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Abstract: Autism Spectrum Disorders (ASD) and Attention-Deficit/Hyperactivity Disorder 

(ADHD) are two increasingly prevalent neurodevelopmental disorders. This rise appears to be 

associated with a higher dietary intake of n-6 polyunsaturated fatty acids (PUFAs) and lower of 

n-3 PUFAs. Docosahexaenoic acid (DHA), a key nutritional n-3 PUFA, is crucial for an optimal 

offspring’s neurodevelopment through the last trimester of pregnancy. Recently, lower DHA 

levels have been reported in children with ASD and ADHD. The present review summarizes the 

main research achievements concerning the effect of maternal DHA intake in children 

neurodevelopment, in order to elicit its role in the prevention and mitigation of ASD and ADHD. 

As main finding, a low maternal marine DHA intake seems to negatively affect childhood 

neurodevelopment and increase the risk and the severity of ASD or ADHD. Higher DHA status at 

birth was associated with better childhood neurodevelopmental, but controversial results found 

in prenatal supplementation raised the hypothesis that the benefits of DHA may be influenced 

by other factors as socio-economic background and life-style. In conclusion, an optimal maternal 

consumption of marine products and being breastfeed may promote some neuronal protection 

in offspring, confirming the essential role of DHA as a modifiable risk factor for ASD and ADHD. 

Keywords: Autism Spectrum Disorders; Attention-Deficit/Hyperactivity Disorder; neurodevelopment; 

docosahexaenoic acid; n-3 Polyunsaturated Fatty Acids; maternal seafood intake; pregnancy; lactation.  

 

1. Introduction  

 Autism Spectrum Disorders (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) 

are two neurodevelopmental disorders, that evolve as a result of interactions between genetic 

and environmental factors [1, 2].   

 ASD displays deficits in social communication and reciprocal social interaction and 

restricted repetitive activities, behaviors and interests, frequently starting before three years of 

age [3]. In the Fifth Edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-

V), the terms Autistic disorder, Asperger disorder, Childhood disintegrative disorder, and 

Pervasive developmental disorder - not otherwise specified are included in ASD, also called 

Pervasive Developmental Disorder [1]. One in each 68 children (1.5%) in United States was 
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affected in 2012, 4.5 times more frequent in boys than girls [4]. Others studies in Europe, Asia, 

and North America reported a prevalence of ASD of 1-2% [5].  

 Although ASD is highly heritable (last estimates 38–54%), environmental factors are 

crucial in its etiology, especially those affecting fetal and early-life development [6]. Advanced 

parental age and birth complications related to ischemia, trauma and hypoxia have shown solid 

links to ASD [2]. Other pregnancy-related factors such as extremely preterm delivery, very low 

birthweight, maternal infection, use of infertility treatments, maternal exposure to 

environmental pollutants or specific medications, maternal obesity and diabetes, have shown a 

less strong, but significant, association with the risk of ASD [2].  

 Despite the growing research interest in ASD, ADHD remains the most studied pediatric 

mental disorder, affecting 5-7% of children and being 3 times more frequent in boys [7, 8]. It is 

defined by ongoing pattern of inattention, problems in controlling impulsive behaviors or be 

overly active, with an onset at 7-12 years of age [1, 7, 8]. Like in ASD, genetic factors play an 

important etiological role, but other external factors, such as alcohol, tobacco or pollutants 

exposure during pregnancy, emotional difficulties, premature delivery, very low birth weight 

and pre- or postnatal brain injury have been shown to contribute to ADHD [9]. 

 The clinical and etiological similarities between the two diseases are remarkable and 

their prevalence identically has increased at an alarming rate [10]. A change to a Western diet, 

characterized by an increase in dietary pro-inflammatory omega-6 polyunsaturated fatty acids 

(n-6 PUFAs), though meat and processed food, and a decrease in anti-inflammatory omega-3 (n-

3 PUFAs), present mainly in seafood, caused a dramatic increase in the n-6 to n-3 PUFA ratio 

from the optimal 1-2:1 of the Paleolithic diet to about 20-30:1 [11]. This change could be one of 

the explanations for the increased prevalence of these diseases, as a high ratio seems to be 

unfavorable for the proper function of central nervous system [12, 13].  

 N-3 PUFAs play a central role in the brain function and structure of the neuronal cell 

membranes, and also in the development of myelin sheath and retina [12]. In particular, 

docosahexaenoic acid (DHA) overcomes 90% of the n-3 PUFAs in the human brain and about 10 

to 20% of total lipids [14], being associated with a number of positive effects on maternal and 

infant health [13]. Higher DHA intake appears to reduce the risk of schizophrenia, bipolar 

disorder, depression, anxiety, and behavior disorders, while suboptimal DHA levels seems to be 

a potentially risk factor for mental illness [15].  

 DHA is quickly incorporated into the retina and brain nervous tissue during the third 

trimester of pregnancy until two years of age [16]. Since the synthesis of DHA in fetus is low, 

maternal DHA intake and status, and placental function, are critical for its supply to the fetus 

[17]. Several observational studies and randomized clinical trials showed that higher prenatal 

levels of DHA might improve pregnancy outcomes, such as birthweight and gestation duration, 

and offspring neurodevelopment [17-20]. However, neurodevelopmental improvements, 

especially for cognitive function, remain controversial and need further clarification [21].   

 PUFA levels in blood are considered consistent biomarkers of their status [22]. Knowing 

that children with ASD and ADHD have lower DHA and lower total n-3 PUFA serum levels 

compared to neurotypical controls, the determination of whether maternal DHA intake alters 

the risk for these diseases is a reasonable and informative next step for research. The present 

paper reviews ASD and ADHD neuroanatomy and physiology, relating them with marine n-3 

PUFAs, especially DHA, from mother’s diet. It also aims to review present knowledge about the 
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impact of DHA levels in prenatal and postnatal neurodevelopment, especially in children at 

higher risk for these diseases, such as preterm and very low birth weight infants. 

 

 

 

2. Neurodevelopment and functionally brain changes in ASD and ADHD 

 

 Several studies indicated that ASD and ADHD have differences in anatomy, function and 

brain connectivity compared to healthy controls, resulting in changes in many 

neurodevelopmental outcomes [10, 23, 24].  

 In patients with ASD, some level of intellectual disability is detected in 70% [25], and 

about 5% to 44% could have a seizure disorder [26]. Anxiety, delays in learning, attention, 

sensory processing and motor activity deficits may also be present [5].  

 An early postnatal brain overgrowth, with an increase in head circumference, is one of 

the most important morphological changes reported in ASD brain [10, 23, 24, 27], described as 

a possible predictor of its diagnosis in infants of high risk families [28]. Anterior temporal region 

and frontal cortex appear to be the most affected [29], highlighting the growth of prefrontal 

cortex – a crucial area in ASD and ADHD physiopathology due to its role in attention, impulse 

control and cognitive function [10]. This overgrowth seems to persist up to 5–6 years of age, 

after which no important volume increase is denoted, probably representing a deviated 

maturational trajectory in ASD brain [30]. However, focal areas of reduced gray matter’s volume, 

such as in fronto-striatal networks, and reduced white matter’s volume in cerebellum and 

cerebral fornices are also described in these children [31].   

 A problem in long-range connectivity is now known as an emerging theory in ASD. 

Dinstein et al. [32] showed that toddlers with Autism displayed a weaker “functional 

connectivity” between brain hemispheres in language areas (including the superior temporal 

gyrus and the inferior frontal cortex), with an abnormal right lateralized processing of language, 

present since the age of 14 months. Other studies found a significantly reduction in the volume 

of corpus callosum, the major white matter bundle in the brain [10, 33]. Overall, ASD patients 

appear to have a reduction in long-range connectivity, but normal or increased short-range 

neuronal connections, which could clarify some of their better processing functions, like visual 

perception or some attention to detail [34]. 

 On the other hand, it has recently been discovered that cerebellum plays a role in 

cognitive functions, making it an important research area for ASD and ADHD [35, 36]. Most of 

the studies found a larger size of cerebellum in ASD children, particularly prominent in its 

posterior lobe [23, 24]. Although vermis has already been reported as smaller or larger 

compared to controls [24, 37], a consistent finding was a significant lower number and size of 

Purkinje cells in postmortem studies [37, 38]. 

 In these patients, there is also a hypoactivation in social brain regions (important for 

facial recognition, empathy, social cognition and behavior), including the inferior frontal gyrus, 

anterior insula, anterior cingulate cortex, interparietal sulcus, fusiform gyrus and amygdala, with 

an enlargement of this last region [39, 40]. However, recent studies pointed out that the 

problem in ASD may not be the social isolation, but a difficulty in the separation of consciousness 

of self and others, as they showed an abnormal activation of the ventromedial prefrontal cortex 
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in non-self performing tasks, while in unaffected children it is only activated in self-referential 

processing [41].  

 Another topic of discussion is the neuroinflammatory phenomenon found in ASD, 

characterized by an activation of microglia, higher pro-inflammatory cytokines brain levels, 

autoantibody generation, and increased blood-brain barrier permeability, which favors the 

migration of leukocytes to brain tissue [6, 42, 43]. Animal models showed that the exposure to 

toxic substances or infections during pregnancy led to an activation of the maternal immune 

system and neuroinflammation in offspring, presenting a negative impact on neurodevelopment 

and subsequently contributing to ASD [44]. 

 Lastly, regarding the neurotransmission changes in ASD, the excitation/inhibition 

imbalance theory stands out [24]. These subjects have high glutamate (excitatory) [45] and low 

Gamma-Aminobutyric Acid (GABA) (inhibitory) blood levels, and a decreased density of GABAA 

receptors [46], with a possible relation between glutamate upregulation and ASD severity [45]. 

The serotonin and dopamine neurotransmission are also altered in these patients. Some of them 

have higher blood levels of serotonin, which can impair language learning and intelligence 

quotient (IQ) level, and promote self-aggression [24]. Other studies pointed out that ASD 

behavior rises up from a dysfunction in the midbrain dopaminergic system [47]. In fact, the use 

of dopamine D2 receptor antagonists showed to be efficient in ameliorating autistic symptoms, 

and this could be due to the mediation of glutamate release via D2, confirming the 

excitation/inhibition imbalance theory [48]. 

 ADHD symptoms, on the other hand, arise from a deficit in executive function, including 

attention and inhibitory control, and working memory [7]. These children are also predisposed 

to present delays in language and motor development, associated with impaired brain activity 

in several neuronal networks [7]. 

 Patients with ADHD seem to experience normal steps of cortical maturation but slower 

than healthy controls [10]. A volume reduction and a cortical thinning in certain brain regions, 

mainly in frontal and prefrontal regions, was found in children with ADHD [49], but the most 

replicable abnormalities are in basal ganglia, being associated with the severity of the symptoms 

[50].   

 Dougherty et al. [10], comparing the structural imaging literature about ASD and ADHD 

brain, found differences in total brain volume, amygdala, and internal capsule. For this last 

alteration, the results in ASD were unclear, while in ADHD were a reduction in Fractional 

Anisotropy (FA), using diffusion tensor images (DTI). However, ASD and ADHD seem to have an 

overlap in the corpus callosum and vermis cerebellar (lower volume in MR images and decreased 

FA in DTI), and superior longitudinal fasciculus (reduced FA) abnormalities, supporting the idea 

that white matter integrity is also affected in ADHD [10, 51]. In ADHD, the amygdala volume has 

already been reported as normal or decreased; so, these authors pointed out that amygdala 

could serve as a marker for discriminating both disorders [10].  

 Finally, ADHD patients have an abnormal neurotransmission with lower levels of 

norepinephrine (particularly in predominantly inattentive ADHD) and dopamine (mainly in 

predominantly hyperactivity-impulsive ADHD) [52]. As these neurotransmitters are associated 

with reward processing, but not with the emotional dysregulation, some authors have suggested 

that serotonin neurotransmission is also altered in ADHD. Serotonin also modulates dopamine 

release and its interaction seems to affect impulsivity; however, further studies are needed to 

confirm its link to ADHD pathology [52]. 
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3. The role of maternal DHA intake in offspring neurodevelopment 

 The human brain growth spurt begins in the third trimester of pregnancy, at which point 

the fetal brain begins to accumulate DHA [53, 54]. This accumulation continues up to the 

postnatal period, being dependent on breastmilk [53].  

 DHA can be obtained from diet or synthesized from α-linolenic acid (ALA, 18:3n-3), a n-

3 PUFA found in walnut, chia, flax seeds, rapeseed and soy [55]. In the liver, ALA suffers a 

desaturation by Δ6-desaturase, an elongation, and another desaturation by Δ5-desaturase to 

finally form Eicosapentaenoic acid (EPA, 20:5n-3). EPA is elongated to 22:5n-3 and 24:5n-3, and 

then, this last compost suffers a new desaturation to 24:6n-3. Finally, in peroxisome, 24:6n-3 is 

β-oxidized to DHA (22:6n-3) [55]. In humans, the ability to convert ALA to DHA is extremely 

limited (less than 0.1 [14]), especially in fetus, making them highly dependent on the transfer of 

maternal DHA through the placenta, influenced by maternal DHA synthesis, mobilization from 

adipose stores, and dietary intake [56]. Furthermore, the desaturase enzymes are not only 

responsible for the conversion of ALA into DHA, but also of Linoleic acid (LA, an n-6 PUFA) into 

Arachidonic acid (ARA), the second most important PUFA, next to DHA, for brain growth [13].  

 DHA, EPA and ARA, also known as Long Chain (LC)-PUFAs, modulate phospholipids 

composition, involved in membrane fluidity, being able to control the functions of enzymes, ion 

channels and receptors, and to regulate neurotransmission [13, 16]. They are also important for 

dendritic growth and neuronal synaptogenesis, and can regulate inflammation [16]. EPA and 

ARA are precursors of eicosanoids (prostaglandins, thromboxanes and leukotrienes), but while 

ARA shows proinflammatory properties, EPA exerts anti-inflammatory effects [53]. On the other 

hand, DHA cannot produce eicosanoid, but it is a source of docosanoids, metabolites that can 

have the ability to inactivate pro-inflammatory and pro-apoptotic signaling [16, 53]. In addition 

to have a general pro-inflammatory effect, higher consumption of n-6 PUFAs increases the 

competition between LA and ALA, as substrates of the enzymes stated above, resulting in a 

lower conversion of ALA to DHA and a lower DHA levels in mothers and fetus [53]. Low DHA 

levels could be harmful for neurodevelopment, especially in preterm infants, who are deprived 

of maternal stores in the third trimester [57]. Overall, an optimal DHA intake during pregnancy 

and postnatal period appears essential, and global recommendations for pregnant and lactating 

women to have a minimum DHA intake of 200 mg/day are being implemented [58].  

 The necessary amount of dietary DHA can be obtained mainly through fish and other 

seafood intake. However, recent studies indicate that pregnant women do not have enough 

information about the importance of fish consumption, since guidelines emphasizing the health 

risks of methyl-mercury (MeHg) can make them doubtful and unsecure [59]. A large 

observational study showed that children whose mothers consumed lower seafood (<340 

g/week) during pregnancy had increased risk of having lower verbal IQ and lower fine motor 

ability, and suboptimum outcomes for social behavior, communication and social development 

at 6 months to 8 years of age, compared to children whose mothers consumed high seafood 

diets [60]. Currently, although it is known that MeHg is neurotoxic at high levels, the effect in 

neurodevelopment of its exposure in low-level from fish intake remains controversial [61]. This 

effect appears to be influenced by n-6 to n-3 PUFA ratio, suggesting that the balance of this ratio 

may reflect the capability of these LC-PUFAs, at higher levels, to increase or protect, respectively, 

inflammation induced by MeHg [61]. Furthermore, the benefits of fish consumption, probably 
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due to its high DHA composition, may overcome or mask the potential MeHg’s adverse effects 

on neurodevelopmental outcomes [61-65].  

 Other authors reported that a high DHA status in umbilical cord blood were associated 

with longer gestation, better visual acuity and higher levels of novelty preference at 6 months, 

and higher cognitive scores at 11 months [66], better motor development and fewer 

internalizing behavior problems at 7 years [67], and higher verbal and full-scale IQ at 8 years 

[68]. Few observational studies reported no association between maternal fish consumption 

[69], DHA in mothers’ red blood cell (RBC) [69, 70] and improvement in neurodevelopmental 

outcomes of healthy children. Note that although these studies were performed in healthy 

children, these symptoms are also present in ASD and some in ADHD. 

 Regarding the randomized clinical trials (RCTs), Mulder et al. [71] showed that infants in 

the placebo group had an increased risk of developing a worse language, an important symptom 

of ASD, than those whose mothers received 400 mg/day of DHA during pregnancy. Two other 

studies, with DHA supplementation alone, reported higher scores on autonomic and motor skills 

scales at 14 days of age, when mothers were supplemented with 600 mg/day of DHA from 12-

20 weeks’ gestation until birth [72], and better problem solving in infants of mothers who 

received 214mg/day of DHA in same period [73]. In Gustafson’s study [72], a more mature 

autonomic function indicates greater flexibility and integrity of the Autonomic Nervous System, 

probably reflecting a better physiological reactivity of the newborn to the environment. 

However, this study had a significantly low rate of completion (78%) and the majority of 

enrollees were non-White, but African American, reporting higher pre-DHA status.  

 In DHA plus EPA prenatal supplementation’s group, four studies found positive results 

[57, 74-79]. For example, in a study with high level of methodological rigor with low attrition, 

Makrides et al. [74] studied preterm infants whose mothers were supplemented with 800mg 

DHA + 100mg EPA per day, from <21 weeks of gestation until birth. These authors found that 

few children in the DHA group had scores indicative of mildly delayed cognitive development, 

evidencing that DHA supplementation is effective at preventing developmental delay in early 

childhood. However, these authors did not find differences between groups in any scales of the 

Behavior Rating Inventory of Executive Function at 4 years of age [78]. Note that although this 

study was not a pure DHA test, since it used fish oil capsules that contains DHA and EPA levels, 

DHA is present in the brain at levels 50 and 200-fold higher than EPA and ALA, respectively [55].   

 Supplementary tables S1 and S2 show the results of observational and RCTs’ studies 

regarding the association between maternal DHA intake during pregnancy and infant 

neurodevelopmental outcomes. Overall, RCTs results from maternal supplementation still 

appear inconclusive and some meta-analyses concluded that maternal n-3 PUFA 

supplementation (DHA or DHA+EPA) had no consistent effect on children neurodevelopment 

[79, 80]. Note that the majority of these studies have important limitations, particularly high 

attrition rates, small sample sizes, and poor statistical design. Moreover, although several 

authors did not generally demonstrate a positive effect of maternal prenatal n-3 PUFA 

supplementation [74-78, 81-83], with few showing a negative effect [84, 85], some found that 

children with better neurodevelopment outcomes individually had higher DHA levels [74-76, 82, 

86]. Furthermore, two of these studies [75, 76], gathering information from 3 European 

countries with high seafood intakes, found that 84.4% of the mothers at the start of 

supplementation had already achieved the recommended DHA intake of 200 mg per day, and 

that, in this group, parental level of education was also relatively high. These authors concluded 

that, possibly, the positive effects of DHA supplementation during prenatal period are less 
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apparent in mothers who already have an optimal dietary DHA supply. The responsiveness to 

prenatal DHA could be related to the characteristics of the specific population groups studied, 

and DHA status could to be a proxy for socio-economic background and healthy life-style factors, 

that may synergically improve brain development [82, 85].  

 It is also important to maintain optimal DHA levels during postnatal period. At this time, 

breastmilk is the main responsible for the amount of DHA in infant´s RBC [87], being dependent 

on maternal DHA consumption [56].  

 DHA from breastmilk seems to be crucial for better language and cognitive function [88-

90], social behavior with fewer attentional symptoms and better global psychosocial health [91, 

92]. Oddy et al. [91] showed that breastfeeding for less than 6 months was an independent 

predictor of mental health problems, such as behavior problems, through childhood and 

adolescence. In the cases of shorter duration of breastfeeding, a maternal fish intake at least 2 

fish times/week could have a protective effect in neurodevelopment [64]. However, other 

studies did not find significant effects of breastfeeding on children’s neurodevelopment [66, 93-

98] (see supplementary table S1). This discrepancy in studies’ results could be due to level of 

control for potential confounders such the heterogeneous composition of breast milk, maternal 

IQ, education level, social economic status, home environment and child care, and/or different 

methods of assessment of outcomes [95, 96]. Women who were more intelligent or better 

educated seem to be more receptive to breastfeeding promotion [96]. 

 However, even if all of breastmilk is consumed by the baby, the DHA intake is only 13-

26 mg/day (0.2–0.4% of total fatty acids), clearly below the rate of uterine accretion of ≈45-50 

mg/kg/day [99]. This amount appears to be sufficient for normal brain development in full-term 

infants, as long as mother consumes optimal amounts of DHA during peri-natal period [100-

103].  

 Some clinical evidence proposed that supplementing both DHA and ARA instead of DHA 

alone is critical to optimal influence on neuronal development of full-term infants [100, 101, 

104] (see supplementary table S3). For example, verbal IQ and visual acuity at 4 years of age was 

comparable between infants receiving both 0,36% DHA and 0,72% ARA during the first 4 months 

of life and breastfed infants, whereas verbal IQ was lower in infants receiving DHA alone [104]. 

Moreover, Drover et al. [100] showed that a DHA-standard concentration of 0.32% was 

adequate to improve cognitive function while higher concentrations (about 0.96% of total fatty 

acids) did not confer additional benefit, and may also contribute to competing and lower ARA 

levels. This could mean that there is possibly an upper limit to the benefits of intaking DHA [100, 

102, 103]. Although these benefits may be due exclusively to ARA supplementation, no study to 

date has investigated the effects of ARA supplementation alone on cognitive development, 

while studies with only DHA-enriched formula have already reported positive effects of this 

supplementation [96]. Other studies, however, did not find short- [102, 105] or long-term [101, 

106] benefits in some cognition measures using LC-PUFA supplements. 

  On the other hand, the standard amount of DHA may not be an adequate approach for 

preterm infants, who appear to be more sensitive to the effects of maternal DHA intake. 

 

 

 



8 of 23 

 

 
 

4. The clinical example of preterm infants, a risk factor for ASD and ADHD 

 

 Preterm infants appear to have deficits in myelin integrity and connectivity of the 

cortical circuits [107, 108], presenting a higher risk for ASD and ADHD, mood, and psychotic 

disorders [109]. Their lower DHA levels may be partially responsible for this impaired 

neurodevelopment [108, 109].   

 In the last years, studies showed that a short-term high DHA dose (0,86-1% of total 

PUFAs) seems to be helpful for an optimal neurodevelopment in preterm infants [110-112], 

mostly in very low birth weight (VLBW) babies (<1500g) [110, 113] (see supplementary table S3). 

For example, Makrides et al. [111] found that a DHA supplementation of about 1% of total 

PUFAs, from day 2 to 4 until term-corrected age, reduced cognitive delay, improved the 

neurological development of girls and was strongly indicative of improved neurodevelopment 

in very preterm infants (≤33 weeks gestation) at 18 months of age, compared to those with a 

standard-DHA diet (0.3% of total fatty acids). In this study, ARA intake was the same in both 

groups (0.6% of total fatty acids). Henriksen et al. [110] found also that a high-DHA 

supplementation (0,86% DHA plus 0,91% ARA) in VLBW infants, during nine weeks, led to better 

capacity to problem solving and recognition memory at 6 months of age. This latter function is 

essential to focus attention, learning and information processing. Lastly, Westerberg et al. [113] 

reported a better-sustained attention at 20 months of age in these high-DHA group, but did not 

find differences in mental and motor development scores between the groups. However, their 

plasma DHA concentration was positively correlated with Bayley Mental Developmental Index, 

showing that this nutrient may be one of the factors that influence the development of VLBW 

babies. Nevertheless, at 8 years of age, these children had no differences in brain 

macrostructure (volume, area and thickness through imaging data), behavioral outcome and 

cognitive functions [114]. Other long-term studies did not report significant benefits in infancy, 

including for executive functions, ADHD and ASD symptoms, and emotional or behavior 

problems [115-118].  

 Overall, some meta-analysis concluded that there is insufficient evidence to recommend 

DHA supplementation in preterm [119], and also in full-term infants [120-122], with respect to 

potential long term neurodevelopmental benefits. Nevertheless, it cannot be ignored that the 

studies stated above showed that a high DHA dose in preterm infants could reduce, in short-

term, the typical symptoms found in ASD and ADHD, diseases that are also characterized by 

lower levels of this nutrient. However, the differential effect of this nutrient on healthy versus 

ASD/ADHD states is one of the most important issues to be addressed [123].  

 

 

5. How can DHA be related to ASD and ADHD? 

 

5.1 Potential mechanistic pathways of DHA in ASD  

 

The conversion of ALA into DHA is insignificant in males while occurring in girls at 9%. 

This could indicate that DHA have an important role in this disorder since ASD is more frequent 

in boys [13]. The higher conversion capacity in females may be due to the importance of 

maintaining optimal DHA levels for their offspring’s development during pre- and postnatal 

period [16]. Actually, several studies reported that children with ASD have lower DHA, EPA and 
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ARA levels and higher total n-6 to n-3 PUFA ratio compared to unaffected children [22]. Parletta 

et al. [124] showed that a worse PUFA profile, especially in relation to this PUFA ratio, is 

associated with clinical severity in children with ASD or ADHD.  

 The low n-3 PUFA levels in ASD can be explained by defects in enzymes involved in the 

DHA and EPA production from ALA, known as fatty acid desaturase (FADS), by deficiencies in its 

process of cell membrane incorporation, or an alteration in its metabolism, for example through 

a possible dysfunction in mitochondrial PUFA oxidation [12, 16, 125]. However, their potential 

biological pathways in ASD are not yet fully understood [125].  

 A deficit of DHA during perinatal period was shown to be associated with a reduction in 

neurogenesis and delays in neuronal migration [126], and it has recently been implicated in 

synaptic plasticity [127] - a new research field in ASD [127, 128]. ASD is also characterized by 

changes in myelination and by an abnormal long-range brain connectivity, and the formation of 

white matter tract appear to be very susceptible to the n-6 to n-3 PUFA ratio [129]. Moreover, 

a low maternal intake of DHA was associated with a decrease in brain-derived neurotrophic 

factor (BDNF), a protein that protect neurons and glia from death [130, 131]. Children with ASD 

have lower BDNF levels, associated with more severe disease [131], and a supplementation with 

DHA could normalize BDNF in some brain areas affected in ASD [132].   

 From a neurochemical point of view, there are studies that point to an effect of DHA 

deficiency on the modulation of GABA-ergic receptor functions, especially in specific GABAA 

receptor subunits [133], or to an interaction between PUFAs and PLA2 (Phospholipase A2), 

present in the plasma membrane [12]. PLA2 is able to inhibit GABAA receptor function and high 

n-6 ARA levels may increase its activation, resulting in increased neuronal excitability [12]. In 

addition, a lower n-3 PUFA intake in rats has shown to reduce dopamine levels in frontal cortex, 

increase basal synaptic release of serotonin and change glutamergic system in offspring female 

rats [134-136]. Then, a DHA supplementation increase synaptic plasticity in hippocampal 

neurons and improved glutamatergic neurotransmission [137]. However, following its 

supplementation, DHA levels increase differently in the various brain regions [12]. As the 

hippocampus and frontal cortex are the brain regions that take the longest time to recover 

normal DHA levels after its prenatal deficit, it may be difficult to restore its concentration in the 

absence of a postnatal dietary intervention [138]. 

 Regarding the problem of systemic immune dysfunction present in up to 60% of autistic 

patients [138], Weiser et al. [139] showed that a high maternal dietary DHA in mouse protect 

offspring from the deleterious effects of maternal infection on ASD behavior symptoms, and 

later on immune system reactivity in adulthood. Furthermore, neuro-inflammation in the 

autistic brain has been reported several times [6, 140, 141], and the increase in the n-6 to n-3 

PUFA ratio is one of the possible reasons for this [12]. In addition to its pro-inflammatory action, 

n-6 PUFA derived prostaglandins may be associated with initiation of preterm labor, with an 

increased risk of ASD in susceptible children [12]. Won et al. [38] found also high autoantibodies 

levels to neuronal and glial molecules in ASD patients, probably linked to a n-6 to n-3 PUFA ratio.  

 Finally, the gut:brain axis was recently pointed as an alternative pathway for the n-3 

PUFA action against ASD [6]. N-3 PUFA deficiency during perinatal period alters intestinal 

microbial balance in offspring, with a reduction in bacterial density and a decrease in the 

proportion of Firmicutes to Bacteroidetes [142]. On the other hand, microbial overgrowth can 

affect the uptake and metabolism of PUFAs and other molecules [143]. As this axis is different 
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among people, its variation in ASD patients may be one of the explanations for the inconsistent 

results in n-3 PUFA supplementation studies.  

 Overall, the majority of these studies underscore the important role of n-3 PUFAs, 

especially DHA, with an optimal n-6 to n-3 PUFA ratio, in the prevention or symptomatic 

improvement of ASD, recently indicating the gut:brain axis as a potential target for intervention 

in ASD. 

 

 

5.2 Potential mechanistic pathways of DHA in ADHD 

 

The study of Stevens et al. [144] was the first to show a link between ADHD and n-3 

PUFAs. These authors found lower DHA and EPA plasma levels in ADHD children, with an overlap 

of PUFA deficiency and ADHD symptoms: thirst, frequent urination, dry skin and hair and nail 

weakness. Recently, a meta-analysis [145] showed that youth with ADHD have lower RBCs DHA, 

EPA and total n-3 PUFAs but not lower levels of total n-6 PUFAs. However, no differences were 

reported in PUFA plasma levels comparing to controls, showing that while RBCs PUFAs are 

strongly correlated with dietary intake of the last month [146], and their brain levels [105], 

plasma levels only reflect its intake in the last days [145].  

Several authors suggested that, as a deficient fetal DHA level results in deficits in white 

matter integrity and in a reduction of functional connectivity in fronto-basal glial circuits (found 

in preterm infants), it could increase the risk of developing ADHD symptoms in childhood [126]. 

The most studied mechanism relating DHA intake to the pathophysiology of ADHD is the 

alteration in cortical dopamine neurotransmission [13, 16]. Dopamine levels and its binding to 

D2 receptors could be reduced, mainly in frontal cortex, in chronic n-3 PUFA deficiencies, 

associated with symptoms similar to those observed in ADHD [147]. 

Other authors have also found a pro-inflammatory status in ADHD, supporting the idea 

that n-3 PUFAs enhance ADHD symptoms by its anti-inflammatory action. For example, Hariri et 

al. [148] showed that 8 weeks of EPA plus DHA supplementation decreased plasma 

inflammatory mediators (C-reactive protein and IL-6) and oxidative stress in children with ADHD, 

although its impact on ADHD symptoms was not evaluated.  

Overall, there is relatively little research regarding the mechanisms of DHA in ADHD, 

compared to ASD information. Recently, the gut:brain axis was also reported to influence ADHD 

symptoms and diagnosis [84]. Indeed, it should be noted that low DHA intake has been 

associated to anxiety disorders [149], a risk factor for ASD and ADHD, while its supplementation 

has shown anxiolytic effects [150]. Therefore, an adequate DHA intake during pregnancy may 

lead to beneficial effects in children with ADHD or ASD also by reducing anxiety symptoms in 

their mothers. 

 

 

6. The role of maternal intake of DHA in the prevalence and risk of ASD and ADHD  

 

6.1. The importance in ASD 

 

Several authors showed the importance of optimal DHA levels in healthy children in 

neurological and motor development, verbal IQ, social behavior, inattention and hyperactivity, 
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both damaged in ASD. However, how maternal intake of DHA additionally affect the 

development of ASD is less clear, and research dedicated to this topic is scarce (see 

supplementary table S4). Recently, Julvez et al. [151] reported that maternal seafood intake 

during pregnancy, particularly large fatty fish, confer some protection against autism spectrum 

characteristics in offspring at 5 years of age, with a moderate attenuation after adjustment for 

LC-PUFA (including DHA) levels in cord blood. Associations remained positive above the previous 

recommended level of 340 g/week of fish during pregnancy, which appear to confirm the 

importance of optimal maternal DHA levels in preventing or ameliorating ASD symptoms in their 

children. Notably, in this study, cord-blood mercury acted as an important biomarker of seafood 

intake rather than having a neurotoxic association. Lyall et al. [152] also showed that women 

with the lowest total n-3 PUFA intake (the lowest 5% of the distribution) had a 53% increase in 

risk of having a child with ASD as compared with women in the highest 90% of the distribution. 

However, these authors did not find this association when DHA levels were assessed specifically. 

Indeed, no significant associations were found between n-3 PUFA intake in the upper quartiles, 

or maternal fish intake, and ASD risk, suggesting that once the minimum requirements of total 

n-3 PUFA intake for normal development are met, a higher intake may provide little or no 

benefit. Note that a major bias in this study relies on the fact that ASD diagnoses was not 

performed by a clinical evaluation and, therefore, the results should be interpreted with caution. 

Also, since maternal fish consumption had no significant impact on ASD risk, other dietary 

sources of n-3 PUFA may have contributed to the results. In fact, the relation between maternal 

consumption of fish, the main source of DHA and EPA, and the risk of ASD remain controversial, 

with other studies reporting no association between them [151, 153]. However, Julvez et al. 

[151], and Gao et al. [154] found a protective effect of fish intake during or before pregnancy 

against ASD diagnosis, respectively. 

 DHA requirement during pregnancy has to be combined with an optimal postnatal and 

early childhood dietary intake of it, important for cortical circuits’ maturation [12]. If it does not 

happen, it appears to become a risk factor that acts synergistically with other factors in the 

promotion of the pathogenesis of ASD among susceptible children [155].  

 Few studies have investigated the potential protective effects of breastfeeding against 

behavioral problems such as ADHD symptoms, and even fewer on ASD traits. Studies in this area 

found mixed results: while some showed a positive association between breastfeeding and ASD 

[156-160], others did not [161]. For example, Al-Farsi et al. [157] found that, in ASD, there are 

more suboptimal breastfeeding practices comparing to the control group. In agreement, a 

recent meta-analysis provides evidence that breastfeeding may protect against ASD [162]. 

Boucher et al. [159] reported that each additional month (>6 months) of breastfeeding was 

associated with a small improvement in cognitive function and with slightly fewer autistic traits, 

and more mitigated effects were found on ADHD symptoms and attention function. However, 

these authors did not find significant association between breastfeeding duration and the 

occurrence of scores within the clinical range for ASD and ADHD diseases. Finally, Schultz et al. 

[156] found that the use of infant formula without DHA plus ARA supplementation versus 

exclusive breastfeeding was associated with a significant increase in the odds of autistic 

disorder. Nevertheless, DHA is only one of the factors that contribute to the beneficial effects of 

breastmilk in childhood neurodevelopment; other potential molecules, such as oxytocin and 

serum insulin-like growth factor (IGF), are increased in breastmilk and could influence the risk 
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of ASD [162]. These findings may be useful for maternal counseling, especially in cases of risk of 

having ASD.  

 Other studies further indicated that more than a deficit of DHA intake, a higher maternal 

n-6 to n-3 PUFA ratio during pregnancy was associated with a higher number of autism traits in 

offspring [153]. Graff et al. [153] pointed out that these associations were independent of child 

intelligence, suggesting that the PUFAs distribution specifically affects the development of 

autistic traits in addition to general neurodevelopment, but maternal n-3 PUFA status and 

prenatal intake of fish were not associated with child autistic traits. These findings suggest that, 

possibly, the focus of dietary interventions should not only be the increasing of n-3 PUFA intake 

but also the reduction of food intake with high content of n-6 PUFAs.  

 

 

6.2. The importance in ADHD 

 As in ASD, it was proposed that maternal DHA intake during pregnancy and lactation 

influences the neurodevelopment of susceptible children to ADHD [13] (see supplementary 

table S5). 

 Some studies reported that higher maternal DHA levels at birth were associated with 

lower ADHD symptoms, such as inattention in toddlers [163] and hyperactivity/inattention 

during school age [164]. Gale et al. [65] also showed that children whose mothers had eaten 

fatty fish early in pregnancy, the type of fish richer in DHA and EPA, had a lower risk of 

hyperactivity compared to those whose mothers did not eat fatty fish. In addition, Sagiv et al. 

[165] found a protective association of ingestion of more than 2 times/week of fish with ADHD-

related behaviors, particularly DSM-IV Impulsive/Hyperactive behaviors. However, other studies 

did not detect any benefits of prenatal seafood intake in attention, once confounders were 

taken into consideration [60].  

  Regarding supplementation studies, there are also mixed results: while some authors 

reported a beneficial effect of prenatal DHA supplementation on measures of attention and 

executive function at preschool age [166, 167], others did not find any association [168]. 

Although these studies addressed healthy population, Ramakrishman et al. [167] showed that 

the same results were present in children with ADHD. 

 Breastfeeding is one of the factors that could be related to ADHD and the prevalence of 

ADHD among patients not fed with breastmilk, but with artificial formula, is significantly higher 

compared to those who are fed with breastmilk [169-172]. Moreover, breastmilk seems to 

prevent ADHD, once breastfeeding of shorter duration appears to be associated with an 

increased internalizing, externalizing, and overall behavioral problems as well as the diagnosis 

of ADHD [169, 171, 172].  

 

 

7. Discussion 

 

 ASD and ADHD arise from interactions between genetic and environmental factors that 

influence neurobiological systems since the prenatal period. It is unlikely that a single 

neuroanatomic or neurophysiological change is responsible for all the pathogenesis of ASD and 

ADHD. An alteration in brain volume is one of the more consistent features of ASD and ADHD, 
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but other problems, such as in myelin integrity, connectivity of the cortical circuits, 

neurotransmission and neuroinflammation, were also described. 

 N-3 PUFAs, especially DHA, are necessary for neurodevelopment. Their tissue 

concentrations in fetal plasma and brain are dependent on maternal diet intake, mainly through 

fish and other seafood. This intake is particularly important during the third trimester of 

pregnancy until the first six months of life. In fact, the current review shows that a low maternal 

intake of fish (or low DHA levels) during pregnancy can affect the neurodevelopment of their 

offspring, resulting in lower cognitive and language function, motor ability, poorer social and 

communication skills, and behavior problems. However, RTCs and other controlled studies have 

not shown the same consistent positive results as found in observational studies. Indeed, 

although the results from maternal supplementation RCTs still appear inconclusive, some 

studies pointed that DHA status in cord and maternal blood are associated with better childhood 

neurodevelopmental outcomes. One possible explanation for this is that, during pregnancy, DHA 

is not the unique factor to intervene in this development, as other factors such as birth weight, 

maternal education, maternal IQ, and smoking may mask the benefits of this intervention. In 

addition, the baseline DHA intake/status is not systematically included in the characterization of 

the study population. As this status could affect the response to changes in DHA intake, this may 

also be one of the reasons for the lack of significant association found in these studies.  

 Besides DHA deficits in prenatal period, an optimal DHA intake during the postnatal 

period may represent a safe and efficacious strategy to mitigate these deficits. In this period, it 

is more important to have an optimal n-6 to n-3 PUFA ratio than ideal levels of DHA. Additionally, 

preterm infants need higher DHA levels than full-term infants. They seem to have a higher risk 

for ASD and ADHD, and a high dose of DHA could reduce the typical symptoms found in ASD and 

ADHD at short-term but not in long-term. Although these results were found in healthy children, 

collectively, these findings provide support for the proposition that reduced perinatal DHA 

accrual in brain may represent a risk factor for ASD and ADHD.  

 Recent studies in ASD found that an optimal maternal consumption of fish and 

breastfeed for 6 months or more, could confer some protection against autism spectrum 

characteristics in offspring, while a higher maternal n-6 to n-3 PUFA ratio seem to be associated 

with higher autism traits in offspring. In addition, the brain-microbiota axis is a future tool for 

finding more effective strategies to prevent or treat ASD, and probably ADHD. These results 

were similar for ADHD, also showing positive findings of maternal DHA intake in the reduction 

of ADHD symptoms, although other studies did not demonstrate this association. Together, it 

suggests that early deficits of DHA in fetal brain may represent a modifiable risk factor for ASD 

and ADHD and could therefore be crucial for early intervention and prevention strategies. 

 In conclusion, DHA-rich food, particularly in pre- and postnatal period, could improve 

the health and well-being of pregnant woman, and reduce the risk for having a child with ASD 

and ADHD, especially in those with a positive family history. Recently, the Food and Drug 

Administration (FDA) and the Environmental Protection Agency (EPA), recommend that 

pregnant women, women who might become pregnant, and breastfeeding mothers eat 2-3 

servings of lower-mercury fish or 8-12 ounces (227 to 340 g) per week, while avoiding fish intake 

that is high in mercury [173, 174]. The novelty comparing to the recommendations of 2014 was 

a creation of three categories of fish: 1) “Best choices” (eat 2-3 times/week; e.g. salmon, tilapia, 

scallop, shrimp); 2) “Good choices” (eat 1 time/week; e.g. halibut, mahi-mahi, snapper) and 3) 

“Fish to avoid”; e.g. swordfish, king mackerel, tilefish.  
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 Finally, DHA supplementation appear to be an alternative to optimize maternal DHA 

levels in women who do not achieve optimal level of fish intake, such as poorly nourished 

mothers or those on vegan diets. N-3 PUFAs supplements and fortified formulas seems to be 

well tolerated. Newberry et al. [80], in a recent systematic review including 21 RCTs studies, 

found that the adverse effects of these supplementation in pregnant and lactating women were 

limited to mild gastrointestinal (GI) symptoms, with no serious adverse events reported. Indeed, 

in preterm and full-term infants, adverse events were also limited to GI symptoms, with most 

serious adverse events related to morbidities associated with prematurity.  
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Supplementary Materials 

Table S1: Observational studies addressing the impact of maternal prenatal fish/DHA intake and breastfeeding in the offspring neurodevelopmental outcomes 

Author N PUFAs measure (time; biological 
samples) 

Food intake assessment Neurodevelopment assessment 

(years) 

 

Results 

Bernard et al. 2017 [97] 

 

 

1080  

mother-child pairs 

(very preterm infants excluded) 

Lactating mothers; colostrum Breastfeeding - mothers’ 

questionnaire 

WPPSI-III 

at 5-6 y 

Longer breastfeeding duration 

associated with higher verbal IQ, 

but not with total and 

performance IQ.  

Exposure to colostrum high in LA 

and low in DHA associated with 

lower IQ (compared to 

colostrum high in DHA or low in 

LA and DHA). 

Girard et al. 2017 [95] 7478  

mother-child pairs 

(full-term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

 

BAS: Pictures similarities scale 

and Naming vocabulary scale; 

SDQ;  

at 3 and 5 y 

Breastfeeding for ≥6 mo 

associated with lower child’s 

hyperactivity.  

No significant differences post-

matching on any outcome. 

Belfort et al. 2016 [94] 1000 

mother-child pairs 

(preterm and full-term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

BRIEF; 

SDQ; 

in mid-childhood 

 

No association between longer 

breastfeeding duration, or 

exclusive breastfeeding, and 

better executive function, 

behavior, or social-emotional 

development in mid-childhood. 

Strain et al. 2015 [61] 1265  

mother-child pairs 

(preterm and full-term infants) 

28 weeks’ gestation; maternal 

serum 

Fish Use Questionnaire BSID-II MDI and PDI; 

MacArthur CDI; 

IBQ-R;  

at 1.7 y 

Higher prenatal DHA levels 

associated with better child’s 

language function, but with 

worse mental development.  

Higher n-6:n-3 ratio associated 

with poorer social 

communication and language 

development. 

No associations between PUFA 

status and IBQ-R scores. 

Lind al. 2014 [98] 1442  

mother-child pairs 

(preterm and full-term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

SDQ  

at 6 y 

No associations between 

breastfeeding for ≥6 mo, and 

exclusively breastfed for ≥3 mo, 
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and better emotional symptoms, 

conduct problems, and total 

difficulties, after adjustment. 

Belfort et al. 2013 [88] 1312  

mother-child pairs 

(preterm and full-term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

FFQ, 6 mo pp - estimate prenatal 

fish intake 

 

 

PPVT-III  

at 3 y; 

WRAVMA  

at 3 and 7 y; 

KBIT and WRAML  

at 7 y 

 

 

Longer duration and exclusivity 

of breastfeeding associated with 

better receptive language and 

verbal and non-verbal IQ, with 

no changes in visual motor skills 

and visual memory. 

Higher benefit on visual motor 

ability with ≥2 fish times/week.  

Steer et al. 2013 [68] 2839  

mother-child pairs  

(preterm and full-term infants) 

Throughout pregnancy; 

mothers’ RBCs 

-- WISC  

at 8 y 

Low prenatal DHA levels 

associated with lower IQ.  

Bernard et al. 2013 [70] 

 

1335  

mother-child pairs 

(very preterm infants excluded) 

-- FFQ, days pp - estimate maternal 

prenatal PUFA intake 

 

  

MacArthur CDI  

at 2 y; 

ASQ, PMT 5, a test of design 

copying, and the verbal fluency 

test; 

at 3 y 

No associations between 

prenatal DHA intake and 

neurodevelopment. 

In never-breastfed children: 

Higher maternal n-6:n-3 ratio 

associated with worse CDI, ASQ 

and verbal fluency scores. 

In the group of higher prenatal 

n6:n3 ratio, breastfeeding 

duration had a stronger positive 

effect in language domain.  

Valent et al. 2013 [69] 606  

mother-child pairs 

(full-term infants) 

20-22 or 32 weeks’ gestation; 

maternal serum  

FFQ, 1 mo pp - to estimate 

prenatal fish and PUFA intake. 

 

BSID III  

at 1.5 y  

No associations between 

prenatal fish intake and child 

neurodevelopment. 

No associations between 

maternal DHA, EPA and total n-3 

PUFAs and child 

neurodevelopment.  

Higher n-6:n-3 ratio associated 

with lower language score. 

Quigley et al. 2012 [89] 11 879  

mother-child pairs 

(preterm and full-term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

BAS: Vocabulary, pattern 
construction and picture 
similarities subscales; 
at 5 y  
 

 

Breastfeeding associated with 

better cognitive development, 

mainly in preterm infants.  
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Improvements appeared when 

breastfeeding ≥4-6 mo in term 

and ≥2 mo in preterm infants. 

Hayatbakhsh et al. 2012 [92] 4502  

mother-adolescent pairs 

(preterm and full-term infants) 

 

-- Breastfeeding - mothers’ 

questionnaire 

Youth Self Report - CBCL  

at 14 y  

Breastfeeding for ≥4 mo 

associated with fewer 

anxiety/depression symptoms, 

social or attention problems, 

and aggressive/delinquent 

behavior.  

Whitehouse et al. 2011 [90] 1195  

mother-child pairs 

(full-term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

PPVT  

at 10 y 

Breastfeeding for ≥6 mo 

associated with higher language 

outcomes.  

Oddy et al. 2010 [91] 2900  

mother-child pairs 

(preterm and full-term infants) 

 

 

-- Breastfeeding - mothers’ 

questionnaire 

CBCL  

at 2, 6, 8, 10 and 14 y 

Breastfeeding for <6 mo 

associated with higher mental 

health problems, including 

behavior problems, through 

childhood and into adolescence. 

Mendez et al. 2009 [64] 392  

mother-child pairs 

(full-term infants) 

-- FFQ, 3 mo pp - estimate prenatal 

fish intake. 

 

 

MCSA  

at 4 y  

In children breast-fed for <6 mo, 

prenatal fish intake >2–3 

times/week associated with 

higher cognitive and motor 

development (compared to 

intake of ≤1 times/week). 

No association between fish >3 

times/week and better scores.  

In children breast-fed for >6 mo, 

no association between 

maternal fish intake and 

development scores.  

Oken et al. 2008 [62] 25446  

mother-child pairs 

(preterm and full-term infants) 

-- FFQ, 25 weeks’ gestation - 

estimate prenatal fish intake.  

Mothers’ interview - total, 

motor, social and cognitive 

scores at 1.5 y 

Higher prenatal fish intake 

(particularly ≥3 times/week) 

associated with higher 

developmental scores.  

Breastfeeding for >6 mo, 

particularly >10, associated with 

higher developmental scores.  

Oken et al. 2008 [63] 341 

mother-child pairs 

(preterm and full-term infants) 

2nd trimester of pregnancy; 

mothers’ RBCs 

FFQ, 2nd trimester of pregnancy 

- estimate fish, DHA and EPA 

prenatal intake.  

PPVT and WRAVMA  

at 3 y 

Prenatal fish intake >2 

times/week, but not below, 
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 associated with higher language 

and visual motor skills.  

No associations between 

DHA+EPA dietary intake (and 

RBCs levels) and child cognition. 

Gale et al. 2008 [65] 217  

mother-child pairs 

(preterm and full-term infants) 

-- FFQ, 15 and 32 weeks’ gestation 

- estimate prenatal fish intake 

 

SDQ and WASI  

at 9 y  

Eat oily fish in early or late 

pregnancy associated with lower 

risk of child hyperactivity.  

Eat fish (oily or not) at ≥1 

times/week, in late pregnancy, 

associated with higher verbal IQ.  

Jacobson et al. 2008 [66]  

 

109  

mother-child pairs 

(full-term infants) 

At birth; cord and maternal 

plasma phospholipids. 

1 mo pp; total maternal milk 

lipids 

 

-- TVACT and FTII  

at 0.5 and 0.92 y; 

BSID-II  

at 0.92 y 

Higher cord DHA levels 

associated with longer gestation, 

better visual acuity, higher 

scores of novelty preference, 

and better mental and 

psychomotor scores.  

No associations between DHA 

from maternal milk and 

neurodevelopmental scores.  

Krammer et al. 2008 [93] 13889  

mother-child pairs  

(full-term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

SDQ  

Canadian NLSCY  

at 6.5 y  

 

No association between longer 

breastfeeding duration, or 

exclusive breastfeeding, and 

child social-emotional scores.  

Krabbendam et al. 2007 [67] 393  

mother-child pairs 

(preterm and full-term infants) 

Late gestation; umbilical venous 

plasma phospholipids 

 

-- Dutch version of CBCL  

at 7 y  

Higher DHA status at birth 

associated with lower levels of 

internalizing problem behavior 

(not with externalizing problem).  

Hibbeln et al. 2007 [60] 11875  

mother-child pairs 

(preterm and full-term infants) 

-- FFQ, 32 weeks’ gestation -  

estimate prenatal fish intake.  

 

 

 

 

WISC-III  

at 8 y; 

SDQ  

at 6.75 y; 

Development questionnaire  

at 0.5, 1.5, 2.5 and 3.5 y 

Low prenatal seafood intake 

(<340 g or <3 times/week) 

associated with lower verbal IQ 

and fine motor ability, less pro-

social behavior, and poorer 

social and communication skills.  

Legend: DHA = Docosahexaenoic acid; PUFAs = polyunsaturated fatty acids; Very preterm infants = gestational age <33 weeks; y = years; WPPSI-III = Wechsler Preschool and Primary Scale of Intelligence, Third Edition; 

IQ = Intelligence Quotient; LA = linoleic acid, an n-6 PUFA; BAS = British Abilities Scale; SDQ = Strengths and Difficulties Questionnaire; mo = months; BRIEF = Behavior Rating Inventory of Executive Function; BSID II = 

Bayley Scales of Infant Development, Second Edition; MDI = Mental Development Index, in BSID-II; PDI = Psychomotor Developmental Index, in BSID-II; CDI = Communicative Development Inventories; IBQ-R = Infant 

Behavior Record–Revised; FFQ = Food Frequency Questionnaire; pp = postpartum; PPVT = Peabody Picture Vocabulary Test; WRAVMA = Wide-Range Assessment of Visual Motor Abilities; KBIT = Kaufman Brief 

Intelligence Test; WRAML = Wide Range Assessment of Memory and Learning; RBCs = Red Blood Cells; WISC = Wechsler Intelligence Scale for Children; ASQ = Ages and Stages Questionnaire; PMT = Peg Moving Task; 
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BSID-III = Bayley Scales of Infant and Toddler Development, Third Edition; EPA = Eicosapentaenoic acid; CBCL = Child Behavior Checklist; MCSA = McCarthy Scales of Children’s Abilities; WASI = Wechsler Abbreviated 

Scale of Intelligence; TVACT = Teller Visual Acuity Card Test; FTII = Fagan Test of Infant Intelligence; NLSCY = National Longitudinal Survey of Children and Youth. 
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Supplementary Materials 

Table S2: RCTs studies addressing the impact of maternal DHA supplementation during pregnancy and offspring neurodevelopmental outcomes 

Author N Supplementation  
Type; dose (daily) 

Supplementation  
Weeks (mean) 

Neurodevelopment assessment 

(years) 

 

Results 

Ostadrahimi et al. 2017 [86] 

 

150 

Preterm and full-term 

120 mg DHA + 180 mg EPA 24 weeks  

(20 weeks’ gestation - 1 mo pp) 

ASQ  

at 0.3 and 0.5 y 

Supplementation associated 

only with higher communication 

skills at 0.3 y.  

Gould et al. 2017 [84] 543 

Preterm and full-term 

 

800 mg DHA > 19 weeks 

(<21 weeks’ gestation – birth) 

WASI-II; 

FST and ReyCF; 

TEACh; 

RAVL; 

CELF-4; 

WRAT-4; 

Parent report-behavior: Conners 

3 (ADHD) and SDQ; 

at 7 y 

No differences in IQ, language, 

academical abilities, executive 

function or in the diagnosis of 

neurodevelopmental disorders, 

but slightly higher reasoning 

scores in DHA group. 

Supplementation associated 

with more behavior problems 

and executive dysfunction. 

Gould et al. 2016 [85] 2399 

Preterm and full-term 

 

800 mg DHA > 19 weeks 

(<21 weeks’ gestation – birth) 

 

BSID III  

at 1.5 y; 

DAS II  

at 4 y.  

Supplementation associated 

with higher cognitive scores 

when mothers did not complete 

further education, but with 

lower language scores at 1.5 y 

and cognitive development at 4 

y when education was 

completed.  

Smoking nullified the benefits of 

DHA supplementation in 

neurodevelopment. 

Ramakrishnan et al. 2016 [167] 797 

Preterm and full-term 

400 mg DHA 18-22 weeks 

(18-22 weeks’ gestation – birth) 

MSCA; 

BASC-2; 

K-CPT; 

at 5 y  

No differences in cognitive and 

behavioral outcomes.  

Supplementation associated 

with better sustained attention. 

Meldrum et al. 2015 [77] 50 

Full-term 

220 mg DHA + 110 mg EPA 20 weeks 

(20 weeks’ gestation – birth) 

WISC-IV; 

CBCL; 

Beery-Buktenica TVMI; 

No differences in cognition, 

language and fine motor skills. 
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CCC; 

at 12 y 

Higher RBCs’ DHA levels 

associated with higher cognitive 

scores in WISC-IV.  

Hurtado et al. 2015 [83] 110 

Full-term 

392 mg (DHA + EPA) 28 weeks 

(28 weeks’ gestation - 4 mo pp) 

VEPs  

at 0.2 and 0.63 y; 

BSID-II  

at 1 y 

No differences in VEPs, cognitive 

and psychomotor development.  

Ramakrishnan et al. 2015 [81] 730  

Full-term 

400 mg DHA 18-22 weeks 

(18-22 weeks’ gestation – birth) 

BSID-II  

at 1.5 y 

No differences in cognitive, 

motor, or behavioral 

development.  

Gould et al. 2014 [168] 158 

Full-term 

800 mg DHA 20 weeks 

(20 weeks’ gestation – birth) 

Single-object task; 

Multiple-object task; 

Distractibility task;  

WMIC task; 

at 2.25 y. 

No differences in attention, 

working memory and inhibitory 

control. 

No association between cord 

plasma DHA and 

neurodevelopmental outcomes.  

Mulder et al. 2014 [71] 270  

Full-term 

400 mg DHA 24 weeks 

(16 weeks’ gestation – birth) 

TAC  

at 0.17 and 1 y; 

McArthur CDI  

1.17 and 1.5 y; 

BSID-III  

at 1.5 y 

Placebo group associated with 

higher risk of lower language 

development at 1.17 and 1.5 y, 

and lower visual acuity at 0.17 y, 

but not at 1 y. 

Makrides et al. 2014 [78] 646 

Preterm 

800 mg DHA + 100 mg EPA  > 19 weeks 

(<21 weeks’ gestation – birth) 

BRIEF; 

CELF Preschool–2; 

DAS II; 

at 4 y 

No differences in cognition, 

language, and executive 

functioning.  

Gustafson et al. 2013 [72] 52 

Full-term 

600 mg DHA 20-28 weeks 

(12-20 weeks’ gestation – birth) 

NBAS  

at 1-14 days pp 

Supplementation associated 

with higher autonomic and 

motor scores.  

van Goor et al. 2011 [82] 114  

Full-term 

1) 220 mg DHA 

2) 220 mg DHA + 220 mg ARA 

32-38 weeks  

(14-20 weeks’ gestation - 3 mo 

pp) 

BSID-II and Hempel examination 

at 1.5 y 

 

No differences between groups 

in mental and psychomotor 

scores.  

Children with simple MND had 

lower DHA in umbilical venous 

compared to normal children. 
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Escolano-Margarit et al. 2011 

[75] 

270 

Full-term 

500 mg DHA + 150 mg EPA 20 weeks 

(20 weeks’ gestation – birth) 

Hempel examination  

at 4 y; 

Touwen examination  

at 5.5 y 

No differences in 

neurodevelopmental scores. 

Higher prenatal DHA levels in 

fetal and maternal blood, and 

lower maternal ARA:DHA ratio, 

associated with better 

performance on neurological 

examinations.  

Campoy et al. 2011 [76] 315 

Full-term 

500 mg DHA + 150 mg EPA 20 weeks 

(20 weeks’ gestation – birth) 

K-ABC  

at 6.5 y of age 

No differences in cognitive 

function.  

Higher maternal RBCs’ DHA 

levels at delivery associated with 

higher mental processing scores.  

Makrides et al. 2010 [74] 694 

Preterm 

800 mg DHA + 100 mg EPA > 19 weeks 

(<21 weeks’ gestation – birth) 

BSID-III  

at 1.5 y 

No differences in cognitive, 

language and motor 

development.  

Dunstan et al. 2008 [57] 98 

Full-term 

220 mg DHA + 110 mg EPA 20 weeks 

(20 weeks’ gestation – birth) 

GMDS; 

PPVT; 

CBCL; 

at 2.5 y 

Supplementation associated 

with higher scores for eye and 

hand coordination.  

Cord RBCs’ n-3 PUFA levels 

positively correlated with eye 

and hand coordination. 

Judge et al. 2007 [73] 29 

Full-term 

214 mg DHA 16 weeks 

(24 weeks’ gestation – birth) 

2-step problem-solving test: 

support step and search step; 

FTII; 

at 0.75 y 

Supplementation associated 

with better problem solving but 

not with recognition memory.  

Legend: RCTs = Randomized controlled trials; DHA = Docosahexaenoic acid; EPA = Eicosapentaenoic acid; mo = months; pp = postpartum; ASQ = Ages and Stages Questionnaire; mo = months; WASI-II = Wechsler 

Abbreviated Scale of Intelligence, Second Edition; FST = Fruit Stroop Test; ReyCF = Rey Complex Figure; TEACh = Test of Everyday Attention for Children; RAVL = Rey Auditory Verbal Learning Test; CELF = Clinical 

Evaluation of Language Fundamentals; WRAT-4 = Wide Range Achievement Test, Fourth Edition; SDQ = Strengths and Difficulties Questionnaire; y = years; BSID-III = Bayley Scales of Infant and Toddler Development, 

Third Edition; DAS II = Differential Ability Scales; MSCA = McCarthy Scales of Children’s Abilities; BASC-2 = Behavioral Assessment System for Children, Second Edition; K-CPT = Conners’ Kiddie Continuous Performance 

Test; WISC-IV = Wechsler Intelligence Scale for Children-IV; CBCL = Child Behavior Checklist; TVMI = Test of Visual-Motor Integration; CCC = Children’s Communication Checklist; RBCs = Red Blood Cells; VEPs = Visual 

Evoked Potentials; BSID-II = Bayley Scales of Infant Development, Second Edition; WMIC = Working Memory and Inhibitory Control; TAC = Teller Acuity Card; CDI = Communicative Developmental Inventory; BRIEF = 

Behavior Rating Inventory of Executive Function; NBAS = Neonatal Behavioral Assessment Scale; ARA = Arachidonic Acid; MND = Minor Neurological Dysfunction; Simple MND = presence of 1 dysfunctional domain; K-

ABC = Kaufman Assessment Battery for Children; GMDS = Griffiths Mental Development Scales; PPVT = Peabody Picture Vocabulary Test; PUFAs = polyunsaturated fatty acids; FTII = Fagan Test of Infant Intelligence.  
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Supplementary Materials 

Table S3: RCTs studies addressing the impact of postnatal DHA supplementation in neural development in full-term and preterm infants 

Author N Supplementation  
Type; dose (daily) 

Supplementation length  
Weeks 

Neurodevelopment assessment 

(years) 

 

Results 

Full-term infants 

Willatts et al. 2013 [101] 147 

 

0.21 g/100g DHA + 0.35g/100g 

ARA;  

(Infant formula) 

15-16 weeks 

(<7 days pp - 4 mo pp)  

WPPSI-R; 

Day-Night Test; 

MFFT; 

at 6 y 

No differences in IQ and 

attention control.  

Supplementation associated 

with faster and more efficient 

information processing.  

Colombo et al. 2013 [102] 81 1) 0%DHA (control group) 

2) 0.32% DHA 

3) 0.64% DHA 

4) 0.96% DHA 

All + 0.64% ARA; 

(Infant formula) 

 

48 weeks 

(birth - 12 mo pp) 

BSID-II at 1.5 y; 

MacArthur-Bates CDI at 1.5 y;  

SDRT at 2, 2.5, and 3 y;  

Bear-Dragon Go/No-Go Task at 

3, 3.5, and 4y; 

Stroop tasks and DCCS at 3, 3.5, 

4, and 5 y; 

Tower of Hanoi task at 3, 5, and 

6 y;  

PPVT-III at 5 y; 

WPPSI-III at 6y. 

Supplementation associated 

with better executive function 

and verbal scores at 5 and 6 y.  

Higher supplementation (0.96% 

DHA) associated with less impact 

on neurodevelopment than 0.32 

or 0.64% DHA groups (exception 

Stroop tasks).  

Drover et al. 2011 [100] 131 1) 0% DHA (control group) 

2) 0.32% DHA 

3) 0.64% DHA 

4) 0.96% DHA 

All + 0.64% ARA; 

(Infant formula) 

47-48 weeks 

(1-9 days pp - 12 mo pp) 

BSID-II 

at 1.5 y 

Supplementation associated 

with higher cognitive function.  

No differences between DHA 

groups in mental, psychomotor 

or behavior development.  

Colombo et al. 2011 [103] 122 1) 0% DHA (control group) 

2) 0.32% DHA 

3) 0.64% DHA 

4) 0.96% DHA 

All + 0.64% ARA; 

(Infant formula) 

48 weeks 

(birth - 12 mo pp) 

Visual habituation protocol  

(at 0.3, 0.6 and 0.75 y) 

Supplementation with 0.32% or 

0.64% of DHA associated with 

longer attention activity.  

Supplementation with 0.96% of 

DHA associated with less impact 

on neurodevelopment than 0.32 

and 0.64% groups. 
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Gale et al. 2010 [96] 241 6.8 to 18 mg/100 ml DHA; 

(Infant formula) 

24 weeks 

(birth – 6 mo pp) 

WPPSI-III; 

NEPSY; 

TVPS; 

at 4 y 

Supplementation associated 

with higher total and verbal IQ. 

DHA intake from milk 

(breastmilk plus formula) no 

associated with any 

neurodevelopmental outcome.   

De Jong et al. 2010 [106] 341 0.30% DHA + 0.45% ARA; 

(Infant formula) 

8 weeks 

(birth – 2 mo pp) 

Touwen examination  

at 9 y 

No differences in neurological 

functioning.  

Breastfeeding associated with 

less often fine manipulative 

dysfunction than formula-

feeding. 

Jensen et al. 2010 [166] 160 200 mg DHA; 

(Mothers’ supplementation) 

15-16 weeks 

(5 days pp – 4 mo pp) 

VEP and ETDRS/Bailey-Lovie 

chart; 

Bayley PDI, MSCA, PPT, K-ABC; 

WPPSI-R;  

Sustained Attention scale of the 

Leiter-R; 

At 5 y 

Supplementation associated 

with better sustained attention. 

No differences in visual function 

and other neuropsychological 

domains.  

Pivik et al. 2009 [105] 71 1) 0% DHA or ARA 
2) 0.15% DHA + 0.40% ARA 
3) 0.32% DHA + 0.64% ARA; 

(Infant formula) 

24 weeks 

(birth – 6 mo pp) 

BSID; 

PLS; 

at 0.25 and 0.5 y 

In the 3 groups, developmental 

function and language measures 

were in the normal range. 

No differences in 

neurodevelopmental outcomes. 

Birch et al. 2007 [104] 52 1) 0.35% DHA 
2) 0.36% DHA + 0.72% ARA 
(Infant formula) 

16-17 weeks 

(<5 days pp – 17 weeks pp) 

WPPSI-R; 

ATS protocol and EVA system; 

at 4 y 

DHA+ARA supplementation 

associated with better visual 

acuity and verbal IQ than DHA 

supplementation alone.  

Supplementation only with DHA 

associated with lower verbal IQ 

than breast-fed group. 

No differences between 

DHA+ARA supplementation and 

breast-fed group.  

Preterm infants 

Molloy et al. 2016 [118] 104 

Very preterm infants 

1) 1.0% DHA + 0.6% ARA 
2) 0.35% DHA + 0.6% ARA; 

Day 2-4 pp – estimated due date FrACT; 

Vernier Acuity Test; 

No differences in visual-

processing.  
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(Infant formula) RPST; 

Judgment of line orientation; 

TVPS-3; 

at 7 y.  

Collins et al. 2015 [111] 604 

Very preterm infants 

1) 1.0% DHA + 0.6% ARA 
2) 0.35% DHA + 0.6% ARA 

(Infant formula) 

Day 2-4 pp – estimated due date WASI; 

TEA-Ch;  

RCFT, Fruit Stroop Test, BRIEF; 

RAVLT; 

TVPS-3; 

Parent questionnaires: Conners 

3 (ADHD) and SDQ; 

at 7 y 

No differences in IQ, attention, 

executive function, behavior, 

visual-spatial perceptual skills 

and educational progress.  

No differences in the diagnosis 

of ADHD, ASD or cerebral palsy. 

Almaas et al 2015 [114] 98  

VLBW infants 

0.86% DHA + 0.91% ARA  

(Infant formula) 

9 weeks 

(birth – 9 weeks pp) 

WASI, WISC-III; 

CVLT-II; 

Grooved Pegboard test; 
at 8 y 

No differences in cognitive and 

MRI data on brain volumes or 

cortical surface volume, area 

and thickness.  

Isaacs et al.  2011 [115] 107 0.5 g/100g DHA + 0.1g/100g EPA 

+ 0.04g/100g ARA 

(Infant formula) 

36 weeks 

(birth – 9 mo pp) 

WASI; 

CMS, Word Pairs instrument; 

Neuropsychological Test for 

Children; 

WIAT-II; 

TEA-Ch; 

BADS-C; 

at 10 y 

No differences in IQ, memory, 

language, learning skills, 

academic attainment, attention 

and executive function.  

Westerberg et al. 2011 [113] 92 

VLBW infants 

0.86% DHA + 0.91% ARA  

(Infant formula) 

9 weeks 

(birth – 9 weeks pp) 

BSID MDI; 

ASQ; 

Free-play session test; 

at 1.7 y. 

 

Supplementation associated 

with better attention capacity, 

but no differences in MDI and 

ASQ scores. 

Plasma DHA at delivery 

associated with better sustained 

attention and MDI.  

Smithers et al. 2010 [116] 128 

Very preterm infants 

1) 1.0% DHA + 0.6% ARA 
2) 0.35% DHA + 0.6% ARA 

(Infant formula) 

Day 2-4 pp – estimated due date MacArthur CDI at 2.2 y; 

SDQ and STSC at 3 and 5 y. 

No differences in language 

development and child’s 

behavior.  

Makrides et al. 2009 [111] 657 

Very preterm infants 

1) 1.0% DHA + 0.6% ARA 
2) 0.35% DHA + 0.6% ARA 
(Infant formula) 

Day 2-4 pp – estimated due date BSID  

at 1.5 y 

No differences in mental, 

psychomotor or behavior 

development. 
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For infants weigh <1250g, group 

1 associated with higher mental 

scores, but no statistical 

significant.  

Smithers et al. 2008 [112] 168 

Very preterm infants 

1) 1.0% DHA + 0.6% ARA 
2) 0.35% DHA + 0.6% ARA 
(Infant formula) 

Day 2-4 pp – estimated due date VEP  

at 0.17 and 0.3 y 

No differences in visual acuity at 

0.17 y, but supplementation 

associated with higher visual 

acuity at 0.3 y.  

Henriksen et al. 2008 [110] 105  

VLBW infants 

0.86% DHA + 0.91% ARA 
(Infant formula) 

8 weeks  

(1 week pp – 9 weeks pp) 

ASQ; 

Event-Related Potentials; 

at 0.5 y 

Supplementation associated 

with better problem-solving 

skills and recognition memory.  

Legend: RCTs = Randomized controlled trials; DHA = Docosahexaenoic acid; ARA = Arachidonic Acid; pp = postpartum; WPPSI-R= Wechsler Preschool and Primary Scale of Intelligence –Revised; MFFT = Matching Familiar 

Figures Test; IQ = Intelligence Quotient; BSID-II = Bayley Scales of Infant Development, Second Edition; CDI = Communicative Development Inventories; SDRT = Spatial Delayed Response task; DCCS = Dimensional 

Change Card Sort; PPVT = Peabody Picture Vocabulary Test; NEPSY = Developmental NEuroPSYchological Assessment; TVPS = Test of Visual-Perceptual Skills (non-motor); VEP = Visual evoked potential; PDI = 

Psychomotor Development Index; MSCA = McCarthy Scales of Children’s Abilities; PPT = Purdue Pegboard Test; K-ABC = Kaufman Assessment Battery for Children; Leiter-R = Leiter International Performance Scale-

Revised; PLS = Preschool Language Scales; ATS = Amblyopia Treatment Study; EVA = Electronic Visual Acuity; Very preterm infants = <33 weeks’ gestational age; FrACT = Freiburg Visual Acuity Test; RPST = Randot 

Preschool Stereoacuity Test; TVPS-3 = Test of Visual Perceptual Skills, Third Edition; WASI = Wechsler Abbreviated Scale of Intelligence; TEA-Ch = Test of Everyday Attention for Children; RCFT = Rey Complex Figure 

Test; BRIEF = Behavior Rating Inventory of Executive Function; RAVLT = Rey Auditory Verbal Learning Test; SDQ = Strengths and Difficulties Questionnaire; VLBW = Very Low and Extremely Low Birth Weight, <1500g; 

WISC = Wechsler Intelligence Scale for Children; CVLT-II = California Verbal Learning Test II; MRI = Magnetic Resonance Imaging; EPA = Eicosapentaenoic acid; CMS = Children’s Memory Scale; WIAT-II = Wechsler 

Individual Achievement Test, Second Edition; BADS-C = Behavioural Assessment of the Dysexecutive Syndrome for Children; MDI = Mental Development Index; ASQ = Ages and Stages Questionnaire; STSC = Short 

Temperament Scale for Children.  
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Table S4: Overview of the studies addressing the impact of maternal fish and DHA intake and offspring ASD diagnosis 

Author N PUFAs measure (time; biological 

samples) 

Food intake assessment Neurodevelopment assessment 

(years) 

 

Results 

Boucher et al. 2017 [159] 

 

1346 

mother-child pairs 

(term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

 

MSCA; 

K-CPT; 

ADHD: DSM-IV; 

Autistic traits:  CAST; 

at 4 y 

 

Longer breastfeeding duration 

(for each additional month) 

associated with better cognitive 

outcomes and fewer autistic 

traits. More mitigated effects for 

ADHD symptoms.  

No association between 

breastfeeding duration and ASD 

and ADHD in the clinical range*. 

Julvez et al. 2016 [151] 1892 

mother-child pairs 

(term infants) 

 

At birth; cord-blood 

 

FFQ at 10-13 and 28-32 weeks’ 

gestation 

BSID  

at 1.17 y; 

MSCA  

at 5 y;  

Autistic traits: CAST  

at 5 y 

 

Maternal seafood intake, 

particularly within the highest 

quantile (>238 g/week), 

associated with moderate child 

neurodevelopment benefits, 

with a better cognition and 

fewer autistic traits. 

Part of the associations reduced 

by adjustments for PUFA levels. 

Graff et al. 2016 [153] 4624  

mother-child pairs 

(preterm and term infants) 

 

Midpregnancy (median: 20.6 

weeks’ gestation); maternal 

plasma 

FFQ, early pregnancy (median, 

13.8 weeks) and at 1.2 y pp 

Autistic traits: SRS and CBCL  

at 6 y 

Lower prenatal n-3:n-6 PUFA 

ratio associated with more 

autistic traits. 

No association between 

maternal n-3 PUFA levels (or 

prenatal dietary fish intake) and 

child autistic traits.  

Gao et al. 2016 [154] 926  

mother-child pairs 

-- Parental questionnaire: diet 

from 0.5 y before pregnancy to 

birth. 

ASD: DSM-IV and CARS score ≥ 

30. 

Parental fish intake before 

pregnancy associated with lower 

risk of child autism. 
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Husk et al. 2015 [161] 37901 

mother-child pairs 

(preterm and term infants) 

-- Breastfeeding - mothers’ 

questionnaire 

ASD: parental report and DSM-IV No association between any 

measure of breastfeeding 

history and ASD. 

Shafai et al. 2014 [158] 145 

mother-child pairs 

 

-- Breastfeeding - mothers’ 

questionnaire 

ASD: parental report Longer breastfeeding duration, 

especially ≥12 mo, associated 

with less ASD diagnosis.  

Lack of breastfeeding associated 

with higher risk of having ASD in 

genetically susceptible children. 

Lyall et al. 2013 [152] 18045 

mother-child pairs 

 

-- FFQ, during pregnancy or until 

1–2 y pp  

ASD: parental report 

Validation: ADI-R by phone and 

SRS.  

Very low maternal n-3 PUFA 

intake associated with higher 

risk of ASD (RR=1.53). 

No associations between 

maternal fish intake and ASD. 

Al-Farsi et al. 2012 [157] 204 

mother-child pairs 

 

-- Breastfeeding - mothers’ 

questionnaire 

ASD: DSM-IV-R Late initiation of breastfeeding, 

non-intake of colostrum, 

prelacteal feeding**, and 

formula-feeding associated with 

higher prevalence of ASD.  

Longer exclusive breastfeeding 

and continued breastfeeding 

during the first 2 y associated 

with lower ASD risk.  

Schultz et al. 2006 [156] 984 

mother-child pairs 

-- Breastfeeding - mothers’ 

questionnaire 

ASD: parental report using 

online internet survey 

 

Lack of breastfeeding associated 

with higher risk for AD 

(OR=2.48), compared to 

breastfeeding for > 6 mo. 

Infant formula without DHA and 

ARA associated with higher risk 

for AD (OR=4.41), compared to 

exclusive breastfeeding. 

Legend: DHA = Docosahexaenoic acid; MSCA = McCarthy Scales of Children’s Abilities; K-CPT = Kiddie Continuous Performance Test; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; CAST 

= Childhood Asperger Syndrome Test; FFQ = Food Frequency Questionnaire; BSID = Bayley Scales of Infant Development; PUFAs = polyunsaturated fatty acids; pp = postpartum; SRS = Social Responsiveness Scale; CBCL 

= Child Behavior Checklist; CARS = Childhood Autism Rating Scale; ADI-R = Autism Diagnostic Interview-Revised; AD = Autistic Disorder.  

* ADHD in the clinical range estimated by recording ratings of options 0 and 1 as “symptom absent, and ratings of 2 and 3 as “symptom present”, and using the DSM-IV criteria for ADHD (≥ six symptoms within a single 

category). For ASD: Score in the clinical range (≥ 15).  

** Prelacteal feeds: food or liquid received before the initiation of breastfeeding. 
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Table S5: Overview of the studies addressing the impact of maternal fish and DHA intake and offspring ADHD diagnosis 

Author N PUFAs measure (time; biological 

samples) 

Food intake assessment Neurodevelopment assessment 

(years) 

 

Results 

Stadler et al. 2016 [172] 474 

mother-child pairs 

-- Breastfeeding - mothers’ 

questionnaire 

ADHD: DSM-V  

at 7-13 y 

Breastfeeding <6 mo associated 

with higher prevalence of ADHD. 

Park et al. 2014 [171] 874 

mother-child pairs 

-- Breastfeeding - mothers’ 

questionnaire 

 

ADHD: DISC-IV; 

CBCL; 

KEDI-WISC; 

at 8-11 y 

Lack of breastfeeding associated 

with higher internalizing, 

externalizing and other 

behavioral problems, lower 

child’s IQ, and increased ADHD 

prevalence.  

Groen et al. 2013 [170] 1739 

mother-child pairs 

 

-- Breastfeeding - mothers’ 

questionnaire 

 

CBCL  

at 3, 7, 10 and 12 y; 

RAKIT  

at 5, 7 and 10 y; 

WISC-R and WISC-R-III  

at 10 and 12 y; 

CITO  

at 12 y 

Breastfeeding associated with 

higher educational attainment, 

less overactive behavior and a 

trend toward higher IQ.  

Mimouni-Bloch et al. 2013 [169] 159 

mother-child pairs 

 

-- Breastfeeding - mothers’ 

questionnaire 

 

ADHD: clinical diagnosis not 

specified  

at 6-12 y 

ADHD associated with less 

frequent breastfeeding at 3 and 

6 mo.  

Sagic et al. 2012 [165] 515 

mother-child pairs 

 

-- FFQ, days after birth - estimate 

prenatal fish intake. 

ADHD symptoms: CRS-T and 

DSM-IV; 

WISC-III; 

CPT; 

at 8 y 

Fish intake >2 times/week 

associated with better ADHD-

related behaviors, mainly 

Impulsive/Hyperactive 

behaviors. 

Maternal fish intake associated 

with higher cognitive scores. 
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Kohlboeck et al. 2011 [164] 416 

mother-child pairs 

(term infants) 

At birth; cord blood serum 

 

-- SDQ  

at 10 y 

Higher cord blood DHA 

associated with lower 

hyperactivity/inattention scores 

and fewer emotional symptoms. 

Kannass et al. 2009 [163] 45 

mother-child pairs 

 

At birth; Maternal RBCs 

phospholipids 

-- Free-play tasks, including the 

multiple-object task 

at 1 and 1,5 y 

Higher maternal DHA status at 

birth associated with higher 

attention, and lower 

distractibility.  

Julvez et al. 2007 [160] 500 

mother-child pairs 

 

-- Breastfeeding - mothers’ 

questionnaire 

ADHD: DSM-IV; 

MSCA; 

CPSCS; 

at 4 y 

 

 

Breastfeeding > 3 mo associated 

with fewer attention and 

hyperactivity symptoms and 

better socio-behavioural 

outcomes.  

Breastfeeding > 5 mo associated 

with higher executive function 

scores.   

Legend: DHA = Docosahexaenoic acid; FFQ = Food Frequency Questionnaire; DSM= Diagnostic and Statistical Manual of Mental Disorders; DISC-IV = Diagnosis Interview Schedule for Children Version-IV; CBCL = Child 

Behavior Checklist; KEDI-WISC = Korean Educational Development Institute’s-Wechsler Intelligence Scales for Children; IQ = Intelligence Quotient; RAKIT = Revised Amsterdamse Kinder Intelligentie children; WISC-R = 

Wechsler Intelligence Scales for Children – Revised; CITO = CITO-elementary Test for Educational attainment; CRS-T = Conners’ Rating Scale-Teachers; CPT = Continuous Performance Test; SDQ = Strength and Difficulties 

Questionnaire; RBCs = Red Blood Cells; CPSCS = California Preschool Social Competence Scale. 
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Preparation of a Manuscript 

General Considerations 

• Research manuscripts should comprise:  

o Front matter: Title, Author list, Affiliations, Abstract, Keywords; 

o Research manuscript sections: Introduction, Materials and Methods, Results, Discussion, Conclusions 

(optional); 

o Back matter: Supplementary Materials, Acknowledgments, Author Contributions, Conflicts of Interest, 

References. 

• Review manuscripts should comprise the front matter, literature review sections and the back matter. 

The template file can also be used to prepare the front and back matter of your review manuscript. It 

is not necessary to follow the remaining structure. Structured reviews and meta-analyses should use 

the same structure as research articles and ensure they conform to the PRISMA guidelines. 

• Case reports should include a succinct introduction about the general medical condition or relevant 

symptoms that will be discussed in the case report; the case presentation including all of the relevant 

de-identified demographic and descriptive information about the patient(s), and a description of the 

symptoms, diagnosis, treatment, and outcome; a discussion providing context and any necessary 

explanation of specific treatment decisions; a conclusion briefly outlining the take-home message and 

the lessons learned. 

• Abstract graphic: Authors are encouraged to provide a graphical abstract as a self-explanatory image 

to appear alongside with the text abstract in the Table of Contents. Figures should be a high quality 

image in any common image format. Note that images displayed online will be up to 11 by 9 cm on 

screen and the figure should be clear at this size. 

• Abbreviations should be defined in parentheses the first time they appear in the abstract, main text, 

and in figure or table captions. 

• SI Units (International System of Units) should be used. Imperial, US customary and other units should 

be converted to SI units whenever possible. 

• Accession numbers of RNA, DNA and protein sequences used in the manuscript should be provided 

in the Materials and Methods section. Please also see the section on Deposition of Sequences and of 

Expression Data.  

• Equations: If you are using Word, please use either the Microsoft Equation Editor or the MathType 
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Please disclose at the submission stage any restrictions on the availability of materials or information. 

Read the information about Supplementary Materials and Data Deposit for additional guidelines. 

• Preregistration: Where authors have preregistered studies or analysis plans, links to the 

preregistration must be provided in the manuscript. 

• Guidelines and standards: MDPI follows standards and guidelines for certain types of research. See 
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details should be included at the end of the affiliation section. Please read the criteria to qualify for 

authorship. 
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separately into the submission system by the authors during submission of their manuscript. Such 

funding information, if available, will be deposited to FundRef if the manuscript is finally published. 
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conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation 

of new software used in the work; or have drafted the work or substantively revised it; AND has 
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author’s contribution to the study); AND agrees to be personally accountable for the author’s own 

contributions and for ensuring that questions related to the accuracy or integrity of any part of the 

work, even ones in which the author was not personally involved, are appropriately investigated, 

resolved, and documented in the literature. 

For research articles with several authors, a short paragraph specifying their individual contributions 
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research results. If there is no conflict of interest, please state "The authors declare no conflict of 
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design of the study; in the collection, analyses, or interpretation of data; in the writing of the 
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