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Abstract

The widespread adoption of Intelligent Transportation Systems by cities allows the generation of vast multisource
data, which can be used to better understand urban mobility dynamics. Data visualization has been acknowledged
as a valuable approach to assist domain users, e.g. analysts and decision makers, on answering their questions (an-
alytical tasks). This thesis proposes an ontology-based approach to the problem of visualizing multisource het-
erogeneous urban mobility data. We focus on spatiotemporal data about events of a transportation network, e.g.
ticket validations, accidents, travel intentions, among others. The problem is assumed to be twofold. Firstly, from
the data perspective, datasets should be interoperable prior to visualization; a formal foundation is required to in-
tegrate urban mobility data and interrelate it to visual structures. Researchers have successfully applied ontologies
to other problems in transportation, although there are no applications to visualization. Secondly, from the users’
perspective, related studies do not consider the role of human factors to support tasks such as formalizing ana-
lytical tasks or finding appropriate visualization techniques to those tasks. Moreover, scientific literature shows
evidence of little involvement of domain users throughout the process of design, development and evaluation of
visualization techniques. This thesis provides four theoretical and practical contributions to the state of the art.
The first theoretical contribution is a formal conceptual model that interrelates three facets: structural char-
acteristics of spatiotemporal urban mobility data, visualization techniques and empirical domain user knowledge.
The model is materialized as the Visualization-oriented Urban Mobility Ontology (VUMO)), the first and main
practical contribution of this thesis. The ontology leverages metadata to provide a semantic foundation for user-
oriented visualization systems. VUMO allows modeling various types of events and interrelates their structure
with visualization concepts. To account for human factors, the ontology allows the annotation of empirical knowl-
edge about visualization techniques and domain users, such as their profile description and feedback about visu-
alization techniques. For instance, those may consist of quantitative or qualitative ratings. Analytical tasks can
be formalized as data queries. We show how rule-based inference uses metadata to infer implicit knowledge from
events data and analytical tasks, and to evaluate the compatibility of visualization techniques with analytical tasks.
As the second theoretical contribution, we describe how VUMO supports user-oriented approaches to the devel-
opment of visualization techniques, by relating the development phases and their artifacts to VUMO components.
To evaluate the validity of our approach, the second practical contribution is the SUMVis visualization sys-
tem, which served as a testbed for case studies related to the analysis of public transportation ridership, origin-
destination flows, and bus engine emissions. We collected public transportation data and involved domain users
from the cities of Porto, Portugal, and Boston, United States. We demonstrate the integration of data, and discuss
how VUMO can tackle inherent technical challenges, like extending the ontology to support other events, and
building new rules for knowledge extraction. We exemplify the semantic annotation of visualization techniques
and analytical tasks in terms of domain users’ needs and requirements, and how rules evaluate compatibility and
extract features from analytical tasks. Finally, we apply a user-oriented design methodology to demonstrate the
annotation of artifacts, which are used to the development of a rule-based visualization recommendation method.
The case studies show that the proposed approach could be applied to relevant real-world problems in urban mo-
bility analysis. From a theoretical standpoint, we found the approach to be generalizable, as VUMO can also
be used to model other types of spatiotemporal events and inference rules. This suggests that the ontology can
effectively support other practical settings that require visualization of heterogeneous multisource data.

Keywords: urban mobility, spatiotemporal data, data visualization, data integration, ontologies
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Resumo

As cidades tém adoptado Sistemas Inteligentes de Transporte que permitem gerar uma grande quantidade de
dados. Embora estes sistemas permitam uma melhor compreensio das dindmicas de mobilidade urbana, ainda
apresentam desafios quanto & integragao dos dados, frequentemente heterogéneos. A visualizagio de dados é
uma abordagem relevante para auxiliar stakeholders, como agentes de decisdo e peritos em mobilidade urbana, a
responder as suas questdes (tarefas analiticas). Esta tese propde uma abordagem baseada em ontologias para re-
solver o problema de visualizagdo de dados heterogéneos de mobilidade urbana provenientes de multiplas fontes.
Focamo-nos em dados espaciotemporais relacionados a eventos que podem ocorrer numa rede de transportes, tais
como validagoes de bilhetes e inten¢oes de viagem. O problema possui duas facetas. A primeira, relativa a per-
spectiva dos dados, introduz a necessidade de que os datasets sejam interoperdveis, i.e. é necessirio definir uma
conceptualizagdo formal capaz de integrar os dados, e interrelaciond-los a estruturas visuais. O uso de ontologias
mostra-se eficaz em algumas dreas de investiga¢do em transportes, mas ainda nao foram aplicadas a visualizagio
de dados. A segunda faceta relaciona-se com o escasso envolvimento dos utilizadores no processo de concepgao,
desenvolvimento e avaliagdo das técnicas de visualizagdo. A presente tese oferece um conjunto de contribuigoes
para colmatar o referido problema.

A primeira contribuigao tedrica consiste num modelo conceptual formal que interrelaciona trés componentes:
caracteristicas estruturais dos dados espaciotemporais de mobilidade urbana; técnicas de visualizagao; e conhec-
imento empirico obtido através dos domain users. Este modelo constitui a base para a materializagao da ontologia
VUMO (Visualization-oriented Urban Mobility Ontology), que consiste na primeira e principal contribuigio
pratica desta tese. A ontologia aproveita o potencial dos metadados para fornecer a seméntica necessaria aos sis-
temas inteligentes de visualizagio (knowledge assisted). A ontologia VUMO permite a modelagem de diversos
tipos de eventos, e a interrelacdo das suas estruturas com conceitos de visualizagdo. Os fatores humanos também
sao considerados relevantes no processo de visualizagdo. A ontologia permite a anotagdo seméntica do conhec-
imento empirico relativo aos utilizadores, p.ex. os seus perfis e feedback, e as técnicas de visualizagio. As tare-
fas analiticas podem ser formalizadas através de queries. A presente tese demonstra a importancia da inferéncia
semantica na descoberta de conhecimento implicito nos eventos e tarefas analiticas. As regras l6gicas subjacentes
a inferéncia sao utilizadas para avaliar a compatibilidade das técnicas de visualizagdo com as tarefas analiticas.
Como segunda contribuigio tedrica, a presente tese descreve como a ontologia VUMO pode ser aplicada a abor-
dagens orientadas ao utilizador no desenvolvimento de técnicas de visualizagio, através da anotagdo semaéntica
dos artifacts resultantes das fases de desenvolvimento.

Para avaliar a fiabilidade da abordagem proposta nesta tese, a segunda contribuigdo pratica consiste na fer-
ramenta de visualizagio SUMVis, que serviu como uma plataforma testbed para a condugio dos estudos de caso
relacionados 4 andlise de procura em transportes publicos, matrizes origem-destino, e emissoes de poluentes em
autocarros. Os dados de transportes publicos e domain users considerados para a avaliagao pertencem as cidades
do Porto e Boston. Demonstramos o processo de integragdo de dados, e discutimos como a ontologia pode dar
suporte a alguns desafios, como estender a ontologia a fim de suportar novas classes de eventos, e definir novas
regras de inferéncia para extrac¢ao de conhecimento. Exemplificamos a anotagdo seméntica de técnicas de visual-
izagdo e tarefas analiticas em termos das necessidades e requisitos dos utilizadores, e como as regras sao capazes de
avaliar a compatibilidade e inferir propriedades das tarefas analiticas. Finalmente, aplicamos uma metodologia de
desenho centrado no utilizador para demonstrar a anotagio de artifacts que foram utilizados no desenvolvimento
de um método de recomendagio de visualizagdes baseado em regras de inferéncia. Os estudos de caso mostram
que a abordagem proposta nesta tese pode ser aplicada a problemas reais e relevantes no 4mbito da mobilidade
urbana. Do ponto de vista tedrico, a abordagem é considerada generalizdvel, uma vez que a ontologia também
pode ser usada para modelar outros tipos de regras de inferéncia e eventos espaciotemporais.

Palavras-chave: mobilidade urbana, dados espaciotemporais, visualizagio e integragio de dados, ontologias
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Chapter 1

Introduction

This thesis studies the problem of visualizing heterogeneous multi-source urban mobility data,
to support the development of semantically-rich, knowledge-assisted visualization tools. Those
tools can foster the application of Information Visualization to practical situations, as they provide
support for the integration of data from multiple sources, and consider the importance of human
factors throughout the visualization process.

Visualizing datasets is still a technical task, despite the existence of tools that strive to simplify
it. We assume the problem to be twofold. Firstly, heterogeneous data should be interoperable
prior to visualization, i.e. the semantics of attributes and their values should be unambiguous
across datasets. Secondly, domain users may lack the required visualization knowledge for exe-
cuting tasks like choosing the right visual encodings. Scientific literature shows evidence of little
involvement of domain users on the process of design, development and evaluation of visualiza-
tion techniques. In this thesis, domain users are transportation stakeholders who are involved
with urban mobility issues, e.g. decision makers, researchers, analysts, community advocates,
among others. To the best of our knowledge, the second part of the problem remains unexplored
in the Transportation literature. In parallel, some studies propose solutions that have been tested
with generic domain data, e.g. movies and artists databases. The first part of the problem has
been partially addressed in previous studies, although modeling spatiotemporal urban mobility
data still requires theoretical and practical advances. Moreover, no studies seem to address the
modeling of spatiotemporal urban mobility data for visualization.

To solve the problem, we propose a foundational ontology-based approach for integration of
heterogeneous spatiotemporal mobility data, often regarded as data hereinafter, and annotation
of visualization knowledge, to support the development of semantically rich, knowledge-assisted
visualization systems. The principal idea consists of building a knowledge representation model
- an ontology - which semantically describes different types of mobility data and interrelates its
structure to visualization concepts. To account for human factors, the ontology allows the an-
notation of empirical knowledge about visualization techniques and domain users, such as their
profile description and feedback about visualization techniques. For instance, those may consist
of ratings or qualitative tags. In brief, the framework also supports user-oriented methodologies
for developing visualizations by providing the necessary semantics to annotate the artifacts that
yield from those methodologies.

As a practical implication, visualization tools can exploit the knowledge described in terms of
the ontology elements to assist domain users in finding appropriate visualizations for their data
and the questions they want to ask about data (analytical tasks), e.g., through semi-automatic rec-



ommendation. Moreover, researchers and practitioners can share and reuse empirical knowledge
across systems to better understand which techniques meet the needs of domain users, provided
that the knowledge has been described with the proposed ontology.

The remainder of this chapter is structured as follows: the underlying research context is pre-
sented in Section 1.1. In Section 1.2, we define the problem statement based on the research gaps
discussed in Section 1.1. In Section 1.3, we state our research objectives and questions. 1.4 ex-
plains the theoretical and practical contributions of this thesis. Section 1.5 describes the method-
ology we carried throughout our study. Finally, Section 1.6 provides the outline for the following
chapters.

1.1 Research Context

Mobility dynamics are nontrivial to human perception. The proportion of people living in urban
areas may rise to figures up to 66% of the world population by 2050 [1]. Intelligent Transporta-
tion Systems (ITS) generate an enormous volume of data which can be analyzed to provide better
understanding of mobility phenomena, and to devise actions to improve transportation systems.
Data, however, is not always analyzed in depth, which may suggest a dichotomy between infor-
mation abundance and knowledge starvation.

Visualization is a powerful means for extracting knowledge from datasets. Early applications
of visualization to Transportation were based on Geographic Information Systems (GIS), as dis-
cussed in Chapter 3. Recently, visualization tools and frameworks allow to create novel, GIS-
independent tools. Figure 1.1 exemplifies the potential of some of those frameworks. It shows
commuting patterns based on the Hubway bike sharing system of Boston, U.S.A., and travel time
cost in comparison with an equivalent travel by public transportation system (PTS). A handful of
innovative visualization techniques do not only appear in Transportation literature, but in public
data visualization challenges hosted by institutions such as universities or companies. For in-
stance, the technique shown in Figure 1.1 was developed for the Hubway Data Challenge 2012
[2]. Hubway is a shared bicycle service available to citizens in Boston, Massachusetts. The tech-
nique allows the user to explore time savings of people who commute by bicycle instead of public
transportation, i.e. bus and subway. After the user selects its origin (a Hubway bicycle station),
the visualization technique provides information about the total number of trips made by citizens
for every origin-destination pair, as well as the comparison between the time it would take if the
same trip was made using public transportation. Destinations are represented as radial arcs.

Domain users usually possess data in various file formats and schemas. Such data may not
be provided with metadata, i.e. data about data. Metadata can provide semantics to datasets by
aligning their attributes and values to a pre-defined knowledge representation model. Our expe-
rience with domain users during previous studies showed a gap regarding the actual use of visu-
alization techniques in practical contexts [3, 4]. We argue that data heterogeneity is a factor that
contributes to this gap. Scientific literature also shows evidence of lack of close contact between
visualization experts and domain users, which can negatively impact the utility of the proposed
visualization techniques. Some standards for urban mobility data have been proposed to facil-
itate interoperability across systems. For instance, in the context of public transportation, the
GTEFS standard allows agencies to publish information about their services, e.g. lines, schedules
and fares [5]. The SIRI standard is a protocol for exchanging real time information about public
transportation systems and vehicles [6]. Nonetheless, those standards can be better defined as
schemas, as they do not provide semantics to data.
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Figure 1.1: Commuting patterns within the Hubway bike sharing system. The visualization pro-
posed by [2] allows one to explore the number of outgoing trips, and the reduced commuting
time in comparison to public transportation alternatives

The visualization pipeline is usually organized in three phases: (1) raw data preprocessing,
(2) visual transformation and (3) visual mapping [7]. In (1), a tool ingests raw data and trans-
forms it into a format supported by a visualization technique. In (2), instance data is transformed
to meet the structural requirement of a visualization technique. Finally, phase (3) is responsi-
ble for mapping instance data onto the visual variables that form a visualization, e.g. shape, size,
texture. We discuss the theory of Information Visualization and the role of visual variables on
Chapter 2.

Scientific literature in Transportation contains various examples of visualization techniques
to support urban mobility analysis. Frequently, those techniques are meant to support particular
datasets related to a certain theme. Further work is still required on the issue of visualizing data
from multiple heterogeneous sources.

The motivation for our research also stems from the perceived difficulty that domain users
face regarding visualization knowledge. This work is a natural sequel to the author’s Master dis-
sertation [3], which carried an exploratory study for the development of user-centered visual-
ization techniques for mobility data. The results showed that the involvement of domain suers
during the design and development of visualization techniques could increase their effectiveness.
Moreover, we argue that the choice of appropriate visualization techniques can be influenced by
data characteristics, the profile of domain users, the context of analysis, e.g. strategic, operational
or tactical, and the questions they have about data [4]. In that study, we defined that further
work should consider a formalization of such knowledge, due to its subjective nature, so that vi-
sualization tools could exploit it to improve their effectiveness and reduce the technical burden
associated to the process of visualizing data.



1.2 Problem Statement

Section 1.1 introduced the following issues:

I1. Data heterogeneity due to the plurality of ITS specifications;

I12. Visualization techniques may have limited data interoperability, as they depend on specific
data structures which are often unprovided with semantics;

I3. Infrequent involvement of domain experts on the design, development and evaluation of
visualization techniques. Moreover, choosing appropriate visualization techniques is non-
trivial, and domain experts may lack the necessary visualization knowledge.

We consider that I1 is unlikely to be mitigated, despite all the efforts in that direction. The
introduction of any standard is constrained by temporal, technical and budgetary factors. Finally,
it may be impractical to propose unified standards for publishing spatiotemporal data, as trans-
portation systems span through diverse contexts and should satisfy distinct stakeholders and their
complex requirements. Currently, there are various standards for transportation data, e.g. SIRI
[6] and GTFS [5], each with their own scope and characteristics.

12 highlights a research gap on regards to visualization studies in Transportation. As visualiza-
tion techniques usually depend on specific schemas and formats, it becomes technically demand-
ing to visualize data from multiple sources without a common representation model. Visualiza-
tion tools such as Tableau ! allow users to explore heterogeneous data simultaneously, although
the user is limited to the available visualization techniques.

I3 hinders the spread of use of visualization techniques in practice. In fact, visualization
knowledge is required so that experts can choose appropriate visual encodings. In the long run,
visualization techniques should strive for reducing the technical burden, to allow experts to focus
on data exploration.

The aforementioned issues allow us to raise the following questions:

« How to visualize spatiotemporal data from heterogeneous data sources?

« How to formalize the representation of empirical knowledge retrieved from domain users
during user-oriented processes for the development of visualization techniques?

« How such formalization could be made reusable by other researchers and practitioners, so
that it could be applied and modified to meet the requirements of other contexts?

1.3 Research Objectives and Questions

This thesis aims the following objectives by answering their respective research questions:

O1. To develop a visualization-oriented domain ontology to integrate spatiotemporal mobility
data and support user-oriented methodologies for developing visualization techniques.

Ql. How to conceptualize the fundamental structure of spatiotemporal urban mobility
data, visualization techniques and empirical knowledge?

https:/ /www.tableau.com/



Q2. Which concepts should the ontology cover?
The definition of the ontology components should be built upon concepts found in the main
types of spatiotemporal mobility data, and Information Visualization theory. The outcome
of this research question should be an ontology that can be reused, altered and extended to
meet distinct contexts and requirements.

O2. To propose an ontology-based foundational framework for supporting semantically rich,
knowledge-assisted visualization systems.

Q3. How to use the ontology comprehensively on the development of visualization tools
for spatiotemporal urban mobility data?
The theoretical basis for answering this question consists of identifying and understanding
the different stages that data should pass, from integration to visualization, and consid-
ering the evaluation of visualization techniques with domain users. The outcome of this
research question should be a novel approach to spatiotemporal urban mobility data visu-
alization, which comprises the development of visualizations that support semantic data,
and meet the requirements and preferences of domain users.

O3. To evaluate the ontology in practical contexts for validating O1 and O2.

Q4. Does our approach succeed in tackling issues 12 and I3?
The assessment and validation of our findings should be performed by evaluating func-
tional visualization prototypes with domain users and data from PTS.

1.4 Research Contributions

This thesis provides the following contributions:

1.4.1 'Theory

« An updated literature review (see Chapter 3) on the applications of Information Visual-
ization and Ontologies to urban mobility analysis;

« A conceptual model that formalizes the structure of spatiotemporal urban mobility data,
visualization techniques and empirical knowledge, built upon acknowledged frameworks
for modeling general spatiotemporal data and Information Visualization theory;

« An ontology-based foundational framework to support the development of semantically
rich, knowledge-assisted visualization systems.

1.4.2 Practice

The main practical contribution is VUMO, an acronym for Visualization-oriented Urban Mo-
bility Ontology. The ontology was built in Web Ontology Language (OWL), a Semantic Web
standard which has been applied to various domains outside the scope of the World Wide Web.
VUMO also reuses existing ontologies, e.g. Geo [8], to express spatial information, and GTFS?,
which translates the GTFS schema into its semantic counterpart.

2The GTFS ontology is not officially provided by Google, but it is a community-driven effort based on the
actual GTFS standard 5]



We also adopted the SPARQL Inference Notation (SPIN) notation/rule language to express
the logical reasoning rules that infer implicit visualization knowledge from data, and support rec-
ommendation algorithms for visualization techniques. To the best of our knowledge, this thesis
is the first study that seem to apply rule-based inference, particularly SPIN, to the development
of visualization tools. The adopted technological stack is freely available, with no commercial
restrictions.

1.5 Methodology

This research followed a mixed approach, due to its multidisciplinary nature that involves inter-
secting areas such as Computer Science and Software Engineering, Mathematics and Human-
Computer Interaction. To answer Q1 and Q2, the conceptual model was built in accordance to
existing methodologies for ontology development, and Information Visualization theory. To an-
swer Q3, we recall and extend our previous work in [3, 4], according to Human-Computer Inter-
action principles. The same applies to Q4, as we approached domain experts through qualitative
interviews and usability tests to evaluate the effectiveness of our framework.

1.6 Outline

The remainder of this thesis is organized as follows:

« Chapter 2 describes the theoretical background on Information Visualization, Semantic
Web and ontologies required for this work. A link is established between Information
Visualization and Semantic Web technologies by introducing the concept of Knowledge-
assisted Visualization and related studies.

« Chapter 3 presents the applications of Information Visualization and Ontologies to ur-
ban mobility research. We identified a research opportunity due to the lack of knowledge-
assisted approaches to Visualization in the context of transportation research, in particular
to urban mobility studies. We also identified that the involvement of domain users is still
small.

« Chapter 4 introduces two fundamental contributions of this thesis, answering to research
questions Q1, Q2 and Q3. Firstly, a conceptual model to formalize spatiotemporal mo-
bility data, visualization techniques, and empirical knowledge. We define a relation be-
tween data and visual features, and between empirical knowledge, data, and visualization
techniques. The conceptual model answers to research question Q1. Secondly, the chap-
ter introduces the VUMO ontology specification, which implements the aforementioned
conceptual model. This chapter presents several examples to assist the reader on under-
standing the use of ontology components. It is also described how VUMO can support
the user-centered design process of visualization techniques. This chapter also answers to

Q2 and Q3.

« Chapter S describes a multi-case study using the PTS of Porto and Boston. The case study
describes the SUMVis functional prototype, which is based on the VUMO ontology. This
chapter answers to Q4.



« Chapter 6 concludes this thesis by revisiting the research questions and discussing impor-

tant remarks. We also provide further research directions.

Figure 1.2 illustrates the thesis outline for Parts II and III, the research questions and where

they are answered, and a broader depiction of the interrelations between chapters.

Part Il
Stat::?ttrllle Art Research Con.tribl.Jtions
and its Applications

evaluated through

required for understanding

Chp. 2 Chp. 3 Chp. 4 Chp.5
Theoretical Literature The VUMO Practical
Background Review Ontology Applications

i [
Questions Q1,Q2,Q3 Q4
A4
Contributions Updated literature Theoretical Case studies as
review model of S-T practical
mobility data for reference

visualization

Ontology-based
framework

VUMO

Figure 1.2: Illustration of the thesis outline for Parts II and III, emphasizing the relationship be-
tween chapters, and their respective contributions and answers to research questions
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Chapter 2

Background Theory

This chapter introduces the theoretical background required for this research. In Section 2.1, we
provide the main definitions of Information Visualization, and the theoretical models that were
proposed to support the development of visualizations. The role of interactive visualizations and
the involvement of end users on the process of visualization are also discussed. In Section 2.2,
we introduce the concept of Semantic Web, its technologies, and ontologies. We present several
perspectives for ontology classification, and explain the benefits of ontologies for information
integration. Finally, we establish a link between Information Visualization and Semantic Web
technologies by introducing the concept of Knowledge-assisted Visualization and existing works
on this topic, which intends to overcome the inherent difficulties of the visualization process by
providing means of automation on tasks such as visual mapping and recommendation of visual-
ization techniques.

2.1 Information Visualization

Information Visualization consists of a multi-disciplinary area that intersects fields such as Com-
puter Science, Human-Computer Interaction, Design and Cognitive Psychology. The matura-
tion of the Information age motivates the need of visually representing data from large datasets
to support knowledge extraction. In particular, computer-aided visualization has a crucial role
in human cognitive systems, especially for the fact that visual displays provide the highest band-
width channel from computers to humans [9].

Much earlier than the era of computer-aided visualizations, the work of William Playfair is
considered the pioneer in the field of statistical graphics, for having invented the traditional line,
bar, area and pie charts [ 10]. Figure 2.1 provides a well-known example from his book, The Com-
mercial and Political Atlas, published in 1786, in which England’s exports and imports from and
to Denmark and Norway are compared.

Other examples of breakthrough works include the rose diagrams from Florence Nightin-
gale [11], and the map of Napoleon’s Russian campaign by Charles Minard [12]. Nightingale
intended to visualize the number of death tolls in hospitals due to the lack of sanitation during
the Crimean War, as shown in Figure 2.2, to fight for better conditions in hospitals. The work of
Minard, shown in Figure 2.3, presents a map that describes the loss of the French army over the
advance on Moscow, and its withdrawal.

13
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Figure 2.3: A visualization by Minard which depicts the loss of the French army over the advance
on Moscow [12], and its withdrawal

2.1.1 Definition

Card etal. define Information Visualization as the use of computer-supported interactive visual repre-
sentations of abstract data to amplify cognition [13]. An alternative definition by Spence states that
Information Visualization is the formation of a mental model or mental image of data [14]. The
widespread adoption of visualization confirms that visualization techniques can help informing,
improving analysis and decision-making. Ware et al. emphasize that Information Visualization
does not rely solely on computer graphics; the connection to data is also crucial [9].

Information Visualization is one of the major areas of Visualization besides Scientific Visual-
ization and Geo-visualization. Although that nomenclature is generally acknowledged, we argue
that it lacks precision. One can identify substantial overlap between those areas. Information
Visualization generally concerns the representation of abstract data like prices or social habits.
Scientific Visualization concerns scientific data that may include a spatial component, such as
numerical simulations (see Figure 2.4). Geo-visualization is considered to be similar to Scien-
tific Visualization, differing by having maps as the main element onto which data is displayed.
We naturally admit the overlap (or a better term: synergy) between Information Visualization
and Geo-visualization, given that abstract information about urban mobility is embedded into a
spatiotemporal context but it is not necessarily restricted to geographic representations.

One can often identify misconceptions on regards to overlapping the definitions of Informa-
tion Visualization and Visualization tools. The latter can be defined as computer-based systems
which are designed to display encoded data with a view in order to support the visualization pro-
cess [14].

In order to effectively map abstract data onto visual tokens, Card et al. proposed a human-
centric reference model (see Fig. 2.5) [13], based on the seminal work of Jacques Bertin [17] on
the Semiology of Graphics.

The human-centric reference model is composed by stages through which data should pass.
Raw data comprises data in any format. Data Transformations transform raw data into Data Tables,
which contain relational descriptions of data and are enriched with metadata, i.e. information
about data. Data tables describe data with respect to certain variable types. Card et al. proposed
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Figure 2.4: An example of information visualization (a) and scientific visualization (b) (extracted
from [15] and [16], respectively)
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a broad classification based on three basic types of variables: nominal, ordinal, and quantitative
[13]. Nominal variables are unordered sets, in the sense that a value can only be equal or different
to other values. Ordinal values are subject to an order relation. Quantitative variables are defined
within pre-defined numeric ranges and can be used for numerical calculations.

Visual Mappings transform data tables into visual variables - a concept coined by Bertin and
extended by other authors (including Card et al.) - to account for the computational perspective
of visualization, not yet available at Bertin’s time, and further theoretical advances in the field of
Visualization. Figure 2.6 illustrates the original visual variables proposed by Bertin [17].
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Cartograms, or value-by-area maps, distort geographic areas based on a single variable associated
that area, (e.g., the size of a county is proportional to its population density).

Figure 2.6: Visual variables proposed by Bertin (adapted from [17])

View transformations are responsible for the interaction layer between the human and the vi-
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sualization environment. They transform static graphical representations in order to create new,
distinct views of the visual structures. This stage completes the interaction loop between the hu-
man and visualization.

Visualization techniques are an essential component of Exploratory Data Analysis (EDA).
We share the view of EDA proposed by Andrienko and Andrienko [18]: the exploratory process
begins with the analyst motivated to investigate a certain subject, which may consist of a series of
concrete questions. New questions may arise throughout the exploratory process.

Since last decade, the field of Visual Analytics (VA) was branched from Information Visual-
ization. The distinction between them lies on the scope. The former benefits from the advances
of the latter to support the process of analytical reasoning, and addresses analytical methods for
knowledge extraction. The same authors outline the main areas of VA:

« Analytical reasoning techniques: to provide insights about data and to support decision mak-

ing;

« Visual representations and interaction tasks: to enable visual means to interactively explore
and understand data;

« Data representations and transformations: to convert data of multiple types to support ana-
lytical reasoning and visualization.

This work focuses on the second and third areas, although we argue that our contributions
can motivate and support new developments of the first area.

2.1.2 Interaction in Visualization Tools

Technology has made responsive interaction possible within the context of visualization. Visu-
alization tools now benefit from the capability of facilitating users to change their view about
data. This view change can be defined as movement within the information space [14]. Rather
than static visual representations of information, visualization tools allow users to interact with it
through navigation and have immediate feedback.

To serve as a foundation of the Task by Data Type Taxonomy of Information Visualization,
Shneiderman suggested a useful, widely acknowledged starting point for designing visualizations
Overview first, zoom and filter, then details-on-demand”

»

named "visual information seeking mantra”:
[19]:

« Overview: gain overview about the object in analysis;
« Zoom: zoom in on objects that are of interest;
« Filter: filter unwanted objects;

« Details-on-demand: select an object (or a group of ) and get further details.

Figure 2.7 shows an example of a highly responsive visualization tool that provides an initial
overview of the density of immigration settlement of different foreign-groups across the United
States. It allows further exploration by filtering for specific nationalities (Mexico, for instance),
skimming through a timeline or zooming for details, in accordance to what has been proposed by
Shneiderman.
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Figure 2.7: Immigration settlement across the USA. Overview of immigration by different na-
tionalities is shown on the top. Filtering by Mexican citizens immediately provides the visualiza-

tion on the bottom (Extracted from [20])
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Such interactions on the visual environment are sequential and expected to be iterative. An
enhancement to this mantra was proposed by Cockburn et al. to categorize visualization tech-
niques [21]. The authors defined "overview plus context” as Spatial Separation between focused
information entities and contextual information. “Zoom” was reduced to temporal separation,
and "Focus plus context” minimizes the seam within views.

Hearst extended the classification for visual interaction tasks based on users’ interactions con-
text [22]:

Brushing and Linking provide visual cues that highlight different visual representations of data
on multiple canvas of the same visualization interface. It is useful to provide various perspectives
for the same data instance. Examples of cues include change in color, size or position of the ob-
jects. Figure 2.8 provides an example of a visualization technique in which the user is able to select
a region (red rectangle) within one of the cells of a scatterplot matrix. All the points within this
region are highlighted on the remaining scatterplots cells.
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Figure 2.8: Brushing and Linking interaction task in a scatterplot matrix visualization. As the user
selects a region within a scatterplot, all points within this region are highlighted in all scatterplots
[23]

Panning and Zooming are equivalent to a change of viewpoint by a camera and a further zoom
[13], allowing users to move the screen and zoom in an area of interest.

Focus plus Context tackle the inherentloss of information about the surroundings of the zoomed
area. As the zoom level increases in a particular area of interest, overall structure is lost. An exam-
ple of focus plus context is the Fish Eye view shown in Figure 2.9.
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Figure 2.9: Fish Eye view with focus on the White House. Information about the context of the
public transportation network is still preserved [24]

Semantic Zooming, in contrast to zooming, unveils more granular information about the target
object or area, to reveal its context and meaning [25].

Animation is a consequence of one or more visual interactions, and do not provide manip-
ulation functionalities [26]. It is suggested that animation aids improvement of interaction and
understanding.

Overview plus Detail is used to display different levels of detail in two or more linked visual-
izations.

Dynamic Queries allow users to formulate and query data through visual interactions, reducing
data overload. Examples of such mechanisms include temporal or attribute filters.

Direct Manipulation allows for amore natural user experience, as it consists of providing graph-
ical metaphors on the user interface, in contrast to entering commands to interact with the visu-
alization.

Interaction tasks and visualization tasks are terms that may be used interchangeably, which
can lead to conceptual inconsistencies. Here we introduce some taxonomies found in literature
for classifying visualization tasks.

The work of Shneiderman uses the already mentioned Visual Information Seeking Mantra to
define the Task by Data Type Taxonomy, which includes three additional tasks [19]:

« Relate: view relationships between objects;
« History: keep track of actions to support undo, replay and progressive refinement;

o Extract: allow extraction of subgroups of objects and of query parameters.

Keller and Keller proposed a user-centered approach for classifying tasks [27]. The approach
is divided into nine task categories, and only considers analytical aspects for interacting with vi-
sualizations, in the sense that broader tasks, such as relate or extract, are not considered. Table 2.1
presents such classification.

Yietal. proposed a comprehensive classification of tasks based on user goals and interactions,
to achieve seven interaction categories, which are presented in Table 2.2 [28].
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Table 2.1: Taxonomy for Task Classification as proposed by Keller and Keller [27]

Task Description
Identify Recognition of objects based on the presented characteristics
Locate Identification of an object’s possition

Distinguish ~ Determination of differences between objects
Categorize  Classification of objects into various categories

Cluster Grouping similar objects, given a set of criteria

Rank Ordering objects according to a given parameter, e.g. relevance
Compare Examination of objects

Associate Drawing relationships between objects

Correlate Finding correlations or cause-effect relationships between objects.

Table 2.2: Visual Task categorization as proposed by Yi et al. [28], adapted from Nazemi [29]

Category Description

Select Mark something as interesting to enable the following of the object

Explore Show something else e.g., different subsets of data

Reconfigure Provide a different view or arrangement of the underlying data

Encode Provide a different fundamental view by selecting another visualization technique
Abstract/elaborate  Provide a different level of detail on the data e.g., by details-on-demand techniques
Filter Provide a view with certain (predefined) criteria

Connect Provide visual connection between the same objects on different views

2.1.3 Data Types and Classifications

This section introduces the aspects of data that are important for visualization. A number of clas-
sifications have been proposed. Data classifications can be abstracted to three perspectives: level
of measurement, data transformations, and data dimensions.

Card et al. proposed a classification based on data values and their ordering capabilities, as
already mentioned in Section 2.1.1. Data values can be nominal, ordinal and quantitative [13].

Chi proposed the Data State Reference Model (DSRM) (see Figure 2.10) a taxonomy for clas-
sifying visualization techniques [30]. Such classification defines data transformations and types
as a baseline, in the sense it can be used for classifying data. The DSRM consists of three types for
data transformation, four data stages and four types of operations. The initial phase is the value
(raw data), from which analytical abstractions (data transformations) are applied. Transformed
data contains structural information about data, i.e. metadata. In the remaining phases, visualiza-
tion transformations and visual mapping, appropriate visualization techniques are chosen.

Shneiderman divided data into seven categories according to their dimension, in the scope of
his Visual Information Seeking Mantra [19]. Such categorization was not meant to be exhaustive.
In fact, Shneiderman argued that other data types may exist, and that his categorization "reflects
an abstraction of reality”. Table 2.3 presents the classification.

Keim et al. provided modifications to Shneiderman’s classification [31]. The authors pro-
posed that each timestamp can be assigned to multiple variables, thus being multi-dimensional.
The category Multi-dimensional data comprises Shneiderman’s Three- and multi-dimensional data;
Tree and Networks were classified as Hierarchies and Graphs. Additional categories include Text
and Hypertext, and Algorithms and Software. Table 2.4 presents the classification.

22



Value Stage

Value Operator

Data
Transformation

Analytical Analytical
Abstraction Stage Operator

Y

Visualization
Transformation

Visualization Visualization
Abstraction Stage Operator

Visual Mapping
Transformation

View Stage

View — Operator

Figure 2.10: The Data State Reference Model proposed by Chi (adapted from [30])

2.1.4 Visualization of spatiotemporal data

Depending on the domain of application, visualizing spatiotemporal data can also make use of
non map-based techniques, thus adopting other graphic entities such aslines, bars, circles or other
geometric forms. However, when the actual spatial representation is of visual concern by the users
who will benefit from those techniques, approaches take place so as to suggest ways of presenting
space and time simultaneously. Such representations would always be subject to simplification
depending on the presentation media, e.g. paper.

Two main visualization approaches have been applied for visualizing spatiotemporal data.
The first approach appeared within the context of Time Geography coined by Higerstraand, and
consists of representing paths of moving instances through a time dimension which is perpendic-
ular to a geographic plane, defined as a Space-Time-Cube [32]. Given that time is an intrinsic
component of the visualization, it is possible to continuously track the movement of an entity
through space over time. However, the amount of entities to be plotted might imply intense visual
cluttering, which would require workarounds for reducing it. Hagerstraand’s approach precedes
the era of Geographic Information Systems, even though it is possible to identify applications of
the Space-Time-Cube in other visualization-related developments (see Figure 2.11) [33].

The second approach consists of using animated maps to allow users to visualize changes in
spatial data over time. At every frame of the animation, the position of an entity is redrawn. In
order to avoid visual clutter, animated maps should preferably plot spatiotemporal data on a static
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Table 2.3: Data type classification as proposed by Shneiderman [19]

Type Description

One-dimensional ~ Linear data type
Two-dimensional ~ Planar or map data
Three-dimensional ~Real world objects

Temporal One-dimensional data with start and finish time
Multi-dimensional — Data in relational and statistical databases with n attributes.
Tree Data with a link to (one) parent

Networks Data items linked to an arbitrary number of other items

Table 2.4: Data type classification as proposed by Keim et al. [31]

Type Description

One-dimensional Data with one dimension, e.g. temporal data.

Two-dimensional Data with two dimensions, e.g. spatiotemporal data.
Multi-dimensional Data with more than three dimensions (multivariate data), e.g. re-

lational databases.
Text and Hypertext Data with unknown dimensions and number.
Hierarchies and Graphs ~ Data with relationships to other information entities.
Tree Data with a link to (one) parent
Algorithm and Software ~ Program code that describes complex algorithms.

bi-dimensional map. However, this requires additional measures in order to avoid designing visu-
alizations that force users to create mental associations between different time intervals. Instead,
they should allow instant view of changes of an entity through time. Methods for displaying data
within animated maps were proposed by Adrienko et al. [34].

2.1.5 Involving end-users in the development of visualizations

The involvement of users during the whole development process of visualizations is well acknowl-
edged by researchers [35-40]. Visualizations have mostly been technology-driven, and it is now
possible to identify a shift towards more user-centered approaches. These approaches differ on
the way users are engaged throughout the process. These methods appear in diverse contexts such
as epidemiology, hydrography and crime spotting visualizations, although they can be analyzed
from a general UCD perspective for visualization.

Slocum etal. [39] proposed a UCD process consisting on a six-phase cascade for the creation
of a visualization tool for water-balance issues: 1) prototyping; 2) domain expert evaluation;
3) software refinement; 4) usability expert evaluation; S) software refinement and 6) decision
maker evaluation. A noticeable disadvantage of the process is that end-users only participate in
the end of the design process, after domain and usability experts have addressed the design and
functionality related issues.

The method proposed by Robinson et al. extensively involve users throughout the process
along six phases: 1) work domain analysis; 2) conceptual development; 3) prototyping; 4) in-
teraction and usability studies; S) implementation and 6) debugging [37]. Phases 2 to S occur
multiple times in a loop. The work domain analysis phase consists of the first contact between
stakeholders and developers, in which they communicate the initial ideas and requirements. The
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Figure 2.11: A space-time cube that represents Napoleon’s Russian campaign, based on the orig-
inal visualization proposed by Charles Minard [33]

conceptual development outlines the results from the work domain study. This approach suggests
that if the work domain is not completely understood, the prototyping phase shall not proceed.
From a critical perspective, it is still possible to proceed with prototyping, looping back to the
work domain analysis phase if needed.

In response to this issue, Roth et al. [38] propose a modification to Robinson et al’s UCD
process with the following phases: 1) prototyping; 2) interaction and usability studies; 3) work
domain analysis; 4) conceptual development; S) implementation and 6) debugging. This time,
prototyping has an initial role in the process, where designers develop visualizations according
to the way they think about them. After performing interaction and usability studies, the pro-
totype is used as a final component of the work domain analysis to catch new ideas from users.
Finally, the results from the interaction and usability studies and work domain analysis formalize
the conceptual development phase.

It might happen that the potential users of visualization tools are not familiar with visualiza-
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tion concepts, or are not aware of their true potential. This might compromise the effectiveness of
their participation. In order to overcome these issues, Koh et al. [35] propose relevant additional
phases based on the approaches of Robinson et al. and Roth et al (see Figure 2.12). These ad-
ditional phases improve awareness of users about the power of visualization in a general context,
but also within their own context by visualizing their own data.

The Visualization Awareness phase consists of introducing general concepts of Information
Visualization to users in case they are not familiar with the field. In this phase, the first discussions
for retrieving ideas of the development of their own visualizations are held. The Domain Visu-

alization phase incorporates the development of the first prototypes tailored to the users’ own
data.

4 1. Problem Domain Analysis )

’

Domain
Visualization Sk
\\\\
Visualization N
Awareness
Work Domain
Analysis
2. Conceptual
development
- 3. Prototyping
4. Interaction and
Usability Studies

Figure 2.12: The UCD process proposed by Koh et al. (adapted from [35])
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-
-
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0. Analysis of the
context of use

Visualization techniques and tools abound, but it is still possible to identify lack of engage-
ment of visualization researchers with users. In fact, visualization tools are useless if users cannot
effectively interact with them, thus naturally compromising the processes of knowledge extrac-
tion and decision-making. A study by Ellis and Dix [41] - one of the few about evaluation for
general Information Visualization — supports this statement: after analyzing 65 papers describ-
ing new visualizations, it found that only 12 of them engaged users within evaluation processes.
We identified the same issue in the Transportation domain, as discussed in Chapter 3. A further
complicating factor is the inherent nature of visualization itself that turns evaluation into a com-
plicated process. Again, the authors indicate some factors that contribute to making evaluation
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in Information Visualization a hard process:

« Variety of datasets: despite some earlier efforts in creating a standard for datasets, datasets
are heterogeneous and hardens the evaluation process, as it might limit the availability and
quality of data to be visualized;

« Indeterminacy oftasks: the tasks to be performed during the evaluation process are usually
more structured, which differs from the ones to be performed in “real life” that are more
exploratory; these ones are harder to replicate in an experiment;

« Participants in context: depending on the complexity of the application context, partici-
pants need to have a clear understanding of the problem that the visualizations are trying
to solve. Some authors suggest that it is possible to obtain better information by involv-
ing domain or usability experts, even though it is typically harder to have access to those
people [36,40].

2.2 Semantic Web Technologies and Ontologies

The World Wide Web has become one of the main sources of information for people. Initially, the
provision and access to information were restricted to IT specialists. Nowadays, billions of users
have prompt access to the Web, and can share any information about any topic. Information over-
load is a direct implication, which requires users to search, filter, evaluate and select information
that meet their interests.

The web contains numerous smart applications, such as complex search engines, journey
planners with real-time information, and e-commerce services that can suggest products accord-
ing to customers’ shopping habits. Those applications depend on consistent data to produce ac-
ceptable output. The Semantic Web intends to provide an appropriate infrastructure for infor-
mation integration on the Web, so that applications can perform to their potential [42].

The technologies presented in this section were originally developed to be used in the Web
environment. However, their capabilities have been proven powerful to be applied to other do-
mains of knowledge, such as Biology [43], Knowledge Management [44], and Agent-based Sys-
tems [45]. Chapter 3 describes the application of ontologies to Transportation.

2.2.1 Definition and Context

The Semantic Web is a collaborative effort led by the World Wide Web Consortium (W3C), and
teams of researchers and industry practitioners. Its main goal is to provide a framework for shar-
ing, finding, reusing and integrating data generated by applications and humans. This framework
allows data to be processed and understood by computers, for the sake of switching the users’
focus from data-driven to knowledge-driven activities.

The architecture of the Semantic Web is formed by hierarchical layers. Each layer is governed
by one or more formal languages, and uses information and resources from layers that are imme-
diately below. Such hierarchy is called Semantic Web Stack, which is illustrated in Figure 2.13.

The first layer, Identifiers, consists of Uniform Resource Identifiers (URIs), which uniquely
identify resources, e.g. documents or websites, using a string in standardized form. Identifiers
form the basis of data representation for Semantic Web applications. A notable type of URIs is
the Uniform Resource Locator (URL), which contains the access protocol and network location
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Figure 2.13: Semantic Web Stack (Adapted from [42])

of aresource. For instance, http://www.fe.up.pt is the URL and URI for the website of the
Faculty of Engineering of the University of Porto (FEUP). URIs provide a trackable, understand-
able identification for all resources.

The Data Interchange layer provides a common syntax layer for representing identifiers and
interchange. The standard data model for such representation is the Resource Description Frame-
work (RDF). In RDF, data is expressed as subject-predicate-object triples. Subject and Object are
nodes connected by an edge (Predicate). Subjects, predicates and objects are identifiers, hence
have a URI. An illustrative example of a triple is given in Figure 2.14. The combination of multi-
ple triples yields a graph structure, which characterizes the term linked data that is used to refer
to data within the context of the Semantic Web.

FEUP

isLocatedin—| Portugal

Figure 2.14: A triple according to the RDF data model

RDF data can be serialized using Extensible Markup Language (XML). Such serialization
is not meant to be human-readable. Other serialization formats exist, such as the Terse RDF
Triple Language (Turtle or TI'L), which was designed with human readability in mind. This thesis
uses the Turtle serialization to express semantic data, unless stated otherwise. RDF is detailed in
Section 2.2.2.

RDF is used to build vocabularies that describe relationships and properties about resources.
However, RDF per se has limitations with respect to building more formal taxonomies and to
specifying part-whole relations, e.g. "Red Wine is a type of wine”. RDFS, detailed in Section 2.2.3,
provides such capabilities, and is used to build lightweight ontologies, i.e. simple taxonomies. The
various classifications for ontologies are given in Section 2.2.7.

OWL, an acronym for Web Ontology Language, is a language derived from the Mathematics
field of Description Logics, and allows for the creation of heavyweight ontologies, i.e. formally
axiomatized. It provides additional features in comparison to RDFS. Moreover, OWL uses the
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standardized vocabulary of RDF and RDEFS, and it is divided into profiles according to the ex-
pressiveness levels. OWL is detailed in Section 2.2.4.

The Rules layer provides logical reasoning to ontologies, using the semantics of RDFS and
OWL. There is not an acknowledged standard for rule languages, although two have been used
more frequently: Semantic Web Rule Language (SWRL) and SPARQL Inference Notation (SPIN).
SPIN is a recent development that uses SPARQL for building complex rules that cannot be ex-
pressed with RIF and SWRL, and is considered a de facto standard for building semantic applica-
tions with rule-based inference. Rules are explained in Section 2.2.6.

SPARQL provides the capability of querying data for RDF data and RDFS/OWL ontolo-
gies. The structure of SPARQL queries is similar to the one used by SQL-based languages. Since
RDF data is stored as a graph, queries aim to find a subgraph which matches a list of conditions.
SPARQL is explained in Section 2.2.5.

2.2.2 RDF - Resource Description Framework

RDF is a framework for representing the relationships between resources, their properties and in-
terrelations as a graph. As mentioned in Subsection 2.2.1, datais represented as Subject-Predicate-
Object triples.

For example, consider the following graph in which triples describe a bus in terms of some
properties. In a triple, subjects and predicates are always resources, i.e. an identifier that can be
described in terms of one or more properties, and may belong to one or more classes. The object,
however, can also be a literal. In semantic web applications, literals consists of strings, numerical
values or complex values such as timestamps. Literals are well-defined datatypes that follow the
XML Datatypes specification [46].

belongsTo—» STCP

Bus4782 FisManufacturedBy-#| Caetano

allocatedToDepot—®|Depot-Francos

Figure 2.15: Example of a RDF graph that describes a bus

In RDF, resources are preceded by their namespace prefix. Namespaces - a technical term for
scope - ensure that no ambiguity exists when referring to an identifier. For instance, the namespace
for the RDF vocabulary is given by the URL below:

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

In Turtle notation, prefixes can be represented with a shorter namespace term, defined as
gname. In the example of Figure 2.15, the qgname geo refers to the following URL:

http://wuw.w3.org/2003/01/geo/wgs84_pos#.

The following example provides the serialization for the RDF graph of Figure 2.15. The lines
beginning with @prefix are used to specify all gnames. The example provides three triples for
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the same subject : Bus4782. In Turtle notation, subject repetition is avoid to facilitate reading.
Triples are separated with ; until the last one, which uses .

Oprefix : <http://web.fe.up.pt/~thiago/example.rdf#> .
Oprefix geo: <http://www.w3.org/2003/01/geo/uwgs84_pos#> .

:Bus4782 :belongsTo :STCP ;
:isManufacturedBy :Caetano ;
:allocatedToDepot :Depot-Francos .

RDF allows the creation of blank nodes (bnodes), i.e. a node that does not have a URI. De-
spite not having an actual identification, semantic web applications can still identify them by pro-
viding internal labels, so that information is referenced correctly. Blank nodes are useful for repre-
senting information that does not require an identifier. Recalling the example of Figure 2.15, the
following example provides the location of Depot-Francos as a blank node. The geo names-
pace indicates that we are using resources from that namespace.

Depot-Francos|—located At —rdf:type—| geo:Point
I
geo:lat
41.1828
geo:long
-8.6205

Figure 2.16: Description of a location with a blank node

The serialization of a blank node makes use of brackets, as in the following example:

:Depot-Francos :locatedAt [ rdf:type geo:Point ,
geo:lat "41.1828" ,
geo:long "-8.6205" . ]

2.2.3 RDFS: RDF Schema

RDES extends the RDF vocabulary with components that describe taxonomies of classes and
properties. Main concepts include the specification of subclasses and subproperties, range and
domain of properties. Table 2.5 describes the main classes found in RDFS and RDF. All resources
belong to a certain type (class). Every class is also a resource. For instance, rdfs:Class is a
subclass of rdfs:Resource, which is a superclass for all possible resources. Using the same
rationale, classes are instances of rdfs :Class. In the following example, BusStop is an instance
of rdfs:Class. Table 2.6 describes the main properties of the RDES vocabulary.

The concepts of domain and range are analogous to their mathematical counterparts. As an
illustration, consider the property operatedBy that indicates the public transportation opera-
tor of a bus stop. The following assertions mean that the Subject of any triple that contains such
property should be an instance of BusStop. Likewise, the Object should be an instance of Oper-
ator. Consider the triple "BS039 operatedBy MBTA” Assuming that our dataset did not have
explicit i nformation about the types (classes) of BS039 or MBTA, an inference engine would still
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Table 2.5: List of all classes in RDES/RDF vocabulary

Class Collection of
rdfs:Resource All resources
rdfs:Class All classes
rdfs:Literal Literal values
rdfs:DataType Data types
rdfs:XMLLiteral XML Literals

rdf :Property All properties
rdf:Statement All statements
rdf:List All lists
rdfs:Container All containers

rdf :Bag All unordered containers
rdf:Seq All ordered containers
rdf:Alt All alternative containers

rdfs:ContainerMembershipProperty All properties that express membership

Table 2.6: Main properties in RDF/RDES vocabulary

Property Description

rdf :type Instance of
rdfs:subClass0f Subclass of

rdf : subPropertyOf Subproperty of
rdfs:range Restricts domains
rdfs:domain Restricts subjects
rdf:first First element of a list
rdf:rest The remaining of a list
rdf:_1, rdf:_2,..., rdf:_n Container membership properties
rdf:subject Subject of a statement
rdf :predicate Predicate of a statement
rdf:object Object of a statement

be capable of deducting such facts, due to the domain and range assertions that were established
before.

224 OWL: Web Ontology Language

OWL extends RDF and RDFS with additional components found in Description Logics, result-
ing in increased expressiveness and reasoning capabilities. However, increased expressiveness
implies a trade-off with respect to reasoning efficiency. To overcome this issue, different OWL
profiles were implemented. A profile is a subset of OWL that guarantees reasoning in practical
computing time by sacrificing some of the logical expressiveness. We provide a brief description
about the specifications and subsets of OWL.

The first specification of OWL implemented three profiles: Lite, DL and Full. OWL Lite was
designed to model taxonomies with simple constraints, including 0-1 cardinality restrictions, i.e.
restrictions about the number of possible instances of a class. OWL Full has no expressiveness
constraints, but it cannot guarantee decidability. OWL DL provides many of the capabilities of
Description Logics. Despite having the entire vocabulary of OWL Full, it introduces a restriction
in which a URI cannot be simultaneously treated as an individual and class or property.

OWL 2, the second specification of OWL, implemented three profiles based on OWL DL:
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EL, QL and RL.

OWL EL is designed to provide reasoning in polynomial time, with respect to the size of the
ontology. It suits ontologies that contains a large number of properties and classes, and do not
make use of computing-intensive rules.

OWL QL focuses on efficient query answering, and handling large volumes of instance data.
This profile is based on work involving database integration, and provides features found in UML
and ER models. Query answering ideally performs in logarithmic time, with respect to the size
of instance data.

Finally, OWL RL is designed to provide maximum expressiveness possible while allowing
the use of rules and rule-processing systems, i.e. inference engines. Rules must be conjunctive,
i.e. clauses (atoms) can only be linked by the logical AND operator. In comparison to the other
two profiles of OWL 2, OWL RL provides more constructs than OWL QL for defining classes.

2.2.5 SPARQL Query Language

SPARQL provides a protocol for accessing RDF data local and remotely, and a set of SQL-like
instructions for querying RDF graphs. In contrast to languages based on SQL, there are no table
join operations. All conditions and operations consist of finding a subgraph that matches all the
conditions stated in a query’s body. SPARQL provides four query result types:

« SELECT: returns values of variables that are bound to a query pattern;
« CONSTRUCT: returns an RDF graph by replacing variables in a query pattern;
« DESCRIBE: returns an RDF graph describing the resources that were found;

« ASK: returns a true boolean value if there is a subgraph that matches the given conditions.

As an illustration, the following query selects the identification and name of all students who
belong to the University of Porto:

PREFIX : <http://example.com/student.owl#> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
PREFIX owl: <http://www.w3.org/2002/07/owl#> .

SELECT 7id 7name

WHERE {
?x :studiesAt :UPorto .
?x :hasStudentID 7id .
?Xx :hasName 7name . }

The PREFIX section works in the same way as in RDF files. Variables followed by a 7 are
placeholders, which are used for graph matching purposes. For instance, 7id and ?name are vari-
ables that were placed as objects of triples ?7x :hasStudentID 7idand?x :hasName ?7name,
so that they will receive values stored in RDF data, in case the query succeeds in finding a sub-
graph with such conditions. Variable names do not matter in SPARQL. In practice, however, they
should be chosen in such a way to facilitate readability. Variables can return values from subjects,
predicates and objects.
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A CONSTRUCT query returns a graph by replacing variables in a query pattern. For instance,
the following query associates students to the class WorkerStudent in case it is known that they
work at an institution:

PREFIX : <http://example.com/student.owl#> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
PREFIX owl: <http://www.w3.org/2002/07/owl#> .

CONSTRUCT { 7x a :WorkerStudent }
WHERE {

?x :studiesAt :UPorto .

?x :isActive "true" .

?x :worksAt 7company . }

A DESCRIBE query returns a single result RDF graph, which describes a given resource. As
itis not still standardized, different SPARQL engines may return different results.

An ASK query returns a boolean value (true or false) according to whether the graph
matching succeeded or not. For instance, the example of SELECT query could be modified to
become an ASK query. If at least one student of University of Porto was found, the result would
be true. Otherwise, false is returned.

Asin SQL-based languages, SPARQL supports aggregate functions and constructs for build-
ing more complex conditions. The current stable version, SPARQL 1.1, became a W3C standard
in 2013. A complete reference can be found in [47].

2.2.6 Rules and Reasoning

Rules reveal implicit knowledge. The importance of rules is evident in some ontology applica-
tions, such as rule-based systems for simulation purposes. In this section, we present a brief list
of available technologies for reasoning.

Ontology rules can be built using a rule language. SWRL [48], Jena Rules’ and SPIN [49]
are the main ones adopted in Semantic Web applications. SWRL and Jena Rules share several
similarities in terms of rule construction. SPIN uses SPARQL to represent rules and constraints.
It is the industry de facto standard for building rules.

There are several Semantic Web frameworks for reasoning over ontologies. Some of them
were originally written as description logic reasoners, such as Pellet?, FaCT++ [50], and Top-
SPIN [49]. In this thesis, we focus on Apache Jena®, a Semantic Web framework for Java. Jena
provides reasoning for RDFS and OWL.

2.2.7 Therole of Ontologies

Ontologies are considered to be the core of the Semantic Web. In brief, ontologies consist of a
common set of terms for describing and modeling knowledge of a domain (e.g. urban mobility).
Semantic models can be used by applications to make inferences about data or to analyze it con-
sidering its surrounding context. The term ontology originated in the domain of metaphysics,
concretely in the Aristotelian studies on the nature of things and their existence.

'https://jena.apache.org/index.html
2https: //github.com/stardog-union/pellet
Shttps://jena.apache.org/index.html
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In the domain of Information Systems, especially in Artificial Intelligence, a number of au-
thors propose definitions for the concept of ontology [ $1-53]. Despite specific differences, those
definitions agree on its purpose of formalizing knowledge through a structured representation.
For the purposes of our research, we adopt a concise definition coined by Thomas Gruber [51],
which is adopted in many ontology-related studies:

An ontology is a formal, explicit specification of a shared conceptualisation. A ‘con-
ceptualisation’ refers to an abstract model of some phenomenon in the world by having
identified the relevant concepts of that phenomenon. ‘Explicit’ means that the type of
concepts used, and the constraints on their use are explicitly defined. ‘Formal’ refers to
the fact that the ontology should be machine readable, which excludes natural language.
‘Shared’ reflects the notion that an ontology captures consensual knowledge, that is, it is
not private to some individual, but accepted by a group.

Existing classifications of ontologies regard their level of formalization, expressiveness and
specificity [S1-54]:
Classification according to Formalization
Formalization regards the language that is used to represent the ontology.
« Highly informal: the ontology is expressed in loose natural language and is prone to ambi-
guity.

« Semi-informal: the ontology is still expressed in natural language with a certain structure,
so as to reduce ambiguity.

« Rigorously formal: the ontology is defined with formal semantics and may contain theo-
rems and proofs.
Classification according to Expressiveness

Expressiveness regards if an application is able to make or not reasoning tasks with the ontology.

« Heavyweight Ontology: the ontology is extensively axiomatized. All constraints are explic-
itly represented in order to eliminate terminological and conceptual ambiguities. Such on-
tologies are usually built to support computing-intensive activities such as reasoning and
database integration.

« Lightweight Ontology: the ontology depicts a simple taxonomic structure of primitive or
composite terms (see Figure 2.17), along with their definitions. Constraints or reasoning
rules are not specified.

Classification according to Specificity

Specificity comprises the domain(s) that the ontology will define.

« Generic Ontology: Commonly regarded as "top-level” ontology, it contains concepts that
are considered generic across many fields, such as state, event and action.
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« Core Ontology: The ontology specifies concepts that are generic across many domains.

« Domain Ontology: The ontology specifies concepts that are specific to a certain domain
(e.g. urban mobility). Due to their specificity, they seldom figure in other domain ontolo-
gies. Otherwise, a core ontology would be considered more appropriate for including such
concepts, as they would belong to many domains.

Ontologies share the basic elements of other modeling languages in software and database
engineering, such as Universal Modeling Language (UML):

Entities: Subjects that belong to a certain domain;

Properties: Attributes that each entity owns;

Relationships: Relationships among entities;

Actions: Events that occur with entities.

l— Maintenance Senior
-

Passenger General
Person |-—
| TicketAgent Child
Driver Disabled
isa
-

Figure 2.17: An excerpt of an ontology showing subclasses of the class Person (adapted from [55])

2.2.8 Benefits of Ontologies for Information Integration

Information Systems modeling is often performed using UML and Entity-Relation (E-R) mod-
els. Such models better suit information sharing in closed, constrained environments, i.e. envi-
ronments in which entities are defined and agreed by a limited number of sources (e.g. elements
of an organization) [56]. In environments with multiple data sources, there might be different
definitions of an entity and its elements. For instance, an entity might have different names. UML
or E-R models cannot account for this type of heterogeneity.

As a simple example, consider two databases (A and B) containing information about types
of buses. Suppose that the "articulated bus” type is represented in A as "Articulated”, whereas B
represents it as "Gelenkbus”, its German counterpart. Despite the language difference, both are
equal at the semanticlevel, as they refer to the same type of bus. Extracting knowledge from those
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databases or integrating them would not be possible without manually identifying and fixing lan-
guage incongruence (e.g. editing and translating entries manually). Domain ontologies are able
to overcome this issue.

Ontologies overcome those issues as they support the following notions: (i) Anyone can say
Anything about Any topic (AAA assumption); (ii) Open-world assumption, i.e. there might exist
more concepts or facts beyond those that are already known (expressed in the ontology); (iii)
Non-unique naming, i.e. different sources (e.g. people) can provide distinct names for all entities
that belong to an ontology [57].

Aligned with the scope of our research, ontologies can provide interoperability of heteroge-
neous data sources. The schema of each data source needs to be mapped to one or more ontolo-
gies [S8-60]. Wache et al. [44] analyzed several studies on the use of ontologies for information
integration and identified three general approaches: single, multiple and hybrid.

Single approaches use one ontology for specifying semantics for all sources, and is gener-
ally used when all sources belong to the same domain. Such approach requires that all sources
are compatible with the ontology. Multiple approaches have one ontology for each source and
eliminate the requirement of compatibility of all sources. On the other hand, it requires an ad-
ditional ontology for allowing interoperability between the different ontologies, thus imposing
additional formalism. In practice, it is consensual that multiple ontology approaches are very dif-
ficult to be specified. Hybrid approacheslie between single and multiple approaches. Again, there
are ontologies for semantically describing each source, but they are built according to a shared,
consensual vocabulary [61].

2.2.9 Semantic data in the context of Information Visualization

Astudyby [62] proposed the Linked Data Visualization Model (LDVM), an abstract data process
for dynamically connecting semantic data with visualizations. LDVM is an adaptation of the Data
State Reference Model (DSRM) proposed by [30] and can be considered a workflow starting
with semantic data and ending with visual representations of such data. However, the model
assumes that a certain ontology is provided beforehand.

LDVM provides a general formalization of the process for building visualizations based on
linked data and consists of 4 stages (see Figure 2.18) through which data must pass:

« RDF Data: input of raw semantic data in Resource Description Framework (RDF) format;
« Analytical extraction: data extractions retrieved from raw data, such as aggregated values;
« Visualization abstraction: the information to be displayed by the visualization technique;

« View: the visualization itself, as presented to the user.

2.2.10 Knowledge-assisted Visualization

Empirical user knowledge can be used by visualization tools to assist users on finding appropriate
visual representations for their data, by means of (semi)-automatic reccommendations. There are
still few studies on this area, mostly consisting of applications to general domain data. Studies
can be classified into three approaches: rule-based, behavioral, and personalized [63].
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Figure 2.18: Overview of the LDVM model [62]

An early study by Stolte and Hanrahan [64] is one of the first that proposed automated gen-
eration of visualizations. Polaris, the initial backbone engine of Tableau, suggested visualizations
for tables in relational databases. The system, however, required users to manually map data onto
visual variables of each visualization technique.

The ShowMe system proposed by Mackinlay et al. [65] aimed to automatically generate visu-
alization techniques for Tableau, by helping users on searching for the most appropriate visual rep-
resentations for their tasks. Recommendations were based on data properties, and were ranked
according to globally defined scores for every visualization type supported by the tool.

Voigt etal. [66] proposed another rule-based approach, in which a knowledge base of various
ontologies was used to recommend visualization techniques. The system pre-selects visualiza-
tion techniques based on data properties and tasks. Such techniques are then ranked according
to several criteria like visualization facts and user context. Their system is supported by the Vi-
sualization Ontology (VISO), which describes data schema and the components of visualization
techniques. The approach assumes that data are semantically integrated.

Nazemi et al. [29] proposed a behavioral approach to visualization recommendation. As the
users interacted with the visualization system with the various techniques, their use profiles were
stored for analyzing their behavior through interactions.

Mutlu et al. [63] carried out a comprehensive approach by involving lay users in a crowd-
sourced study with general public. Several dimensions for rating visualizations were defined ac-
cording to usability factors. In both works, ontologies were used as a semantic foundation. They
have been used to address other problems, e.g. knowledge management and travel planning.

Knowledge-assisted visualization is usually based on two main classes for content recommen-
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dation: Collaborative filtering (CF) and Content-based methods (CB) [67]. CF assumes that
users with similar behaviors or preferences in the past are likely to have the same preferences in
the future. CF-based methods generate recommendations based on a collection of user prefer-
ences, e.g. explicit ratings to items, or implicit ratings which can be inferred from behavior over
time.

CF algorithms organize ratings as a matrix A, xn, where each entry a; ; corresponds toa
rating given by user ¢ on regards to item j. The top 1 recommendations for a user u can be ob-
tained by calculating the nearest neighbors to v, i.e. most similars users or items. CF methods are
divided into two broad groups: memory-based (user-based) and model-based (item-based).

Memory-based methods predict the nearest neighbors from similar users who have rated the
same items. The prediction averages the ratings of the active user and the similar ones, thus gen-
erating a numerical value within the same rating scale. Model-based methods calculate similarity
between items that were rated by the active user.

Various measures can be used to calculate similarity in CF methods. For instance, the Pearson
correlation measures the strength of linear correlation between two variables, thus varying from
-1 (extremely negative) to +1 (extremely positive). Memory-based methods add and subtract
the neighbors’ bias from the user average. Such measure is used for predicting a certain item.
Model-based methods calculate the average of similar items rated by the user.

Content-based methods recommend items based on the correlation between the content of
items, and the user’s profile. The item content can be described by a set of features. CB methods
typically use Vector Space Model (VSM) and Term Frequency - Inverse Document Frequency
(TF-IDF) weighting to calculate the correlation between users and items. Each item is repre-
sented as a vector of term weights. A weight comprises the association degree between an item
and a term. Analogously, user profiles can be represented by profile vectors. The following cosine
measure can be used to determine the similarity between an item and a user profile:
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CF methods require low to no cost for acquiring knowledge from users, and such knowledge
is independent of the items. However, such methods are prone to cold start, a situation in which
no feedback from any user has been collected [67]. Data sparsity, in the case of a small amount
of collected feedback, may imply failure to provide accurate recommendations. CB methods do

cos(6)

not require direct user involvement, and they can provide recommendations even if no ratings
have been collected. A shortcoming is that recommendations may end up being too general. For
instance, Mutlu et al. [63] considered a hybrid approach by mixing both methods, and compared
its accuracy to approaches based on CF and CB methods. The authors found that the hybrid
approach provided more accurate results.

2.3 Summary

This chapter presented the major theoretical foundations and significant studies in the areas of
Information Visualization and Semantic Web. The latter focused on ontology modeling. The use
of visualization techniques in the domain of urban mobility is acknowledged as a relevant mean
for extracting knowledge about a city through visual cues. Such techniques generally have the
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shortcoming of being designed for a specific data schema and pose a natural barrier for domain
experts without technical knowledge that could take advantage of them. The development of
visualization techniques still presents a heavy focus on technology rather than on their end-users.
Involving end-users on the development cycle can enhance the efficacy of knowledge extraction.

This chapter introduced the concept of Semantic Web and its technologies. The Semantic
Web aims at providing a framework that turns computers capable of processing and understand-
ing data, so that users can switch focus from data-driven to knowledge-driven activities. Although
such developments were oriented towards the World Wide Web, the potential of those technolo-
gies have been acknowledged and applied to various scientific areas.

Semantics is brought to data through formal languages. Semantic data is expressed in RDF
triples. A triple consists of resources that can be connected through many other triples, yield-
ing a graph. RDFS and OWL extend RDF with constructs that allow the creation of ontologies.
OWL is the current W3C standard for building ontologies, and consists of profiles that guarantee
reasoning in practical computing time by sacrificing some level of expressiveness. Semantic data
can be queried using SPARQL, a SQL-like language where queries return results based on graph
matching operations. Data may contain implicit knowledge that can be made explicit using logic
reasoning rules declared in an ontology.

The existence of few studies on knowledge-assisted visualization, combined with the lack of
related applications to Transportation, indicates an important research opportunity. An overview
of recommendation methods was presented, with focus on collaborative filtering and content-
based techniques. CF-based methods generate recommendations based on a collection of user
preferences, e.g. explicit ratings to items. Content-based methods recommend items based on the
correlation between the content of items, and the user’s profile. To account for their limitations,
hybrid approaches have been proposed.
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Chapter 3

Literature Review

This chapter describes the current state of the art on the applications of Information Visualization
(Section 3.1), Semantic Web technologies and ontologies to Transportation (Section 3.2), with
focus on urban mobility analysis.

3.1 Information Visualization
This section aims to answer the following questions:

1. Which phenomena related to transportation have been analyzed using visualizations and
which types of data have been exploited?

2. How traditional techniques have been used, and which novel techniques have been pro-
posed?

3. To which extent end-users have been involved in the design and development of visualiza-
tions?

Past studies highlighted the myriad of opportunities for visually exploring transportation data,
including those related to urban mobility [68, 69]. Pack [69] stated that the following research
areas were considered promising:

« Real time visualization;
« Visual mining of archived data;

« Virtual design for construction.

The same study emphasized the role of the end-user during the design and development of vi-
sualization techniques. Evaluation is fundamental to ensure that techniques can actually support
data exploration and knowledge extraction.

Early studies that addressed visualization in some way were supported by Geographic In-
formation System (GIS) components. The availability of novel, free visualization frameworks,
e.g. Processing’, D3.js?, paved the way for the development of innovative visualization tools and

1 http://processing.org
*http://d3js.org
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techniques that do not necessarily depend on a particular GIS. Furthermore, Intelligent Trans-
portation Systems also had a crucial role in the advance of visualization, due to availability and
size of collected data.

In 2004, Hughes et al. proposed a research agenda for the application of data visualization to
Transportation Systems, based on the state of practice at that time [ 70]. In one of topics proposed
by the authors, "Development of Visualization Standards for Source Data and Interoperability”,
they discussed the importance of meta-data on ensuring interoperability across systems, and vi-
sualization system architectures to support heterogeneous data sources. To the best of our knowl-
edge, no related applications to urban mobility were found. In parallel, some authors acknowl-
edged that visualization of heterogeneous data is an upcoming research trend [71]. Applications
to urban mobility analysis started to gain momentum since the last decade. In 2011, a survey by
Zhang et al. found that the number of visualization studies in transportation was small in compar-
ison to other topics [71]. In 2015, a study by Chen et al. [7] provided a survey on visualization
of traffic data of many means of transportation, including vessels and airplanes. In 2018, a survey
by Andrienko et al. shed light on the lack of involvement of domain users throughout visualiza-
tion development. The authors posited that insufficient communication can hinder visualization
developers’ knowledge about the problems and needs, and reduce the potential usability of visu-
alization tools [72]. Our literature review endorses that statement; few studies described some
level of involvement of domain users on the design, development and evaluation of visualization
techniques.

The figures shown in this chapter were selected based on the relevance and originality for the
advance on visualization of urban mobility data. We classified the surveyed studies according to
several topics, which will be explained throughout this chapter. The list below indicates the topics
with higher proportion of surveyed studies:

« Urban traffic flows and monitoring;
« People dynamics in urban environments;

« Road trafficincidents;

Air pollution.

Based on the surveyed studies, we were able to provide two tables, shown in the end of this
section, that summarize our findings. In Table 3.1 we list the surveyed topics and their related
studies. Topics were sorted according to the number of related studies. Table 3.2 provides a clas-
sification of data source types which extends the one found in [ 7], and the studies that used such

types.

3.1.1 Urban traffic flows and monitoring

Urban traffic flows analysis and monitoring is the most studied topic in mobility visualization. We
begin by mentioning two early works on this subject. Firstly, in 2000, Claramunt et al. stressed
the limitations of GIS software for managing data of very dynamic geographical phenomena [73].
Their work proposed a GIS-based prototype for visualizing urban traffic data. Various interactive
visualization techniques were used to represent data with different perspectives and levels of ag-
gregation (see Figures 3.1 and 3.2), thus providing a good reference for further works on how
different visual perspectives could be useful for domain experts who act on different contexts.
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For instance, on Figure 3.1 provides an overview on how traffic flows could be analyzed (a) spa-
tially, through bidimensional maps, (b) thematically, with area charts, (c) temporally, through
line plots that represent time series, and (d) with aggregation, by using bar charts to group inter-
vals of values.
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Figure 3.1: Different views on urban traffic data [73]

The second historic work, published in 2002, by Shekhar et al, seems to be the first that devel-
oped a non-GIS visualization tool for traffic flows data [74]. The CubeView system could be pub-
licly accessed from a web browser, and displayed traffic video, maps with highway traffic intensity
and outlier stations for user-specified date and time. Wang proposed the use of three-dimensional
(3D) visualizations for a simulation-based traffic impact analysis system [75]. To facilitate inter-
action with the 3D environment, the visualization interface allows the user to interact with a 2D
representation of road network. Through brushing and linking interactions, the selected road seg-
ment can be seen on the 3D canvas. 3D visualization of roads and moving vehicles were used by
Sewall et al. to represent reconstructed traffic flows from discrete spatiotemporal data [76].

Guo etal. developed TripVista (see Figure 3.3), an innovative visualization tool for analysis of
microscopic traffic behaviors, e.g. at road intersection, and abnormal patterns [77]. The tool tack-
les the intrinsic difficulty due to multidimensional nature of such data by introducing several vi-
sualization techniques. Geographic visualization is combined with abstract representations such
as parallel coordinate plots, which have been used to represent multidimensional data, and scat-
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Figure 3.2: Traffic analysis of a road network section. Through brush and linking, the 2D visual-
ization of the selected road segment can be seen on the 3D canvas [75]

terplots. The user can interact simultaneously with all visualization techniques through brushing
and linking. The system also makes use of the ThemeRiver visualization technique, which is used
to depict thematic variations over time [78]. Users have been involved on the system evaluation.
Although the evaluation protocol has not been specified on the paper, the authors stated that the
feedback was positive among domain experts.

Bak et al. [79] provided an interesting application of the rose diagrams of Florence Nightin-
gale (see Figure 2.2) to the analysis of spatiotemporal stops due to traffic congestion (see Figure
3.4). In accordance to the original visual metaphor, circle segments represent time (hours of the
day). The transparency of each circular segment is used to depict the number of occurring traffic
jams. Finally, the size of each circular segment represents the duration of traffic jams. The authors
tested the visualization technique with public transportation system data from Helsinki, Finland.
In Figure 3.4, A, B, C, D, and E represent city landmarks.

Some authors focused on the temporal perspective of traffic flow analysis [80-83] using ab-
stract visualization techniques. Song and Miller proposed a heat map matrix to analyze conges-
tion patterns across two temporal granularities: days of the weeks or months, and time of the
day [80], as shown in Figure 3.5. Such matrices can be effective on identification of abnormal
patterns and have been applied to other visualization tools [84]. Liu et al. and Pu et al. applied
circular heat maps for the same purpose [81, 82], which were overlaid on a map.

The work of Chen et al. [83] highlights the importance of the semantic zoom interaction
for analyzing phenomena at different levels (see Figure 3.6). Speed bottlenecks retrieved from
vehicle sensors can be analyzed in various temporal granularities in a heat map matrix. As the
user selects the desired time period, the visualization technique adapts to show the respective
vehicle speeds and flow intensity. The study provided extensive evaluation with domain experts
and explicitly followed several visualization principles found in theory.
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Figure 3.4: Rose diagrams provide an interesting visualization of stops and congestion analysis
(extracted from [79])
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Figure 3.5: A heat map matrix visualization for traffic congestion analysis [80]
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Figure 3.6: An example of semantic zoom for exploring traffic bottlenecks in different temporal
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Other common, simple ways of depicting traffic flows using map-based techniques are over-
laying heat maps on geographic maps [84-89] (see Figure 3.7a) or road segments [ 84, 86, 88, 89
(see Figure 3.7b), which are effective for detecting phenomena such as traffic jams.
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Figure 3.7: Simple ways of representing heat maps on geographic maps. (a) consists of a heat map
overlay [85], while (b) provides colors to road segments according to a given scale [84]

Cheng et al. revisited the space-time cube proposed by Hégerstrand and applied three 3D vi-
sualization techniques to the exploration of congestion patterns: isosurface, network-constrained
isosurface, and wall map [90]. An isosurface shows points of equal value on a 3D shape (Figure
3.8a). The network-constrained isosurface enhances the accuracy of the isosurface, as it assumes
that congestion values will be interpolated between roads, i.e. where there are no cars (Figure
3.8b). A shortcoming of both methods is that they become less effective on analyzing particu-
lar road links. The wall map overcomes such limitations by reducing visual clutter and revealing
congestion levels on road links. The authors demonstrated the effectiveness of those techniques
with traffic data from London, extracted from ANPR systems.

Tanaka et al. combined map-based visualization and traditional techniques on a geospatial
dashboard for winter road management using vehicle sensor and microblogging data [91]. The
dashboard provides coordinated multiple views, through brush and linking interactions, and fea-
ture traditional visualization techniques such as bar charts, histograms, scatterplots and dendo-
grams. The tool can be manipulated on touch-screen enabled devices. Wang et al. also proposed
a dashboard for exploring real traffic situations, and features a map-based visualization technique
overlaid with heat maps, with bar charts, histograms and scatterplots [92].

Hsieh et al. approached the problem of traffic flow analysis using video stream data [93].
The visualization system uses video streams from one location to depict traffic situation of other
places.

Huangetal. proposed the TrajGraph system to analyze traffic flows using taxi trajectories data
[94]. The interface provides multiple coordinate views with different visualization techniques. A
map-based view was combined with a rose diagram overlay (similar to Figure 2.2 that is used to
represent traffic information and network centralities. Line plots and an abstract, graph-based
representation of the road network are used. The authors carried evaluation with one domain
expert.
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Clustering techniques can be combined with categorical color scales to depict cluster mem-
bership. For instance, Andrienko et al. proposed a flow map visualization in which colors are
given according to the cluster membership of the mean speeds on road links [95], as shown in
Figure 3.9.

Links

4:854 objects (9.6%)
10: 1266 objects (14.2%
1:732 objects (8.2%)
8:532 objects (6.0%)
5:1747 objects (19.6%)
9:1180 objects (13.3%)
3:515 objects (5.8%)
11: 523 objects (5.9%)
15: 331 objects (3.7%)
7:194 objects (2.2%)
14: 262 objects (2.9%)
12:72 objects (0.8%)
13: 287 objects (3.2%)
16:159 objects (1.8%)
6:133 objects (1.5%)
2:108 objects (1.2%)

Total: 8881 objects

Figure 3.9: Flow map visualization color-coded in terms of mean speed in road links [95]

3.1.2  People dynamics in urban environments

The study of people dynamics has been mostly focused on detecting urban hotspots. A major data
source that supports related works consist of mobile phone data [96-101]. Other data sources
were socio-economic data [96], taxi GPS trajectories [ 102], travel diary survey data [ 103 ], model-
generated OD matrices [ 103], vehicle sensor data [95], and microblogging data [101, 104].

Kang et al. used the space-time cube visualization to analyze aggregate mobility dynamics of
people in urban settings [96]. Sagl et al. used 2D map-based and abstract visualizations for ex-
ploring mobility patterns in four Italian cities [97]. Map-based heat maps were used to estimate
the spatial density of total mobility. Sparklines (see Figure 3.10) were used to analyze the tempo-
ral variation of total mobility and net migration flow on each urban center. Map-based heat maps
and sparklines were used by Zuo and Zhang for the same purpose [98].

Demissie et al. analyzed cellular network handover information to test certain assumptions
of mobility patterns in Lisbon, Portugal [99]. Visual exploration of data consisted of simple and
effective map-based visualizations such as flow maps (Figure 3.11) and sized circles (Figure 3.12).
The former was used to depict the direction and strength of the handover flow. The latter provided
an effective comparison between incoming and outgoing handover on main road links.

Ferreira et al. proposed the TuxiVis system for exploratory visualization of taxi trips, using
the city of New York, USA, as a case study [ 102 ]. The system provides multiple coordinated visu-
alizations. For instance, map-based choroplets and heat maps are used for analyzing trip density
within city regions. Line plots are combined with scatterplots and bar charts for visualizing tem-
poral and thematic information, such as trip duration, fare amount and distance. Figure 3.13
shows the main system interface.
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Figure 3.11: Map-based visualization of handover flows using flow maps [99]
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Figure 3.13: The TaxiView system for exploration of mobility patterns through taxi trips [102]
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Andrienko et al. developed a visual analytics system for supporting mobility analysis from
episodic data, while preserving citizen’s privacy [100]. To the best of our knowledge, this work
seems to be the only that is explicitly concerned with that matter. Despite being beyond the
scope of this thesis, we argue that such factor should be taken into consideration in future works.
Episodic data was retrieved for each individual, from which an algorithm was used to derive the
most likely meaning of the places visited by users. Figure 3.14 shows an example of the seman-
tic space map visualization technique, which represents flows between several place categories,
combined with heat map matrices for each of those places. The widths and opacity of lines are
proportional to the total moves between each origin-destination pair. The color scale correspond
to temporal clusters of similar flows.
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Figure 3.14: Semantic space map for visualization of mobility flows [95]

Von Landesberger et al. tackled the issue of visual clutter that may occur in flow maps [101]
. By introducing spatial and temporal simplifications through cluster analysis, graph-based flow
maps were combined with temporal cluster representations to give insights on regular daily and
weekly patterns of the population, as shown in Figure 3.18.

Chen et al. proposed a visual analytics approach to address the shortcoming of microblog-
ging data, which is typically sparse [ 104]. The system features several abstract visualization tech-
niques, connected with brushing and linking mechanisms, which are combined with a map-based
visualization for displaying aggregate spatiotemporal data (Figure 3.16b). The work makes a
novel use of Sankey diagrams (Figure 3.16d) to represent pairwise movements in time. Heat map
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Figure 3.15: Graph-based flow maps visualization of regular mobility flows [101]

matrices (Figure 3.16c) and time plots (Figure 3.16a) were used to represent the distribution of
movement in distance and time, and for temporal data filtering, respectively.

Nunes et al. [105] developed the Beanstalk platform for analysis of tourism dynamics, such
as trip itineraries, based on passenger counts retrieved from activity-based data, e.g. passenger
count from points of interest, and survey data retrieved from tourism authorities. The platform
contains various types of interactive visualization techniques. Chord diagrams are used to dis-
play movement information between points of interest. Time-based occupancy rates in points of
interest are displayed on a heat map matrix.

3.1.3 Road traffic incidents

Visualization of road trafficincidents has been supported by datasets related to carincident records
[69, 106-109], and vehicle sensor data [ 109].

Li et al. used a 3D GIS-based visualization to represent potential crash risks on road links,
by ranking and estimating segments with potential for vehicle crashes [106]. A 3D map with
the road segments is overlaid with bar charts. The height of each bar represents the crash risk of
a given location. Pack et al. proposed a visualization tool that combines multiple coordinated
views [69]. A map-based visualization was used to display the location of each accident. A bar
chart histogram showed the frequency of each accident property, e.g. fatality, injury, roadwork.
Given that an accident can be related to multiple properties, parallel coordinate plots were used to
explore the relationship between each property. Finally, scatterplots and heat map matrices allow
exploring the pairwise relationship between variables. Map-based heat maps have also been used
to represent vehicle incidents [ 107, 108]. Plug et al. evaluated the effectiveness of heat maps with
domain experts and general public, and reported positive results [ 108].

Anwar et al. proposed a novel map-based visualization technique for exploration of road con-
ditions under traffic incident conditions [ 109]. The Traffic Origins visualization, depicted in Fig-
ure 3.17, shows a red circle glyph whenever an accident occurs, and displays the road conditions
in the surroundings of the accident location. After the accident, the glyph changes its color to
represent the road conditions after the accident, e.g. heavy traffic or breakdowns.
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Figure 3.17: The Traffic Origins visualization technique for exploring road conditions under traf-
ficincident conditions [109]

3.1.4 Air pollution

Visualization of air pollution uses data from vehicle sensors [110] and model-based estimations
of emissions, dispersions or heat [75, 110, 111], model-based traffic flow data [75], bus AVL data
and GPS trajectories [112], and video streams [113].

All surveyed studies used map-based visualizations with heat map based overlays. Rebolj
et al. and Wang et al. used GIS and 3D maps in combination with bar charts to identify road
links with high air pollution levels [75, 110]. Li et al. proposed a web-based visualization system
for visualizing emissions of diesel buses on a microscopic scale, i.e. bus route segments [112].
Heat maps are applied to road segments to indicate the emissions rate along several bus routes.
Morris et al. used video stream data to estimate traffic flows and emissions on highway segments
[113]. The authors used simple yet effective representations of line plots to depict the evolution
of emissions of pollutants over time.

Cristie et al. proposed an interactive visualization tool, CityHeat, for cellular automata based
simulation and analysis of traffic heat in microscopic scale [111]. The tool, as shown in Figure
3.18 provides interaction tasks such as pan and zoom, filtering, and temporal querying. Heat
cubes represent represent the temperatures of road sections according to simulated traffic inten-
sity and vehicle types.

3.1.5 Travel behavior on PTS

Data for visualization of travel behavior on public transportation systems was retrieved from smart
cards (AFC) [114-117], socioeconomic and travel diary surveys [ 118], traveler information sys-
tems and vehicle sensors [4].

Fuse et al. used smart card data from a Japanese city to analyze travel behavior under cer-
tain weather conditions [114]. Line plots and bar charts were effectively used simultaneously
to analyze passenger ridership and precipitation amount. Aggregate time series data was repre-
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Figure 3.18: CityHeat visualization tool for microscopic simulation and analysis of traffic heat on
a three-dimensional virtual city environment[111]

sented using stacked bar charts for analysis of public transportation use frequency under different
weather conditions, e.g. sunny or rainy, and day type, e.g. weekday or holidays. Kamruzzaman
used bar charts to analyze temporal trip patterns of students, and a GIS-based 3D map visual-
ization to identify activity hotspots within the city, using heat surface maps [118]. Roux et al.
provided a simple implementation of map-based heat maps to analyze passenger flows [115].

Tao etal. introduced the use of flow-comaps to visualize aggregate flow patterns of passengers
at a network level [116]. Such technique proved to be useful to identify the major flows of bus
passengers over a time period. Flow-comaps combine flow maps with conditional plots (see Fig-
ure 3.19. Once again, map-based heat maps and line plots were identified for spatial and temporal
analysis of passenger flow patterns, respectively.

Zeng et al. stated that visualization techniques tend to focus on the network topology across
stops, ignoring mobility factors such as riding and waiting times. They proposed three visual-
ization techniques for tackling this gap, focusing on a variety of time-related factors that impact
mobility in public transportation systems [117]. Such techniques are discussed in the following
paragraphs.

The isochrone map-based visualization (see Figure 3.20) depicts a reachable spatial region
within a given timespan. In this particular case, a bus station is chosen as a starting point. Dark
and light blue represent a timespan of [0,30] and (30,60] minutes, respectively.

Figure 3.21 exemplifies the isotime flow map, which linearizes a flow map in a parallel isotime.
It is possible to visualize the time efficiency of journeys that start at a certain stop (red circle on
the left side of the picture), which is calculated in terms of standard deviations of the mean travel
time. Each small node corresponds to a bus stop. The OD-pair journey view (see Figure 3.22)
is based on the isotime visualization technique. Given an origin and destination, it is possible to
visualize the transfer and waiting times, as well as round-the-clock variations with the mobility
wheel glyph, which is used to encode such temporal information.
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Figure 3.22: The OD-pair journey view uses the isotime visualization technique to analyze dif-
ferent route options for the same OD-pair [117]
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3.1.6 Level of Service on PTS

Visualization of level of service on public transportation systems uses data from transit reports
[119], tram AVL data [120, 121], subway AVL and schedule data [122].

Yu et al. used simple GIS-based map visualization to analyze bus schedule adherence, com-
paring static and realtime data for a set of stops [119]. Currie et al. and Mesbah et al. proposed
amethodology for mining tram AVL data to support reliability analysis (actual versus scheduled
travel times), and trend analysis of reliability [ 120, 121]. The resulting data was visualized with
geographic heat maps.

Palomo et al. proposed an effective visualization tool, TR-EX, for transportation schedules
[122]. The tool uses kernel density estimation techniques, and allows users to compare planned
timetables against real service, to analyze speed profile at route segments level, and to assess delay,
wait time and reliability at station level. The top of Figure 3.23 shows the visualization of average
speed for inbound (left) and outbound trips. The bottom shows the visualization at stops level.
Warmer colors indicate higher average delay.
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Figure 3.23: The TR-EX visualization system for exploration of transportation schedules at trips
and stops levels. Trips visualization is shown on the top frames, while stops visualization is shown
on the bottom [122]
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3.1.7 Trip patterns

The few studies regarding analysis and visualization of trip patterns make use of taxi trajectory
data, hence all of them are related to taxi trips [102, 123-125]. The TuxiVis visualization system
of Ferreira et al. has already been featured in the topic People Dynamics in Urban Environments.

Liu et al. used geographic heat maps to analyze the spatial distribution of pick up and drop
off points [123]. Mao et al. used GIS-based visualizations to analyze spatiotemporal trip pat-
terns [125]. Map-based techniques such as choroplets and flow maps were used to analyze travel
density and connectivity.

Chuetal. proposed anovel approach to trip patterns analysis [ 124 ]. Spatiotemporal informa-
tion is transformed into contextual semantic information, which is used to drive hidden themes,
named as taxi topics by the authors. Each topic, generally the name of a street or avenue, is re-
lated to a certain pattern. The visualization system that supports such analysis provides multiple
coordinated visualization techniques, as in Figure 3.24. In (a), topics are represented on a map.
Word clouds featuring street names are used in (b) along with sparklines to depict the representa-
tiveness of each street on a topic. Parallel coordinates view (c) is used to explore the relationship
between topics. Temporal relationship between topics can be explored in (d).

»7‘-:‘ a /’\. )
— ST e g
< , 4 f 4 r I i
‘ L é ,/\\/ - i
S~ o (b)

b
O\ !\
A
\

fs oo A Al B S——
2 V.. - "f"é i

00:00 - 03:00  03:00 - 06:00 06:00 - 09:00  09:00 - 12:00 12:00 - 15:00 15:00 - 18:00 18:00 - 21:00 21:00 - 24:00

== ——= <
MO S SR A

Figure 3.24: Multiple coordinated visualizations for analyzing hidden themes of taxi trip patterns,
which are defined by the authors as “taxi topics” [ 124]

3.1.8 Other topics

In this section we discuss topics for which we have found three or less studies. Some of them may
suggest future exploration by other researchers.

Some works proposed the concept of big city data, i.e. data from several systems for the pur-
pose of gaining an holistic perspective of the dynamics of a city. In 2012, Corral-Soto proposed
the 3DTown system for real-time integration and visualization of 3D urban models, video streams,
sensors and several real-time information sources [126]. Visualization techniques are mostly
GIS-based to depict building and vehicle 3D models. Pedestrian tracking is also represented on
maps using 2D glyphs and heat maps for analyzing pedestrian density. Lv et al. and Li et al. pro-
posed a web browser-based VRGIS focused on 3D visualization of city dynamics [127, 128]. 3D
building models are also used to facilitate the identification of the main city points, although sev-
eral visualization techniques were combined for displaying different types of data. For instance,
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passenger flows on PTS stops were represented with 3D bar charts and overlaid 2D heat maps.
Video stream data was also overlaid on the 3D map. Bar and pie charts were used to visualize
socio-economic information. Line plots were used to show temporal information about passen-
ger flows. Both studies conducted usability evaluation with domain users, although there was no
description of adopted evaluation protocols.

Visualization of travel demand used data from mobile phone records [ 129], socio-economic
and travel survey records [129], and taxi GPS trajectories [130, 131]. Toole et al. proposed a
model for travel demand estimation and proposed an interactive visualization platform for en-
gaging transportation stakeholders [ 129]. The tool shown in Figure 3.25 uses a map-based visu-
alization for characterizing city regions that are attract (blue) and generate (red) trips.

City Number of Roads

Figure 3.25: Map-based visualization of travel demand. City regions that attract trips are encoded
in blue. Regions that generate trips are encoded in red [129]

Lu et al. proposed a novel visualization technique for exploring origin-destination patterns
[130, 131], which was positively evaluated by domain experts. The technique was evaluated with
taxi trajectory data, although it can be used for general trajectory data. The OD-Wheel features
a linear and circular component. Origin and destination clusters are sorted in descending order
according to traffic volume. The traffic volume within each cluster is shown with bar charts. The
temporal axis is preserved for both linear and circular representations. Travel time can also be
identified in the linear axis.

Commuting efficiency has been explored by Dewulf et al. using floating car and simulated
travel demand [132]. The authors used map-based choroplets to visualize average time differ-
ences in commuting time during peak and off-peak hours.

Visualization accessibility measures have been identified in the works of Yin et al., and Stewart
and Zegras [133, 134]. Both works aimed to identify what activities could be reached by city
residents within a given timespan, and spatial (in)equities in terms of transportation availability.
Data sources included land use data and transit data such as GTES schedule data. Map-based
visualizations were used to represent isochrones. Yin et al. used heat maps to represent travel
time and choroplets to represent accessibility indexes [133], as shown in Figure 3.27. Stewart
et al. proposed used polygon-based isochrones combined with bar charts to show access to job
opportunities [134]. The interactive tool, CoAXs, allows stakeholders to compare two distinct
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Figure 3.26: The OD-Wheel technique for exploring origin-destination patterns from trajectory
data [130, 131]

transportation network scenarios (see Figure 3.28). It is possible to change route parameters, e.g.
trajectory, headway and number of buses. In both works, it was possible to identify extensive use
of stakeholders on evaluation studies, as both tools are concerned on engaging them on discussion
about accessibility.

Visualization of PTS ridership has been explored in two studies. Data sources included non-
APC passenger counts [ 135] and smart card data from AFC systems [ 136]. Polisciuc et al. [135]
implemented the metaballs visualization technique for the analysis of anomalies on the number
of passengers on bus stops, i.e. with significant deviations from the average number of passengers
throughout the day. Metaballs were implemented in two ways, as shown in Figure 3.29: point-
based metaballs provide a clear, although exaggerated view of stops with anomalies. Vertex-based
metaballs preserves visibility of road network segments, and still allows the identification of areas
in which such anomalies occur.

Du et al. used a combination of map-based and abstract technique for analyzing ridership
[136]. An abstract calendar visualization was used to show ridership levels for each stop through-
outayear. Brushing and linking interactions allow the user to select a specific day and visualize bar
charts that show hourly information about ridership for a day. The authors evaluated the system
with domain experts.

Cyclists’ trip patterns can also reveal interesting mobility dynamics. The topic was studied
by Wood et al., and Romanillos and Austwick [137, 138]. Wood et al. proposed a visual analyt-
ics system (see Figure 3.30) featuring a combination of coordinated map-based visualization of
movements, bar and line plots to represent temporal and thematic information of trips, e.g. trip
type, cyclist gender, etc [137]. Domain users were involved during the design and evaluation of
the visualization system. Romanillos and Austwick proposed an online visualization platform for
visualization of bicycle routes [138].

The problem of visualizing sparse trajectory data has been addressed by Wang et al. and Chen
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Figure 3.29: Point and vertex-based metaballs visualization technique for visualizing anomalies

on bus stops [135]
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Figure 3.30: A visual analytics system for exploring cyclists’ trip patterns in London [137]

et al [104, 139]. The latter has already been addressed in the topic People Dynamics in Urban
Environments. Wang et al. proposed a visual analytics system based on video stream and vehi-
cle sensors data from ANPR systems [139]. A map-based visualization provides the location of
vehicle sensors and road links.

VanDaniker proposed the abstract Spiral Graph visualization for temporal transportation data
[140]. The visualization tries to overcome the limitations of representing time on linear axes, such
as scatter and line plots. Data is plotted on a circular temporal axis, which spirals outward at reg-
ular intervals. Figure 3.31 shows a prototypical visualization tool for collision data. It is possible
to visualize the duration of a specific event throughout the circular axis.

Wau et al. proposed a prototypical visualization tool for exploring conversations about traffic
using microblogging data [141], with focus on sentiment analysis and trending topics. The sys-
tem provides abstract visualization techniques mostly based on variations of word clouds. The
prototype was evaluated with potential users.

Zeng et al. proposed a change to the chord diagrams technique, to visualize interchange pat-
terns in junction nodes, in order to reduce visual clutter (see Figure 3.32) [142]. Smart card data
from AFC systems was used to support visualization development. Frame (a) depicts the origi-
nal version of the Circos diagram. The junction node is represented as a ring on frame (b), and
ribbons are bundled on frame (c), thus reducing visual clutter. Finally, additional statistics such
as outgoing and incoming flow are added to facilitate analysis.

Kriiger et al. proposed an interactive visualization system, TrajectoryLens for exploring long-
term trajectory data [143]. The following interaction tasks are available: focus plus context, dy-
namic queries and filtering. The system provides multiple coordinate visualization techniques,
including a map-based visualization of trajectories, which can be filtered and aggregated by the
user. Hierarchical time sliders allow users to filter trajectories according to the desired timespan.

Polisciuc et al. proposed an interesting approach to visualize clusters of points of interest
using polygons [144]. As shown in Figure 3.33, polygons are also used as containers for textual
information. The authors used POI data from the city of Boston, USA.
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Figure 3.33: Visualization of POI clusters as polygons [144]

Wau et al. proposed the TelCoVis visual analytics system for analyzing co-occurrence, i.e. when
individuals from two regions visit an urban place during the same timespan. The authors used
mobile phone data for supporting the analysis. Similar to other works shown in this section, the
system presents multiple coordinated visualization techniques, as shown in Figure 3.34, two maps
are used to show heat maps for analysis of incoming and outgoing mobility flows (a,b). Abstract
visualizations such as matrix heat maps (c,f), contour-based tree map (d) and parallel coordinate
plots (e) provide additional information about clusters and their correlations. Domain experts
were interviewed for system evaluation.

3.2 Ontologies

The relevance of ontologies to transportation has been acknowledged by the research commu-
nity. Applications can be found on topics such as, for example, urban planning, transportation
network modeling, road traffic management, and content personalization for travelers. As in any
model, the main challenge of ontology modeling is to simplify reality while ensuring validity and
practical feasibility, from a computational perspective. It is acknowledged that most studies focus
on integrating information from various sources [ 148, 149]. Furthermore, Valle et al. highlighted
some benefits of ontologies and Semantic Web technologies for transportation research, in par-
ticular for Intelligent Transportation Systems [149]:

« A fraction of urban-related data is natively managed by Geographic Information Systems;

« Need for information integration from various heterogeneous sources.
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Table 3.1: Topics of surveyed studies and their representatives

Topic

Representative studies

Urban traffic flows and monitoring
People dynamics in Urban Environments

Road traffic incidents

Air pollution

Travel behavior on PTS

Level of Service on PTS 119-
Trip patterns 102,
Big city data 126-

Travel demand

Ridership

Sparse trajectory data

Cyclist behavior

Temporal transportation data
Commuting efficiency

Accessibility

Urban traffic conversations
Interchange patterns

Land use analysis
Co-occurrence

73-77,79-95]
95-104]
69, 106-109]

75,110-113]

129-

104,
137,
140,
132]
133]
141]
142]
144]

[
[
[
(
[
[
[
[
(
[135,
[
[
[
(
(
[
[
[
[145]

114-118]

122]
123-125]
128]
131]
136]
139]
138]
143]

Table 3.2: Data types found in surveyed studies and their representatives

Group Subgroup Data type Representative studies
Floating car data [132]
Activity-based Mobile phone data [96-101, 129, 145]
Smart card data (AFC) [114-117, 128, 136, 142]
Bicycle trajectories data [137,138]
Bus AVL data [79,112]
Bus GPS Trajectories [112]
Sensor Device-based Vehicle sensor data [74,76,77, 83, 85, 89, 91, 95, 109, 110, 126-128, 140, 146]
Non-APC Passenger count data [105, 135]
Taxi GPS trajectories [81, 82, 86, 87, 92, 94, 102, 123-125, 128, 130, 131]
Subway AVL data [122]
Tram AVL data [79, 120, 121]
Location-based Vehicle GPS trajectories [84,143]
Video stream data (incl. ANPR) [90,93, 113, 126, 139]
Household survey data [127]
Land use data [133, 134, 144]
Survey-based Points of interest data [144]
Socio-economic data [96, 118, 129]
Travel diary survey data [103, 105, 118, 129]
Car incident record data [69, 106-109, 140]
Others Report-based Transit data [119]
Schedule data [112, 122,133, 134]
Social networks | Microblogging data [91,101, 104, 141]
Highway traffic flow data [80]
Model-based 8;;‘31 e‘; g:z::g;o“ matrices (103, 132]
Urban traffic flow data
(network capacity, travel times, etc.) (73,75, 88,95, 147]
Road traffic air pollution
(emission and dispersion) or heat [75, 110, 111]
CAD-based 3D Building data [126-128]
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In this section, we address eleven studies that proposed either domain or foundational ontolo-
gies for transportation, with focus on urban mobility. In addition, we restrict the inclusion criteria
to studies that formalize ontologies in OWL, which is the current standard for ontology model-
ing. We found that no ontologies directly address the issue of visualization for transportation.
In addition, further research is required on semantic modeling of spatiotemporal urban mobility
data, as only two studies could be identified [ 150, 151].

A recent literature review surveyed studies on various facets of the application of ontologies
to transportation research, which highlights the relatively small number of robust studies that
effectively address the use of ontologies in transportation [148]. The authors concluded that
ontologies cover various concepts of the transportation domain, and there is no single ontology
that attempts to provide a unified conceptualization. Furthermore, the authors suggest, as future
research directions, works that attempt to semantically align the various proposed ontologies.

The Ontology for Transportation Networks (OTN) provides an extension and formaliza-
tion to the Geographic Data Files (GDF) standard [150]. In essence, the ontology describes a
transportation network using concepts from different levels, i.e. edges and nodes, as well as ag-
gregate concepts such as roads and routes. However, most concepts are not sufficient to address
spatiotemporal urban mobility data. The support to temporal references is also limited.

The Towntology project developed a software for construction and visualization of a seman-
tic network of concepts [152]. The software uses various lightweight ontologies, hence it is not
able to infer new knowledge from linked data. Concepts can be explored through the Towntol-
ogy browser (see Figure 3.35). The software also allows images to be annotated with concepts;
the project applied the software to the construction of some lightweight ontologies, i.e. vocab-
ularies, related to road system description, urban renewal, and urban mobility. Domain experts
validated the semantic model through inquiries and performed changes where needed. The au-
thors pointed some difficulties during the ontology construction process:

« Some concepts still depend on the development of consensus, i.e. their meaning can vary
depending on the context;

« Coherent choice of relevant and unambiguous set of relationships for concepts, i.e. too-
specific or too-personal relationships compromise the utilization of the ontology by other

people.

Zhang et al.proposed an approach for automatic transformation of UML transportation data
models into OWL, under the justification that manual ontology building is a bottleneck in the
ontology-acquisition process and is prone to human errors [153]. Such approach claimed to be
a cost-effective way of generating ontologies. The authors found that transportation data models
in OWL offer many advantages over UML such as facilitated data sharing and inference. The
algorithm was applied to a case study of a real world object-oriented GIS data model for transit trip
planning systems. The transformation algorithm was implemented using eXtensible Stylesheet
Language Transformation (XLST) [154].

The Urban Large Knowledge Collider (LarKC) project used the city of Milan, Italy, as a case
study [149]. A functional prototype was built to allow city tourists to plan their movements to
their destinations by using a combination of transportation means. Ontologies were used to in-
tegrate several data sources, for example, city topology, points of interest and events. Figure 3.36
depicts the schematic representation of the prototype, which provided a SPARQL endpoint for
query ingestion.
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A study by Plu et al. presented a workflow for publishing and linking transport data on the
World Wide Web [155]. The goal was to provide a framework for the development of smart appli-
cations that take advantage of semantic data. The authors exemplify the application of the work-
flow with two data sets: one containing a French standard for describing a transportation line,
and a directory containing information about transportation for all French cities. The proposed
workflow, although it could be argued to be too generic, consists of the following phases: (i) on-
tology definition; (ii) conversion and alignment of a dataset to an ontology; (iii) publication of
semantic data; (iv) interlinking with other semantic datasets.

Kathia et al. defined a transportation ontology oriented to the semi-automatic generation of
personalized user interfaces (UI) of transportation interactive systems [156]. The ontology cap-
tures the information about the users and presents a customized Ul based on their preferences.
The study was focused on the problem of travel planning. The authors pointed the difficulty and
need of having a deep knowledge about the application domain, in order to perform correct as-
sociations between each concept and its respective context element.

Bermejo et al. developed a decision support system (DSS) based on an ontology for road
traffic management [157]. It extends the A3ME (Agent-based Middleware approach for Mixed
Mode Environments) ontology proposed by Herzog et al. [158]. The goal of the DSS was to
provide decision support to drivers, to clear an effective path for emergency vehicles.

Corsar et al. proposed the Transport Disruption Ontology to support integration of data re-
lated to events that may disrupt a transportation network [151]. The ontology was applied to two
projects: the Social Journeys project investigated how social media can provide information to
passengers. The TravelBot system provided travel advice to passengers based on information ex-
tracted from social media. The nature of this ontology implies the need of formally characterizing
some type of events (see Figure 3.37), as it is expected to make use of spatiotemporal data.

event:sub_event Gime:TemporalEntity)
foaf:Agent owl: Thing
event:hasFactor time:time\}
td:hasPlan td:hasCause min 1

td:relevantTo td:causeOf min 1
min 1 - :
ttd:DlsruptweEvent)

td:impactsOn min 1

td:DisruptiveImpact) @:InfrastructureMaintenance

event:place

geo:Spatial Thing

td:Accident

(td:AbnormalTrafﬁc)

Figure 3.37: Excerpt of the Transport Disruption Ontology, with focus on the characterization
of an event [151]

Seliverstov and Rossetti proposed an ontology-based approach for modeling spatiotemporal
information in transportation [159]. The approach consists of an architecture capable of inte-
grating several domain ontologies. The architecture is based on the R2DF® framework, which
allows accessing relational databases as a virtual RDF graph. A prototype tool, Trontegra, was
implemented to explore traffic analysis using data from inductive loops.

Benvenuti et al. developed the KPIOnto ontology to support public transportation systems
monitoring [160]. The authors built the Transmodel ontology based on the Transmodel Data

3http: //d2rq.org/
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Model [161]. The KPIOnto ontology was built to represent KPIs. Both ontologies are part of
a framework to support the design and analysis of a system for public transportation systems
management. The framework provides a Prolog-based reasoning component that can be used to
support basic design tasks of a monitoring system. The same reasoning component can be used
for specification and calculation of KPIs.

3.3 Summary

This chapter presented the applications of Information Visualization, and Semantic Web Tech-
nologies and ontologies to urban mobility analysis. Regarding Information Visualization, most
studies are related to traffic flows and monitoring, and the analysis of people dynamics and urban
environments. Based on the surveyed studies, we summarized the topics in which applications
of visualization have been found, and the data types that were used. We suggest that the role of
the end user on the design, development and evaluation of visualization techniques should be
increased. Few studies demonstrated some level of involvement with domain users.

Some relevant applications of ontologies and semantic web technologies could be found, al-
though the number of studies is still small. The potential of ontologies for data integration has
already been acknowledged by the research community. Studies proposed applications to urban
planning, transportation network modeling, road traffic management, and content personaliza-
tion for travelers. Nonetheless, to the best of our knowledge, the issue of visualization of hetero-
geneous, spatiotemporal urban mobility data remains unaddressed. The elements defined in the
OTN ontology are not sufficient to address spatiotemporal urban mobility data, due to the broad-
ness of concepts and very limited support to temporal data. Moreover, there are still no studies
that focus on the development of semantically enriched, user-centered visualization systems, to
facilitate users on the process of exploring urban mobility data.

Such limitations justify the need of developing an ontology that provides support to spatial
and temporal concepts that define urban mobility data. To meet the requirements of data inte-
gration, such concepts should also be related to the different urban mobility topics and the types
of data they require. Finally, to foster the involvement of domain users on the development of
visualization techniques and tools, we acknowledge the relevance of addressing concepts related
to domain users and their role on the design, development and evaluation of visualization tech-
niques.
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Chapter 4
The VUMO Ontology

This chapter describes the Visualization-oriented Urban Mobility Ontology (VUMO). Practical
examples are provided to facilitate the comprehension of the ontology’s components, e.g. classes,
properties, instances and rules, and to demonstrate some modeling approaches. VUMO imple-
ments a conceptual model that is proposed in Section 4.1.

As this thesis addresses the problem of visualizing spatiotemporal mobility data from var-
ious (un)related sources, VUMO provides a foundational knowledge representation model to
support the development of semantically rich, knowledge-assisted visualization systems. Specif-
ically, VUMO allows the following:

« Integration of multi-source heterogeneous urban mobility data related to spatial events,
and their description in terms of transportation network elements;

« Specification of analytical tasks that users want to carry with data in the form of data trans-
formations (queries);

« Annotation of visualization techniques implemented in a visualization systems, using con-
cepts from Information Visualization theory, e.g. interaction tasks;

« Annotation of empirical domain user knowledge, e.g. user information and feedback about
visualization techniques;

« Inference of implicit knowledge from instance data that is relevant for the data exploration
and visualization process, e.g. implicit links between instances that come from distinct
datasets, characteristics of data transformations, and compatibility with visualization tech-
niques.

The structure of VUMO is modular, i.e. classes and properties were thought with the goal of
having a well defined role on the development of semantically rich, knowledge-assisted visualiza-
tion system, according to the following pipelines we defined:

1. Data integration: the system should be able to integrate data from multiple sources. The
data structure not only maintains the original attributes of instance data; the structure is
also used to infer visual attributes;
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2. Visualization technique design and development: a visualization technique should be char-
acterized in terms of its intrinsic attributes. Such attributes are expected to be used to
evaluate the compatibility of visualization techniques with data transformations (defined
in Subsection 4.1.4), and to aid users on the process of finding appropriate visualization
techniques;

3. Visualization technique evaluation and specification of system users: user feedback about vi-
sualization techniques should be formally represented. The specification of system users
allows the definition of their characteristics.

Section 4.1 introduces the conceptual model that precedes the implementation of the VUMO
ontology. Section 4.2 provides an overview of the ontology and describes the development method-
ology. Section 4.3 introduces the upper classes of VUMO. Sections 4.4, 4.5, 4.6 and 4.7 thor-
oughly describe the ontology upper classes and their components. Section 4.8 describes the
rules and functions embedded into VUMO that support inference of implicit knowledge. Sec-
tion 4.9 specifies which existing ontologies were reused. Section 4.10 describes the evaluation
of VUMO in terms of logical consistency. Section 4.11 describes how VUMO can support user-
oriented methodologies for visualization techniques development, according to the aforemen-
tioned pipelines. Finally, Section 4.13 summarizes the main findings of this chapter.

4.1 Modelling Data, Visualizations and Expert Knowledge

In this section, we propose a conceptual formalization for spatiotemporal urban mobility data,
visualization techniques and empirical knowledge derived from domain users. Such formaliza-
tion is required to provide common, coherent semantics to the three components that will form
a semantically enriched, user-centered visualization system. The resulting model is the starting
point for building the VUMO ontology. Henceforth, urban mobility data will be simply regarded
as data.

Subsections 4.1.1 and 4.1.4 formalize spatiotemporal urban mobility data and their transfor-
mations, respectively. Subsection 4.1.5 formalizes visualization techniques and their link to data
transformations. Subsection 4.1.6 describes the formalization of empirical knowledge. Through-
out the subsections, it is shown how the concepts (classes) of this conceptual model are interre-
lated. Finally, a UML Class Diagram provides a schematic representation of the model.

4.1.1 Spatiotemporal data

The formalization of data is built upon acknowledged frameworks for modeling geographic and
movement data [ 18, 162-164]. We define every instance of spatiotemporal data as an event. An
eventis an action performed by one or more agents of a transportation network, and occurs at/in
one or more spatial and temporal dimensions. Asidentified in Table 3.2, an event can be recorded
by sources such as, for example, GPS devices, social networks and mathematical models, as in the
case of origin-destination matrices.

The pyramid framework is a rigorous, non-domain specific conceptual framework for repre-
senting geographic phenomena. It allows their decomposition into three cognitive perspectives:
when (time), where (space), and what (theme) [164].

Figure 4.1 provides a schema for the representation of data according to the pyramid frame-
work. The cognitive perspective form the data component. The derived knowledge forms the
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knowledge component, and can be regarded as a semantic object: a conceptual entity. The term
knowledge differs from data in the sense that the former consists of cumulative understanding of
information found in data, and the latter simply consists of raw observational measurements. The
semantic object may belong to a taxonomy (classification) and may have part-whole relationships
with other semantic objects (partonomy).

Taxonomy  Partonomy

\ /

Object
What is it?
Knowledge
component
Data
component
Theme
What is it
made of?

Location Time
Where is it? When is it?

xy) bt

Figure 4.1: The pyramid framework (adapted from [164])

Based on this framework, Andrienko and Andrienko defined three fundamental sets for move-
ment phenomena: space S (set of locations), time T (set of instants or intervals), and objects O
[18]. Elements of each set have their intrinsic attributes. Attributes that are not related to space
and time are regarded as thematic.

Another perspective is the data-centric perspective on Information Visualization, which de-
fines two types of data components: referential and characteristic [18]. According to that perspec-
tive, a dataset is understood as a mapping from a set of references (independent variables) onto
a set of characteristics (dependent variables). Let d be such mapping function. In mathematical
terms,

d:R— C

where R and C are the referential and characteristics sets, respectively. Both sets can be under-
stood as cartesian products, where each R; and C}, represent the set of all possible values for each
referential and characteristic variables, respectively, with 1 <7 < Mand1 < k < N.

R:RIXsz...XRM
C=C; x(Cy X..xXCx

A hypothetical dataset record is then given by

d(r17 ro, Tm) - (vl, Vo, Un)

Where r; € R;Vi,and v, € C},.VE.

79



Space and Time

GIS literature defines two views of space and time: absolute and relative [ 18]. The Absolute view of
space and time asserts that datasets have those dimensions as referrers, which can be generalized
by a mapping § X T — C, i.e. from space and time to a set of characteristics C'. Space and time
form an abstract container, where objects are placed. Figure 4.2 exemplifies a dataset related to
car accidents. The characteristics of an accident can be fully identified if one knows the location
and instant in time, except for the records that do not have complete spatiotemporal information.

DATE TIME BOROUGH LATITUDE  LONGITUDE INJURED FATALITIES  CONTRIBUTING FACTOR VEHICLE 1 CONTRIBUTING FACTOR VEHICLE 2

08/10/2018 ©0:00 BROOKLYN 40,713074 -73,952095 [} @ Driver Inattention/Distraction Unspecified

©08/10/2018 00:00 BROOKLYN 40,577908 -74,00818 ) 0@ Driver Inattention/Distraction Driver Inattention/Distraction
08/10/2018 ©0:00 MANHATTAN 40,75868 -73,98336 [} @ Other Vehicular Unspecified

08/10/2018 00:00 40,708324 -73,84314 ] @ Driver Inattention/Distraction Unspecified

08/10/2018 00:00 40,763428  -73,96522 ] @ Following Too Closely Unspecified

08/10/2018 00:00 QUEENS 40,700768 -73,81019 1 @ Traffic Control Disregarded Unsafe Speed

08/10/2018 00:01 40,704712 -73,727425 [} @ Unspecified Unspecified

©08/10/2018 00:10 MANHATTAN 40,724564 -74,00779 1 @ Failure to Yield Right-of-Way Unspecified

08/10/2018 00:15 BRONX 40,87181 -73,85556 ] @ Driver Inexperience Unspecified

08/10/2018 00:17 ) @ Other Vehicular Other Vehicular

08/10/2018 00:17 40,706944  -73,91774 ] @ Turning Improperly Unspecified

08/10/2018 00:25 MANHATTAN 40,710114 -74,012665 [} @ Unspecified

08/10/2018 00:30 BRONX 40,831287 -73,88173 [} @ Passing or Lane Usage Improper Unspecified

08/10/2018 00:30 MANHATTAN 40,80796 -73,94908 [} @ Driver Inattention/Distraction Unspecified

08/10/2018 00:30 40,71603  -73,81637 [} @ Passing or Lane Usage Improper  Unspecified

08/10/2018 ©0:44 BROOKLYN 40,691586 -73,99927 [} @ Driver Inattention/Distraction Unspecified

08/10/2018 00:44 40,753513 -73,98879 ] @ Driver Inattention/Distraction Driver Inattention/Distraction
08/10/2018 00:45 QUEENS 40,740173 -73,811264 [} @ Unspecified

08/10/2018 10:00 40,766434  -73,83767 [} @ Passing or Lane Usage Improper Unspecified

Figure 4.2: Excerpt of a dataset about car accidents in New York city. Referential and character-
istic components are depicted in blue and green, respectively

The relative view of space and time states that such dimensions may act as characteristics
rather than referrers. Space and time are intrinsic properties of objects, given by the general map-
ping O — S X T x C. In those studies, researchers found four different modeling approaches
to spatiotemporal data [18]. Two of them are related to the spatial dimension: location-based and
entity-based models. The first considers all information as characteristics of a given spatial referrer
(e.g. pre-defined spatial units). The second considers spatial information as characteristics of a
given entity. Based on those differences, a further classification is made according to the way time
is considered: data may refer to temporal instances according to a universal time frame, or time
is also a characteristic of such spatial units or entities.

Data Properties

Thematic attributes usually follow the classic categorization proposed by Stevens: nominal, or-
dinal, interval and ratio [165]. Some authors place interval and ratio into a same category called
quantitative [13, 17]. Nominal attributes can be used to depict categorical information. Cur-
rently, datasets may contain other types of complex attributes, such as file attachments (e.g. pho-
tos, videos, worksheets) or data representation in specific formats (e.g. binary data structures,
geometric shapes).

4.1.2 Fundamental Structures

The proposed data model defines fundamental structures that describe spatiotemporal and the-
matic attributes (characteristics). An entity-based perspective was adopted, thus space and time
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were regarded as attributes of every conceptual entity represented by the model. The choice for
this perspective is justified by the characteristics of semantic data: every entity is an object that ex-
ists by itself, which is described in terms of other instances (resources or literals, as in Subsection
2.2.2). We present several definitions for each model structure.

Spatial References

An entity may have one or more spatial attributes depending on the nature of data. Two entity
categories were defined: Point and PointSet.

Definition 4.1.1. A Point is described by latitude and longitude, following the WGS84 datum.
This definition is flexible in the sense that other optional attributes may exist, e.g. elevation.

Points are divided into two disjoint subcategories:

Definition 4.1.2. A Generic Point is a Point that does not contain any thematic attribute that acts
as an identifier, i.e. does not contain any property that assigns an identification, name, code, or
any other textual attribute in a dataset.

Generic points are references that, in practice, do not require identification, e.g. the location of a
citizen at a given time, retrieved from a GPS-assisted device.

Definition 4.1.3. A Known Point is a Point that contains at least one identifier attribute.

Known points are those for which the identification is relevant for some practical purpose. For
instance, the bus stops of a network are KnownPoints, as it is possible to retrieve their spatial
references by knowing their identification, e.g., STCP_AEPT1.

Definition 4.1.4. A Point Set is a (un)ordered collection of two or more Points.
Point sets are divided into two subcategories:

Definition 4.1.5. An OrderedPointSet P is well-ordered, i.e. every non-empty subset of P has a
least element in this ordering.

Definition 4.1.6. An UnorderedPointSet is a set of points that is not well-ordered.

An example of an ordered point set is a passenger route plan, formed by points which describe the
departure and arrival locations. It is possible to infer the rank of any point. In contrast, shapes can
be described in terms of unordered point sets, e.g., a set of Points which defines the boundaries
of a polygon representing a public transportation system zone.

4.1.3 Spatial Distribution

Spatial references induce distinct visual arrangements, according to their type. Such arrange-
ments are defined Spatial Distributions. Three primary arrangements are considered: Discrete,
Quasi-continuous and Graph. Without loss of generality, spatial distributions are present in both
geographic and abstract spaces. Spatial arrangements become apparent as the number of entities
increase in visualization space, as shown in Figure 4.6. We defined the following axioms that link
spatial reference types to distributions:
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Definition 4.1.7. A Generic Point induces a Quasi-Continuous spatial distribution.

Generic points are related to entities that can be spatially located in any location within a
geographic region. Hence, the visual pattern depicted by a number of those points induces the
notion of smoothness (continuity).

Figure 4.3 shows a 2D Geographic Heat Map combined with data from citizens’ locations
while using a route planner mobile application, during their search for nearby stops based on their
location. As a citizen can be located anywhere within the city, the visual pattern of data resembles
continuity.

0123UCH BUBNIO

Figure 4.3: Example of quasi-continuous spatial distribution in a 2D Geographic Heat Map

Definition 4.1.8. A Known Point induces a Discrete spatial distribution.

The requirement of one or more identifier attributes suggests that known points represent
entities that have a well-defined location within a region, and are less dense than generic points.

Figure 4.4 shows a 2D Geographic Heat Map combined with data from realtime schedule
requests for bus stops while using a route planner mobile application.

Definition 4.1.9. An UnorderedPointSet induces a Discrete spatial distribution. Unordered point
sets yield structures such as shapes and clusters, which are well defined in visualization space.

Definition 4.1.10. An OrderedPointSet induces a Graph spatial distribution. They form arrange-
ments that resemble the notion of trajectory.

A PointSet inherits the spatial distributions induced by its Points. In other words, Point sets
also induce Discrete and/or Quasi-continuous spatial distributions, according to the types of
Points in a set. The practical purpose of this definition is to account for situations in which a
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Figure 4.4: Example of discrete spatial distribution in a 2D Geographic Heat Map

visualization provides mechanisms to not only explore point sets as a whole, but to shift the per-
spective to its elements, using interaction mechanisms like semantic zoom. Point sets can be
interpreted as paths in the mathematical sense, ordered or not. Figure 4.5 shows an abstract visu-
alization technique that represents the volume of travel intentions between Metro stations in the
city of Porto, also using data from a route planer mobile application. Each route plan consists of
a point set with two points: origin and destination stations.

Definition 4.1.11. A Point Set inherits the spatial distribution(s) of its points.

This definition states that point sets also induce Discrete or Quasi-Continuous spatial distribu-
tions, depending on the categories of their points.

Temporal References

An entity may have one or more temporal attributes depending on the nature of data. Two types
were defined: Instant and Interval.

Definition 4.1.12. An Instant is described by a timestamp, i.e. containing date and time, and an
optional time zone description.

Definition 4.1.13. An Interval is described by two timestamps, corresponding to start and end.

Although an instant could be considered a zero-length interval in the mathematical sense, we
argue that such consideration does not add practical value.
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Figure 4.5: Example of graph spatial distribution in a chord diagram visualization technique

Thematic attributes

Thematic attributes can consist of a variety of types (e.g. strings, numerical values, binary file
structures or geometric shapes). Due to our orientation towards Information Visualization, we
introduce the concept of measures of an entity, and how that may appear in data.

Definition 4.1.14. A Measure is a certain quantity or degree of something, expressed by a quan-
titative, ordinal or categorical value.

An entity can have more than one measure. Recalling the car accidents dataset in Figure 4.2,
the amounts of injured and killed are measures for an accident event. We now formalize an intu-
itive concept of measure, which is inherent to every entity described in the model.

Definition 4.1.15. A Unitary Measure corresponds to a numeric measure of ”1” that is intrinsic
to every entity.

In practical terms, this measure provides an existential indicator of an entity in a dataset. Such
measure intuitively appears when performing simple actions like counting the number of entities

in a dataset. For instance, the unitary measure is used in the car accidents dataset to count the
total number of accidents during a given period.
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Discrete Quasi-continuous Graph

Figure 4.6: Schematic representation of spatial distributions proposed by the model

4.1.4 Transformations

Visualization of raw data is not sufficient for exploratory analysis. Frequently, domain users have
questions which can be answered by performing data transformations (e.g. queries) or more
complex operations (e.g. data mining techniques) in order to extract useful information. We de-
fine a transformation as a sequence of operations (analytical abstractions, as in Figure 2.10) that
uses raw data as input, and produces a new dataset as output. This output may contain part of
the original entities found in raw data, or yield completely different entities that result from such
operations.

From a cognitive standpoint, we assume that a transformation can be seen as the formaliza-
tion of an analytical task, which in turn yields questions about data. In this thesis, transformations
are assumed to be queries. Figure 4.7 illustrates such assumption.

% carries CTTTTTL yields _
+ Analytical task —————| Transformation

Domainuser ... ........
consists of described in terms of
_a—
. A\
formalized as—>|
questions about data query

Figure 4.7: Representation of transformations as the formalization of analytical tasks in terms of
queries

The output of a transformation, herein defined as output variables, may contain spatiotempo-
ral references, depending on the output they generate. Likewise, it can generate new measures
based on raw data, or use existing ones as output. The existence of spatial references in the out-
put of a transformation implies that there are also visual spatial patterns associated with it. The
following proposition demonstrates this statement.

Proposition 4.1.1. A transformation may have zero or more spatial distributions.

Proof. Let T be a transformation that yields {01, ..., 0,, } as output variables, where O; C O is
a non-empty subset of O containing spatial references, with 1 < ¢ < n. By definition, a spatial
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reference a; induces one or more spatial distributions, hence the output of 7" also induces one
or more spatial distributions. In the null case, it suffices to consider that all outputs are attributes
other than spatial references. ]

For example, consider a sample dataset showing ticket validations for bus and metro routes
in Porto, Portugal, in Figure 4.8. A simple transformation example is given, which groups the
number of ticket validations by fare zones. The count of validations is a new measure built upon
existing measures in raw data.

In this example, the transformation is given by the simple SQL query:

SELECT Zona, COUNT(*) as CountOfValidations
FROM table
GROUP BY Zona

Where O = {Zona,Count0OfValidations}and O; = {Zona}.

4.1.5 Visualization techniques

A visualization technique has one or more features and provides one or more interaction tasks.
Examples of interaction tasks can be found in Section 2.1.2. Visualization techniques features are
the intrinsic components for data visualization. Our model specifies four features: input variable,
reference frame, spatial dimensionality and temporal arrangement. The last three features are derived
from a classification of visualization techniques proposed by [162].

Input variables are responsible for receiving the values from output variables (of a transfor-
mation) that will be mapped onto visual variables.

Reference frame describes the ability of a visualization technique to represent geographic (geo-
referenced) data, i.e. map-based visualizations, and abstract data.

Spatial dimensionality describes the number of dimensions used by the visualization canvas,
e.g. 2D or 3D.

Temporal arrangement describes how the time dimension is represented on the visualization
canvas, e.g. linear, cyclic.

As an example, consider the prototypical chord diagram visualization technique in Figure
4.5. It requires two input variables for source and destination, and one for weight. The prototype
provides four interaction tasks: overview, filter, focus plus context, and dynamic queries. The
technique has an abstract reference frame, and a linear temporal arrangement. Such conceptual
specification is represented in Figure 4.9.

4.1.6 Empirical knowledge

Given the need of developing visualization systems that meet the needs and requirements of end
users, empirical knowledge was divided into two facets: system user specification, and user feed-
back.

A system user has an analytical profile, which is specified according to the system’s objec-
tives. For instance, in our previous work, we worked with experts that belonged to strategical
and operational profiles [3, 4]. Such characterization is not meant to be neither exhaustive nor
unique. Each system can provide its own taxonomy of analytical profiles, as they are considered
categorical values.
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Figure 4.9: The conceptual description of a possible implementation of the chord diagram visu-
alization technique

We define two perspectives for user feedback. The first consists of statements related only
to a visualization technique, such as ratings about a certain property, e.g. complexity, or more
subjective statements, e.g. “this visualization is recommended for analyzing ticket validations’.

The second facet allows users to provide specialized feedback about visualizations with re-
spect to a transformation, which is defined as a cross rating. In cases in which the feedback is
provided as a quantitative measure, a technique rating has a rating score related to a rating com-
ponent. Qualitative feedback in given in terms of categorical values.

A quantitative rating component is subject to a scale and polarization, i.e. whether its value
impacts positively or negatively in the overall rating.

Figure 4.10 provides a conceptual representation of empirical knowledge of two users about
the chord diagram technique shown in Figure 4.5. User 1 rated the technique with respect to two
components: " Visual Complexity”, a quantitative rating component, and "Recommended analyt-
ical profile”, a qualitative rating component. For instance, visual complexity is a component with
negative polarization, in the sense that higher values will are likely to negatively impact the user ex-
perience. User 2 rated the technique with respect to the qualitative component "Recommended
theme”.

The UML Class Diagram on Figure 4.11 formalizes the fundamental structures that were
defined for the conceptual data model, and describes how the structures are interrelated. The
color gray indicate classes that refer to spatiotemporal data; blue refers to visualization techniques
classes; green refer to expert knowledge classes.
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Figure 4.10: Conceptual representation of empirical knowledge of two users about the chord
diagram visualization technique. Values in pink and orange depict qualitative and quantitative
values, respectively

4.2  VUMO overview and development methodology

VUMO is an OWL ontology that conforms to the OWL 2 RL profile, which is a syntactic subset
of OWL 2 that supports rule-based inference by trading some of its logical expressiveness [ 166],
as explained in Section 2.2.4. The implementation of inference rules and functions uses the SPIN
vocabulary and modeling language, hence they are expressed as queries in standard SPARQL
language. Table 4.1 describes the main ontology characteristics. An exhaustive list of classes,
properties and individuals can be found in Appendix A.

Table 4.1: Main characteristics of the VUMO ontology

Characteristic = Value Description

URL http://purl.org/vumo# The URL for the VUMO ontology

Namespace vumo The adopted gname for shortening the aforementioned URL
OWL Profile =~ OWLRL OWL profile for rule-based applications

Regarding the various perspectives for ontology classification (see Section 2.2.7), VUMO
has the following characteristics:

« Domain specific: the ontology entails the domain of urban mobility;

« Formal: the ontology shall not contain ambiguous concepts. There should be consensus
about its elements;

« Heavyweight: in order to support the various pipelines, an intensively axiomatized ontol-
ogy is required. It would not be sufficient to provide a simple taxonomic structure;

« Application: the ontology is focused on supporting the development of semantically rich,
knowledge-assisted visualization systems.
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Figure 4.11: UML Class Diagram for the conceptual model, which serves as the basis for the
implementation of the VUMO ontology

The conceptual model defined in Section 4.1 provides the foundation for the ontology. The
process of ontology development considered the definition of competency questions, i.e. require-
ments in the form of structured questions that the ontology should answer. An example of com-
petency question is "How is a transportation journey characterized?” [156]. In the context of
VUMO, we defined the following competency questions:

1. How to characterize an urban mobility event that occurs in a transportation network?
2. How to characterize the visual features of an event?

3. How to characterize a visualization technique?

4. How to characterize a user of a visualization system?

S. How to represent the analytical domain tasks of a system user in terms of data transforma-
tions?

6. How to represent empirical knowledge from system users?

We adopted, with some flexibility, the guidelines of the IDEF methodology as it is concerned
not only with the creation of ontologies, but with their further modifications [167]. As we expect
our ontology to be used in different contexts, we argue that the choice for this methodology is
reasonable. In brief, the methodology comprises the following activities:
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« Organization and scope definition: the identification of the purpose and context of the on-
tology;

« Data collection: The acquisition of the data needed for the development of the ontology;

« Data analysis: The definition of which elements of the data collection are necessary to be
present in the ontology;

« Initial ontology development: a prototype of the ontology in which the preliminary valida-
tions are made;

« Refinement and validation: application of tests with real data.

The ontology was built according to a top-down approach, i.e. upper classes and properties
were defined and further refined. Given that VUMO is strongly oriented to practical contexts,
concepts were modeled after analyzing real data. We acquired data for the cities of Porto and
Boston, which will be described in detail in Chapter S with practical cases. The structures of the
datasets were analyzed in terms of their attributes. We also took advantage of the data sources
types identified in the literature review (see Table 3.2).

Validation consisted of logical consistency tests using reasoners (see Section 4.10), and prac-
tical applicability with real data by carrying the case studies described in Chapter S.

4.3 Upper classes
VUMO is divided into four upper classes:

« UrbanMobilityConcept (UMC): a superclass for all classes that describe public transporta-
tion systems and events;

« DataConcept (DC): a superclass for all classes of the conceptual model that are related to
modeling of spatiotemporal data, and data transformations (see Sections 4.1.2 and 4.1.4);

« VisualizationConcept (VC): a superclass for all classes of the conceptual model that char-
acterize a visualization technique, its features and interaction tasks (see Section 4.1.5);

« DomainUserConcept (DUC): a superclass for all classes of the conceptual model that char-
acterize system users and their empirical knowledge about visualization techniques (see
Section 4.1.6).

Table 4.2 shows the role of classes in each pipeline. A main role (*) means that visualization
systems developers (and users) will mostly use elements from that class on a specific pipeline. An
auxiliary role (o) means that such class may be used directly - but not frequently - or indirectly
(automatically) through rule-based inference. In the following sections, examples will demon-
strate the role of each class across all pipelines.

Upper classes branch out into subclasses that represent more specific concepts. VUMO con-
tains Object and datatype properties to relate instances from the aforementioned classes. Se-
mantic data is herein represented using the standard form, i.e. subject-predicate-object triples,
according to the Resource Description Framework (RDF) data model.
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Table 4.2: Role of each superclass on the pipelines of a visualization system

Pipeline UMC DC VC DuUC
Data integration

Visualization design and development o o * o
Visualization evaluation and system user specification o * *

Throughout the text, classes, properties and instances are written in monospaced font, e.g.
ns:semanticThing, where the prefix ns indicates a namespace, i.e. the ontology in which the
property is defined. For instance, geo is the prefix of the Basic Geo vocabulary, which is used to
describe spatial coordinates [8]. No prefix was used to refer to VUMO components. Table 4.3
provides a natural language definition for each first-level subclass.

To facilitate understanding, we provide illustrative examples related to the context of Porto,
Portugal. The namespace porto is used whenever we refer to instance data related to the city’s
public transportation system data. Depending on the complexity of the example, we also intro-
duce a visual representation of the corresponding triples for the sake of readability.

4.4 UrbanMobilityConcept (UMC)

UMC concepts are fundamental to semantic integration of raw data, i.e. data is mapped onto its
subclasses. The Agent and InfrastructureComponent subclasses describe structural con-
cepts of a transportation system. An Event enables to describe distinct types of events related to
urban mobility, e.g. ticket validation, accident, among others. Table 4.4 describes UMC and its
components, which are important for understanding the examples of this section.

The example below describes two instances: one Operator and one Vehicle, along with
some properties.

porto:STCP rdf:type :0Operator .
:hasName "Sociedade de Transportes Coletivos do Porto"

porto:Bus3801 rdf:type :Vehicle .
:ownedBy porto:STCP .

In VUMO, the property ownedBy is defined as the inverse equivalent of owns. Hence,
the triple porto:STCP :owns porto:Bus3801 could be automatically inferred. The next
example shows the instantiation of a bus stop (a node). If applicable, an identification can be
defined with hasID or its semantically equivalent subproperties, such as hasInternallID or
hasFriendlyID. To illustrate the utility of multiple ID properties, consider an example of bus
stop shown in Figure 4.12 from the city of Porto. AEPT1 is a user friendly identification used by
passengers to consult schedules using real time services. From the operator’s perspective, one or
more identifications can be used, such as STCP_AEPT1 or 54. All IDs uniquely determine the
stop within their distinct semantic contexts, yet they refer to the same entity.

porto:AEPT1 rdf:type :BusStop ;
:hasFriendlyID "AEPT1" ;
:hasInternalID "STCP_AEPT1" ;
:hasInternallID "54" ;
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Passengers’ perspective

Zona

G Aeroporto [ N1O

STC P AEPT1

Operator’s perspective

id |alt_id sign_id |label lat lon operator|zone

54 | STCP_AEPT1| AEPT1 [Aeroporto|41.23709(-8.66953| STCP N10

Figure 4.12: An illustration of a bus stop sign of STCP operator in Porto. The identification
AEPT1 is meant to be used by passengers when checking schedules in a real-time service. From
the operator’s perspective, multiple internal identifications may exist for the same stop

:hasName "Aeroporto"
geo:lat "41.23709" ;
geo:long "-8.66953" ;
:operatedBy porto:STCP ;
:locatedInZone porto:N10 .

Figure 4.13 provides a visual representation of the triples that describe the bus stop instance
AEPT1. The property hasName is defined as a subproperty of rdfs:1label to provide a user-
readable version of a resource’s name; in this case, Aeroporto. The property operates is an
inverse property of operatedBy, thus it is possible to infer the triple

locatedIinZone— FolelgteR k0]

& porto:AEPT1 rdf:type— 1EIES )]

hasFriendlyID—» AEPT1

hasinternallD—» STCP_AEPT1

haslInternallD—» 54
—————hasName— Aeroporto

—————geo:lat——» 41.23709

geolong——» -8.66953

Figure 4.13: Visual representation of the RDF graph that describes the AEPT1 stop

porto:STCP :serves porto:AEPTI1.
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The same applies to the properties locatedInZone and hasZoneElement. A zone, for
instance, can be described by asserting triples that indicate its boundary points.

porto:N10 :hasZoneBoundaryPoint porto:Point301 ;
:hasZoneBoundaryPoint porto:Point302 .

The instantiation of a line can be described in terms of several routes and their respective
route segments, as in the serialization below. Figure 4.14 provides a visual representation of the
corresponding graph.

porto:Line300 rdf:type :Line
:hasDescription "300 - CIRC. HOSP S. JOAO X ALIADOS"
:operatedBy porto:STCP ;
:hasRoute porto:Line300_routel

porto:Line300_routel rdf:type :Route ;
:hasDirection porto:HSJ6 ;
:hasRoutePath [ rdf:first portotip:Segment34 .
rdf:rest [ rdf:first portotip:Segment35 .
rdf:rest [ ... 11 .1

porto:Segment34 rdf:type :RouteSegment ;
:hasInitialNode porto:FEUP2 ;
:hasFinalNode porto:FEP1

& porto:Line300 rdf:type——p| | L=

hasDescription——— 300 - CIRC. HOSP S. JOAO X ALIADOS

UESIICERE = ¢ porto:Line300_routel

rdf:type—>m

hasDirection—p- & Fele]i(eH 5 SN/}

r & portotip:FEUP2

hasRoutePath haslnitialNode

l - T

hasFinalNode

trdf:first—» # portotip:Segment34 inyommrs m RouteSegment

rdf:rest—ip

RIS = ¢ portotip:Segment35

rdf:rest—p ...

Figure 4.14: Visual representation of the RDF graph that describes the bus line 300

A ticket can be instantiated and described in terms of its ticket type, and other properties such
as the zone in which it can be used.

porto:Ticket1201838 rdf:type :Ticket ;
:hasTicketType porto:MonthlyPass_Regular ;
:isValidInZone porto:N11 ;
:isValidInZone porto:N10 .
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porto:MonthlyPass_Regular rdf:type :TicketType ;
:hasName "Assinatura Mensal - Tarifario Normal"

The next three examples show possible modeling approaches for different event types. Firstly,
a ticket validation was defined in terms of the trip (instance of TripEvent) in which the valida-
tion occurred. An important note is the distinction between the property hasDateTime, which
represents instants, and the properties hasStartDateTime and hasFinishDateTime, which
are meant to represent intervals.

porto:TicketValidation301 rdf:type :TicketValidation ;
:hasDateTime "2013-05-13T08:00:01"
:occursAtNode porto:AEPT1 ;
:usesTicket porto:Ticket1201838 ;
:occursInVehicle porto:Bus3801 ;
:occursInTrip porto:Trip323042 .

porto:Trip323042 rdf:type :Trip ;
:hasStartDateTime "2013-05-13T07:58:01" ;
:hasFinishDateTime "2013-05-13T08:35:24" ;
:madeByVehicle porto:Bus3801 ;
:hasRoute porto:Line300_routel

Secondly, the following route plan was defined in terms of its origin and destination locations.
Intermediate points (waypoints) can also be represented by using the property :hasWaypoint.

porto:RoutePlan75 rdf:type :RoutePlan ;
:hasDateTime "2013-07-24T12:33:21"
:hasPath [ :hasOrigin porto:FEUP2 ;
:hasDestination porto:RFAR1 . ]

porto:Reading944 rdf:type :SensorReading ;
:hasDateTime "2013-01-12T00:05:00"
:madeBySensor porto:S302 ;
:hasSensorReading 350 .

Alternatively, the specification may use an interval temporal reference. The property hasDuration
can be used to describe the duration of an event. Moreover, it is shown on Section 4.8 (rule R3)
how a VUMO rule can infer the duration of events (a measure) when intervals are specified.

:hasStartDateTime "2013-01-12T00:00:00" ;
:hasFinishDateTime "2013-01-12T00:05:00"

Thirdly, the following description of a car accident was defined in terms of a spatial reference
that has no specific identification, i.e. it simply consists of geographical coordinates, and has the
form of a blank node.

porto:CarAccident121 rdf:type :Accident ;
:hasDateTime "2013-06-01T07:05:48"
:occursAtLlocation [ rdf:type geo:Point ;
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geo:lat "41.178808" ;
geo:long "-8.594556" . ]

Measures are defined as subproperties of hasMeasure. Some examples of measures that are
already implemented in the VUMO ontology are:

« hasDuration;
» hasNumberOfInjuredPassengers;

o hasNumberOfAvailableBicycles.

The latter two properties can be used to describe, for example, an Accident or the status of
aBicycleStation. Due to the intrinsic semantics of OWL and RDF, it is possible to quickly
identify all measures related to an event, as they are subproperties of hasMeasure.

Figure 4.15 shows the interconnection between the instances presented in the examples. As
the volume of data grows, it is possible to visualize the complex interrelation between instances. A
symbolic notation was adopted for representing data: classes ((J) and their instances (). Object
and Datatype properties are represented by blue and green edges. Solid and dashed edges indicate
asserted (explicit) and inferred (implicit) triples, respectively.

4.5 DataConcept (DC)

DC describes structural properties of spatiotemporal data and transformations. The subclass
SpatialReferenceType is refined into two subclasses:

« Point, with further subclasses GenericPoint and KnownPoint;

« PointSet, with further subclasses UnorderedPointSet and OrderedPointSet.

TemporalReferenceType contains two subclasses: Instant and Interval. The Spatial-
Distribution class contains three instances: Discrete, Quasi-continuous and Graph.

With the exception of Transformation, it is not expected that users directly manipulate
the remaining classes defined in DC, given that VUMO rules are responsible for inferring data
properties from instance data, i.e. data described in terms of UMC subclasses.

For instance, a reasoner can infer that the spatial references exemplified in UMC (Subsec-
tion 4.4) are aKnownPoint, UnorderedPointSet, O0rderedPointSet and GenericPoint
respectively, in accordance to the definitions established in Section 4.1. Hence, the graph of in-
stance data would be semantically enriched with the triples below.

// Spatial reference 1: a bus stop
porto:AEPT1 rdf:type :KnownPoint .

// Spatial reference 3: a zone
porto:N10 rdf:type :UnorderedPointSet .

// Spatial reference 4: the origin and destination of a route plan

[ :hasOrigin porto:FEUP2 ;
:hasDestination porto:RFAR1 . ] rdf:type :0rderedPointSet .
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// Spatial reference 4: the location of an accident
[ geo:lat 41.178808 ;
geo:long -8.594556 . ] rdf:type :GenericPoint

The description of the subclasses of the TemporalReferenceType class is given in Section
4.9, in which we discuss the reuse of existing ontologies.

The definitions of spatial distributions (see Section 4.1.3) are represented as instances of
SpatialDistributionAxiom. The goal of this subclass is to serve as an abstract container
for the definitions about spatial distributions that are internally used by VUMO rules to infer the
visual patterns of instance data and data transformations.

In practice, spatial distribution axioms are implemented as RDF statements, hence the stan-
dard properties rdf : subject, rdf : predicate and rdf :object are used. Notice that the
definition of the spatial distribution axiom foraPointSet applies to both subclasses Unordered-
PointSet and OrderedPointSet.

// A Known Point induces a Discrete spatial distribution.
:SD_KnownPoint rdf:type :SpatialDistributionAxiom .
rdf:subject :KnownPoint .
rdf:predicate :hasSpatialDistribution .
rdf:object :Discrete .

// A Generic Point induces a Quasi-Continuous spatial distribution.
:SD_GenericPoint rdf:type :SpatialDistributionAxiom .

rdf:subject :GenericPoint

rdf:predicate :hasSpatialDistribution .

rdf:object :QuasiContinuous .

// A Point Set induces a Graph spatial distribution,
// and Discrete and Quasicontinuous as well (by inheritance)
:SD_PointSet rdf:type :SpatialDistributionAxiom .
rdf:subject :PointSet .
rdf :predicate :hasSpatialDistribution .
rdf:object :Discrete .
rdf:object :QuasiContinuous .
rdf:object :Graph .

Data transformations are modeled as instances of Transformation, and their queries can
be expressed in SPARQL. The SPIN vocabulary has the advantage of allowing the specification
of a query as a graph. Such specification is transparent to the user, in the sense that a SPIN-
compatible reasoner is capable of parsing a plain-text query in standard SPARQL into its respec-
tive graph, without user intervention. Moreover, we take benefit from this advantage to infer im-
plicit knowledge from transformations, i.e. spatial distributions, tags (themes), and compatibility
with visualization techniques.

Recalling the transformation illustrated in Figure 4.8, which groups the number of ticket val-
idations by fare zones, a possible modeling approach is given by the following example:

:Query_ValidationsByFare rdf:type :Transformation
rdfs:comment "This query aggregates ticket validations during a certain
period by fare zones"
spin:query "SELECT ?7zone COUNT(7ev) AS 7num_validations
WHERE {
7ev rdf:type :TicketValidation .
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7ev :occursAtNode 7node .

?node :isLocatedInZone 7zone .

FILTER (7time >= ?start && 7time <= ?finish)
}
GROUP BY 7zone" .

The SPARQL query is represented in plain-text form using the spin: query property from
the SPIN vocabulary. Placeholders ?start and ?finish receive the values specified by users
according to the desired time interval. On a technical note, the class Transformation is a sub-
class of the spin: Template from the SPIN vocabulary [49]. This class allows the specification
of query templates which are meant to be reused by a system.

Figure 4.16 illustrates the graph structure that corresponds to this transformation, which is
automatically inferred by the SPIN vocabulary. We found appropriate to represent it in a visual
way to facilitate visualization, as the graph is not meant to be human-readable. Although it is out
of scope to explain how SPIN works, we argue that such example will facilitate the understanding
of VUMO rules that extract implicit knowledge from transformations.

The aforementioned query is represented as a blank node, (blank circle). The first two triples
indicate the query type (SELECT) and the variable used for grouping the query results (?zone),
respectively. Result variables are those that a query will yield as the result of data transformation.
The term result variables belongs to the SPIN terminology. In this thesis, the term output variables
is used to facilitate the comprehension of their relationship with the input variables of a visualiza-
tion technique. The remaining blank nodes represent all conditions expressed inside the WHERE
block. The FILTER operator is also expressed internally as a condition.

4.6 VisualizationConcept (VC)

VC allows for the annotation of visualization techniques, hence it corresponds to the visualization
components of the conceptual model. The Technique class is used to create instances that rep-
resent the visualization techniques implemented in a visualization system. InteractionTask
refers to interactive mechanisms that a technique provides. Some instances are already available
in the ontology, e.g. SemanticZoomorFiltering. Feature comprises intrinsic components
related to the graphical and data aspects of visualizations. The subclasses of Feature already
have a number of pre-defined instances as shown below:

» ReferenceFrame: Abstract, Geographic;

» SpatialDimensionality: 2D, 3D;

TemporalArrangement: Linear, Cyclic;

TemporalRepresentation: Static,Dynamic;

« InputVariable.

We provide a simple example of a bar chart implementation that supports dynamic temporal
querying (see Figure 4.17). For each record, this implementation requires three input variables.
For the x- and y- axes, nominal and quantitative values are required, respectively. A timestamp
is required. In Figure 4.17, a record is considered for visualization if the timestamp (var3) lies
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sp:groupBy
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sp:resultVa@/‘

sp: where
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~—|:TicketValidation
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\
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Figure 4.16: Visual representation of the graph corresponding to a data transformation example
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Figure 4.17: Mockup of a bar chart visualization technique

within the temporal interval selected by the user. A possible modeling approach is given by the
serialization below.

vistool:BarChart_TimeFilter rdf:type :VisualizationTechnique ;
rdfs:comment "An interactive bar chart with support to time filtering.";
:hasReferenceFrame :Abstract ;
:hasSpatialDimensionality :2D ;
:hasTemporalRepresentation :Static ;

:hasInputVariable vistool:varl ;
:hasInputVariable vistool:var2 ;
:hasInputVariable vistool:var3 .

// Variable for nominal values

vistool:varl rdf:type :InputVariable ;
:hasCompatibleValueType xsd:string ;
:isRequired true

// Variable for quantitative values

vistool:var2 rdf:type :InputVariable ;
:hasCompatibleValueType xsd:decimal ;
:hasCompatibleValueType xsd:float ;
:isRequired true

// Variable for timestamps

vistool:var3 rdf:type :InputVariable ;
:hasCompatibleValueType xsd:dateTime ;
:isRequired true
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Instances for input variables can have any URL. In this case, the names var1, var2 and var3
were used for clarity. The semantics of the property hasInputVariable canautomatically infer
that such instances belong to the class InputVariable, as VUMO specifies the rdfs:range
of this property to InputVariable.

The property hasCompatibleValueType allows the specification of several datatypes that
are accepted by an input variable. We recommend, as good practice, the use of the XSD standard
for data types [46]. The property isRequired expects a boolean value. It is used to specify
whether an input variable is optional or not. This property is used by VUMO to evaluate com-
patibility of visualization techniques with data transformations.

The bar chart example provides two interaction tasks: dynamic queries and filtering, which
can be represented as the following:

vistool:BarChart_TimeFilter :hasInteractionTask :DynamicQueries, :Filtering .

4.7 DomainUserConcept (DUC)

DUC allows for the annotation of empirical domain user knowledge. Such knowledge can be
used to assess appropriateness of visualizations. Users are represented as instances of DomainUser,
where each user has one or more DomainUserProfile. VUMO provides two pre-defined in-
stances of user profiles: Strategic or Operational.

TechniqueRatingsare statements made by DomainUsersaboutaTechnique. ATechni-
queRating contain one or more statements regarding Rat ingComponents.

VUMO allows for the annotation of specialized ratings. CrossRatings are used to rate a
Technique withrespecttoa Transformation, according to one or more instances of Rating-
Components. The following specification reflects the illustrative example of Figure 4.10.

vistool:Userl :hasUserProfile :0Operational .
vistool:User2 :hasUserProfile :Strategical .

vistool:Ratingl rdf:type :TechniqueRating ;
:isAboutVisualizationTechnique vistool:ChordDiagram ;
:hasRatingStatement [ :hasRatingComponent :VisualComplexity ;
:hasRatingScore 1 . ] ;
:hasRatingStatement [ :hasRatingComponent :RecommendedProfile ;
:hasRatingCategoricalValue :Strategical . ]

vistool:Rating2 rdf:type :TechniqueRating ;
:isAboutVisualizationTechnique vistool:ChordDiagram ;
:hasRatingStatement [ :hasRatingComponent :RecommendedTheme ;
:hasRatingCategoricalValue :Travellntention . ]

In addition, a cross rating is represented as the following:

vistool:Rating3 rdf:type :CrossRating ;
:isAboutVisualizationTechnique vistool:ChordDiagram ;
:isAboutTransformation vistool:0D_byStations ;
:hasRatingStatement [ :hasRatingComponent :Effectiveness ;
:hasRatingScore 4 . ] ;
:hasRatingStatement [ :hasRatingComponent :VisualComplexity ;
:hasRatingScore 3 . ] ;
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:hasRatingStatement [ :hasRatingComponent :RecommendedProfile ;
:hasRatingCategoricalValue :Strategical . ] ;

:hasRatingStatement [ :hasRatingComponent :RecommendedProfile ;
:hasRatingCategoricalValue :0Operational . ]

4.8 VUMO rules and functions

Rules and functions extend the capability of the VUMO ontology on regards to inference of new
knowledge beyond the intrinsic semantics of OWL and RDF. We developed a set of rules and
functions to automatically infer visualization-related properties from instance data, e.g. types of
spatial references and spatial distributions, and to infer implicit knowledge from data transforma-
tions and visualization techniques. The proposed rules and functions are not meant to be exhaus-
tive, but provide a solid starting point for the development of semantically rich, user-centered
visualization tools.

4.8.1 Rules

Seven rules were defined, labeled from R1 to R7. They are independent in the sense that the
execution of a rule during inference is made independently from the others.

Rules R1 and R2 detect spatial references within instance data and infer their type, i.e. points,
point sets, and their subtypes. R3 infers the duration of intervals if their start and finish times
are specified. Rules R4, RS and R6 infer characteristics of Transformation queries based on their
structure, namely: spatial distribution (R4), themes (RS), use of aggregate functions (R6). R7
infers the compatibility between transformations and visualization techniques.

Tables 4.5 and 4.6 provides the pseudocode representation of rules R1-3 and R4-8, respec-
tively. Inferred triples are represented with a specific notation. For instance, s € GenericPoint is
equivalent to ”s is an instance of GenericPoint”; t isCompatibleWith v denotes a subject-predicate-
object triple.

R4 analyzes conditional clauses for predicates containing equivalent subproperties of hasS-
patialReference. If one or more clauses satisfy that condition, the range of such property is used
to retrieve the spatial reference type. The corresponding axiom is then used to retrieve the spatial
distribution.

RS extracts themes, i.e. tags, that describe the urban mobility concepts related to a Transfor-
mation. The rule finds condition clauses whose properties’ ranges are subclasses of UrbanMobili-
tyConcept. Themes provide a natural language description of the contents of a Transformation.

RG verifies if a Transformation returns aggregate data, i.e. if at least one OutputVariable con-
tains an aggregate function. Such verification occurs while evaluating compatibility, as a Tech-
nique may expect disaggregate instance data to perform aggregations externally.

R7 evaluates the compatibility of a Transformation with respect to a Technique. Compatibility
holds if the aggregate requirements (RS) match, and if there exists at least one bijective mapping
m such that

m:0'CO—1
0j > iy,
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Table 4.5: Pseudocode representation of VUMO rules related to data integration

Rule Pseudocode

// Rl infers Points and their subtypes
s < instance of rdfs:Resource // receives an instance of any class
if containsLatitudeLongitude(s) then
R1 if containsldentification(s) then
s € KnownPoint // infers s as an instance of KnownPoint
else
s € GenericPoint // infers s as an instance of GenericPoint

// R2 infers PointSets and their subtypes
s < instance of rdfs:Resource // receives an instance of any class
P < |J, p// Points referred by s, if any
if |P| > 2 then // P should have at least two Points
if isOrdered(P) then
P € OrderedPointSet // infers P is an OrderedPointSet
else
P € UnorderedPointSet // infers P is an UnorderedPointSet

// R3 infers the duration of intervals, when applicable
e < instance of Event
R3  pi,ps < // ordered temporal reference properties (initial and final)
if (e p;, ti)AN(e py ty)then// iftriples exist for start and finish times
e hasDuration (tf — t;) // inferred triple
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and 0(o;) = 0(ix) ¥(0j, i), where 0; € O' and i), € [ are the output and input variables,
respectively.

O is the set of all output variables returned by a data transformation. I is the set of all input
variables of a visualization technique. O’ is a subset of O. The function frepresents an operator
that returns the type of an output or input variable, e.g. string, integer, resource.

4.8.2 Functions

Besides compatibility of evaluation of visualization techniques and data transformations, the eval-
uation of appropriateness is specific to the implementation of recommendation algorithms of
each visualization system. To support recommendation, VUMO provides embedded functions
(helpers) to assist methods on retrieving asserted empirical knowledge:

« getTechniqueRating(t): returns all ratings given to a visualization technique t;

« getCrossRating(t,v): returns all cross ratings assigned to the a transformation t and
a visualization technique v;

« getExpertInfo(e): returns asserted knowledged related to domain expert e.

« getBroaderConcepts(c): returns concepts that are broader than c, based on the as-
sertions made with the SKOS vocabulary;

« getNarrowerConcepts(c): returns concepts that are narrower than c, based on the
assertions made with the SKOS vocabulary;

Helpers are also stored as SPARQL queries, and take advantage of the SPIN vocabulary to be
executed as functions.

4.9 Reuse of existing ontologies and vocabularies

The reuse of existing ontologies is acknowledged as a good practice in the context of Semantic
Web technologies. Firstly, it reduces the effort of data integration, especially in situations in which
data is already modeled in terms of established knowledge representation models. Secondly, it
prevents semantic redundancy of similar concepts across various ontologies.

Given our orientation towards spatiotemporal data, VUMO imports elements from the WGS84
Geo Positioning vocabulary (geo) [8] and Time ontology (time) [168]. From the geo vocabu-
lary, we make use of data properties geo: 1at and geo : long for latitude and longitude, respec-
tively, and a vumo : Point is declared as a subclass of geo:Point, which in turn is a subclass
of geo:SpatialThing. All properties in VUMO that are used to indicate temporal instants
in the form of literals are defined as subproperties of time: inXSDDateTime from the time
ontology. Modeling of time periods, as in Subsection 5.3.2 (Chapter S), are described in terms
of the property hasTimePeriod, which is a subclass of time:ProperInterval. The time
ontology provides other constructs for modeling time with varying levels of complexity.

The GTES ontology (gtfs) is partially used to describe concepts related to public trans-
portation system information, such as routes, stops, trips, among others. For instance, the classes
vumo : Zone and gtfs:Zone are considered equivalent.
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Table 4.6: Pseudocode representation of VUMO rules related to data transformations

Rule Pseudocode

// R4 infers SpatialDistributions of a Transformation
t < instance, ¢; <— query within ¢, such that ¢t € Transformation
C+—U o // condition clauses of ¢;
foreachc € C do
R4 Pe < property(c) // receives the property (predicate) of ¢
if p. = hasSpatialReference then
7y, — range(p.) // receives the range of property p..
oy, < getSpatialDistribution(ry, )
t hasSpatialDistribution Orp. // inferred triple
// RS infers themes (tags) of a Transformation
t < instance, ¢; <— query within ¢, such that t € Transformation
C+y e // condition clauses in ¢;
foreachc € C'do
Pe < property(c) // receives the property (predicate) of ¢
if range(p.) = UrbanMobilityConcept then
Ty, < range(p.) // receives the range of property p..
t hasTheme ), // inferred triple
// R6 infers if the query of a Transformation returns aggregate results
t < instance, ¢; <— query within ¢, such that t € Transformation
VU oV // set of output variables of ¢
foreachv € V do
R6 if isAggregate(v) then
t returnsAggregateResults true // inferred triple

break // one occurrence is sufficient
else
t returnsAggregateResults false // inferred triple

// R7 infers compatibility of a Transformation-Technique pair
t,v < instances, such thatt € Transformation, v € Technique
O, I < output and input variables sets of ¢, respectively
§ < & // result set of compatible mappings
R7 . .
if meetsAggregateRequirements(t, v) then

€ < findMapping(t,v) // stores compatible mappings in £

if |£]| > 1 then

t isCompatibleWith v // inferred triple
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The SKOS vocabulary (skos) is used to describe the level of generality or specialization of
some VUMO concepts. For instance, the concept Zone is broader than Node. Analogously,
Strategical is broader than Operational. We used the SKOS ontology to categorize sev-
eral VUMO concepts, as shown in Figure 4.18. In Section S.5, such approach yielded interesting
applications on the development of a visualization tool. The properties narrowerTransitive
and broaderTransitive include the following semantics: if B is narrower than A and C is nar-
rower than B, then C is narrower than A. The properties narrower and broader do not include
the semantics of transitivity.

narrowerTransitive

broaderTransitive

narrowerﬁ narrowerﬁ
& Strategical 4 Operational 4 Macroscopic

— —broader— — J t — —broader— — J

Figure 4.18: Hierarchy of some VUMO concepts defined with the SKOS vocabulary

The Schema.org vocabulary is used to declare some subclasses of UMC as subclasses from
that vocabulary. For instance, vumo : Vehicle is a subclass of schema:Vehicle. vumo:Zone
is a subclass of schema:AdministrativeArea.

Other standard ontologies and vocabularies are used to support the modeling of VUMO el-
ements and their semantics, e.g. owl2xml, rdfs, rdfs, spin. Table 4.7 shows all ontologies
imported in VUMO.

Table 4.7: Ontologies reused by VUMO

Name Qname  URI

WGS84 Geo Positioning geo http://www.w3.0rg/2003/01/geo/wgs84 pos#
Time Ontology time https://www.w3.org/TR/owl-time#

General Transit Feed Specification gtfs http://vocab.gtfs.org/terms#

Simple Knowledge Organization System  skos https://www.w3.0rg/2008/05/skos
Schema.org vocabulary schema  https://schema.org#

Web Ontology Language owl2xml http://www.w3.org/TR/owl2-syntax/
Resource Description Framework rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
Resource Description Framework Schema rdfs http://www.w3.0rg/2000/01/rdf-schema#
Extended Markup Language vocabulary xml http://www.w3.0org/XML/1998/namespace
Extensible Markup Language schema xsd http://www.w3.0rg/2001/XMLSchema#
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4.10 Ontology evaluation

VUMO was evaluated for logical consistency using third-party reasoners that run several tests:
Pellet, FaCT++ and TopSPIN [49]. The results indicated no inconsistency errors, e.g. logical
contradictions. The OOPS! Pitfall Scanner [169] was also used to detect issues such as missing
annotations, which were corrected. Purposely, some properties do not have information about
their domains and ranges, in order to avoid undesired side-effects in terms of axiomatic classifi-
cations, as well as to reduce inference time. On regards to practical validity, VUMO was used in
practical applications, as will be explained in Chapter S. The ontology was revisited several times
to refactor properties, classes and instances names, and their specifications.

4.11 Applications to user-oriented methodologies

This section describes how VUMO can also be applied to the user-centered design process of
visualization techniques, in the context of a specific methodology chosen as an example, proposed
by Koh et al. [35] (see Chapter 2, Subsection 2.1.5). We adapted this methodology by creating
a new phase which is referred as semantic annotation, i.e. implementation of the outcomes of a
phase by using VUMO and other ontologies that may be considered. Figure 4.19 illustrates the
extension of the UCD process. Table 4.8 summarizes the artifacts from semantic annotation that
derive from UCD phases, which are described in this section. In Chapter S, we provide practical
applications that are based on the proposed extension of the UCD process.

The data integration pipeline typically takes place during the actual use of the visualization
system. Hence, this pipeline is not expected to be visited during UCD processes, except for in-
gestion of a minimal working dataset for testing purposes, which shall not involve domain users
but developers.

In Problem Domain Analysis, the analysis of context and work domain provides a descrip-
tion of the potential users of a visualization system. In this phase, it is important to define the
AnalyticalProfile of domain users, and the analytical tasks, i.e. instances of Transfor-
mation that the system should support. To formally support the description of empirical knowl-
edge, actual users of the visualization system should be instantiated as instances of DomainUser.
This ensures that any ratings provided by a user would be related to it during the system use, which
is particularly important in case the tool provides (semi)-automatic means for suggesting visual-
ization techniques.

After the Conceptual Development and Prototyping phases, artifacts consist of a set of visual-
ization techniques prototypes, not necessarily implemented into the system. The semantic anno-
tation of visualization techniques is expected to occur at the end of those phases, whenever re-
visited. It is fundamental that visualization techniques are minimally described in terms of their
input variables, so that VUMO can evaluate the compatibility of a technique with all analytical
tasks that have been already described during the Problem Domain Analysis. To make compre-
hensive use of available VUMO constructs, visualization techniques should also be described in
terms of their frame of reference, available interaction tasks, spatial dimensionality and temporal
dynamics.

During Interaction and Usability Studies, visualization techniques are likely to be revisited and
corrected, to meet user requirements, which may require changes to the semantic annotation of
visualization techniques, and even analytical tasks. More importantly, the first empirical knowl-
edge is expected to be collected and formalized during this phase, in the form of instances of
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4 1. Problem Domain Analysis )

0. Analysis of the
context of use

Visualization
Awareness
Work Domain
Analysis

2. Conceptual
development

4. Interaction and
Usability Studies
5. Semantic
Annotation

Figure 4.19: An example of user-centered design process based on the work of Koh et al. [35],
with an extension of a new phase for semantic annotation of the artifacts that were generated in
the preceding phases

Rating and CrossRating. Additional feedback can be included afterwards, provided that the
tool allows users to add ratings and feedback over time.

As seen in the previous sections of this chapter, VUMO already provides a set of instances to
describe analytical profiles, e.g. Strategic and Operational; interaction tasks, e.g. Seman-
ticZoom, among others. It is not expected that developers are restricted to the available in-
stances. For instance, a system may require the specification of users with a tactical profile. To
meet that requirement, a new instance ns:Tactical can be created, or reused from another
ontology, and related to the VUMO ontology by asserting the instance as belonging to the class
AnalyticalProfile. The prefix ns was added to indicate that contents that are not originally
declared in VUMO should not be declared as belonging to VUMO namespace, in accordance to
good practice standards for RDF data. Preferably, a namespace should be created for storing data
related to a specific visualization system implementation.

4.12 Discussion

This section provides a critical analysis of the VUMO ontology in terms of completeness and scal-
ability. We discuss the proposed formalization of spatiotemporal data, visualization techniques
and empirical domain user knowledge, in terms of the corresponding implementations of these
concepts in the VUMO ontology.
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Table 4.8: Summary of artifacts that are subject to semantic annotation, according to each
phase of a UCD methodology and the three pipelines for the deveopment of semantically-rich,
knowledge-assisted visualization systems

Pipeline ‘ Phase ‘ Artifacts for semantic annotation

1. Data integration Transversal to all phases Integrated urban mobility data
Problem domain analysis Analytical profile

2. Visualization technique Domain users

design and development Data transformations

Conceptual development and prototyping | Visualization techniques

3. Visualization evaluation | Interaction and usability studies Rating and cross ratings
and specification of system
users

The pyramid framework is the starting point for the formalization of spatiotemporal data,
which can be decomposed in where, when and what perspectives (data component). In VUMO,
the where perspective can be modeled with subproperties of hasSpatialReference. The when
perspective can be modeled with subproperties of hasTemporalReference for literal values,
such as timestamps, or hasTemporalResourceReference, for resources which hold more
complex constructs, such as time intervals, or recurring periods, e.g. “Weekdays” or "Holidays™.
Spatial references are based on different types of points and point sets. Temporal references are
based on instant and interval granularities. The studies surveyed in the literature review, and the
datasets which we analyzed prior building the ontology, show evidence that the proposed spatial
and temporal constructs enable the effective modelling of spatiotemporal data that is used for
visualization purposes. On regards to scalability, new subproperties can be instantiated depend-
ing on the practical context in which VUMO should be applied, provided that it conforms to the
aforementioned superclasses. The thematic description of an event, which defines the what per-
spective, is possible by creating an instance of a subclass of Event. The proposed major classifica-
tion of events is able to cover the most important types of data found in literature: travel events,
travel intentions, and unexpected events. The event instance is a semantic object (knowledge
component) that belongs to a taxonomy defined by the VUMO ontology classes. Partonomy
relations are defined by properties that link an event instance to other instances, such as other
events. Thematic attributes can also be defined as subproperties of hasMeasure.

The formal representation of data transformations in terms of SPARQL queries and the SPIN
vocabulary provides a standards-based representation of analytical tasks as a graph, which is in-
dependent of the syntax and schema of source datasets. Hence, this allows the reuse of analytical
tasks across systems. We exploited that representation by defining a set of rules that is able to
identify the urban mobility themes (tags) related to data transformations, and features that are
relevant for the visualization process, including the compatibility of transformations with visual-
ization techniques. Additional rules can be built using the same rationale to meet specific system
requirements.

The semantic annotation of visualization techniques and empirical knowledge isindependent
of a sytem’s logic and technological stack. New instances and subclasses of Visualization-
Concept can be created, for instance, to include new types of interaction tasks. On regards to
empirical knowledge, the proposed formalization is able to feed several types of recommenda-
tion methods, including those based on collaborative filtering (CF) and content-based (CB) ap-
proaches. CF approaches can retrieve user information from instances of domain users and their
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analytical profiles, and item information from technique ratings; cross ratings; themes extracted
from data transformations, and the features of visualization techniques. CB approaches can rely
only strict information about users, data transformations and visualization techniques. The cold
start limitation of such approaches can be reduced, as VUMO provides the necessary semantics
to evaluate a set of compatible visualization techniques. The structure of ratings allows, by con-
struction, for scalability, as new instances of RatingComponent can be created, according to
the criteria of recommendation methods.

4.13 Conclusions

This chapter described the components of the VUMO ontology and their role on modeling in-
formation for the development of visualization tools that are semantically rich, as they are based
on a formal knowledge representation model, and user-centered, given the ontology capabilities
of representing empirical domain user knowledge. VUMO has, as its basis, a conceptual model -
also proposed in this chapter - which supports the following pipelines: (i) data integration, (ii)
visualization technique design and development, and (iii) visualization technique evaluation and
specification of system users.

To support pipeline (i) data integration, we focused on the definition of an event, based on
acknowledge frameworks for general spatiotemporal data. We then extended the fundamental
structures found in those frameworks to provide a link with visual properties: spatial reference
types were defined. The visual spatial patterns they induce on a visualization canvas was defined
as spatial distribution. The concept of transformation was defined as a sequence of operations in
raw data that yield new information. We showed that the output variables of a transformation can
also induce spatial distributions. Our model allows transformations to be related to categorical
attributes that can be used to describe them.

For pipeline (ii), visualization technique design and development, we formalized the general
structure of visualization techniques. Techniques can have a collection of features and interaction
tasks. Input variables are responsible for connecting the output variables of compatible visualiza-
tion techniques.

Finally, to support pipeline (iii), visualization technique evaluation and specification of sys-
tem users and their feedbacks. The latter was branched into two categories: visualization tech-
nique rating, and cross rating, which consists of a more specialized rating that relates a visualiza-
tion technique and a transformation. Rating components can consist of quantitative or qualita-
tive values.

VUMO is fully built upon de facto industry and web standards for semantic data. Besides the
inherent semantics of OWL and RDF, we proposed a set of rules and functions that extend the
ontology capabilities in terms of extracting implicit knowledge. Rules are used to infer relevant
visual properties from instance data according to our proposed conceptual model, and to extract
features from data transformations. Moreover, VUMO is capable of evaluating the compatibility
of a data transformation with one or more visualization techniques. Embedded functions allows
tools to retrieve information about users and their asserted ratings, which can be exploited by
visualization tools to evaluate the appropriateness of visualization techniques

Finally, we showed how VUMO can support user-centered design process of visualization
systems development, by aligning the artifacts generated by that process and their respective se-
mantic annotation using VUMO classes and properties.
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Chapter 5

Practical applications

This chapter describes practical applications of VUMO to the various phases of development
and use of semantically rich, user-oriented visualization systems that support heterogeneous data
sources. As described in Table 4.8 (see Section 4.11), each pipeline and phase generate certain
artifacts. To demonstrate how such artifacts are generated and annotated, we present case studies
involving the cities of Porto, Portugal, and Boston, USA. The studies use real public transporta-
tion system data collected from transportation agencies, a transportation consulting company
and government bodies. We also involved domain users with various backgrounds from both
countries. To support the case studies, we developed a visualization system prototype named
SUMVis (Semantic Urban Mobility Visualization), which acts as a testbed platform for the three
visualization pipelines. Section 5.1 describes the technological stack of SUMVis.

Each of the remaining sections focuses on specific visualization pipelines. In Sections 5.2 and
5.3, we focused on the data integration pipeline. We describe the datasets considered for each
city, and demonstrate, with concrete examples, the process of mapping instance data to VUMO
classes and properties. In addition, we also demonstrate how additional inference rules can be
built to meet new domain user requirements. In particular, Section 5.3 exemplifies a modeling
approach in which additional classes and properties had to be created, as they were not originally
pre-defined in VUMO. This case is a useful reference for situations in which VUMO needs to be
combined and related to concepts from other ontologies.

Section 5.4 describes the semantic annotation of prototypical visualization techniques, in the
context of visualization of public transportation ridership, using data from the city of Porto. Data
transformations are also defined to demonstrate the evaluation of visualization compatibility us-
ing inference rules. Moreover, the section also shows how integrated data can be annotated with
additional knowledge found by domain users while manipulating SUMVis. The Sections 5.5 and
5.6 focus on the pipelines related to the design and evaluation of visualization techniques.

Section 5.5 describes a UCD study for visualization of OD flows in public transportation sys-
tems from various perspectives, e.g. stops, lines and fare zones. The aim was to evaluate a set of
visualization prototypes against a set of analytical tasks (data transformations) that were built af-
ter discussion with potential users. Furthermore, we implemented an additional rule for inferring
features from data transformations, based on the results of the context analysis phase (see Phase
0 on Figure 4.19). This section demonstrates the semantic annotation of data transformations,
visualization techniques, and empirical knowledge in the form of ratings. We also demonstrate a
prototypical VUMO-based recommendation method using empirical knowledge and functions.

Finally, Section 5.6 describes an exploratory study in which we developed a set of visualiza-
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tion techniques for emissions in bus corridors, in the context of CoAXs [134], a visualization tool
developed by MIT to foster stakeholder engagement on transit planning, as part of our temporary
collaboration on this project. This section demonstrates the semantic annotation of analytical
tasks and visualization techniques. In particular, the analytical tasks differ from the ones shown
in Section 5.5, as they contain elements that were not originally part of the VUMO ontology.

We argue that the presented examples oriented to specific pipelines corroborates to show-
ing how VUMO is able to support all phases development phases, taking into account different
contexts. Moreover, the examples that demonstrate the extension of VUMO ontology to meet
new user requirements . Table 5.1 provides a high-level map for the case studies presented in this
chapter, along with their contributions to each pipeline.

Table 5.1: Practical references within each pipeline, and the sections in which they can be found

Practical references within each pipeline Sections

1. Data integration

- Mapping data onto VUMO components 5.2,58.3

- New rules 52

- New functions 5.3

- New classes and properties 52,53

- Annotation of discovered knowledge after analytical task 54

2. Visualization technique design and development

- Annotation of data transformations 54,5.5,5.6
- Annotation of visualization techniques 54,5.5,5.6
3. Visualization evaluation and specification of system users

- Annotation of empirical knowledge (ratings) 5.5,5.6

- Development of a recommendation method 5.5

5.1 SUMVis Architecture

This section describes the technological stack that was used to develop the SUMVis (Semantic
Urban Mobility Visualization) tool prototype that supports the presented case studies. SUMVis
is a browser-based tool that is coupled to a GraphDB! triple store engine as backend, for storing
RDF data, and an OWL RL reasoner capable of executing SPIN rules. The triple store engine also
provides a SPARQL endpoint for querying instance data, with extended support to geospatial
queries (GeoSPARQL). The chosen technological stack is not restricted to commercial licenses.
Figure 5.1 shows an overview of the SUMVis architecture.

External data sources (raw data) were mapped onto the RDF metadata model using classes
and properties from VUMO and other ontologies. The process of mapping was supported by ad
hoc parsers which were created for that purpose. The resulting linked data was then stored into the
triple store database, in which rule-based inference was executed during runtime. The mapping
process is described in Sections 5.2 and S5.3.

In the frontend, users are able to select, during their sessions, the desired analytical task. In
Section S.5, we describe a recommendation strategy that provides a rank of appropriate visual-
izations based on a globally calculated rating, i.e. all ratings made by domain users. Prototypes

'http://graphdb.ontotext.com
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Figure S.1: The architecture of the SUMVis prototype

of visualization techniques were developed with D3.js?, Processing® and Leaflet*. After visual ex-
ploration, the user can evaluate the visualization technique according to various criterias. For that
purpose, a simple interface was developed to facilitate collection of user feedback, which is then
translated into instance data and inserted into the triple store engine. The following computer
specifications were used: Intel Core i7 @ 3.1GHz, 32GB of RAM, and 2TB of hard disk space.

5.2 Semantic integration: the case of Porto, Portugal

The metropolitan area of Porto consists of 17 cities and approximately 1.76 million inhabitants,
thus being the second largest urban area in Portugal. The metropolitan area is largely supported
by the Andante intermodal system. The Andante system is an entry-only fare system consisting
of public and private operators. Passengers can commute by bus, subway, train and tram. Pas-
sengers start their trip by validating their Andante paper ticket (occasional travels) or plastic card
(monthly passes). Validators are located inside vehicles, and in subway and train stations. Citi-
zens can retrieve real-time information about public transportation conditions and plan journeys.
The main operators are Sociedade de Transportes Colectivos, S.A. (STCP), which is responsible
for operating the buses in Porto region, and Metro do Porto, S.A. (MP), which operates the sub-
way service.

The metropolitan area is divided into several fare zones, e.g. N6, in which the prefix denote its

*https://d3js.org
3https://processing.org
“https://leafletjs.com

117



geographic macroregion (N - North, C - Center, S - South). Passengers pay a fare in accordance
to the zones they have to cross. Figure 5.2 shows a map of fare zones. For instance, the downtown
area is located in zone C1. Passengers that subscribe to monthly passes have a pre-defined set of
zones in which they can use public transportation.
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Figure 5.2: Zones of the Andante system in Porto, Portugal
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Four datasets from different sources were collected for this study:

« PRT1: Ticket ridership from Andante system;

« PRT2: Information requests from a mobile application that provides real-time informa-
tion about the public transportation system;

« PRT3: Estimated OD matrix from Andante system;

PRT4: Shape files for all counties of the metropolitan area of Porto.
5.2.1 PRT1: Ticket ridership from Andante system
The ridership dataset (PRT1) is supported by auxiliary datasets that describe the Andante system:

PRT1_TICKETS: Description of ticket categories;
PRT1_ZONES: Description of fare zones, as shown in Figure 5.2;

PRT1_STOPS: Descriptions of stops within each fare zone;
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« PRT1_ OPERATORS: Description of active operators.

These datasets were available as CSV files and were provided by Transportes Intermodais do
Porto (TIP), which is the company that runs the Andante system. Every record in PRT1 is a row
that describes a ticket validation. Each row introduces redundant information about the respec-
tive ticket, such as the allowed fare zones — in case it is a subscription ticket — and the ticket type.
Figure 5.3 shows the non-relational schema of the main and auxiliary datasets.

The namespace portotip describes integrated data related to PRT1, in order to not overlap
the default vumo namespace.

PRT1 PRT1_STOPS PRT1_OPERATORS
id operatorlD
op alt_id operatorName
ticketID sign_id
ticketType label
validZones lat PRT1_TICKETS
stoplD lon
linelD operator ticketName
directionID zonelD
vehiclelD
validationTime PRT1 ZONES
tripStartTime —
zonelD

Figure 5.3: Schema of PRT1 and its auxiliary datasets

The Andante system offers several types of transportation tickets which belong to the follow-
ing categories:

« ”Titulo ocasional” (Occasional travels): a paper ticket that can be used for several journeys
within a given time limit, e.g. 1 hour;

« ”Assinatura Mensal” (Monthly subscription): a card for passengers that opt for a pre-paid
monthly subscription. The subscription allows passengers to make unlimited travels within
the set zones they paid for;

« ”Titulo Didrio” (Day ticket): a card that allows passengers to make unlimited travels within
all zones within a 24-hour period, which starts at the time of the first validation.

The PRT1_TICKETS dataset has a single column that describes all ticket types (ticketType).
Some of the ticket types could be mapped onto the subclasses Pass and OccasionalTicket.
Given that names could have white spaces and characters with diacritics, the parser defined a URI
for each ticket type by removingleading spaces and removing the diacritics. The actual ticket type
name is preserved and mapped onto the property hasName, as in the following example:

portotip:TituloOcasional rdf:type :0ccasionalTicket ;
:hasName "Titulo Ocasional" .
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The PRT1_ZONES dataset has a single column that describes the code of each zone, e.g.
N10. This dataset has no geographical information about a zone’s boundary points. Therefore,
each zone becomes an instance of Zone by asserting a triple of the form below.

portotip:N10 rdf:type :Zone .

In PRT1_STOPS, stops are uniquely identified by two alternative attributes: internal and
external identifiers. The former is meant to be used by the operator itself and the Andante system.
The latter provides a user-friendly identification to passengers, as described in Section 4.4. Table
5.2 shows a possible mapping between the source attributes and target properties.

Table 5.2: Mapping between attributes of PRT1_STOPS and VUMO properties

Source attribute  Target property Property type
id hasInternallD Datatype
alt_id hasInternallD Datatype
sign_id hasFriendlyID Datatype
label hasName Datatype

lat geo:lat Datatype

lon geo:long Datatype
operator operatedBy Object
zonelD isLocatedInZone Object

The mapping of the attributes operator and zoneID required special attention, as the val-
ues of these attributes are translated into instances of VUMO classes Operator and Zone, re-
spectively. The parser’s output for those attributes consists of an attribute’s value preceded by
the namespace, e.g. portotip:STCP and portotip:N10. The URI of bus stops and subway
stations are given after their sign_id source attribute.

The PRT1_OPERATORS also share the same simple structure, hence the resulting triples
have the form portotip:STCP rdf:type :0perator.

portotip:STCP rdf:type :0Operator ;
:hasName "Sociedade de Transportes Coletivos do Porto" .

portotip:MP rdf:type :0perator ;
:hasName "Metro do Porto" .

In case these triples have not been asserted, it would still be possible to infer that instances
portotip:STCP and portotip:MP belong to the class Operator, due to the range of the
property operatedBy.

The main PRT1 dataset of validation records include information about the respective oper-
ator and the vehicle that registered the validation (op and vehicleID), ticket’s ID and the zones
in which it can be used (ticketID and validZones), the IDs of the line, its direction and stop
in which the validation occurred (1ineID,directionID and stopID), and the timestamp of
the validation (validationTime). For validations that occurred in buses, the timestamp re-
lated to the trip start is also recorded (tripStartTime). Table 5.3 provides an example of a
validation record.

Two additional auxiliary datasets were manually created. PRT1_LINES and PRT1_ROUTES
datasets were created by scraping the websites of STCP and MP to retrieve information about
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Table 5.3: Example of ticket validation

Source dataset attributes  Value

op STCP

ticketID 20023201283
ticketType Assinatura Mensal
validZones C1C2C6C9
stopID 14

linelD 805

directionID 2

vehicleID 2107
validationTime 2013-01-22 07:30:56
tripStartTime 2013-01-22 07:23:34

lines and their respective routes. In this context, we use the VUMO definition of lines and routes
(see Table 4.4), i.e. a line may be formed by one or more routes (e.g. inbound, outbound). Each
route is defined by a route path, which is formed by route segments that connects two nodes.

Our particular approach to modeling lines and routes consisted of providing granular infor-
mation about them, i.e. modeling all route paths as an ordered list, taking advantage of the avail-
able VUMO components and the standard RDF semantics for representing ordered lists, i.e. with
rdf:first and rdf : rest properties. The path of a route - an ordered list - is represented using
the standard RDF properties: a chain of blank nodes where the first element (segment) is de-
clared, along with the rest of the chain. The serialization below exemplifies the modeling of lines
and routes. Figure 5.4 shows the visual representation for the same serialization.

portotip:Line204 rdf:type :Line ;
:operatedBy portotip:STCP ;
:hasDescription "204 - HOSP S. JOAO X FOzZ" ;
:hasInboundRoute portotip:Line204_IB ;
:hasOutboundRoute portotip:Line204_0B .

portotip:Line204_IB rdf:type :Route ;
:hasRoutePath [ rdf:first portotip:Segment120 ;
rdf:rest [ rdf:first portotip:Segmentl21 ;
rdf:rest [ ... 11 .1

The previous serializations illustrated the mapping from auxiliary datasets onto VUMO prop-
erties and classes, thus yielding semantic data about the infrastructure components of the Porto
public transportation system. Table 5.4 shows the proposed mapping for PRT1.

Each row on the source dataset yields nine triples, as in the example below. Differently from
the illustrative example of Figure 4.15, we did not instantiate vehicle trips as objects, as in our
particular case, the dataset did not contain additional information about the trip, e.g. finish time.
The chosen URI for each ticket validation was portotip: TV_N, where N is the row number cor-
responding to the validation record in the source dataset. Tickets were instantiated as members of
the Ticket class, and their type was defined with the hasTicketType property, marked with
an asterisk in Table 5.4.

portotip:TV_101 rdf:type :TicketValidation ;
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Figure 5.4: Visual representation of the triples that describe a line and its routes. A route path is
described as an ordered list, using the standard RDF properties rdf : first and rdf : rest

Table 5.4: Mapping between attributes of PRT'1 and VUMO properties

Source attribute Target property Property type
op hasOperator Object
ticketID hasTicket Object
ticketType* hasTicketType Object
stopID occursAtNode Object
lineID occursInLine Object
directionID occursInRoute Object
vehicleID occursInVehicle Object
validationTime hasDateTime Datatype
tripstartTime  hasTripStartDateTime Datatype
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:hasOperator portotip:STCP ;

:hasTicket portotip:Ticket118 ;
:occursAtNode portotip:FEUP2 ;
:occursInline portotip:Line204 ;
:occursInRoute portotip:Line204_IB ;
:occursInVehicle portotip:2211 ;
:hasDateTime "2013-01-05T20:36:01"
:hasTripStartDateTime "2013-01-05T20:33:21"

portotip:Ticket118 :hasTicketType portotip:TituloOcasional .

Given that we did not have a dataset containing information about the STCP fleet but we
still desired to keep track of such information, we implemented an additional rule that infers that
a vehicle belongs to a certain operator, whenever an event has triples that indicate the operator
(hasOperator) and vehicle (occursInVehicle) simultaneously. Formally, the rule can be
represented as:

hasOperator (e, 0) A hasVehicle(e,v) — owns (o, v)

Where e € Event, o € Operatorandv € Vehicle.

In the subway system of Porto, ticket validation checkpoints are located in several locations
inside a station. As stations are usually served by more than one line, the recorded information
about those validations contains less information about the trip, as illustrated in the following
example.

portotip:TV_211 rdf:type :TicketValidation ;
:has0Operator portotip:MP ;
:hasTicket portotip:Ticket594 ;
:occursAtNode portotip:TRD ;
:hasDateTime "2013-01-18T19:01:48"

The resulting graph for one month of ticket validations yielded approximately 140 million
triples, totaling 8GB of disk space.

5.2.2 PRT2: Information requests from a journey planner mobile application

Move-me®

is amobile application developed by Optimizagao e Planeamento de Transportes S.A.
(OPT)® that provides real time information about public transportation. Given that the appli-
cation is a means of providing information about transportation, it is unknown whether the user
who requested information actually travelled or not. Move-me currently provides three types of

information:

o Next departures: provides the next bus/train/subway departures for a specific stop or sta-
tion selected by the user;

« Route finder: for a given origin and destination selected by the user, not necessarily a pre-
defined stop or station, the app provides a sequence of public transportation routes that
can be taken in order to reach the destination;

Shttp://www.move—me.mobi/

Shttp://www.opt.pt/
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o Nearby stops: provides the nearby station or stops based on the location provided by the
user (assisted by the user’s mobile phone GPS). It is also possible to select a search radius.

The dataset was extracted from a relational database management system (RDBMS) as a table
dump. It consists of a single table that contains users’ information requests, where each request
was conceptually regarded as a travel intention, i.e. an intention to use public transport. Every
travel intention is tied to a timestamp. Each record contains information about the type of re-
quest, according to desired service.

The namespace portoopt was used for semantic integration of this dataset. Table 5.5 lists
the relevant attributes of PRT?2. Each record contains a user’s input that depends on the type of
information. The attribute requestDateTime holds the timestamp corresponding to the time
of the request. The attribute requestType holds a string that encodes the type of service that
the user requested. It is used by the application’s logic to determine which requestInput is
expected. The latter attribute also holds a string that encodes the input parameters required by
each service. The Next Departures service requests the code of a stop.

Table 5.5: Source attributes from PRT2 dataset

Attribute Type

requestDateTime Timestamp
requestType String
requestInput String input depends on requestType:
® Next departures
Stop/station ID
® Route finder
Origin
Destination
® Nearby stops
Latitude
Longitude
Search radius

For an information request about next departures, the input is the internal ID of a stop. For
example: “TRD3”. It is important to note that this ID does not necessarily match the ones from
PRT1_STOPS, in which the respective ID is "391”, as the datasets were retrieved from different
sources.

Forarequest about aroute plan, the input is a pair of origin and destination points. Given that
this input type is more complex than the other two input types, the original dataset encodes the
records in XML, as depicted in the following serialization, which describes a travel plan between
the "Sao Bento” subway station and the "Francelos” train station.

<Request>
<StartTime>2013-11-11T18:50:22.16+00:00</StartTime>
<EndTime>2013-11-11T23:50:22.16Z</EndTime>
<Type>RouteFinder</Type>
<Route>

<Track> <In>
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<NameSSao Bento</Name>
<CodesSSao Bento</Code>
<Type>Stop</Type>
<Provider>METRO DO PORTO</Provider>
</In>
<0ut>
<Name>Francelos</Name>
<Code>CP_Francelos</Code>
<Type>Stop</Type>
<Provider>CP</Provider>
</0ut>
<VisitTime>0</VisitTime>
<ProviderCode />
</Track>
</Route>
<MaxResultTrips>3</MaxResultTrips>
</Request>

For an information request about nearby stops, the input consists of two elements: a pair
of geographic coordinates in WGS84 format, which represents the current user’s location or any
other location selected by the user, and the desired search radius in meters, e.g. (41.1306,
-8.5867, 500).

Data primitives from the “Near stops” service already depict the spatial dimension as geo-
graphic coordinates. We used an auxiliary Move-me dataset, named PRT2_STOPS, which con-
tained the geographic coordinates and information about stops and stations. They were mapped
in a similar way as in Table 5.2.

Datasets PRT'1 and PRT?2 share similarities on regards to information about the public trans-
portation system. In fact, both describe stops, stations and operators. For instance, the sub-
way station portoopt : MP30 is semantically equivalent to portotip: TRD, even if they are de-
scribed in different ways. OWL allows the semantic alignment of instances by using the property
owl :sameAs. Hence, the statement portoopt :MP30 owl:sameAs portotip:TRD ensures
that both instances are interpreted as being equivalent, which allows, for example, to infer that
validations and requests related to those instances actually refer to the same location. Such pos-
sibility would not be possible, at least with difficult technical workarounds, on systems that make
use of relational databases. The following rule was built to infer that instances are equivalent if
they share at least one equivalent ID. If n; and ng are instances of Node, and if the string literals
corresponding to the IDs are equivalent. Formally:

N1, Ny <— instances from portotip and portoopt, respectively
x1, Ty < IDs asserted with property hasInternalID
if (ni,ne € Node) A (r7 = x3) then owl:sameAs(nq,ny)

Tables 5.6, 5.7 and 5.8 show the proposed mappings for each request type. Figure 5.5 shows
three examples of the resulting RDF graph; each of them belongs to a specific travel intention.

5.2.3 PRT3: Estimated origin-destination flows in the public transportation
system

This dataset contains information about estimated origin-destination flows between stops and
stations operated by STCP and Metro do Porto, using validation data extracted from PRT1. The
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Figure 5.5: RDF graph containing instances from PRT2
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Table 5.6: Mapping between attributes of PRT2 (Next departures) and VUMO properties

Source attribute Target property ~ Property type

requestDateTime hasDateTime  Datatype
requestInput occursAtNode Object

Table 5.7: Mapping between attributes of PRT2 (Route finder) and VUMO properties

Source attribute Target property Property type
. hasStartDateTime  Datatype
requestDateTime . .
hasFinishDateTime Datatype
hasPath Object
requestInput hasOrigin Object
hasDestination Object

flows were calculated according to the algorithm proposed by Hora et al, in which the author of
this work was involved [170]. The matrix is based on one week of ticket validations. The struc-
ture of the dataset consists of an Excel XLS sheet containing a square matrix M, in which rows
and columns represent all stops and stations, thus M (i, j) represents the number of expected
passengers between 7 and j, which may be different from M (j, 7). The namespace portood was
used for this dataset. As this dataset was built upon existing information from PRT1, we benefit
from using spatial references that belong to the portotip namespace.

Each cell M (i, j) was mapped onto an instance of 0DF1ow, described by the property hasPath,
which refers to a blank node described by the properties hasOrigin and hasDestination.
The chosen URI for each flow record was defined as portotip:0DFlow_N, where N is the num-
ber corresponding to a cell in /. The following example shows an OD flow of two passengers for
two stops:

portood:0DFlow_431 rdf:type :0DFlow ;
:hasPath [ :hasOrigin portotip:FEUP1 .
:hasDestination portotip:RFAR2 ] ;
:hasFlow 2 .

In this example, it is possible to infer that such OD flow goes from fare zone portotip:C6
to portotip:C2, given the existing asserted information about the zones in which each stop is
located. The same applies to all instances of ODF1low.

Table 5.8: Mapping between attributes of PRT2 (Nearby stops) and VUMO properties

Source attribute Target property Property type
requestDateTime hasDateTime Datatype
requestInput occursAtCoordinates Object

d P hasRadius Object
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5.2.4 PRT4: Geographic information of Porto’s boroughs

We collected shape data from all boroughs of the city of Porto, from Diregao-Geral de Territério,
an official Portuguese government body”. A preliminary data conversion consisted of transform-
ing ArcGIS shape files into Well-known Text (WKT) format, which is an open standard for de-
scribing shapes in plain-text form. Figure 5.6 shows a visualization of Porto boroughs. The names-
pace portogeo was used for this dataset.

NI

.'1' ‘

Figure 5.6: Spatial data representation of Porto boroughs

The typical structure of a polygon in WKT is given by the following example:

POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))

Everyborough was instantiated as an instance of schema : AdministrativeArea, whichis
asserted in VUMO to be a subclass of Zone. The VUMO datatype property hasWKTGeometry
was used to store the plain-text information about shapes in WKT format, which can be pro-
cessed with GeoSPARQL. Given that spatial references are treated as objects (instances) accord-
ing to VUMO semantics, the implemented rules would not be able to infer that boroughs are, in
fact, point sets. Furthermore, points that form the shape would not be recognized as instances
of Point. Although RDF databases support the execution of spatial queries, GeoSPARQL is
still not standardized, but its use is heavily encouraged. Therefore, a feasible, standard-compliant
workaround consisted of implementing a parser capable of translating WKT into standard RDF
representation of ordered lists, thus providing an alternative representation besides the use of
hasWKTGeometry with the usual VUMO components: the property hasPath was used to rep-
resent the polygon. As a result, portogeo:Paranhos is inferred as an OrderedPointSet.
The assignedBy property is used to identify the entity that defined the zone.

“http://snig.dgterritorio.pt/portal/
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The example below describes both representations for the same borough. An excerpt of the
values was shown due to size restrictions.

portogeo:Paranhos rdf:type schema:AdministrativeArea ;

:assignedBy portogeo:DGT ;

:hasID "Paranhos" ;

:hasName "Freguesia de Paranhos" ;

:hasWKTGeometry "POLYGON (( -8.6528 41.1726,

-8.6242 41.1710..."""geosparql:wktLiteral ;

thasPath [ rdf:first [ geo:long -8.6528 . geo:lat 41.1726 . ] ;
rdf:rest [ rdf:first [ geo:long -8.6242 41.1710 ; 1]

rdf:rest ... 1 . ]

We implemented a persistent SPIN rule that assigns every spatial reference of type Point to
its respective administrative area. The SPIN rule takes advantage of GeoSPARQL operators such
as geosparql : within, which evaluates if a spatial entity is located within the limits of a poly-
gon. This rule reveals implicit knowledge from stops, stations, sensors and any other node about
their location, including any others that could be integrated in the future. The rule is formally
represented as the following:

foreach p € Point
foreach 2z € schema:AdministrativeArea
if geosparql:within(p,2) then isLocatedInZone(p,z)

5.3 Semantic integration: the case of Boston, USA

The metropolitan area of Boston has approximately 5.8 million inhabitants, being the most pop-
ulous of the state of Massachusetts. The public transportation system, known as the T, is inter-
modal, consisting of bus, subway, train and ferry services. The T is operated by the Massachusetts
Bay Transit Authority (MBTA).

We retrieved four datasets for this study:

« BOS1: Description of the MBTA network, e.g. lines, routes and stops;
« BOS2: Estimated OD data for bus and subway services;
« BOS3: Estimated average speeds of route segments in bus corridors;

« BOS4: CO, emission profiles for various bus engine technologies.

5.3.1 BOSI1: GTFS data

The descriptive information about the MBTA network is described by TXT files, in accordance
to the General Transit Feed Specification [S]. It includes information about lines, routes, stops
and stations. We took advantage of the GTFS ontology to build a direct mapping between source
data and its terms. VUMO provides the required semantics to align the ontology’s classes and
properties to those in the GTFES ontology, thus data becomes described in terms of VUMO’s
constructs. The namespace bostongtfs was used for this dataset.
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Figure 5.7 shows an RDF graph that describes the MBTA operator, a stop, and a line in terms
of a route, analogously to the PRT1 dataset.

__ —rdfitype — — — — _
# bosgtfs:MBTA Vi gifs:Agent rdfs:subClassOf—- 165/ =110)¢
hasID 1
hasName——» MBTA
————— rdftype — — __

& bosgtfs:Station391 gl type>m—rdfs subCIassOf—»@

—has|D—————————— Logan-A
—hasName———— Logan Airport Terminal A

—geo:lat——— > 42.364426

‘—geo:long— > -71.022093
— -rdf:type— —

& bosgtfs:SL1 rdf: type*mmfs subCIassOf—bm

hasID » 741

——hasDescription—— Silver Line 1

——gtfs:shortName——» SL1

rdf:type—»>| I 2{6]0ji)

rdf ilSeay o ¢ bosgtfs:Seg391-1021
rdf rest
RS o ¢ bosgtfs:Seg1021-1045

rdf:rest—» ...

e IEE NI Sy 2 @ DOSQtfs:SL1_IB

hasRoutePath

Figure 5.7: RDF graph of some elements of the MBTA network

5.3.2 BOS2: Estimated origin-destination data

This dataset provides estimated origin-destination flows based on a dynamic programming model
proposed by Sanchez-Martinez, which produced more reliable results than previous models that
have been tested against the MBTA network [171]. In comparison to the PRT3 dataset, BOS2
provides more granular information about OD flows, as it covers different time intervals: several
periods for weekdays, e.g. AM and PM peaks, and school hours, and two periods for weekends:
Saturdays and Sundays. The dataset contains flows for a week of September 2016, between stops
and stations of the T network, which were coded in accordance to GTFS data from BOS1. Table
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5.9 exemplifies a record of BOS2, which describes an OD flow between the subway stations of
Davis (Red Line) and Fenway (Green Line). The timePeriod 11 corresponds to a Saturday.

Table 5.9: Example of a record related to an origin-destination flow between two subway stations
of the T network

origin place-davis
destination place-fenway
timePeriod 11

flow 116

The namespace bostonod was chosen for this dataset. The timePeriod source attribute
was transformed into instances of Interval an interval according to the original classification
of time periods.

bostonod:saturday rdf:type :Interval;
time:day0OfWeek time:Saturday ;
:hasStartTime "00:00:00" ;
:hasFinishTime "23:59:59"

The chosen URI for each flow was defined asbostonod : 0DFlow_N, where N corresponds to
the row number in the file. During data conversion, date and timePeriod were merged into a
single structure, so that each 0DF1ow could be characterized in terms of start and finish datetimes.
The following example shows an instance of ODFlow:

bostonod:0DFlow_30 rdf:type :0DFlow ;
:hasTimePeriod bostonod:saturdays ;
:hasStartDateTime "2016-09-11T00:00:00" ;
:hasFinishDateTime "2016-09-11T23:59:59" ;
:hasPath [ :hasOrigin bostongtfs:place-davis ;
:hasDestination bostongtfs:place-fenway ] ;
:hasFlow 116 .

From VUMO semantics follows that the blank node referred in property hasPath is an
OrderedPointSet.

5.3.3 BOS3: Estimated per-segment bus speeds

This dataset was retrieved from MBTA based on collected real-time information from buses with
AVL system. For each route segment, the average speed was calculated based on all trips of the
AM peak, which corresponds to the period between 7 a.m. and 8:59 a.m.. For the purposes of
this case study, the data is related to bus routes of the Forest Hills corridor in South Boston, which
consists of the following lines: 30, 34, 35, 36, 37, 40, S0 and S1.

The source schema is a plain-text CSV file. For each line, route segments are specified with
two columns thatindicate their start and finish stops. Stops are specified by their IDs, according to
BOSI. Table 5.10 shows a record of average speed for line 30, inbound, between a route segment.
direction is used to identify whether a route is inbound (1) or outbound (0); stopID and
nextstoplD correspond to a segment’s start and finish points, respectively.
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Table 5.10: Example of average bus speed of line 30, inbound, between two stops

line 30
direction 1
stopID 185
nextstopID 16458
avgmph 38.7899

The mapping strategy consisted of creating instances of SpeedReading, where each in-
stance corresponds to a row in the source dataset, thus the spatial and temporal references corre-
spond to the route segment and time interval (morning peak), respectively. Given that the des-
ignation morning peak corresponds to the same period used for BOS2 dataset, the same instance
was used. Figure 5.8 shows the RDF graph corresponding to the example of Table 5.10. Instead
relating the properties hasStartTime and hasFinishTime directly to SpeedReading30, we
relate it to the temporal entity bosod : ampeak that already describes that information.

@ bosplt:SpeedReading30

—isRelatedToLine—————— R Jeleoji o M =%}
—isRelatedtoRoute————— R Noleleluf-H Mgl 0N | =}

——isRelatedtoRouteSegment—3- R N olelelitRetlof K F R Ny Y]
——nhasTemporalEntityReference— R Felol{els K=1pg | of=F:1 < hasStartTime—07:00:00
‘——hasAverageSpeed—(38.7899 hasFinishTime—»|08:59:59

Figure 5.8: RDF graph of a speed reading based on the example of Table 5.10

5.3.4 BOS4: Emission rates for various bus engine technologies

This dataset was developed by the CoAXs team, and provides interpolated emission rates by speed
bins for various pollutants, for the following bus engine technologies: diesel, diesel hybrid, CNG,
electric, and hybrid. Pollutants include CO, CO,, NO, VOC, PM10 and PM2.5. The informa-
tion in BOS4 can be related to BOS3 to provide estimates of per-segment emissions, allowing
one to compare the impacts of different technologies. The bosplt namespace was used for this
dataset. The source schema consists of as an Excel XLS worksheet with the attributes described
below in Table 5.11.

A speed bin of 15Smph corresponds to a closed interval of the form [15,16). For instance,
according to Table 5.11, a Diesel engine at a speed bin of 15mph emits the aforementioned pol-
lutants in g/mile units. Emission rates are available for speed bins between 2 and S50mph.

As we could not find an ontology that could thoroughly describe the concepts from this
dataset, we extended VUMO for this purpose. The following subclasses of UrbanMobilityConcept
were created:

« EmissionProfile;
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Table 5.11: Example of an emission profile from the BOS4 dataset

engine Diesel
speedbin 15

co 0.314144
co2 1108.17
nox 0.847415
pm10 0.3404848
pm25 0.0525447
voc 0.05829

o EngineTechnology;

« Pollutant.

Object and datatype properties were also created to interrelate instances of these classes.
Source attributes corresponding to a pollutant were instantiated as members of the classPollutant.
Aninstance of EmissionProfile describes the emission rates of a certain pollutant, for a given
instance of EngineTechnology, foraspeed bin. Figure 5.9 illustrates the example shown in Ta-
ble 5.11.

& bosplt:EmissionProfile15

—hasEngineTechnology—>& Jslef o] iHb][H1:]

—isRelatedToPollutant—-R Nsfe]s] 1 H 0]

~——hasSpeedBin—— {15

‘—hasEmissionRate_gmi—»0.314144

Figure 5.9: RDF graph of an emission profile based on the example of Table S.11

To facilitate the retrieval of emission rates for a given speed, a SPIN function was created. The
function is not part of the default VUMO implementation, and was developed for this particu-
lar case, thus belonging to the bosplt namespace. The function getEmissionsRate expects
three arguments in the following order: engine technology, pollutant and speed. To find the ap-
propriate speed bin, the integer part of the speed is retrieve by using the FLOOR () function. The
query corresponding to this function is given by the following serialization.

SELECT 7rate

WHERE {
7emissionprofile rdf:type :EmissionProfile ;
7emissionprofile :hasEngineTechnology 7argl ;
7emissionprofile :isRelatedToPollutant 7arg2 ;
7emissionprofile :hasSpeedBin FLOOR(7arg3) ;
7emissionprofile :hasEmissionsRate_gmi 7rate . }
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Based on the example of Figure 5.9, the getEmissionsRate function can be used to esti-
mate the emissions rate of CO for Diesel engines running at 15.7 mph, yieliding 0.314144 g/mi.
getEmissionsRate(bosplt:Diesel,bosplt:C0,15.7)

5.4 Visualization of public transportation ridership and annota-
tion of extracted knowledge

This section demonstrates the development of visualization prototypes for exploring actual and
potential public transportation ridership in the context of Porto, based on information from datasets
PRT1 (ticket validations) and PRT?2 (travel intentions from Move-me). We focus on the seman-
tic annotation of visualization techniques, and showing how VUMO can support the annotation
of knowledge that was extracted during exploratory data analysis, so it could be further used to
support other analytical tasks and enrich the original instance data graph.

A map-based and an abstract visualization techniques were developed: geographic (Geo-
HeatMap) and calendar (CalHeatMap) heat maps, respectively. The former depicts the density
of instance data in geographic space. The latter depicts density in a daily arrangement. Each day
is assigned to a color in a pre-defined color scale, according to the number of occurrences. Figure
5.10 provides the schematic representation of both visualization techniques.

GeoHeatMap requires the following input variables: (i) an event instance; (ii) spatial and
(iii) temporal references (instant). Variable (i) receives the entity to be plotted, (ii) provides
the instance coordinates on a map, and (iii) is used for temporal filtering. CalHeatMap requires
variables (i) and (iii). Overview, semantic zoom and dynamic queries are available in both tech-
niques. By construction, CalHeatMap requires aggregate data, while GeoHeatMap does not.

The serialization below provides the semantic annotation for both techniques. The annota-
tion of the CalHeatMap technique makes use of the input variables defined for the GeoHeatMap
technique.

// Semantic annotation of the geographic heat map visualization technique
sumvis:GeoHeatMap rdf:type :VisualizationTechnique ;

rdf:label "Geographic heat map"

:hasFrameOfReference :Geographic ;

:hasSpatialDimensionality :2D ;

:hasTemporalRepresentation :Static ;

:hasTemporalArrangement :Linear ;

:hasInteractionTask :0verview :DetailsDemand :DynamicQueries ;

:hasInputVariable sumvis:varl sumvis:var2 sumvis:var3.

// Variable for each event instance

sumvis:varl rdf:type :InputVariable ;
:hasCompatibleValueType rdfs:Resource ;
:isRequired true .

// Variable for spatial reference
sumvis:var2 rdf:type :InputVariable ;
:hasCompatibleValueType rdfs:Resource ;

:isRequired true .

// Variable for temporal reference

134



Zoomable map

Events (?var1) with spatial references (?var2)
Filtered by date (?var3)

(a) Schematic representation of the Geographic heat map visualization technique

N Od e. bSpatial reference filter (?var2)

,.{ Y items on Friday
-_—

—
- Details on demand interaction

L — by hovering the mouse over a cell

Color-coded day cells according to the count of events (?var1)
Day is indicated by ?var3

M O NTH—> Dynamic month grid according to the selected interval

(b) Schematic representation of the Calendar heat map visualization technique

Figure 5.10: Geographical and calendar heat maps implemented in SUMVis
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sumvis:var3 rdf:type :InputVariable ;
:hasCompatibleValueType rdfs:Resource ;
:hasCompatibleValueType xsd:dateTime ;
:isRequired true .

// Semantic annotation of the calendar heat map visualization technique
sumvis:CalHeatMap rdf:type :VisualizationTechnique ;

rdf:label "Calendar heat map" ;

:hasFrameOfReference :Abstract ;

:hasSpatialDimensionality :2D ;

:hasTemporalRepresentation :Static ;

:hasTemporalArrangement :Linear ;

:hasInteractionTask :0verview :DetailsDemand :Filtering :DynamicQueries ;

:hasInputVariable sumvis:varl sumvis:var2 sumvis:var3.

Let ATO be an analytical task represented by an instance of Transformation, which pro-
vides information about "Actual and potential public transportation ridership”. The data trans-
formation has five output variables:

sumvis:ATO rdf:type :Transformation .
rdf:label "Actual and potential public transportation ridership"
spin:query "SELECT 7ev ?lat 7long 7time COUNT (7node) AS 7total
WHERE {
7event rdf:type (:TicketValidation OR :ScheduleRequest)
7event :hasDateTime 7time ;
:occursAtNode 7node .
?node geo:lat 7lat ;
geo:long 7long .
FILTER (?time >= 7argl && ?time <= ?7arg2) } .
GROUP BY 7node"

The parameters argl and arg?2 are placeholder values that can be changed by the user.

From R3 and axiom Al, it follows that ATO contains a Discrete spatial distribution, as the
property occursAtNode has Node as its range, which is defined as semantically equivalent to a
KnownPoint. R4yieldsthe themes (tag) TicketValidationand NextDeparturesRequest.
It follows from R6 that ATO returns aggregate results due to the COUNT function.

It follows from R7 that ATO is compatible with CalHeatMap, but not GeoHeatMap, due to
the aggregate results requirement. The inference yields the following triples:

sumvis:ATO :isCompatibleWith sumvis:CalHeatMap ;
:isNotCompatibleWith sumvis:GeoHeatMap .

Consider another instance of Transformation, ATO_non_agg, thatimplements the same
query as ATO except for the aggregate function. The corresponding serialization is given below.

sumvis:ATO_non_agg rdf:type :Transformation .
rdf:1label "Actual and potential public transportation ridership, with no

aggregation"
spin:query "SELECT 7ev 7lat 7long 7time 7node
WHERE {
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7event rdf:type (:TicketValidation OR :NextDeparturesRequest)
7event :hasDateTime 7time ;
:occursAtNode 7node .
?node geo:lat 7lat ;
geo:long 7long .
FILTER (?time >= 7argl && ?time <= 7arg2) } ."

Hence, R7yields that ATO_non_aggis compatible with GeoHeatMap, butnot CalHeatMap:

sumvis:ATO_non_agg :isCompatibleWith sumvis:GeoHeatMap .
:isNotCompatibleWith sumvis:CalHeatMap .

Figure S.11 demonstrates the GeoHeatMap technique showing data retrieved with the ana-
lytical task ATO_non_agg, with focus on the Boavista region of the city of Porto during a week-
day.

Figure S.11: The geographic heat map visualization technique coupled with an analytical task
related to public transportation ridership in Porto

Figure 5.12 demonstrates the CalHeatmap technique coupled with analytical task ATO, for
a weekday in the Trindade subway station, which is the main subway hub of Porto.

As users explored data using the CalHeatmap technique, it was possible to identify an abnor-
mal amount of information requests for next departures, by hovering the mouse on that particular
day. The number of requests is related to the public transportation strike that occurred on June
27th, 2013. The CalHeatMap prototype was used to relate all schedule requrest instances on that
date to anew event asserted as Strike27Jun13, which is an instance of UnexpectedEvent. Figure
5.13 shows the resulting graph.
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Figure 5.12: The calendar heat map visualization technique showing ridership information for
the Trindade subway station in Porto
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Figure 5.13: An instance of UnexpectedEvent is used to represent a public transportation system
strike in Porto, which is related to several ScheduleRequests
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5.5 Visualization of multi-level Origin-Destination flows

The goal of this section is to provide a comprehensive description of the semantic annotation
of the proposed visualization techniques, and the empirical knowledge collected from domain
users through exploratory usability tests. Furthermore, we provide an illustrative example of rec-
ommendation strategy, which was derived from the feedback obtained during the usability tests.
This strategy required the design of an additional rule that attempts to derive analytical profile of
a data transformation based on its structure. Finally, the rule was implemented in VUMO.

We carried a user-centered design process for the visualization of origin-destination flows, to
take advantage of the collected data from both cities, and empirical knowledge from domain users
from distinct contexts and backgrounds. We adopted the process described in Section 4.11.

For this study, we involved five academic researchers from Porto and Boston, a former trans-
portation analyst from MassDOT, and four master students in Transportation from MIT. Due
to the number of participants and their availability for the experiments, we considered appropri-
ate to carry exploratory usability tests combined with qualitative interviews, as it yielded positive
results from our past experience [3]. Most participants were not acquainted with semantic web
technologies or ontologies, although they were familiar with visualization and databases.

The exploratory usability tests with experts followed the coaching method proposed by Mack
and Robinson [172] combined with a semi-structured interview given during the session. The
combination of different usability methods is well acknowledged in usability research [172]. The
most distinguishing feature of the coaching method in comparison to other evaluation methods
relies on the active involvement of the mediator during the test, who can actually steer users in
the right direction while using a system. We argue that the exploratory nature of our study is
appropriate the coaching method was considered more adequate.

Exploratory usability tests consisted of four phases:

« Briefing: Presentation of the goals for the exploratory usability test. When applicable, we
presented an overview of the main findings and decisions from the previous meeting;

« Exhibition of visualizations: Presentation of the visualization prototypes and their fea-
tures;

« Free exploration: Users were invited to explore the visualization prototypes and interact
with their functionalities;

« Debriefing: Final considerations and review of requirements, ideas and potential sugges-
tions.

Finally, we asked users to provide ratings and cross ratings according to one or more cri-
terion available in SUMVis, e.g. recommended analytical profile, visual clutter, recommended
theme. The system provided a simple visual interface that facilitated the input of empirical knowl-
edge and their conversion to triples, as shown in Figure 5.14. The selection of the rating com-
ponent automatically filters the feasible entries. In Figure 5.14, when the user chooses to pro-
vide feedback about recommended analytical profile (1), the available values, i.e. instances of
AnalyticalProfile are shown (2). The checkbox transforms the visualization technique rat-
ing into a cross rating, by linking it to the analytical task that is actually being shown by the visual-
ization technique. In Figure 5.15, focus is given to a quantitative rating component (1). The cor-
responding scale for that rating component is automatically shown, according to its polarization,
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i.e. whether the component is an instance of NegativeRatingComponent or Positive-
RatingComponent.

Rating form ( 1 ) Rating form (2)
~ Link analytical task to this rating ~ Link analytical task to this rating
Rating component: Rating component:

Analytical Profile (hasAnalyticalProfile)

<«

Analytical Profile (hasAnalyticalProfile)

<«

Rating value: noae 1

<«

Strategic v Strategic
Analytical

Macroscopic
Microscopic
Submit rating ubmit rating

Figure 5.14: Rating form for visualization techniques and data transformations, with focus on a
qualitative rating component

Qualitative Ratings ( 1 ) Rating form (2)
Recommended Theme (hasRecommendedTheme)
Unrecommended Theme (hasUnrecommendedTheme)
Analytical Profile (hasAnalyticalProfile)

" Link analytical task to this rating

e . Rating component:
Quantitative Ratings
v  Effectiveness Effectiveness 5
Visual Complexity
Readability .
Rating score:

Visual Clutter

1 (worst) )2 73 74 5 (best)

Strategic

Submit rating

Figure S.15: Rating form for visualization techniques and data transformations, with focus on a
quantitative rating component

<«

5.5.1 Context of analysis

During the context of analysis phase, we asked users to elicit possible and relevant analytical tasks
to be done with origin-destination flows data. To avoid steering users to typical answers, no detail
was provided about the structure of datasets, except for their nature, i.e. ridership data. The users’
inputs could be categorized into three analytical tasks:

« AT1: Aggregate flows between subway lines;
« AT?2: Aggregate flows between fare and geographic zones;
« AT3: Granular flows between stops.

Such tasks were instantiated in SUMVis as data transformations according to the following
serialization.
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// Analytical task AT1
sumvis:AT1 rdf:type :Transformation .
rdf:label "Aggregate flows between subway lines"
spin:query "SELECT ?7linel 7line2 7time SUM(7flow) AS 7totflow
WHERE {
?flow rdf:type :0DFlow .
?flow :hasDateTime 7time .
?flow :hasPath 7path .
?path :hasOrigin 7origin .
?path :hasDestination 7destination .
7origin :isPartOfRoute 7routel
?destination :isPartOfRoute 7route2 .
?routel :isPartOfLine 7linel
?route2 :isPartOfLine 7line2
FILTER (?time >= 7argl && 7time <= 7arg2) . }
GROUP BY 7linel 7line2"

// Analytical task AT2
// 7arg3 should be :Zone or schema:AdministrativeArea
// in case of a fare zones or boroughs, respectively.
sumvis:AT2 rdf:type :Transformation .
rdf:label "Aggregate flows between Porto fare zones or boroughs"
spin:query "SELECT 7zonel 7zone2 7time SUM(7flow) AS 7totflow
WHERE {
?flow rdf:type :0DFlow .
?flow :hasDateTime 7time .
?flow :hasPath 7path .
?path :hasOrigin 7origin .
?path :hasDestination 7destination .
?7origin :isLocatedInZone 7zonel
?destination :isLocatedInZone 7zone2 .
?zonel/?zone2 rdf:type 7arg3 .
FILTER (7time >= ?7argl && ?time <= ?arg2) . }
GROUP BY 7zonel 7zone2"

// Analytical task AT3
sumvis:AT3 rdf:type :Transformation .
rdf:label "Granular flows between stops"
spin:query "SELECT 7origin 7destination 7time SUM(7flow) AS 7totflow
WHERE {
?flow rdf:type :0DFlow .
?flow :hasDateTime 7time .
?flow :hasPath 7path .
?path :hasOrigin 7origin .
?path :hasDestination 7destination .
7origin/7destination rdf:type :Node.
FILTER (?time >= 7argl && ?time <= 7arg2) . }
GROUP BY 7origin 7destination"

In accordance to SPIN logic, placeholders of the form ?argn are provided by the user, as
transformations are, in fact, query templates, i.e. subclasses of spin:Template.

Itisinferred from R6 that all transformations return aggregate results, due to the SUM operator.
From R4, it follows that all transformations induce a Graph spatial distribution. The inferred tags
(themes) of each analytical task are described in Table S.12.
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Table 5.12: Inferred tags for analytical tasks

Analytical task  Themes

AT1 ODFlow, Node, Route, Line
AT2 ODFlow, Node, Zone
AT3 ODFlow, Node

Still during this phase, some users spontaneously pointed that it would be valuable for the tool
to infer the analytical profile of a task based on its structure, i.e. if a transformation provides infor-
mation that best suits strategical or operational contexts, or macroscopic or microscopic analysis.
Based on this requirement and on the ontology structure, we empirically formulated a strategy to
suggest the analytical profile of a transformation, which consists of the following high-level steps:

1. Evaluate how broad/narrow are the output variables from a query body that return in-
stances of UrbanMobilityConcept;

2. Infer the profile (strategic vs. operational, and macroscopic vs. microscopic) based on a
pre-established calculation.

The evaluation of broadness/narrowness of a concept considered the number of concepts
that are broader/narrower, based on asserted triples that contain the predicates skos :broader
or skos :narrower, or its transitive counterparts. The calculation involves an arithmetic aver-
age of the assigned measures for each output variable 0;. A measure of -1 is assigned to o; if the
cardinality of the set of classes that are broader than the class of 0; is greater than the cardinality
of the set of classes that are narrower. Conversely, a measure of 1 is assigned. If the cardinality is
the same, () is assigned.

1. For each output variable 0; of a transformation, with o; € O;
2. Ifvariable o; returns instances of UrbanMobilityConcept;
3. Retrieve the number of concepts broader than o; and store in set B;

4. Retrieve the number of concepts narrower than o; and store in set V;

S. If#B > #N, assign M (0;) = —1;
6. If#B < #N, assign M (0;) = 1;
7. If#B = #N, assign M (0;) = 0;

n

8. Calculate v = )
i=1

M(o) |
#0O

9. If @ > 7,7 > 0, then the transformation is suggested to have strategic and macroscopic
profiles, where 7 is a pre-defined threshold;

10. If & < T, then the transformation is suggested to have operational and microscopic pro-

files;
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11. Ifa < ||7||, both analytical profiles are suggested.

For this study, the threshold 7 = 0.3 was chosen. The strategy was intuitively described to
domain users, who agreed with the proposed approach and threshold definition after a number
of iterations. To verify if an output variable is an instance of UrbanMobilityConcept, the rule
retrieves the domain/range from conditions within the WHERE statement in which such variable
is either a subject or object. The retrieval of concepts broader/narrower than the output variable
benefits from the implemented functions getBroaderConcepts and getNarrowerConcepts
described in Section 4.8. For instance, the proposed rule infers that AT1 has a strategic profile.
Both output variables return instances of Line. Hence, B = {Zone},and N = {Route, Route
Segment, Node}, yielding cyry = 1. Analogously, transformations AT2 and AT3 have aiyrp = 1
and a3 = —1, respectively.

5.5.2 Conceptual development and prototyping

We proposed two visualization techniques typically used, according to the literature review, to
depict origin-destination flows: heat map matrices and chord diagrams. Both techniques have
been used in other domains for visualization of data that follows a source-destination structure.

During conceptual development, we asked users about the desired type of interactivity. At
this point, we did not mention the formal terms that are usually referred to interaction tasks (see
Subsection 2.1.2). Answers consisted of mechanisms that could allow an overview of all flows,
and detailed information for specific origin-destination pairs. Users considered relevant to pro-
vide a means of filtering origins/destinations. Such interactions correspond to the following in-
teraction tasks: overview, details on demand, filtering, and dynamic queries.

In SUMVis, the heat map matrix allows the user to know the exact flow between a pair of
locations by placing the mouse cursor over a matrix cell. Monochromatic, grayscale tones are
automatically adjusted according to the magnitude of flows. As a design limitation, it is not pos-
sible to filter one or more origin-destination pairs, although it is possible to filter a specific line or
column.

The structure of the visualization technique requires four input variables, as illustrated in Fig-
ure 5.16. Variables varl and var2 expect instances or string literals for source and destination.
var3 expects a numeric value for the flow between varl and var2. var4 expects a timestamp.

The serialization below corresponds to the semantic annotation of the heat map matrix.

// Semantic annotation of the heat map matrix visualization technique
sumvis:heatmapmatrix rdf:type :VisualizationTechnique ;

rdf:1label "Heat map matrix" ;

:hasFrameOfReference :Abstract ;

:hasSpatialDimensionality :2D ;

:hasTemporalRepresentation :Static ;

:hasInteractionTask :0verview :DetailsDemand :Filtering :DynamicQueries ;

:hasInputVariable sumvis:varl sumvis:var2 sumvis:var3 sumvis:var4 .
// Variable for source
sumvis:varl rdf:type :InputVariable ;

:hasCompatibleValueType rdfs:Resource ;
:hasCompatibleValueType xsd:string ;
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Events described in terms of
sources (?var1) and destinations (?var2)

\

Filtered by date and time (?var4)

Color-coded flow amount between
source and destination (?var3)

Figure 5.16: Schematic representation of the heat map matrix visualization technique

:isRequired true .

// Variable for destination

sumvis:var2 rdf:type :InputVariable ;
:hasCompatibleValueType rdfs:Resource ;
:hasCompatibleValueType xsd:string ;
:isRequired true .

// Variable for flows (quantitative values)

sumvis:var3 rdf:type :InputVariable ;
:hasCompatibleValueType xsd:decimal ;
:hasCompatibleValueType xsd:float ;
:isRequired true .

// Variable for timestamps

sumvis:var4 rdf:type :InputVariable ;
:hasCompatibleValueType xsd:dateTime ;
:isRequired true .

The chord diagram technique, also abstract, provides information about the exact flow be-
tween origin and destination, and vice-versa, by placing the mouse over a chord. In addition,
the remaining chords are occluded to reduce visual clutter and provide focus, while keeping the
user aware of other flows (focus plus context). The width of a chord is given by the highest flow
between a origin-destination pair. The arc size for each location is given by the sum of its chords
widths. Itis possible to filter locations by clicking on alocation name. This procedure recalculates
the chord diagram, as show in Figure 5.17.

Itsinteraction tasks are overview, details on demand, focus plus context, filtering and dynamic
queries. The chord diagram structure requires the same input variables as the heat map matrix, as
shown in Figure 5.18. Therefore, they were omitted from the annotation herein described.

The technique contains the following semantic annotation:
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Figure 5.17: Focus plus context interaction on the chord diagram visualization technique

Events described in terms of
sources (?var1) and destinations (?var2)

Flow amount between source
and destination (?var3)

Filtered by date and time (?var4)

Figure 5.18: Schematic representation of the chord diagram visualization technique
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// Semantic annotation of the chord diagram visualization technique
sumvis:chorddiagram rdf:type :VisualizationTechnique ;

rdf:label "Heat map matrix" ;

:hasFrameOfReference :Abstract ;

:hasSpatialDimensionality :2D ;

:hasTemporalRepresentation :Static ;

:hasInteractionTask :0verview :DetailsDemand :FocusContext ;

:hasInteractionTask :Filtering :DynamicQueries .

The rule R7 infers that the proposed visualization techniques are compatible with transfor-
mations AT1, AT2 and AT3, as it is possible to provide a mapping between their output and input
variables, as illustrated in Figure 5.19 for the particular case of AT1, which is analogous to the re-
maining transformations, with the exception of them having zones and nodes as output variables.

hasOutputVariable—»E 3414

— mapsOntolnputVariable- & XA 8l

hasOutputVariable—»£ ¥V

|L hasOutputVariabIe—> — mapsOntolnputVariable- & X0\ IR ]

L hasOutputVariable—»-E Watejii[e\\/M— — mapsOntolnputVariable- —»& X0 s\ IR

— mapsOntolnputVariable- & X0\ IEA% ¥4

Figure 5.19: Compatibility inference between the heat map matrix and chord diagram techniques
with an analytical transformation

5.5.3 Evaluation

Heat map matrix

All users were familiar with the heat map matrix, which was considered useful to support the three
analytical tasks, and OD flows in general. However, users from Porto context were more inclined
to use apply it to AT1 and AT2 instead of AT3, as they were more interested on the macroscopic
flows between zones and lines. Moreover, they stated that the visualization technique becomes
less effective when the number of items is too large, as in the case of AT3. Users from Boston
context with an operational background considered the technique appropriate to visualize AT3,
as it was still capable of revealing clusters of significant flows. Figure 5.20 shows the technique
combined with analytical task AT2, using data from Porto. In Figure 5.21, we provide a graphical
representation of some of the ratings that were described in terms of VUMO components.

Chord diagram

Half experts were already acquainted with the concept of chord diagrams, although the majority
(8 out of 10) were initially confused about the visual representation, due to the hairball visual
clutter, as all chords are shown simultaneously. After showing the interaction mechanisms, all
users stated that the visualization became useful.
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Figure 5.20: Heat map matrix applied to an analytical task that shows OD flows between Porto
fare zones (AT2)

On regards to specific analytical tasks, the data transformation AT3 was considered unfeasible
by users from Porto context, due to the massive amount of stops that should be represented. Con-
versely, users from Boston context considered that the visualization provides interesting insights
about flows within the MBTA subway network, at the lines and stops level. The visualization was
considered appropriate for AT1 (Figure 5.22) and AT3 (Figure 5.23), as the number of locations
is ideal to prevent excessive visual clutter, which can also be tackled with the filtering capabili-
ties. Users from Boston context stated that color coding would significantly increase readability
of AT1 and AT3. In this case, colors would refer to subway lines.

5.5.4 Buildinga VUMO-assisted recommendation method

After the evaluation phase, we approached some researchers from our sample to collect some
insights on building a reccommendation method based on empirical knowledge that can be de-
scribed with VUMO components. The goal was not to propose a one-size-fits-all recommen-
dation method, but to evaluate to which extent VUMO components can, in fact, retrieve such
empirical knowledge to feed various recommendation approaches. In this subsection, we show
the resulting recommendation algorithm and exemplify its execution with two domain users. The
output of the method is a score for each visualization technique, and a rank based on all assigned
scores. The method is based on three premises. Given an analytical task and a technique:

1. Feedback about any criteria given by a domain user has a higher weight than feedbacks
given by other domain users about the same criteria;
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Figure 5.22: Chord diagram applied to an analytical task that shows OD flows between MBTA
subway lines (AT1)

2. Feedback given by domain users with the same analytical profile has a higher weight than
the ones given by users with different profiles;

3. Cross ratings have a higher weight on score calculation than visualization technique rat-
ings.

In this particular implementation, let U be the set of users of the visualization tool, and u* a
user who has an active session on the tool. The weight of a user w,, is defined as follows:

2 u=u*
1 otherwise
Given a rating 7, the weight w, of cross ratings and visualization technique ratings are the
following:

2 r € CrossRating
1 r € VisualizationTechniqueRating

After the selection of an analytical task Z, the tool retrieves the list of compatible visualization
techniques V; = {v; }.
The method requires the following inputs:

« u*: user with active session on the visualization tool;

« U: set of all domain users u such that © € DomainUser;
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Figure 5.23: Chord diagram applied to an analytical task that shows OD flows between MBTA
stops (AT3), hence with higher granularity than AT1 (top). By hovering the mouse over a chord,
the visualization presents detailed information about the flow between two stations (bottom)
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o 1: selected analytical task;
« V' = {v'}: set of visualization techniques that are compatible with ¢.

The method calculates, for each visualization, an aggregate rating based on the scores of all
users. For each user, the aggregate rating, for cross ratings or visualization technique ratings, is
given by the arithmetic average:

>
m;
p(vf,u) = =

’ M

where m; is the contribution of a numeric score for a rating component. On regards to quan-

titative rating components, the contribution is calculated as follows:

« In case the rating component is a PositiveRatingComponent, the actual score given
by the user is used, e.g. 4 out of 5;

« If the rating component is a NegativeRatingComponent, the score is subtracted from
the maximum value of the implemented scale, e.g. a score of 3 out of 5 yields a score of 2.

The generalized formula for the aggregate rating for all users is given by:

U u’
'Zl Wy por (v u;) 2:1 Wy prr(v! Suj)
Wop——F—— t Wrr——
Z Wy, z W
plt) = ——=
WoR + WrR

where w,, is the weight of a user.

For positive or negative qualitative rating components, the maximum or minimum value of
the implemented scale is assigned when the value matches the respective feature of an analytical
task. For instance, if a user stated that a visualization technique is recommended for visualizing
TicketValidation, and this tagis also part of the analytical task (inferred by rule RS), a score
of § is assigned to this rating component. If the rating component has a negative nature, a score
of 1 is assigned.

A practical implementation consisted of creating several SPIN functions, where each func-
tion is responsible for performing part of the calculation process. Although the formula could be
completely implemented in one query, we opted to fragment it into several functions for the sake
of modularity. We started by defining a function that calculates the contribution of quantitative
scores, according to the aforementioned definition. Here, we omitted the namespace sumvis in
which those functions were declared.

The function getScoreContribution(c, s) expects aninstance of RatingComponent,
¢, and a numeric score s. The following query is encapsulated into the function:

SELECT 7contribution
WHERE {
¢ rdf:type :RatingComponent .
c :hasMaximumScore 7maxscore .
BIND(
IF(c rdf:type :PositiveRatingComponent, s, 7maxscore - s)
) AS 7contribution }
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The function getValueContribution(c) expects an instance of RatingComponent, c.
The following query is encapsulated into the function:

SELECT ?7contribution
WHERE {
c rdf:type :RatingComponent
BIND(
IF(c rdf:type :PositiveRatingComponent, 5, 1)
) AS ?contribution }

The function getAggUserVisTechniqueRating (u,v) returns the global rating given by
user 1 about a visualization technique v. The following query is encapsulated into the function:

SELECT AVG(7contribution) AS 7aggrating
WHERE {
?rating rdf:type :VisualizationTechniqueRating .
?rating :isAboutVisualizationTechnique v .
?rating :madeByUser u .
?rating :hasRatingStatement 7stmt
{ 7stmt :hasRatingComponent ?component
?stmt :hasRatingScore 7score
BIND( getScoreContribution(?score) AS ?contribution ) . }
UNION
{ 7stmt :hasRatingComponent ?component
7stmt :hasRatingCategoricalValue 7value
BIND( getCategoricalValueContribution(?value) AS ?7contribution ) . }

The function getAggUserCrossRating(u,v,t) returns the global cross rating given by
user U to a visualization technique v and transformation ¢. The query is similar to the one for
visualization technique ratings, only differing by an extra condition related to a transformation ¢.

SELECT AVG(7contribution) AS 7aggrating
WHERE {
?rating rdf:type :VisualizationTechniqueRating .
?rating :isAboutVisualizationTechnique v .
?rating :isAboutTransformation t
?rating :madeByUser u .
?rating :hasRatingStatement 7stmt
{ 7stmt :hasRatingComponent ?component
?stmt :hasRatingScore 7score
BIND( getScoreContribution(?score) AS 7contribution ) . }
UNION
{ 7stmt :hasRatingComponent ?component
?stmt :hasRatingCategoricalValue 7value
BIND( getCategoricalValueContribution(?value) AS 7contribution ) . }

The function getTotalUserRating(u,v,?,wcr,wrr) returns the user rating for a vi-
sualization technique v.

SELECT 7totuserrating
WHERE {
u rdf:type :DomainUser .
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v rdf:type :VisualizationTechnique .
t rdf:type :Transformation .
{ BIND ( getAggUserVisTechniqueRating(u,v) ) AS 7techniquerating . }
UNION {
BIND ( wTR * getAggUserVisTechniqueRating(u,v) ) AS 7techniquerating .
BIND ( wCR * getAggUserCrossRating(u,v,t) ) AS 7crossrating .
BIND ( (7aggvisrating + Paggcrossrating)/(wTR + wCR) AS 7totuserrating . }}

Finally, the function getTotalRating(v,t,wcr,wrr) returns the global rating for a vi-
sualization technique v.

SELECT SUM(?7userrating)/7usercount AS ?globalrating
WHERE {
u rdf:type :DomainUser .
v rdf:type :VisualizationTechnique .
t rdf:type :Transformation .
BIND ( IF(u = u*x, 2, 1) ) AS wU ) // Weight of user
BIND ( wU * getTotalUserRating(u,v,t,w_CR,w_TR) AS 7userrating . )
BIND ( wU * getTotalUserRatingCount(u,v,t,w_CR,w_TR) AS 7userratingcount . )
}

Example As an illustration, consider the ratings for the heat map matrix represented in Figure
5.21. Assuming that there are no other ratings on the system, the aggregate total cross rating
given by sumvis:User2is:

3+ (5—4)
2

GiventhatVisualClutterisaninstance of NegativeRatingComponent, the score con-
tribution to the average is 1, assuming 5 as the maximum allowed value. The visualization tech-

=2

nique rating given by sumvis:User3 is given by the expression:

5+5

2

As AT? has the tag ODF1low and a Strategic profile, a contribution of S is assigned for each
match.

The global average rating for the heat map matrix, with respect to AT2, is then given by the

5

expression:

2:2+1-5
3

Where 2 and 1 are the weights assigned for w¢ g and wrg, respectively.
As aresult, the aforementioned functions allows one to easily implement a personalized rank

=3

of visualization techniques for a given analytical task, even in situations where the number of
ratings is small. In the case of a cold start, visualization techniques can still be recommended just
by evaluating their compatibility with analytical tasks.

5.6 Visualization of emissions in bus corridors

This section describes a user-centered design process for the development of a proof-of-concept
visualization prototype for emissions in bus corridors, which is expected to be implemented into
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an existing visualization system for urban mobility planning. The first goal is to demonstrate how
analytical tasks can combine constructs that are not originally present in VUMO, in accordance
to some of the datasets presented in Section 5.3, namely BOS3 and BOS4. The second goal is
to demonstrate the role of domain user feedback on the definition and modification of analytical
tasks.

5.6.1 Context of use analysis

CoAXs is an interactive planning and visualization tool developed at the Department of Urban
Studies and Planning of MIT. The tool allows users to evaluate the impacts of different transporta-
tion scenarios on regards to accessibility metrics, i.e. travel time and number of job opportunities
that can be reached. Some examples of scenario characteristics are bus speeds or frequencies,
and alternative route paths for a same corridor. Ultimately, the goal is to foster stakeholder en-
gagement and collaborative involvement in transportation decision making. The tool combines a
map-based visualization of accessibility metrics and an abstract visualization technique such as a
bar chart. The tool can be customized to meet the requirements of each city, and has been imple-
mented in cities like Boston, New Orleans, Atlanta and San Francisco. Figure 5.25 shows CoAXs'’
interface customized for the city of New Orleans. Isochrones reflect the travel time for baseline
(blue) and new (orange) scenarios. The bar chart effectively shows the variation on the access to
job opportunities.

CoAXs | New Orleans 1 Home Page 2 Get to know CoAXs @ 3 Create Your Own Scenario @ 4 Exit Survey

Legend P (#'Service Editor - Editing Route 16
= RTA #16 S. Clalborne JeT #E3 Kenner Local  JeT #E5 Causeway
w==JeT #E3 Kenner Local 368 - Ext 1o Och
m—JoT #E5 Causeway JIBASG T Eouts
D Baseline accessiblity area 16C - Ext to Clearview

New scenario accessiblity area

Transit network:

30 min [l

[ 16A 30 minj#ven: 2
[EJE3A [24 minj#ven: 4
[EHEsA l27 minj#ven: 3

@ View the Baseline

[ 164 130 minj#ven: 2
[ZJE3A [24 minj#veh: 4
[EE5A [27 minj#ven: 3

| & Compare with Baseline |

q O@Time Map

30 min [ 1] ]

Jobs Reachable ®

Base
Scenario 43,300

New.
Scenario

0 100000 200,000 300,000 400,000

Leaflet | © OpenStreetMap contributors

Figure 5.25: CoAXs customized for New Orleans

In addition to accessibility metrics, one of the project’s goals is to allow stakeholders to visu-
alize and compare the impact of scenarios on emissions in bus corridors, in terms of parameters
such as route frequency or engine technology. Given that CoAXs aims to involve stakeholders
from various perspectives and backgrounds, including citizens, one of the requirements was that
visualizations should be simple and intuitive.

Initially, a fundamental decision consisted of the level of aggregation for analyzing emissions:
from route or route segment levels. Although the analysis by route segments can be effective for
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showing critical hotspots, it may induce incorrect reasoning on regards to the actual concentra-
tion of pollutants. It was then decided that the visualization should intentionally err on the side
of being general, and provide a caveat on regards to emissions visualization: the tool does not aim
to depict the dispersion of pollutants, but to provide the big picture of the impact of emissions at
each segment for a certain bus technology and route characteristics, e.g. headway.

The second decision consisted of choosing which variable should be prioritized on the main
visualization interface, i.e. map interface: average speeds or total amount of emissions. Given
that polluted hotspots are related to segments with lower average speeds, such variables are di-
rectly related, although it was stated that the latter could be more difficult to be understood by
stakeholders such as general public. An initial analytical task was defined:

« AT4: Average speed by route segment for a given engine technology.

The annotation of the analytical task is given by the following transformation:

// Analytical task AT4
sumvis:AT4 rdf:type :Transformation .
rdf:label "Average speed on route segments for Boston during AM peak"
SELECT 7avgspeed 7routesegment 7line
WHERE {
?reading rdf:type :Reading .
?reading :isRelatedTolLine 7line .
?reading :isRelatedToRoute 7route .
?reading :isRelatedToRouteSegment 7routeseg .
?reading :hasTemporalEntityReference bosod:ampeak .
?reading :hasAverageSpeed 7avgspeed . }

From inference follows that AT4 has a Graph spatial distribution, as it refers to route seg-
ments. AT4 has the tags Reading, Line, Route and RouteSegment. The suggested analytical
profiles are Strategic and Operational, as aary = 0.

5.6.2 Prototyping

Although the visualization techniques were developed on top of SUMVis, the proposed proto-
types were expected to be implementable on CoAXs. Therefore, it was important to ensure that
the visualization techniques could be reproduced using the same technological stack. We initially
proposed a line-based heat map for the exploration of average speeds of route segments (AT4).
The visualization technique had interaction mechanisms for filtering by specific bus lines. When
a particular route segment was selected, additional details were revealed. By rule R6, the tech-
nique is compatible with AT4. The semantic annotation of the visualization technique is given
by the following serialization.

156



+ Brookline

STNUT HIl

verage speed (mph)

510 Lee St @ Warren St
Lee St @ Sears Rd

I 2025 6.59 mph

Figure 5.26: Interactive line-based heat map for visualization of average speed on route segments.
Details are provided when the user selects a route segment
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// Semantic annotation of the line-based heat map visualization technique
sumvis:lineheatmap rdf:type :VisualizationTechnique ;

rdf:label "Line-based heat map" ;

:hasFrameOfReference :Geographic ;

:hasSpatialDimensionality :2D ;

:hasTemporalRepresentation :Static ;

:hasInteractionTask :0verview :DetailsDemand :Filtering .

:hasInputVariable sumvis:var_a sumvis:var_b sumvis:var_c ;

// Variable that receives instances of route segments
sumvis:var_a rdf:type :InputVariable ;
:hasCompatibleValueType rdfs:Resource ;
:isRequired true

// Variable for numeric values (quantitative values)
sumvis:var_b rdf:type :InputVariable ;
:hasCompatibleValueType xsd:decimal ;
:hasCompatibleValueType xsd:float ;
:isRequired true

// Variable for time periods or timestamps

sumvis:var_c rdf:type :InputVariable ;
:hasCompatibleValueType rdfs:Resource ;
:hasCompatibleValueType xsd:dateTime ;
:isRequired true

// Variable for time periods or timestamps

sumvis:var_d rdf:type :InputVariable ;
:hasCompatibleValueType xsd:dateTime ;
:isRequired true

5.6.3 Evaluation and second iteration of prototyping

The evaluation took place in two moments: with CoAXs team members, and members involved
in the application of CoAXs instances to their respective cities in countries such as Colombia,
Chile and South Africa, during a workshop session held at MIT. Users agreed with the proposed
technique, and added that the consistency between current CoAXs visualization techniques facil-
itates interaction and understanding of the visual representations. However, users were interested
on more detailed information besides average speed. Concretely, it was required a way of explor-
ing route-level figures of total emissions for various pollutants, and per-segment information of
emissions. Finally, as per the original feature of CoAXs, users wanted to create a scenario in which
a hypothetical engine technology could be selected. To meet the requirements, AT4 was modi-
fied to retrieve information about emissions for each segment. The transformation makes use of
the function getEmissionsRate () defined in Section 5.3.4.

// Analytical task AT4
sumvis:AT4 rdf:type :Transformation .

rdf:label "Average speed on route segments for Boston during AM peak"
SELECT 7avgspeed 7routesegment 7line 7emissionsRate 7pollutantType
WHERE {
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?reading rdf:type :Reading .
?reading :isRelatedTolLine 7line .
?reading :isRelatedToRoute 7route .
?reading :isRelatedToRouteSegment 7routeseg .
?reading :hasTemporalEntityReference bosod:ampeak .
?reading :hasAverageSpeed 7avgspeed .
7engTech rdf:type :EngineTechnology .
?polType rdf:type :Pollutant .
LET (7emissionsRate := :getEmissionsRate(7engTech,?polType,7avgspeed)) . }

A bar chart was coupled with the line heat map to provide additional information on route-
level figures for total emissions (see Figure 5.27). By rolling the cursor over a specific bar, the
visualization shows the total amount of pollutants emitted. We opted to not change the origi-
nal semantic annotation of the visualization technique, as its characteristics remained unchanged
(the input variables in particular).

\verage speed (mph)

Routes

1 30 ] 34 ] 35 ] 36 | 87] 40 ] 50 ] 51

Pollutants

[ c02 | CO ] NOx |

Volume of emissions (kg CO2) per route

Route 36
230434.63 kg

Baseline scenario -New scenario

Figure 5.27: Interactive line-based heat map coupled with bar chart to provide route-level figures
of emissions. Focus on CO, emissions

In Figure 5.28, the bar chart allows for the comparison between current engine technology
(Diesel), and a hypothetical scenario in which only Diesel Hybrid buses were considered. Users
considered that the overlapping results allowed one to easily recognize the impact of the new
scenario.

S.7 Discussion

We argue that the presented case studies provide a comprehensive representation of the possible
applications of VUMO to each of the pipelines of knowledge-assisted visualization systems, and
are aligned with the practical challenges of real world applications of visualization to urban mobil-
ity studies. We also argue that the proposed approach is scalable, given the various requirements
we identified throughout the case studies.

159



Volume of emissions (kg CO2) per route

Route 36
97897.06 kg

o 50 700 150 200 1
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Figure 5.28: Bar chart comparing route-level emission figures for two scenarios. The new scenario
with Diesel Hybrid buses (red) considerably reduces the amount of emissions from the baseline
scenario, which consists of Diesel buses

We demonstrated the significance of data integration for the cities of Porto and Boston. In
Porto, datasets did not conform to standard schemas for urban mobility data. Recalling the exam-
ple of Section 5.2.2, the Trindade subway station has two distinct identifications in datasets PRT'1
(MP30) and PRT2 (TRD). Systems would be unable to associate events to the same spatial refer-
ence, if they were characterized according to the first or second dataset. The semantic alignment
of the corresponding resources portotip:MP30 and portoopt : TRD overcomes such limita-
tion, while preserving the inherent semantics of the identification in each context. We showed
that it is possible to define new standard-based rules to enrich instance data, e.g. for associating
stops and stations to city boroughs, or calculation of emissions rate. For example, by combining
the Porto boroughs’ dataset with other Porto datasets, it could be automatically inferred to which
zone they belonged. This new knowledge can be applied to analytical tasks that involve multiple
spatial granularities, which only depend on the level of detail of the available data. In Section 5.3,
we showed that it is possible to integrate standard-compliant datasets (GTFS) and datasets with
various schemas. Moreover, we demonstrated that VUMO is able to be extended with new con-
cepts, while remaining consistent with the conceptual model which it is based on. The ontologies
surveyed in the literature review are not sufficient to support the activities we carried out in the
case studies, as their constructs do not cover all urban mobility themes we considered for this
thesis, and they do not seem to apply rule-based inferencing to enrich the instance data graph,
and support the process of data visualization.

We consider that the involvement of domain users offered interesting and challenging tasks,
as we strived to meet their requirements using only ontologies and Semantic Web technologies,
in order to provide examples that are independent of any proprietary, non-standard technological
stack. For instance, the rules and recommendation method that were described in this chapter
can be adapted and implemented in other systems, provided that they make use of the VUMO
ontology.

The case studies covered relevant urban mobility topics, as identified in our literature review.
The visualization techniques that were used as practical examples are relevant, as some of their
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variations are often found in surveyed studies (for example, see Figures 3.5, 3.6 and 3.7 for heat
maps, and 3.32 and [105] for chord diagrams).

5.8 Conclusions

This chapter described practical applications of VUMO to semantic integration of urban mobility
data, and user-centered design processes for visualization techniques. The case studies involved
public transportation systems from two distinct cities, using data retrieved from various sources.

In Sections 5.2 and 5.3, we demonstrated the semantic integration of various datasets from
Porto and Boston, in accordance to pipeline (i), by mapping between source data attributes and
VUMO elements. We also demonstrated that new concepts can be introduced and semantically
related to VUMO, as shown in Section 5.3, when integrating data from the emission rates dataset
(BOS4). Ad hoc parsers were then implemented to translate source data onto RDF instance data.

Section 5.4 provided the examples of two visualization technique prototypes built for SUMVis.
We also built a transformation for analyzing public transportation ridership, and showed which
implicit knowledge could be retrieved from VUMO rules, including compatibility with the two
visualization techniques. We also showed how VUMO can support the annotation of new knowl-
edge that is derived from exploratory data analysis. As users could identify an unusual behavior
in the transportation system due to a strike, all the underlying events were related to a new event
that was created to represent the strike.

In Section 5.5, we carried a UCD study for developing visualization techniques to OD flows,
using data from Section 5.2 and 5.3. Those studies intended to evaluate if VUMO components
allowed comprehensive annotation of visualization techniques and empirical knowledge, in ac-
cordance to pipelines (ii) and (iii). We also showed how VUMO components can be used to
create recommendation methods and new rules.

Section 5.6 described an exploratory study for the incorporation of emissions visualization
in bus corridors into CoAXs, using data from Section S.3. We demonstrated how analytical tasks
could change throughout the involvement with domain users, which implied the modification of
the respective data transformations.
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Chapter 6

Conclusions

This research aimed at solving the problem of visualizing heterogeneous urban mobility data. The
proposed solution was centered on the development of the Visualization Urban Mobility Ontol-
ogy (VUMO). The ontology provides the necessary semantic foundation for (i) integration of
spatiotemporal mobility data from multiple sources, and (ii) formal representation of visualiza-
tion and empirical knowledge. We also demonstrated how VUMO can support the development
of semantically-rich, user-oriented visualization tools, in tasks such as finding compatible and
appropriate visualization techniques based on context-specific analytical tasks, and semantic an-
notation of artifacts from UCD processes.

Chapter 2 introduced the theoretical background for our research. The literature review pre-
sented in Chapter 3 showed how visualization and ontologies have been applied to several top-
ics of urban mobility analysis. The chapter highlighted the small involvement of domain users
during the development and evaluation of visualization tools. It also showed that the current
state of ontologies for integration of urban mobility data still asks for further research regarding
spatiotemporal data. Moreover, the application of knowledge-assisted visualization to Transpo-
ration, in particular to urban mobility studies, is still subject to exploration, thus becoming one
of the motivations for this research. Chapter 4 introduced the VUMO ontology, which imple-
ments a novel conceptual model that formalizes spatiotemporal urban mobility data, visualiza-
tion techniques and empirical knowledge. Finally, Chapter 5 described practical applications of
the VUMO ontology supported by a user-centered design methodology, based on the SUMVis
visualization tool prototype.

6.1 Research Questions Revisited

In this section we revisit the research questions proposed in Section 1.3. The first research objec-
tive consisted of developing a visualization-oriented domain ontology for spatiotemporal mobil-
ity data, capable of integrating data and supporting knowledge-assisted visualization systems.

QIl. How to conceptualize the fundamental structure of spatiotemporal mobility data, visual-
ization techniques and empirical knowledge?

Based on the theoretical background proposed in Chapter 2, we defined a novel conceptual
model that interrelates the aforementioned facets, as shown in the UML Diagram in Figure 4.11.
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Regarding spatiotemporal mobility data, an entity (e.g. event) may be characterized in terms
of spatial and temporal references, and thematic attributes. Depending on the type of spatial ref-
erences (e.g. generic points) distinct types of visual arrangements (distributions) emerge (e.g.
quasi-continuous). An immediate result is that various types of mobility events can have their
spatial distribution inferred in terms of the type of spatial references they require. For instance,
ticket validations occur in known points (e.g. bus stops), hence a set of ticket validations induce
a discrete spatial distribution. In cases which VUMO should be extended to include new event
types, their spatial distributions can still be inferred.

The features of a visualization technique are the intrinsic components that characterize it. The
conceptual model specifies four main features categories: input variables, frames of reference,
spatial dimensionality and temporal arrangement. The model also specifies the interaction tasks
that a technique provides.

Transformations represent the possible operations that can be performed on data, e.g. queries.
The results of a transformation are expressed in terms of output variables. A transformation may
have output variables related to spatial references, hence we demonstrated that transformations
also have intrinsic spatial distributions.

Empirical knowledge concepts allow the modeling of the domain users of a system in terms
of their analytical profiles (e.g. strategical). Domain users can provide multiple statements about
visualization techniques which are specified in the form of ratings. We introducd two types of
ratings: visualization ratings describe feedback that is strictly related to visualization techniques.
For instance, a domain user may state that a particular technique is recommended for visualizing
data with quasi-continuous spatial arrangement. Cross ratings provide specialized feedback about
a visualization technique with respect to a transformation. For instance, a domain user can state
that a given visualization technique is recommended to represent "ticket validations at bus stops”

Cross ratings can be exploited by recommendation methods to provide even more accurate
suggestions for domain users, as described in Chapter 6. The conceptual model provides flexi-
bility for specification of quantitative and qualitative rating criteria. For instance, it is possible to
define rating scales for subjective criteria such as ”Visual Complexity” or "Effectiveness”, or qual-
itative criteria using concepts from other parts of the conceptual model. As an illustration, the
model allows the definition of criteria such as "Recommended Analytical Profile” or “Unrecom-
mended Spatial Distributions” VUMO implements various criteria which provide a solid start-
ing point for the development of recommendation methods. Additional criteria can be created
in order to account for different system needs.

Q2. Which concepts should the ontology contain?

The conceptual model that answers Q1 is the basis of the VUMO ontology. After analyzing sev-
eral datasets from transportation systems and Information Visualization theory, VUMO allows
the specification of the infrastructure of a transportation system and the events that occur in it
(members of UrbanMobilityConcept class). Transformations and structural components of
data are specified as in the conceptual model (members of DataConcept class). Visualization
techniques can be annotated in terms of their input variables, which receive the values from out-
put variables in transformations, and other features (members of VisualizationConcept).
The annotation of domain users and their empirical knowledge are given in terms of their analyti-
cal profile and ratings about visualization techniques and transformations (members of Domain-
UserConcept class).
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Finally, a novel contribution consisted on the use of a rule language (SPIN) for reasoning over
instance data that has been semantically annotated with VUMO. We built a set of rules that allows
the inference of implicit knowledge. The most notable capabilities are the extraction of features
from transformations (expressed in queries) and the evaluation of compatible visualizations for
a given transformation. Such set is not meant to be exhaustive; but shows that other rules can be
built under the same rationale.

The second objective consists of proposing an ontology-based foundational framework for
supporting semantically-rich, knowledge-assisted visualization systems.

Q3. How to comprehensively use the ontology on the development of visualization tools for
spatiotemporal urban mobility data?

In Section 5.10, we showed how VUMO could be applied to user-centered design processes,
as summarized in Figure 4.19. All phases are linked to the semantic annotation phase, in which
the outcomes are annotated using VUMO components. The results of the context of Context
of Use Analysis and Problem Domain Analysis (Phases 0 and 1) yield the annotation of domain
users, their types of analytical profiles and the analytical tasks (transformations) they intend to
carry. After iterating the Conceptual Development and Prototyping (Phases 2 and 3), visualiza-
tion techniques can be described in terms of input variables, interaction tasks and other features.
Interaction and Usability Studies (Phase 4) yield empirical knowledge that domain users pro-
duce. Such artifacts can be annotated in the form of ratings and cross ratings.

The third objective consisted of evaluating the ontology in practical contexts to validate the
aforementioned objectives.

Q4. Does our approach succeed in tackling issues I2 (limited interoperability of visualizations)
and I3 (infrequent involvement of domain experts on the design, development and evalu-
ation of visualization techniques)?

Chapter 6 answers the last proposed question. The empirical case studies provide evidence of
the successful application of VUMO to the development of semantically-rich, knowledge-assisted
visualization tools. The case studies were supported by the SUMVis visualization tool, which was
developed for the purposes of this thesis. We used real data from Porto and Boston, and involved
domain users from both contexts with various academic backgrounds and practical expertise. We
showed how VUMO can be applied to the pipelines of (i) data integration, (ii) annotation of
visualization techniques, and (iii) annotation of empirical knowledge.

For the first pipeline, we detailed the integration of different types of urban mobility datasets
from both cities. After the specification of two visualization techniques and a transformation, we
showed how VUMO could evaluate their compatibility. Moreover, we showed how VUMO could
support the semantic annotation of knowledge extracted from the exploratory analysis performed
by domain experts, after they identified an unusual behavior in the transportation system of Porto
at a specific time period.

For the remaining pipelines, we carried UCD processes with domain users, and described the
semantic annotation of the resulting artifacts. Those iterations revealed interesting opportunites
that highlight how VUMO can be extended new domain user requirements. For example, we
showed how a new rule could be built in order to identify the analytical profile of a transformation
based on the themes that compose it (see Section 6.4.1).

We described the implementation of a customized, VUMO-assisted recommendation method
based on user requirements (see Section 6.4.4), which was also supported by rules. Moreover, it
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was also shown that, in cases where the ontology did not contain the required classes and prop-
erties for data integration (see Section 5.3), VUMO could be extended to account for new types
of mobility-related datasets, thus showing its scalability potential.

To facilitate reading, we reintroduce the illustration of the thesis outline (see Figure 6.1),
which indicates the research questions answered by each chapter.

Part Il " E‘é’t '1' bt
State of the Art esearch Lontributions
and its Applications
required for understanding evaluated through

Chp. 2 Chp. 3 Chp. 4 Chp.5
Theoretical Literature The VUMO Practical
Background Review Ontology Applications

v

Questions Q1,Q2,Q3 Q4

Y
Contributions Updated literature
review

Theoretical
model of S-T
mobility data for
visualization

Case studies as

practical
reference

Ontology-based
framework

VUMO

Figure 6.1: Illustration of the thesis outline. Repetition was done on purpose to facilitate reading

6.2 Contributions and Research Limitations

This thesis provides an original contribution to the state of the art by introducing an approach
to visualization of heterogeneous urban mobility data from multiple sources, by exploring the
potential of ontologies and Semantic Web technologies. Our approach values the involvement
of domain users throughout the pipelines that form development cycle of visualization systems,
as we found that such involvement is infrequent in scientific literature. The VUMO ontology ad-
dresses the shortcomings of other existing ontologies, such as OTN [150], which provide limited
support to spatiotemporal urban mobility data. We demonstrated how inference rules built upon
de facto standards can enhance the utility of integrated data and support the visualization process.
We believe that our contributions serves a relevant reference to other domains of knowledge that
also require integration of spatiotemporal data.
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Regarding research limitations, the development and evaluation of the VUMO ontology did
not have direct involvement of domain users. Firstly, few of the domain users we approached had
some knowledge of Semantic Web technologies and ontologies; it would be unfeasible. More-
over, the limited availability of domain users led us to consider it would be reasonable to approach
them while carrying the practical case studies.

In Section 4.1.4, we assumed that an analytical task can be formalized as a data transforma-
tion (query). While one may argue that analytical tasks can be sufficiently scaled to require one or
more queries, we posit that our one-to-one assumption does not reduce the utility and effective-
ness of the data visualization process, as demonstrated in the case studies, in which we successfully
formalized a number of relevant analytical tasks. Still, we acknowledge that an interesting direc-
tion for further work should investigate how semantically-rich visualization systems can formalize
and support analytical tasks that are formalized in terms of several data transformations.

On regards to the type of urban mobility events that VUMO supports, we showed that our
formalization of spatiotemporal data allows to model various types of events, including soft modes,
e.g. bicycle trips and pedestrian trajectories. The presented case studies were oriented towards
data related to public transportation systems, given the availability of datasets. We argue that such
fact does not compromise the generality of our approach, although it presents a direction we are
willing to evaluate.

Finally, in Section 4.9, we highlighted the limited use of the resources provided by the time
ontology. The reason is twofold. Firstly, the temporal representation in the datasets we posessed
consisted of simple timestamps or textual descriptions of time intervals. We argue that adding un-
necessary complexity to temporal modeling could be a factor that would hinder researchers and
practitioners on the implementation VUMO. Secondly, we argue that using all constructs avail-
able in the t ime may still be unnecessary given the simple way that datasets often use to express
time. Moreover, to the best of our knowledge, inference engines still provide limited support to
the time ontology.

6.3 Lookingahead

Future work can be divided into three perspectives. The first, mainly technical, consists of im-
provements to the features and capabilities of the VUMO ontology described in Chapter 5. The
second are improvements and further evaluation of VUMO-based UCD applications, as described
in Chapter 6. Finally, the third perspective consists of ideas that we considered relevant for ex-
ploration in the long term.

Regarding the first perspective, possible improvements consist of extending the capabilities
of semantic annotation of analytical tasks (data transformations) to not only SPARQL queries,
but complex algorithms such as data mining methods. Moreover, as discussed in the research
limitations, it would be interesting to explore how to address analytical tasks as a chain of mul-
tiple data transformations. While the current classes and properties in VUMO provide support
to the majority of types of mobility modes, we aim to extend it in order to consider other types
of data sources that we believe to be widely available in the near future. For example, the ubig-
uity of Internet of Things devices can provide new types of sensorial measurements. VUMO still
does not provide the necessary components to semantically annotate non-text-based data such
as video streams.

During the conclusion of this thesis, the SPIN rule language has been thoroughly standard-
ized into SHACL (Shapes Constraint Language) by W3C; the language is considered to be an
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evolution of OWL. We plan to translate VUMO into SHACL, so that researchers and practition-
ers can opt for OWL or SHACL, in accordance to their requirements. Nonetheless, we alert the
reader that, by the time of this thesis, few Semantic Web based systems provide thorough support
to SHACL.

Regarding the second perspective, we intend to carry additional case studies with the SUMVis
tool. As discussed in the research limitations, most of our datasets were related to public trans-
portation systems. We aim to use VUMO with datasets containing information with other types
of mobility traces, e.g. bicycle, private car trajectories or phone-based activity. In Chapter 3 we
evidenced that visualization studies in urban mobility made use of several types of datasets, as
summarized in Table 3.2. As an ongoing extension of our research, future work also consists of
using VUMO as the semantic foundation for a decision support system for Porto’s intermodal
public transportation system.

Regarding the third perspective, we plan to provide an online shared repository for reuse of
empirical knowledge. This would allow researchers and practitioners from various contexts to
reuse knowledge made public from other studies or actual practical contexts. This idea is aligned
with our orientation towards the involvement of domain users throughout the whole UCD pro-
cess. Moreover, the idea is also aligned with the Semantic Web principle of reusing existing knowl-
edge, in order to enhance the capability of other systems that also make use of such technologies.
We also seek to facilitate the integration of data that already comply with standards such as SIRI
and Transmodel, and data related to factors that are known to influence urban mobility dynamics,
such as weather conditions.
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Appendix A
VUMO Ontology Reference

This appendix describes the elements of the VUMO ontology. It is intended to be a technical
reference.

A.1 Classes

vumo : VUMOThing
A superclass for all classes declared in the VUMO ontology.
Subclass of: owl:Thing

A.1.1  UrbanMobilityConcept (UMC) and its subclasses

vumo : UrbanMobilityConcept
A superclass for urban mobility concepts, e.g,, line, bus stop.
Subclass of: vumo : VUMOThing

vumo : Agent
An entity capable of triggering events.
Subclass of: vumo : UrbanMobilityConcept

vumo : Operator
A public, private or public-private operator that services a transportation system.
Subclass of: vumo : Agent

vumo :Vehicle
A private or public vehicle.
Subclass of: vumo : Agent

vumo : Sensor
A device that provides a measurable readings of something.
Subclass of: vumo : Agent
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vumo :EmissionsProfile

The emissions profile of an entity e.g,, vehicle, with respect to one or more pollutants and param-
eters e.g,, speed, engine technology.

Subclass of: vumo : UrbanMobilityConcept

vumo : EngineTechnology
The engine technology of a vehicle, e.g., bus.
Subclass of: vumo : UrbanMobilityConcept

vumo : Event

A rating component that regards a negative aspect. When the component is rated quantitatively,
higher ratings correspond to a higher negative impact.

Subclass of: vumo : UrbanMobilityConcept

vumo : 0DFlow
A flow of something, e.g. vehicles, between a given origin and destination.
Subclass of: vumo : Event

vumo : Reading
A reading made by a source, e.g,, sensor.
Subclass of: vumo : Event

vumo : SensorReading
A reading made by a sensor.
Subclass of: vumo : Reading

vumo : TravelEvent
An event that corresponds to an actual travel made by an entity in the transportation network.
Subclass of: vumo : Event

vumo : TicketValidation
A public transportation ticket validation detected by a validation checkpoint.
Subclass of: vumo : TravelEvent

vumo:Trip
A trip made by an entity, e.g. vehicle, person.
Subclass of: vumo : TravelEvent

vumo :BicycleTrip
A trip made by a bicycle.
Subclass of: vumo : Trip

vumo : TravelIntention

An event corresponding to an intention of traveling in the transportation network. Such intention
may be inferred by route plans or consultations to a traveler information system.

Subclass of: vumo : Event
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vumo : NearbyStopsRequest

A request that returns information about public transportation stops that are within a certain
radius of a given location, usually expressed by geographical coordinates.

Subclass of: vumo : TravelIntention

vumo : NextDeparturesRequest

A request that returns information about the next departures for a stop or station. Typically, this
type of request is made available by Traveler Information Systems.

Subclass of: vumo : TravelIntention

vumo : RoutePlanRequest

A request that returns information about a route plan between an origin and destination. Typi-
cally, this type of request is made available by Traveler Information Systems.

Subclass of: vumo : TravelIntention

vumo : UnexpectedEvent

An event that can (partially) disrupt the normal conditions of a transportation network, e.g. ac-
cident or public transportation strike.

Subclass of: vumo : Event

vumo:Accident

An accident which involves one or more entities.

Subclass of: vumo : UnexpectedEvent

vumo: Strike

A strike which affects the transportation network in some way, e.g. reduction on the number of
buses or trains.

Subclass of: vumo : UnexpectedEvent

vumo :Pollutant
A substance that pollutes something.
Subclass of: vumo : UrbanMobilityConcept

vumo : InfrastructureComponent
A superclass for concepts defined in the conceptual data model.
Subclass of: vumo : VUMOThing

vumo :BicycleStation
A station in which bicycles can be hired and dropped out.
Subclass of: vumo : InfrastructureComponent

vumo : Fare

A price category applied by a transportation system authority to charge for some service, e.g. toll,
ticket.

Subclass of: vumo : InfrastructureComponent

vumo:Line
A service that is formed by one or more routes.
Subclass of: vumo : InfrastructureComponent
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vumo : Route
A trajectory that is part of a line

vumo : Node
A node that is part of a route. Nodes are the fundamental elements of route segments.
Subclass of: vumo : InfrastructureComponent

vumo:Station

A transportation hub that can be served by many operators and lines. A hub typically contains
many stops.

Subclass of: vumo : Node

vumo : Stop
A stop that is served by one or more lines.
Subclass of: vumo : Node

vumo : RouteSegment
A segment of a route that consists of an initial and final node.
Subclass of: vumo : InfrastructureComponent

vumo: Ticket
A ticket or pass that allows passengers to travel in the transportation system.
Subclass of: vumo : InfrastructureComponent

vumo : TicketType
A category for tickets.
Subclass of: vumo : InfrastructureComponent

vumo : Zone
A zone of the transportation network.
Subclass of: vumo : InfrastructureComponent, schema:AdministrativeArea

A.1.2  DataConcept (DC) and its subclasses

vumo :DataConcept
A superclass for concepts defined in the conceptual data model.
Subclass of: vumo : VUMOThing

vumo : JutputVariable
A variable that holds values that are part of the output of a transformation.
Subclass of: vumo :DataConcept

vumo : SpatialDistribution
The visual pattern induced by a spatial reference type.
Subclass of: vumo : DataConcept

vumo : SpatialDistributionAxiom
An abstract class that materializes the spatial distribution axioms defined in the conceptual model.
Subclass of: vumo : DataConcept
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vumo : SpatialReferenceType
A type of spatial reference that can be used to characterize an entity.
Subclass of: vumo : DataConcept

vumo : Point

An 1-dimensional type of spatial reference consisting of a pair of geographic coordinates, i.e. lat-
itude and longitude, according to WGS84.

Subclass of: vumo : SpatialReferenceType

vumo : GenericPoint

A point that does not have an identification in terms of the property hasID or any of its subprop-
erties.

Subclass of: vumo : Point

vumo : KnownPoint

A point that has at least one identification in terms of the property hasID, its equivalent, or any
of its subproperties.

Subclass of: vumo : Point

vumo :PointSet
A set made of two or more points.
Subclass of: vumo : SpatialReferenceType

vumo : OrderedPointSet

A point set which is well-ordered, i.e. every non-empty subset of P has a least element in this
ordering.

Subclass of: vumo : PointSet

vumo : UnorderedPointSet
A point set which is not well-ordered.
Subclass of: vumo : PointSet

vumo : TemporalReferenceType
A type of temporal reference that can be used to characterize an entity.
Subclass of: vumo : DataConcept

vumo : Instant
An instant in time, or an interval with zero duration.
Subclass of: vumo : TemporalReferenceType

vumo: Interval
A time interval defined by start and finish instants.
Subclass of: vumo : TemporalReferenceType

vumo : Transformation

A SPARQL query that yields new information from instance data. A number of SPIN rules are
encapsulated into VUMO to infer information about transformations (see documentation).
Subclass of: vumo : DataConcept, spin:Templates
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A.1.3 VisualizationConcept (VC) and its subclasses

vumo : ReferenceFrame
The type of data required by a visualization technique, as defined by Aigner et al. [162].
Subclass of: vumo : VisualizationConcept

vumo: InputVariable

A variable that receives values from a result variable of an analytical task (transformation). A
visualization technique should then transform, programatically, an input variable into a visual
variable or feature.

Subclass of: vumo : VisualizationConcept

vumo : InteractionTask

An interaction mechanism that enhances the user experience and knowledge extraction capabil-
ities of a visualization technique.

Subclass of: vumo : VisualizationConcept

vumo :SpatialDimensionality
The dimensionality of space in the canvas of a visualization technique.
Subclass of: vumo : VisualizationConcept

vumo : Technique
A technique implemented into a visualization tool.
Subclass of: vumo : VisualizationConcept

vumo : TemporalDimensionality
The representation of the time dimension used by a visualization technique, e.g. linear, cyclic.
Subclass of: vumo : VisualizationConcept

A.1.4 DomainUserConcept (DUC) and its subclasses

vumo : DomainUserConcept
A superclass for all concepts related to empirical knowledge about domain users.
Subclass of: vumo : DataConcept

vumo: AnalyticalProfile
The analytical profile of a domain user, e.g., strategic, operational.
Subclass of: vumo : DomainUserConcept

vumo : DomainUser
The user of a visualization tool
Subclass of: vumo : DomainUserConcept

vumo :Rating

A feedback given by a domain user with respect to a visualization technique, which may also relate
an analytical task (transformation). Ratings are described in terms of rating components.
Subclass of: vumo : DomainUserConcept
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vumo : TechniqueRating

A rating about a visualization technique per se, i.e. not related to an analytical task (transforma-
tion).

Subclass of: vumo :Rating

vumo:CrossRating
A rating that relates a visualization technique and an analytical task (transformation).
Subclass of: vumo :Rating

vumo :RatingComponent
The topic (criterion) of a rating statement, e.g,, effectiveness, reccommended themes.
Subclass of: vumo :Rating

vumo :PositiveRatingComponent

A rating component that regards a positive aspect. When the component is rated quantitatively,
higher ratings correspond to a higher positive impact.

Subclass of: vumo : RatingComponent

vumo : NegativeRatingComponent

A rating component that regards a negative aspect. When the component is rated quantitatively,
higher ratings correspond to a higher negative impact.

Subclass of: vumo : RatingComponent

A.2 Properties

A.2.1 Datatype properties

vumo :hasDateTime
A property used to express the date and time of a resource, e.g. event.
Range: xsd:dateTime | Subproperty of: time:inXSDDateTime

vumo :hasStartDateTIme
A property used to express the start date and time of a resource, e.g. event.
Subproperty of: vumo :hasDateTime

vumo :hasFinishDateTIme
A property used to express the finish date and time of a resource, e.g. event.
Subproperty of: vumo :hasDateTime

vumo :hasDescription
A property used to express a textual description about something, e.g. line.

vumo :hasID

A property used to provide an identification which, ideally, should be unique within a given se-
mantic context.

Subproperty of: rdfs:label

vumo :hasFriendlyID
A property used to provide an identification which is expected to be human-readable for a given
purpose.
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Subproperty of: vumo :hasID, rdfs:label

vumo :hasInternallD

A property used to provide an identification which is not necessarily expected to be human-
readable for a given purpose.

Subproperty of: vumo :hasID, rdfs:label

vumo :hasLicensePlate
A property used to indicate the license plate registration of a vehicle.
Subproperty of: vumo :hasID, rdfs:label | Domain: vumo:Vehicle

vumo : hasMeasure
A property used to indicate a measure related to a resource, e.g. sensor reading.
Subproperty of: vumo : hasMeasure

vumo :hasAverageSpeed
A property used to indicate the average speed of a resource, e.g. vehicle.
Subproperty of: vumo : hasMeasure

vumo : hasCount
A property used to indicate the count of something, e.g. number of cars read by a vumo : SensorReading.
Subproperty of: vumo : hasMeasure

vumo :hasDuration

A property used to indicate the duration of aresource, e.g. event. VUMO is able to infer the dura-
tion, provided that the property vumo :hasStartDateTime and vumo :hasFinishDateTime
are asserted for the same resource.

Subproperty of: vumo : hasMeasure

vumo :hasEmissionRate_gmi

A property used to express the emission rate of a given vumo : EngineTechnology in grams per
miles (g/mi).

Subproperty of: vumo : hasMeasure

vumo :hasFlow

A property used to express the emission rate of a given vumo : EngineTechnology in grams per
miles (g/mi).

Subproperty of: vumo : hasMeasure

vumo : hasNumberOfAvailableBicycles
A property used to express the number of bicycles available for hireina vumo : BicycleStation.
Subproperty of: vumo : hasMeasure

vumo : hasNumberOfDamagedBicycles

A property used to express the number of bicycles unavailable for hireina vumo : BicycleStation
due to technical problems.

Subproperty of: vumo : hasMeasure

vumo : hasNumberOfFatalities
A property used to express the number of fatalities due to an event, e.g. vumo : Accident.
Subproperty of: vumo : hasMeasure
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vumo : hasNumberOfInjuredCyclists
A property used to express the number of injured cyclists due to an event, e.g. vumo : Accident.
Subproperty of: vumo : hasMeasure

vumo : hasNumberOf InjuredDrivers
A property used to express the number of injured drivers due to an event, e.g. vumo : Accident.
Subproperty of: vumo : hasMeasure

vumo : hasNumberOf InjuredPassengers
Aproperty used to express the number of injured passengers due to an event, e.g. vumo : Accident.
Subproperty of: vumo : hasMeasure

vumo :hasRadius

A property used to indicate the radius of something. For instance, the event class vumo : Nearby-
StopsRequest may require the specification of a radius corresponding to the desired distance
within someone is willing to search for a stop.

Subproperty of: vumo : hasMeasure

vumo : hasName
A property used to provide a name about something, e.g. vumo : Operator.
Subproperty of: rdfs:1label

vumo :hasRatingScore
A property used to express the a quantitative rating about a vumo :RatingComponent, within
the context of a vumo : RatingStatement.

vumo : isRequired
A property used to express if a vumo : InputVariable is required for the correct display of a
vumo:VisualizationTechnique.

A.2.2  Object properties

vumo : assignedBy

A property used to indicate assignment of something, e.g. a fare zone can be assigned by a trans-
portation authority.

vumo :hasCompatibleValueType

A property used to indicate the compatible value type of an vumo : InputVariable.

Domain: vumo : InputVariable

vumo :hasInputVariable
A property used to indicate an input variable of a vumo : VisualizationTechnique.

vumo :hasInteractionTask

A property used to indicate an vumo : InteractionTechnique thata vumo: Technique pro-
vides.

Domain: vumo : Technique | Range: vumo: InteractionTask

vumo :hasOperator
Apropertyused toindicate an vumo : Operator of something, e.g. vumo: TicketValidation.
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vumo :hasOutputVariable

A property used to indicate an output route of a vumo: Transformation. VUMO’s built-in
rules allow the automatic inference of the output variables of a transformation, thus using it man-
ually requires extra care.

vumo : hasPath
A property used to express the path of something, e.g. vumo :RoutePlan, vumo:Route.

vumo :hasRatingCategoricalValue
A property used to express a categorical value for a rating.

vumo : hasRatingComponent
A property used to indicate what a rating is about.

vumo :hasRatingStatement
Definition
Domain: vumo :Rating | Range: vumo:RatingStatement

vumo :hasReferenceFrame
A property used to indicate the vumo : ReferenceFrame of a vumo : Technique.
Domain: vumo : Technique | Range: vumo : ReferenceFrame

vumo : hasRoute
A property used to indicate a route of a vumo : Line.
Domain: vumo : Line | Range: vumo:Route

vumo : hasInboundRoute
A property used to indicate an inbound route of a vumo : Line.
Subproperty of: vumo :hasRoute | Domain: vumo:Line | Range: vumo: Route

vumo : hasOutboundRoute
A property used to indicate an outbound route of a vumo : Line.
Subproperty of: vumo :hasRoute | Domain: vumo:Line | Range: vumo: Route

vumo : hasSensorReading
A property used to indicate a vumo : SensorReading made by a device, e.g. vumo : Sensor
Range: vumo : SensorReading

vumo :hasSpatialDimensionality
A property used to indicate the vumo : SpatialDimensionality ofa vumo:Technique
Domain: vumo : Technique | Range: vumo: SpatialDimensionality

vumo :hasSpatialDistribution
Apropertyused toindicate the vumo : SpatialDistributionofavumo:SpatialReference-
Type. This property is used by hard-coded vumo : SpatialDistributionAxiom.

vumo :hasSpatialResourceReference
A superproperty used to group all properties that provide a spatial reference to an entity, e.g.
vumo : Event.
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vumo :hasDestination
A property used to indicate the destination of something, e.g. vumo :RoutePlan.
Subproperty of: vumo : hasSpatialResourceReference

vumo :hasFinalNode
A property used to indicate the final vumo : Node, e.g. vumo : RouteSegment.
Subproperty of: vumo :hasSpatialResourceReference

vumo:hasInitialNode
A property used to indicate the initial vumo : Node, e.g. vumo : RouteSegment.
Subproperty of: vumo :hasSpatialResourceReference

vumo :hasOrigin
A property used to indicate the origin of something, e.g. vumo:RoutePlan.
Subproperty of: vumo :hasSpatialResourceReference

vumo : hasZoneBoundaryPoint
A property used to indicate each vumo : Point that forms the boundary of a vumo : Zone
Subproperty of: vumo :hasSpatialResourceReference | Domain: vumo: Zone

vumo:isValidInsideZone
A property used to indicate that something, e.g. vumo : Ticket is valid inside a vumo : Zone.
Subproperty of: vumo :hasSpatialResourceReference | Range: vumo: Zone

vumo:locatedInZone

A property used to indicate that something, e.g. vumo : Node is located in a vumo : Zone.
Subproperty of: vumo :hasSpatialResourceReference | Range: vumo: Zone
Inverse of: hasZoneElement

vumo :mapsOntoInputVariable
A property used to map an output variable of a vumo : Transformation onto an input variable
of a vumo : Technique.

vumo : occursAtCoordinates

A property used to indicate that something, e.g. vumo : Event occurs at a given set of coordinates,
usually expressed as a blank node.

Subproperty of: vumo :hasSpatialResourceReference

vumo : occursAtNode
A property used to indicate that something, e.g. vumo : Event occurs at a given node.
Subproperty of: vumo :hasSpatialResourceReference

vumo :hasTemporalResourceReference
A property used to indicate the temporal reference of something, e.g. vumo: Event, by using a
resource instead of a literal. This property is useful for encoding well-defined intervals of time.

vumo :hasTicketType
A property used to indicate the vumo : TicketType of a vumo: Ticket.
Domain: vumo : Ticket | Range: vumo: TicketType
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vumo :hasUserProfile
A property used to indicate the vumo : DomainUserProfile of a vumo: DomainUser.
Domain: vumo : DomainUser | Range: vumo : DomainUserProfile

vumo : isAboutTransformation
A property used to indicate the vumo : Transformation evaluated by a vumo : CrossRating.

vumo : isAboutVisualizationTechnique
A property used to indicate the vumo : Technique evaluated by a vumo : CrossRating.

vumo : isCompatibleWith
Aproperty used to indicate thata vumo : Transformationis compatible witha vumo : Technique,
and vice-versa.

vumo : isNotCompatibleWith
Aproperty used to indicate thata vumo : Transformationisnot compatible witha vumo : Technique,
and vice-versa.

vumo : isRelatedToLine
A property used to indicate that a resource, e.g. vumo : Reading is related to a vumo : Line.

vumo : isRelatedToPollutant
Apropertyused to indicate thatan vumo : EmissionsProfileisrelated toavumo:Pollutant.

vumo : isRelatedToRoute
A property used to indicate that a resource, e.g. vumo : Reading is related to a vumo : Route.

vumo : isRelatedToRouteSegment
Aproperty used to indicate thataresource, e.g. vumo : Readingisrelated toa vumo : RouteSegment.

vumo : madeBySensor
A property used to indicate that a vumo : Reading was made by a vumo : Sensor.
Domain: vumo : Reading | Range: vumo : Sensor

vumo : madeByDomainUser
A property used to indicate that a vumo : Rat ing was made by a vumo : DomainUser.

vumo :madeByVehicle
A property used to indicate that something, e.g. vumo : Trip was made by a vumo: Vehicle.
Range: vumo :Vehicle

vumo :occursInlLine
A property used to indicate that an vumo : Event occurs in a vumo : Line.

vumo:occursInRoute
A property used to indicate that an vumo : Event occurs in a vumo : Route.

vumo:occursInTrip
A property used to indicate that an vumo : Event occurs in a vumo : Trip.

vumo:occurslInVehicle
A property used to indicate that an vumo : Event occurs in a vumo : Vehicle.
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vumo : operatedBy

A property used to indicate that a resource, e.g. vumo : Node is operated by another resource, e.g.
vumo : Operator

Inverse of: vumo : operates

vumo :operates

A property used to indicate that a resource, e.g. vumo : Operator operates another resource, e.g.
vumo : Node.

Inverse of: vumo : operatedBy

vumo : ownedBy

A property used to indicate that a resource, e.g. vumo: Vehicle is owned by another resource,
e.g. vumo : Operator.

Inverse of: vumo : owns

vumo : owns

A property used to indicate that a resource, e.g. vumo:0Operator owns another resource, e.g.
vumo:Vehicle.

Inverse of: vumo : ownedBy

vumo :usesTicket
A propertyused to indicate thataresource, e.g. vumo : TicketValidationusesavumo:Ticket.

A.3 Instances

A.3.1 DomainUserProfile
vumo : Operational

vumo : Strategic

A.3.2 InteractionTask

vumo:Filtering

vumo :Overview

vumo : DetailsOnDemand
vumo :DynamicQueries

vumo : SemanticZoom
A.3.3 ReferenceFrame

vumo : Geographic

vumo : Abstract
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