section 1
is located between the end of the nasal vestibule and the beginning of the main nasal passage.
The middle and inferior turbinate begin at Section 2. Section 3 is located in the middle of
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the nasal passage and shows the most convoluted cross-section. The two nasal cavities merge
posterior to Section 4, and Section 5 constitutes the end of the nasal passage and the beginning
of the nasopharynx. Section 6 is located at the velopharynx and Section 7 at the oropharynx.
Sections 8 and 9 are located up and downstream of the epiglottis, respectively.

Figure 7.5: Upper airway segmented example.

7.2 Dataset

Information provided by San Ignacio Hospital about 109 patients is used for the testing pro-
cess. For each patient, two sets of CT images were taken (awake and with simulated sleep).
The main characteristics are presented below.

7.2.1 Patient data

The information of the patients is presented in Table 7.1 and Figure 7.6.

Characteristics of the 109 patients

Age Average 57 ±34 years

Gender
Female 47 43.12%

Male 62 56.88%

Table 7.1: Patient’s characterization

The age’s patient distribution shown in Figure 7.6 present a wide range, between 23 and
81 years. The maximum frequency correspond to 65 years for six patients.
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Figure 7.6: Age’s patients

7.2.2 CT device specifications

The device used and its configuration is presented in Table 7.2.

Parameter Value

Manufacturer TOSHIBA

Modality CT

Institution name Hospital Universitario San Ignacio

Series description Neck 0.5 CE

Manufacturer’s model name Aquilion

Scan Options HELICAL_CT

Table 7.2: CT Scanner specifications

7.2.3 CT Metadata

The image characterization is done by means of the information present in the metadata of
the DICOM images. The metadata fields that were considered relevant were DICOM code,
DICOM parameter name, type of parameter (variable or constant) and value or interval related
to the parameter for each of the captures made. Table 7.3 presents this characterization (blue
values are variables and black values are constants).
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Table 7.3: CT scanner configuration parameters

DICOM code Name Type Value

0018|0050 Slice Thickness constant 0.5 mm

0018|0060 KVP constant 120

0018|0090 Data Collection Diameter variable [320, 500]

0018|1100 Reconstruction Diameter variable [178, 300]

0018|1120 Gantry/Detector Tilt constant +0.0

0018|1130 Table Height variable [40, 137]

0018|1150 Exposure Time (ms) constant 500

0018|1151 X-ray Tube Current variable [141, 428]

0018|1152 Exposure (mAs) variable [70, 214]

0018|1160 Filter Type constant EC

0018|1190 Focal Spot(s) constant 1.6/1.4

0018|1210 Convolution Kernel constant FC04

0020|0037 Image Orientation (Patient) constant L\P

0028|0002 Samples per Pixel constant 1

0028|0010 Rows constant 512

0028|0011 Columns constant 512

0028|0030 Pixel Spacing (deltax, deltay) variable [0.349, 0.586]

0018|1170 Generator Power variable [16, 51]

0018|9324 Estimated Dose Saving variable [10, 54]

0018|9345 CTDI vol variable [24, 42]

0028|0100 Bits Allocated constant 16

0028|1050 Window Center constant 40

0028|1051 Window Width constant 350

7.2.4 Slices number

The slices number obtained was variable among the patients. The range of slices number was
between 571 and 1001, the most usual value being 821 slices. This variation also affects the
spacing between slices (see Table 7.7), which was between 0.349 mm and 0.586 mm.
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Figure 7.7: Number of slices obtained per patient.

7.2.5 Ground truth (semi-automatic) segmentation

Based on the set of images, 10 images were selected to perform their segmentation in a semi-
automatic way and thus conform the reference set (ground truth). The segmented 3D model
of the upper airways was stored in metafile (.mha) format. The disconnected regions were
removed from the upper aiways geometry. The ITK-SNAP software was used to perform the
segmentation. ITK-SNAP is a open-source semi-automatic 3D medical image segmentation
package. This provides semi-automatic segmentation using active contour methods, as well
as manual tracing and delineation of regions [420]. First, this software provides four pre-
segmentation modes: Threshold: Voxels with intensity within a range specified by the user are
assigned to positive velocity values. This is the simplest method of pre-segmentation suitable
for easy tasks. Classification: the user draws examples of two or more kinds of tissue in the
image, and an automatic learning algorithm uses these examples to assign velocity values to
the rest of the image. Clustering: the image is automatically divided into two or more kinds
of tissue by clustering voxels with similar intensities. This approach requires the least amount
of information from the user, but is not always reliable. Edge Attraction: This approach finds
and accentuates the edges in the image. The speed image is close to 1 away from the edges
and close to 0 at the edges. Edge attraction is useful when the intensity of the image varies
within the structure of interest [416, 420]. Second, ITK-SNAP requires an initialization step:
in this stage, one or more seeds are placed inside of the structure of interest. These seeds are
spheres that will be grown to form the segmentation of the structure of interest in the next
step. Finally, evolution step: in this stage, the seeds evolve, expanding over the regions of the
positive portions of the speed image, and contracting over the negative regions [416, 420].

Table 7.4 presents the axial, sagittal, coronal view and the volume of ground truth for the
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images 1,3, 5, 7 and 9 respectively.

Table 7.4: Ground truth images

img Axial Sagittal Coronal Volume

1

3

5

7

9

7.3 Segmentation method proposed

According to the upper airways segmentation summary presented in section 7.1.2, all segmen-
tation methods are carried out manually and/or semi-automatically. In addition, in some cases
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the segmented regions not include all parts that composed the upper airways.

Based on the results obtained in the previous chapters, the segmentation method proposed
to segment the upper airways is presented in Figure 8. First, the original image is enhanced
using a multi-scale top-hat morphological operator. This process is done in a non-supervised
way. Second, the enhanced image is smoothed using an anisotropic diffusion algorithm. In
the same way, this algorithm is non-supervised and the parameters suggested by Mirebeau
et. al. [157] are used. Third, based on the smoothed image, principal curvatures using the
Hessian matrix are computed. The matrix is defined for each image point using the gradients
map. Fourth, similar to Canny’s proposal, non-maximum suppression is used to thin the cur-
vatures edge. The algorithm takes into account the curvature value and the curvature direction
defined by its eigenvectors. In addition, to reduce the number of holes, possible points of
junctions and/or bifurcations are taken into account. Fifth, a process of surface edges linking
is performed using an algorithm that evaluates the surface direction of the analyzed point and
its neighbors, as well as its intensity. Sixth, when performing the previous steps, a surface
without holes is not always obtained. Therefore a holes filling algorithm is applied to fill the
holes of the obtained surfaces. Finally, a region growing algorithm is used to obtain the upper
airways segmentation. It requires a set of seed points. This step was carried out in this way to
guarantee that the desired region of interest is obtained.

Figure 7.8: Upper airways segmentation method proposed.
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7.4 Evaluation measures

There are measurements that are useful for evaluating results derived from image segmentation
tasks. In this case, four overlap agreement measures and two overlap error measures are used,
each quantifying some fraction of source S (segmented image) and target T (ground truth
image) volumes where their regions agree or disagree.

The first overlap agreement measure is the “ target overlap” TO. It is a measure of sensi-
tivity. TO is the intersection between two similarly regions r in S and T divided by the volume
of the region in T , where | | indicates volume computed as the number of voxels:

TOr =
|Sr ∩Tr|
|Tr|

(7.1)

The second overlap agreement measure is the “union overlap” UO, or Jaccard coefficient.
It is the intersection over the union:

UOr = 2
|Sr ∩Tr|
|Sr ∪Tr|

(7.2)

Ther third overlap agreement measure is the “mean overlap” MO. It is called the Dice
coefficient. It is computed as the intersection divided by the mean volume of the two regions:

MOr = 2
|Sr ∩Tr|
|Sr|+ |Tr|

(7.3)

The fourth overlap agreement measure is the “volume similarity coefficient” VS. It is equal
to the differences between two volumes divided by their mean volume:

V Sr = 2
|Sr|− |Tr|
|Sr|+ |Tr|

(7.4)

To complement the above agreement measures, false negative (FN) and false positive (FP)
error measures are also computed. The range of these error measures is between zero and one;
a value of zero means a perfect overlap.

A false negative error for a given region is the measure of how much of that region is in-
correctly segmented. It is computed as the volume of a target region outside the corresponding
source region divided by the volume of the target region:

FNr =
|Tr \Sr|
|Tr|

(7.5)

Finally, a false positive error for a given region is the measure of how much of the volume
outside that region is incorrectly assigned that region’s label. It is computed as the volume of
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a source region outside the corresponding target region divided by the volume of the source
region:

FPr =
|Sr \Tr|
|Sr|

(7.6)

7.5 Experimental results

In order to evaluate the performance of the proposed segmentation method, several experi-
ments are carried out. In addition, a comparison is performed using two clasical segmentation
methods: Active Contours (AC) and Chan-Vese (CV).

First, active contours method, or snakes has shown to be an efficient technique for image
segmentation. The fundamental idea of active contour method is to start with a curve around
the object to be detected, and the curve moves toward its interior normal and stops on the true
boundary of the object based on an energy-minimizing model. The main drawbacks of this
method are its sensitivity to initial conditions and the difficulties associated with topological
changes like the merging and splitting of the evolving curve.

Second, to reduce the active contour drawbacks, Chan-Vese method is used. CV permits to
detect objects whose boundaries are not necessarily detected by the gradient. CV successfully
solved the minimization problem by using level set functions, which utilized the global image
statistics inside and outside the evolving curve rather than the gradients on the boundaries.
CV method has achieved good performance in image segmentation task due to its ability of
obtaining a larger convergence range and handling topological changes naturally.

The first tests were carried out using five images. Each of them was segmented in a semi-
automatically way, then it was manually corrected to obtain the reference image (see 7.2.5
section). The three previously mentioned methods were used: Active Contours (AC), Chan-
Vese (CV) and the proposed algorithm (BF). Table 7.5 shows the results for the first image
(image1).

The first row in Table 7.5 presents the axial, coronal and sagittal views, as well as a volume
view of the reference image. The second row presents the results obtained using the AC
method. The third row shows the results when using the CV method and the last row shows the
results using the proposed method (BF). As can be seen, the AC method does not completely
segment the regions corresponding to the nasal concha, inferior concha, ethmoidal sinuses
and nasal cavity. The CV method segments regions that are not connected, for example, the
right maxillary sinus. In addition, it does not completely segment the nasal cavity. The BF
method also presents problems in the nasal cavity, however, it correctly segments the other
upper airways regions.
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Table 7.5: Upper airways segmentation of image1 using AC,
CV and BF methods.

Img Meth. Axial Coronal Sagittal Volume

1

Ref

AC

CV

BF

To observe the behavior in the nasal cavity region with a greater level of detail, Table 7.6
shows the images corresponding to this region of interest. The view used is the axial one.
The first column corresponds to the reference image with the region of interest marked by a
box. The second column corresponds to the zoom of the region of interest associated with
the reference image. The third, fourth and fifth column correspond to the region of interest
obtained by using the segmentation methods AC, CV and BF respectively. As can be seen,
using the CV method, incomplete results in the left nasal cavity are obtained while with the
proposed BF method, better results are achieved.

Table 7.6: Nasal cavity segmentation using AC, CV and BF
methods.

Zoom-region Ref AC CV BF
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Table 7.6: Nasal cavity segmentation using AC, CV and BF
methods.

Zoom-region Ref AC CV BF

To verify the behavior of the segmentation methods, Table 7.7 presents the results obtained
for the image5. In this case, the visual results show a better performance using the AC method.
This is because the left nasal cavity is segmented in a better way with respect to the BF method.
The CV method generates unsatisfactory results.

Table 7.7: Upper airways segmentation of image5 using AC,
CV and BF methods.

Img Meth. Axial Coronal Sagittal Volume

5

Ref

AC

CV

BF

To perform a quantitative analysis, the evaluation measures previously presented were
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computed. The five test images were used and the results obtained are presented in Table 7.8.
The best results according to each measure for each segmented image are highlighted in red.
The BF method according to the Jaccard and Dice measures presents the best results, that is,
the overlap of the obtained segmentation is better than that obtained using AC and CV. With
respect to the similarity of the volume, the proposed algorithm presents a greater similarity
except for the image7. The values obtained for false negatives and false positives are close to
zero for the proposed algorithm, therefore the number of voxels that are out of the location is
small.

Table 7.8: Evaluation measures results.

Image Method Target Jaccard Dice Vol. sim. False neg. False pos.

image1
AC 0,9885 0,7383 0,8494 0,2814 0,0115 0,2554
CV 0,6398 0,5135 0,6786 -0,1212 0,3602 0,2777
BF 0,9506 0,9460 0,9723 -0,0455 0,0494 0,0051

image3
AC 0,9292 0,9106 0,9532 -0,0515 0,0708 0,0216
CV 0,6891 0,5037 0,6700 0,0556 0,3109 0,3481
BF 0,9724 0,9584 0,9788 -0,0130 0,0276 0,0149

image5
AC 0,8577 0,8563 0,9226 -0,1514 0,1423 0,0019
CV 0,8595 0,5482 0,7081 0,3521 0,1405 0,3979
BF 0,9847 0,9763 0,9880 -0,0066 0,0153 0,0087

image7
AC 0,9682 0,9305 0,9640 0,0087 0,0318 0,0402
CV 0,9386 0,7083 0,8293 0,2330 0,0614 0,2573
BF 0,9577 0,9561 0,9776 -0,0416 0,0423 0,0017

image9
AC 0,9151 0,9103 0,9530 -0,0829 0,0849 0,0057
CV 0,9630 0,7554 0,8607 0,2125 0,0370 0,2220
BF 0,9690 0,9618 0,9805 -0,0239 0,0310 0,0076

Avg
AC 0,9318 0,8692 0,9284 0,1152 0,0683 0,0650

CV 0,8180 0,6058 0,7493 0,1949 0,1820 0,3006

BF 0,9669 0,9597 0,9794 0,0261 0,0331 0,0076

In conclusion, the BF method proposed for image segmentation using principal curvatures
presents excellent results. It is necessary to improve the branches and junctions detection in
narrow regions, for example, in the nasal cavity, to increase the accuracy in the segmentation
results.
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Conclusions

In this dissertation, a novel approach to segment upper airways using principal curvatures is
proposed. To achieve this goal it was necessary to improve several elements within the set of
algorithms required for this purpose. In addition, it was identified that the resolution of the CT
images is fundamental for the algorithms of contrast enhancement, smoothing and closure of
gaps are not affected significantly.

Image enhancement is an important technique in the field of image processing, which is
useful for different applications. To efficiently enhance images, an algorithm using multi-
scale top-hat was applied showing very good results in CT images. In addition, the inclusion
of the proposed stopping criterion allowed this process to be carried out automatically. In
comparison with the existing criteria, it presents a greater stability since the curve is attenu-
ated consistently looking for its stable state. Therefore, it will always stop regardless of the
image characteristics (noise or blur). It was tested for both 2D images and 3D images and
always generated better results compared to Joao, Gambaruto, Tiago, and Sequeira proposal.
A disadvantage that the stopping algorithm presents is the time required for its calculation,
but this can be improved by using a region of interest to determine the image quality. Another
disadvantage is the space required for processing, so a possible solution is the inclusion of
parallel processing or including a pixelwise computation to all steps defined in the criterion.

The selected nonlinear diffusion algorithms allowed to define that the edge information is
preserved in a better way using the cEED algorithm. Isotropic algorithm also preserves the
edges but in the internal regions of the structures does not perform a good smoothing. The
CED and cCED algorithms do not properly preserve the edges and generate edges continuity
incorrectly.

NMS proposed algorithm that use the three selection criteria enables to get good connected
edge points in the 3D case. The probability of gaps is greatly reduced since a greater number
of voxels is maintained. The linking algorithm allows to discard the points that do not belong
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to the surface and leave a thinner contour that will be processed by the segmentation algorithm.
Proposed linking algorithm generates good results, however there are gaps in the contours.

The gaps are reduced by the algorithm when using the distance criterion between the contigu-
ous maxima founded.

A novel approach to image segmentation using principal curvatures in two-dimensional
and three-dimensional images is proposed. Individual points are extracted by using its gradi-
ent magnitude. Shape discrimination using Hessian analysis is considered into the detection
response measure. The partial derivatives used in the Hessian matrix are obtained by convolu-
tions with a polynomial approximation using Savitzky-Golay technique. This result is a single
scale-space description of the ridge position. For 3D ridges, the determination of the ridge
position can easily be extended from the 2D algorithm.

The generated results by the proposed algorithm to segment the upper airways are better
than those obtained with the active contour and Chan-Vese methods.

The principal curvatures generate more information than that obtained when using the gra-
dient, allowing a better analysis of the behavior of the surfaces. Specifically, the eigenvalues
and eigenvectors allow a more precise characterization of the surface.
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