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Abstract

The demand for Science, Technology, Engineering and Mathematics (STEM) graduates has been
increasing and is expected to continue growing. In accordance, educational programs are being
adapted. Schools are introducing programming at a younger age, but there are some difficulties.
Robots can help children to learn, as they make coding notions concrete, by showing the effects
of each block of code.

For schools, one of the main issues is the cost, since both robots and programming stations
tend to be expensive. A way to manage this is to group the students into teams and to make several
teams share the same robot and programming station. While sharing a robot for programming
tasks is quite feasible, the same cannot be said for programming stations, since they are in use
most of the time. An idea is to use smartphones or tablets, because they are less expensive. But
the smaller size of the screens makes creating computer programs harder.

In this project, the tangible programming language Tactode was created. It can be executed
in multiple commercial robots, namely Ozobot, Cozmo, Sphero and Robobo, but also in the
non-robotic platforms Scratch and Python. The programs are captured through a photograph,
whose code is compiled and sent to the desired target. This makes the use of hand-held devices
practical, while allowing them to be shared across teams. To keep the cost low, Ethylene Vinyl
Acetate (EVA) was used to make puzzle like blocks, that can be fitted together to create programs.

This solution was tested from its early stages, by conducting small experiments with students
of different age groups. A variety of robotic and non robotic targets was used, as well as different
smartphones, tablets and computers to compile the code. Earlier experiments helped to guide the
development, while the later ones showed that the system is viable and ready to be used.

Expansion of Tactode into new targets and capacities is simple, given the architecture of
the compiler. Development using the Ionic framework makes the Tactode application run in
multiple operating systems and platforms. The competitive manufacturing price of the blocks
makes it a real contender for schools. Plus, it is interesting, because it is flexible and multi-target,
while taping into the proven advantages of tangible systems, particularly for children.

Keywords: Robotics. Programming Education. Children. Tactile. Tangible. Visual. STEM
Education.

ACM Computing Classification System:

• Computer systems organization→ Robotics

• Software and its engineering→ Domain specific languages

• Software and its engineering→ Visual languages

• Hardware→ Tactile and hand-based interfaces
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Resumo

A procura por graduados em Ciência, Tecnologia, Engenharia e Matemática (STEM) tem vindo a
aumentar ao longo dos anos. Em concordância, os currículos educacionais estão a ser adaptados.
As escolas estão a introduzir a programação mais cedo, mas há algumas dificuldades. Os robôs
podem ajudar as crianças as aprender, dado que tornam as noções de programação concretas,
mostrando os efeitos de cada bloco de código.

Para as escolas, uma das maiores dificuldades é o custo, dado que os robôs e as estações de
programação tendem a ser caros. Uma forma de gerir o custo é organizar os alunos em equipas e
fazer várias equipas partilharem o mesmo robô e estação de programação. Enquanto que partilhar
um só robô em tarefas de programação é plausível, o mesmo não pode ser dito sobre as estações de
programação. Uma ideia é usar smartphones ou tablets em vez de computadores, uma vez que são
mais baratos. Mas o tamanho mais pequeno dos ecrãs nestes aparelhos dificulta a programação.

Neste projeto foi criada a linguagem de programação tangível Tactode. Pode ser execu-
tada em multiplos robôs, nomeadamente Ozobot, Cozmo, Sphero e Robobo, mas também nas
plataformas não robóticas Scratch e Python. Os programas são captados através de uma fo-
tografia, cujo código é compilado e enviado para a plataforma desejada. Isto torna prático usar
smartphones e tablets, permitindo ainda que estes aparelhos sejam partilhados entre equipas. Para
manter o custo reduzido, usou-se acetato-vinilo de etileno (EVA) para fazer peças tipo puzzle, que
podem ser encaixadas para criar os programas.

Esta solução foi testada desde o início, conduzindo pequenas experiências com alunos de difer-
entes idades. Foram usadas várias plataformas de execução, assim como smartphones, tablets e
computadores para compilar o código. As primeiras experiências ajudaram a guiar o desenvolvi-
mento e as últimas mostraram que o sistema é viável e está pronto para ser usado.

A expansão do Tactode a novas plataformas de execução e capacidades é simples, dada a
arquitetura do compilador. O desenvolvimento em Ionic faz com que a aplicação Tactode corra
em vários sistemas operativos e aparelhos. O preço competitivo de fabrico das peças torna-o uma
possibilidade real para as escolas. Além disso, é interessante, porque é flexível e multi-plataforma
e faz uso das vantagens dos sistemas tangíveis, especialmente para crianças.

Palavras-chave: Robótica. Ensino Programação. Crianças. Táctil. Tangível. Visual. Educação
STEM.

Sistama de Classificação Computacional ACM:

• Organização de Sistemas computacionais→ Robótica

• Software e a sua engenharia→ Linguagens de domónio específico

• Software e a sua engenharia→ Linguages visuais

• Hardware→ Interfaces tácteis e baseados em mão
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“Early childhood education is the key to the betterment of society”

Maria Montessori
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Chapter 1

Introduction

This chapter contains an overview of this dissertation, presenting the context of our work. It also

describes the structure of this document.

1.1 Context

Science, Technology, Engineering and Mathematics (STEM) are at the forefront of the current

industry demands. In fact, according to the United States Department of Commerce [1], in the

2005-2015 decade employment in STEM occupations grew at a rate of 24.4%, while for non-

STEM employment the growth was only of 4%. According to the same report, between 2014 and

2024, the expected increments in STEM vs. non-STEM jobs are 8.9% to 6.4%. This means that,

although at a slower rate, the portion of total employments devoted to STEM areas will continue

to increase.

The industry needs alone justify an investment in better STEM education, but there are other

factors. STEM workers have higher salaries, earning 29% more in 2015; they have lower unem-

ployment rates, less than half in 2015; higher educational attainment, nearly 75% STEM vs. 33%

non-STEM hold at least a college degree. Moreover, STEM graduates earn 12% more than other

graduates even if they work in non-STEM jobs.

In spite of the clear attractiveness of the STEM job market, students are not typically successful

and interested in these subjects in school. For example, according to the United States Department

of Education [2], only 16% of American high school seniors simultaneously are competent at math

and show interest in a STEM career.

Amongst STEM occupations in the United States, 49% are in computer and math fields [1]

and these are projected to grow 13.1% in 2014-2024, more than the average 8.9% of all STEM

jobs. When it comes to math, it is considered the hardest subject in school by the large majority

of students. As for computers, although current generations have grown with all sorts of digital

devices, the large majority of them is still only comfortable with them on a generic user level.
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They can play games, watch videos, use social media or chat applications, but that only makes

them content consumers, not content creators. For a lot of what is involved in creating such

contents, one needs to learn programming, which is still a difficult and avoided subject, even in

the current digital age.

Teaching robotics is a steady trend in education, with several studies showing its positive

effects. Karim et al. [3] showed that in K-12 eduction robots are being successfully used to teach

mathematics and physics, as well as creative thinking and problem solving, with students showing

more interest and a better attitude, although they also perceived a limited presence of this kind of

technology in the curricula. Chetty [4] focusses on strategies for teaching young kids to program

using robots, based on evidence that learning at an earlier age leads to future interest in Computer

Science. Avanzato [5] showed how robot design competitions can foster the interest of K-12

students in STEM careers. Preliminary results from a summer program described in Tewolde et

al. [6] show how building and programming robots can attract students for Engineering careers.

Benitti et al. [7] used a systematic literature review to conclude that robots are a flexible learning

tool in numerous STEM subjects, fostering team work and problem solving, and giving students

the opportunity to experience the Engineering Design Process.

There is also evidence of the advantages of teaching children to program, even more so due to

the ubiquity of technology. For example, Chetty [4] found evidence that learning to program at an

earlier age counteracts the usual aversion people have to this subject and leads to future interest in

Computer Science. Resnick et al. [8] pointed out that learning to program expands what children

can do with a computer, the range of what they can learn and their problem solving and design

capabilities. Furthermore, several European countries, including Portugal [9], have already added

computer programming fundamentals as a mandatory subject in their primary schools [10]. So

there is a clear need to invest in ways to make this subject more tractable for young children.

When introducing novices to programming, evidence shows that robots can be of great help.

In their systematic literature review, Major et al. [11] noted that 75% of the included literature con-

cluded that the using robots in introductory programming courses is an effective teaching tool. In

their study based on a college course of introduction to programming, Özüorçun et al. [12] showed

that the use of robots improved the performance of the students, noting that the robots were help-

ful in understanding the effects of each algorithm. Huei [13] used a robot in mini projects with

the Python language and concluded that it lead to higher creativity, problem solving and col-

laboration capabilities amongst the students, while helping them to understand the programming

concepts.

1.2 Motivation and Goals

In order to make it easier for groups of students to collaborate and, specially in the case of younger

children, to remove the distractions and technicalities of using a computer, we decided to explore

a tangible programming language, that is, one where the interface is physically manipulated. An

immediate benefit of this kind of language is that it complies with the recommendation of the
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American Academy of Pediatrics [14], that young children should spend a limited amount of time

with screens each day. Also, studies have shown that tangible interfaces have several advantages:

they provide a better collaborative environment and students tend to be more involved than with

their graphical counterparts.

In their 2007 article, Horn et al. [15] present two tangible programming languages as well

as the practical advantages of this approach, with initial studies revealing that children between

the ages of six and seven years old were capable of designing chains of actions, with some even

finding bugs. In a subsequent 2009 study [16], the authors conducted a museum experiment,

where the visitors classified the tangible and graphical interfaces as equally easy to use, but were

significantly more likely to interact and collaborate with the tangible interface. Later, in 2012 [17]

they proposed a hybrid approach between tangible and graphical interfaces in which teachers and

students chose the best fit for each situation, given that both have strengths and limitations.

In 2012, Sapounidis et al. [18] made use of a kit with both tangible and graphical interfaces

to measure children preferences, concluding that the tangible interface was simultaneously easier

to use and deemed as more enjoyable. Later, in 2015 [19], they conducted a formal study with

109 children between the ages of 6 and 12, where they compared the same programming language

with two different interfaces: tangible and graphical. The results showed that children using the

tangible interface made less errors, were more likely to effectively debug their errors and, in the

case of the younger children, needed less time to accomplish robot programming tasks. Also,

when interacting freely, the older children were more engaged, designed programs with higher

complexity and used a wider variety of commands, with the tangible interface.

In addition to tangible, we also opted for a visual approach to programming, instead of the

more typical text based languages. The advantages of such an approach are threefold. First,

by removing the language barrier, younger students can participate in the simpler programming

activities even before they can read. Second, visual clues are easier to learn, even for those who

can already read. Third, by removing words, our programming language becomes universal and

independent from the mother language of each particular student.

Building a tangible and visual language is the first main objective of this dissertation. But the

second is getting it to run on several educational robots as well as non robotic platforms. This

part is no less important in the learning process, its where the abstract becomes concrete and a

real execution environment helps the students to understand what each part of their program does.

But in order for it to work and be simple, we have to build a new application that will translate

our tangible programming language into something that the robot can actually execute. That is the

second main challenge we face.

The idea is to use the camera of the smartphone to capture the tangible code. Then, using

image processing, the application will detect each individual component of the program. At this

point, it will generate an abstract syntax tree of the program, whilst detecting eventual errors and

reporting them. If there are no errors, the application is in conditions to generate code that can be

executed in the desired destination platform, after which the translated program can be sent to the

robot and executed.
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Although we have several preselected robots and non robotic platforms that will be used to

test our concept, our objective is to create a language and an application that are as open and free

from platform restrictions as possible, in order to ensure that future addition of other platforms is

completely straightforward. Overall, this work strives for a tangible, visual, concrete, real, multi-

target, open and extendible programming solution, that will capture the imagination of young

students and foster their development into the software creators of tomorrow.

1.3 Dissertation Structure

In addition to the current introductory chapter, there are six chapters in this dissertation. Chapter 2

contains the state of the art of STEM education and presents educational programming languages

and robots. In Chapter 3, the problem we intend to solve with this project is stated, presenting

our goals. Chapter 4 presents the tangible programming language developed in this project. In

Chapter 5, we describe the implementation of the application that transpiles our tangible code into

code that is ready to be executed in each destination platform. Chapter 6 exposes the experiments

we conducted to test our solution with its intended users, as well as their results. Finally, Chapter 7

is devoted to some conclusions and future work regarding this project.
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Chapter 2

STEM Education, Programming and
Robots

This chapter describes the state of the art and presents related works in the fields of STEM educa-

tion, as well as educational programming languages and robots. We start with a general survey of

recent works in STEM education, but focusing on the use of robots and programming. Then we

present a comprehensive review of current educational programming languages. We also perform

a revision of the available educational robots.

2.1 STEM education

Improving the education of STEM subjects is as important as it is challenging. Even if, against

predictions [1], the job market demands for STEM jobs do not increase in the next couple of

decades, the success of technological and scientific evolution relies on the quality of the future

STEM graduates.

Research [20] shows that the large majority of neurons in the human brain develop up to the

age of three. Also, in the formation of active neural pathways, the absorption of information is

crucial. This means that early childhood learning shapes our future learning abilities. There are

various well known examples, in areas such as music, dance or sports, where the greatest started

at a very young age. But even though it may not be common knowledge, the current scientific

understanding of our brain and how people learn points to this being a universal characteristic of

all subjects, including those related to STEM.

The fact that starting young increases the probability of higher achievement, does not mean

that children should be introduced to knowledge that they are not prepared to acquire. In fact, that

is one of the common factors of under performance in school. A simple experiment where this

can be clearly observed is when a new kind of toy is first introduced to a child. Even if they show

initial interest in the toy, if they are not mature enough to play with it, for example because they
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have not mastered the motor skills to manipulate it, they will quickly loose interest. More, this

rejection of the toy can have permanent effects, as the child associates the unpleasant feelings of

failure with the toy.

Determining the age at which a child is prepared to grasp a concept or perform an activity

is hard, especially because it varies a lot. Although the age indications at most children aimed

products might lead us to believe otherwise, there are many different speeds of development, all

within the healthy range. Even the starting age of formal school is a reason for debate: Dee et

al. [21] present some evidence about the effect of school starting age on the students outcomes,

based on data from a Danish survey; Durand [22] shows the divergent opinions on this matter

with some governments looking to increase school starting age, while others are attempting the

opposite. This age issue coupled with the increased difficulty most students show towards some

STEM subjects are enough to make educators reconsider their strategies and search for better

methods. A possible path is to chose adaptable approaches. Much like there are different ways to

play with the same toy, there are different ways to introduce the same concept.

Among the semi recent educational methods is the incorporation of technology in schools. It

makes sense, given that technology has infiltrated nearly every aspect of modern life. But it is

also a way to capture the interest of the younger generations. Of course, it is important to use

technology that actually teaches, it should not be just a gimmick that grabs the attention of kids

without expanding their knowledge. In this respect, robots are a particularly good fit: they can

be successfully used to teach mathematics, physics, creative thinking and problem solving [3];

they are very adapt to teach young kids to program [4]; they lead to future interest in STEM

careers [5], particularly those in Engineering [6]; they foster team work, whilst giving students a

first experience of the Engineering Design Process [7].

Let us take all of these ideas together and focus on educational programming. There are

benefits in teaching programming at a younger age [4, 8] with several countries already taking

concrete measures and introducing it in their primary school curricula [10]. But it is also important

to evaluate when each child is ready to learn the abstract and complex notions of this field. Robots

provide a concretization of these notions and help to introduce them earlier on. But the language

with which the robots are programmed is fundamental in determining how early one can teach

to code. Ideally, this language would be simultaneously easy to start learning and capable of

expanding into more complex projects over time [23].

2.2 Educational Programming Languages

A lot of computer programmers started their learning path with what one may call a real program-

ming language, that is, a language designed for writing professional programs. This is certainly

the case for those that learn to code with a concrete and pressing objective in mind. Regardless,

if one simply searches the Internet for the best language to start learning, the usual suggestions

revolve around Python, C/C++, Java, JavaScript or Ruby.
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Higher education institutions also seem to prefer wide use programming languages as an in-

troduction to the discipline, as evidenced in [24]. Although some institutions do use educational

languages, such as Scheme or Scratch. Perhaps this preference is partly due to the need to

compress courses into a limited time period. But the expected maturity of students at this level

more than likely plays an important role as well.

In any case, when dealing with younger students, such as those from primary or middle school,

there are clear advantages in introducing an educational language first [8], as these languages

typically provide simpler syntax, activities designed to capture the interest of the young and low

entry level requirements. Even for students in secondary school, depending on their previous

experiences, this may be the case as well. Hence, given the context of our project, we have

chosen to introduce in the following subsections some educational programming languages aimed

at children and young adolescents.

At the end of this section, Table 2.1 presents a summary comparison of the educational pro-

gramming languages listed in the following subsections. For each language, the following features

are listed:

• Blocks - yes if the language is block based, no otherwise;

• Visual - yes if the language does not depend on text, but on visual clues, no otherwise;

• Tangible - yes if the language interface is tangible, no otherwise;

• Paradigms - programming paradigms supported by the language;

• Constructs - programming constructs that the language implements;

• Availability - wether the language is available for use online, download or purchase;

• Price - price of the language in case it is being sold;

• Number Blocks - number of blocks the language is shipped with, in case it is sold and

tangible.

2.2.1 Block Based Coding Languages

Block based coding languages are programming languages where one uses predefined code blocks

to compose a program. Eliminating the need to write the code, as happens in typical programming

languages, makes the process much simpler. The code blocks can be dragged into the program-

ming area or otherwise selected and linked to each other.

Developed by the MIT Media Lab’s Lifelong Kindergarten group, Scratch [8, 25] is prob-

ably the best know example of a block based language. It is also an event driven programming

language, that is, a language in which the program advances when certain events occur. Aimed

at children ages eight and up, it is a success story, as it is currently used by a variety of robots

(including Robobo) and games, introducing more and more children to coding. Its online com-

munity has millions of registered users and shared projects [26]. As one can see in the Scratch
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program example shown in Figure 2.1, although the user has to input some text, such as numbers

or variable names, most of the code is already written in the code blocks that one can drag to the

coding window. The distinct format of the blocks according to their type, is also quite helpful,

because it points the user towards the correct block to complete the code. It also avoids syntax

errors, because users can only fit blocks in ways that are syntactically correct.

Figure 2.1: An example of a Scratch program.

Snap! [27] was developed by Jens Mönig in the University of California at Berkeley. In the

words of the author it is an “extended reimplementation of Scratch”. The added features are the

ability to build customized blocks, as well as the implementation of first class lists, procedures,

objects and continuations, in which it was inspired by the Scheme programming language. The

idea is to use these added features to allow for a more serious introduction to computer science.

Figure 2.2 shows the creation of a for block, which is not predefined in the Snap! blocks.

Figure 2.2: A Snap! program defining a for block.

Also an extension of Scratch is the game development tool Stencyl [28]. Developed by

Jonathan Chung, it allows users to create their own Flash games for computers or smartphones,

with the advantage of portability, that is, the same project can be exported into many different

platforms. The IDE includes three components, the Scene Designer, that can be used to create the

worlds for the game, the Actor Editor, that is used to create the game actors, and the Code Editor,

where the game can be programmed by dragging code blocks. Figure 2.3 shows an example of a

Stencyl game being developed.

Developed by Google, Blockly [29, 30, 31] is typically seen as another example of a block

based language, quite similar in its format to Scratch. However, it is actually a library and an

editor that can be used by developers to create their own block based languages. As shown in
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Figure 2.3: An example of a Stencyl game.

Figure 2.4, Blockly based languages usually have a text language generation feature, which can

be used to create JavaScript, Python, PHP or Dart code. This ability can be particularly

helpful for students wishing to transition from block based to text based languages. Even before

they are ready to fully use text based languages, students can generate most of their code with

blocks and then make small changes in the translated version of the code.

Figure 2.4: A simple Blockly program.

Microsoft’s contribution to the block based coding languages comes with MakeCode [32].

Like Blockly, it can be translated to JavaScript. Also, users may chose to write their pro-

grams directly in JavaScript. It comes with a simulator that can help users to immediately see

what their program does. Another interesting feature is that it can be used to program the very

popular game Minecraft, as evidenced in Figure 2.5.

Figure 2.5: A MakeCode chicken generation program for Minecraft.
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Although it is an event driven block based programming language, Alice [33, 34, 35] also

belongs to the object based paradigm, which is based on the concept of objects with their attributes

and procedures. Other distinguishing features of Alice are that it comes with its own IDE, shown

in Figure 2.6, and it is typically used to create computer animations with 3D models. Also, used

together with the Netbeans IDE, Alice code can be converted to Java. This is very helpful for

introducing students to object based languages as they can move on to the staple of object oriented

languages once they have matured enough.

Figure 2.6: The Alice IDE with some code.

Another possible introduction language to the object oriented paradigm is Etoys [36]. The

first step to create an Etoys program is to draw the objects one wishes to manipulate. Then, using

the code blocks available, one can dictate the behavior of our drawn objects. For example, the

program shown in Figure 2.7 tells the car to follow the green line.

Figure 2.7: An Etoys example program.

The developers of Scratch were inspired by Alice and Etoys and intended to make the

entry level of their language even lower while also making it appropriate for a wider variety of

projects. It is fair to say that they have achieved these objectives. However, there is still room

for improvement, as evidenced by the Stencyl and Snap! extensions of Scratch. Also,

this was possibly part of the reason Google and Microsoft provided their own languages clearly
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resembling scratch, but with further additions. For example, by providing the ability to translate

to JavaScript, they provide a bridge towards text based programming languages. Recognizing

this need for improvement as well as some of the better features of Blockly is probably one

of the reasons why the development of recently released Scratch 3.0 is based on Blockly,

which as the big plus of allowing it to run directly on tablets and smartphones.

2.2.2 Visual Programming Languages

In the context of this project, a visual programming language is one where there is no significant

amount of text, that is, a programming language where reading or writing are not requirements.

The programmer may use a simple word they know to refer to a variable or object in their program,

but the syntax of the language itself contains no words, its made up of symbols or pictures.

Depending on the source, different definitions may be found. For example, according to the

Wikipedia page on the subject [37] a visual programming language is one where the user does not

need to write the code and can manipulate the elements of the language graphically. This includes

all the languages in the previous section, while our definition does not. The reason for this is that

we feel the word visual points towards images or icons and not text. Also, although eliminating

the need to write greatly simplifies the process of coding, as there are no syntax errors, if the

programming language elements only have text, then the user still needs to know how to read. So

these languages are still text dependent, going against the frequent use of the expression ‘visual

programming language’ in opposition to ‘text based programming language’.

As the name implies, ScratchJr [38] is a version of Scratch aimed at younger children,

from five years of age. It comes in the form of a mobile application for tablet devices. The main

difference is the substitution of the text with symbols, as can be seen in Figure 2.8. This is the

primary reason for the drop in age, since reading is no longer a requirement. Unfortunately, with

its simplification, ScratchJr also lost a lot of its power. The absence of conditional blocks, for

example, highly constricts what the programmer can do. We do recognize a possible reasoning

behind this, since as the child matures enough to be introduced to new coding constructs, they are

probably ready to transition into Scratch. It is still a language change though.

Figure 2.8: An example of a ScratchJr program.
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Kodu [39] was developed by Microsoft’s FUSE Labs for their operating system and their con-

sole. It is an IDE where, through element selection, the user can program games in 3D revolving

around an eponymous robot. As shown in Figure 2.9, text is used, but it is made up of single words

and they are accompanied by illustrative images. One of the key characteristics of this language

is the fact that the behavior of the robot is programmed by rules. In practice this means that one

needs to specify a list of events and corresponding actions. For example, to make the robot move

according to a keyboard, the rule would be ‘when keyboard do move’, and the user simply needs

to add the keyboard and the move blocks in their corresponding slots.

Figure 2.9: Selecting a code block in Kodu.

Lego started their Mindstorms (named after the Seymour Papert [23] book) robots line back

in 1998 and they have always been programmable. In addition to the officially supported languages

there have been numerous others. Together with the current Mindstorms generation, EV3 [40],

released in 2013, Lego also released mobile and computer applications, with the design shown in

Figure 2.10. The interface is similar to that of Scratch and other block dragging languages, but

the symbols and images used are particular to this language. In Figure 2.10 we can see a sensor

block and some motor blocks, but also blocks to create loops and to test conditions, which are very

emblematic of programming languages.

Figure 2.10: Programming the Lego Mindstorms EV3 robot.

Developed by Danny Yaroslavski, Lightbot [41] is a puzzle game that teaches programming

while the user completes each level. Although it is not exactly a programming language it does
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come with its own programming blocks, hence the inclusion in this section. As shown in Fig-

ure 2.11, the objective is to move a robot through a maze, lighting the blue squares along the way.

In order to do this, the user can use basic blocks that turn on a light, or make the robot move or

turn. More interestingly, there are programming constructs such as procedures and recursion, so

that the same result can be achieved with less blocks. The small increments in difficulty at each

new level, help the user learn how to use these coding blocks in a constructive way.

Figure 2.11: A level of the game Lightbot.

Like Lightbot, the Fisher Price Think & Learn Code-a-Pillar [42] is also a puzzle game

that teaches very basic programming concepts. As can be observed in Figure 2.12 the objective

is to guide a caterpillar to its destination, using visual blocks that can be dragged. However,

it is aimed at children from four years of age, and for that reason the programming concepts

it teaches are simple. The main take away is the effect of each of the thirteen different blocks

(distributed between moving, overcoming obstacles and animations) and when it should be used

to form the correct sequence. This a good basis to build on and some of the puzzles are already

quite challenging for the intended age group. Still, it would be interesting to see the introduction

of concepts such as repetition for the more advanced children.

Figure 2.12: One of the Code-a-Pillar application challenges

There are other applications with puzzle like levels aimed at teaching children and your ado-

lescents to program, such as Coding Safari [43], SpriteBox [44] or codeSpark [45], to
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name a few. New applications seem to be appearing all the time, which goes to show how much

and how early programming is entering the lives of children.

Most of the languages exemplified in this subsection, in addition to removing text, also sim-

plified the programming constructs available, in comparison to languages of the previous section.

They also seem to be more dedicated, less project independent. But the EV3 language, although

entirely dedicated to the corresponding robot, is quite capable. Unfortunately, some of its blocks,

such as the motor controlling ones, are somewhat complex.

2.2.3 Tangible Programming Languages

A tangible programming language is one where the screen has been removed and replaced with

something that can be physically manipulated by the programmer. The most frequent examples

are made up of blocks or pieces that the user places together to obtain the program. In this sense,

they are block based languages that instead of being graphically dragged or selected are physically

grabbed and placed in the desired spot.

A formal comparative study of tangible and graphical languages aimed at children [19] re-

vealed that there are several advantages of using a tangible interface, especially for younger

children up to ten years of age. Two robot programming languages were used: the tangible

T_ProRob, see Figure 2.13, made up of cubes with symbols that can be combined, and its graph-

ical isomorphic equivalent V_ProRob, see Figure 2.14, that uses blocks with the same symbols.

Figure 2.13: The T_ProRob blocks.

Figure 2.14: The V_ProRob blocks.
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A total of 109 children randomly split into pairs according to five different age groups per-

formed two tasks, and a third task was given only to the older children. All groups used both

interfaces, but half started with the tangible one and the other half with the graphical one. The

measures observed were task completion time, error percentages, and debugging, that is, the per-

centage of error correction once an error was found. Performance was better across all measures

for the tangible interface:

• Except for the oldest group, the completion time was better;

• There were less errors across all tasks and all groups;

• There was more partial and full debug.

But better performance is not all, the tangible interface revealed other advantages:

• Both students collaborated instead of one programming and the other observing;

• In free interaction with the languages, students interacted for longer periods of time, used a

wider language vocabulary and, in the case of the older ones, achieved higher complexity;

• Students considered it more attractive, more enjoyable and, for younger children, easier to

use.

Typical disadvantages of tangible languages are the higher cost and lack of portability. This is

mostly related to the materials used, which very often include electronic components, and to the

fact that the language needs to be physically replicated across multiple classrooms or schools.

Among the most influential tangible programming languages is AlgoBlock [46]. As shown

in Figure 2.15, it is made up of cubes that can be connected together to form the program. The

cubes are connected to a computer where the program is executed in a graphical interface. The

cubes contain several commands, like move or turn, and there are also control blocks, such as

condition testing or loop forming. Another interesting feature of these blocks is the presence of a

parameter switch in some of them.

Figure 2.15: Children using the AlgoBlock language.
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Also very significant is the language Electronic Blocks [47]. Shown in Figure 2.16, this

language is composed of Lego Duplo Primo blocks with electronics on the inside. There are three

sensor blocks in the left, four logic blocks in the center and three action blocks on the right. The

code is created by attaching the blocks. For example, if one attaches a sound action block to a

touch sensor block, then a sound will play when the sensor is touched. Compared to AlgoBlock

this language is more limited, because it contains no control blocks. But it is self contained and

completely eliminates the need for a computer. Plus, the blocks simultaneously make up the

language and a robot.

Figure 2.16: All the different components of Electronic Blocks.

The Cubelets [48, 49, 50] robot seems to have been inspired by Electronic Blocks.

Shown in Figure 2.17, these electronic cubes can be attached to form a variety of robots. The

behavior of the robot depends on the cubes attached and their positions. There are four black

sensor cubes: brightness, distance, temperature and knob. The five transparent ones correspond

to actions: move, flash light, rotate, speaker and bar graph. The others are what they call think

Cubelets: inverse, passive, maximum, minimum, threshold and blocker. There are also cubes

for battery and Bluetooth. The main disadvantages of this kit are its price and the lack of typical

programming constructs such as loops or conditional blocks. On the other hand, it is self contained

and it makes use of the fun idea of building the robot and programming it at the same time.

Figure 2.17: A Cubelets robot and some other blocks.

In the same genre of programming while building the robot, but aimed at children between

three and six years old, the Fisher Price Think & Learn Code-a-Pillar [51] can be seen in
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Figure 2.18. It is very similar to the digital edition mentioned in the previous section. Each block

has a specific function, illustrated by the symbol on top; two USB connectors (one male and one

female); and some kind of electronic components on the inside. The blocks connect linearly to

each other and to the head of the caterpillar, which has a female USB connector and a power

button, that is used to begin executing the sequence represented by the blocks. As part of the

more advanced set of blocks, there is a repeat block, where one selects the number of repetitions

(between 1 and 5) using a knob. Unfortunately, only one block can be repeated, the one that

is placed immediately before the repetition block. This is very limited, as the children cannot

program the robot to repeat a sequence of several movements, that is they cannot create loops.

However, given the target age group, it is still an interesting tangible programming language/robot.

Figure 2.18: A Code-a-Pillar robot with some of its component blocks.

The language TagTile [52], which was created to program the robot KUBO, uses only RFID

emitters in its pieces. The puzzle pieces shown in Figure 2.19 are arranged in a linear sequence

with specific pieces denoting the beginning and the end. Afterwards the robot goes over each piece

in succession, recognizing the corresponding instruction. Once this is done, if the robot is placed

on top of a run piece, it will execute the program previously read. In addition to the move, turn,

sound and light pieces, there are also loops. Plus it is possible to use one procedure.

Figure 2.19: The TagTile puzzle pieces.

Quetzal and Tern [15] are the first languages in this list whose blocks have no electronic

components. Quetzal, shown in Figure 2.20 is a language used to control the Lego Mindstorms

RCX edition robot. Its interlocking plastic pieces include conditional blocks, infinite loops formed
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through a merge statement, concurrent tasks and parameters. Shown in Figure 2.21, the puzzle

like wooden blocks of Tern contain conditional statements, loops, subroutines and parameters.

There are also coiled wires that form the goto statements of text based languages. With Tern the

users can program virtual robots running on a computer.

Figure 2.20: A program written in Quetzal.

Developed after Quetzal, one of the objectives of Tern was to make the users focus more

on programming and less on building robots, for which the authors made a case defending an

hybrid approach in which the computer runs the tangible code, similarly to AlgoBlock. This is

an interesting approach since it is the opposite of most robot programming solutions, in which the

execution environment is tangible and the coding one is graphical.

Figure 2.21: A program written in Tern.

T-Maze [53, 54] also employs no electronics in the language elements. As can be seen in

Figure 2.22, there are three electronic sensors (button, temperature and light), and they have cor-

responding cubes which are used together with other cubes to program. The cubes have images

illustrating their type, like the start cube and the end cube with their doors. There is also a ‘normal’

cube, loop cubes and movement cubes. To program with T-Maze, one builds a maze using the

cubes. The maze is captured in a camera and the computer vision system TopCodes (circular

markings on the cubes) is used to translate it into the computer. The idea is that the code should

lead a character in the computer from the start to the end of the maze. Whenever this character
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hits a part of the maze with a sensor cube, the user must manipulate the corresponding sensor for

the character to proceed.

Figure 2.22: The T-Maze blocks, a maze and the sensors.

Osmo is a brand of tangible meets digital educational toys. The general idea is to use the

camera on a tablet to capture the tangible pieces, so that the children can interact with what is on

the screen by manipulating the pieces. Three of their toys are dedicated to teaching children the

basics of programming and can be acquired in a set called Coding Family [55], part of which

can be seen in Figure 2.23. The first toy of the set, in addition to the typical sequencing, makes use

of parameters, loops and conditionals. The second toy introduces subroutines and nested repeats.

Finally, the third toy teaches synchronization and makes use of all the previous games constructs to

create more complex programs. This is an impressively complete set of programming constructs

as well as an interesting use of the graphical interface with tangible tiles, especially considering

that the pieces have no electronic components.

Figure 2.23: The Osmo Coding Family base and some of its blocks.
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Code Bits [56] is also made up of puzzle pieces without any electronics. In fact, as shown

in Figure 2.24, they are just pieces of paper. In addition to these pieces there are also mazes

printed in sheets of paper and an accompanying mobile application. The user connects the pieces

in succession in such a way that will lead a character from the beginning to the end of the puzzle,

much like T-Maze. The camera of the phone is used to capture parts of the code, which it then

executes in augmented reality over the maze.

Figure 2.24: The Code Bits puzzle pieces, one of the mazes and the mobile application.

The current tendencies in tangible programming languages are mostly moving away from

electronics in pieces, thus reducing the cost, and into image processing and computer vision tech-

niques, to capture the tangible code so that robots or applications can run it. This seems to be a

good idea, since it helps to eliminate the main disadvantages of tangible code, while keeping all

its positive aspects.

2.3 Educational Robots

Educational robot kits are very common these days and many of them are being sold directly to the

families, instead of just to schools. Together with mobile applications or other ways to program

the robots, they usually have tutorials so that children can learn to code while playing. In order

to attract more buyers, cost reduction is a common concern. With lower costs, schools can buy

packs of robots and families can also join the fun without risking bankruptcy. The widespread use

of mobile devices also contributes to the success of many of these robots.

Perhaps the best know educational robot kit is the Lego Mindstorms. As mentioned before,

the current EV3 [57] edition, shown in Figure 2.25, comes with a mobile or computer application

that can be used to program it. But the wide community of users have contributed to many other

ways to program these Lego robots. They come with color, touch, ultrasonic and gyroscope sen-

sors. Actuators are compromised of motors, lights, a speaker and a display. For communications

it comes with Bluetooth and infrared remote control. Together with the fact that it is compatible

with regular Lego pieces and can be built into an infinity of models, this is a very powerful robotic

kit. The selling price is 400e.

Developed by Anki, Cozmo [58] is a robot that appears to have a personality, like when it gets

bored if ignored, or when it is a sore looser. Pictured in Figure 2.26, it comes with three cubes that

it can pick up and use to play games. Equipped with a gyroscope, an accelerometer and a VGA

camera, one of the key features of Cozmo is its facial recognition capabilities. In fact, much of the

users interaction with this robot is similar to owning a pet, which you have to feed and exercise.
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Table 2.1: Educational Programming Languages Comparison

Language Blocks Visual Tangible Paradigms Constructs Availability Price Quantity

Scratch yes no no
procedural,
event
driven

sequences, events,
flow control, lists,
variables, procedures

online 0e ∞

Snap! yes no no
procedural,
event
driven

sequences, events,
flow control, lists,
variables, procedures

online 0e ∞

Stencyl yes no no
procedural,
event
driven

sequences, events,
flow control, lists,
variables, procedures

download 0e ∞

Blockly yes no no procedural
sequences, flow
control, procedures,
variables, lists

online 0e ∞

MakeCode yes no no
procedural,
event
driven

sequences, events,
flow control,
procedures, variables,
lists, arrays

online 0e ∞

Alice yes no no
object
oriented,
procedural

sequences, flow
control, procedures,
functions, objects,
variables

download 0e ∞

Etoys yes no no procedural
sequences, flow
control, procedures,
variables

download 0e ∞

ScratchJr yes yes no event
driven

sequences, events,
loops tablet app 0e ∞

Kodu yes yes no
rule based,
event
driven

sequences, events,
flow control download 0e ∞

Mindstorms yes yes no imperative sequences, flow
control, variables download 0e ∞

Lightbot yes yes no procedural sequences,
procedures

mobile
app,
online

0e ∞

Code-a-Pillar
app yes yes no imperative sequences tablet app 0e ∞

V_ProRob yes yes no imperative sequences, flow
control none - ∞

T_ProRob yes yes yes imperative sequences, flow
control none - ?

AlgoBlock yes yes yes imperative sequences, flow
control none - ?

Electronic
Blocks

yes yes yes imperative sequences none - ?

Cubelets yes yes yes imperative sequences purchase 250e 12
Code-a-Pillar yes yes yes imperative sequences purchase 60e 8

TagTile yes yes yes procedural sequences,
procedures, loops

purchase
with robot 256e 46

Quetzal yes yes yes imperative sequences, flow
control none - ?

Tern yes yes yes imperative sequences, flow
control none - ?

T-Maze yes yes yes imperative sequences none - ?
Coding
Family

yes yes yes procedural sequences, flow
control, procedures purchase 159e 42

Code Bits yes yes yes imperative sequences none - ?
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Figure 2.25: The Lego Mindstorms EV3 robot in two of its many possible forms.

It can move around, uses a display that shows his eyes, with several different expressions, and it

can also speak. But more importantly for us, it can be programmed, either using its own mobile

application with a version of ScratchJr or Scratch, or using its SDK. It is sold at 150e.

Figure 2.26: Cozmo and its cubes.

The robot KUBO [52] was already mentioned in the previous section, due to its TagTile pro-

gramming language. Shown in Figure 2.27, this little robot can detect and recognize the TagTile

puzzle pieces using RFID technology. It can also move while balancing on its two wheels, make

sounds and change the color of the LEDs on its neck. Its price tag is 324e.

Figure 2.27: The robot KUBO going over a program in TagTile.
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KIBO [59, 60] is a funny looking robot, as can be seen in Figure 2.28. It can be programmed

with a set of wooden blocks, has sensors for sound, light and distance, and in addition to the motors

that control its wheels, it also has LEDs as actuators. The robot also has a scanner to detect the

barcodes in the wooden programming blocks, which is how it recognizes the language. It comes in

four robotic kits with prices between 190e and 420e, depending on the number of coding blocks

included.

Figure 2.28: The robot KIBO and some of its tangible programming blocks.

Developed by Makeblock, mBot [61] comes in a construction kit made up of 40 parts and

intended to stimulate invention skills in children. The constructed robot is pictured in Figure 2.29.

It is equipped with light, ultrasonic and line following sensors. For actuators, it has a buzzer, a

LED and two motors for its wheels. It also has four ports that can be used to connect additional

sensors. It can be programmed with the language mBlock, which is based on Scratch. The

selling price is 80e.

Figure 2.29: The mBot robot.

The Lego Boost [62] robotic kit, is aimed at younger children then Mindstorms. It is

equipped with color and distance sensors, plus some motors. It can be programmed with a mobile

application specific for the effect, whose language is block based and visual. It is sold for 160e.

Its main advantages are the fact that it can be built into multiple robots, some shown in Figure 2.30,

and that it is compatible with Lego bricks. While the limited availability of sensors and actuators

are the principal disadvantages.
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Figure 2.30: The Lego Boost robot in three of its possible shapes.

Thymio [63, 64, 65] was built to be a fully featured, reasonably priced educational robot.

Shown in Figure 2.31, it has nine infrared proximity sensors, five capacitive touch buttons, an

accelerometer, a thermometer and a microphone for sensors. It also has 39 LEDs, two motors and

a speaker for actuators. For communication it is equipped with an infrared receiver and a wireless

internet card. It is also able to hold a pencil and pull a trailer. Finally, it has a microSD card reader.

To program it one can use its own visual programming language, Blockly or Scratch. It is sold

for 155e. The main advantages are its many features and the fact that it can be programmed with

multiple languages.

Figure 2.31: The robot Thymio.

Dash [66] is an educational robot that comes with several accessories and even a little friend

named Dot, many of which are displayed in Figure 2.32. It has sound and distance sensors,

motors, speakers and several LEDs. It is also equipped with infrared receivers and transmitters

for communication. There are quite a few mobile applications to interact with Dash and it can be

programmed using Blockly or the Swift Playgrounds application from Apple. It also comes

with accessories that make it Lego compatible, which is a nice feature. Starting at 130e, the basic

kit does not include Dot and comes with a single accessory. To get the complete pack, one needs

to spend 230e.

Ozobot evo [67] is a tiny robot with some interesting features. As shown in Figure 2.33 it is

about the size and shape of a ping pong ball, flattened at the bottom. It has proximity sensors and

an optical sensor at the bottom with which it detects the color of the lines beneath it. For actuators,

it has motors, LEDs and a speaker. It can be remote controlled with a mobile application and
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Figure 2.32: The robot Dash and its little companion Dot.

programmed with two languages: Ozoblockly, a language created using Blockly to program

Ozobot; or Ozocodes, which are color codes that change the behavior of the robot, like making

it go faster, slow down or rotate. This color coded language is actually the most interesting feature

of the robot. The Ozobot evo is sold for 100e, while the less featured Bit version, which does

not have Bluetooth or proximity sensors, costs 60e. There are also discounts for schools buying

packs with several robots.

Figure 2.33: The Ozobot and its color coded programming language.

The educational robot Sphero [68] is made by the eponymous company. Pictured in Fig-

ure 2.34 in its SPRK+ version, it is about the size and shape of a tennis ball. It is equipped with

an accelerometer and a gyroscope as sensors. For actuators, it has LEDs and motors. It can be

remote controlled by a mobile application and communication is done via Bluetooth. There is

also a mobile educational application to program the robot, which can be done in three different

languages: drawing, block based and JavaScript. The drawing language simply tells the robot

how to move and which color to display. The other languages are fully featured. There are tuto-

rials with increasing difficulty levels for all languages and there is also a lot of community shared

programs. The best qualities of the robot come precisely with its educational application. It is

priced at 110e.

The last robot in our list is the smartphone robot Robobo [69, 70], pictured in Figure 2.35.

The robotic base is equipped with two motors for the wheels and, for the phone holder, tilt and pan
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Figure 2.34: The robot Sphero in its SPRK+ edition.

motors. In terms of sensors, the base has nine infrared distance sensors and four odometric sensors

in the motors. The smartphone, depending on the model, has two cameras (front and back), prox-

imity, light and temperature sensors, gyroscope, accelerometer, magnetometer, GPS, microphone

and touch screen. Plus, it also has a speaker and an high resolution display for actuators.

Figure 2.35: A Robobo robot.

Being a smartphone robot, despite the low power processor on the base, equipped with a mid-

range phone, Robobo has very high processing capacity. It also has a Bluetooth connection on

the base, and 3G/4G, WiFi and USB on the phone.

In terms of programming, Robobo can be programmed with block based languages, using a

Scratch extension or their own IDE based on Blockly. Advanced users can program it with

the Robotic Operating System (ROS) in Python or C++. They also have a Java native framework

that allows users to build applications for the Android smartphone that can interact with Robobo.

The developers of Robobo already made two applications, one for programming with Scratch

and the other for ROS. They also made a series of interactive lessons that can be used in schools to

teach students to program Robobo. The price tag is 363e.

Table 2.3 presents a summary of all the robots we have listed. There are many options for ed-

ucational robots, and we have only covered the most relevant. Prices vary and so do the features,
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in most cases one increases with the other. Most programming languages depend on mobile ap-

plications, but there are some tangible or screen free options as well. With all the robots available

and the increasing interest from parents and schools, many kids are having early access to these

devices.

2.4 Conclusion

Nowadays there are plenty of options to support STEM teaching. Even stores started having their

STEM corners, with experiments, robots and games dedicated to these areas. For programming

and robotics, the number and versatility of the current offer is already very interesting. Which

is good, because parents and schools can make their choices from a wider variety and give their

children toys that will amuse them while teaching.

When it comes to educational programming languages, experiments show that the tangible,

visual, block based combination is the best overall. It provides a better collaboration environment,

engages kids for longer periods of time, lowers the entry barrier and leads them to achieve the best

results.

As for the robots, having more features without increasing the price seems to be the current

challenge, since the inexpensive models usually have less sensors and actuators.
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Table 2.3: Educational Robots Comparison

Robot Age Price Coding Processor Sensors Actuators Comms Others

EV3 10+ 400e

EV3,
RobotC,
Scratch, C,
C++, C#,
Java,
Python,...

ARM926EJ-
S core
@300MHz

touch, color,
infrared

178×128
Monochrome
LCD, 3
motors

USB,
WiFi,
Bluetooth

remote
control,
microSDHC,
multiple
robots

Cozmo 8+ 150e
Scratch,
ScratchJr,
Python

no info

camera VGA
30fps, cliff,
encoders and
IMU

speaker,
128×64
OLED
display,
motors for:
head, lift,
threaded
wheels

Bluetooth,
IR
receiver,
IR
transmitter

facial
recognition,
programmed
like pet,
plays games

KUBO
4-
10 256e TagTile no info RFID motors, RGB

LEDs WiFi
includes
tangible
language

KIBO 4-7 190e-
420e

wooden
blocks no info

sound, light,
distance,
barcodes

motors,
LEDs —

includes
tangible
language

mBot 8+ 80e mBlock
based on
Arduino
Uno

light,
ultrasonic, line
follower

buzzer, RGB
LED, 2
motors

—
4 ports for
more
sensors

Boost
7-
10 160e visual

ARM
Cortex M0
@48MHz

color, distance motors, RGB
LED Bluetooth multiple

robots

Dash 5-8 130e-
230e

Blockly,
Swift

ARM
Cortex M0

3
microphones,
3 distance
sensors

speaker,
motors, RGB
LEDs

Bluetooth,
2 IR
receivers

multiple
accessories

Thymio 6+ 155e

visual,
Blockly,
Scratch,
text

PIC24
@32MHz

5 capacitive
touch buttons,
accelerometer,
5 proximity, 2
ground,
microphone,
temperature

2 motors, 39
LEDs,
speaker,

USB,
WiFi, IR
receiver

pencil
holder,
trailer hook,
memory
card

Ozobot 8+ 75e Blockly,
Ozocodes

no info 4 proximity, 1
optical (color)

2 motors,
LEDs,
speaker

micro
USB,
Bluetooth

remote
control
mobile
application

Sphero 8+ 110e
drawing,
block based,
JavaScript

ARM
Cortex

accelerometer,
gyroscope

2 motors, 2
RGB LEDs,
1 blue LED

Bluetooth

remote
control
mobile
application

Robobo 10+ 363e
Blockly,
Scratch,
ROS, Java

base: low
capacity
phone:
depends on
model

base: 9 IR
proximity, 4
odometric
encoders
phone: 2
high-res
cameras,
proximity,
light,
temperature,
gyroscope,
accelerometer,
magnetometer,
GPS,
microphone,
touch screen

base: 4
motors, 9
RGB LEDs
phone:
speaker,
high-res
LCD screen

base:
Bluetooth
phone:
3G/4G,
WiFi,
USB

includes
interactive
lessons,
accessories
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Chapter 3

Problem Statement

This chapter formalizes the problem we wish to solve. We begin with a summary of the gaps in the

existing solutions, which we intend to explore, and end with an in-depth description of our goals.

3.1 Introduction

According to Seymour Papert [23] an ideal educational programming language should have “low

floors”, in the sense that new users can quickly pick up its simplest examples, and “high ceilings”,

in the sense that experienced users can still use it in more complex projects. The creators of

Scratch, Resnick et al. [8], added to this room metaphor the concept of “wide walls”, meaning

that there should be a multitude of different paths for students to go from the low floor to the high

ceiling whilst they are learning.

Evidence shows that tangible programming languages, that is, languages with blocks that can

be physically manipulated, have many educational advantages, particularly for younger children.

According to [16], people are more likely to interact and collaborate with tangible interfaces. Also,

formal comparative studies [18, 19] between a graphical and a physical interface for the same

programming language, revealed the following advantages of the tangible version: children find it

easier and more enjoyable; they complete programming tasks faster, make fewer mistakes and are

more likely to debug the errors they do make; in free interaction, the children spent more time with

the tangible interface, created more complex programs and used a wider variety of commands.

Unfortunately, tangible languages are harder to execute, because they need to be captured into

a device with computer like capabilities. They are also more expensive and less portable than their

graphical or text based counterparts. More than that, with the notable exception of Osmo Coding

Family, tangible languages fail to implement the variety of programming concepts necessary for

the students to be able to reach higher levels of complexity. As for having many different paths

of learning, the currently available tangible languages are extremely lacking, since they were all
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created for a single purpose, such as programming a robot or getting a game character to follow a

certain path.

In the wordings of Papert and his pupil Resnick, we want to create a tangible programming

language whose floor is even lower than that of the current educational languages. But we also

want to keep the high ceilings and wide walls that languages like Scratch have accustomed us

to.

3.2 Ideal

The importance of having a low entry level in any educational tool is that early success is one of

the best motivations any student can have. People do not like to fail and the frustration of not being

able to complete a task or understand a concept often leads children to give up. On the opposite

side, succeeding makes people feel good and they associate the positive feelings with what they

were trying to learn.

Programming is an inherently difficult task, it is abstract and implies molding our thought

processes into specific patterns hardly ever used in other tasks. It is easy to make mistakes and

many of those are hard to detect and fix, it requires perseverance. But this is also what makes

learning to program so important, it teaches children how to approach a problem, how to divide

a complex task into smaller steps that they can solve, how to deal with frustration when their

solution does not work as intended, how to spot what went wrong and how to repair it.

If we want to make children enjoy a pursue of something as demanding as programming, we

need to focus on making it as easy as possible for them to take their first steps in that field. How-

ever, this is not all, they also need to be able to grow in their knowledge. For starters, if they can

only do the simple things, they will quickly get bored. But also, they will never realize their po-

tential and truly learn the discipline. That is why a good educational programming language must

try to implement the programming concepts and constructs that the other programming languages

do, so that children can keep learning with the same language and build increasingly involved

projects.

Finally, a good educational programming language must capture the interest of as many chil-

dren as possible. But children have diverse interests and things that they prefer doing. Thus, the

language should be capable of realizing a variety of different types of projects, as well as, accom-

modate distinct ways of thinking, because the same problem can have many solutions and each

child should be able to implement their particular solution.

3.3 Reality

As we saw in Section 2.2, there are many educational programming languages and the field has

been getting increasingly more attention. Researchers and software companies have invested a lot

into creating the ideal educational language. Some, such as Scratch, have mostly accomplished
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this. But their recommended starting age is eight years old. Plus, it requires reading at a good

level, in order to understand the blocks.

On the other side, we have the tangible languages, whose concern with lowering the entry

level is clear, since they rely on visual clues instead of text and their physical interface is both

more appealing and easier for the younger children. But these have other issues, they are all single

purpose languages, so they fail to reach the wide walls ideal. Plus, almost all of them also fail at

the high ceilings ideal.

Then, there are the issues of price and lack of portability. A great deal of tangible languages

use electronic components, but is reflected on their price. Which explains why the recent examples

that use this strategy are those in which the language is also part of the machine that executes it,

namely, they are simultaneously languages and robots.

An alternative that completely avoids the electronics is to use computer vision. This is the

technique of Quetzal and Tern, as well as T-Maze and Code Bits, that use fiducial mark-

ers to identify the pieces. There is also Osmo Coding Family, where the blocks are camera

captured and identified by their visual elements, without any fiducial markers.

To the best of our knowledge Quetzal, Tern and T-Maze are not commercially available.

Code Bits seems extremely inexpensive, since one just needs to print and cut paper pieces. But

we could not find it available for printing nor could we find the Android application necessary to

run it. Also, it is probably the most limited of these languages, because it only allows sequences

of forward and turn movements.

Coding Family costs 159e and ships with 42 coding blocks. It is quite ambitious in terms

of the programming concepts it teaches. But one can only use the blocks with their three game

like applications, which are exclusively available on some Apple or Amazon tablet devices.

All these tangible languages are either expensive, limited in their capabilities or have a small

number of blocks. Many have all these issues. None of them can be used in the creative ways

that children have been using Scratch, which has nearly 38 million projects shared, from pro-

gramming a (virtual or real) robot to follow a line, to making interactive postcards or creating

games.

3.4 Consequences

Currently, schools and parents have to choose between free graphical solutions, that can only be

used by older children, or limited and expensive tangible solutions, that cannot accompany the

children in their learning path for long enough and that will quickly bore them.

It is hard to justify the steep investment in something that children will quickly outgrow. So

most will opt to wait, meaning that many children will miss the opportunity to acquire their first

programming concepts early on, as well as all the advantages that could bring, such as formation

of specific neural pathways.

Those that begin with something like Scratch before they are prepared to will associate

negative feelings with the discipline and cast it aside. That is a potential for learning, enjoyment
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and creative expression that might not be realized. One will never know how far a child could

reach if one keeps missing the best opportunities to teach them.

3.5 Proposal

We propose to create Tactode, an inexpensive tangible language whose entry level allows chil-

dren to start programming earlier and whose capabilities allow complex and varied projects in a

multiplicity of platforms.

Due to our focus on learning and the constricted budgets of most schools, particularly the

public ones, as well as a belief that education is a fundamental right of everyone, independently

from their financial status, a big concern for Tactode is to keep its cost as low as possible. This

preoccupation is mainly revealed in the materials used for the blocks, but is also reflected on the

compilation and execution platforms.

Tangible programming languages are, by design, block based, that is, each language command

is represented by a block. This because it would not be feasible to manipulate several physical

characters to compose a single command, as one does with text based languages. With this in

mind, with Tactode we aim for not only a block based language, but one where the number of

different blocks is as small as possible, without compromising the range of possibilities.

Among the block based languages, there is an important distinction between the visual ones

and the ones that rely mostly on textual elements. They are both easier to learn then the traditional

languages, because the problem of knowing which commands exist and how exactly to write them

does not exist. But the visual languages, due to their independence from text, are even more user

friendly. They require no reading skills and can be used without translation by children from any

native tongue. That is the reason why ScratchJr, which is directed at children younger than

those targeted by Scratch, is visual in addition to block based.

The problem with visual languages is that they are either limited in the different notions they

express or they quickly become very complex and hard to understand. Of course some notions,

such as movement can be easily expressed with an image or a symbol. But others, such as the flow

control structures that most programming languages employ, are harder to capture that way.

With these conflicts in mind, we plan to use both text and visual elements in Tactode. The

idea is that those that can read can make better sense of the images and symbols, but that is not

strictly necessary. Also, children can start with simpler blocks and as their reading skills improve

learn to use the more complex ones. Plus, given that we mean to use English for the text, children

can begin to learn the keywords used in most programming languages.

One of issues of tangible programming languages is that they are typically for a single purpose.

For example, there are some robots, like KUBO, Cubelets and Code-a-Pillar that can be

programmed with tangible languages, but each robot has its own. The same thing is not true for

the block based languages with a graphical interface, there are plenty of robots that use a Scratch

based language, such as Cozmo, mBot, Thymio, Robobo and Sphero, which made the change

when Scratch 3.0 implemented some of ideas and the technology used in Blockly.
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When designing Tactode we aim at a multi-platform experience, where the language could

be a constant for a multitude of targets. The first focus, due to their engaging nature and educa-

tional value was on robots, but we also consider non-robotic platforms, because they allow schools

to keep the cost low, are easier to maintain and in some cases more practical to use. Plus, they

bring forward a wider variety of different kinds of projects that can be implemented. This objective

is one of the main distinctions between Tactode and the other available tangible languages.

Our final main goal for Tactode is to make it capable of growing with the users. When first

introduced to programming, children mostly learn some basic commands and sequencing. But as

their familiarity with the language increases they can gradually and progressively be introduced

to more complex programming concepts, such as choices, loops, procedures and recursion. We

want to create a language that will be simple for first attempts, but also able to accompany children

through their advancement.

3.6 Research Questions

From the goals we want to fulfil with this project, some research questions arise, that will be

answered throughout the remaining of this document.

RQ 1. Given that we mean obtain a safe and interesting product with a good price, what materials

should we use and how should we manufacture the Tactode blocks?

RQ 2. Considering that we want young children to find programming in Tactode easy, what

shape should the blocks have and how should they be arranged to create programs?

RQ 3. What visual and textual elements should we use to make the purpose of each Tactode

piece evident for young children?

RQ 4. In order to support multiple paths of learning, which programming paradigms should the

Tactode programming language support?

RQ 5. Considering that it should be capable of accompanying children in increasingly complex

projects, which programming constructs should Tactode implement?

RQ 6. Having in mind that we aim to appeal to children and allow varied types of projects, which

target execution platforms should we use?

RQ 7. How should we capture a tangible program into a computer and identify each piece and

its position in the program?

RQ 8. How can we compile the captured Tactode programs so that they can be executed in each

target platform?

RQ 9. How can we get the compiled Tactode programs into each target platform to be executed?

Chapter 4 is meant to answer the Research Questions 1 to 6, while Chapter 5 should answer

the Research Questions 7, 8 and 9.

33



Problem Statement

3.7 Conclusion

In order to lower the entry level of educational programming languages we decided to create the

tangible programming language Tactode. We also want this language to be able to grow into the

more demanding projects that children will create as they reach higher depths in their learning.

Finally, we want each child to be able to chose from a variety of execution platforms and types of

projects, according to what interests them and captures their attention.

To achieve our goals for Tactode we must choose the right materials and manufacturing

processes, design the block shapes, visual and text elements, select the programming paradigms

and constructs to implement and define the execution targets. Plus we have create an application

that is capable of capturing the Tactode programs, compiling and exporting them to be executed

in each target platform.
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Chapter 4

Tactode- A Tangible Programming
Language

This chapter exposes the development of our tangible programming language. We present the

alternatives we considered for its development and justify our final choice. After this we show the

language itself and explore its elements, giving examples of typical constructions. We also present

an evaluation of our language, exposing its features and limitations.

4.1 Introduction

A programming language is considered tangible when its components have to be physically ma-

nipulated to create the programs. This is not the case of most programming languages, in which

the interaction is accomplished through a machine, typically a computer, and the interface is vir-

tual. In fact, the large majority of programming interfaces are text based, with only a few graphical

examples and even less tangible ones.

Given the purpose of programming languages, which is to define the behavior of machines,

their distribution amongst tangible and non-tangible ones makes perfect sense. Indeed, any lan-

guage will eventually have to be compiled and interpreted by a machine and the difficulty of that

process is increased when the elements of the language are physical, because one has to first cap-

ture them to the machine. This can be done using electronic components in the tactile language

blocks, or using computer vision to identify each piece and its location.

Independently of how the tangible code is captured into the machine that will execute it, this

is only the first of the added difficulties of this kind of interface. Even when no electronic com-

ponents are involved, the fact that the blocks have to be made of some kind of material adds to

the cost. That is why many of the commercially available tangible languages are shipped with a

very limited number of blocks. There is also the distribution issue, because unlike their virtual
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counterparts, tangible languages have to be physically transported or manufactured in each place

where they will be used.

With all their added complications, it is natural to wonder why one would use or create a tangi-

ble programming language. The reason is education. These languages are clearly not well suited

for commercial software development or for experienced programmers, but they are very adapt

for those that are taking their first steps in the world of programming, particularly the younger

ones. Indeed, studies have shown the advantages of tangible programming languages in education

environments

Given the educational advantages in the difficult endeavour of introducing people, particularly

children, to programming, investment in tangible languages is justified. Of course one still needs

to mitigate the disadvantages, in order to make this kind of interface competitive and increase its

adoption. This is especially critical for schools, where the costs of supplying entire classrooms can

mount very fast. Our tangible programming language, Tactode, was developed with these ideas

in mind. We aimed at an affordable, reliable and resilient product, that can be easily obtained and

used by schools and families to teach children to program, without compromising its capabilities.

4.2 Alternatives

In order to design Tactode we had to make some choices regarding: the design of the blocks,

such as their shape and how they would fit together; the materials and manufacturing processes that

would be used to create the physical pieces; the programming paradigms that Tactode should

adhere to; which tools to use for piece recognition; and the target platforms, that is, the robots and

non-robotic platforms in which Tactode would be executed. This section presents the alterna-

tives we considered and the decisions we made.

4.2.1 Block Shape

The current basic shape for the Tactode blocks, and answer to RQ 2 is shown in Figure 4.1. In

essence, each piece is a rectangle with possible trapeze shaped slots on the left and top, and tabs

on the right and bottom. The idea is that all pieces fit easily into each other. Whether a specific

piece has a certain slot our tab, depends on its function.

Figure 4.1: The basic shape of a Tactode piece.

An alternative considered was using star shaped blocks which one would be able to connect

directly to several other blocks. Another idea was to have pieces with several slots, but not tabs.

Then, pairs of these pieces would be put together with the help of connectors (possibly using

magnets). The star shaped pieces could be used this way.
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On the opposite end, we also considered an approach where the tabs and slots would have

varying shapes, so that only the pieces that are supposed to go together to form a syntactically

correct program would fit. This would minimize the number of possible connections instead of

maximizing it, like the star shaped blocks.

In a way, our solution is the middle ground between these two ideas. There are many possible

ways to connect the pieces, considering that all tabs fit into all slots. But we have limited this,

by making sure each piece only has the necessary tabs and slots, given its purpose. We believe

this forces the programmers to use critical thinking and to debug programs in which the wrong

connections were made.

4.2.2 Materials and Manufacturing

The main goals for the materials and the manufacturing process were to keep the cost low and to

obtain a durable and high quality product. Also, we wanted to create pieces with different colors

for the different types of pieces. We considered the following options:

• 3D printed Acrylonitrile Butadiene Styrene (ABS) or Polylactic Acid (PLA) plastic pieces

with colored printed paper glued on top;

• laser cut plywood, acrylic or traffolyte pieces with color printed paper glued on top for the

the design;

• laser cut and color printed cardboard pieces (like the traditional puzzle pieces);

• 3D printed ABS cutters to mold pieces from colored polymer clay, where colored printed

paper would be glued;

• Ethylene Vinyl Acetate (EVA) pieces cut with laser, metal cutting dies or manually with an

x-acto knife, with either printed paper on top for the design or laser printing on the EVA

pieces directly.

Although 3D printing has become quite common, it is still a relatively expensive medium,

especially for large quantities. Also, plastic pieces are not the best at fitting together due to their

very low malleability. Thus, we quickly eliminated this option from our considerations.

We inquired for budgets on laser cutting and the lowest price was plywood, which was 80e

for 150 pieces. At the time, this discouraged us from pursuing more laser cutting options. There

were also some technical difficulties with using laser to cut EVA, due to the high probability of

burning and the fumes released. However, we believe other companies provide that service.

The current Tactode pieces are built using two A4 EVA sheets with an adhesive side and 2

mm of thickness. These two sheets are glued together using the adhesive of one of them. The

adhesive of the other is used to glue regular color printed A4 paper. Finally, in order to increase

durability we added a layer of clear self-adhesive plastic on top of the paper. But this has the effect

of creating reflections on some lighting conditions, impacting the code capturing process in a very

negative way. Thus, we do not recommend this plastic layer for all situations. Indeed, in answer
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to RQ 1, the recommended materials and manufacturing process for Tactode is to use printed

paper glued to 4 mm EVA sheets, that should be manually cut.

We printed, glued and cut nearly 2000 Tactode pieces with a very attractive budget. The A4

2 mm adhesive EVA sheets cost 0,25e each. We estimate the cost of color printing at 0,10e per

A4 sheet. Since we use two EVA sheets to obtain 4 mm thickness, this yields a cost of 0,60e for

each A4 sheet of Tactode pieces. In order to make a varied set of pieces we can fit an average

slightly above 30 pieces in each A4 sheet. This translates into 0,02e for materials cost per piece,

which is quite inexpensive. Indeed, the materials for a set of 2000 pieces, which is enough for ten

or more groups to program simultaneously, would cost only 40e.

Of course it is still necessary to cut the pieces and given their shape, particularly, the tabs and

slots where the pieces fit together, this is not an easy task. But with adult supervision, for exam-

ple in some arts and crafts class, children around ten years of age should be able to accomplish

this task. This means that a school that wishes to use Tactode could do this with as little as

40e, involving the children in the process from the beginning, spanning the work across multiple

curricular units and assuming the pieces are shared across multiple classrooms.

4.2.3 Programming Paradigms

When it comes to programming paradigms, although several options were discussed, we focussed

early on an imperative approach. The reason for this is that it introduces important and common

programming concepts such as sequencing and flow control.

Within the imperative paradigm, we decided to aim at procedural programming. In its current

state, Tactode is not a procedural language, simply because we have yet to materialize that func-

tionality. In any case, we highly value the ability to split a large program into smaller procedures,

that can be invoked (eventually several times) from a main set of instructions.

We also designed Tactode as an event-driven language, because this is a useful feature in

robotic applications. Indeed, with the exception of Ozobot, all the robots we chose as targets

have the possibility of detecting certain events and choosing their actions accordingly. This makes

sense, the robot may be behaving in a predefined way, such as randomly moving around, and upon

a certain event, like running into a wall, change its behavior, for example, stopping or turning

around. Unfortunately, there is a single event currently implemented in Tactode, which is the

event that indicates when the program should start running, so we cannot really claim our language

as being event-driven, but that is one of the directions in which it is heading.

Another paradigm discussed for Tactode was functional programming. This is a subset of

the declarative paradigm, which is in opposition to the imperative paradigm we have chosen for

Tactode. However, a language can implement multiple paradigms, even highly contrasting ones.

Python and C++ are examples of multi-paradigm languages with which one can write both pro-

cedural and functional programs [71, 72]. In fact, functions and procedures are both subroutines,

which is what we want to realize in Tactode. The difference is that functions return a value, while

procedures simply execute subsets of instructions. Also, in pure functional programming there is

no state, such as setting or changing the value of a global variable. This absence of state, amongst
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other things, compels the use of recursion, which is an interesting and important programming

concept. Another good reason for introducing functions is their relevance in mathematics, which

would make Tactode more relevant in a multidisciplinary setting.

Dataflow was also thought of as a possible programming paradigm. In robotics this paradigm

is very useful and can make some programs quite simple. The idea is to connect the data from

the sensors to the actuators, so that the behavior of the robot is a direct consequence of the input

from its sensors. For example, given a robot with wheels and proximity sensors, if we connect the

proximity sensor in the back of the robot to the wheels, the robot will move away from obstacles

in its tail. Notwithstanding its usefulness, there are currently no plans to implement this paradigm,

mainly because we do not consider it very compatible with the physical format that was chosen

for the pieces of Tactode.

In sum, the answer to RQ 4 is that Tactode aims to be a procedural and event-driven pro-

gramming language that also supports the functional paradigm.

4.2.4 Piece Recognition

In order to capture Tactode programs from their tangible form into one that can be executed, we

need to use some image processing technique. At first we considered recognizing the pieces from

their different colors and icons. That would be the cleanest solution, in the sense that the pieces

would contain only the elements necessary for the children to identify them. But it would also

be the hardest solution to implement and the most likely to have situations in which the software

would be unable to recognize all the pieces and their relative positions in an image.

Considering our limited development time, the need to identify many pieces and their positions

in the same image and the desire for a robust solution that could easily be operated by children

without a lot of frustration, we veered into the fiducial marker territory. We looked at ARTag [73],

AprilTag [74] and Aruco [75, 76]. One possible answer to RQ 7 is to use Aruco, although

there does not seem to be a significant difference between it and AprilTag, they are both state of

the art. But Aruco used the knowledge of AprilTag and built on top of it, plus it is implemented

in OpenCV [77], a very popular open source computer vision library.

4.2.5 Target Platforms

Looking for an answer to RQ 6, we wanted to design Tactode and its application in a way

that facilitated future support of multiple platforms. However, it quickly became clear that the

multiple platform support was an important requirement, which we decided to embrace from the

first versions of Tactode. Currently, the platforms supported are:

• Ozobot;

• Cozmo;

• Sphero;
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• Robobo;

• Scratch;

• Python.

The decision of which targets to implement first was based, for the robots, mostly on their fea-

ture/price relation, but also on the information available, namely regarding their natively supported

programming languages. As for the non-robotic platforms, Scratch was an evident choice due

to its ubiquity as an educational programming language, Python because we consider it a good

text based language for educational (as well as work) purposes.

4.3 Tactode Programming Language

As we saw in the previous section, the shape of a typical Tactode block is akin to the one shown

in Figure 4.1. A single block will not have both the left and top slots, but only one of them. Also,

the tabs might both be present or only one of them. This depends on what that block does and how

we want it to fit the rest of the program puzzle.

There are two main kinds of blocks: command and argument. The command (or operation)

blocks tell the target platform what to do, such as say something. These blocks are arranged from

top to bottom in order of execution. Thus, they usually contain a top slot and a bottom tab. They

also might have the right tab, so that arguments can be attached, as shown in Figure 4.2.

Figure 4.2: The usual shape of a Tactode command block.

The argument blocks are fed on the right of command blocks. For example, the if command

needs a boolean expression as argument. These blocks have the left slot, so that they can be

attached to command blocks, and the right tab, so that further argument blocks can be attached to

them, as depicted in Figure 4.3.

Figure 4.3: The usual shape of a Tactode argument block.

This top to bottom and left to right organization of the blocks in a Tactode program is the

natural flow of text in the text based programming languages. Operations are sequenced vertically,

whilst their arguments are placed to the right. Another feature that is common in those languages

is indentation or nesting, which is implemented by Tactode as well. When multiple events are

implemented in Tactode, each event used will start an independent column of blocks.
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In terms of contents, a Tactode piece has five elements, which can be seen in Figure 4.4:

• color - shows what kind of piece it is:

– black for numbers,

– grey for colors,

– white for letters,

– green for mathematical operators,

– red for variables,

– orange for events,

– yellow for flow control,

– cyan for sensors,

– blue for movements,

– pink for sounds,

– purple for visual effects;

• text - says in few words what that block does;

• icon - illustrates what the block does;

• Aruco tag - allows the piece and its position to be identified in a photograph;

• indentation - allows nesting of the commands to be executed inside the body of flow control

blocks, is also used for each argument in commands that require multiple arguments.

Figure 4.4: The contents of the Tactode if piece: color, text, icon, Aruco tag and indentation.

Tables A.1– A.11 in Appendix A show all the currently implemented Tactode pieces and

answers RQs 3 and 5. Table 4.1 shows a sample of Tactode pieces for each category.

Table 4.1: A sample of Tactode pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

4 number 4 yes yes yes yes yes yes

56 color red yes yes yes yes yes no

100 letter A yes yes yes yes yes yes
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Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

133 letter c yes yes yes yes yes yes

202 multiplication op. yes yes yes yes yes yes

300 variable 300 yes yes yes yes yes yes

399 create variable

398 a variable, 300-394 yes yes yes yes yes yes

397 variable name, string

400 when flag clicked event no yes yes yes yes no

502 repeat a number of times yes yes yes yes yes yes

503 end of repeat yes yes yes yes yes yes

600 front left prox. sensor yes no no yes no no

704 move forward

708 distance, num. exp. yes yes yes yes no no

710 speed, num. exp.

800 say a phrase, string yes yes yes yes yes yes

901 put pen down to write no no no no yes no

Figure 4.5 shows an example of a Tactode program meant for a robot with a distance sensor

in the front. When the green flag is clicked (or the program starts), the robot will enter a potentially

infinite loop, where it keeps testing if there is something in front of it. When the answer to
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that question is affirmative, the robot will say ‘hi’ and exit the infinite loop, thus terminating the

program. Otherwise, that is when there is no obstacle in front of the robot, it will move forward a

distance of 16 with a speed of 16 (units depending on the robot in question).

Figure 4.5: A Tactode program with flow control blocks.

Most command blocks take numeric expressions as arguments. There are however a few

exceptions. The if and while blocks take boolean expressions as arguments. The think and

question blocks take either numeric expressions or strings as their arguments. The say block

argument type varies according to the platform: in Ozobot it is either a numeric expressions or a

color block, in the others it is either numeric expressions or strings.

The create variable block takes a variable block (the blocks whose tags vary between

300 and 394) as first argument and a string formed by letter blocks as second argument. One

may also use number blocks in the names of variables, but the first block must always be a

letter one. The set variable block takes a variable block as a first argument and a

numeric expression as the second argument. This means that Tactode variables always have

the same type, they are integers. The reason they are integers is that the numbers one can build

are integers and the mathematical operators applied to integer numbers produce integer numbers,

in particular the division corresponds to integer division of integers. Future versions of Tactode

might allow variables of different types, such as strings and booleans, we might also allow floating

point numbers.
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The event blocks are the only command blocks without the top slot. That is because they are

meant to be placed only on top of a sequence (or column) of command blocks.

Careful observation of the flow control Tactode blocks (the yellow ones) will show that their

top tab or bottom slot might be indented. This is done so that the blocks inside a control block

body are indented (in relation to the ones outside) and can be more clearly identified. Also, it helps

to teach children about an important practice in most text based programming languages. Another

feature of most flow control blocks is that they have a corresponding end block. This blocks has

two functions, closing the body of their beginning control block, to separate it from the rest of the

program, and removing the indent. All of this can be seen in Figure 4.5.

We believe the use of most Tactode blocks is self explanatory, with the possible exception

of the variable blocks. The variables (with Aruco tags from 300 to 394) do not have text

or icons. The idea is that on use, a sticker (post-it) for example should be placed on the empty

left side of the block, that says what it is supposed to represent. The name of the variable in

defined in the create variable block. This means that when Tactode is compiled to the

language of the desired target, the variable will have that name. Alternatively, variables can be

used without being created. In that case, the variable name in the destination language will be

given according to its tag, such as var306 for the variable with the tag 306. What one should

always do before using a variable is setting its initial value using the set variable block.

Otherwise, the behavior might be unexpected. In Python an error will be thrown on execution

due to the unknown value. In the other target languages, variables are given the default value of 0

on creation.

Another distinguishing feature of the create and set variable blocks, as well as some

of the movement blocks is their shape, which is the same shape of three (or two) command blocks

grouped together, with an indentation from the first to the second. This is done so that one can

provide multiple arguments to a single block, like distance and speed in case of the move

forward block. Naturally, in the specific case of the movement blocks, one might wonder about

the units. They depend on the target platform, but are mostly the same, the distance is measured in

mm in Ozobot, Cozmo, Sphero and Robobo, and in steps in Scratch. Speed is measured in

mm/s for move forward and backward blocks and in degrees/s for turn blocks. Angles are

measured in degrees.

Currently, the color blocks are used to compare with the line color block in Ozobot. In

the future they will also be used to set the color of LEDs (Ozobot, Cozmo, Sphero and Robobo),

to detect the color of objects (Robobo) and to detect colors on the screen (Scratch).

About the say block, it is placed under the sounds color category, because that is what happens

in all robotic platforms, they say using speakers the argument of this block. But for Scratch and

Python the say block does not produce any sound. Indeed, in Scratch a balloon pops up from

the cat with the argument and in Python the argument is printed out into the console where the

program is being executed. The think block is placed together with the say block, due to their

relation, but it is only defined in Scratch, where it produces no sound.

An example of a material Tactode block, in this case an if block, with two sheets of 4 mm
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yellow EVA, printed paper and self-adhesive clear plastic on top, is shown in Figure 4.6. The

rectangular body of the piece is 50 mm wide and 25 mm long, and each tab adds 4.4 mm to these

dimensions. The indentation of the bottom tab relatively to the top slot measures 5 mm.

Figure 4.6: A Tactode if piece, with yellow EVA, printed paper and clear plastic on top.

4.4 Challenges

For each target platform we decided that a set of challenges would be designed for experiments

with that platform. Those challenges are detailed in this section. In spite of the fact that many

of the features of each platform are yet to be implemented, there are plenty of possibilities for

programming each target. Our challenges were chosen due to their educational value, from the

use of different programming constructs to the need of mathematical concepts, as well as their

exploration of different types of features in each platform. There are four main challenges: regular

polygon construction, obstacle reaction, finite simple maze solution and prime number generation.

Depending on the platform, we have some variations of these challenges.

4.4.1 Regular Polygon

The regular polygon construction challenge is available for all platforms except Python. How-

ever, depending on the target, there is a variation, with the Scratch version being more complex.

The idea is to make the target draw a regular polygon as it moves. To do this, the children must

know a few things about regular polygons: their sides all have the same length, their internal (and

external) angles all have the same amplitude, and for a polygon with n sides the amplitude of each

external angle is 360◦/n. Figure 4.7 shows the Tactode program that should be built to move

in the shape of regular polygon in Ozobot, Cozmo, Sphero and Robobo. In this case we are

building an hexagon. Since Ozobot does not implement events, the flag block on top on the

program should be removed for this target.

For Scratch, see Figure 4.8. one can also use the question block to ask the user how

many sides the polygon should have, the answer to this question will be given on runtime and

placed in the answer block, which is then used like a variable block. The other difference of

the Scratch version of this challenge is that it actually draws the polygon as the Scratch cat

moves in the screen, using the erase, pen down and pen up blocks. Note that the question

and answer blocks could also be used in Robobo.
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Figure 4.7: The regular polygon generation program in Tactode for Ozobot, Cozmo, Sphero
and Robobo.

4.4.2 Obstacle Reaction

The obstacle reaction programs are for Ozobot, but they can also be executed in Robobo, if we

add the flag block on top of each. In these examples we are running away from obstacles on

the back of the robot (Figure 4.9) and following obstacles in front of the robot (Figure 4.10). But

there are other examples of this kind, such as running away from obstacles on the front, moving

forward and turning when an obstacle is found in front, and following walls. An interesting aspect

of these programs is that the code inside the forever loop is actually an example of the dataflow

programming paradigm.

4.4.3 Simple Maze

The Tactode program for solving a simple maze works only in Ozobot, because that is the only

robot on our list with line detection capabilities. A maze is called simple when it is connected and

contains no loops, such as the example shown in Figure 4.11.

One can solve any finite simple maze by using the following strategy:

1. Pick a preferred direction between left and right (in this case we chose left);

2. Follow the line until an intersection is reached;

3. If the intersection has a line on the left, pick the left direction;
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Figure 4.8: The regular polygon generation program in Tactode for Scratch.

Figure 4.9: An obstacle reaction program
in Tactode: run away from objects in the
back.

Figure 4.10: An obstacle reaction program
in Tactode: follow objects in front.
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Figure 4.11: Example of a finite simple maze with the entry in red and the exit in green.

4. Otherwise, if the intersection has a line forward, continue straight;

5. Otherwise, if the intersection has a line on the right, pick the right direction;

6. Otherwise one has reached a dead end and should turn back;

7. Repeat the steps from 2 to 6 until the exit of the maze is reached.

In this case, we are identifying the exit by the color of the line (green). The Tactode program

resulting from following this strategy is shown in Figure 4.12.

If we use the program in Figure 4.12 to solve the maze in Figure 4.11, the robot will test every

possible path until it finds a solution. Had we chosen right as the preferred direction, the robot

would turn right in the intersection immediately after the start point, turn left in the corner after

that (because it cannot turn right or go forward), turn right in the following intersection, turn left

at the next corner and reach the exit. This is the most efficient path from the red entry to the

green exit for this particular maze. However, there is no point in dwelling between choosing left

or right, unless one knows the maze. This is part of what the children are supposed to learn with

this challenge, the program works, but it does not necessarily lead to the best path.

4.4.4 Prime Number Generator

Because Python is a very different target from the others, it required a specific challenge. We

opted for a prime number generator, because of the mathematical connection.

It is a well known number theory fact that any non-prime number n must have a prime factor

that is at most
√

n. Indeed, suppose that n is a non-prime number and a is its smallest prime factor,

with n = ab. Since n is not prime, we have b 6= 1. Also, given that a is the smallest prime factor,
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Figure 4.12: The finite simple maze solution program in Tactode.

49



Tactode- A Tangible Programming Language

we have b ≥ a, because either b is prime or it has a prime factor that is greater or equal to a.

If a >
√

n, then b >
√

n, therefore n = ab >
√

n
√

n = n, which is impossible.

Given that the smallest prime factor of a non-prime number is at most its square root, it would

be more efficient to use the square root of the number to determine whether it is prime or not.

We could have easily implemented this block in Tactode and will do so in the future. But there

are other alternatives and when learning prime number identification, children usually start with

simpler versions, such as the one shown in Figure 4.13.

It starts by printing the prime number 2. Two variables are created, p for the candidates to

prime numbers, and d for the potential divisors of the prime candidates. Note that the variable

blocks were tagged on the left with their names, p for variable 300 and d for variable 301.

We set p = 3. While p is smaller than a previously defined maximum value (in this case 100), we

set d = 3 and then test if p is divisible by d, incrementing d 2 by 2. The idea is to test only odd

primes (2 is the only even prime) and two test only odd divisors, because odd numbers have no

even divisors. When the inner loop finishes, if the d = p, that means that all possible divisors were

tested and none worked, hence p is prime and should be printed to the screen. Before closing the

outer loop we increment p by 2.

The prime number generator (Figure 4.13) is the most complicated challenge on our list, just

like Python is the most advanced target. It is aimed at older children. But younger children can

do easier examples in Python such as printing odd numbers.

Note that although this challenge was designed with Python in mind, it runs in every platform,

so the children can make the Scratch cat or any of the robots say a sequence of prime numbers.

They just need to add the flag block on top of the program for the platforms that implement it.

4.5 Evaluation

We had a few important objectives when we set out to design an educational programming lan-

guage. We wanted it to be tangible, block based, with both visual and textual elements, low priced,

multi-platform, easy to begin using, so that even pre-schoolers could start learning and capable of

growing with the children as they advance in their programming knowledge.

With the exception of the last two main goals, it is quite simple to observe that we have

accomplished what we set out to do. Tactode fills all the physical requirements it was supposed

to have.

Using different materials and manufacturing processes might make it easier to obtain large

quantities of Tactode pieces. But we are highly convinced that it is impossible to obtain cheaper

pieces and maintain their usability and durability. Thus, if manual cutting is possible, we believe

this is the best overall possibility. Note that other materials considered, including the polymer

clay, are all either more expensive or require more expensive manufacturing processes.

As for the use goals, their complete evaluation requires experiments, which we did perform

and present in Chapter 6. But even without looking at the results of those experiments, simply

by observing the Tactode blocks and the challenges in the previous section, we can see that
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Figure 4.13: The prime number generation program in Tactode.
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there are simple examples that could be used for the first steps into programming, as well as more

complex programs, such as the prime number generator, that should be attempted by those with

some previous experience. Note that there are even simpler examples, without any control flow

blocks, like giving the robot a sequence of movement instructions.

In any case, we also wanted to implement different programming paradigms, to have more

events, more different types of blocks and to add subroutines. This future work will add to the

objective of having a language capable of accompanying children through a greater level in their

programming education. Thus, we believe that unlike the other goals, which were fully achieved,

this last one can be further improved on.

4.6 Conclusion

To create a programming language one must first define its syntax and semantics and then build

either an interpreter or a compiler for it. In this section we described our tangible programming

language Tactode by presenting the first of these two steps. The compiler we built is presented

in the following chapter.

One of the basic steps of defining the syntax is to list the available keywords or commands. In

Tactode these are the blocks, so there are no spelling mistakes. But one also must describe how

the blocks can be fitted together to create valid programs. In Tactode this is done by sequencing

the command blocks from top to bottom, using their top slots and bottom tabs, and by attaching

sequences of left to right arguments to these command blocks, in such a way that the appropriate

type of argument is supplied to each command that requires one or more arguments. As we will

see, syntax errors are reported by the Tactode application when the program is imported, which

is different from other block based languages where syntax errors cannot be made, due to the

distinct shapes of the blocks.

As for the semantics, we described the meaning of each block and the meaning of any program

is derived from the meaning of its blocks. Like in any other programming language, semantic

errors, that is, the types of errors where the program works but does not do what it was supposed

to do, must be detected by the user when the program is executed.
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Chapter 5

Tactode Application

This chapter exposes the development of our application to transpile Tactode into the languages

of the destination platforms. We begin with a description of our requirements for this application.

After this we present the development choices we made and the general architecture of the ap-

plication, paying special attention to the transpiler and how it was built. Then we show the final

result and explore its capabilities, giving examples of the most common usages. In the subsequent

section, we give evidence of the tests we performed on our application to ensure its compliance

with the requirements. We also present an evaluation of the application, exposing its features and

limitations.

5.1 Introduction

Designing a tangible programming language for educational purposes was only the first objective

of this project. The second objective was to create an application that allowed that tangible lan-

guage to be executed in a variety of target platforms. In order to keep the cost low, our application

should run in as many platforms as possible, from smartphones to computers. Also, the code is to

be captured by photograph, translated into the destination target and exported.

In order to obtain this translation application, we had to design a compiler for Tactode. Typ-

ical compilers take a high level (closer to regular human languages) code and translate it into low

level (closer to machine language) code. In our case, we needed to translate Tactode into mul-

tiple high level target languages. This kind of compiler is known as a source-to-source compiler

or a transpiler. Thus, in total we had to create six transpilers, one for each target platform. As

we will see, these transpilers are not completely different from one another, as the first part of the

compiler, which is called parser and transforms the source code into an intermediary language, is

independent of the destination language.
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Because we wanted our application to run in as many different platforms as possible, including

very different operating systems, we had two main options: code our application for each operat-

ing system separately, or use a framework capable of generating applications for multiple systems

from a single source code. Due to time constraints, the first option was not feasible at all, so we

decided to use the Ionic framework [78]. This is a web based multi-platform development frame-

work, that can create iOS, Android, macOS and Windows applications, which are precisely the

operating systems where the Tactode application runs. It is also possible to use Ionic together

with Electron to generate Linux applications in addition to macOS and Windows, which we

will try in the future. Finally, our Tactode Ionic application also runs in the browser.

5.2 Requirements

The requirements for the Tactode application are a direct result of the goals we have for this

project. In any case, we shall list them as thoroughly as possible, as they have guided its develop-

ment.

5.2.1 Functional Requirements

The first and main functional requirement for the Tactode application is to acquire and translate

programs. Each new program is to be named and captured by photograph. The application trans-

lates the program into the predefined target platform and presents it to the user. If the program

contains errors, they should be listed. Otherwise, the user should be given the possibility to export

the generated code file, so that it can be imported in the destination platform. This is summed in

the Use Case bellow, UC 1

UC 1. The user has composed a Tactode program that they which to run, so they will name it,

take a picture of it and wait for the program to be translated and either a list of errors or an export

option is presented, with the intent of sharing the program with the target platform.

The process described in the previous paragraph represents the most important feature of our

application, however a few more things are still necessary. First, there must be some way to define

the target platform at any given moment. Also, in order to facilitate the process of acquiring the

images of the code, it should be possible to choose between taking a new photograph or using the

image file of a previously taken one. Finally, although of less importance, since the application

should aim at text independence, it should be possible to define the language of the interface.

These requirements are collected in UC 2.

UC 2. The user wants to configure the application, so they select the platform, the image source

and the desired language, with the objective of having the desired target, the adequate source and

the language they understand best.

The third and last functional requirement for the Tactode application is that it should have a

database of the previously captured programs that contain no errors, allowing them to be deleted

and exported at will. This requirement is represented by the UC 3.
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UC 3. The user wants to see previously imported Tactode programs, so they examine a list of

previous programs, with the intent of re-sharing or deleting one or more of these.

With this we conclude the functional requirements for our application. The diagram in Fig-

ure 5.1 illustrates these functional requirements that we have described.

User

Capture new  
program

Choose new 
program name

Export generated 
code file

Examine the 
 imported program and 

its possible errors

Set target platform

Set new program  
origin between file 

or camera

Set application  
interface language 

Delete previously
imported programs

Export generated  
code of previously
imported programs

New program capturing

Previous programs database

Application settings

extend

See previously 
imported programs extend

extend

extend

include

Figure 5.1: The use cases diagram for the Tactode application.

5.2.2 Non-Functional Requirements

As for the the non-functional requirements, given that our application is meant to be used inde-

pendently by children, from ages as young as four or five years old, its usability requirements are
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very important. It must be intuitive, as language independent as possible, efficient (finish its tasks

quickly) and effective (accomplish what it is intended of it).

Performance is also a concern, as we have mentioned when requiring efficiency and effective-

ness, because we wish the user experience to be as free from frustration as possible. However,

given that there are image processing tasks involved and further tasks from the compiler, it is

expected that at least a few seconds of wait will be necessary when capturing large programs.

Reliability is important, particularly given the age of the users and that any failure will add to

their confusion, as they will not be certain that the mistake is not theirs but from an error in what is

expected as normal behavior from the application. Much of the same can be said for availability,

but this should not be a problem, as the application should be available whenever it is not already

processing a new program.

Security requirements are not a concern, since the application does not deal with any sensitive

data, does not publish anything to the internet, only requests access to the camera and to image

files, but does not store any images that do not contain correct Tactode programs. Finally, at least

in terms of non-functional requirements, scalability should not be a real issue, except perhaps as

the number of programs previously captured and stored increases, which we should pay attention

to.

5.3 Architecture

The main architecture pattern of the Tactode application is Model-View-Controller (MVC) [79].

This is a natural consequence of using Ionic, since that is their default pattern. Ionic appli-

cations are web based, having pages through which the user navigates. The view part is in the

HTML and CSS files of each page. We have isolated the model in a set of TypeScript providers,

whose simplified class diagram we present bellow. As for the controller, it is composed of the

TypeScript files of each page, since that is where each interaction with the view is processed.

There was a clear effort in the separation of these components, particularly the controller from

the model, guaranteeing that only the procedures dedicated to process user interaction and correct

display of the information are placed in the TypeScript files of each page.

As we will see below, our application is composed of three pages, one for each set of use

cases: import new programs, consult previously imported programs and control the settings (target

platform, image capture method and language). The model required for the first of these pages is

the most complex and, for that reason, we expose the details of its implementation in the remaining

of this section.

In order to guide the implementation of the acquisition of new programs, we defined the ac-

tivity diagram depicted in Figure 5.2. This describes in a good detail what happens after the user

clicks the import program button. As another use case specifies, there are two possibilities for

importing new programs, take a new photograph or use the file of a previously taken one.

Independently of the source of the image, the next step is to detect the Aruco tags present as

well as their positions. After this it becomes necessary to straighten the positions of the markers,
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User clicks new
program button

Camera mode?
noyesTake picture of

program
Select image file of

program

Identify Aruco tag ids and  
positions in image

Straighten positions using
orientation of first Aruco tag

Create matrix of Tactode
blocks in image

Parse Tactode matrix into
abstract syntax tree

Errors in  
program?

Generate code for
target platform

no

Display original image with
Aruco tags identified

Display export
program button

Display original image with
Aruco tags and errors identified

User clicks export
button

Display sharing
dialog

Mobile  
platform? 

Save file to local
drive

yesno

yes

Save to previous
programs database

Figure 5.2: The activity diagram for importing a new program in the Tactode application.
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in order to correct possible rotations when taking the photograph and make sure that the program

is oriented from top to bottom and left to right.

From the set of correctly placed markers matrix is formed, so that each row of markers is

processed in order. The parser will use this matrix to build an Abstract Syntax Tree (AST) [80] of

Tactode blocks, which is our intermediary language. At this point, either there are syntax errors

that the parser detected, and they will be reported to the user finishing the process, or there are no

errors and the code generator for the previously specified target can convert the AST into a file

that the target platform understands and is capable of executing.

Once the code generator finishes, the original image with the Aruco tags highlighted is shown

to the user. The application also saves this new program to the database and displays an export

button. If the user clicks this button, the file is either saved directly to the local drive, if the platform

is the browser or a computer, or the typical sharing dialog of the smartphone is displayed, so that

the user can choose where to save or send the generated coded file.

The class diagram in Figure 5.3 is also concerned with the classes involved in capturing new

programs. The Program class is at the center of the whole structure. It contains the Marker

matrix, once they are identified and sorted by the ImageProcessor, the AST of Block objects,

once the Parser is done creating it, a list of CompilerError objects (empty when there are no

errors) and once the CodeGenerator finishes, it will also contain the text of all the target code.

The Block class and its children represent each Tactode block, with the ID clearly deter-

mining the correct subclass. Indeed, this is what the BlockFactory class does, it creates the

correct subclass of Block according to the supplied ID, which is just the number of the Aruco

tag in that block.

This factory pattern is repeated for the CodeGenerator and the Sharer, which are decided

based on the target platform, since the code that is generated is different and also the way to save

it. The Parser does not need this, since it is the same independently of the target, it only uses

that information to make sure that all blocks used are defined in the target platform.

In sum, the Program class is used to go through the steps identified in the activity diagram,

using the ImageProcessor first, then the Parser, if there are no errors the CodeGenerator

and finally the Sharer. The remaining classes are the composing elements of the Program:

Marker, Block and CompilerError.

Note that the ImageProcessor class is our response to Research Question 7, since its ob-

jective is to transform an image with a Tactode program into a matrix where each block is

identified, together with their relative positions. Research Question 8 is answered by the Parser

and CodeGenerator classes, together they form the Tactode transpiler, which we present in

detail in the next section. Finally, the Sharer class answers Research Question 9, since it is re-

sponsible for sharing the Tactode programs, either directly with the targets that support it (such

as Cozmo), or by exporting the code files that can then be imported and executed.
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Figure 5.3: Simplified class diagram for the Tactode application.
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5.4 Transpiler

At the core of the Tactode application is its transpiler, or transpilers, since we have one for each

target platform. A transpiler is a type of compiler that translates programs written in one program-

ming language into another programming language, which is why it is also called a source-to-

source compiler. The difference from the more typical compilers is that the output is in a language

of a similar level to the input, instead of being in a lower level.

The robotic platforms we selected all come with their own educational block based languages

in which the robot can be programmed. That is why we have chosen to transpile Tactode into

these languages. This way, children can use Tactode first and latter the language of the robot or

even use them together depending on what is more appropriate for their objective.

Every compiler has two main components: a parser, that takes the source code and builds an

AST, checking for syntax errors as it processes the input; and a code generator, which, as the name

implies, uses the AST to generate the output code in the destination language.

5.4.1 Parser

As we saw in the previous section, the Tactode transpilers all share the same parser. This parser

does take the destination platform as a parameter, but only to report errors in which an unknown

block for that platform was used, such as using a proximity sensor in Scratch. In all other

respects, the parser behaves the same way, independently of the target. This is the advantage

of building an AST, one is simultaneously checking that the source is syntactically correct and

generating an intermediate language that will then facilitate code generation, independently of the

type of code that will have to be generated.

Before the Tactode Parser is called, the application uses the ImageProcessor to gen-

erate a matrix of Marker objects. Each row of this matrix contains a row of Tactode pieces

identified by their Aruco tags. This row is always a command block followed by its arguments,

unless the program has syntax errors. The Parser will go through this Marker matrix in order

from top to bottom and left to right, creating the appropriate Block object for each marker and

then parsing it, generating the AST as it goes.

Our AST is implemented in a very simple way, that can be seen by taking a closer look at

the class Block, where we see that each object of this class has an array of other Block objects,

known as children, and also a parent object of the class Block. These are precisely what

their names say, instead of having a tree structure, we have each object know who is its parent and

who are its children.

The Parser makes use of a design pattern known as visitor. In this pattern, the parser visits

each Block object to parse it. Instead of implementing the parsing in the Block class, we do it in

the Parser class. The Block class merely implements an acceptParser method that simply

calls the appropriate method in the class Parser.

Depending on each subclass of Block, or in other words, on the Tactode block type, the

parser will check for errors:
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• The block is placed correctly, command blocks in vertical sequence, argument blocks to the

right of the respective command blocks;

• The block is placed in the correct order, else after if, end after begin, when flag

clicked at the top;

• An argument is present if and only if it is necessary for that block;

• The eventual argument has the correct type;

• Numerical and boolean expressions are valid;

• Each variable is created only once and with a distinct name from previously created vari-

ables.

Independently of finding errors, the parser will continue to move through the Marker matrix,

so that it can report as many errors as possible or, in case there are no errors, finish generating the

AST so that the CodeGenerator can do its job.

The intermediary language generated by the Tactode Parser is not very different from the

original tangible language. Indeed, every original piece has a corresponding Block. But there

are a few differences that facilitate the code generation, which is the function of the AST. There

are some extra elements in the AST that do not have a corresponding piece in Tactode. These

Block objects are:

• BodyBlock - child of RepeatBlock, ForeverBlock, IfBlock, ElseBlock or

WhileBlock; its children are the commands to be executed inside that control flow, that is,

between the begin and the corresponding end Block.

• ConditionBlock - child of RepeatBlock, IfBlock or WhileBlock; contains the

condition to be verified by these control flow blocks;

• RootBlock - special Block with no parent that serves as root of the AST, its children are

the command blocks that are not inside of any control flow block, that is, the ones that have

no indentation in the tangible language.

Another difference is in the mathematical expressions. These are parsed using the well known

shunting-yard algorithm originally created by Dijkstra [81], which, in our case, takes the infix

mathematical expressions in Tactode and places them in the AST in prefix notation. For exam-

ple, 1+2 = 3 becomes the tree represented in Figure 5.4.

The shunting-yard algorithm is also where the parser verifies the validity of the mathematical

expressions, including whether open and close parenthesis match.

The final difference of the intermediary language is in its numbers and strings. Tactode has

a distinct piece for each digit and each letter and uses those pieces to form numbers and strings,

respectively. The AST has a single NumberBlock object for each sequence of numbers in the

tangible language, independently of the number of digits, where the sequence of concatenated
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=

+

1 2

3

Figure 5.4: The AST for the boolean expression 1+2 = 3.

digits is stored. The same thing for strings, instead of storing individual letters, the AST has a

single LetterBlock object where the string of concatenated letters is stored.

5.4.2 Code Generators

Once the Parser finishes creating the Block AST, if there are no syntax errors, it is time for

the CodeGenerator to start working. Similarly to the Parser, the CodeGenerator uses the

visitor design pattern. Each Block implements an acceptCodeGenerator method that does

two things: calls the appropriate code generation method in the CodeGenerator class for that

Block object; and, for each Block in its children, calls its acceptCodeGeneratormethod.

Thus, in order to process the entire AST with the CodeGenerator, one needs only to call

the acceptCodeGenerator method of the AST RootBlock.

The PythonCodeGenerator is very different from the others. It generates a plain text file

with the appropriate extension, but among other things must reconvert the prefix notation of the

numeric expressions into infix.

The RoboboCodeGenerator creates a JSON file, with each Block being represented by an

attribute value pair. It is the simplest of all the code generators, as the language used is very short

and to the point. The only difficulty is that it also includes a few images and sounds that must be

created and together with the JSON file compressed to make the final file for Robobo.

The generators of the other targets are all subclasses of BlocklyTypeCodeGenerator.

Blockly files are stored in the XML format and that is what the OzobotCodeGenerator uses.

All these subclasses have in common the fact that they require a distinct alphanumeric tag to be

generated to identify each Block.

Once Ozobot is taken care off, the remaining CodeGenerator subclasses are all subclasses

of the ScratchTypeCodeGenerator. Note that Robobo also uses Scratch, but it is based in

the old version of Scratch, while the others are all based in Scratch 3.0. Since this version of

Scratch was influenced by Blockly, it also uses the unique alphanumeric tag to identify each

Block, but it keeps the JSON file format, instead of using XML. Also, like Robobo, Scratch

requires a couple of images and sounds to be compressed together with the JSON code file to form

the final file to be exported.

The CozmoCodeGenerator and SpheroCodeGenerator are identical to each other and

to the ScratchCodeGenerator, except that no compression or extra files are necessary, one

simply saves the JSON code file with a specific extension for each platform.
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5.5 Application

The Tactode application is composed by three pages, one for each group of use cases. The pages

are organized by tabs shown at the bottom of the screen with the names Tactode, Programs and

Settings.

The home page is represented in Figures 5.5 and 5.6. The first of these images shows the

screen before the new program button (with the camera icon) is clicked. The second shows an

already imported and processed program, ready to be exported by clicking the sharing button. If

the user does not fill the Program Name box, then the default name Tactode will be given to the

program. Otherwise, if the name chosen is too big or uses special characters, they are removed, so

that a short and simple name remains.

Figure 5.5: The home page of the
Tactode application, ready to import a
new program.

Figure 5.6: The home page of the
Tactode application, after importing a
program.

The Programs page, depicted in Figure 5.7, has an image of each previously imported program

that had no syntax errors, together with the name of the program and the target platform on the top,

and share and delete buttons on the bottom, so that the user can export again a previous program

or remove it from the list, respectively.

Finally, the Settings page, shown in Figure 5.8, consists of three drop down choice buttons,

the first for the target Platform (Ozobot, Cozmo, Sphero, Robobo, Scratch or Python),

the second for the Image Source (Camera or File) and the last one for the Language (English or

Portuguese, at the moment).
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Figure 5.7: The previous programs page of
the Tactode application.

Figure 5.8: The settings page of the
Tactode application.

5.6 Testing

We designed a series of tests for our application, to make sure that it is working as intended. These

tests can be grouped into two categories: platform tests and visibility tests. The platform tests are

meant to test if the translation into a given target platform is correct. The visibility tests are meant

to check the limits of our code capturing process, from a given photograph.

5.6.1 Platform Tests

In total there are nine platform tests: one for each target; an extra one for Ozobot, because it has

two many different pieces to fit in a single program; a test just for variables; and test for errors.

We do not display all of these tests here, because they are very large and do not properly fit in A4

size paper. But we describe them and our intentions with each test.

The idea behind each target test (or set of tests, in case of Ozobot) is very simple, it contains

all the pieces available in that platform, arranged in a way that is syntactically correct, although it

does not need to make any sense semantically. Whenever changes are made to the code generator

of a given target platform, the test for that platform can be run to determine if it is still working

correctly. This can be done in two ways: importing the generated code file into the target platform

or comparing it with a previously stored file with the same program exported from the target

platform. If changes are made to the parser, then all target tests should be run.
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The variables test was designed, because even though there are variables in the other platform

programs, we wanted a single test for using multiple variables. The process of testing is the same

as the others: import to the destination platform or compare with previously generated files.

Finally, the errors test is designed to fail, that is, it is the only file that is syntactically incorrect

and the objective is to see if the Tactode parser correctly identifies the multiple errors. This test

is shown in Figure 5.9 with the errors already identified by the parser, according to the following

list:

1. End blocks cannot come before the corresponding begin blocks, missing Repeat.

2. This block cannot be placed here.

3. Else blocks cannot come before If blocks.

4. This block is not defined for the chosen platform.

5. This expression is not valid.

6. This expression is not valid.

7. Expected no block in this position, but found some block.

8. End blocks cannot come before the corresponding begin blocks, missing Repeat.

9. This block cannot be placed here.

10. Flag block cannot be used in the middle of the program, only at the top.

11. This block cannot be placed here.

12. This expression is not valid.

13. This block requires an argument, but none was found.

14. This right parenthesis block has no corresponding left parenthesis block.

15. This left parenthesis block has no corresponding right parenthesis block.

16. This expression is not valid.

17. A variable with this name has already been created.

18. This variable has already been created.

19. This block needs a closing block (End...), but none was found, missing End Repeat.

20. This block needs a closing block (End...), but none was found, missing End If.

21. This block needs a closing block (End...), but none was found, missing End Repeat.

22. This block needs a closing block (End...), but none was found, missing End While.
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Figure 5.9: The Tactode error test after being parsed
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If multiple errors are attached to the same piece, only the number of last one is shown in the

image.

These platform tests validate the implementation of UC 1. The other use cases, UC 2 and

UC 3, are manually validated using the settings page and the home page, respectively.

5.6.2 Visibility Tests

The visibility tests are a set of photographs of two programs, the Python prime number and

the Scratch regular polygon generators. Not all of these tests pass in the current version of

Tactode, but more of them pass now than with the initial version of image processor. Straight

pictures taken from the top are the easiest to process.

Simple rotations vary according to the size of the program, especially the number of argument

blocks in a single row, because the processor may place some of them in the wrong row.

Perspective pictures depend on where they are taken from and on the size of the program.

Bottom perspectives are more likely to be well processed, followed by right side perspectives.

This is again due to long rows of arguments being incorrectly placed in the matrix of markers.

Shadows are usually resolved but reflections that affect the Aruco tags are never fixed.

The images of all visibility tests, as well as the results (yes when they are correctly processed

and no otherwise), can be seen in Figures 5.10–5.21.

Figure 5.10: Prime generator, top view,
yes.

Figure 5.11: Prime generator, rotation, no.
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Figure 5.12: Prime generator, 180◦ rota-
tion, yes.

Figure 5.13: Prime generator, bottom per-
spective, no.

Figure 5.14: Prime generator, shadow, yes. Figure 5.15: Prime generator, reflection,
no.
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Figure 5.16: Regular polygon generator,
top view, yes.

Figure 5.17: Regular polygon generator,
rotation, yes.

Figure 5.18: Regular polygon generator,
left perspective, no.

Figure 5.19: Regular polygon generator,
right perspective, yes.
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Figure 5.20: Regular polygon generator,
bottom perspective, yes.

Figure 5.21: Regular polygon generator,
shadow yes.

5.7 Evaluation

The proper evaluation of the Tactode application is shown in Chapter 6, where we present a few

experiments with children and young adolescents and see how easily they use the application in

a variety of platforms (smartphone, tablet and computer) and operating systems (Android, iOS,

macOS and Windows).

However, we can already conclude some things from observing the current product and com-

paring it with the requirements we established for its development. We can also make use of the

visibility tests to evaluate our application.

All functional requirements were fulfilled, with every use case implemented. However some

things could be improved, such as allowing the user to zoom in on the image of the imported

program, allowing previous programs to be selected and zoomed in.

As for the non-functional requirements, we made an effort to use mostly icons, but there is

some text dependency, especially in the Settings page, which is probably better used by an adult

or by older children. However, this is not a page to be used frequently, but only once in a while,

so we deem its text dependency acceptable.

The application, particularly its home page, is intuitive with buttons only appearing when they

can be used, which guides the user interaction. It is usually reliable, identifies all tags in different

lighting conditions and, at least for smaller programs, even if the picture is not straight or taken

from above. The image processing, parsing and code generation is also quite fast, taking only a

couple of seconds for the largest programs we tested. There is also feedback so the user knows the

program is being imported and they should wait. The previous programs page can also take a little

while to load when there are many programs stored, this should probably be improved in future
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developments.

5.8 Conclusion

The Tactode application is an essential companion for the Tactode tangible language. It is

what makes our tangible blocks into a true programming language by allowing programs to be

compiled into target languages and executed in their respective platforms.

We validated six target platforms, including Python, which is very different from the others.

This is way above our initial idea which was to allow new platforms to be easily added, but not

to do it from the start. It also goes to show just how simple it is to add a new platform, since

Sphero was added later and its implementation was extremely fast. Indeed, it was only necessary

to generate the appropriate code for each block that is available. Even Python was added later

than the first four with relative ease, which is surprising considering its target code is very different

from that of the other platforms.

Although there is room for improvement, the Tactode application fulfills all the requirements

that were made of it. Plus, its architecture supports easy addition of new platforms and new blocks

to each platform, which greatly facilitates the growth of the Tactode language.
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User Testing

This chapter is concerned with testing our solution with its intended users. We start with a general

description of our objectives with these tests. Then we describe the experiments we performed and

what they were meant to evaluate. Finally, we present and discuss the results of ours experiments.

6.1 Introduction

Although we can evaluate some aspects of the Tactode language and application simply by

analyzing to which degree they fulfill the initially established requirements, nothing can replace

user tests in a practical project such as this one. Only by taking the product to its intended users can

one see if it performs the way it is supposed to. This is especially true when the target demographic

is very different from the development one, which is precisely the case of Tactode.

We believe testing with children is so important that we began those tests as soon as we had

a minimally viable product, using small focus groups to gage their reactions and how well they

performed a couple of programming tasks. The idea was that these preliminary results could guide

the continuing development of Tactode as well as help us to properly design the subsequent

experiments.

We would have liked to perform more extensive tests, so that the volume of data would be

statistically significant. This was not possible, mainly due to time constraints, because for each

group of children we need a person observing them, answering some of their questions and taking

notes. This means we can either have several groups, if we have enough volunteers, or we can

only test one group at a time.

We did manage to test Tactode with a few pairs of children. These experiments were en-

lightening, and we are mostly pleased with their results. We also have ideas of which future

developments are more important, based on the more recent of these tests.
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6.2 Objectives

With these experiments we wanted to evaluate how well children could achieve simple program-

ming objectives with Tactode and use the application to translate the code and execute it in the

desired target platform. We also wanted to see how well the application performed in the different

platforms (smartphone, tablet and computer) and operating systems (Android, iOS, Windows

and macOS).

The experiments should determine if the children understand what each Tactode block does;

if they are capable of creating ever more complex programs without guidance, aside from an

initial explanation and example; if they identify and correct syntactic errors; if they can observe

the execution and determine whether the target is behaving as intended; and if they can fix the

eventual semantic errors.

Regarding the application, we wanted to check if the children were capable of using it inde-

pendently once it was setup and demonstrated by their monitor. We also wanted to determine, for

each target platform, how well the students managed to use the file that the Tactode application

exported and then execute it.

In general, we wanted to see if the children enjoyed themselves while they were performing

the activities, if they demonstrated interest and if both children in the group collaborated to reach

the objectives. We also wanted to make a list of future improvements for both the language and

the application based on the opinions of the children and on our observation of their performance.

Initially we were hoping to have a comparison between Tactode and some of the block based

languages with graphical interfaces, namely the ones that our target platforms use. However, after

the first attempts we realized this was interfering with our main goal, which was to assert that the

Tactode language and its application are fit for the purposes they were created. We decided to

focus our efforts, particularly considering that our time with children was always limited. How-

ever, there are plans to have a fully functional graphical interface for Tactode, in addition to the

current tangible one. As such, we might again attempt a comparison, but between the two versions

of the same language, which we believe would be more sensible.

6.3 Methodology

During our development of Tactode we have performed three separate tests. They were made

at different stages of development and with distinct methodologies, so we shall describe them

individually.

6.3.1 First Experiment

Although our target demographic is children or young adolescents, our very first tests were actually

performed with a group of eight adolescents between the ages of fifteen and seventeen. The main

reason for this is that the opportunity presented itself when the students were participating in a

Junior University program on robotics, organized by Universidade do Porto. So, we decided we
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could see how the students would interact with Tactode and that would at least help to guide

future experiments.

We had little time to prepare and the Tactode pieces we now have were yet to be manufac-

tured, so we decided to use simple rectangles of thick paper instead of puzzle like pieces, because

it was easier to cut them. We did however add visual clues to the pieces, so the students would

know where they were supposed to adjoin them. These pieces can be seen in Figure 6.1, they have

∗ signs for the vertical connections and ∼ signs for the horizontal ones.

Figure 6.1: Teenagers using old Tactode pieces to program Ozobot.

The students of this experiment used the windows version of the Tactode application, taking

pictures with a webcam attached to the computer. In terms of target, all students used an Ozobot

robot, that was shared between the groups.

Before using Tactode, the students had been programming robots to do a variety of tasks.

Amongst these were the obstacle reaction challenges, in which the robot had to:

1. Run away from obstacles behind it;

2. Follow obstacles in its front;

3. Run away from obstacles in its front;

4. Turn away from obstacles in its front;

5. Move forward until an obstacle is detected in its front and then stop;

6. Stay in the middle when detecting obstacles both in the front and behind.

We decided to ask the students to use Tactode to program Ozobot with the obstacle reaction

challenges. Two pairs started with Tactode, while the other two used Ozoblockly, the pro-

gramming language that comes with Ozobot. After completing a few tasks the groups switched
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languages. Figure 6.1 shows a group of students using Tactode to program Ozobot to run away

from obstacles on the back. Figure 6.2 shows the same challenge being programmed directly in

Ozoblockly.

Figure 6.2: Teenagers using Ozoblockly to program Ozobot.

While the students were programming the robot, we observed them and took some notes that

we present in the next section. We also asked them to fill the questionnaire in Section B.1.

6.3.2 Second Experiment

Our second experiment was meant as a proof of concept as well as a focus group to guide our

final developments. It consisted of two separate challenges which are presented in [82] and [83],

together with their results.

A total of twenty two children aged between ten and twelve years old participated in this

test. Their teacher was given two tutorials, one for each challenge, which described the Tactode

language and application, the challenge and the target platform.

The first challenge was to draw a regular polygon in Scratch, as shown in Figure 4.8. Four-

teen of the twenty-two students participated in this activity. The second challenge was to solve a

simple maze using Ozobot, as depicted in Figure 4.12. All twenty-two students participated. As

with the first experiment, some groups began with Tactode, whilst others began with Scratch

or Ozoblockly, depending on the challenge, then they switched.

The students were organized into groups of two or three elements and the objectives were

explained to them. Then the teacher guided them through using the Tactode pieces to program

Scratch and Ozobot for their respective challenges. Figure 6.3 shows a group of students that

were using Tactode to program the Scratch cat to draw a regular polygon. The students in

Figure 6.4 were tasked with helping Ozobot to solve a simple maze using the Tactode pieces.
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Figure 6.3: Children using the Tactode application to take a picture of their program to draw a
regular polygon in Scratch.

Figure 6.4: Children using the Tactode application to take a picture of their program to solve a
simple maze with Ozobot.

77



User Testing

As in the first experiment, we observed the activities and made notes. We also asked the

students to answer the same questionnaire (Section B.1).

Because we felt the teacher had interfered with our intentions, especially making it impossible

to evaluate how far the students would get with only an initial explanation and a simple example,

we decided to have a more controlled environment for the third experiment.

6.3.3 Third Experiment

The third and final experiment was meant to test a nearly final version of Tactode. This time,

each group of students was monitored by a volunteer, that was supposed to mainly observe and

was only allowed to answer a few specific types of questions once the experiment began.

In this experiment, ten children with ages between eight and twelve participated. The children

were organized into five pairs, and each pair was given a set of Tactode pieces, a robot and a

device with the application installed, distributed according to Table 6.1.

Table 6.1: Material used in the third experiment.

Group Robot Device
1 Ozobot Apple tablet
2 Ozobot Lenovo tablet
3 Cozmo Apple smartphone
4 Sphero Apple computer
5 Sphero Apple computer

All groups were given the same challenge, which was to have their robot move in such a

way as to go through the sides of a regular polygon, as shown in Figure 4.7. Before the actual

experiment began, there was a group conversation about regular polygons, which included their

defining characteristics and the fact that the amplitude of an external angle of a regular polygon

with n sides is 360◦/n. This last part was deduced in such a way that it become clear that when

a robot turned, to go from one side to the next, it had to turn 360◦/n. We decided to provide this

explanation initially because it is a mathematical result and it was not our objective to determine

if students were capable of reaching it on their own.

Once the students were divided into pairs with their respective materials, the monitor of each

group guided them through their first programming experience with Tactode, in which they were

meant to make the robot go forward a certain distance and then turn. Then the students were shown

how to use the application to take a picture of their program and export it. They were also shown

how their particular robot could import and execute the resulting code file.

After the initial explanation and guided activity, the students were asked to program their

robots to draw regular polygons with an increasing number of sides and using increasingly difficult

programming constructs. They were meant to generate the triangle using only a sequence of

movements. For the square they had to use a repeat block, otherwise the number of forward

and turn right blocks would not be sufficient. The pentagon or hexagon should be the same

as the square, but with different angles. For the heptagon, given that 360 is not divisible by 7
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they should use the divide block instead of computing the angle themselves. At this point they

should realize they only need to change two blocks (the argument of the repeat block and the

number after the divide block) to obtain polygons with a different number of sides.

An extra challenge proposed to the students was to make the robot draw a regular polygon

with a high number of small sized sides. When the robot is capable of doing this with a minimal

precision, it looks very close to a circle. The idea was to teach children about approximating

circles using regular polygons. The monitors were allowed to guide the children in this task and it

was meant as a teaching moment more than a test.

The monitors were only allowed to answer questions about the meaning of specific Tactode

pieces, the mathematic behind regular polygons and doubts about using the application or im-

porting the code into the robot, but in the last case the monitors had to report the event in their

observations.

Figures 6.5, 6.6 and 6.7 show a pair of children programming in Tactode, then loading their

program onto Ozobot and finally placing the robot in the corner of a square to check if their

program is correct.

Figure 6.5: Children programming in Tactode to make Ozobot draw a regular polygon.

In this third experiment the students used only Tactode and we did not ask them to make

comparisons with the target languages. In spite of that, the children in this third experiment an-

swered a longer questionnaire than those of the first two experiments. It can be seen in Section B.2.

Also, for each group, the volunteer monitor filled in an observation chart, where they had to

answer the questions in Section B.3.

This last experiment was better structured, allowed us to have more control and yielded more

results, not in number of children involved, which was smaller than in the second experiment,

but in the number of things we observed and in the number of questions the children answered.

Unfortunately, for this kind of control we need volunteers or enough time to test only a couple of

groups simultaneously.
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Figure 6.6: Children loading their program onto Ozobot.

Figure 6.7: Children placing Ozobot in the corner of a square to execute their program.
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This should be the model for future experiments, especially considering it is more in tune with

our established goals for the tests. Indeed, we provided only an initial explanation and example

and then observed how far the children went in a sequence of increasingly difficult programming

challenges. We allowed them to make mistakes and then attempt to identify and fix those mistakes.

The application was also used independently by the children after the first example and they were

encouraged to import the code to the target platform and execute it.

6.4 Results

For all three experiments, we have two types of results: the answers of the students to the question-

naire at the end of the activities and the observations of those accompanying the tests. Whenever

we use the 1 to 5 scale, 1 means ‘not at all’ and 5 means ‘completely’.

6.4.1 First Experiment

The students of this experiment were older and had already spent a few days programming robots,

so we did not expect them to have many difficulties. However, both the language and the applica-

tion were in its early stages, so we were anticipating some issues.

The groups that started with Tactode quickly started using the proximity sensor blocks

as arguments of the wheel speed block, as shown in Figures 4.9 and 4.10. However, those using

Ozoblockly used a more complex structure with if blocks. Their idea was to make the robot

move forward (in the first challenge), if the sensors had a positive value. It works, but is not as

simple and it does not make the robot move faster if the obstacle is nearer.

At first, given that the Tactode pieces were rectangles and did not have tabs and slots, the

students did not fit them properly. The visual clues did not help, until they were specifically told

that they had to align the visual clues on two consecutive pieces. Another difficulty with the

Tactode solution was that it sometimes took several pictures for all the pieces to be identified.

Also, it took some steps to get the code into the robot, while the students using Ozoblockly

could do that faster.

Other than the difference of programming constructs used, the groups completed their tasks

independently of which language they were using.

The answers of the 8 students to the questionnaire are shown in Tables 6.2 and 6.3.

Table 6.2: Answers of the students to the classification questions, in the first questionnaire.

Question 1 2 3 4 5
Did you understand the objectives of the activity? - - - 2 6
Did you find the Tactode language easy to use? - - 3 3 2
Did you find the Tactode application easy to use? - - 2 1 5
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Table 6.3: Answers of the students to questions comparing Tactode and Ozoblockly, in the
first experiment.

Question Tactode Ozoblockly

Which language did you consider easier? 4 4
Which language did you prefer? 3 5

6.4.2 Second Experiment

Both the polygon challenge and the maze challenge of the second experiment lasted about two

hours each. This includes material distribution, introductory explanation, activities and filling the

questionnaires.

All groups completed the required tasks for the maze challenge. In the regular polygon chal-

lenge, the last step, which is using the question and answer blocks to let the user decide the

number of sides, was not attempted by any group. The teacher deemed it too difficult and decided

to skip it.

There was assistance from the teacher, when the students called, so we are not clear on how

far they would get or how much longer it would take them without said assistance. In any case,

we noticed the students completed at least part of the challenges on their own. Also, in the maze

challenge, one of the groups immediately understood that the turning left whenever possible strat-

egy, that the teacher advised them to use, was not the most efficient for the particular maze that

was being used. This shows a deeper understanding of the problem.

This experiment made use of the final Tactode pieces, so all students immediately under-

stood how the pieces were supposed to fit together. However, in one of the rooms where the ex-

periments were conducted there were many issues with light reflections which forced the teacher

to help the children to take pictures.

We observed that the groups using Tactode were more focussed, while the ones using

Scratch or Ozoblockly (depending on the challenge), tried a wider variety of blocks and

spent more time programming other things that were not asked.

The children that performed both challenges were clearly more enthusiastic about using robots

than about programming without them.

The answers of the fourteen children that participated in the regular polygon challenge are in

Tables 6.4 and 6.5. The answers of the twenty children that participated in the maze challenge are

in Tables 6.6 and 6.7.

Table 6.4: Answers of the students to the classification questions, in the regular polygon challenge
of the second experiment.

Question 1 2 3 4 5
Did you understand the objectives of the activity? - - - 4 10
Did you find the Tactode language easy to use? - - 3 6 5
Did you find the Tactode application easy to use? - - - 10 4
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Table 6.5: Answers of the students to questions comparing Tactode and Scratch, in the regular
polygon challenge of the second experiment.

Question Tactode Scratch

Which language did you consider easier? 5 9
Which language did you prefer? 5 9

Table 6.6: Answers of the students to the classification questions, in the maze challenge of the
second experiment.

Question 1 2 3 4 5
Did you understand the objectives of the activity? - - - 8 14
Did you find the Tactode language easy to use? - - 2 11 9
Did you find the Tactode application easy to use? - - - 18 4

Table 6.7: Answers of the students to questions comparing Tactode and Ozoblockly, in the
maze challenge of the second experiment.

Question Tactode Ozoblockly

Which language did you consider easier? 9 13
Which language did you prefer? 9 13

6.4.3 Third Experiment

In this experiment, each group had a monitor permanently observing them, so we have a much

more detailed results. Table 6.8 gives a summary of the children involved, including their age,

school year, programming experience, robot experience, percentage of participation in the activi-

ties, as well as motivation and enjoyment of programming with Tactode.

Table 6.8: Children participating in the third experiment.

Group Child Age School Y. Program. Exp. Robot Exp. Part.1 Mot.2 Enj.3

1 1 10 5 Scratch No 60 5 5
1 2 12 7 JavaScript No 40 4 5
2 1 10 5 Lego Lego 50 1 1
2 2 9 4 Lego Lego 50 1 1
3 1 8 4 Sharkcoders4 No 45 5 5
3 2 9 4 Yes Yes 55 5 5
4 1 10 5 No Sphero BB8 50 4 3
4 2 10 5 Yes Yes 50 5 3
5 1 10 5 No No 66 5 5
5 2 9 4 No No 34 3 4

1Participation (%)
2Was the child motivated? (1 to 5)
3Did the child enjoy programming with Tactode? (1 to 5)
4Portuguese network of programming and robotics schools for children and adolescents.
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The completion time of each task was measured by the monitor and the results are displayed

in Figure 6.8. As shown, group 2 gave up and did not complete all the assignments. Group 3 tried

the circle task, but their robot (Cozmo) was not executing it for some reason, which the monitor

could not understand.
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Figure 6.8: Completion times (in minutes) of each task by group.

The number of pictures taken by each group in each task is shown in Figure 6.9. Recall that

group 1 was using an Apple tablet, group 2 was using a Lenovo tablet, group 3 was using an Apple

smartphone and groups 4 and 5 were using Apple computers. The pictures for groups 4 and 5 were

taken using smartphones, whose brand and model we did not register.
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Figure 6.9: Number of photos taken for each task by group.
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Group 1 was having problems with the first Apple smartphone used, but then changed to

another Apple smartphone and all went well. After the experiment we ran some tests and identified

some issues with the Aruco library that was being used that caused the problems with the first

smartphone. We have since switched to the OpenCV implementation of Aruco and the problem

seems to be fixed.

Group 2 had difficulties with the Lenovo tablet, whose pictures were very unfocused. They

ended up sharing the Apple tablet of group 3. Group 5 was initially having difficulties with light

reflections and then changed to another location in the room to avoid that.

According to the monitors, with the exception of group 2, the children revealed little difficul-

ties when programming. They made some mistakes, but managed to fix them. Group 1 used the

wrong length for the side of the triangle and used a 90◦ angle in the pentagon, but caught both

these errors on execution and fixed them.

The children in group 2 revealed no interest in the activities. At first child 2 was playing while

child 1 was programming alone. Child 1 revealed no difficulties and managed to accomplish the

tasks in a timely fashion, but still had no motivation and appeared to be very bored. Eventually

child 1 gave up on continuing and child 2 took over, they never cooperated. Child 2 appeared to

have many difficulties and to get easily distracted. The monitor made note that child 2 completed

the pentagon with some help and gave up after that.

Group 3 used simultaneously the turn right and turn left blocks in the triangle. When

they started using the repeat block one of the children was having trouble understanding what

it does, while the other picked it up immediately. In the heptagon the children had difficulties

realizing they could use 360÷ 7 as the argument of the angle amplitude of the turn right

command.

Group 4 only revealed difficulties in the first task with understanding the meaning of each

block. They did not set the velocity in the triangle task, but they noticed this error on compilation

(the Tactode application reports it) and they fixed it.

Group 5 had some difficulties initially. The monitor reported that they used too many pieces

in the repeat block, but noticed this mistake and fixed it while programming.

The answers of the children to the questionnaire at the end of the third experiment are shown

in Table 6.9, with the robot related questions detailed in Table 6.10 according to the robot each

child was using.

6.5 Discussion

When examining the results of the first experiment, we need to take into account the age ot the

participants. In any case, somethings become clear. The puzzle like tabs and slots are fundamental

in making it clear how the pieces are supposed to fit together. Indeed, these were the only students

who had any trouble with that and they were the only ones using rectangular pieces.

Another thing that we observed in that experiment is that the students using Tactode reached

the objectives with simpler programs than those using Ozoblockly. We are convinced this is
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Table 6.9: Answers of the students to the classification questions, in the third experiment.

Question 1 2 3 4 5
Did you enjoy this activity? - - - - 10
Did you understand the objectives of the activity? - 1 - 2 7
Did you understand how the robot works? - - - 5 5
Did you understand what the Tactode pieces you used do? - - - 1 9
Did you find programming the robot with Tactode easy? - - 1 3 6
Did you find the Tactode application easy to use? - - 2 - 8
Did you find the robot easy to use? - - 1 - 9
Did you find getting the code to the robot easy? - 1 1 5 3

Table 6.10: Answers of the students to the robot related questions, separated by the robot used, in
the third experiment.

Question
Cozmo Ozobot Sphero

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Understand how robot works? - - - 2 - - - - 1 3 - - - 2 2
Find robot easy to use? - - 1 - 1 - - - - 4 - - - - 4
Find getting code to robot easy? - - 1 1 - - - - 3 1 - 1 - 1 2

due to the fact that we gave them only the Tactode pieces needed for the job, forcing them to

come up with a solution using only those pieces. The students using Ozoblockly had all blocks

available simultaneously. Plus, when one chooses a sensor block, Ozoblockly automatically

brings forward an if construct. They probably decided to do that to facilitate things, but sensor

blocks can be used in other ways, so this does not always help and, in our opinion, should not be

done.

In the questionnaires, all the students claimed to have understood the objectives well enough,

most of them completely. Three of the eight students found the Tactode language neither easy

nor hard to use, while the others found it easy enough or totally easy. As for the application, two

students were in the middle of the scale, but most found it completely easy. In terms of comparing

the two languages, they were tied in difficulty and Ozoblockly had a very slight advantage in

preference.

We believe some of the difficulties expressed by the students regarding the language are related

to the rectangular shape of the pieces. This is supported by the questionnaire data in the second

and third experiments.

The results of the second experiment were somewhat tainted by the over involvement of the

teacher. But still, the students did complete at least part of the tasks on their own without interfer-

ence.

The children showed a clear preference for Ozoblockly and Scratch deeming them both

easier and more enjoyable than Tactode. This is natural, given the propensity of children towards

handheld devices such as tablets and smartphones. Plus, there were more blocks available in those

languages and they could do more different things. Which also explains why those students were
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more distracted.

Systematic questioning of all students revealed that the subjects reported to have understood

what they were supposed to do. The large majority found the Tactode language easy to use,

with three in fourteen and two in twenty two opting for neither easy nor hard. The application had

more consensus, with every student finding it easy. However, the number of students declaring

it completely easy was small. This makes sense, considering that at this point of its develop-

ment the application was working but with difficulties in obtaining good pictures of the programs,

sometimes due to reflections, other due to lack of focus.

The third experiment had fewer participants but more extensive findings. We can see from the

report on the children that they managed to collaborate on almost all groups. The exception is

group 2, where the 50-50 participation means that one child did the first two challenges alone and

then the other child did the third challenge. But this was the group that showed no interest, so their

inability to collaborate is likely not related to Tactode.

Regarding motivation and enjoyment of programming with Tactode, we can see that it was

mostly good or excellent, with only a few exceptions.

The completion times vary in a somewhat strange pattern. We believe this happened because

instead of choosing between executing the pentagon or the hexagon, some groups chose to do both

and took longer because of that. Indeed, from the square to the pentagon, only the number of sides

and the angle changes, no new programming constructs are introduced, so it does not make sense

to take a lot longer. In any case, the heptagon was completed in twelve minutes by group 3 and

less than ten by all other groups (except group 2 which gave up before that task). This shows that

by the end of the progressively difficult tasks, the children had a good grasp of what needed to be

done.

The number of pictures taken was not as low as hoped. Having to take many pictures is

frustrating and is not the mark of a robust solution. At the end of this third experiment we were

quite convinced of the need to improve the image processing of our application. We did that by

switching to the OpenCV implementation of Aruco and improving the pre-processing, namely

to correct orientation. We are convinced the current version of the application would yield a

significantly lower number of photographs when tested, as our visibility tests support. Note that

the pictures that the children took of their programs were much better than most pictures in our

visibility tests.

In answer to the questionnaires, all children reported to have enjoyed the activity very much

(even the ones from group 2). One child declared not to have understood the objectives, while

all the others said they understood, most of them completely. How the robot works, whether it is

easy to use and how easy it is to get the code into the robot received less consensus, but still the

results were mostly positive. More importantly, all children understood what each Tactode piece

they used is supposed to do, plus only one did not find it easy to program with Tactode. The

application had better results than in the previous experiment, with only two children choosing the

middle of the scale and all others opting for the top.
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Even though all children were encouraged to take the questionnaires seriously and answer

them truthfully and thoughtfully, we face their answers with some suspicion. Sometimes children

think they should be nice or they answer fast without thinking very well. Indeed, it makes no

sense that children who were completely uninterested and gave up before the end of the activity

to report they completely enjoyed themselves. This is why the observations made by the monitors

in the third experiment are so important. In any case, we think the results were mostly positive,

with some suggestions for improvement (image processing and code transference to the target)

becoming clear.

We wanted to determine if children were capable of using Tactode for programming tasks

and the answer is clearly yes. The children understand what the blocks do, create programs on

their own after the initial example, and identify and fix box syntactic and semantic errors.

We also wanted to check how well the children used our application. They are capable of

using it on their own, but not without some frustration. We hope to have fixed this issue in the

current version though. Importing the resulting code to the target platform varies a lot depending

on the platform and is not within our reach to fix, because it depends on the implementation of

each target. In any case, we can implement a local simulator in the application, which would make

quick checks much faster.

The children and even adolescents seemed to enjoy themselves while learning with Tactode.

Collaboration was very good, which is hard to achieve when programming in group.

Finally, these experiments tested all supported operating systems and types of devices. We also

tested a variety of targets, with only Python and Robobo not used by the students. Nevertheless,

these targets were tested in our platform tests.

6.6 Conclusion

We began testing Tactode as soon as we had a viable product. The earlier experiments may not

have been as well prepared, but they helped to guide our development and they shaped the final

experiment, where we managed to test all our objectives and obtain extensive results, despite the

lack of subjects.

Overall, we validated the initially proposed goals and proved that the Tactode programming

system works and can be used successfully by children to learn to program step by step. Note that

getting children to enjoy a difficult and abstract discipline, such as programming, is not an easy

task, and with the help of robots, carefully designed challenges, handheld devices and a tangible

interface that seems to be quite possible.
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Conclusion

In this chapter we present a recap of the work realized throughout this dissertation. We give a

report on the degree of satisfaction of our initial objectives, presenting the main contributions of

our work. We also present ideas for future work in continuation of our developments.

7.1 Overview

We began this document with an exploration of the current trends in STEM education, educational

programming languages and educational robots (see Chapter 2). Our aim was to clarify the impor-

tance of teaching children to program early on and determine the state of the art in the tools that

exist for that purpose.

Chapter 3 was devoted to stating our problem. We presented what we consider to be the ideal in

an educational programming language. Then we exposed the limitations of the existing languages

and the consequences of those limitations. Finally, we presented our proposal, defining our goals

for the Tactode tangible programming language and the research questions we wished to answer

in this dissertation.

In Chapter 4 we presented the Tactode programming language. We started with the choices

we made regarding block shape, materials, manufacturing process, programming paradigms, piece

recognition and target platforms. Then we presented each block as well as the syntactic rules for

programming with Tactode. We also gave examples in the form of challenges that showcase the

programming constructs currently supported. Finally, we closed the chapter with an evaluation of

our language, by measuring the level of achievement of our initial goals for it.

Chapter 5 exposed the Tactode application, which is used to capture, compile and export

programs to the target platforms. We started with an elicitation of the requirements for this appli-

cation. Then we presented the architecture, using activity and class diagrams, as well as expla-

nations of the more relevant features. In the following section we gave a detailed description of

the transpiler, since it is at the heart of the application and it is what makes the set of blocks from
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Chapter 4 into a real programming language. We then showed the resulting application with each

of its screens, giving an explanation of the features and how they should be operated. There was

also a set of semiautomatic tests aimed at proofing our application after each development, both in

terms of compilation of each block for each platform and in terms of visibility, that is the quality

of the image processing.

In Chapter 6 we described the experiments we performed with the intended users of our pro-

gramming system. We began by stating our objectives with these experiments. Then we expose

the methodology of our three experiments, followed by the results of each, both in observations

and in questionnaires filled by the children. We closed the chapter with a discussion of our results

and their relation to our initial goals.

7.2 Contributions

Our main contribution with this work is an extremely inexpensive (in terms of materials) multi-

target tangible programming language, together with the multi-platform application that allows it

to be compiled.

Each Tactode piece costs as little as 0,02e, thanks to a manual manufacturing process and

the use of inexpensive materials such as paper and EVA. The pieces are also durable and fit well

together, making it possible for children to easily move their programs.

A total of six target platforms were validated: Ozobot, Cozmo, Robobo, Sphero,

Scratch and Python. The robotic platforms are more engaging for children while the oth-

ers add a wide variety of possibilities to Tactode. Because we chose to implement a greater

number of platforms, they have some missing features, but as our challenges show, it is already

possible to do a variety of interesting programs in each.

We developed an application that works in Android, iOS, macOS and Windows, as well as

any web browser. It can capture large Tactode programs in conditions of uneven light, as long as

there are no reflections. It is also tolerant to rotations and some inclinations. It requires no network

access, since the image is captured, processed and compiled locally. The whole process takes as

little as two seconds for our biggest challenge, even in mobile platforms. The resulting code can

be share directly with the platforms that allow it, like Cozmo, sent to some network location or

saved locally for the target platform to access later.

The application saves previous programs, that the user can re-share or delete. It also allows

configuration of the destination platform, the image source (camera or previously obtained file)

and interface language (english or portuguese). Although the currently supported languages are

only two, addition of new languages is extremely straightforward, as well as facilitated by the

reduced amount of text.

Both the language and application were tested with the intended users and the results revealed

that children are able to program a sequence of increasingly difficult challenges in a timely fash-

ion, without any help after the initial explanation and example. The children were also able to
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independently import and execute the programs in the target platforms. The details and results of

some of these experiments were published in [82] and [83].

7.3 Future Work

Although Tactode is already a quite capable tangible programming system, further development

can help to realize its full potential, both in the language and the application. Also, further user

tests can help to achieve statistical significance, clarify our target demographic, design interesting

challenges and point other development needs that we have yet to identify.

7.3.1 Language

Future work in the language is essential to truly expand its capabilities, so that it allows further

learning and supports more involved projects. Also, it would be interesting to provide all features

of the destination targets.

The most important feature to add is subroutines, both for procedures and for functions (in-

cluding return values). These will allow two different programming paradigms to be taught with

Tactode: procedural and functional. They will also contribute immensely to the ability to create

highly complex projects using Tactode.

Second in the list of future priorities is the addition of more events. Currently only the program

start event is implemented, but with the exception of Ozobot and Python, our target platforms

support a multitude of events, which can be used to teach event-driven programming.

Adding more sensor blocks for the robotic platforms, as well as more sounds and visual effects

is important, so that Tactode can better teach programming of robots. These features should also

make for more interesting and varied programs.

Finally, we should add more variable types, such as strings and booleans, instead of just having

integers. This would be useful to teach children about the different types and how it is important

to check that each variable has the correct type.

7.3.2 Manufacturing

Alternative manufacturing methods should be explored for the Tactode blocks. The current

method is very inexpensive, with each piece costing only 0,02e. But it is slow and error prone,

due to the pieces being manually cut. The resulting product is resilient, but the paper on top might

start to show signs of wear.

Laser cutting and engraving of 4 mm EVA foam seems like a good solution, as long as the price

can be kept low. This would allow quick production of large quantities and the result should be

extremely resilient. Due to the malleability of EVA, the pieces fit together easily and can be moved

without breaking apart. However, when it comes to engraving, we need to guarantee a minimum

contrast between engraved and non engraved parts, given that the Aruco fiducial markers need to

be reliably recognized.
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Another option is to use the same process that the is used in commercially sold puzzles, in

which the pieces are made of cardboard. However, we feel these pieces would be less resilient that

those made of EVA. Note that typical puzzles are not manufactured with the intention of being

assembled and disassembled a large number of times.

7.3.3 Application

In the future, the Tactode application should be enhanced into a true IDE, allowing the captured

programs to be imported into a graphical edition interface and executed in a local robot simulator.

The graphical interface would make small changes to the program easier, but also serve as

an independent programming environment. The transition between tangible and graphical would

then become seamless.

If a text based interface is also added, such as translating Tactode programs to python and

showing the resulting code, that could be executed in a local console, the full transition from

tangible to work appropriate languages would be accomplished.

Also interesting would be to add more platforms, such as Dash, Thymio, micro:bit and

Minecraft Python. The last two of these are significantly different from the current platforms,

so they would add the most to the variety that Tactode supports.

Finally, we can add Linux support, using the Electron framework together with Ionic.

Another possible addition to the application would be to improve the image processing tech-

nique, so that fiducial markers would no longer be necessary in the Tactode blocks, whose

contents would be only the ones that are useful for the programmer.

7.3.4 User Testing

We should repeat the third experiment with as many children as possible, in search of statistical

significance, but also to test the latest version of the application, in which image capturing and

processing should be both faster and more reliable. It would be interesting to test Tactode with

younger children as well, in order to gain a clearer picture of our target demographic and to test

the lower limits of our entry level.

In order to study the benefits of tangible interfaces over graphical ones, we should use the

graphical version of Tactode as soon as it is finished. Also, it is important to make detailed notes

of the performance of children with both interfaces, since it is quite possible their preferences are

not aligned with better performance.

Another possible avenue for future testing is to have schools using Tactode independently

for a period of time and obtaining feedback from both teachers and students.

92



References

[1] Noonan, Ryan. Office of the Chief Economist, Economics and Statistics Adminis-
tration, U.S. Department of Commerce. Stem jobs: 2017 update. ESA Issue
Brief 02-17, available at https://www.commerce.gov/sites/default/files/
migrated/reports/stem-jobs-2017-update.pdf, March 2017. Accessed 2019-
02-24. Cited on pages 1 and 5.

[2] U.S. Department of Education. Science, technology, engineering and math: Education for
global leadership. Available at https://www.ed.gov/stem, March 2015. Accessed
2019-02-24. Cited on page 1.

[3] M.E. Karim, S. Lemaignan, and F. Mondada. A review: Can robots reshape k-12 stem
education? volume 2016-March, 2016. Cited on pages 2 and 6.

[4] J. Chetty. Combatting the War Against Machines: An Innovative Hands-on Approach to
Coding, pages 59–83. Springer International Publishing, Cham, 2017. Cited on pages 2 and 6.

[5] R. Avanzato. Integrating robot design competitions into the curriculum and k-12 outreach
activities. Communications in Computer and Information Science, 44 CCIS:271–278, 2009.
Cited on pages 2 and 6.

[6] G. Tewolde and J. Kwon. Robots and smartphones for attracting students to engineering
education. 2014. Cited on pages 2 and 6.

[7] F.B.V. Benitti and N. Spolaôr. How Have Robots Supported STEM Teaching?, pages 103–
129. Springer International Publishing, Cham, 2017. Cited on pages 2 and 6.

[8] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Mill-
ner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. Scratch: Programming for all.
Communications of the ACM, 52(11):60–67, November 2009. Cited on pages 2, 6, 7, and 29.

[9] Equipa de Recursos e Tecnologias Educativas - Ministério da Educação. Programação e
Robótica no Ensino Básico. Available at http://erte.dge.mec.pt/programacao-
e-robotica-no-ensino-basico-0. Accessed 2019-02-24. Cited on page 2.

[10] H. Uzunboylu, E. Kınık, and S. Kanbul. An analysis of countries which have integrated
coding into their curricula and the content analysis of academic studies on coding training in
turkey. TEM Journal, 6(4):783–791, 2017. Cited on pages 2 and 6.

[11] L. Major, T. Kyriacou, and O. P. Brereton. Systematic literature review: teaching novices
programming using robots. IET Software, 6(6):502–513, Dec 2012. Cited on page 2.

93

https://www.commerce.gov/sites/default/files/migrated/reports/stem-jobs-2017-update.pdf
https://www.commerce.gov/sites/default/files/migrated/reports/stem-jobs-2017-update.pdf
https://www.ed.gov/stem
http://erte.dge.mec.pt/programacao-e-robotica-no-ensino-basico-0
http://erte.dge.mec.pt/programacao-e-robotica-no-ensino-basico-0


REFERENCES

[12] N.Ç. Özüorçun and H. Bicen. Does the inclusion of robots affect engineering students’
achievement in computer programming courses? Eurasia Journal of Mathematics, Science
and Technology Education, 13(8):4779–4787, 2017. Cited on page 2.

[13] Y.C. Huei. Benefits and introduction to python programming for freshmore students using
inexpensive robots. pages 12–17, 2015. Cited on page 2.

[14] American Academy of Pediatrics. Media and young minds. Pediatrics, 138(5), 2016. Cited

on page 3.

[15] M. S. Horn and R. J. K. Jacob. Designing tangible programming languages for classroom use.
In Proceedings of the 1st International Conference on Tangible and Embedded Interaction,
TEI ’07, pages 159–162, New York, NY, USA, 2007. ACM. Cited on pages 3 and 17.

[16] M. S. Horn, E. T. Solovey, R. J. Crouser, and R. J. K. Jacob. Comparing the use of tangible
and graphical programming languages for informal science education. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages 975–984,
New York, NY, USA, 2009. ACM. Cited on pages 3 and 29.

[17] M. S. Horn, R. J. Crouser, and M. U. Bers. Tangible interaction and learning: the case for
a hybrid approach. Personal and Ubiquitous Computing, 16(4):379–389, Apr 2012. Cited on

page 3.

[18] T. Sapounidis and S. N. Demetriadis. Exploring children preferences regarding tangible and
graphical tools for introductory programming: Evaluating the proteas kit. In 2012 IEEE 12th
International Conference on Advanced Learning Technologies, pages 316–320, July 2012.
Cited on pages 3 and 29.

[19] T. Sapounidis, S. Demetriadis, and I. Stamelos. Evaluating children performance with graph-
ical and tangible robot programming tools. Personal and Ubiquitous Computing, 19(1):225–
237, January 2015. Cited on pages 3, 14, and 29.

[20] Institute of Medicine. From Neurons to Neighborhoods: The Science of Early Childhood
Development. The National Academies Press, Washington, DC, 2000. Cited on page 5.

[21] T. S. Dee and H. H. Sievertsen. The gift of time? school starting age and mental health.
Working Paper 21610, National Bureau of Economic Research, October 2015. Cited on page 6.

[22] S. Durand. Finding the ‘perfect’ school starting age. Available at https://www.
geteduca.com/blog/perfect-school-starting-age/, May 2017. Accessed
2019-02-24. Cited on page 6.

[23] S. Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., New
York, NY, USA, 1980. Cited on pages 6, 12, and 29.

[24] P. Guo. Python is now the most popular introductory teaching language at top u.s. universi-
ties. Available at https://cacm.acm.org/blogs/blog-cacm/176450-python-
is-now-the-most-popular-introductory-teaching-language-at-top-
u-s-universities/fulltext, July 2014. Accessed 2019-02-24. Cited on page 7.

[25] Lifelong Kindergarten Group at the MIT Media Lab. Scratch. Available at https://
scratch.mit.edu, 2005. Accessed 2019-02-24. Cited on page 7.

94

https://www.geteduca.com/blog/perfect-school-starting-age/
https://www.geteduca.com/blog/perfect-school-starting-age/
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://scratch.mit.edu
https://scratch.mit.edu


REFERENCES

[26] Wikipedia. Scratch (programming language). Available at https://en.wikipedia.
org/wiki/Scratch_(programming_language), December 2017. Accessed 2019-
02-24. Cited on page 7.

[27] J. Mönig. Snap! Available at http://snap.berkeley.edu/about.html. Accessed
2019-02-24. Cited on page 8.

[28] J. Chung. Stencyl. Available at http://stencyl.com. Accessed 2019-02-24. Cited on

page 8.

[29] N. Fraser. Ten things we’ve learned from blockly. In 2015 IEEE Blocks and Beyond Work-
shop (Blocks and Beyond), pages 49–50, October 2015. Cited on page 8.

[30] E. Pasternak, R. Fenichel, and A. N. Marshall. Tips for creating a block language with
blockly. In 2017 IEEE Blocks and Beyond Workshop (B B), pages 21–24, October 2017.
Cited on page 8.

[31] Google for Education. Blockly. Available at https://developers.google.com/
blockly/. Accessed 2019-02-24. Cited on page 8.

[32] Microsoft. Makecode. Available at https://makecode.com. Accessed 2019-02-24.
Cited on page 9.

[33] R. Pausch, T. Burnette, A. C. Capehart, M. Conway, D. Cosgrove, R. DeLine, J. Durbin,
R. Gossweiler, S. Koga, and J. White. Alice: Rapid prototyping for virtual reality. IEEE
Computer Graphics and Applications, 15(3):8–11, May 1995. Cited on page 10.

[34] Stephen Cooper, Wanda Dann, and Randy Pausch. Alice: A 3-d tool for introductory pro-
gramming concepts. Journal of Computing Sciences in Colleges, 15(5):107–116, April 2000.
Cited on page 10.

[35] Carnegie Mellon University. Alice. Available at https://www.alice.org. Accessed
2019-02-24. Cited on page 10.

[36] Alan Kay et. al. Squeakland. Available at http://www.squeakland.org. Accessed
2019-02-24. Cited on page 10.

[37] Wikipedia. Visual programming language. Available at https://en.wikipedia.org/
wiki/Visual_programming_language, January 2018. Accessed 2019-02-24. Cited on

page 11.

[38] Lifelong Kindergarten Group at the MIT Media Lab. Scratchjr. Available at https://
www.scratchjr.org. Accessed 2019-02-24. Cited on page 11.

[39] Microsoft Research. Kodu. Available at https://www.kodugamelab.com, 2009. Ac-
cessed 2019-02-24. Cited on page 12.

[40] Lego. Mindstorms: Learn to program. Available at https://www.lego.com/en-us/
mindstorms/learn-to-program, 2013. Accessed 2019-02-24. Cited on page 12.

[41] Yaroslavski, D. Lightbot. Available at http://lightbot.com, 2017. Accessed 2019-
02-24. Cited on page 12.

95

https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Scratch_(programming_language)
http://snap.berkeley.edu/about.html
http://stencyl.com
https://developers.google.com/blockly/
https://developers.google.com/blockly/
https://makecode.com
https://www.alice.org
http://www.squeakland.org
https://en.wikipedia.org/wiki/Visual_programming_language
https://en.wikipedia.org/wiki/Visual_programming_language
https://www.scratchjr.org
https://www.scratchjr.org
https://www.kodugamelab.com
https://www.lego.com/en-us/mindstorms/learn-to-program
https://www.lego.com/en-us/mindstorms/learn-to-program
http://lightbot.com


REFERENCES

[42] Fisher Price. Think & learn code-a-pillar application. Available at https:
//www.fisher-price.com/en_US/brands/think-and-learn/learning-
apps/index.html. Accessed 2019-02-24. Cited on page 13.

[43] Hopster. Coding safari. Available at https://www.hopster.tv/coding-safari/.
Accessed 2019-02-24. Cited on page 13.

[44] SpriteBox LLC. Spritebox. Available at http://spritebox.com/hour.html. Ac-
cessed 2019-02-24. Cited on page 13.

[45] codeSpark. codespark academy: Kids coding. Available at https://codespark.com.
Accessed 2019-02-24. Cited on page 13.

[46] H. Suzuki and H Kato. Algoblock: a tangible programming language, a tool for collaborative
learning. In Proceedings of the 4th European logo conference, pages 297–393, 1993. Cited

on page 15.

[47] P. Wyeth and H. Purchase. Designing technology for children: moving from the computer
into the physical world with electronic blocks. Information Technology in Childhood Edu-
cation Annual, 2002(1):219–244, 2002. Cited on page 16.

[48] Modular Robotics. Cubelets. Available at https://www.modrobotics.com/
cubelets/, 2012. Accessed 2019-02-24. Cited on page 16.

[49] Nikolaus Correll, Chris Wailes, and Scott Slaby. A one-hour curriculum to engage middle
school students in robotics and computer science using cubelets. In M. Ani Hsieh and Gre-
gory Chirikjian, editors, Distributed Autonomous Robotic Systems, pages 165–176, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg. Cited on page 16.

[50] B. Wohl, B. Porter, and S. Clinch. Teaching computer science to 5-7 year-olds: An initial
study with scratch, cubelets and unplugged computing. In Proceedings of the Workshop in
Primary and Secondary Computing Education, WiPSCE ’15, pages 55–60, New York, NY,
USA, 2015. ACM. Cited on page 16.

[51] Fisher Price. Think & learn code-a-pillar. Available at https://fisher-
price.mattel.com/shop/en-us/fp/think-learn/think-learn-code-
a-pillar-dkt39. Accessed 2019-02-24. Cited on page 16.

[52] KUBO Robotics. KUBO. Available at https://kubo-robot.com, 2017. Accessed
2019-02-24. Cited on pages 17 and 22.

[53] D. Wang, C. Zhang, and H. Wang. T-maze: A tangible programming tool for children. In
Proceedings of the 10th International Conference on Interaction Design and Children, IDC
’11, pages 127–135, New York, NY, USA, 2011. ACM. Cited on page 18.

[54] D. Wang, T. Wang, and Z. Liu. A tangible programming tool for children to cultivate com-
putational thinking. The Scientific World Journal, 2014, 2014. Cited on page 18.

[55] Osmo. Osmo coding family. Available at https://www.playosmo.com/en/coding-
family/. Accessed 2019-02-24. Cited on page 19.

[56] S. Goyal, R. S. Vijay, C. Monga, and P. Kalita. Code bits: An inexpensive tangible com-
putational thinking toolkit for k-12 curriculum. In Proceedings of the TEI ’16: Tenth In-
ternational Conference on Tangible, Embedded, and Embodied Interaction, TEI ’16, pages
441–447, New York, NY, USA, 2016. ACM. Cited on page 20.

96

https://www.fisher-price.com/en_US/brands/think-and-learn/learning-apps/index.html
https://www.fisher-price.com/en_US/brands/think-and-learn/learning-apps/index.html
https://www.fisher-price.com/en_US/brands/think-and-learn/learning-apps/index.html
https://www.hopster.tv/coding-safari/
http://spritebox.com/hour.html
https://codespark.com
https://www.modrobotics.com/cubelets/
https://www.modrobotics.com/cubelets/
https://fisher-price.mattel.com/shop/en-us/fp/think-learn/think-learn-code-a-pillar-dkt39
https://fisher-price.mattel.com/shop/en-us/fp/think-learn/think-learn-code-a-pillar-dkt39
https://fisher-price.mattel.com/shop/en-us/fp/think-learn/think-learn-code-a-pillar-dkt39
https://kubo-robot.com
https://www.playosmo.com/en/coding-family/
https://www.playosmo.com/en/coding-family/


REFERENCES

[57] Lego. Mindstorms. Available at https://www.lego.com/en-us/mindstorms, 2013.
Accessed 2019-02-24. Cited on page 20.

[58] Anki. Cozmo. Available at https://www.anki.com/en-us/cozmo, 2013. Accessed
2019-02-24. Cited on page 20.

[59] A. Sullivan, M. U. Bers, and C. Mihm. Imagining, playing, & coding with kibo: Using kibo
robotics to foster computational thinking in young children. Proceedings of the International
Conference on Computational Thinking Education, 2017. Cited on page 23.

[60] KinderLab Robotics. KIBO. Available at http://kinderlabrobotics.com/kibo/,
2018. Accessed 2019-02-24. Cited on page 23.

[61] Makeblock. mBot. Available at http://store.makeblock.com/product/mbot-
robot-kit, 2013. Accessed 2019-02-24. Cited on page 23.

[62] Lego. Boost. Available at https://www.lego.com/en-us/boost, 2017. Accessed
2019-02-24. Cited on page 23.

[63] F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada. Thymio ii, a robot that grows wiser
with children. In 2013 IEEE Workshop on Advanced Robotics and its Social Impacts, pages
187–193, November 2013. Cited on page 24.

[64] F. Mondada, M. Bonani, F. Riedo, M. Briod, L. Pereyre, P. Retornaz, and S. Magnenat.
Bringing robotics to formal education: The thymio open-source hardware robot. IEEE
Robotics Automation Magazine, 24(1):77–85, March 2017. Cited on page 24.

[65] Thymio. Thymio. Available at https://www.thymio.org/home-en:home. Accessed
2019-02-24. Cited on page 24.

[66] Wonder Workshop. Dash. Available at https://www.makewonder.com/dash, 2017.
Accessed 2019-02-24. Cited on page 24.

[67] Ozobot & Evollve. Ozobot. Available at https://ozobot.com, 2013. Accessed 2019-
02-24. Cited on page 24.

[68] Sphero. Sphero. Available at https://www.sphero.com/sphero, 2017. Accessed
2019-02-24. Cited on page 25.

[69] F. Bellas, M. Naya, G. Varela, L. Llamas, A. Prieto, J. C. Becerra, M. Bautista, A. Faiña, and
R. Duro. The Robobo project: Bringing educational robotics closer to real-world applica-
tions. In W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, and D. Obdržálek, editors,
Robotics in Education, pages 226–237, Cham, 2018. Springer International Publishing. Cited

on page 25.

[70] Manufactura de Ingenios Tecnológicos. Robobo. Available at http://www.
theroboboproject.com, 2017. Accessed 2019-02-24. Cited on page 25.

[71] Python Software Foundation. Python Documentation - Functional Programming
HOWTO. Available at https://docs.python.org/3.7/howto/functional.
html?highlight=paradigm, 2019. Accessed 2019-02-24. Cited on page 38.

[72] I. Čukić. Functional Programming in C++. Manning Publications, 2018. Cited on page 38.

97

https://www.lego.com/en-us/mindstorms
https://www.anki.com/en-us/cozmo
http://kinderlabrobotics.com/kibo/
http://store.makeblock.com/product/mbot-robot-kit
http://store.makeblock.com/product/mbot-robot-kit
https://www.lego.com/en-us/boost
https://www.thymio.org/home-en:home
https://www.makewonder.com/dash
https://ozobot.com
https://www.sphero.com/sphero
http://www.theroboboproject.com
http://www.theroboboproject.com
https://docs.python.org/3.7/howto/functional.html?highlight=paradigm
https://docs.python.org/3.7/howto/functional.html?highlight=paradigm


REFERENCES

[73] M. Fiala. Artag, a fiducial marker system using digital techniques. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2,
pages 590–596 vol. 2, June 2005. Cited on page 39.

[74] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE International
Conference on Robotics and Automation, pages 3400–3407, May 2011. Cited on page 39.

[75] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco Madrid-Cuevas, and Rafael
Medina-Carnicer. Generation of fiducial marker dictionaries using mixed integer linear pro-
gramming. Pattern Recognition, 51, 10 2015. Cited on page 39.

[76] Francisco Romero Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer. Speeded
up detection of squared fiducial markers. Image and Vision Computing, 76, 06 2018. Cited on

page 39.

[77] OpenCV Team. OpenCV. Available at https://opencv.org, 2018. Accessed 2019-02-
24. Cited on page 39.

[78] Ionic. Ionic Framework. Available at https://ionicframework.com, 2019. Accessed
2019-02-24. Cited on page 54.

[79] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture - Volume 1: A System of Patterns. Wiley Publishing,
1996. Cited on page 56.

[80] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. Cited on

page 58.

[81] Edsger Dijkstra. Algol 60 translation: An algol 60 translator for the x1 and making a trans-
lator for algol 60. January 1961. Cited on page 61.

[82] A. Cardoso, A. Sousa, and H. Ferreira. Programming for young children using tangible tiles
and camera-enabled handheld devices. In ICERI2018 Proceedings, 11th annual Interna-
tional Conference of Education, Research and Innovation, pages 6389–6394. IATED, 12-14
November, 2018 2018. Cited on pages 76 and 91.

[83] A. Cardoso, A. Sousa, and H. Ferreira. Easy robotics with camera devices and tangible tiles.
In ICERI2018 Proceedings, 11th annual International Conference of Education, Research
and Innovation, pages 6400–6406. IATED, 12-14 November, 2018 2018. Cited on pages 76

and 91.

98

https://opencv.org
https://ionicframework.com


Appendix A

Tactode Pieces

This appendix presents all the currently available Tactode pieces.

A.1 Numbers

Table A.1: Tactode number pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

0 number 0 yes yes yes yes yes yes

1 number 1 yes yes yes yes yes yes

...
...

...
...

...
...

...
...

...

9 number 9 yes yes yes yes yes yes

A.2 Colors

Table A.2: Tactode color pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

50 color black yes yes yes no yes no

51 color blue yes yes yes yes yes no

52 color cyan yes yes yes no yes no
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Tactode Pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

53 color green yes yes yes yes yes no

54 color magenta yes yes yes no yes no

55 color orange yes yes yes no yes no

56 color red yes yes yes yes yes no

57 color white yes yes yes no yes no

58 color yellow yes yes yes no yes no

A.3 Letters

Table A.3: Tactode letter pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

100 letter A yes yes yes yes yes yes

101 letter B yes yes yes yes yes yes

...
...

...
...

...
...

...
...

...

125 letter Z yes yes yes yes yes yes

132 letter a yes yes yes yes yes yes

132 letter b yes yes yes yes yes yes

...
...

...
...

...
...

...
...

...

157 letter z yes yes yes yes yes yes

A.4 Operators
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Tactode Pieces

Table A.4: Tactode operator pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

200 addition operator yes yes yes yes yes yes

201 subtraction operator yes yes yes yes yes yes

202 multiplication op. yes yes yes yes yes yes

203 division operator yes yes yes yes yes yes

204 remainder operator yes yes yes yes yes yes

205 left parenthesis yes yes yes yes yes yes

206 right parenthesis yes yes yes yes yes yes

207 negation operator yes yes no yes yes yes

208 disjunction operator yes yes yes yes yes yes

209 conjunction operator yes yes yes yes yes yes

210 equality operator yes yes yes yes yes yes

211 inequality operator yes no yes no no yes

212 less than operator yes yes yes yes yes yes

213 less than or eq. op. yes no yes no no yes

214 greater than operator yes yes yes yes yes yes

215 greater than or eq. op. yes no yes no no yes

218 absolute value op. yes yes yes yes yes yes
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A.5 Variables

Table A.5: Tactode variable pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

300 variable 300 yes yes yes yes yes yes

301 variable 301 yes yes yes yes yes yes

...
...

...
...

...
...

...
...

...

394 variable 394 yes yes yes yes yes yes

399 create variable

398 a variable, 300-394 yes yes yes yes yes yes

397 variable name, string

396 set variable value

398 a variable, 300-394 yes yes yes yes yes yes

395 value, numerical exp.

A.6 Events

Table A.6: Tactode event pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

400 when flag clicked event no yes yes yes yes no

A.7 Control
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Table A.7: Tactode control pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

502 repeat a number of times yes yes yes yes yes yes

503 end of repeat yes yes yes yes yes yes

504 repeat forever yes yes yes yes yes yes

505 end of forever yes yes yes yes yes yes

506 execute if cond. true yes yes yes yes yes yes

507 execute if cond. false yes yes yes yes yes yes

508 end of if yes yes yes yes yes yes

509 repeat while cond. true yes yes yes yes yes yes

510 end of while yes yes yes yes yes yes

511 break out of loop yes no no no no yes

A.8 Sensors

Table A.8: Tactode sensor pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

600 front left prox. sensor yes no no yes no no

601 front right prox. sensor yes no no yes no no

602 back left prox. sensor yes no no yes no no
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Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

603 back right prox. sensor yes no no yes no no

604 front far left prox. no no no yes no no

605 front far right prox. no no no yes no no

606 front center prox. no no no yes no no

607 back center prox. no no no yes no no

612 is there line on left yes no no no no no

613 is there line on right yes no no no no no

614 is there line forward yes no no no no no

615 is this the line end yes no no no no no

616 get color of line yes no no no no no

618 ask a question, string no no no yes yes yes

619 user answer to quest. no no no yes yes yes

A.9 Movement

Table A.9: Tactode movement pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

700 stop wheels yes yes yes yes no no
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Tactode Pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

701 set wheel speed

702 left wheel, num. exp. yes yes yes yes no no

703 right wheel, num. exp.

704 move forward

708 distance, num. exp. yes yes yes yes no no

710 speed, num. exp.

705 move backward

708 distance, num. exp. yes yes yes yes no no

710 speed, num. exp.

706 turn left

709 angle, num. exp. yes yes yes yes no no

710 speed, num. exp.

707 turn right

709 angle, num. exp. yes yes yes yes no no

710 speed, num. exp.
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Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

704 move forward

708 distance, num. exp. no no no no yes no

705 move backward

708 distance, num. exp. no no no no yes no

706 turn left

709 angle, num. exp. no no no no yes no

707 turn right

709 angle, num. exp. no no no no yes no

711 follow line yes no no no no no

712 pick left direction yes no no no no no

713 pick right direction yes no no no no no

714 pick forward direction yes no no no no no

715 pick back direction yes no no no no no

A.10 Sound
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Table A.10: Tactode sound pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

800 say a phrase, string yes yes yes yes yes yes

801 think a phrase, string no no no no yes no

A.11 Visual

Table A.11: Tactode visual pieces

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

900 erase screen content no no no no yes no

901 put pen down to write no no no no yes no

902 lift pen to stop writing no no no no yes no
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Appendix B

Questionnaires for the experiments

This appendix contains the questionnaires answered by the students and monitors in the experi-

ments described in Chapter 6.

B.1 First and Second Experiment

The students in the first experiment answered the following questionnaire:

1. Did you understand the objectives of the activity?

not at all 1 2 3 4 5 completely

2. Did you find the Tactode language easy to use?

not at all 1 2 3 4 5 completely

3. Did you find the Tactode application easy to use?

not at all 1 2 3 4 5 completely

4. Which language did you consider easier?

Tactode

Ozoblockly

5. Which language did you prefer to use?

Tactode

Ozoblockly
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B.2 Student Questionnaire for the Third Experiment

The students in the third experiment answered the following questionnaire:

1. Which robot did you use?

Cozmo

Ozobot

Sphero

2. Did you enjoy this activity?

not at all 1 2 3 4 5 completely

3. Did you understand the objectives of the activity?

not at all 1 2 3 4 5 completely

4. Did you understand how the robot works?

not at all 1 2 3 4 5 completely

5. Did you understand what each Tactode piece you used does?

not at all 1 2 3 4 5 completely

6. Did you think that programming the robot with the Tactode pieces was easy?

not at all 1 2 3 4 5 completely

7. Did you find the application easy to use?

not at all 1 2 3 4 5 completely

8. Did you find the robot easy to use?

not at all 1 2 3 4 5 completely

9. Did you find transferring the code from the Tactode application to the robot easy?

not at all 1 2 3 4 5 completely

B.3 Monitor Questionnaire for the Third Experiment

The monitors in the third experiment answered the following questionnaire:

1. Material:

(a) Which robot did the group use?
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Cozmo

Ozobot

Sphero

(b) Which device did the group use to run the Tactode application?

Lenovo tablet

Apple tablet

Apple smartphone

Apple computer

2. For each child:

(a) Name:

(b) Age:

(c) School year:

(d) Previous programming experience:

(e) Previous experience with robots:

(f) Percentage of participation:

(g) Motivation

not at all 1 2 3 4 5 completely

(h) Enjoyment

not at all 1 2 3 4 5 completely

3. For each task between triangle, square (using repeat block), pentagon and hexagon (using

divide block):

(a) Completion times:

(b) Programming difficulties:

(c) Difficulties in taking pictures/number of pictures taken:

(d) Difficulties in using the application:

(e) Difficulties getting the code into the robot:

(f) Number of attempts:

(g) Programming errors:

i. Number and type of errors:

ii. Level of debugging
there are no errors

children do not notice that there are errors
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children notice the errors

children are able to determine error location

children know which errors they have commited

children fix the errors

iii. Debugging moments
when programming

when compiling

when executing
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