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 2

SUMMARY 24 

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported to the 25 

organelle by shuttling receptors. Matrix proteins containing a type 1 signal are carried to the 26 

peroxisome by PEX5, whereas those harboring a type 2 signal are transported by a PEX5-PEX7 27 

complex. The pathway followed by PEX5 during the protein transport cycle has been characterized 28 

in detail. In contrast, not much is known regarding PEX7. In this work we show that PEX7 is 29 

targeted to the peroxisome in a PEX5- and cargo-dependent manner where it becomes resistant to 30 

exogenously added proteases. Entry of PEX7 and its cargo into the peroxisome occurs upstream of 31 

the first cytosolic ATP-dependent step of the PEX5-mediated import pathway, i.e., before 32 

monoubiquitination of PEX5. PEX7 passing through the peroxisome becomes partially, if not 33 

completely, exposed to the peroxisome matrix milieu suggesting that cargo release occurs at the 34 

trans side of the peroxisomal membrane. Finally, we found that export of peroxisomal PEX7 back 35 

into the cytosol requires export of PEX5 but, strikingly, the two export events are not strictly 36 

coupled indicating that the two proteins leave the peroxisome separately. 37 

 38 

Keywords: Peroxisomes, PEX7, PEX5, PTS2-containing protein, cargo protein translocation, 39 

import pathway 40 

41 
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INTRODUCTION 42 

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-translationally 43 

targeted to the organelle via one of two peroxisomal targeting sequences (PTSs): 1) the PTS type 1 44 

(PTS1), a small peptide frequently ending with the sequence SKL located at the C termini of the 45 

vast majority of matrix proteins (1, 2) and 2) the PTS2, a degenerated nonapeptide present at the 46 

amino termini of a few matrix proteins (3-5). In contrast to the PTS1, the PTS2 is generally 47 

cleaved when the protein reaches the organelle matrix (5-7). In mammals and many other 48 

organisms both PTS1 and PTS2 proteins are transported to the organelle by PEX5, the peroxisomal 49 

shuttling receptor (8-11). The interaction of PEX5 with PTS1 proteins is direct (12-16) whereas the 50 

interaction between PEX5 and PTS2 proteins requires the adaptor protein PEX7 (17-19). 51 

Interestingly, not all PEX5 proteins in a mammalian cell are capable of binding PEX7. This is due 52 

to alternative splicing of the PEX5 transcript which yields two major isoforms of the receptor, 53 

PEX5S and PEX5L. In contrast to PEX5L, PEX5S is not able to bind PEX7 because it lacks an 54 

internal 37 amino acid domain (8, 10). The situation in yeasts is different. While these organisms 55 

also use PEX5 to target PTS1 proteins to the peroxisome, import of PTS2 proteins is promoted by 56 

PEX7 and a species-specific member of the so-called PEX20 family (19-23), a group of proteins 57 

that have no mammalian counterpart but that display functional similarities with the N-terminal 58 

half of PEX5L (17, 19, 24). 59 

The pathway followed by PEX5 during the protein transport process is reasonably known (25-28). 60 

After binding a cargo protein in the cytosol, PEX5 interacts with the peroxisomal 61 

docking/translocation machinery (DTM) (29), a peroxisomal membrane protein complex 62 

comprising PEX13, PEX14 and the RING peroxins PEX2, PEX10 and PEX12 (30-32). Following 63 

this docking event PEX5 gets inserted into the DTM acquiring a transmembrane topology (33, 34), 64 

a step that results in the translocation of the cargo protein across the organelle membrane and its 65 

release into the peroxisomal lumen (35, 36). Interestingly, none of these steps require cytosolic 66 
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ATP (35-37). PEX5 is then extracted from the DTM through a two-step mechanism. First, PEX5 is 67 

monoubiquitinated at a conserved cysteine (Cys 11 in human PEX5) (38, 39); this 68 

monoubiquitinated PEX5 species is subsequently dislocated from the DTM in an ATP-dependent 69 

manner by the receptor export module (REM), a protein complex comprising the two 70 

mechanoenzymes PEX1 and PEX6 (37, 40-42). Finally, ubiquitin is removed from PEX5 probably 71 

by a combination of enzymatic and non-enzymatic mechanisms (43-45). 72 

In contrast to all the data available for PEX5, our knowledge on the pathway followed by PEX7 73 

during the PTS2 protein import is still incomplete. Actually, for mammalian PEX7, besides a 74 

recent report showing that the protein associates with peroxisomes and acquires a protease-75 

protected status in a cytosolic ATP-independent manner (46), not much else is presently known. 76 

Data on PEX7 from yeasts are somewhat more abundant (reviewed in (4)). For instance, it has 77 

been suggested that yeast PEX7 interacts first with the PTS2 cargo protein and subsequently with a 78 

member of the PEX20 family; this cytosolic trimeric complex then interacts with the DTM, 79 

leading to the translocation of the cargo protein into the matrix of the organelle (47). Such pathway 80 

would suggest that PEX7 reaches the peroxisome in a cargo-dependent manner, as is in fact the 81 

case for mammalian PEX5 working in the PTS1 protein import pathway (29). Intriguingly, 82 

however, PEX7 can also be found in peroxisomes in strains lacking PEX20 and that, therefore, do 83 

not import PTS2 proteins (48). 84 

There are also some data on the intraperoxisomal pathway followed by yeast PEX7. According to 85 

Lazarow and co-workers this protein is completely translocated across the peroxisomal membrane 86 

during its normal protein transport cycle (49). However, as stated above, these organisms use a 87 

member of the PEX20 family, and not PEX5, to transport PEX7-PTS2 cargo protein complexes to 88 

the peroxisome. This fact together with the idea that PEX20 itself may accompany PEX7 during its 89 

journey through the peroxisome matrix (48, 50) raises doubts on whether or not the yeast data can 90 

be extrapolated to the mammalian system (see also Discussion). 91 
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In this work we have optimized a previously established peroxisomal in vitro import system to 92 

study the pathway followed by mammalian PEX7 during the PTS2 protein import cycle. We found 93 

that PEX7 reaches the peroxisome in a PEX5L- and PTS2-dependent manner where it acquires a 94 

protease-protected status. Acquisition of this status occurs upstream of the first cytosolic ATP-95 

dependent step, i.e., before ubiquitination of PEX5L. This in vitro import system also allowed us 96 

to characterize the export step of PEX7. Our results show that whenever export of PEX5L is 97 

inhibited that of PEX7 is also blocked. This suggests that PEX7 exits the organelle through the 98 

DTM site occupied by PEX5L. Importantly, in vitro imported PEX5L and PEX7 display different 99 

export kinetics suggesting that their export is uncoupled. Finally, we provide evidence indicating 100 

that PEX7 travelling through the peroxisome becomes partially, if not completely, exposed to the 101 

peroxisome matrix milieu. 102 

103 
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MATERIAL AND METHODS 104 

Plasmids 105 

The cDNA coding for the full-length human PEX7 (pGEM4-PEX7) was obtained by PCR 106 

amplification using the plasmid SC119985 (OriGene) as template and the primers 5’-107 

GCCTCTAGAGCCACCATGAGTGCGGTGTGCGGTGGA-3’ and 5’-108 

GCGCGGTACCTCAAGCAGGAATAGTAAGAC-3’. The amplified fragment was cloned into 109 

the XbaI and the KpnI sites of pGEM4® (Promega). A plasmid encoding PEX7 possessing a 110 

tryptophan instead of a leucine at position 70 (PEX7(L70W)) was obtained with the QuikChange® 111 

site-directed mutagenesis kit (Stratagene) using pGEM4-PEX7 as template and the primers 5’- 112 

GGAATGATGGTTGGTTTGATGTGACTTGG -3’ and 5’- 113 

CCAAGTCACATCAAACCAACCATCATTCC -3’. A plasmid encoding preL4R-PEX7, a PEX7 114 

protein possessing at its N terminus the peptide 115 

MAQRRQVVLGHLRGPADSGWMPQAAPCLSGASR was constructed as follows. Plasmid 116 

SC119985 was used as template in a PCR reaction with the primers 5’-117 

GCCTCTAGAATGAGTGCGGTGTGCGGTGGA-3’ and 5’-118 

GCGCGGTACCTCAAGCAGGAATAGTAAGAC-3’ and the obtained DNA fragment was 119 

inserted into XbaI/KpnI-digested pGEM4® (Promega). This plasmid was then digested with SphI 120 

and XbaI and ligated to the pre-annealed primers 5’- 121 

CCACCATGGCGCAGAGGCGGCAGGTAGTGCTGGGCCACCTGAGGGGTCCGGCCGATT122 

CCGGCTGGATGCCGCAGGCCGCGCCTTGCCTGAGCGGTGCCT-3’ and 5’-123 

CTAGAGGCACCGCTCAGGCAAGGCGCGGCCTGCGGCATCCAGCCGGAATCGGCCGGA124 

CCCCTCAGGTGGCCCAGCACTACCTGCCGCCTCTGCGCCATGGTGGCATG-3’. The 125 

peptide preceding PEX7 in the preL4R-PEX7 fusion protein contains amino acid residues 2-30 of 126 

human pre-thiolase in which leucine 4 was replaced by an arginine (numbering of full-length 127 

human pre-thiolase (51)). This peptide still contains the cleavage site for the matrix processing 128 
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peptidase, but the L4R mutation abolishes its PTS2 function (52). The plasmid encoding full-129 

length human thiolase precursor (pGEM4-pre-Thiolase) was described elsewhere (35). A plasmid 130 

coding for pre-thiolase possessing the L4R mutation (pGEM4-preL4R-Thiolase) was obtained 131 

with the QuickChange® site-directed Mutagenesis Kit (Stratagene), using pGEM4-pre-Thiolase as 132 

template and the primers 5’- ATGCAGAGGCGGCAGGTAGTGCTGGG -3’ and 5’- 133 

CCCAGCACTACCTGCCGCCTCTGCAT -3’. The plasmid pGEM4-PEX5L, encoding the large 134 

isoform of human PEX5, was described before (34). The plasmid encoding amino acid residues 1-135 

324 of PEX5L possessing an alanine at position 11 ( C1PEX5L(C11A)) was obtained with the 136 

QuikChange® site-directed mutagenesis kit (Stratagene), using pET28- C1PEX5L as template 137 

(53) and primers described elsewhere (44). The cDNA coding for histidine-tagged PEX7 was 138 

obtained by PCR amplification using the plasmid SC119985 (OriGene) as template and the 139 

primers 5’-GTATGAGCCATATGAGTGCGGTGTGCGGTGGAG-3’ and 5’-140 

GGCCGCGGAATTCTCAAGCAGGAATAGTAAGAC-3’. The amplified fragment was cloned 141 

into the NdeI and the EcoRI sites of pET-28a (Novagen). The cDNA encoding the mature form 142 

Phytanoyl-CoA hydroxylase (m-PHYH) was obtained by PCR amplification of the plasmid 143 

described in (54) using the primers 5’- GGCGCGGTACCATCAGGGACTATTTCCTCTGCC -3’ 144 

and 5’- GGCGCAAGCTTTCAAAGATTGGTTCTTTCTCC -3’ and cloned into the KpnI and 145 

HindIII sites of pQE31 (Qiagen). 146 

 147 

Recombinant Proteins 148 

The recombinant large isoform of human PEX5 (PEX5L) (55), PEX5L containing the missense 149 

mutation N526K (PEX5L(N526K)) (56), proteins comprising amino acid residues 1-324 or 315-150 

639 of PEX5L ( C1PEX5L and TPRs, respectively) and C1PEX5L containing the missense 151 

mutation C11A ( C1PEX5L(C11A)) (53, 57), a protein comprising the first 287 amino acid 152 

residues of the small isoform of human PEX5 ( C1PEX5S) (35), the GST-ubiquitin fusion protein 153 
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(GST-Ub) (38), the precursor of human Phytanoyl-CoA hydroxylase (p-PHYH) and its mature 154 

form (m-PHYH) (54), human PEX19 (58) and a protein comprising the first 80 amino acid 155 

residues of human PEX14 (NDPEX14) (57), were obtained as described previously. Histidine-156 

tagged PEX7 was expressed in the BL21(DE3) strain of Escherichia coli and obtained as inclusion 157 

bodies. The fusion protein was purified by HIS-SelectTM nickel affinity gel (Sigma) under 158 

denaturing conditions (6 M guanidine hydrochloride) and concentrated by trichloroacetic acid 159 

precipitation. 160 

 161 

In Vitro Import/Export Reactions 162 

Liver post-nuclear supernatants (PNS) from rat or PEX7 knockout mouse were prepared as 163 

described before (34). In a typical import reaction (100 l final volume), 35S-labeled proteins (1-2 164 

l of the rabbit reticulocyte lysates; see below) were diluted to 10 l with import buffer (20 mM 165 

MOPS-KOH, pH 7.4, 0.25 M sucrose, 50 mM KCl, 3 mM MgCl2, 20 M methionine, 2 g/ml N-166 

(trans-epoxysuccinyl)-L-leucine 4-guanidinobutylamide, 2 mM reduced glutathione, final 167 

concentrations) and added to 500 g of liver PNS that had been primed for import (5 min 168 

incubation at 37 ºC in import buffer containing 0.3 mM ATP; see (35, 37) for details). Reactions 169 

were incubated for 30 min at 37 °C, unless otherwise stated. ATP or AMP-PNP were used at 3 170 

mM, final concentration. NTP depletion from both PNS and reticulocyte lysates using apyrase 171 

(Grade VII, Sigma) was done exactly as described (36). Where indicated, import reactions were 172 

supplemented with recombinant PEX5 proteins (PEX5L, PEX5L(N526K), C1PEX5L, 173 

C1PEX5L(C11A) or C1PEX5S; 30 nM final concentrations), GST-Ub or bovine ubiquitin (10 174 

M), and recombinant p-PHYH or m-PHYH (140 nM, final concentration). After import, reactions 175 

were treated with pronase (500 g/ml final concentration) for 45 min on ice and processed for 176 

SDS-PAGE/autoradiography exactly as described before (35). In some experiments, organelles 177 
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were resuspended in import buffer and subjected to pronase digestion in the presence or absence of 178 

1% (w/v) Triton X-100. 179 

In the in vitro export assays, radiolabeled proteins were first subjected to an import assay for 15 180 

min. Further import was then stopped either by adding recombinant NDPEX14 to the reaction (30 181 

μM final concentration), or by isolating the organelles by centrifugation and resuspending them in 182 

import buffer. In earlier experiments, cytosolic proteins derived from 500 μg of liver PNS were 183 

also added. The organelle suspensions were then incubated at 37 ºC in the presence of either 5 mM 184 

ATP or AMP-PNP. 185 

For the PTS2-only in vitro import/export experiments, PNS were pre-incubated with 1 M 186 

recombinant TPRs for 10 min on ice, before starting the import assays. This recombinant protein, 187 

corresponding to the C-terminal half of PEX5, comprises its PTS1-binding domain and is used 188 

here to sequester endogenous PTS1-containing proteins (13, 29, 56). Also, the reticulocyte lysates 189 

containing 35S-PEX7 and 35S-PEX5L (2 l each) were pre-incubated with recombinant p-PHYH 190 

(20 min at 23 ºC in 10 l of import buffer) to favor formation of the trimeric PEX5L-PEX7-PTS2 191 

complex. The export incubation was carried out as described above, but in the presence of 1 M 192 

TPRs and 10 M NDPEX14. 193 

 194 

Subcellular fractionation 195 

Pronase-treated organelles from an import reaction or rat liver purified peroxisomes were 196 

resuspended in 20 mM MOPS-KOH, pH 7.4, 0.25 M sucrose, 1 mM EDTA, 2 mM DTT, 0.1 197 

mg/ml phenylmethanesulfonylfluoride, 1:500 (v/v) mammalian protease inhibitors mixture 198 

(Sigma) and disrupted by sonication using a SONOPULS HD2200-BANDELIN equipped with a 199 

MS 73 microtip. The sonication conditions used (40% duty cycle, 10% output power for just 25 s) 200 

were established as the mildest ones resulting in a quantitative extraction of catalase from 201 
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peroxisomes. Membrane and matrix components were separated by centrifugation at 100,000 g for 202 

60 min. 203 

 204 

Miscellaneous 205 

All 35S-labeled proteins were synthesized using the TNT® T7 quick coupled 206 

transcription/translation kit (Promega) in the presence of [35S]methionine (specific activity >1000 207 

Ci/mmol; PerkinElmer Life Sciences). Although no attempts were made to quantify the amounts of 208 

radiolabeled proteins in our reactions, note that, according to the manufacturer, 1 μl of reticulocyte 209 

lysate typically produces 2-6 ng of radiolabeled protein. For 35S-PEX7 this corresponds to a final 210 

concentration of 0.6-3.4 nM in the import assays. An antibody directed to human PEX7 was 211 

produced in rabbits using recombinant histidine-tagged PEX7. The antibody directed to PEX13 212 

was described elsewhere (59) and the one against catalase was purchased from Research 213 

Diagnostics, Inc. (catalogue number RDI-CATALASEabr). All antibodies were detected using 214 

goat alkaline phosphatase-conjugated anti-rabbit antibodies (A9919; Sigma). 215 

Densitometric analyses of autoradiography films were performed using the ImageJ software 216 

(Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 217 

http://imagej.nih.gov/ij/, 1997–2011). 218 

219 
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RESULTS 220 

PEX7 reaches the peroxisome in a PEX5L- and PTS2-dependent manner. We have previously 221 

described an improved in vitro system to characterize the peroxisomal import mechanism of pre-222 

thiolase, a PTS2-containing protein (35). The system relies on a rat liver post-nuclear supernatant 223 

as a source of peroxisomes and cytosolic components, supplemented with either recombinant 224 

C1PEX5L (amino acid residues 1-324 of PEX5L) or PEX5L(N526K) (PEX5L possessing a 225 

lysine at position 526 instead of an asparagine; (56, 60)). These two PEX5 proteins contain an 226 

intact PEX7-binding domain as well as all the other elements required for a productive interaction 227 

with the peroxisomal protein import machinery, and thus they are still competent in the PTS2-228 

mediated import pathway. However, they do not bind efficiently PTS1 proteins (8, 60, 61), an 229 

advantage when studying the PTS2-mediated import pathway (see below). In this work we used 230 

this improved system to analyze PEX7. 231 

Figure 1A shows the results of in vitro import assays performed with both 35S-labeled PEX7 and 232 

pre-thiolase. In the absence of C1PEX5L, or in the presence of C1PEX5S (a protein almost 233 

identical to C1PEX5L that lacks the PEX7-binding domain; see Introduction), only a small 234 

fraction of protease-protected (imported) thiolase was observed in organelle pellets, as expected 235 

(35), and the same is true for 35S-PEX7 (lanes 1 and 3). A 5-fold increase in the amounts of both 236 

radiolabeled proteins was observed when the import assays were supplemented with either 237 

recombinant C1PEX5L or PEX5L(N526K) (lanes 2 and 5). Recombinant PEX5L also improves 238 

the import efficiencies of both pre-thiolase and PEX7 but only by a factor of 2.5 (compare lanes 1 239 

and 4). The weaker stimulatory effect obtained with PEX5L is probably due to the fact that this 240 

protein also interacts with endogenous PTS1-containing proteins present in the PNS, creating a 241 

competition problem at the peroxisomal DTM (see also (35)). Importantly, the in vitro import 242 

yields of 35S-PEX7 obtained in the presence of C1PEX5L can be further improved by a factor of 243 

2 when a recombinant PTS2 protein, pre-phytanoyl-CoA 2-hydroxylase (p-PHYH), is added to the 244 
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assay (Fig. 1B, compare lanes 3 and 4). The stimulatory effect of p-PHYH on PEX7 import 245 

contrasts with its inhibitory effect on pre-thiolase import (Fig. 1B, compare lanes 3 and 4). 246 

Recombinant phytanoyl-CoA 2-hydroxylase lacking the PTS2 (m-PHYH) has no such effects (Fig. 247 

1C, compare lanes 2 and 3). These findings strongly indicate that the 35S-PEX7 protein used in 248 

these experiments is truly functioning in the PTS2-mediated protein import pathway. Further data 249 

corroborating this conclusion were obtained when a PNS from PEX7 knockout mice (62) was used 250 

in import assays. As shown in Fig. 1D (lane 1), an assay using PNS from these mice supplemented 251 

with C1PEX5L (and 2 μl of a mock-translated reticulocyte lysate) failed to reveal import of pre-252 

thiolase. In contrast, addition of just 2 μl of the lysate containing 35S-PEX7 was sufficient to 253 

promote import and partial processing of pre-thiolase (Fig. 1D, lane 2). A non-functional PEX7 254 

protein harboring a mutation previously described in a patient with Rhizomelic Chondrodysplasia 255 

Punctata Type 1 (PEX7(L70W); (63)), was not competent in this assay, as expected (Fig. 1D, lane 256 

3). Note that PEX7 alone is readily degraded by the protease used in these assays (Fig. 1E, lane 2) 257 

and that the resistance it acquires during in vitro import vanishes in the presence Triton X-100, a 258 

mild detergent that solubilizes biological membranes (Fig. 1F, lane 2). Taken together, the 259 

experiments described above strongly indicate that in vitro synthesized PEX7 reaches the 260 

peroxisome in a PEX5L- and PTS2-dependent manner where it acquires a protease-protected 261 

status. 262 

The energetics of PEX7 import. We have previously shown that: 1) PEX5L becomes inserted 263 

into the DTM in a cytosolic ATP-independent process (37, 40, 64) and 2) translocation of pre-264 

thiolase across the DTM into the peroxisomal matrix occurs upstream of the first cytosolic ATP-265 

dependent step, i.e., before monoubiquitination of PEX5L (35). Not surprisingly, we found that the 266 

energetic requirements of PEX7 import are identical, as was in fact also reported by others (46). 267 

As shown in Fig. 2A neither supplementation of import reactions with AMP-PNP (a non-268 

hydrolyzable ATP analog; (65)), nor pre-treatment of the 35S-PEX7 protein and PNS with apyrase 269 
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(an enzyme that hydrolyzes ATP and other NTPs; (66)) blocked PEX7 import (compare lane 1 270 

with lanes 2 and 3, respectively). 271 

Interestingly, although export of peroxisomal PEX7 is ATP-dependent (as it will be shown below), 272 

the levels of peroxisomal PEX7 observed under the different energetic conditions are identical. 273 

This finding suggests that export of PEX7 from the peroxisome becomes a rate-limiting step in this 274 

optimized in vitro import system. 275 

The data in Fig. 2A showing that PEX7 import is not blocked in assays containing apyrase, a 276 

condition previously shown to block PEX5L monoubiquitination (35, 36), also suggests that 277 

import of PEX7, like import of pre-thiolase, occurs upstream of PEX5L monoubiquitination. 278 

Additional data supporting this conclusion are presented in Fig. 2B. Identical amounts of protease-279 

protected 35S-PEX7 and thiolase were obtained in import reactions supplemented with either 280 

C1PEX5L or C1PEX5L(C11A), a mutant protein that possesses an alanine at position 11. The 281 

substitution of cysteine 11 by an alanine results in a PEX5 protein that can still enter the DTM but 282 

that is no longer monoubiquitinated (44). 283 

The N terminus of peroxisomal PEX7 is exposed into the organelle matrix. The fact that 284 

peroxisomal 35S-PEX7 is resistant to exogenously added proteases suggests that PEX7 exposes no 285 

major domains into the cytosol but provides no clues on how deep in peroxisomes it reaches. To 286 

address this issue we adapted a strategy previously used by others to show that a portion of the 287 

polypeptide chain of peroxisomal PEX5L reaches the peroxisomal matrix (52). Specifically, we 288 

synthesized a PEX7 protein having at its N terminus a cleavable, but otherwise non-functional, 289 

mutant version of thiolase pre-sequence and asked whether this PEX7 protein (hereafter referred to 290 

as preL4R-PEX7) could be cleaved in our in vitro import assays. A control experiment with a pre-291 

thiolase carrying the same mutation (L4R) confirmed that this mutant pre-sequence is not 292 

functional in our in vitro assays (Fig. 3A). As shown in Fig. 3B, preL4R-PEX7 subjected to in 293 

vitro import assays not only acquired a protease-resistant status in a PEX5L- and PTS2-dependent 294 
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manner but was also converted into a 2-3 kDa shorter protein. Furthermore, preL4R-PEX7, like 295 

PEX7, is also able to restore import of pre-thiolase in PNS from the PEX7 knockout mice (Fig. 296 

3C). Processing of preL4R-PEX7 requires its passage through the peroxisome because nearly no 297 

processed PEX7 could be detected when the import assays were performed in the presence of 298 

NDPEX14, a recombinant protein comprising the PEX5-binding domain of PEX14 ((67); Fig. 3D, 299 

compare lanes 1 and 5 with lanes 3 and 7, respectively). As shown before, this recombinant protein 300 

completely blocks the PEX5-mediated protein import pathway (36). Interestingly, when the 301 

protease treatment was omitted, cleaved PEX7 was also detected in the supernatant of the import 302 

assays but only under import-permissive conditions (Fig. 3D, compare lanes 2 and 4) suggesting 303 

that our in vitro system can also be used to study PEX7 export. Finally, and in agreement with the 304 

data shown in Fig. 2B, cleavage of preL4R-PEX7 was also observed when its import was 305 

promoted by C1PEX5L(C11A) (Fig. 3E). Interestingly, when this export-incompetent PEX5L 306 

species is used in these assays, almost no cleaved PEX7 is recovered in the supernatant fraction 307 

(Fig. 3E, compare lanes 3 and 4) suggesting that export of cleaved PEX7 is somehow dependent 308 

on PEX5L ubiquitination/export (see also below). In summary, these results indicate that at least 309 

the N terminus of PEX7 reaches a location where it can be cleaved by the protease that processes 310 

PTS2 proteins, i.e., the peroxisomal matrix. 311 

Export of PEX7 from the peroxisome requires export of PEX5L, but the two events are not 312 

strictly coupled. PEX7 functions as a shuttling receptor, meaning that peroxisomal PEX7 is 313 

eventually exported back to the cytosol (4). Aiming at characterizing in detail this process we 314 

developed a two-step protocol in which 35S-PEX7 is first subjected to an import assay, and after 315 

blocking further import (see Material and Methods for details), the organelle suspension is then 316 

subjected to a second incubation step, the export assay. The results of one these assays performed 317 

under standard conditions show that the amount of organelle-associated protease-protected 35S-318 

PEX7 decreases over time with the concomitant appearance of 35S-PEX7 in the supernatant (Fig. 319 
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4A). Interestingly, experimental conditions that inhibit export of peroxisomal PEX5L back into the 320 

cytosol, also block export of PEX7. As shown in Fig. 4B (top) almost no export of PEX7 was 321 

detected in assays made in the presence AMP-PNP (see also Fig. 4C). This non-hydrolyzable ATP 322 

analogue still allows PEX5L monoubiquitination at the DTM but blocks the receptor export 323 

module (45). A similar inhibition was observed when both the import and export incubations were 324 

made in the presence of a GST-ubiquitin fusion protein (Fig. 4B, middle and Fig. 4C). As shown 325 

before, ubiquitination of DTM-embedded PEX5L with this ubiquitin analogue results in a species 326 

that is no longer export-competent (38). Note that we have been unable to detect any ubiquitination 327 

of PEX7 in our in vitro assays (even under non-reducing conditions; data not shown) suggesting 328 

that the effect of GST-Ub on PEX7 export occurs via PEX5L. In agreement with this 329 

interpretation, and with the data shown in Fig. 3E, when 35S-PEX7 was imported in the presence of 330 

C1PEX5L(C11A) no significant export of 35S-PEX7 was detected (Fig. 4B, bottom and Fig. 4C). 331 

Thus, peroxisomal PEX7 is exported back into the cytosol only when PEX5L is also exported. 332 

Several hypotheses could explain this phenomenon. An obvious one would be to assume that 333 

export of PEX7 is coupled to that of PEX5L. Alternatively, it might be that PEX5L arrested at the 334 

DTM simply blocks the site used by PEX7 to exit the organelle. In an attempt to clarify this issue 335 

we determined the export kinetics of both proteins. Obviously, such an experiment would only be 336 

informative if we could find conditions where PEX5L reaches the peroxisome in a PTS2-only 337 

mode. With this in mind, we performed in vitro assays in the presence of a recombinant protein 338 

comprising the PTS1-binding domain of PEX5 (referred to as TPRs), a strategy previously shown 339 

to efficiently block the PTS1-dependent targeting of PEX5L to the peroxisome (29, 56), and asked 340 

whether peroxisomal targeting of PEX5L could be recovered by adding 35S-PEX7 and 341 

recombinant p-PHYH to the import assays. As shown in Fig. 5A this strategy turned out to be 342 

feasible. Using these experimental conditions we then employed the two-step import-export 343 

protocol described above to compare the export kinetics of 35S-PEX7 and 35S-PEX5L. Briefly, 344 
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after an import step performed in presence of AMP-PNP, the organelles were isolated by 345 

centrifugation, resuspended in import buffer and subjected to an export assay. Aliquots were then 346 

withdrawn at various time points, and protease-treated organelles were analyzed by SDS-347 

PAGE/autoradiography. As shown in Fig. 5B, two populations of 35S-PEX5L displaying different 348 

protease susceptibilities were detected in this experiment, as expected (34, 38, 64). The most 349 

abundant at time zero of the export step is the so-called stage 3 PEX5L, a DTM-embedded 350 

monoubiquitinated species that leaves the peroxisome very rapidly in the presence of ATP (Fig. 351 

5B, compare lanes 0´ and 2´; see also (38, 64) and legend to Fig. 5B for additional details 352 

regarding the properties of peroxisomal PEX5L). The other population is stage 2 PEX5L (the 353 

precursor of stage 3 PEX5L), a non-ubiquitinated species that is cleaved at its N terminus by the 354 

protease used in these assays yielding a 2-kDa shorter protein. Due to the fact that the buffer used 355 

in the export step lacked ubiquitin and components of the ubiquitin-conjugating cascade, the 356 

majority of stage 2 PEX5L was not converted into stage 3 PEX5L and therefore remained in the 357 

organelles. Densitometric analyses of autoradiographs revealed that about 70% of total 358 

peroxisomal 35S-PEX5L left the organelle in the first 2 min of the export incubation (Fig. 5B; 359 

lower panel). Importantly, the export kinetics of 35S-PEX7 is considerably slower, a difference 360 

particularly evident at the 2-min time point of the export assay. Apparently, when PEX5L is 361 

exported from the peroxisome it leaves behind a fraction of PEX7, a finding strongly suggesting 362 

that export of the two proteins is not coupled. In summary, the data in Fig. 4 and 5 suggest that at 363 

least a fraction of PEX7 and PEX5L leave the peroxisome separately but through the same site; the 364 

finding that no peroxisomal PEX7 is exported whenever PEX5L is arrested at the DTM suggests 365 

that DTM-embedded PEX5L behaves as a plug blocking the release of peroxisomal PEX7 into the 366 

cytosol (see also Discussion). 367 

Peroxisomal PEX5L engaged in the PTS2 import pathway remains tightly bound to the 368 

organelle membrane. All the presently available data suggest that PEX5L shuttles between the 369 
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cytosol and the peroxisomal DTM where it acquires a transmembrane topology, without ever 370 

entering completely into the organelle matrix (29, 34, 37, 38, 68). However, it is important to note 371 

all those data were obtained with experimental systems in which PEX5L is mostly involved in the 372 

PTS1-mediated protein import pathway. Considering a previously proposed hypothesis that 373 

PEX20, the yeast functional counterpart of PEX5L, may enter completely into the organelle matrix 374 

together with PEX7 (50), it might be possible that mammalian PEX5L functioning in the PTS2 375 

import pathway also follows a similar route. To address this possibility we used the PTS2-376 

dependent import assay described above and tried to determine whether 35S-PEX5L co-fractionates 377 

with either membrane or matrix peroxisomal proteins. Briefly, protease-treated organelles from 378 

ATP- or AMP-PNP-supplemented import assays were disrupted by sonication and subjected to 379 

ultracentrifugation to separate membrane from soluble proteins. The efficiency of this procedure 380 

was assessed by monitoring the behavior of catalase, a peroxisomal matrix protein (69, 70) and 381 

PEX13, an intrinsic peroxisomal membrane protein and a component of the DTM (71). As shown 382 

in Fig. 6A, 35S-PEX5L quantitatively co-fractionated with the membrane marker PEX13. This 383 

result strongly indicates that, similarly to the situation in the PTS1-mediated import pathway, 384 

peroxisomal PEX5L engaged in the PTS2 protein import pathway remains tightly bound to the 385 

peroxisomal membrane. A different behavior was observed for PEX7. Indeed, although a major 386 

fraction of 35S-PEX7 was found in the membrane pellet some protein was also detected in the 387 

soluble fraction. A similar distribution was observed for endogenous rat liver PEX7 present in 388 

highly pure peroxisome preparations (Fig. 6B). The detection of a soluble population of PEX7 in 389 

these experiments could well support the idea that PEX7 is completely released into the matrix of 390 

the organelle during the PTS2 import pathway, although further data are necessary to corroborate 391 

this possibility (see also Discussion). 392 

 393 

 394 
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DISCUSSION 395 

In this work we show that mammalian PEX7 is targeted to the peroxisome in a PEX5L- and PTS2-396 

dependent manner where it acquires resistance to exogenously added proteases. Importantly, both 397 

PEX7 and pre-thiolase, a PTS2 protein, reach this protease-protected location in a cytosolic ATP-398 

independent manner ((35, 46), and this work), implying that the PEX7-PTS2 protein complex 399 

enters the peroxisome upstream of the first ATP-dependent step of the PEX5L-mediated protein 400 

import pathway, i.e., prior to monoubiquitination of DTM-embedded PEX5L. Additional data 401 

presented in this work corroborate this conclusion. As shown in Fig. 2B and 3E, a mutant version 402 

of PEX5L that cannot be monoubiquitinated at the DTM is as functional as the normal protein in 403 

promoting peroxisomal import of both PEX7 and pre-thiolase. Clearly, the PEX5L-mediated entry 404 

of both PEX7 and its cargo into the peroxisome is not linked to monoubiquitination of PEX5L at 405 

the DTM. Interestingly, this conclusion is in contrast to the so-called “export-driven import 406 

model”, a hypothetical mechanism recently proposed for the yeast PEX18/PEX7 system (72, 73). 407 

According to this idea, monoubiquitination/export of PEX18, a member of the PEX20 family and a 408 

functional counterpart of PEX5L in the PTS2 protein import pathway, is mechanically linked to 409 

the translocation of PEX7, and presumably its cargo, across the peroxisomal membrane. 410 

Seemingly, the different architectures of the PTS2 protein import machineries in these organisms 411 

translate into at least some significant mechanistic differences. 412 

One of the aims of this work was to characterize the intraperoxisomal pathway followed by 413 

mammalian PEX7 during the PTS2 protein transport cycle. Up till now, there was only one study 414 

addressing this problem in a systematic manner. This is a work by Lazarow and colleagues 415 

describing the properties of a yeast PEX7-green-fluorescent-protein (GFP) fusion protein, a protein 416 

that although unable to complement the phenotype of a PEX7 strain, accumulates massively in 417 

the peroxisomal matrix (49). As shown by those authors, cleavage of the fusion protein at the 418 

PEX7-GFP junction yielded a PEX7 protein that could now exit the organelle and rescue the 419 
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phenotype of the PEX7 strain. Apparently, there is a way out of the peroxisome for a PEX7 420 

protein that was artificially accumulated in the matrix of the organelle. Based on those findings it 421 

was proposed that PEX7 follows an “extended cycling mechanism”, i.e., that PEX7 enters 422 

completely into the peroxisome matrix during the PTS2 protein transport cycle (49). The results 423 

described here for preL4R-PEX7 strongly suggest that at least the N terminus of mammalian PEX7 424 

enters sufficiently deep into the peroxisome matrix milieu to become accessible to the peroxisomal 425 

protease that cleaves the engineered pre-sequence. Furthermore, fractionation of organelles by 426 

sonication did reveal the existence of a PEX7 pool displaying the properties expected for a 427 

peroxisomal matrix protein. Thus, the data presented here for mammalian PEX7 are surely 428 

compatible with the “extended cycling mechanism” proposed by Lazarow and colleagues (see Fig. 429 

7, pathway A). However, we must note that proteins weakly associated with a biological 430 

membrane may also be extracted into the soluble fraction by sonication. Therefore, we cannot 431 

formally exclude a scenario in which PEX7, like PEX5L, is retained at the DTM during all the 432 

steps occurring at the peroxisome, exiting the DTM only after PEX5L export (Fig. 7, pathway B). 433 

It is important to note that this second possibility would still be compatible with the data on yeast 434 

PEX7. Indeed, if we assumed that yeast PEX20 family members are retained at the DTM during 435 

their passage through the peroxisome exposing their PEX7-binding domain into the organelle 436 

matrix, as it is likely the case for mammalian PEX5L, then it would be also reasonable to assume 437 

that any functional PEX7 generated de novo in the peroxisomal matrix could interact with a DTM-438 

embedded PEX20 protein, thus returning to its normal pathway. 439 

Many important aspects of the PTS2-mediated protein import pathway remain unclear. One 440 

directly related to this work regards the molecular details of PEX7 export. Our data suggest that 441 

PEX7 leaves the peroxisomal compartment through the DTM site occupied by PEX5L and that 442 

peroxisomal PEX5L and PEX7 probably exit the organelle separately. However, the implications 443 

of these findings on the molecular mechanism of PEX7 export are largely dependent on whether or 444 
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not PEX7 enters completely into the organelle matrix. In pathway A (Fig. 7), the DTM would have 445 

the capacity to interact with a matrix PEX7 protein and somehow promote its export in a PEX5L-446 

independent manner, while retaining all resident peroxisomal proteins in the matrix of the 447 

organelle. Pathway B, on the other hand, obviates the need for such a selectivity filter at the matrix 448 

side of the DTM and suggests that the ATP-dependent extraction of PEX5L from the DTM could 449 

also be coupled to the disruption of the interaction between PEX5L and PEX7, thus preparing 450 

PEX7 for a new PTS2 recognition event. Regardless of the pathway followed by PEX7, it is clear 451 

from our data that its export from the peroxisome requires PEX5-free DTMs, and therefore the 452 

action of the mechanoenzymes PEX1 and PEX6. Thus, these ATP-dependent enzymes surely 453 

influence PEX7 export but whether this functional connection is merely indirect (i.e., via PEX5 454 

export) or direct remains to be determined. 455 

Another issue that warrants future studies regards the protein transport capacity of PEX5L. Can a 456 

single molecule of PEX5L simultaneously transport a PTS1 and a PTS2 protein to the peroxisome, 457 

or are these mutually exclusive events? Clearly, further work is necessary to understand these 458 

complex details of the peroxisomal protein import machinery. 459 
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FIGURE LEGENDS 686 

Fig. 1- 35S-PEX7 acquires a protease-protected and organelle-associated status in in vitro 687 

import reactions in a PEX5L- and PTS2-dependent manner. 688 

A-C, In vitro import assays of 35S-PEX7 and 35S-pre-thiolase in the absence or presence of the 689 

indicated recombinant proteins. PEX5L(N526K) is indicated by “PEX5NK”. Lanes I, 10% (A and 690 

B) or 5% (C) of the reticulocyte lysates containing 35S-PEX7 and 35S-pre-thiolase used in each 691 

reaction. Lane I in C, 5% of the reticulocyte lysates containing 35S-PEX7 and 35S-pre-thiolase used 692 

in each reaction. The asterisk in A and B marks a radiolabeled band occasionally produced by the 693 

in vitro translation kit in an unspecific manner. D, PEX7, but not PEX7(L70W), promotes import 694 

of 35S-pre-thiolase to peroxisomes from PEX7 knockout mice. PNS from PEX7 knockout mouse 695 

liver was used in import assays with 35S-pre-thiolase in the presence of a mock-translated 696 

reticulocyte lysate (lane 1) or lysates containing 35S-PEX7 (lane 2) or 35S-PEX7(L70W) (lane 3). 697 

Lanes I1, I2 and I3, 5% of the reticulocyte lysates containing 35S-pre-thiolase, 35S-PEX7 and 35S-698 

PEX7(L70W) used in the reactions, respectively. pre-Thiol and m-Thiol, precursor and mature 699 

forms of thiolase, respectively. E, Soluble 35S-PEX7 is completely susceptible to pronase in the 700 

absence of Triton X-100. F, Organelles from an import assay made in the presence of recombinant  701 

C1PEX5L and p-PHYH were isolated by centrifugation, resuspended in import buffer and 702 

subjected to pronase digestion in the absence (lane 1) or presence (lane 2) of 1% (w/v) Triton X-703 

100. Lane I, 5% of the reticulocyte lysate containing 35S-PEX7. In A-D and F, pronase-treated 704 

organelles were analyzed by SDS-PAGE and blotted onto a nitrocellulose membrane. 705 

Autoradiographs (upper panels) and the corresponding Ponceau S-stained membranes (lower 706 

panels) are shown. 707 

 708 

709 
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Fig. 2- The energetics of PEX7 import. 710 

A, A primed rat liver PNS fraction (see Material and Methods) was incubated with 35S-PEX7 for 7 711 

min in import buffer containing C1PEX5L and p-PHYH in the presence of either ATP (lane 1), 712 

or AMP-PNP (lane 2). An identical assay but using apyrase-treated PNS and 35S-PEX7 was also 713 

performed (lane 3). Lanes I1 and I2, 5% of the reticulocyte lysates containing 35S-PEX7 used in 714 

lanes 1 and 2 (- apyrase), and lane 3 (+ apyrase), respectively. B, A non-monoubiquitinatable form 715 

of PEX5 ( C1PEX5L(C11A)) is as efficient as C1PEX5L in targeting PEX7 and pre-thiolase to 716 

the peroxisome. Import assays with 35S-PEX7 and 35S-pre-thiolase were made in import buffer 717 

containing ATP and GST-Ub, in the absence (lane 1) or presence of recombinant C1PEX5L (lane 718 

2) or C1PEX5L(C11A) (lane 3). Note that ubiquitination of C1PEX5L with GST-Ub results in 719 

a species that is no longer export-competent (38, 53). Lane I, 5% of the reticulocyte lysates 720 

containing 35S-PEX7 and 35S-pre-thiolase were mixed and loaded together in the same lane. 721 

Pronase-treated organelles were analyzed as described in Fig. 1. Autoradiographs (upper panels) 722 

and the corresponding Ponceau S-stained membranes (lower panels) are shown.  723 

 724 

Fig. 3- PEX7 becomes transiently exposed to the organelle matrix during the PTS2-mediated 725 

protein import pathway. 726 

A, 35S-pre-thiolase containing an arginine instead of a leucine at position 4 (preL4R-Thiol; lane 2), 727 

in contrast to 35S-pre-thiolase (pre-Thiol; lane 1), is not imported in vitro. Lanes I1, I2 and I3, 5% of 728 

the reticulocyte lysates containing 35S-PEX7, 35S-pre-thiolase and 35S-preL4R-thiolase, 729 

respectively. B, 35S-preL4R-PEX7 was subjected to import assays in the absence (lane 1) or 730 

presence of the indicated recombinant proteins (lanes 2-4). Pronase-treated organelles were 731 

analyzed by SDS-PAGE and blotted onto a nitrocellulose membrane. clv-PEX7, cleaved 35S-732 

preL4R-PEX7. C, 35S-preL4R-PEX7 promotes import of 35S-pre-thiolase to peroxisomes from 733 

PEX7 knockout mice. PNS from PEX7 knockout mice was used in import assays with 35S-pre-734 
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thiolase in the presence of either a mock-translated reticulocyte lysate (lane 1) or a lysate 735 

containing 35S-preL4R-PEX7 (lane 2). Import and processing of 35S-pre-thiolase is best seen in 736 

import assays using unlabeled/cold preL4R-PEX7 (lane 3) due to the fact that mature thiolase co-737 

migrates with uncleaved preL4R-PEX7 (lane 2, asterisk). Lanes I1 and I2, 5% of the reticulocyte 738 

lysates containing 35S-preL4R-PEX7 and 35S-pre-thiolase used. D, Control experiments showing 739 

that processing of 35S-preL4R-PEX7 in import assays occurs only under import-permissive 740 

conditions. 35S-preL4R-PEX7 was subjected to import assays in the presence of the indicated 741 

recombinant proteins. At the end of the incubation the samples were halved and treated or not with 742 

pronase, as indicated. The import reactions were then centrifuged to obtain organelle pellets (P) 743 

and supernatants (S). Total pellets (derived from 500 μg of PNS) and ¼ of the corresponding 744 

supernatants were subjected to SDS-PAGE and blotted onto a nitrocellulose membrane. The 745 

asterisk indicates a soluble minor preL4R-PEX7-derived fragment displaying some resistance to 746 

pronase. PEX19, a protein involved in another aspect of peroxisome biogenesis (74), was used in 747 

these assays as a negative control for NDPEX14. E, Import assays with 35S-preL4R-PEX7 were 748 

performed in the presence of C1PEX5L (lanes 1 and 3) or C1PEX5L(C11A) (lanes 2 and 4). 749 

Pronase-treated organelles (lanes P) and untreated supernatants (lanes S) were analyzed as in D. 750 

Autoradiographs (upper panels) and the Ponceau S-stained membranes (lower panels) are shown. 751 

Lanes I, 5% of the reticulocyte lysate containing 35S-preL4R-PEX7 used in each reaction. 752 

 753 

Fig. 4- PEX7 is exported back to the cytosol in a PEX5L export-dependent manner.   754 

A, 35S-PEX7 was imported for 15 min in the presence of p-PHYH, C1PEX5L, ubiquitin and 755 

ATP. The reaction mix was then diluted with ice-cold import buffer and the organelles were 756 

isolated by centrifugation and subjected to an export assay in the presence of ATP (see Material 757 

and Methods for details). Aliquots were collected at the indicated time points, and one half was 758 

treated with pronase while the other was left untreated. Equivalent amounts of organelles from the 759 
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pronase-treated aliquots and supernatants from the untreated aliquots (derived from 125 μg of 760 

PNS) were analyzed by SDS-PAGE and blotted onto a nitrocellulose membrane. B, PEX7 export 761 

assays. In “standard reactions”, the C1PEX5L- and p-PHYH-mediated import of 35S-PEX7 was 762 

allowed to occur at 37 ºC for 15 min in the presence of ubiquitin and ATP. At this point, import 763 

was inhibited by the addition of NDPEX14 (30 μM) and the reaction further incubated. Aliquots 764 

were taken at the indicated time points. Pronase-treated organelles were subjected to SDS-PAGE 765 

analysis and blotted onto a nitrocellulose membrane. PEX7 export was inhibited when ATP was 766 

replaced by AMP-PNP (top). Likewise, replacing ubiquitin by GST-Ub in the import step inhibits 767 

subsequent export of PEX7 (middle). The same inhibition was observed when recombinant 768 

C1PEX5L was replaced by C1PEX5L(C11A) (bottom). Lanes I, 5% of the reticulocyte lysates 769 

containing 35S-PEX7. Autoradiograph (upper panels) and the corresponding Ponceau S-stained 770 

membrane (lower panels) are shown. C, The bar graph shows the average percentage of PEX7 771 

export after 20 min under the conditions described in B. Standard deviations (n  3) are also 772 

presented. 773 

 774 

Fig. 5- Peroxisomal PEX5L and PEX7 display different export kinetics. 775 

A, Targeting of PEX5L to the peroxisome in a PTS2-only in vitro import system. A reticulocyte 776 

lysate containing 35S-PEX5L was pre-incubated with either a mock-translated lysate (lane 1) or a 777 

lysate containing 35S-PEX7 plus 0.5 μg of p-PHYH (lane 2). Each mixture was then subjected to 778 

import assays using PNS supplemented with ATP and 1 μM recombinant TPRs, the PTS1-binding 779 

domain of PEX5. After pronase treatment, organelles were subjected to SDS-PAGE analysis and 780 

blotted onto a nitrocellulose membrane. Lanes I1 and I2, 5% of the reticulocyte lysates containing 781 

35S-PEX7 and 35S-PEX5L used in the assays, respectively. B, A mixture of 35S-PEX7 and 35S-782 

PEX5L pre-incubated with recombinant p-PHYH was subjected to a 15 min import assay using 783 

TPRs-treated PNS in the presence of AMP-PNP. The reaction was diluted with ice-cold import 784 
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buffer, and the organelles were isolated by centrifugation, resuspended in import buffer and 785 

subjected to an export assay in the presence of ATP, TPRs and NDPEX14. Aliquots were collected 786 

at the indicated time points. Pronase-treated organelles were analyzed as in A. Lanes I1 and I2, 2% 787 

of the reticulocyte lysates containing 35S-PEX7 and 35S-PEX5L used in the assays, respectively. 788 

The bar graph shows averages and standard deviations (n=3) of the amounts of peroxisomal 35S-789 

PEX7, stage 2 35S-PEX5L (PEX5 stg2) and stage 3 35S-PEX5L (PEX5 stg3) at each time point. 790 

Stage 2 and stage 3 PEX5 are two DTM-embedded transmembrane PEX5 populations (38, 44). 791 

Stage 2 PEX5 is converted into stage 3 PEX5 by monoubiquitination at its cysteine 11. The two 792 

populations display different susceptibility to proteases: stage 2 PEX5 is cleaved near the N 793 

terminus yielding a 2-kDa shorter protein, whereas stage 3 PEX5 is completely resistant because 794 

the N-terminal domain is protected by the covalently attached ubiquitin moiety. Note that stage 3 795 

PEX5L runs exactly as unmodified full-length PEX5L upon SDS-PAGE under reducing conditions 796 

because the PEX5-ubiquitin thiolester linkage is destroyed by DTT. The open arrow head indicates 797 

an export-incompetent N-terminally truncated PEX5L species produced in the in vitro 798 

transcription/translation reactions (see also (56)). This species also serves as an internal negative 799 

control in the export assay. 800 

 801 

Fig. 6- Peroxisomal PEX5L remains tightly bound to the peroxisomal membrane while a 802 

fraction of PEX7 behaves as a matrix protein. 803 

A, A mixture of 35S-PEX7 and 35S-PEX5L pre-incubated with p-PHYH was subjected to an import 804 

assay using TPR-treated PNS in the presence of ATP (left panel) or AMP-PNP (right panel), as 805 

indicated. After pronase treatment, organelles were disrupted by sonication. Half of the suspension 806 

was left on ice (lanes T) while the other half was subjected to ultracentrifugation to obtain 807 

membrane (P) and soluble (S) fractions. Samples were analyzed by SDS-PAGE and blotted onto a 808 

nitrocellulose membrane. After autoradiography to detect 35S-PEX7 and 35S-PEX5L, the 809 
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membrane was probed with antibodies against Catalase ( -CATALASE) and PEX13 ( -PEX13). 810 

PEX5 stg2 and PEX5 stg3, stage 2 and stage 3 35S-PEX5L, respectively. Note that PEX13 is 811 

converted into a 28-30 kDa fragments after protease treatment (33). B, An identical sonication 812 

experiment was done using rat liver purified peroxisomes. The nitrocellulose membrane was also 813 

probed with antibodies against PEX7 ( -PEX7). 814 

 815 

Fig. 7- Working model for the PEX5L-PEX7-mediated import pathway. 816 

After its assembly in the cytosol, the trimeric PEX5L-PEX7-PTS2 protein complex docks at the 817 

docking/translocation machinery (DTM) [arrow 1]. This receptor-cargo complex then becomes 818 

inserted into the DTM [arrow 2]. This step culminates with the PTS2 cargo protein being delivered 819 

to the organelle matrix (where the PTS2 is cleaved) and PEX5L displaying a transmembrane 820 

topology (i.e., stage 2 PEX5L). At this stage, PEX7 is completely protected from exogenous 821 

proteases exposing at least its N terminus to the peroxisome matrix. PEX7 may be completely 822 

released from the DTM into the matrix milieu (pathway A) or may be retained at the DTM until 823 

the export step (pathway B). Following insertion into the DTM, PEX5L is monoubiquitinated at 824 

the conserved cysteine 11 residue [arrow 3], yielding stage 3 PEX5L. Monoubiquitination of 825 

PEX5L allows its ATP-dependent extraction from the DTM [arrow 4], and the subsequent export 826 

of PEX7 [arrow 5]. After deubiquitination of PEX5L [arrow 6], the protein transport cycle restarts. 827 
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