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Resumo

Nesta tese estamos interessados em desenvolver uma estrutura matemática para a
modelização, controlo e optimização de sistemas dinâmicos cuja variável de estado evolui
através da interação tanto de equações diferenciais ordinárias como soluções particulares de
equações diferenciais às derivadas parciais, cujas dinâmicas podem ser descritas apenas por
equações diferenciais ordinárias. Esta estrutura deverá fornecer uma base sólida para o design e
controlo de novos sistemas avançados de engenharia que surgem em muitas classes importantes
de aplicações, algumas das quais englobam planadores subaquáticos e peixes mecânicos, que
pretende ultrapassar as dificuldades inerentes aos resultados disponíveis até ao momento, muitos
dos quais baseados em heurísticas e abordagens que combinam um "misto" de resultados de
sistemas de controlo para equações diferenciais ordinárias e técnicas numéricas.

A nossa abordagem consiste na obtenção de uma família de problemas robustos de
controlo óptimo convencionais, cujas dinâmicas convergem para as do sistema "híbrido" original
(sistemas onde a dinâmica envolve equações diferenciais às derivadas parciais e equações
diferenciais ordinárias), e na caracterização da solução como um certo limite das condições
para os problemas aproximantes.

Os objetivos deste trabalho dizem respeito ao controlo óptimo de sistemas dinâmicos de
controlo que evoluem num determinado campo vetorial, especificamente dado por escoamentos de
Couette, escoamentos de Poiseuille e gerado por vórtices pontuais, que são soluções particulares
das equações de Navier-Stokes e de Euler. O esforço da pesquisa foi no sentido de se obter
informação através da aplicação de condições necessárias de optimalidade na forma do Princípio
do Máximo de Pontryagin.

Aqui, apresentamos três problemas de controlo óptimo. O primeiro é um problema de
tempo mínimo para movimentar uma partícula, de um dado ponto inicial até um ponto final,
sujeita a escoamentos de Couette e Poiseuille. No segundo problema minimiza-se o gasto de
energia para mover uma partícula, entre dois pontos dados, cuja dinâmica do fluído é dada por
um vórtice. E o terceiro é um problema de multiprocessos para o movimento de uma partícula
passiva movendo-se num fluido bidimensional cuja dinâmica é dada por um campo vetorial
definido, em qualquer intervalo de tempo, por dois vórtices pontuais cujas circulações decaem
exponencialmente no tempo, com uma determinada taxa pré-defenida.

Palavras-chave: Controlo Óptimo, Princípio do Máximo de Pontryagin, Controlo Óptimo de
Multiprocessos, Vórtices Pontuais, Sistemas Dinâmicos, Equações Diferenciais Ordinárias.
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Abstract

In this thesis we are interested in developing a mathematical framework for the modeling,
control and optimization of dynamic systems whose state variable is driven by interacting both
ordinary differential equations and particular solutions of partial differential equations, whose
dynamics can only be described by ordinary differential equations. This framework should
provide a sound basis for the design and control of new advanced engineering systems arising
in many important classes of applications, some of which encompass underwater gliders and
mechanical fishes, that overcomes the shortcomings of the currently available, often heuristic-
-based "mixed" approaches combining ordinary differential equations control systems results
and numerical techniques.

The general approach consists in designing a family of well posed, robust, conventional
optimal control problems with dynamics converging to the ones of the original "hybrid" system
(systems where the dynamics involve partial and ordinary differential equations), and by
obtaining the characterization of its solution as a certain type of limit of the conventional
conditions for the approximating problems.

The objectives of this work concerns the optimal control of dynamic control systems
evolving in a vector-field, specifically given by Couette flows, Poiseuille flows and generated by
point vortices, that are particular solutions of the Navier-Stokes and Euler equations. The
research effort was deriving necessary conditions of optimality in the form of a Maximum
Principle of Pontryagin.

Here, we present three optimal control problems. The first one is the minimum time
control problem to move a particle, from one initial point to an end point, advected in a Couette
and Poiseuille flows. In the second problem we minimize the energy spent to move a particle,
between two given points, driven by a flow generated by one vortex. And the third is an optimal
multiprocesses problem of the motion of a passive particle moving in a two dimensional fluid
whose dynamics are given by a vector-field defined, in any time interval, by two point vortices
whose circulations decay exponentially in time, with a given rate predetermined.

Keywords: Optimal Control, Maximum Principle of Pontryagin, Optimal Multiprocesses, Point
Vortices, Dynamical Systems, Ordinary Differential Equations.
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Chapter 1

Introduction

Summary
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 General motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Objectives

The objectives of this thesis concern the optimal control of general nonlinear dynamic
control systems evolving in a vector-field which might be affected or not by the control action.
More specifically, the main goal consists in deriving necessary conditions of optimality in the form
of a Maximum Principle of Pontryagin characterizing optimal control processes for problems
with dynamics specified by interacting controlled ordinary and partial differential equations
satisfying control, and also, possibly, some constraints. In its full generality, this problem is
a tremendous challenge. Thus, we organized this overarching goal into two partial goals of
increasing complexity. The following cases have been considered:

• Couette and Poiseuille flows;

• Vector-field generated by a set of vortices.

For each one of them, the following sub-objectives were targeted:

• Mathematical frameworks were defined to obtain the targeted results;

• Formulation of specific optimal control problems amenable to the application of the
Maximum Principle;

• Derivation of necessary conditions of optimality in the form of a Maximum Principle;

• Computation of solutions by using analytical procedures, or numerical indirect methods,
or a combination of these.
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2 CHAPTER 1. INTRODUCTION

In spite of the extremely relevant motivation underlying the goals set out in this thesis
- which is outlined in the next subsection - there are very few results strictly in this area.

The closest works can be found, for example, in Casas et al. (2000), Raymond (1997),
Alibert and Raymond (1997), as well as, many other references cited therein. This large
body of work - which relies in the seminal work of the mathematicians Jacques-Louis Lions
and Pierre-Louis Lions, among others, that laid the foundations in the context of functional
analysis, and novel solution concepts not only to solve partial differential equations but also
to solve optimal control problems with dynamics governed by partial differential equations, see
Vanninathan (1996), Varadhan (1994), Ciarlet (2001), Lax et al. (2001), Mawhin (2001) - is
extremely sophisticated as it concerns several general classes of controlled partial differential
equations. Moreover, this mathematical framework provides the foundations required to
investigate conditions under which the existence of solution to the considered classes of control
problems is guaranteed, as well as, to derive necessary conditions of optimality for associated
optimal control problems.

However, the class of systems considered in the literature does not encompass the
ultimate paradigm to be envisaged with the research strategy of which this thesis is just a
first step: Existence and necessary conditions of optimality for optimal control problems whose
dynamics are given by mixed ordinary and partial controlled differential, for which the motion
defined by controlled ordinary differential is affected by the vector-field and, at the same time
the control affects both types of dynamics. As a first step, in this thesis we just study the cases
where the dynamics of the flow is given by ordinary differential equations, given by particular
solutions of the Euler and Navier-Stokes equations.

Although the control action may, in the more general problem formulation, affect the
vector-field behavior, the state of the system encompasses both the state of the vehicle and that
of the vector-field in a neighborhood of the vehicle, and the ultimate goal of the control synthesis
is not only to obtain a certain evolution of the vector-field, but rather geared towards improving
the overall performance the vehicle motion.

1.2 General motivation

This can be organized along two very distinct directions.

• The first one concerns the extending the body of control and optimization theories by
developing novel results on the mathematical framework for problem formulation, and
deriving results on the existence and optimality conditions for a novel class of systems
that was described in the previous section.

• Impact of the results in the previous item in improving the design of advanced engineering
systems. There is a huge number of engineering applications of the control systems targeted
in this thesis since controlling dynamic systems in vector-fields appear in a very large
number of areas like aeronautics, space, mechanical systems (in which lubrication is of
interest), maritime transportation, car design, underwater and aerial robotics, renewable
power systems, notably from harvesting from the wind, waves, and underwater currents,
chemical industries, among many others.

• Natural Sciences, Environmental studies and monitoring that surely requires intensive data
sampling from the natural environment vector-fields.
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To delimit this section, we focus only on the later item which also intersects the second one.

Most of the sensor platforms being used to gather data from the underwater milieu are
powered by rotative motors - mostly fed by electrical batteries - whose propellers and surfaces
steer the vehicles along desired paths and trajectories defined by the selected sampling strategies.
Other fuels have been considered - like fossil, nuclear, and fuel cells - but, albeit these exhibit
several significant advantages, the fact is the solutions based on electrical batteries have, so far,
been considered the most competitive ones and hold, by far, the largest market share. So we
will not dwell any longer with these other solutions.

Still, one of the most taxing constraints in the design of systems to address the multiple
applications based on marine robotic vehicles, is precisely endurance, i.e., the capability of the
vehicles accomplishing long duration missions without human intervention or the need of pre-
deployed marine basis in which the vehicles, among other operations, can recharge batteries
or replace their discharged batteries by newly charged ones. Harvesting energy from the
environment has been of course a natural idea that gave rise to a number solutions.

Solar panels have been used to charge batteries of underwater vehicles but this imposes
long stays at the surface with the additional drawback of the charging procedure being very slow,
sensitive to sea state, and strongly dependent on the weather conditions. Of course, this solution
is significantly more competitive for surface vehicles, particularly those that are endowed with
one or more sails. These vehicles can combine in a beneficial fashion both solar and wind power
harvesting to directly move the vehicle and, at the same time charge electrical batteries for
motion - thus improving controllability - and for other functions - communication, computation,
etc.

Underwater gliders and wave gliders constitute classes of underwater vehicles that often
combine the extraction of energy from solar cells with wave energy. The latter is achieved by
controlling the buoyancy of the vehicle (Mahmoudian et al. (2007), Mahmoudian and Woolsey
(2010)). The success of underwater gliders and wave gliders has been very significant and stems
from their ability to execute missions with highly operational character and extremely long
endurance, as, for example, being able to cross the Atlantic Ocean. Unfortunately, they exhibit
important behaviour limitations, from which we single out, the up and down motion patterns
(saw-teeth like) along the path of interest, and their very poor controllability. Of course, when
they surface, GPS data can be obtained and used to redirect the vehicle motion. However, there
are still long time periods of motion underwater during which it is not possible to have ways of
guiding the glider motion.

However, there are other ways of propelling vehicles in the marine environment inspired
in nature: fish undulation. See for example, Liu and Hu (2010), and CORDIS (2013). Most of
the work done so far concerns modelling and simulation, but little effort has been devoted to
a rigorous mathematical formulation as a control problem enabling the optimization of motion
strategies. This is precisely the ultimate goal towards which this thesis constitutes a first but
decisive step.

1.3 Contributions

One general contribution consists in providing a first step towards a general framework
for general optimal control problems whose dynamics are given by interacting controlled ordinary
and particular solutions of the Euler and Navier-Stokes equations. The general approach consists
in starting with simple classes of control problems of dynamic systems in vector fields in such a
way that the effect of the latter flow fields can be described by ordinary differential equations,
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and, then, in applying the conventional Maximum Principle of Pontryagin, after ensuring the
existence of solution. In many instances this step becomes trivial by the appropriate flow field.

The remaining contributions follow from the deployment of the above research strategy.

The first considered step consists in formulating the minimum time control problem of
a particle advected in Couette and Poiseuille flows and in solving it by using the Pontryagin
Maximum Principle. Here, not only the dynamics of the control system are defined by a set
of ordinary differential equations, but also the conditions resulting from the application of the
necessary conditions of optimality can be easily solved in an explicit way.

The second contribution consists in formulating the minimum fuel problem for a passive
particle moving in a vector-field generated by a single vortex in the whole space without any
boundary constraints, between two given points. Conditions of existence of solution are given
and the Pontryagin’s Maximum Principle is applied in order to obtain an explicit characterization
of the solution.

The third contribution consists in the formulation and resolution of a minimum fuel
problem for a particle moving in a two-dimensional fluid whose vector-fields are defined, in any
time interval, by two point vortices whose circulations decay exponentially in time, with a given
constant rate. The control action is exercised by generating one vortex - specified by its location
and respective circulation - at a chosen time, and by varying the exposure of the particle to each
one of the vortices in continuum time. A control multiprocess framework is chosen in order to
derive necessary conditions of optimality in the form of a Maximum Principle of Pontryagin.
These conditions provide relations that suffice to fully determine the optimal control process.

Finally, the last contribution consists in extending the previous problem to the case in
which the particle is endowing the usual simple kinematic dynamics (unicycle) considered for
Autonomous Underwater Vehicles. In this case, the AUV motion is due to the effects of the
water column controlled flow fields, notably, the point vortices which are generated in order to
achieve the desired motion features.

1.4 Organization

This thesis is organized in the following way. In the next chapter, 2, details of the state-of-
the-art concerning the engineering applications outlined above in 1.2 are presented. Some issues
pertinent to the mathematical developments underlying the contributions of the thesis are also
raised in this chapter. In chapter 3, some key results in optimal control and their application are
discussed. This presentation is focused in the issues that are relevant for the obtained results.
In chapter 4, concepts and results of fluid dynamics are discussed. An overview of the general
issues will be given and a strong emphasis is placed in the specific flow fields considered in
the developments of the thesis. In chapter 5, the first results - notably necessary conditions of
optimality in the form of a Maximum Principle of Pontryagin, concerning the optimal control of
dynamic control systems in a Couette Poiseuille flow field are presented, proved and illustrated
with applications. In chapter 6, the simple case of controlling a dynamic system in a vector
field generated by a vortex is investigated. Necessary conditions of optimality are derived and
applied to a simple example that serves as an illustration. The optimal control problem of the
previous chapter is extended in chapter 7 for the case of two vortices. Here, the problem of
minimum time subject to fixed trajectory endpoints is cast in the multiprocesses framework for
which the Maximum Principle of Pontryagin is applied. This yields a complex two boundary
value problem whose methodology to obtain the solution is outlines. Finally, in the last chapter,
some conclusions and prospective future work are addressed.



Chapter 2

State of-the-art

Summary
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Application Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Underwater Gliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Robotic Fishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Relevance for the Application Domain . . . . . . . . . . . . . . . . . . 9

2.1 Introduction

The development a mathematical framework for the modelling, control and optimization
of dynamic control systems whose state variable is driven by interacting ordinary and partial
differential equations is still a significant challenge. In Grilo et al. (2012), Grilo et al. (2013),
Grilo et al. (2015), Pereira et al. (2017a), Pereira et al. (2017b) and in Grilo et al. (2018),
presented is some work aiming at the development of a theory of optimal control of this dynamic
systems, whose state evolves due to the interaction of ordinary differential equations with partial
differential equations, in which the latter part is replaced by some known particular solution.

Underwater gliders and robotic fishes are two examples of the class of applications whose
currently available models we intend to improve. An underwater glider is a winged autonomous
underwater vehicle (AUV) that moves by modulating its buoyancy and attitude in the velocity
vector fields of its environment. This vehicles are used for long-term, large-scale oceanographic
monitoring, undersea surveillance and other applications. The kinetic and dynamic equations
that described the vehicle motion can be found in Mahmoudian et al. (2007), Mahmoudian and
Woolsey (2010). In Liu and Hu (2010), the motion of the robotic fish is approximated by a
model featuring several components. The key advantage of this model is the fact that, instead
of being considered a rigid body, the structure of the fish is composed of three parts: head, body
and tail.

While the optimal control of systems with dynamics given by ordinary differential
equations only has been making great strides in the 20th and 21st centuries (see, among others,
Arutyunov et al. (2011), Clarke (1983), Pontryagin et al. (1962)), such a theory for hybrid -
in the sense that the controlled dynamics involve ordinary and partial differential equations -
systems is still at its infancy.

5
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Given the proposed objectives, the state-of-the-art is extremely vast and encompasses
the following components:

(i) The application domain providing the requirements for the novel mathematical framework
to be developed, Mahmoudian et al. (2007), Mahmoudian and Woolsey (2010), Liu and
Hu (2010), Hou et al. (2007).

(ii) Control of partial differential equations and supporting mathematical methods and tools,
Lions (1971), Protas (2008), Doering and Gibbon (1995).

(iii) Dynamic optimization of controlled ordinary differential equations and supporting math-
ematical methods and tools, Clarke (1980), Clarke (1983), Clarke et al. (1998), Sontag
(1998), Arutyunov (2000), Mordukhovich (2006a), Mordukhovich (2006b), Rockafellar and
Wets (1998), Vinter (2000), Clarke and Vinter (1989a), Clarke and Vinter (1989b).

Items (ii) and (iii) are well structured and properly documented in a well established
literature. Part of this results, essentials to the present work, are presented in chapter 3, devoted
to optimal control issues, and chapter 4, dedicated to fluid mechanics.

2.2 Application Domain

This thesis addresses two large classes of control systems: underwater gliders and robotic
fishes.

In the literature mentioned in 2.1, the authors study these subjects through numerical
algorithms. So far, the studies available rely strongly on numerical methods (simulation) and
concern approximating trajectories.

2.2.1 Underwater Gliders

Underwater gliders (see figure 2.1) are highly efficient, winged autonomous underwater
vehicles (AUV’s) which locomote by modulating their buoyancy and their attitude. The
applications include long-term, basin-scale oceanographic sampling and littoral surveillance.
The exceptional endurance of underwater gliders is due to their reliance on gravity, weight and
buoyancy, for propulsion and attitude control. Most of the work done so far in the direction of
optimal control concerns the optimization of power consumption efficiency in their motion.

The glider is modelled as a rigid body (mrb) with two moving mass actuators (mpx and
mpy) and a variable ballast actuator (mb). The total vehicle mass is

mv = mrb +mpx +mpy +mb,

where mb can be modulated by control. The variable mass is represented by a mass particle mb

located at the origin of a body-fixed reference frame, and the vehicle’s attitude is given by a
proper rotation matrix RIB, which maps free vectors from the body-fixed reference frame to a
reference frame fixed in inertial space.

Using the notation of the article Mahmoudian et al. (2007) and consideringX the position
of the body frame origin with respect to the inertial frame, the vehicle kinematic equations are

{
Ẋ = RIBυ

ṘIB = RIBω̂
(2.1)
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Figure 2.1: Underwater glider, Slocum.

and the dynamic equations, that relate external forces and moments to the rate of change of
linear and angular momentum, are

{
ṗ = p× ω + m̃g(RT

IBi3) + Fvisc
ḣ = h× ω + p× υ + (mpgrp +mrbgrrb)× (RT

IBi3) + Tvisc
. (2.2)

The first step in the development of underwater gliders was in the efficiency of motion.
For this, they started by studying the glider manoeuvrability, developing an approximative
analytical expression for steady turning motions for a realistic glider model by applying
regular perturbation theory. Because the turning motion results are only approximate, one
must incorporate feedback to ensure precise path following. The nature of the steady turn
approximations suggests a method for nearly energy-optimal path planning.

2.2.2 Robotic Fishes

The second class of applications is typified by the robotic fish (see figure 2.2). In Liu
and Hu (2010) we have an approach to modelling carangiform fish-like motion for multi-joint
robotic fish, so we can obtain fish-like behaviours and mimic the body motion of carangiform
fish.

The majority of research work has been focused on fish-like propulsion mechanisms, fin
materials, remote operation, multi-agent cooperation and mechanical structures. However, the
motion of robotic fish has not been investigated extensively, in particular, control schemes along
with modelling of carangiform fish-like swimming.
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Figure 2.2: Robotic fish.

A given body motion function of fish swimming is firstly converted to a tail motion
function which describes the tail motion relative to the head. Then, the tail motion function is
discretized into a series of tail postures over time. A digital approximation method calculates
the turning angles of joints in the tail to approximate each tail posture, and finally, these angles
are grouped into a look-up table, or regressed to a time-dependent function, for practically
controlling the tail motors in a multi-joint robotic fish.

The first coordinate system is a world coordinate system Rw, where the origin is fixed
at the connection point B between the fish head and tail, and its x-axis is aligned along the
swimming direction of fish. The movement of a whole fish body in Rw is defined as body motion
described as fB(x, t). Another coordinate system is a head-fixed system Rh, where the origin is
the same point but its x-axis is aligned along the fish head rather than the swimming direction.
The movement of the fish tail in Rh is called the tail motion denoted as fT (x, t).

In Liu and Hu (2010) the motion of a fish during cruise straight is described by a travelling
wave

y = fB(x, t) = (c1x+ c2x
2) sin(kx+ wt). (2.3)

So the tail motion function corresponding to (2.3) is

fT (x, t) = (c1x+ c2x
2) sin(kx+ wt)− c1x sin(wt). (2.4)
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2.3 Relevance for the Application Domain

The problems studied in this thesis are just the first step to create better and more
realistic models for the motion of the AUV’s. The problems studied are simple, corresponding
to linear and parabolic velocity profiles (studied in chapter 5), Couette and Poiseuille flows,
respectively.

Next, we studied problems whose dynamics is driven by point vortices. First, we
considered a fluid with a velocity field created by one vortex (chapter 6), and then we consider
two vortices actuating on the flow (chapter 7).

The idea was to create similar conditions like in real life. When we observe a real
fish in its environment, it creates its motion using the tail and undulating the body, and this
movement produces oscillations/eddies/circulation points in the fluid. The fish uses these eddies
as supporting points to move around.

We think that these circulation points created by the fish can be considered like point
vortices, thus, we tried to formulate an optimal control problem taking into consideration all
these facts: the velocity field of the fluid, the points that the fish creates while moving, and the
energy spent to create them. This seems a more realistic approach to get a configuration for
the trajectories of the robotic fishes and give the possibility to minimize the energy along its
trajectory.
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Chapter 3

Preliminary Results on Optimal
Control
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3.4 Optimal Multiprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Introduction

In this chapter we present some preliminary results on Optimal Control (OC) Theory,
with emphasis on the Maximum Principle of Pontryagin given in Pontryagin et al. (1962), Vinter
(2000). We will start by one of simplest, and yet one of the most general, statements of the
Optimal Control Problem, and will proceed by listing the key results that are pertinent to the
development of the thesis. Of course, there is a vast number of issues - such as, nondegeneracy,
well-posedness, sensitivity, higher order conditions, infinity horizon solution concepts, finite
approximations to solutions, etc. - that would make sense to be addressed in the quest of
solving concrete optimal control problems. However, given the space limitations, we will focus
on the key references where these subjects are discussed in detail.

Given the fact that we used the multiprocesses framework in an essential way in chapter
7, we also include a section devoted to this special formulation of optimal control problems that
motivate and develop the associated Maximum Principle in two seminal articles, Clarke and
Vinter (1989a), and Clarke and Vinter (1989b). The essential idea of this formulation consists
in the joint optimization of several dynamic control systems linked by joint constraints and by
the cost functional.

3.2 Optimal Control Problem Formulation

An optimal control problem is an optimization problem where the choice variables are
functions of time, t, and some of the derivatives of this functions are involved on the dynamics.
The main elements of an optimal control problem are:

11
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• the cost functional, that consists of a quantitative criterion for the efficiency of the system;

• the mathematical model which relates the state x to the control u by a system with
differential equations, which determines the time evolution of the state variable;

• the constraints on the state variable. The satisfaction of these constraints affects the
evolution of the system, and restricts the admissible controls;

• the control constraints.

Thus, a control system is a dynamical system, which evolves over time, where the state variable,
x, characterizes the evolution of the system over time (physically, the attribute "dynamic"
is due to the existence of energy storages which affect the behaviour of the system), so called
trajectory, and the control variable, u, represents the possibility of intervening in order to change
the behaviour of the system, so that its performance is optimized.

Optimal control is useful for optimization problems with inter-temporal constraints.
Thus, some of the areas of its application are the management of renewable and non-renewable
resources, investment strategies, management of financial resources, resources allocation, plan-
ning and control of productive systems (manufacturing, chemical, cells, species), definition
of therapy protocols, motion planning and control in autonomous mobile robotics, aerospace
navigation, synthesis in decision support systems, among others (CORDIS (2013), Fossen (1994),
Hou et al. (2007), Liu and Hu (2010), Mahmoudian et al. (2007), Mahmoudian and Woolsey
(2010), McGillivary et al. (2012), Melli (September 2008), Triantafyllou et al. (2002)).

A general formulation for an optimal control problem is given by





Minimize g(x(1))
by choosing (x, u) : [0, 1]→ Rn × Rm
subject to ẋ(t) = f(t, x(t), u(t))

x(0) = x0

u(t) ∈ Ω(t) ⊂ Rm

, t ∈ [0, 1]L-a.e., (P )

where x0 is the initial point of the trajectory.

Let us give the general definitions to understand the problem (P ) in its totality:

• dynamic system: ẋ(t) = f(t, x(t), u(t)), is the system whose state variable conveys its past
history. Its future evolution depends not only on the future ("inputs") but also on the
current value of the state variable;

• trajectory: x : [0, 1]→ Rn, such that x is absolutely continuous, and is the solution, for a
given control function, of the differential equation that gives the dynamics, satisfying the
boundary conditions and the state constraints (when applicable), t ∈ [0, 1]L-a.e.;

• control function: u ∈ U with

U = {u : [0, 1]→ Rm : u is measurable, and u(t) ∈ Ω(t), t ∈ [0, 1]L-a.e.} ;

• process: (x, u) with u ∈ U and x is the corresponding trajectory;

• admissible control process: (x, u) satisfying all the constraints of (P );
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• attainable set: A(1; (x0, 0)) is the set of state space points that can be reached from x0

with admissible control strategies,

A(1; (x0, 0)) = {x(1) : ∀(x, u) admissible control process withx(0) = x0} ;

• boundary process: control process whose trajectory (or a given function of it) remains in
the boundary of the attainable set (or a given function of it);

• strong local minimizer: (x̄, ū) admissible control process, such that

∃ ε > 0, ∀(x, u) admissible control process, ‖x− x̄‖∞ < ε⇒ g(x̄(1)) ≤ g(x(1)).

In the formulation of the previous problem we presented a cost function that corresponds
to one of the types of optimal control problems. Next we define the several types of the optimal
control problems that we can have in our studies.

• Mayer - g(x(1))

• Lagrange -
ˆ 1

0
L(s, x(s), u(s))ds.

• Bolza - g(x(1)) +

ˆ 1

0
L(s, x(s), u(s))ds

If we consider a new variable z : ż(t) = L(t, x(t), u(t)), with z(0) = 0, then a Lagrange problem
becomes a Mayer problem with cost z(1) and a Bolza problem becomes a Mayer problem with
cost g(x(1)) + z(1).

Also for the constraints, we can have different types, they are:

• final state: x(1) = x1

• set endpoint: (x(0), x(1)) ∈ C0 × C1

• state: h(t, x(t)) ≤ 0, ∀t ∈ [0, 1]

• mixed state-control: h(t, x(t), u(t)) ≤ 0, ∀t ∈ [0, 1]

• isoperimetric:
ˆ 1

0
h(s, x(s), u(s))ds = a.

We now state a general formulation for nonlinear optimal control problem.





Minimize g(x(1))
subject to ẋ(t) = f(t, x(t), u(t))

x(0) = x0

u(t) ∈ Ω(t)

, t ∈ [0, 1]L-a.e., (P ′)

where x0 is the initial point of the trajectory.

To guarantee that the problem (P ′) is well posed, we need some additional hypothesis,

H1: There exists solution to (P ) and let us denote by (x∗, u∗) the optimal control process.
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H2: There exists Kg and Kf such that, ∀x, y ∈ Rn,

‖g(x)−g(y)‖ ≤ Kg‖x−y‖, and ‖f(t, x, u)−f(t, y, u)‖ ≤ Kf‖x−y‖, ∀(t, u) ∈ [0, 1]×Ω(t).

H3: f and g are C1 in x, being ∇xg the gradient of g, and Dxf the Jacobian of f .

H4: f(·, x, ·) is Lebesgue measurable in t and Borel measurable in u.

H5: Ω(t) is compact, ∀t ∈ [0, 1].

H6: ∃K > 0 such that sup
u∈Ω(t)

{
‖f(t, x, u)‖

}
≤ K, ∀(t, x) ∈ [0, 1]× Rn.

Under these hypotheses, we give the necessary optimality conditions for optimal control
problem (P ′). Let x∗ be an optimal trajectory for (P ′). Then, there exists an absolutely
continuous function p : [0, 1]→ Rn, satisfying

− ṗT (t) = pT (t)Dxf(t, x∗(t), u∗(t)), [0, 1]L-a.e. , (3.1)
−pT (1) = ∇xg(x∗(1)). (3.2)

where u∗ : [0, 1]→ Rm is a control strategy, such that u∗(t) maximizes

v → pT (t)f(t, x∗(t), v) in Ω(t), t ∈ [0, 1]L-a.e. . (3.3)

The condition 3.3 eliminates the control as it defines implicitly

u∗(t) = ū(x∗(t), p(t)).

Then, solving (P ′) amounts to solve

− ṗT (t) = pT (t)Dxf(t, x∗(t), ū(x∗(t), p(t))), p(1) = −∇xg(x∗(1)),

ẋ∗(t) = f(t, x∗(t), ū(x∗(t), p(t))), x(0) = x0.

Therefore, the existence of the solution for the problem requires the following hypotheses:

H’1: g is lower semi-continuous.

H’2: Ω(t) is compact, ∀t ∈ [0, 1] and t→ Ω(t) is Borel measurable.

H’3: f is continuous in all of its arguments.

H’4: there exists Kf such that, ‖f(t, x, u)− f(t, y, u)‖ ≤ Kf‖x− y‖, ∀(t, u) ∈ [0, 1]× Ω(t).

H’5: ∃K > 0 : |x · f(t, x, u)| ≤ K(1 + ‖x‖2) for all values of the arguments of f .

H’6: f(t, x,Ω(t)) is convex ∀x ∈ Rn and ∀t ∈ [0, 1].

Until now, we didn’t have the state constraints active, but we can have its, like the set
inclusion of the state values at the time endpoints, and equality or inequality of the value of
some nonlinear function of the graph of the state variable. So, the nonlinear optimal control
problem with state constraints is
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Minimize g(x(1))
subject to ẋ(t) = f(t, x(t), u(t))

(x(0), x(1)) ∈ C
h(t, x(t)) ≤ 0
u(t) ∈ Ω(t) ⊂ Rm

, t ∈ [0, 1]L-a.e., (P ′′)

with initial point x(0) and terminal point x(1).

The hypotheses H1-H6 must be valid for (P ′′) to be well posed. Furthermore, we need
two additional hypothesis,

H7: h is continuous in t, differentiable in x and there exists Kh such that,

∀x, y ∈ Rn, ‖h(t, x)− h(t, y)‖ ≤ Kh‖x− y‖, ∀t ∈ [0, 1].

H8: The set C is compact.

3.3 Pontryagin’s Maximum Principle

By the hypotheses, presented on the previous section, and the necessary optimality
conditions, we can formulate the Pontryagin’s Maximum Principle for problem (P ′), as follows:

Theorem 3.1. (Maximum Principle of Pontryagin) Let x∗ be an optimal trajectory for
(P ′).

Then, there exists an absolutely continuous function p : [0, 1]→ Rn, satisfying

− ṗT (t) = pT (t)Dxf(t, x∗(t), u∗(t)), [0, 1]L-a.e. , (3.4)
−pT (1) = ∇xg(x∗(1)), (3.5)

where u∗ : [0, 1] → Rm is a control strategy such that u∗(t) maximizes, for almost all t ∈ [0, 1],
the pseudo-Hamiltonian or Pontryagin function

v → pT (t)f(t, x∗(t), v) in Ω(t). (3.6)

Sketch of the Proof:

Let ε > 0 sufficiently small, τ ∈ [0, 1] to be a Lebesgue point of x∗ and consider

uε,τ =

{
ū if t ∈ (τ − ε, τ ]
u(t) if t ∈ [0, 1] \ (τ − ε, τ ]

and xε,τ is the corresponding trajectory.

We have

0 ≤ g(xε,τ (1))− g(x∗(1)) = ∇xg(x∗(1))[xε,τ (1)− x∗(1)] +O(ε)

= ∇xg(x∗(1))Φ(1, τ)[xε,τ (τ)− x∗(τ)] +O(ε),

where Φ is the state transition matrix of the system ξ̇ = Dxf(t, x∗, u∗)ξ.
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From the Lipschitz continuity of f in x, τ being a Lebesgue point and by defining
ξ(τ) := f(τ, xε,τ (τ), ū)− f(τ, x∗(τ), u∗(τ)), we have that

‖[xε,τ (τ)− x∗(τ)]− εξ(τ)‖ = O(ε).

Defining pT (1) := −∇xg(x∗(1)) and pT (t) := −∇xg(x∗(1))Φ(1, t), we have that p : [0, 1]→ Rm
satisfy −ṗT (t) = pT (t)Dxf(t, x∗(t), u∗(t)).

So,

0 ≤ lim
ε→0

g(xε,τ (1))− g(x∗(1))

ε
= pT (τ)[f(τ, x∗(τ), u∗(τ))− f(τ, x∗(τ), ū)]. �

The formulation of the Maximum Principle of Pontryagin for problem (P ′′), with state
constraints, is given by:

Theorem 3.2. (Maximum Principle of Pontryagin) Let (x∗, u∗) be an optimal control
process for (P ′′).

Then, there exist an absolutely continuous function p : [0, 1] → Rn, a non negative
number λ, and a non negative measure ν supported on {t ∈ [0, 1] : h(t, x∗(t)) = 0}, satisfying:

‖p‖+ ‖ν‖+ λ > 0,

−ṗT (t) =
[
pT (t) +

ˆ
[0,t)
Dxh(s, x∗(s))ν(ds)

]
Dxf(t, x∗(t), u∗(t)), [0, 1]L-a.e. ,

(
pT (0),−pT (1)−

ˆ
[0,1]
Dxh(t, x∗(t))ν(dt)

)
∈
(

0,∇xg(x∗(1))
)

+NC(x∗(0), x∗(1)),

and u∗ : [0, 1]→ Rm is a control strategy such that u∗(t) maximizes the mapping

v →
[
pT (t) +

ˆ
[0,t)
Dxh(s, x∗(s))ν(ds)

]
f(t, x∗(t), v) in Ω(t) [0, 1]L-a.e. .

3.4 Optimal Multiprocesses

In Clarke and Vinter (1989a) we find the theory for the optimal multiprocess problem,
and in Clarke and Vinter (1989b) we have some applications of this theory.

A controlled multiprocess system, (xi, ui), i = 1, . . . N,, with xi absolutely continuous
function (xi(t) ∈ Xi) and ui ∈ L∞, consists in a finite number of dynamic control systems which
are active in, possibly different, free endpoint time intervals, subject to their own state variable
and control constraints, while sharing joint time and state endpoint constraints, that is,





ẋi = f i(t, xi, ui)
hi(t, xi) ∈ Ci [ti0, t

i
1]L − a.e.

ui ∈ U i
(3.7)

h̄({(xi(ti0), xi(ti1)) : i = 1, . . . , N}) ∈ C̄. (3.8)

Here, for i = 1, . . . , N , we assumed that the following hypotheses are satisfied:

HM1: U i = {u ∈ L∞([ti0, t
i
1];Rm) : ui(t) ∈ Ωi} is a Borel measurable set, and Ωi ⊂ Rm.
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HM2: Ci ∈ Rki , and C̄ ∈ Rk̄ are closed sets.

HM3: f i : [ti0, t
i
1] × Rn × Rm → Rn is Lebesgue measurable in t and Lipschitz continuous in xi

for any feasible value of ui for each (t, xi), hi : [ti0, t
i
1] × Rn → Rki is continuous in t and

Lipschitz continuous in xi, and h̄ : R2nN → Rk̄ is Lipschitz continuous in all its arguments.

The goal is to to choose the set of N triples (xi(ti0), xi(ti1), ui) that optimize a given
global performance function J(xi(ti0), xi(ti1), ui) while the associated controlled multiprocess
system satisfies the constraints (3.7) and (3.8).

The optimal multiprocess problem is given by

Minimize g({ti0, ti1, xi(ti0), xi(ti1)})
that satisfy ẋi = f i(t, xi, ui)

hi(t, xi) ∈ Ci
ui ∈ U i
{ti0, ti1, xi(ti0), xi(ti1)} ⊂ Λ

(3.9)

with g a locally Lipschitz continuous function and Λ a closed set.

Going against the theory developed in Clarke and Vinter (1989a), consider C a given
closed set in

∏

i

{(ti0, ti1, ai0) : ai0 ∈ Rn, ti0, ti1 ∈ R, ti0 ≤ ti1}

and let ψ : RnN → Rd be a given Lipschitz continuous function. We define the reachable set
(with respect to C and ψ) to be

Rψ,C = {ψ({yi(ti1)}) : {ti0, ti1, yi(· ), ui(· )} is a multiprocess such that{ti0, ti1, yi(ti0)} ∈ C}.

We say that a multiprocess {ti0, ti1, yi(· ), ui} is a boundary multiprocess relative to ψ and
C if

{ti0, ti1, yi(ti0)} ∈ C and ψ({yi(ti1)}) ∈ ∂Rψ,C
(∂ denotes boundary).

The following theorem is a necessary condition that a multiprocess be associated with a
boundary point of the reachable set.

Theorem 3.3. Let {ti0, ti1, xi(· ), ui(· )} be a boundary multiprocess (with respect to ψ and C).
Assume that

graph{xi(· )} ⊂ interior{Xi}
for i = 1, · · · , N and that hypotheses HM1-HM3 are satisfied. Then there exist a vector v of
unit length, numbers hi0, h

i
1 and absolutely continuous functions pi(· ) : [ti0, t

i
1] → Rn for i =

1, · · · , N and a number c (whose magnitude is governed by the Lipschitz constant in hypothesis
HM3 together with the Lipschitz rank of ψ restricted to some neighbourhood of {xi(ti1)}), with
the following properties:

− ṗi(t) ∈ ∂xHi(t, xi(t), ui(t), pi(t)) a.e. t ∈ [ti0, t
i
1], (3.10)
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Hi(t, xi(t), ui(t), pi(t)) = max
w∈U i

Hi(t, xi(t), w, pi(t)) a.e. t ∈ [ti0, t
i
1], (3.11)

hi0 ∈ coesst→ti0 [ sup
w∈U i

Hi(t, xi(ti0), w, pi(ti0))], (3.12)

hi1 ∈ coesst→ti1 [ sup
w∈U i

Hi(t, xi(ti1), w, pi(ti1))] (3.13)

for i = 1, · · · , N , {pi(ti1) ∈ ∂ψ∗({xi(ti1)})v} and
{−hi0, hi1, pi(ti0), pi(ti1)} ∈ NΛ(·) + c∇ΠNi=1{xi(ti0),xi(ti1)}g({ti0, ti1, x(ti0), xi(ti1)}).

From the theorem 3.3, we have the following maximum principle for solutions to the
optimal multiprocess problem.

Theorem 3.4. Let {ti0, ti1, xi(· ), ui(· )} be a solution to 3.9. Assume that

graph{xi(· )} ⊂ interior{Xi}

for i = 1, · · · , N and that hypotheses HM1-HM3 are satisfied. Then there exist a real number
λ ≥ 0, real numbers hi0, h

i
1, and absolutely continuous functions pi(· ) : [ti0, t

i
1] → Rn for i =

1, · · · , n and a constant c, such that λ+
∑

i |pi(ti1)| = 1 and we have

− ṗi(t) ∈ ∂xHi(t, xi(t), ui(t), pi(t)) a.e. t ∈ [ti0, t
i
1], (3.14)

Hi(t, xi(t), ui(t), pi(t)) = max
w∈Ui

Hi(t, xi(t), w, pi(t)) a.e. t ∈ [ti0, t
i
1], (3.15)

hi0 ∈ coesst→ti0 [ sup
w∈U i

Hi(t, xi(ti0), w, pi(ti0))], (3.16)

hi1 ∈ coesst→ti1 [ sup
w∈Ui

Hi(t, xi(ti1), w, pi(ti1))] (3.17)

for i = 1, · · · , n, and
{−hi0, hi1, pi(ti0),−pi(ti1)} ∈ c∂dΛ + λ∂g (3.18)

where the generalizes gradients ∂dΛ and ∂g are evaluated at {ti0, ti1, xi(ti0), xi(ti1)}.

On chapter 7 we present an optimal multiprocesses problem, but in our case we don’t
need a co-essential of the supreme and the generalized gradients, we use these results taking the
limits for hi0 and hi1 and computing the gradients of the functions.
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4.1 Introduction

Fluid mechanics is the area of physics that studies the impact of forces on fluids
(Batchelor (1967), Pope (2000)) that respect the conservation of energy, mass, entropy, linear
and angular momenta, the latter being expressed by Navier-Stokes equations (Doering and
Gibbon (1995)). In particular, we are interested in those whose dynamics is given by vortex
systems (Saffman (1992), Chorin (1994), Newton (2001)), Couette and Poiseuille flows (Chossat
and Iooss (1994)).

Optimal control in systems governed by partial differential equations is well documented
in Lions (1971) for the linear case. The review Protas (2008) addressed is the case of truncated
Navier-Stokes solutions, as well as the control of vortex dynamics, singular solutions of the
two-dimensional Euler equations.

In this chapter, we present a brief review of some concepts and results of fluids useful in
this work.

4.2 Euler and Navier-Stokes Equations

The equations describing the motion of a fluid are the Navier-Stokes equations

∂tv + (v · ∇)v = −∇p+ ν∆v + f(x, t) , (4.1)

19
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where ∆ is the Laplacian operator, v is the fluid velocity, p is the pressure, ν is the kinematic
viscosity of the fluid, and f is the forcing term. For the case where the fluid is incompressible,
we have the additional condition on the velocity field

∇ · v = 0 . (4.2)

This equation must be supplemented by suitable initial and boundary conditions. Due to the
complexity of the equations (4.1)-(4.2), exact solutions are only known for particular cases.
Taking ν = 0 in (4.1), we obtain the so-called Euler equations

∂tv + (v · ∇)v = −∇p+ f(x, t) , (4.3)

with the incompressible condition (4.2).

The vorticity field, ω, is the curl of the velocity field, v, i.e.

ω = ∇× v. (4.4)

On the plane we have ω = ∂1v2 − ∂2v1. Taking the curl on (4.3) we have

∂tω + (v · ∇)ω = ∇× f(x, t) (4.5)

with the incompressible condition ∇ · ω = 0.

In two-dimensions, x = (x, y), the Euler equations, thanks to the incompressible
condition, can be rewritten in terms of a stream-function, ψ,

∂∆ψ

∂t
+ J(∆ψ,ψ) = 0, (4.6)

where the connection between the vorticity and the stream-function is given by the Poisson
equation ∆ψ = −ω. On the plane, the Poisson equation has the Green function

G(x, y) = − 1

2π
log
(√

x2 + y2
)
. (4.7)

So, the solution for Poisson equation can be written as

ψ = − 1

2π

ˆ
log
(√

(x− x′)2 + (y − y′)2
)
ω(x′, y′) dx′dy′. (4.8)

Since v = (∂2,−∂1)ψ, we have

v = K ∗ ω = − 1

2π

ˆ
(∂2,−∂1) log

(√
(x− x′)2 + (y − y′)2

)
ω(x′, y′) dx′dy′ , (4.9)

where K(t, x, y) = − 1
2π (∂2,−∂1) log

(√
x2(t) + y2(t)

)
is the kernel.
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4.3 Point Vortices

Vortices are two-dimensional points, each one with its own circulation, that induce a
velocity field in the plane. Formally, such velocity field is a singular solution of the two-
dimensional incompressible Euler equations on the whole plane, corresponding to the vorticity

field ω(t,x) =
N∑
j=1

ωjδ(x(t)−xj(t)). Consider N point vortices located in (xj , yj), each one with

the corresponding circulation ωj (j = 1, · · · , N). The evolution of this point vortices, in R2, is
given by the ODE system





ẋj = − 1
2π

N∑
l 6=j

ωl(yj−yl)
(xj−xl)2+(yj−yl)2

ẏj = 1
2π

N∑
l 6=j

ωl(xj−xl)
(xj−xl)2+(yj−yl)2

, j = 1, 2, · · · , N, (4.10)

or in equivalent complex form,

ż∗j =
1

2πi

N∑

l 6=j

ωl
zj − zl

, (4.11)

where zj = xj + iyj , for j = 1, 2, · · · , N . The system composed by these N -vortices has the
Hamiltonian structure defined by

{
ωj ẋj = ∂H

∂yj

ωj ẏj = − ∂H
∂xj

, j = 1, 2, · · · , N,

where the Hamiltonian is

H = − 1

4π

N∑

l 6=j
ωjωl log (|zj − zl|) . (4.12)

The total vorticity of the system is ω =
N∑
j=1

ωj . A point vortex system possesses the invariant

quantities:

1. the Hamiltonian H, that is the interaction energy for the vortex system;

2. the moment of vorticity Q + iP =
N∑
j=1

ωjZj ; (when divided by ω we get the center of

vorticity of the system)

3. the angular impulse I =
N∑
j=1

ωj |zj |2.

In Newton (2001) the reader can find a detailed study of the dynamics of N vortices in
the plane.

Theorem 4.1. For N ≤ 3, the N -vortex problem is integrable for all values of ωj. If ω = 0,
the 4-vortex problem is also integrable.
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The next theorems state the necessary and sufficient conditions for the equilibria or
collapse of a system with three vortices (Newton (2001)).

Theorem 4.2. (Equilibria)

1. (Fixed Equilibria, N = 3) Necessary and sufficient conditions for fixed equilibria in the
plane are:

(a) The vortices are collinear with (x2 − x1) = ω2
ω3

(x1 − x3).

(b) (
∑
ωj)

2 −∑ω2
j = 0.

2. (Relative Equilibria, N = 3) The only relative equilibria are collinear states or
equilateral triangles.

(a) All equilateral triangles form relative equilibria that rotate rigidly about their center of
vorticity. When ω = 0, the center of vorticity is at infinity and the vortices translate
in parallel.

(b) Collinear states can form relative equilibria iff the triangle area is 0.

Theorem 4.3. (N = 3 Collapse) Necessary and sufficient conditions for the self-similar
collapse of three vortices are:

1. The three strengths do not have the same sign, hence we take ω3 < 0.

2.
3∑

j=1, j 6=l
ωlωjI

2
lj = 0, l = 1, 2, 3.

3. The initial configuration is not an equilibrium.

4. The vortex circuit be positive.

Vortex models have been employed in a vast range of applications in science and
engineering. One of them is the modelling generation of thrust in fish-like locomotion (Protas
(2008)). On chapter 7 we can see the idea for this application on robotic fishes, on Pereira et al.
(2017a), Pereira et al. (2017b) and Grilo et al. (2018) on AUV’s.

On chapters 6 and 7 we study optimal control problems for a motion of a particle that
lives in a fluid whose dynamics is given by one vortex or two vortices. The calculations for the
case of one vortex advecting one passive particle (vortex with circulation equal 0), and for the
case of two vortices advecting one particle are presented on chapter 6.

4.4 Motion of Two Vortices

The dynamic equations for two vortices are

{
ż∗1 = 1

2πi
ω2

z1−z2
ż∗2 = 1

2πi
ω1

z2−z1
(4.13)

with initial conditions z1(0) = z1,0 and z2(0) = z2,0, respectively. Multiplying and dividing
(4.13) by i(z1 − z2)∗ we obtain
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{
ż∗1 = ω2i

2πh2
(z1 − z2)

ż∗2 = − ω1i
2πh2

(z1 − z2)
(4.14)

where h2 = |z1 − z2|2 = (x1 − x2)2 + (y1 − y2)2. Since

dh2

dt
= 2((x1 − x2)(ẋ1 − ẋ2) + (y1 − y2)(ẏ1 − ẏ2)), (4.15)

and

ż1 =
ω2i

2πh2
(z1 − z2)⇔

{
ẋ1 = −ω2(y1−y2)

2πh2

ẏ1 = ω2(x1−x2)
2πh2

(4.16)

ż2 = − ω1i

2πh2
(z1 − z2)⇔

{
ẋ2 = ω1(y1−y2)

2πh2

ẏ2 = −ω1(x1−x2)
2πh2

(4.17)

we obtain dh2

dt = 0. This way, we conclude that the distance between the two vortices is constant
in time. So, h = |z1(0)− z2(0)|. In this type of configuration of flow field, we have two cases to
be considered: (i) ω1 + ω2 = 0, and (ii) ω1 + ω2 6= 0.

4.4.1 Case ω1 + ω2 = 0

In this case, we get symmetrical circulations for each one of the vortices. So,

{
ż1 = ω1i

2πh2
(z2 − z1)

ż2 = ω1i
2πh2

(z2 − z1)
. (4.18)

Since d
dt(z2 − z1) = 0, we have z2(t)− z1(t) = z2(0)− z1(0), and the motion equations are

{
z1(t) = z1(0) + ω1i

2πh2
(z2(0)− z1(0))t

z2(t) = z2(0) + ω1i
2πh2

(z2(0)− z1(0))t
. (4.19)

Therefore, the vortices are moving in parallel lines, like in figure 4.1.

4.4.2 Case ω1 + ω2 6= 0

In this case, multiplying the equations (4.16) by ω1
ω1+ω2

and (4.17) by ω2
ω1+ω2

, we get

{ ω1
ω1+ω2

ż1 = ω1ω2i
2πh2(ω1+ω2)

(z1 − z2)

ω2
ω1+ω2

ż2 = − ω1ω2i
2πh2(ω1+ω2)

(z1 − z2)
.

Thus, ω1ż1+ω2ż2
ω1+ω2

= 0, allowing us to conclude that

ω1z1(t) + ω2z2(t)

ω1 + ω2
=
ω1z1(0) + ω2z2(0)

ω1 + ω2
. (4.20)

Rewriting the equations (4.16)-(4.17), and using (4.20) we obtain
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Figure 4.1: Motion of two vortices with circulations ω1 + ω2 = 0.





ż1 = (ω1+ω2)i
2πh2

(
z1 − ω1z1(0)+ω2z2(0)

ω1+ω2

)

ż2 = (ω1+ω2)i
2πh2

(
z2 − ω1z1(0)+ω2z2(0)

ω1+ω2

) .

These are first order linear differential equations, so we get the following trajectories

{
z1(t) = 1

ω1+ω2

(
ω1z1(0) + ω2z2(0)− (z2(0)− z1(0)ω2e

iΩt
)

z2(t) = 1
ω1+ω2

(
ω1z1(0) + ω2z2(0) + (z2(0)− z1(0)ω2e

iΩt
) , (4.21)

with Ω = ω1+ω2
2πh2

.

Therefore, the vortices are moving in circle (in concentric circumferences), rotating
around their center of circulation, C = ω1z1(0)+ω2z2(0)

ω1+ω2
, (see figure 4.2).

 

 

 

 

 

 

 

Z1(0) 

Z2(0) 

C 

Figure 4.2: Motion of two vortices with circulations ω1 + ω2 6= 0.
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4.5 Couette and Poiseuille Flows

The Couette flow is the flow of a viscous fluid whose dynamics runs between two surfaces
one of which moves with respect to the other. The most common configuration of this type of
flow takes the form of two parallel plates or the space between two concentric cylinders.
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Figure 4.3: Simple Couette configuration using two infinite flat plates.

The Poiseuille flow is the laminar flow through a pipe of uniform and circular cross-
section.
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Figure 4.4: Simple Poiseuille configuration using two infinite flat plates.

Both of these flows correspond to particular solutions of the Navier-Stokes equations and
are used throughout this work.
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Chapter 5

Optimal Control Applied to Couette
and Poiseuille Flows
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5.1 Introduction

The Couette and Poiseuille steady flows are two particular solutions of the incompressible
two-dimensional Navier-Stokes equations (Chossat and Iooss (1994), Temam (1977)), corre-
sponding to two types of fluid velocity profiles (linear and quadratic, respectively), which were
exposed in chapter 4.

Here, we present two optimal control problems for a motion of a free particle advected
by Couette and Poiseuille flows. We want to steer it from a initial given point to a final point
in a minimum time, using the Pontryagin Maximum Principle (Pontryagin et al. (1962)).

In this chapter, we present two published articles (Grilo et al. (2013), Grilo et al. (2015))
about the study of these optimal control problems. In Grilo et al. (2013), we study the case
where the particle moves from the initial point (0, b) to the end point (xf , b), with 0 < b < L,
where L is the width or half of the width of the channel, for linear and parabolic velocity profiles,
respectively. This problem was previously studied by us in the article Grilo et al. (2012), but in
Grilo et al. (2013) the calculations are explained in more detail. In Grilo et al. (2015), we study

27
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a general case, i.e. when the motion of the particle is performed from the initial point (0, b) to
the end point (xf , c), with 0 < b < L and 0 < c < L.
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We present the problem of minimum time control of a particle advected in Couette and Poiseuille flows and solve it by using the
Pontryagin maximum principle. This study is a first step of an effort aiming at the development of a mathematical framework for
the control and optimization of dynamic control systems whose state variable is driven by interacting ODEs and PDEs which can
be applied in the control of underwater gliders and mechanical fishes.

1. Introduction

This paper represents a first step for the optimal control of
dynamic systems whose state evolves through the interaction
of ordinary differential equations and the partial differential
equations, [1, 2], which will provide a sound basis for the
design and control of new advanced engineering systems.
In Figure 1, two representative examples of the class of
applications are considered: (i) underwater gliders, that is,
winged autonomous underwater vehicles (AUVs) which
locomote by modulating their buoyancy and their attitude
in its environment, and (ii) robotic fishes. Motion modeling
of these two types of systems can be found in [3, 4] and [5],
respectively.

In spite of the key roots of the Optimal Control Theory
having been established in the sixties for control systems
with dynamics given by ordinary differential equations, [6],
its sophistication in multiple directions has been progressing
unabated (see, among others, [7, 8]). However, there still
remains a large gap in what concerns dynamic control
systems driven by partial differential equations, [2], and it
is largely inexistent for hybrid systems in the sense that
the controlled dynamics involve both partial and ordinary
differential equations.

In this paper, we formulate and solve two optimal control
problems. Each one of these problems corresponds to a par-
ticular solution of the incompressible Navier-Stokes equation
in two spatial dimensions. These particular solutions are,
respectively, the steady Couette and Poiseuille flows.

The Couette flow is the steady laminar unidirectional
and two-dimensional flow due to the relative motion of two
infinite horizontal and parallel rigid plates [9]. The liquid
between these two plates is driven by the viscous drag force
originated by the uniform motion of the upper plate which
moves in the x-direction with velocity V

0
(the lower plate is

at rest). In this case, the velocity of such a flow has a linear
profile and is given by

V (𝑥, 𝑦) = (𝑚𝑦, 0) , 𝑥 ∈ R, 𝑦 ∈ [0, 𝐿] (1)

with 𝑚 = V
0
/𝐿, the plates being 𝐿 distance units apart

(Figure 2(a)).
The Poiseuille flow is the steady flow due to the presence

of a pressure gradient between two fixed (i.e., with zero
relative velocity) rigid plates [9]. In this case, a parabolic
velocity profile is of the form

V (𝑥, 𝑦) = (𝑎 −
𝑎

𝐿2
𝑦2, 0) , 𝑥 ∈ R, 𝑦 ∈ [−𝐿, 𝐿] , (2)



2 Conference Papers in Mathematics

(a) (b)

Figure 1: Underwater glider (a), robotic fish (b).

where, now, 𝐿 is half the distance between the upper and
lower plates (Figure 2(b)).

2. Minimum Time Control Problem

Consider a flow in a channel of the width 𝐿 with a given
velocity field and a particle placed in this flow. Let (0, 𝑏) be
the initial position of the particle, with 0 ≤ 𝑏 ≤ 𝐿.

The objective of this problem is to determine the control
function 𝑢(⋅) = (𝑢

𝑥
(⋅), 𝑢
𝑦
(⋅)) to be applied to the particle so

that it will move in the channel from the initial position to the
end point (𝑥

𝑓
, 𝑏) in minimum time while subject to the flow

field. Let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be the position of the particle at
time 𝑡, the control problem can be formulated as follows:

Minimize 𝑇

subject to �̇� (𝑡) = 𝐹 (𝑋 (𝑡) , 𝑢 (𝑡)) ,

𝑋 (0) = (0, 𝑏) ,

𝑋 (𝑇) = (𝑥
𝑓
, 𝑏) , ∀𝑡 ∈ [0, 𝑇] .

𝑦 (𝑡) ∈ [0, 𝐿] ,

‖𝑢 (𝑡)‖∞ ≤ 1,

(3)

In the following two particular cases, for simplicity of
notation, we will not indicate the time 𝑡 as an independent
variable of the other variables, although this is the case we are
considering.

2.1. Couette Flow: Linear Velocity Profile. In the case of linear
flow (with slope𝑚 = V

0
/𝐿 > 0), the velocity field of the flow is

given by V(𝑥, 𝑦) = (𝑦/𝑚, 0). So, the dynamics of this control
system are given by 𝐹(𝑋, 𝑢) = (𝑦/𝑚 + 𝑢

𝑥
, 𝑢
𝑦
).

The Pontryagin maximum principle, [6], allows us to
determine the optimal control 𝑢∗ = (𝑢∗

𝑥
, 𝑢∗
𝑦
) by using the

maximization of Pontryagin’s function𝐻(𝑋, 𝑃, 𝑢) (here, 𝑃 =
(𝑝
𝑥
, 𝑝
𝑦
) is the adjoint variable satisfying −�̇� = ∇

𝑋
𝐻(𝑋, 𝑃, 𝑢),

∇
𝑋

being the gradient of 𝐻 with respect to 𝑋) almost
everywhere with respect to the Lebesgue measure (from here
onwards, functions are specified in this sense), together with

the satisfaction of the appropriate boundary conditions. So,
being

𝐻(𝑋, 𝑃, 𝑢) = 𝑝
𝑥
(
𝑦

𝑚
+ 𝑢
𝑥
) + (𝑝

𝑦
+ 𝛾) 𝑢

𝑦
, (4)

where 𝛾 is a certain function which reflects the activity of the
state constraints of the variable 𝑦, it follows that

−�̇�
𝑥
= 0,

−�̇�
𝑦
=

𝑝
𝑥

𝑚
,

(5)

and, thus,
𝑝
𝑥
= 𝐾
𝑥
,

𝑝
𝑦
= 𝐾
𝑦
−
𝐾
𝑥

𝑚
𝑡,

(6)

for some constants 𝐾
𝑥
, 𝐾
𝑦
> 0. By taking into account that

the position of the particle at time 𝑡 is given by

𝑥 (𝑡) =
𝑏

𝑚
𝑡 + ∫
𝑡

0

𝑢
𝑥
(𝜏) 𝑑𝜏 +

1

𝑚
∫
𝑡

0

(𝑡 − 𝜏) 𝑢
𝑦
(𝜏) 𝑑𝜏,

𝑦 (𝑡) = 𝑏 + ∫
𝑡

0

𝑢
𝑦
(𝜏) 𝑑𝜏,

(7)

we conclude by the maximization of Pontryagin’s function
that 𝑢∗

𝑥
(𝑡) = 1 (Figure 2) and 𝑢∗

𝑦
is given by the following.

(i) Consider

𝑢∗
𝑦
(𝑡) = {

1, 𝑡 ∈ [0, 𝑡∗/2[ ,

−1, 𝑡 ∈ ]𝑡∗/2, 𝑡∗] ,
(8)

for the case of 𝑥
𝑓
≤ 2(𝐿 − 𝑏). By substituting in the

equations of the particle’s position, we conclude that
the optimal time of (3) is given by

𝑡∗ = 2 (√(𝑏 + 𝑚)2 + 𝑚𝑥
𝑓
− (𝑏 + 𝑚)) . (9)

(ii) Consider

𝑢∗
𝑦
(𝑡) =

{{
{{
{

1, 𝑡 ∈ [0, 𝑡
1
[ ,

0, 𝑡 ∈ ]𝑡
1
, 𝑡∗ − 𝑡

1
[ ,

−1, 𝑡 ∈ ]𝑡∗ − 𝑡
1
, 𝑡∗] ,

(10)
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Figure 2: Linear (a) and quadratic velocity field (b).

for the case of 𝑥
𝑓
> 2(𝐿 − 𝑏), where

𝑡
1
= √(𝑏 + 𝑚)2 + 2𝑚 (𝐿 − 𝑏) − (𝑏 + 𝑚) , (11)

being now

𝑡∗ = (2(𝑏 + 𝑚)2 − 2 (𝑏 + 𝑚)√(𝑏 + 𝑚)2 + 2𝑚 (𝐿 − 𝑏)

+2𝑚 (𝐿 − 𝑏) + 𝑚𝑥
𝑓
)

× (√(𝑏 + 𝑚)2 + 2𝑚(𝐿 − 𝑏))
−1

.

(12)

The two cases in the definition of 𝑢∗
𝑦
correspond to the

situations in which the constraint is inactive and active,
respectively.

2.2. Poiseuille Flow: Parabolic Velocity Profile. Similar argu-
ments are applied to the case of flow with parabolic velocity
flow (with vertex in (𝑎, 0)). Now, the dynamics of the control
system is given by

𝐹 (𝑋, 𝑢) = (𝑎 −
𝑎

𝐿2
𝑦2 + 𝑢

𝑥
, 𝑢
𝑦
) , (13)

and Pontryagin’s function is given by

𝐻(𝑋, 𝑃, 𝑢) = 𝑝
𝑥
(𝑎 −

𝑎

𝐿2
𝑦2 + 𝑢

𝑥
) + (𝑝

𝑦
+ 𝛾) 𝑢

𝑦
. (14)

It is easy to observe that the state constraint will be inactive
along the optimal trajectory and that there is symmetry about
the axis 𝑦 = 0. By using these observations in the application
of the Pontryagin maximum principle, as well as the fact that
the position of the particle is given by

𝑥 (𝑡) = 𝑎𝑡 −
𝑎

𝐿2
∫
𝑡

0

𝑦2 (𝜏) 𝑑𝜏 + ∫
𝑡

0

𝑢
𝑥
(𝜏) 𝑑𝜏,

𝑦 (𝑡) = 𝑏 + ∫
𝑡

0

𝑢
𝑦 (𝜏) 𝑑𝜏,

(15)

we conclude that 𝑢∗
𝑥
(𝑡) = 1 (Figure 2) and that 𝑢∗

𝑦
is defined

by the following:

(i)

𝑢∗
𝑦
(𝑡) = {

−1, 𝑡 ∈ [0, 𝑡∗/2[ ,

1, 𝑡 ∈ ]𝑡∗/2, 𝑡∗] ,
(16)

if 𝑥
𝑓
≤ 2𝑏, in this case, the minimum time 𝑡∗ being

a root of the polynomial as follows:

𝑡∗
3
− 6𝑏𝑡∗

2
+ (12𝑏2 − 12𝐿2 −

12𝐿2

𝑎
) 𝑡∗

+
12𝐿2

𝑎
𝑥
𝑓
= 0,

(17)

(ii)

𝑢∗
𝑦
(𝑡) =

{{
{{
{

−1, 𝑡 ∈ [0, 𝑡
1
[ ,

0, 𝑡 ∈ ]𝑡
1
, 𝑡∗ − 𝑡

1
[ ,

1, 𝑡 ∈ ]𝑡∗ − 𝑡
1
, 𝑡∗] ,

(18)

if 𝑥
𝑓
> 2𝑏, being the optimal time as follows:

𝑡∗ =
𝑥
𝑓
− (2𝑎/𝐿2) ((2/3) 𝑡3

1
− 𝑏𝑡2
1
)

𝑎 + 1 − (𝑎/𝐿2) (𝑏 − 𝑡
1
)2

, (19)

where 𝑡
1
is half of the value of the 𝑡∗ obtained in (17)

with 𝑥
𝑓
= 2𝑏.

3. Conclusions and Future Work

The case studies discussed here are very simple and their
difference concerns only the profile of the velocity of the fluid.
Not only the dynamics of the control system are defined by a
set of ODEs, but also the conditions resulting from the appli-
cation of the Pontryagin maximum principle can be easily
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solved in an explicit way. The next step consists in deriving
optimality conditions in the form of a maximum principle
leading to the computation of the solution to optimal control
problems for which the previous simplifications cannot be
exploited. This study suggests that the optimality conditions
to be developed will require an adjoint variable satisfying
a mixed system with ODEs and PDEs, so that the optimal
control can be obtained by maximizing an appropriated
Pontryagin function, coupled with appropriate boundary
conditions.
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On the Optimal Control of Flow Driven
Dynamic Systems

Teresa Grilo, Sílvio Gama and Fernando Lobo Pereira

Abstract The objective of this work is to develop a mathematical framework
for the modeling, control and optimization of dynamic control systems whose
state variable is driven by interacting ODE’s (ordinary differential equations)
and solutions of PDE’s (partial differential equations). The ultimate goal is to
provide a sound basis for the design and control of new advanced engineering
systems arising in many important classes of applications, some of which may
encompass, for example, underwater gliders and mechanical fishes. For now,
the research effort has been focused in gaining insight by applying necessary
conditions of optimality for shear flow driven dynamic control systems which
can be easily reduced to problems with ODE dynamics. In this article we
present the problem of minimum time control of a particle advected in a
Couette and Poiseuille flows, and solve it by using the maximum principle.

Key words: Optimal control; Maximum principle; Ordinary differential
equations; Dynamical systems.

1 Introduction

The development a mathematical framework for the modeling, control and
optimization of dynamic control systems whose state variable is driven by
interacting ODE’s and PDE’s is still a significant challenge. In [5], it is pre-
sented some earlier work aiming at the development of a theory of optimal
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Fernando Lobo Pereira
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control of dynamic systems, [3, 6], whose state evolves due to the interac-
tion of ordinary differential equations with partial differential equations in
which the later part is replaced by some known particular solution. Under-
water gliders and robotic fishes, figure 1, are two examples of the class of
applications whose currently available models we intend to improve.

Fig. 1: Underwater glider (left), robotic fish (right).

An underwater glider is a winged autonomous underwater vehicle (AUV)
that moves by modulating its buoyancy and attitude in the velocity vector
fields of its environment. This vehicles are used for long-term, large-scale
oceanographic monitoring, undersea surveillance and other applications. The
kinetic and dynamic equations that described the vehicle motion can be found
in [8, 9]. In [7], the motion of the robotic fish is approximated by a model
featuring several components. The key advantage of this model is the fact
that, instead of being considered a rigid body, the structure of the fish is
composed of three parts: head, body and tail.

While the optimal control of systems with dynamics given by ordinary
differential equations only has been making great strides in the 20th and 21st

centuries (see, among others, [1, 4, 10]), such a theory for hybrid - in the
sense that the controlled dynamics involve ordinary and partial differential
equations - systems is still at its infancy.

Here, we formulate and solve two optimal control problems, where li-
near and parabolic velocity profiles are considered. Each one of these ve-
locity profiles corresponds to a particular solution of the incompressible two-
dimensional Navier-Stokes equation, respectively, the Couette and Poiseuille
steady flows.

The Couette flow is the steady laminar unidirectional and two dimensional
flow due to the relative motion of two infinite horizontal and parallel rigid
plates [2]. The liquid between these two plates is driven by the viscous drag
force originated by the uniform motion of the upper plate which moves in
the x-direction with velocity v0 (the lower plate is at rest). In this case, the
velocity of such a flow has a linear profile and is given by
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v(x,y) = (my,0) , x ∈ R, y ∈ [0,L]

with m = v0/L, the plates being L distance units apart (figure 2 (left)).
The Poiseuille flow is the steady flow due to the presence of a pressure

gradient between two fixed (i.e., with zero relative velocity) rigid plates, [2].
In this case, a parabolic velocity profile is of the form

v(x,y) =
(

a − a

L2 y2,0
)

, x ∈ R, y ∈ [−L,L] ,

where, now, L is half the distance between the upper and lower plates (figure
2 (right)).

2 Minimum time control problem

Let us consider a particle placed in a flow, contained in a channel of width
L, with a given velocity field. (0, b) is the initial position of the particle, with
0 ≤ b ≤ L.

Fig. 2: Linear (left) and quadratic velocity field (right).

Our problem consists in moving the particle in minimum time along a
path in the channel connecting a given initial position to a given end point
(xf , c), with 0 ≤ c ≤ L. Since the particle is subject to the flow field, we
must determine the value of the control function u(·) = (ux(·),uy(·)) to be
applied so that the conditions of the proposed control problem are satisfied.
Let X(t) = (x(t),y(t)) be the position of the particle at time t, the control
problem can be formulated as follows:
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Minimize T

subject to Ẋ(t) = F (X(t),u(t))
X(0) = (0, b)
X(T ) = (xf , c)
y(t) ∈ [0,L]
‖u(t)‖∞ ≤ 1

,∀t ∈ [0,T ]. (1)

Remark: From now on, for simplicity of notation, we will not indicate de
time t as an independent variable of the others variables, although this is the
case we are considering.

The maximum principle, [10], allows us to determine the optimal con-
trol u∗ = (u∗

x,u∗
y) by using the maximization of the Pontryagin’s function

H(X,P,u), where P = (px,py) is the adjoint variable satisfying
−Ṗ = ∇XH(X,P,u), being ∇X the gradient of H with respect to X , al-
most everywhere with respect to the Lebesgue measure (from here onwards,
functions are specified in this sense), together with the satisfaction of the
appropriate boundary conditions.

2.1 Couette flow

Consider the case of linear flow, with slope m = v0/L > 0, whose velocity field
is given by v(x,y) = ( y

m ,0). So, the dynamics of this control system is

F (X,u) = ( y

m
+ ux,uy)

and the position of the particle at time t is given by




x(t) = b
m t +

∫ t

0
ux(τ)dτ + 1

m

∫ t

0
(t − τ)uy(τ)dτ

y(t) = b +
∫ t

0
uy(τ)dτ .

So, the Pontryagin’s function is given by

H(X,P,u) = px( y

m
+ ux) + (py + γ)uy ,

where γ is a certain function which reflects the activity of the state constraints
of the variable y, it follows from the maximum principle that

{
−ṗx = 0
−ṗy = px

m

⇔
{

px = Kx

py = Ky − Kx
m t
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for some constants Kx,Ky > 0.
By taking into account the position of the particle at each instant t, we

conclude by the maximization of the Pontryagin’s function that u∗
x(t) = 1

(figure 2) and u∗
y depends the final position of the particle, X(T ).

If xf ≤ 2L − b − c the state constraint of the variable y remains inactive
and

u∗
y(t) =

{
1, t ∈ [0, c−b+t∗

2 [
−1, t ∈] c−b+t∗

2 , t∗]
.

By substituting in the equations of the particle’s position, we conclude that
the optimum time for (1) is given by

t∗ =
√

(c + b + 2m)2 + (c − b)2 + 4mxf − (c + b + 2m) .

For the case of xf > 2L − b − c the state constraint of variable y is active
and

u∗
y(t) =





1, t ∈ [0, t1[
0, t ∈]t1, t∗ − t2[

−1, t ∈]t∗ − t2, t∗]
,

where t1 =
√

(b + m)2 + 2m(L − b)− (b + m) is the time when the particle is

on the boundary of the channel, and t2 =
√

(c + m)2 + 2m(L − c)− (c+m) is
the time when the particle leaves the boundary. Now the minimum time is

t∗ =
√

(b + m)2 + 2m(L − b)−(b+m)+ (c + m)2 + m(b − c) + mxf√
(b + m)2 + 2m(L − b)

−(c+m)A,

where A =
√

(c+m)2+2m(L−c)
(b+m)2+2m(L−b) .

2.2 Poiseuille flow

Let us consider a flow with a parabolic velocity vector field, with vertex at
(a,0). In this case the velocity field is given by v(x,y) = (a− a

L2 y2,0). Then,
the dynamics of the control system is

F (X,u) = (a − a

L2 y2 + ux,uy)

and the Pontryagin’s function is given by

H(X,P,u) = px(a − a

L2 y2 + ux) + (py + γ)uy .



6 T. Grilo, S. Gama, F. L. Pereira

It follows from the maximum principle that

{ −ṗx = 0
−ṗy = − 2a

L2 pxy
⇔





px = Kx

py = Ky + 2aKx
L2

∫ t

0
y(τ)dτ

We remark that there is symmetry with respect to the axis y = 0 and, that
the state constraint will be inactive along the optimal trajectory. By using
these observations in the application of the maximum principle, as well as
the fact that the position of the particle is given by





x(t) = at − a
L2

∫ t

0
y2(τ)dτ +

∫ t

0
ux(τ)dτ

y(t) = b +
∫ t

0
uy(τ)dτ,

we conclude that u∗
x(t) = 1 (figure 2), and that u∗

y is defined by

u∗
y(t) =

{
−1, t ∈ [0, b−c+t∗

2 [
1, t ∈] b−c+t∗

2 , t∗]
,

if xf ≤ b+c, being, in this case, the minimum time t∗ a root of the polynomial

t∗3 − 3(b + c)t∗2 + 3
(

(c + b)2 − 4L2(1 + 1
a

)
)

t∗ + 3A = 0 , (2)

with A = b3 − b2c − bc2 + c3 + 4L2

a
xf .

In the case of xf > b + c we have

u∗
y(t) =





−1, t ∈ [0, t1[
0, t ∈]t1, t∗ − t2[
1, t ∈]t∗ − t2, t∗]

,

being the optimal time given by

t∗ =
a(2t3

1 − 3b(t2
1 + t2

2) + 3t1t2
2 − t3

2) − 3L2xf

3a(b − t1)2 − 3aL2 − 3L2 ,

where t1 and t2 is a half of the value of the t∗ obtained in (2) with xf = 2b
and xf = 2c, respectively.

3 Conclusions and Future work

The case studies discussed here are very simple and differ only in the profile
of the fluid velocity field. Not only the dynamics of the control system are
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defined by a set of ODE’s, but also the conditions resulting from the appli-
cation of the maximum principle can be easily solved in an explicit way. The
next step consists in deriving optimality conditions in the form of a maxi-
mum principle leading to the computation of the solution to optimal control
problems for which the above simplifications can not be exploited. This study
suggests that the optimality conditions to be developed will require an ad-
joint variable satisfying a mixed system with ODE’s and PDE’s, so that the
optimal control can be obtained by maximizing an appropriated Pontryagin’s
function, coupled with appropriate boundary conditions.
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5.4 Attachment to Chapter 5

The results presented in the papers of this chapter are not given in sufficient details
due to publication polices. Here, in this attachment, we show, in detail, the calculations done
to solve the minimum time control problems whose dynamics are given by the Couette and
Poiseuille steady flows.

5.4.1 Minimum Time Control Problem

As previously discussed in the articles presented in this chapter, our problem consists
in moving the particle in minimum time along a path in the channel connecting a given initial
position, (0, b) with 0 < b < L, to a given end point (xf , c), with 0 ≤ c ≤ L and xf > 0. Since
the particle is subject to the flow field, the control problem can be formulated as follows:





Minimize T

subject to Ẋ(t) = F (X(t), u(t))
X(0) = (0, b)
X(T ) = (xf , c)
y(t) ∈ [0, L]
‖u(t)‖∞ ≤ 1

, ∀t ∈ [0, T ], (5.1)

where X(t) = (x(t), y(t)) is the position of the particle in each instant t and u(t) = (ux(t), uy(t))
is the control function.

Also here, we omit the presence of time t, for simplicity of notation.

5.4.1.1 Couette Flow: Calculations

In the Couette steady flow we have the linear velocity profile, as in figure 5.1, thus the
dynamics for the state variable is F (X(t), u(t)) =

( y
m + ux, uy

)
. 
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Figure 5.1: Linear velocity field.

We can rewrite the dynamics in the matrix form
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[
ẋ
ẏ

]
=

[
0 1

m
0 0

] [
x
y

]
+ I

[
ux
uy

]
,

that is a first order linear differential equation with exponential matrix given by eAt =

[
1 t

m
0 1

]
,

where A is the matrix of the coefficients of the state variable.

Solving the linear differential equation, using the integral factor method, we obtain

[
x(t)
y(t)

]
=

[
1 t

m
0 1

] [
0
b

]
+

ˆ t

0

[
1 t−τ

m
0 1

] [
ux(τ)
uy(τ)

]
dτ .

Therefore,

{
x(t) = b

m t+
´ t

0 ux(τ) dτ + 1
m

´ t
0 (t− τ)uy(τ) dτ

y(t) = b+
´ t

0 uy(τ) dτ
. (5.2)

On the final point, (xf , c), the particle’s motion equations, (5.2), are satisfied for optimal
minimum time t∗f ,





xf = b
m t
∗
f +
´ t∗f

0 ux(τ) dτ + 1
m

´ t∗f
0 (t∗f − τ)uy(τ) dτ

c− b =
´ t∗f

0 uy(τ) dτ

. (5.3)

Thus, the Pontryagin’s function is given by

H(X,P, u) = px(
y

m
+ ux) + (py + γ)uy , (5.4)

where γ is a certain function which reflects the activity of the state constraints of the variable
y, and from the maximum principle it follows that

{
−ṗx = 0
−ṗy = px

m

⇔
{
px = Kx

py = Ky − Kx
m t

for some constants Kx,Ky > 0, because this is a minimum time control problem with final point
(xf , c) fixed (xf > 0) and the adjoint variable p satisfy the transversality conditions at time T ,
so px(t) > 0.

By maximization of the Pontryagin’s function and by the position of the particle in each
instant t, we conclude that u∗x(t) = 1, and u∗y depends the final position of the particle. It is
important to emphasize that the fluid is faster near the barrier y = L, because of the shape
of the velocity field; so, in this problem, to spend the minimum time to move the particle is
expectable that it goes near this barrier and gets to the places where the fluid is faster. Next,
we will discuss all possible cases.

Case 1. xf ≤ 2L− b− c. In this case, we do not need to activate the state constraint
of variable y. So,

u∗y(t) =

{
1, t ∈ [0, t1[

−1, t ∈]t1, t
∗
f ]

.

There are two subcases.

• c = b.
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By equations (5.3), we have
´ t∗f

0 uy(τ) dτ = 0, so t1 =
t∗f
2 . Substituting u∗ on the first

equation, we obtain

xf = b
m t
∗
f +

ˆ t∗f

0
1 dτ +

1

m

ˆ t∗f
2

0
(t∗f − τ) dτ − 1

m

ˆ t∗f

t∗
f
2

(t∗f − τ) dτ ⇔

(t∗f )2 + (4b+ 4m)t∗f − 4mxf = 0⇔
t∗f = 2

(√
(b+m)2 +mxf − (b+m)

)
.

Therefore, u∗y(t) =





1, t ∈ [0,
t∗f
2 [

−1, t ∈]
t∗f
2 , t
∗
f ]

and the solution of minimum time is

T = 2
(√

(b+m)2 +mxf − (b+m)
)
.

• c 6= b.

In this situation, using u∗ in equations (5.3), we get

c− b =

ˆ t1

0
1 dτ −

ˆ t∗f

t1

1 dτ ⇔ t1 =
c− b+ t∗f

2

and

xf = b
m t
∗
f +

ˆ t∗f

0
1 dτ +

1

m

ˆ t1

0
(t∗f − τ) dτ − 1

m

ˆ t∗f

t1

(t∗f − τ) dτ ⇔

(t∗f )2 + (2c+ 2b+ 4m)t∗f − ((c− b)2 + 4mxf ) = 0⇔
t∗f =

√
(c+ b+ 2m)2 + (c− b)2 + 4mxf − (c+ b+ 2m) .

Thus, u∗y(t) =





1, t ∈ [0,
c−b+t∗f

2 [

−1, t ∈]
c−b+t∗f

2 , t∗f ]
and the solution of minimum time is

T =
√

(c+ b+ 2m)2 + (c− b)2 + 4mxf − (c+ b+ 2m).

Case 2: xf > 2L− b− c. Here, the state constraint of variable y is active and

u∗y(t) =





1, t ∈ [0, t1[

0, t ∈ [t1, t
∗
f − t2[

−1, t ∈]t∗f − t2, t∗f ]

.

The times t1 and t∗f−t2 are the instants when the particle arrives and leaves the boundary
of the channel, respectively.

• c = b:

By the linearity of the velocity field and the previous case (c = b), we can conclude that, if
the minimum time to go the end point (xf, b) is 2

(√
(b+m)2 +mxf − (b+m)

)
, the minimum

time to make half of the path, with distance L − b, is t1 =
√

(b+m)2 + 2m(L− b) − (b + m).
In this situation t2 = t1 because the final and initial points have the same distance from the
boundary of the channel.

Applying u∗ in (5.3) we obtain
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xf = b
m t
∗
f +

ˆ t∗f

0
1 dτ +

1

m

ˆ t1

0
(t∗f − τ) dτ − 1

m

ˆ t∗f

t∗f−t1
(t∗f − τ) dτ ⇔

xf =
(
b
m + 1

m t1 + 1
)
t∗f − 1

m t
2
1 ⇔

t∗f =
√

(b+m)2 + 2m(L− b)− 2(b+m) +
(b+m)2+mxf√

(b+m)2+2m(L−b)
.

So, u∗y(t) =





1, t ∈ [0, t1[

0, t ∈ [t1, t
∗
f − t1[

−1, t ∈]t∗f − t1, t∗f ]

and the solution of minimum time is

T =
√

(b+m)2 + 2m(L− b)− 2(b+m) +
(b+m)2+mxf√

(b+m)2+2m(L−b)
.

• c 6= b:

By the same arguments given previously, we get t1 =
√

(b+m)2 + 2m(L− b)− (b+m)
and t2 =

√
(c+m)2 + 2m(L− c)− (c+m). Substituting in (5.3) we have

xf = b
m t
∗
f +

ˆ t∗f

0
1 dτ +

1

m

ˆ t1

0
(t∗f − τ) dτ − 1

m

ˆ t∗f

t∗f−t2
(t∗f − τ) dτ ⇔

xf = − 1
2m(t∗f )2

(
b
m + 1

m(t1 + t2) + 1
)
t∗f − 1

2m(t21 + t22)⇔
t∗f =

√
(b+m)2 + 2m(L− b)− (b+m) +

(c+m)2+m(b−c)+mxf√
(b+m)2+2m(L−b)

− (c+m)A ,

where A =
√

(c+m)2+2m(L−c)
(b+m)2+2m(L−b) .

So, u∗y(t) =





1, t ∈ [0, t1[

0, t ∈ [t1, t
∗
f − t2[

−1, t ∈]t∗f − t2, t∗f ]

and the solution of minimum time is

T =
√

(b+m)2 + 2m(L− b)− (b+m) +
(c+m)2+m(b−c)+mxf√

(b+m)2+2m(L−b)
− (c+m)A.

5.4.1.2 Poiseuille Flow: Calculations

In Poiseuille steady flow, we have the parabolic velocity profile, as in figure 5.2; thus the
dynamics for the state variable is F (X(t), u(t)) =

(
a− a

L2 y
2 + ux, uy

)
.

The motion equations for the particle advected by a Poiseuille flow are

{
x(t) = at− a

L2

´ t
0 y

2(τ) dτ +
´ t

0 ux(τ) dτ

y(t) = b+
´ t

0 uy(τ) dτ
. (5.5)

They are satisfied on final point, (xf , c), for optimal minimum time t∗f ,





xf = at∗f − a
L2

´ t∗f
0 y2(τ) dτ +

´ t∗f
0 ux(τ) dτ

c− b =
´ t∗f

0 uy(τ) dτ

, (5.6)

and the Pontryagin’s function is given by
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Figure 5.2: Quadratic velocity field.

H(X,P, u) = px(a− a

L2
y2 + ux) + (py + γ)uy . (5.7)

Is important to notice that in this case the state constraint is always inactive, because the flow
is stronger in the middle of the channel So, the particle must be controlled to take these stronger
velocities to obtain the optimal time, which makes that it never goes to the boundaries of the
channel.

From the maximum principle it follows that
{
−ṗx = 0
−ṗy = − 2a

L2 pxy
⇔





px = Kx

py = Ky + 2aKx
L2

ˆ t

0
y(τ) dτ

for some constants Kx,Ky > 0, by the transversality conditions of p.

In figure 5.2, we can see that there is symmetry with respect to the x-axis. Also, we
can conclude that u∗x(t) = 1 and u∗y depends on the final position of the particle. Next, we will
discuss the cases that are possible.

Case 1: xf ≤ b+ c. We have

u∗y(t) =

{
−1, t ∈ [0, t1[

1, t ∈]t1, t
∗
f ]

.

• c = b:

By equations (5.6), we have t1 =
t∗f
2 and

xf = at∗f +

ˆ t∗f

0
1 dτ − a

L2

ˆ t∗f
2

0
(b− τ)2 dτ − a

L2

ˆ t∗f

t∗
f
2

(b− t∗f + τ)2 dτ ⇔

xf = (a+ 1)t∗f − 2ab3

3L2 + 2a
3L2 (b− t∗f

2 )3 ⇔
(t∗f )3 − 6b(t∗f )2 + 12

(
b2 − L2 − L2

a

)
t∗f +

12L2xf
a = 0 .

Thus, u∗y(t) =




−1, t ∈ [0,

t∗f
2 [

1, t ∈]
t∗f
2 , t
∗
f ]

and the solution of minimum time is a root of the

previous polynomial.
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• c 6= b.

Inserting u∗(·) in equations (5.6), we have

c− b = −
ˆ t1

0
1 dτ +

ˆ t∗f

t1

1 dτ ⇔ t1 =
b− c+ t∗f

2

and

xf = at∗f +

ˆ t∗f

0
1 dτ − a

L2

ˆ b−c+t∗f
2

0
(b− τ)2 dτ − a

L2

ˆ t∗f

b−c+t∗
f

2

(c− t∗f + τ)2 dτ ⇔

xf = (a+ 1)t∗f − a
3L2 (b3 + c3) + 2a

3L2 (
b+c−t∗f

2 )3 ⇔
(t∗f )3 − 3(b+ c)(t∗f )2 + 3

(
(c+ b)2 − 4L2(1 + 1

a)
)
t∗f + 3A = 0 ,

with A = b3 − b2c− bc2 + c3 +
4L2

a
xf . Therefore, u∗y(t) =




−1, t ∈ [0,

b−c+t∗f
2 [

1, t ∈]
b−c+t∗f

2 , t∗f ]
and the

solution of the problem is a root of the polynomial expressed above.

Case 2: xf > b+ c, here, the u∗y is given by

u∗y(t) =





−1, t ∈ [0, t1[

0, t ∈ [t1, t
∗
f − t2[

1, t ∈]t∗f − t2, t∗f ]

.

The times t1 and t∗f − t2 are the instants when the particle arrives and leave the x-axis,
respectively.

• c = b:

As in the Couette flow, t1 = t2 is one half of the value of the t∗f found in the previous
case (c = b), with xf = 2b.

By (5.6), we get

xf = at∗f +

ˆ t∗f

0
1 dτ − a

L2

ˆ t1

0
(b− τ)2 dτ − a

L2

ˆ t∗f−t1

t1

(b− t1)2 dτ − a

L2

ˆ t∗f

t∗f−t1
(b− t∗f + τ)2 dτ ⇔

xf = (a+ 1− ab2

L2 + 2abt1
L2 − at21

L2 )t∗f −
2abt21
L2 +

4at31
3L2 ⇔

t∗f =
2abt21+L2xf−

4at31
3

aL2+L2−ab2+2abt1−at21
.

So, u∗y(t) =





−1, t ∈ [0, t1[

0, t ∈ [t1, t
∗
f − t1[

1, t ∈]t∗f − t1, t∗f ]

and the solution of minimum time is

T =
2abt21+L2xf−

4at31
3

aL2+L2−ab2+2abt1−at21
.

• c 6= b:
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Here, t1 and t2 are 1/2 of t∗f found in the case 1 (c = b), with xf = 2b and xf = 2c,
respectively. Substituting in (5.6), we obtain:

xf = (a+ 1)t∗f − a
L2

[ˆ t1

0
(b− τ)2 dτ +

ˆ t∗f−t2

t1

(b− t1)2 dτ +

ˆ t∗f

t∗f−t2
(b− t∗f − t1 + t2 + τ)2 dτ

]
⇔

xf = (a+ 1− a
L2 (b− t1)2)t∗f + 2a

3L2 (b− t1)3 − ab3

3L2 + a
L2 (b− t1)2(t1 + t2)− a

3L2 (b− t1 + t2)3 ⇔

t∗f =
a(2t31−3b(t21+t22)+3t1t22−t32)−3L2xf

3a(b−t1)2−3aL2−3L2 .

Thus, u∗y(t) =





−1, t ∈ [0, t1[

0, t ∈ [t1, t
∗
f − t2[

1, t ∈]t∗f − t2, t∗f ]

and the solution of minimum time is

T =
a(2t31 − 3b(t21 + t22) + 3t1t

2
2 − t32)− 3L2xf

3a(b− t1)2 − 3aL2 − 3L2
.
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Chapter 6

Vector-fields Driven by One and Two
Point Vortices

Summary
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Vector-field Driven by One Vortex . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.1.1 Minimum Energy Problem . . . . . . . . . . . . . . . . . . . . 53

6.3 Vector-field Driven by Two Vortices . . . . . . . . . . . . . . . . . . . 55

6.1 Introduction

In this chapter, we present two cases of a free particle that lives in a flow whose dynamic
system is driven by one and two point vortices, respectively (Batchelor (1967), Newton (2001)).

Here, the control problem consists in moving one particle between two given points,
(x0, y0) and (xf , yf ). For this, we apply the necessary conditions of optimality of the Maximum
Principle of Pontryagin (Pontryagin et al. (1962)), minimizing the energy spent in this process.

6.2 Vector-field Driven by One Vortex

Consider a flow with a point vortex at the origin (0, 0) with circulation k and let z(t) = x(t)+y(t)i
be the position of the particle, placed in this flow, in each instant t. In complex form, the dynamic
equations of the particle positioned in z, subject to velocity field given by the vortex, is

ż∗(t) =
k

2πi

1

z(t)
. (6.1)

In the polar coordinates, the position of the particle is given by

z(t) = ρ(t)eiθ(t)

and the derivative with respect to t is

ż(t) = ρ̇(t)eiθ(t) + iρ(t)θ̇(t)eiθ(t) .

51
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Therefore, the conjugate of the derivative is

ż∗(t) = ρ̇(t)e−iθ(t) − iρ(t)θ̇(t)e−iθ(t) , (6.2)

and, from (6.1) and (6.2), we obtain

ρ̇(t)− iρ(t)θ̇(t) = −i k
2π

1

ρ(t)
.

Analysing the real and imaginary parts of both sides of this equation, we have the
following dynamic equations of the particle, in polar form,

{
ρ̇(t) = 0

θ̇(t) = k
2π

1
ρ2(t)

(6.3)

So, the position of the particle, in each instant t, is

z(t) = ρ(0)e
i(

kt

2πρ2(0)
+ θ(0))

. (6.4)

In figure 6.1, shown is the trajectory of the particle, with the initial position in (x0, y0).

 

 

 

 y 

 

                                                                y0 

 

                                                                  0                      x0                   x 

Figure 6.1: Trajectory of the particle.

6.2.1 Control Problem

Consider a flow like the one presented in section 6.2 and a particle placed in the flow, with initial
position (x0, y0).

The objective of this problem is to determine the control function u(·) to be applied to
the particle so that it will move from its initial position to the end point (xf , yf ), minimizing
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the cost function g(X(T )). Let X(t) = (x(t), y(t)) be the position of the particle at time t. The
control problem can be formulated as follows:





Minimize g(X(T ))

subject to
Ẋ(t) = F (X(t), u(t))
X(0) = (x0, y0)
X(T ) = (xf , yf )
‖u(t)‖∞ ≤ 1

, ∀t ∈ [0, T ]. (6.5)

The Maximum Principle (Pontryagin et al. (1962)) allows us to determine the optimal
control u∗ by using the maximization of the Pontryagin’s function H(X,P, u) (here, P is the
adjoint variable satisfying −Ṗ = ∇XH(X,P, u), ∇X being the gradient of H with respect to
X) almost everywhere with respect to the Lebesgue measure (from here onwards, functions are
specified in this sense), together with the satisfaction of the appropriate boundary conditions.

6.2.1.1 Minimum Energy Problem

The cost function we want to minimize is the energy defined by

w(T ) =

ˆ T

0
u2 dt .

necessary to move the particle from its initial point to the final point, in time T .

To have a Mayer’s problem, we consider a new variable w that satisfies ẇ = u2. Thus,
our control problem is formulated as follows:





Minimize w(T )

subject to
ρ̇ = u

θ̇ = k
2π

1
ρ2

ẇ = u2

ρ(0) =
√
x2

0 + y2
0

ρ(T ) =
√
x2
f + y2

f

tan(θ(0)) = y0
x0
, x0 6= 0

tan(θ(T )) =
yf
xf
, xf 6= 0

w(0) = 0
‖u(t)‖∞ ≤ 1

,∀t ∈ [0, T ]. (6.6)

Remark: From now on, consider T : ‖(xf , yf )‖22 ≤ k
4π2 ≤ ‖(x0, y0)‖22 and the initial and

end points in the first quadrant.

By the dynamic equations, we obtain the equations of motion, according to the control
function, given by
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ρ(t) =
√
x2

0 + y2
0 +

ˆ t

0
u(τ) dτ

θ(t) = arctan( y0x0 ) + k
2π

ˆ t

0
ρ−2(τ) dτ

w(t) =

ˆ t

0
u2(τ) dτ

. (6.7)

For this problem the Pontryagin’s function is

H(t, ρ, θ, w, pρ, pθ, pw) = pρu+ pθ
k

2πρ2
+ pwu

2 (6.8)

and, by the optimality conditions, the dynamic equations for the adjoint variable are




−ṗρ = −pθ k
πρ3

−ṗθ = 0
−ṗw = 0

, (6.9)

and, the transversality conditions are



−pρ(T ) = −Cρ
−pθ(T ) = −Cθ
−pw(T ) = 1

, (6.10)

thus, by 6.9 and 6.10, we get




pρ = Cρ − Cθ kπ
ˆ T

t
ρ−3(τ) dτ

pθ = Cθ
pw = −1

.

In this control problem we have a fixed time T to arrive on point (xf , yf ), therefore, at
a certain point of the trajectory the particle is free in its motion, which means that the control
is not active during a certain time.

In the interval of time , [0, T ], applying the Maximum Principle, the control u∗ satisfies

u∗(t) =




−1 , t ∈ [0, t′)
0 , t ∈ [t′, t′1)
−1 , t ∈ [t′1, T ]

, (6.11)

where t′ and t′1 are the instants satisfying





ρ(T ) =
√
x2
f + y2

f

θ(t′1) = θ(t′) + 2π
⇔





√
x2

0 + y2
0 +

ˆ T

0
u(τ) dτ =

√
x2
f + y2

f

k
2π

ˆ t′1

0
ρ−2(τ) dτ = k

2π

ˆ t′

0
ρ−2(τ) dτ + 2π

⇔

{
t′1 = T − T0 + t′

t′ =
√
x2

0 + y2
0 −
√
k(T−t0)

2π

,
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where T0 = ‖(x0, y0)‖2 − ‖(xf , yf )‖2. By this, and using (6.7), the motion equations for the
particle, for t ∈ [0, T ] are

ρ(t) =





ρ(0)− t , t ∈ [0, t′)
ρ(0)− t′ , t ∈ [t′, t′ + T − T0)
ρ(0) + T − T0 − t , t ∈ [t′ + T − T0, T ]

(6.12)

θ(t) =





θ(0) + kt
2πρ(0)(ρ(0)−t) , t ∈ [0, t′)

θ(0) + k(ρ(0)t−t′2)
2πρ(0)(ρ(0)−t′)2 , t ∈ [t′, t′ + T − T0)

θ(0) + k(T−T0)
2π(ρ0−t′)2 + k(t−T+T0)

2πρ(0)(ρ(0)+T−T0−t) , t ∈ [t′ + T − T0, T ]

(6.13)

and in figure 6.2 we see the representation of this motion. So, w(T ) = T0.

 

Y0 

X0 xf 

yf 

0 

t=0 

t=t´ 
t=t´+T0 

t=T 

Figure 6.2: Trajectory of the particle subject to the optimal control.

So that, this problem is well posed because we guarantee that the radius, ρ, is always
positive, for all t ∈ [0, T ].

6.3 Vector-field Driven by Two Vortices

The issue we are going to address now will be useful for the optimal multiprocesses
problem presented in next chapter.

Consider a flow with two point vortices, z1 and z2, with circulations k1 and k2 (with
k1 = −k2 = k), respectively. Suppose that the initial position of the vortices are z1(0) = h

2 i and
z2(0) = −h

2 i.

The dynamic equation of a passive particle, positioned at z(t) = x(t) + iy(t), is given by

ż∗ =
k

2πi

(
1

z − z1(t)
− 1

z − z2(t)

)
(6.14)
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with initial condition z(0) = z0.

Using (4.19) in (6.14) we obtain

ż∗ =
k

2πi

(
1

z − h
2 i− k

2πh t
− 1

z + h
2 i− k

2πh t

)
.

Making a change of variable, w(t) = z(t) − k
2πh t, and replacing in the last equation we

have

ẇ∗ =
k

2πi

(
1

w − h
2 i
− 1

w + h
2 i

)
− k

2πh
(6.15)

with initial condition w(0) = z0 ∈ C\
{
±h

2 i
}
.

The stationary points are very important for the study of this system, so ẇ∗ = 0 occurs
when w = ±

√
3

2 h, or on the original variable z = ±
√

3
2 h+ kt

2πh , which are both stationary point
of the system.

Let be now, w(t) = x(t) + 0i. Replacing in (6.15) comes

ẋ(t) = k
2πi

(
1

x−h
2
i
− 1

x+h
2
i

)
− k

2πh

= k
2πi

ih

x2+h2

4

− k
2πh

= kh

2π
(
x2+h2

4

) − k
2πh

= kh
2π

(
1

x2+h2

4

− 1
h2

)

(6.16)

with initial condition w(0) = x0.

Solving (6.16), which is an equation of separable variables, we get

ẋ = kh
2π

(
1

x2+h2

4

− 1
h2

)
⇔

4x2+h2

3h2−4x2
dx = k

2πhdt⇒

−x(t) + h√
3

ln

∣∣∣∣
x+
√
3
2
h

x−
√
3
2
h

∣∣∣∣ = kt
2πh + C , C ∈ R .

Using the initial condition, the solution in an implicit way is





x(t) =
√

3
2 h ·

−1− x0+
√
3
2 h

x0−
√
3
2 h

e

√
3

2 h( kt
2πh

+x(t)−x0)

1− x0+
√
3

2 h

x0−
√
3

2 h
e

√
3
2 h( kt

2πh
+x(t)−x0)

y(t) = 0

. (6.17)

The solution w(t) is always real and w = ±
√

3
2 h are stationary points, because of this

any solution crosses these points. So, we have:

• if x0 < −
√

3
2 h, then x(t) < −

√
3

2 h;
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• if −
√

3
2 h < x0 <

√
3

2 h, then −
√

3
2 h < x(t) <

√
3

2 h;

• if x0 >
√

3
2 h, then x(t) >

√
3

2 h.

Thus, if k > 0, then the point
√

3
2 h is an attractor and −

√
3

2 h is a repelling point (like shown
in figure 6.3), which means that the particle is left behind (in comparison with the motion of
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√
3

2 h, and goes near
√

3
2 h, if x0 > −

√
3

2 h. For the case when k < 0, the
attractor point is −

√
3

2 h and the repelling is
√

3
2 h.
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Figure 6.3: Trajectories of the particle subject to the vortices z1 and z2 (with h = 1), positioned
in the x-axis.

Consider now that the passive particle lives in a two-dimensional flow. Suppose that the
velocity field is given by the dynamics generated by two point vortices. Here, we are considering
that the particle has the ability to create one point vortex such as to optimize the trajectory to
reach the final state.

Knowing the position of z1(0) and the initial position of the particle z0, through the
equation

z(t) =
z2(0) + z1(0)±

√
A

2
+

ki

2πh2
(z2(0)− z1(0)) t , (6.18)

where
A =

z2(0)− z1(0)

z∗2(0)− z∗1(0)

(
|z2(0)|2 + |z1(0)|2 − z2(0)z∗1(0)− z1(0)z∗2(0)− 4h2

)
,

we obtain the position of z2(0).
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Chapter 7

A Multiprocess Framework for the
Optimal AUV Motion Driven by
Vortices

Summary
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7.2 ARTICLE COPY "Optimal Multi-process Control of a Two Vortex
Driven Particle in the Plane", F. L. Pereira, T. Grilo, S. Gama –
Journal Article IFAC - PapersOnline, volume 50, Issue 1, pages 2193–
2198, ISSN 2405-8963, 2017 . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 ARTICLE COPY "Optimal Control Framework for AUV’s Motion
Planning in Planar Vortices Vector Field", T. Grilo, S. Gama, F.
L. Pereira – Proceedings Article Proceedings-AUV, 2018 . . . . . . . . 69

7.1 Introduction

Frank Clarke and Richard Vinter present in Clarke and Vinter (1989a) the theory of
necessary conditions for optimal multiprocesses problems, and in Clarke and Vinter (1989b)
some applications for optimization problems in robotics, optics, investment planning, impulse
control and renewable resources.

The idea is to apply this theory to get robust conditions to apply in the motion of the
robotic fishes or autonomous underwater vehicles (AUV’s), considered as a particle. In their
motion they are creating circulation points, that we consider, in our study, like point vortices
(Newton (2001), Batchelor (1967)), and they are using the impact of this points on their motion.

In our problem we just have two vortices active in each instant, created by the robot,
with a decaying circulation. The robot decides the time, the location and the intensity of the
vortices that it creates. When one new vortex is created the oldest one, that has been created
before, can be considered without impact on the robot, to have again just two vortices active,
like illustrated in figure 7.1.

In this chapter, we initiate the formulation for the optimal multiprocesses problem, for
the motion of a particle that lies in a fluid whose dynamics is driven by a vector-field given by
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Figure 7.1: Motion of a particle in a two-vortex vector-field.

two point vortices, and the conditions following the application of the Pontryagin Maximum
Principle.

In Pereira et al. (2017a), Pereira et al. (2017b) and Grilo et al. (2018) we show the
beginning of the results studied for this problem. Here, we only present the first and the last
articles mentioned before, because the second one is a compilation of the problem formulation
presented in the Pereira et al. (2017a).
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circulation - at a chosen time, and by varying the exposure of the particle to each one of the
vortices in continuum time. A control multi-process framework is chosen in order to derive
necessary conditions of optimality in the form of a Maximum Principle of Pontryagin. These
conditions provide relations that suffice to fully determine the optimal control process.

Keywords: Optimal Control, Vortex, Multi-process, Maximum Principle of Pontryagin.

1. INTRODUCTION

In this article we investigate the optimal control problem of
driving a particle between two given points with minimal
effort in a flow field defined by two point vortices at any
point in time, Protas (2008); Batchelor (1992); Newton
(2001). The position and initial circulation of each one of
the point vortices as well as the fraction of exposure of
the particle to each one of the vortices are the controls
available to steer it. Moreover, the flow field is such
that each point vortex has an exponentially decaying
circulation with a given constant decay rate. The objective
of the article is to derive necessary conditions of optimality
in the form of a Maximum Principle of Pontryagin, (see e.g.
Arutyunov et al. (2011); Pontryagin et al. (1962); Vinter
(2000)), for this optimal control problem in the multi-
process control framework considered in Clarke and Vinter
(1989a,b).

A controlled multi-process system,
{(xi, ui) ∈ AC × L∞}Ni=1,

consists in a finite number of dynamic control systems
which are active in, possibly different, free endpoint time
intervals, subject to their own state variable and control
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constraints, while sharing joint time and state endpoint
constraints, that is,





ẋi = f i(t, xi, ui)
hi(t, xi) ∈ Ci [ti0, t

i
1]L − a.e.,

ui ∈ U i
(1)

h̄({(xi(ti0), x
i(ti1)) : i = 1, . . . , N}) ∈ C̄. (2)

Here, for i = 1, . . . , N , where N ∈ N might be either given,
or a choice variable, U i = {u ∈ L∞([ti0, t

i
1];Rm) : ui(t) ∈

Ωi}, Ωi ⊂ Rm, Ci ∈ Rki , and C̄ ∈ Rk̄ are closed sets,
f i : [ti0, t

i
1]×Rn×Rm → Rn, hi : [ti0, t

i
1]×Rn → Rki , and h̄ :

R2nN → Rk̄ are given functions satisfying mild, possibly
nonsmooth, assumptions. To simplify the presentation, we
consider N given. Typical assumptions are: the function h̄
is Lipschitz continuous in all its arguments, and, for each
i, f i is Lebesgue measurable in t and Lipschitz continuous
xi for any feasible value of ui and Borel measurable in
ui for each (t, xi), and hi is continuous in t and Lipschitz
continuous in xi.

The goal is to optimize a given performance functional
J({xi(ti0), x

i(ti1), u
i}Ni=1) by choosing a set of N triples

(xi(ti0), x
i(ti1), u

i), while the controlled multi-process sys-
tem satisfies the constraints (1) and (2). It is not difficult
to conclude that the notions of admissible control multi-
process, solution to the optimal control problem and that
of Pontryagin type of minimum migrate directly from the
corresponding ones already available in the literature, Pon-
tryagin et al. (1962); Arutyunov (2000). For details on this
framework, you may check Clarke and Vinter (1989a,b).

To the best of our knowledge, this the first time that
a Maximum Principle is derived for a control problem
whose dynamics are defined by controlled vortices, and,
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moreover, that a multi-processes framework is considered.
It is a fact that the motion of a point mass in vector
fields defined by vortices given a priori has already been
considered before. In Liu and Hu (2010); Hou et al. (2007),
the application of vortices to define the motion of robotic
fishes modulated by trigonometric functions is addressed
but these vortices created by the fish are periodic and pre-
defined along the entire time interval. However, it is clear
that this is a very restrictive context when considering a
real world scenario. A much more desirable control system
is the one in which the fish uses its tail to generate vortices
in order to move from its current position to a selected
point while minimizing the spent energy or according to
some other criterion.

This is precisely what the problem introduced in this
article achieves. Under some simplifying assumptions that
will be discussed later, our problem formulation considers
a system - environment and fish - that take into account
vortices, some of which may be generated by the fish
itself, and their impact on its motion. This represents
a significant improvement with respect to the simple
mimetic approach to the robotic fish locomotion as they
enable the computation of certain control strategies of
interest. For example, the ones that optimize the fish
energy consumption.

In section 2, we present the dynamic equations for a
passive particle and for point vortices with constant circu-
lation moving in a two dimensional flow field generated by
a set of vortices and, then, particularize to the specific case
of interest in this article, in which we have the vector field
defined by two point vortices with a given exponentially
decaying circulation.

In the ensuing section, we present the general optimal
control problem central to this article and explain in
detail the rationale behind the chosen controlled dynamics,
as well as some of the key assumptions that enable an
elegant formulation in the multi-process context which is
amenable to the application of the Maximum Principle.
Still in this section, we also present a particular instance
for which the necessary conditions of optimality will take
on a particularly simple form.

In section 4, necessary conditions of optimality in the form
of a Maximum Principle of Pontryagin are applied to the
problems stated in the previous sections. Some comments
on the usage of these conditions in order to carry out
the analysis leading to the determination of the optimal
solution will be provided. Finally, some conclusions are
outlined in the last section.

2. FORMULATION OF THE VECTOR FIELDS
DRIVEN BY VORTICES

A vortex is a point with circulation that generates a
rotational flow field. Let us consider a two dimensional
flow with nv point vortices located in zl formulated in
the complex plane with circulation kl, Protas (2008);
Batchelor (1992); Newton (2001). Let the superscript ∗
denote the conjugate of the complex number. Then, the
evolution of a passive particle z(·) in the vector field is
given in the C by solving the ordinary differential equation

ż∗ =
1

2πi

nv∑

l=1

kl
z − zl

, z(0) = z0, (3)

where vortex l of this flow satisfies, for l = 1, . . . , nv, the
dynamic equation

ż∗l =
1

2πi

nv∑

j=1,j �=l

kj
zl − zj

, zl(0) = zl,0. (4)

Since we are interested in the state space representation of
the systems dynamics, it is important to consider (3) in a
real valued state space. Thus, by considering z = xa + ixb,
and ‖x‖ to be the Euclidean norm of x, we have

(ẋa, ẋb) =
1

2π

nv∑

l=1

kl
(−(xb − xb,l), (xa − xa,l))

‖(xa, xb) − (xa,l, xb,l)‖2
(5)

with (xa, xb)(0) = (xa, xb)0, and where, in line with (4),
we have, by letting (xa,l, xb,l)(0) = (xa,l, xb,l)0,

(ẋa,l, ẋb,l) =
1

2π

nv∑

j=1,j �=l

kj
(−(xb,l − xb,j), (xa,l − xa,j))

‖(xa,j , xb,j) − (xa,l, xb,l)‖2
. (6)

As stated above, we consider the case nv = 2 at any
time interval, and the circulation decays in time with a
prescribed rate, that is, for l = 1, 2, we consider the
circulation given by e−δ(t−t0)Kl where the Kl’s are con-
stants. The option nv = 2 is justified by the fact that
it is the minimal number of vortices ensuring motion
controllability, being the minimality important due to the
fact that creating a vortex requires a significant amount
of energy from the fish. The fact that the dissipation of
energy in the water column is relatively fast makes it
reasonable to consider that its circulation decays expo-
nentially in time with a pre-specified rate, and that, after
some time, the effect of an “old” vortex can be neglected.
These considerations provide the rationale to the vector
field dynamics component of the control system model in
the problem investigated in this article. The fish has to
ensure that it can control its motion and, so, it requires
two relevant vortices. On the other hand, since genera-
ting a vortex is expensive from the power consumption
perspective, the quest for optimality leads to the natural
decision to create a new vortex, when the effect of at least
one of the currently active ones becomes negligible. This
rationale justifies the consideration of an optimal control
problem with two “dominant vortices”. As we will see in
the formulation of the problem in the next section, there
is no loss of generality in consider the “oldest” vortex with
smaller (independently of the sign) circulation.

Let us now introduce a notation facilitating the represen-
tation of the dynamics of the overall system, and, point
out to a key property specific of the case nv = 2. Denote
by xV = col(x1, x2, x3, x4), the position coordinates of the
joint vortices vector fields, being xV1

= col(x1, x3), and
xV2

= col(x2, x4), respectively, the first and second vor-
tices. Notice that we have xV1

= M1xV and xV2
= M2xV

where M1 =

[
1 0 0 0
0 0 1 0

]
, and M2 =

[
0 1 0 0
0 0 0 1

]
.

Now, by using (6) in the case nv = 2 with the notation
just considered, the dynamics for the vortices are given by

ẋV = d(xV,0)A(t, t0,K1,K2)xV (7)

where d(xV,0) :=
(
(x1(t0)−x2(t0))

2+(x3(t0)−x4(t0))
2
)−1,

and, by denoting by δ the prescribed rate of decay,
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A(t, t0,K1,K2) :=
e−δ(t−t0)

2π




0 0 −K2 K2

0 0 K1 −K1

K2 −K2 0 0
−K1 K1 0 0


 .

An important observation with significant implications
on the developments of the next two sections is that
d

dt
d(xV,t) = 0. This conclusion can be reached with a few

calculations.

3. FORMULATION OF THE MULTI-PROCESS
OPTIMAL CONTROL PROBLEM

The formulation of the optimal control problem of the
motion of the fish in a given time interval [0, T ] involves the
specification of (i) the control functional to be optimized,
(ii) state and control to be satisfied pointwise in time, (iii)
terminal endpoint state and time constraint to be met,
and obviously, (iv) controlled dynamic equations that will
dictate how the trajectory of the system evolves while
satisfying all the constraints.

We started already with the later by explaining how
vortices evolve over time. In order to control its motion,
the fish has to generate an additional vortex at a certain
point in time and then define the extent of its body
exposure to the last two vortices during a given time
interval initiated at the vortex creation time. The scheme
assumes that the vortex with lower circulation has residual
impact in the motion, or that the fish has ways to have null
exposure to that vortex. Another important issue concerns
the definition of the value of the control specifying the
extent to the exposure of the fish to a given vortex. Instead
of considering the field at the position of the fish, we
consider the field at the position of the vortex. This greatly
simplifies not only the formulation of the problem but also
the complexity of the necessary conditions of optimality.
Moreover, from the practical point of view this assumption
is reasonable since it is always possible to estimate the
value of vortex field at its position from its value at the
position of the fish.

From of the above, it is clear that the considered frame-
work is particularly amenable to a multi-process formula-
tion, since the overall time interval [0, T ] can be regarded
as the union of a set of distinct contiguous time intervals
in which the vortex dynamics change as a result of the
discrete component of the control action. Let us consider
N ∈ N adjacent subintervals, i.e., there exists a partition
{ti : i = 0, . . . , N, t0 = 0, ti−1<ti, i = 1, . . . , N, tN = T},
satisfying [0, T ] = ∪N

i=1Ii where Ii = [ti−1, ti]. Since for
each interval, we have to mention its final and initial
points, independently of the neighboring intervals, we will
consider Ii = [σi

0, σ
i
1], being obvious that σ1

0 = 0, σN
1 = T ,

and σi
1 = σi+1

0 , for i = 1, . . . , N − 1.

Let us now specify the state and control variables and its
components for each subinterval by attaching an upper
index i, xi = col(xi

0, x
i
V , x

i
p, x

i
K) at [σi

0, σ
i
1], for i =

1, . . . , N , being

• xi
V = col(xi

1, x
i
2, x

i
3, x

i
4) with xi

V1
= M1x

i
V and xi

V2
=

M2x
i
V as explained in the previous section,

• xi
p = col(xi

5, x
i
6) is the position of the fish satisfying

ẋi
p = ui

1ẋ
i
V1

+ ui
2ẋ

i
V2

, where ui
j is the control value

expressing the extent of exposure of the fish to the
vortex j, j = 1, 2,

• xi
K = col(xi

7, x
i
8) where xi

7 =
Ki

1

2π
and xi

8 =
Ki

2

2π
, and

• xi
0 = d(xi

V,0).

First, we remark that we retain the label of matrix A, now
given for t ∈ [σi

0, σ
i
1],

A(t, σi
0, x

i
7, x

i
8) = e−δ(t−σi

0)




0 0 −xi
8 xi

8

0 0 xi
7 −xi

7

xi
8 −xi

8 0 0
−xi

7 xi
7 0 0


 .

Second, it is obvious that we have ẋi
K = 0 and that ẋi

0 = 0.
Given the trivial dynamics, one may ask the reason why
these have been chosen as state variables. The reason is
simple: the choice of their initial value affect the evolution
the system, or, in the case of xi

0, if they fully depend
explicitly on other variables, their choice facilitates the
application of the necessary conditions of optimality.

The decision variables of this problem comprise the feasible
initial values of the state variable at the initial time of
each interval, i.e., (xi

V (σi
0), x

i
p(σ

i
0), x

i
K(σi

0)) - notice that,
here, x0(σ

i
0) = d(xi

V,0(σ
i
0)) - and the control functions

ui = col(ui
1, u

i
2) which are in L∞([σi

0, σ
i
1];R2) and take

values in Ωi = [−w,w] × [−w,w], for a given w > 0. In
order to facilitate the representation of the dynamics of

the system, consider the matrix U i =

[
ui
1 ui

2 0 0
0 0 ui

1 ui
2

]
.

Thus, the dynamics of the system on the interval [σi
0, σ

i
1]

are governed by





ẋi
0 = 0

ẋi
V = xi

0A(t, σi
0, x

i
K)xi

V

ẋi
p = xi

0U
iA(t, σi

0, x
i
K)xi

V

ẋi
K = 0.

(8)

Now, we turn to the time and state endpoint constraints.

We start with the time variable. First, note that this
formulation applies to either T > 0 being pre-defined or
also a decision variable of choice. The multi-process time
constraints are given by

σ̄ ∈ Λσ

where σ̄ = col
(
(σi

0, σ
i
1) : i = 1, . . . , N

)
, and

Λσ:={σ̄ ∈ R2N : σ1
0 = 0, σN

1 = T, σi
0 = σi−1

1 , i = 2, . . . N}.
Later, it will be convenient to use also the notation σ̄j =
col(σ̄i

j : i = 1, . . . , N), for j = 0, 1.

Notice that since xi
0(σ

i
j) = d(xi

V (σi
j)), for i = 1, . . . , N , for

j = 0, 1, we have
x̄0 = col(xi

0(σ
i
0), x

i
0(σ

i
1)) : i = 1, . . . , N) ∈ d(ΛV )

being the later defined next.

From the above definitions, we have that
x̄V = col

(
col(xi

V (σi
0), x

i
V (σi

1)) : i = 1, . . . , N
)
∈ ΛV

where
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A(t, t0,K1,K2) :=
e−δ(t−t0)

2π




0 0 −K2 K2

0 0 K1 −K1

K2 −K2 0 0
−K1 K1 0 0


 .

An important observation with significant implications
on the developments of the next two sections is that
d

dt
d(xV,t) = 0. This conclusion can be reached with a few

calculations.

3. FORMULATION OF THE MULTI-PROCESS
OPTIMAL CONTROL PROBLEM

The formulation of the optimal control problem of the
motion of the fish in a given time interval [0, T ] involves the
specification of (i) the control functional to be optimized,
(ii) state and control to be satisfied pointwise in time, (iii)
terminal endpoint state and time constraint to be met,
and obviously, (iv) controlled dynamic equations that will
dictate how the trajectory of the system evolves while
satisfying all the constraints.

We started already with the later by explaining how
vortices evolve over time. In order to control its motion,
the fish has to generate an additional vortex at a certain
point in time and then define the extent of its body
exposure to the last two vortices during a given time
interval initiated at the vortex creation time. The scheme
assumes that the vortex with lower circulation has residual
impact in the motion, or that the fish has ways to have null
exposure to that vortex. Another important issue concerns
the definition of the value of the control specifying the
extent to the exposure of the fish to a given vortex. Instead
of considering the field at the position of the fish, we
consider the field at the position of the vortex. This greatly
simplifies not only the formulation of the problem but also
the complexity of the necessary conditions of optimality.
Moreover, from the practical point of view this assumption
is reasonable since it is always possible to estimate the
value of vortex field at its position from its value at the
position of the fish.

From of the above, it is clear that the considered frame-
work is particularly amenable to a multi-process formula-
tion, since the overall time interval [0, T ] can be regarded
as the union of a set of distinct contiguous time intervals
in which the vortex dynamics change as a result of the
discrete component of the control action. Let us consider
N ∈ N adjacent subintervals, i.e., there exists a partition
{ti : i = 0, . . . , N, t0 = 0, ti−1<ti, i = 1, . . . , N, tN = T},
satisfying [0, T ] = ∪N

i=1Ii where Ii = [ti−1, ti]. Since for
each interval, we have to mention its final and initial
points, independently of the neighboring intervals, we will
consider Ii = [σi

0, σ
i
1], being obvious that σ1

0 = 0, σN
1 = T ,

and σi
1 = σi+1

0 , for i = 1, . . . , N − 1.

Let us now specify the state and control variables and its
components for each subinterval by attaching an upper
index i, xi = col(xi

0, x
i
V , x

i
p, x

i
K) at [σi

0, σ
i
1], for i =

1, . . . , N , being

• xi
V = col(xi

1, x
i
2, x

i
3, x

i
4) with xi

V1
= M1x

i
V and xi

V2
=

M2x
i
V as explained in the previous section,

• xi
p = col(xi

5, x
i
6) is the position of the fish satisfying

ẋi
p = ui

1ẋ
i
V1

+ ui
2ẋ

i
V2

, where ui
j is the control value

expressing the extent of exposure of the fish to the
vortex j, j = 1, 2,

• xi
K = col(xi

7, x
i
8) where xi

7 =
Ki

1

2π
and xi

8 =
Ki

2

2π
, and

• xi
0 = d(xi

V,0).

First, we remark that we retain the label of matrix A, now
given for t ∈ [σi

0, σ
i
1],

A(t, σi
0, x

i
7, x

i
8) = e−δ(t−σi

0)




0 0 −xi
8 xi

8

0 0 xi
7 −xi

7

xi
8 −xi

8 0 0
−xi

7 xi
7 0 0


 .

Second, it is obvious that we have ẋi
K = 0 and that ẋi

0 = 0.
Given the trivial dynamics, one may ask the reason why
these have been chosen as state variables. The reason is
simple: the choice of their initial value affect the evolution
the system, or, in the case of xi

0, if they fully depend
explicitly on other variables, their choice facilitates the
application of the necessary conditions of optimality.

The decision variables of this problem comprise the feasible
initial values of the state variable at the initial time of
each interval, i.e., (xi

V (σi
0), x

i
p(σ

i
0), x

i
K(σi

0)) - notice that,
here, x0(σ

i
0) = d(xi

V,0(σ
i
0)) - and the control functions

ui = col(ui
1, u

i
2) which are in L∞([σi

0, σ
i
1];R2) and take

values in Ωi = [−w,w] × [−w,w], for a given w > 0. In
order to facilitate the representation of the dynamics of

the system, consider the matrix U i =

[
ui
1 ui

2 0 0
0 0 ui

1 ui
2

]
.

Thus, the dynamics of the system on the interval [σi
0, σ

i
1]

are governed by





ẋi
0 = 0

ẋi
V = xi

0A(t, σi
0, x

i
K)xi

V

ẋi
p = xi

0U
iA(t, σi

0, x
i
K)xi

V

ẋi
K = 0.

(8)

Now, we turn to the time and state endpoint constraints.

We start with the time variable. First, note that this
formulation applies to either T > 0 being pre-defined or
also a decision variable of choice. The multi-process time
constraints are given by

σ̄ ∈ Λσ

where σ̄ = col
(
(σi

0, σ
i
1) : i = 1, . . . , N

)
, and

Λσ:={σ̄ ∈ R2N : σ1
0 = 0, σN

1 = T, σi
0 = σi−1

1 , i = 2, . . . N}.
Later, it will be convenient to use also the notation σ̄j =
col(σ̄i

j : i = 1, . . . , N), for j = 0, 1.

Notice that since xi
0(σ

i
j) = d(xi

V (σi
j)), for i = 1, . . . , N , for

j = 0, 1, we have
x̄0 = col(xi

0(σ
i
0), x

i
0(σ

i
1)) : i = 1, . . . , N) ∈ d(ΛV )

being the later defined next.

From the above definitions, we have that
x̄V = col

(
col(xi

V (σi
0), x

i
V (σi

1)) : i = 1, . . . , N
)
∈ ΛV

where
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ΛV :={x̄V ∈ R8N :M1x
1
V (0) = x1

V1,0, M2x
1
V (0) ∈ R2,

x1
V (σ1

1) ∈ R4, xi
V (σi

1) ∈ R4,

M1x
i
V (σi

0) = M2x
i−1
V (σi−1

1 ),

M2x
i
V (σi

0) ∈ R2, i = 2, . . . , N}.
Since the particle evolves continuously in time, we natu-
rally have that

x̄p = col
(
col(xi

p(σ
i
0), x

i
p(σ

i
1)) : i = 1, . . . , N

)
∈ Λp

where

Λp:={x̄p∈R4N : x1
5(0) = x5,0, x

1
6(0) = x6,0, x

N
5 (T ) = x5,T ,

xN
6 (T ) = x6,T , x

i−1
5 (σi−1

1 ) = xi
5(σ

i
0),

xi−1
6 (σi−1

1 ) = xi
6(σ

i
0), i = 2, . . . , N}.

Finally, it remains to characterize the constraints on the
circulation. Remark that, for given numbers K2 > K1 > 0,
we have x1

7(σ
1
0) = N1x

1
K,0 ∈ [−K1,K1] and x1

8(σ
1
0) =

N2x
1
K,0 ∈ Ṽ 1(N1x

1
K,0) := (V̄ 1 ∪ (−V̄ 1))(N1x

1
K,0), where

V̄ 1(N1x
1
K,0) is given by

• [N1x
1
K,0,K2] if N1x

1
K,0 > 0, and

• [−K2, N1x
1
K,0] otherwise,

being x1
K,0 = x1

K(σ1
0), and N1 and N2, respectively, the

matrices [1 0] and [0 1].

Moreover, for i = 2, . . . , N , and by denoting xi
K,0 =

xi
K(σi

0) and gi−1,i = e−δ(σi
0−σi−1

0 ), we have

• N1x
i
K,0 := gi−1,iN2x

i−1
K,0

• N2x
i
K,0 ∈ (V̄ i ∪ (−V̄ i))(gi−1,iN2x

i−1
K,0), where, for

some 1 < ᾱ < |N2x
i−1
K,0|−1g−1

i−1,iK̄, with K̄ satisfying

K̄ ≥ ᾱ max
i=2,...,N

{|gi−1,iN2x
i−1
K,0|}

V̄ i = [ᾱgi−1,iN2x
i−1
K,0, K̄] or [−K̄, ᾱgi−1,iN2x

i−1
K,0] if

N2x
i−1
K,0 is, respectively, positive or negative. Notice

that an example of such a K̄ is K̄ = K2 and, again,
let Ṽ i(N1x

i
K,0) := (V̄ i ∪ (−V̄ i))(gi−1,iN2x

i−1
K,0).

The choice of the numbers ᾱ and K̄ relies on the trade-
off between the realism of the two vortices model and the
optimality of the solution to the optimal control problem
formulated with such a model. Now, we may express the
constraints for the set of boundary values of the vortices
circulation by

x̄K ∈ ΛK ,
where x̄K = col

(
col(xi

K,0, x
i
K,1) : i = 1, . . . , N

)
(again

here, xi
K,1 = xi

K(σi
1)), and

ΛK :={x̄K ∈ R4N : xi
K,1 ∈ R2, for i = 1, . . . , N,

x1
K,0 ∈ [−K1,K1] × Ṽ 1(N1x

1
K,0),

xi
K,0 ∈ V̂ i, for i = 2, . . . , N},

with V̂ i = {gi−1,iN2x
i−1
K,0} × Ṽ i(gi−1,iN2x

i−1
K,0). The cons-

traints to be satisfied by the circulation appear to be
somewhat intricate. However, its “raison d’être” ensures
that, without, any loss of generality, the “second” or
“younger” vortex is always the one with higher circulation.
This condition facilitates the formulation of the problem
since simpler functions suffice to express the constraints.

Now, we pursue with the specification of the cost func-
tional. We choose it as a weighted sum of the various
items contributing to power consumption, notably, the
continuum time steering control function, and the energy
associated with the creation of the vortices. This last
term involves two components: level of circulation and the
distance at which the new vortex is generated. Thus, we
should have

J(ū, x̄(σ̄0), σ̄):=
1

2

N∑

i=1

[α1

∫ σi
1

σi
0

‖ui(t)‖2dt + α2‖N2x
i
K(σi

0)‖2

+α3‖xi
p(σ

i
0) −M2x

i
V (σi

0)‖2],
where α1, α2, and α3 are the non-negative weighting
coefficients.

Then, the multi-process control problem is as follows:

(P) Minimize J(ū, x̄(σ0), σ̄)

subject to

{
differential equations (8)

(ui
1, u

i
2)∈[−w,w]×[−w,w]

[σi
0, σ

i
1]-a.e.

for i = 1, . . . , N, and

σ̄∈Λσ,x̄0∈d(ΛV ),x̄V ∈ΛV ,x̄p∈Λp,x̄K∈ΛK .

For future convenience, we express the cost functional
J(ū, x̄(σ̄0), σ̄) as the sum

f0
(
{(x(σ0), x(σ1))

i}Ni=1

)
+

1

2
α1

N∑

i=1

∫ σi
1

σi
0

‖ui(t)‖2dt,

where f0
(
{(x(σ0), x(σ1))

i}Ni=1

)
is given by

1

2

N∑

i=1

[
α2‖N2x

i
K(σi

0)‖2 + α3‖xi
p(σ

i
0) −M2x

i
V (σi

0)‖2
]
.

4. MAXIMUM PRINCIPLE FOR THE
MULTI-PROCESS OPTIMAL CONTROL PROBLEM

Now, we apply the Maximum Principle of Pontryagin for
the multi-process optimal control problem (P ) described
in the previous section. Of course, these conditions are
expressed having as a reference the optimal control pro-
cess which is usually singled out by the superscript “*”.
However, in order to mitigate the already heavy burden of
the notation, we omit it here.

4.1 The adjoint differential equations

By migrating the notation adopted to the state variable to
the adjoint variable p, we have pi=lin(pi0, p

i
V , p

i
p, p

i
K) and

may express the Pontryagin function as follows

H(t, x̄, p̄, ū, σ̄) =
N∑

i=1

Hi(t, xi, pi, ui, σi
0)χ[σi

0,σ
i
1]

(t)

where χ[σi
0,σ

i
1]

is the indicator function of the interval
[σi

0, σ
i
1], and, by denoting Ai = A(t, σi

0, x
i
K,0),

Hi(t, xi, pi, ui, σi
0) = xi

0(p
i
V + pipU

i)Aixi
V − 1

2
α1‖ui‖2.

Now, by denoting the Jacobian of the vector valued map
F w.r.t. the variable y by DyF , we readily conclude that
the adjoint system is, for i = 1, . . . , N , given by
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The tranversality conditions are given by

{
(−hi
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i
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i
K,0,−piK,1)

}N

i=1
∈NΛ(χ)+λ∇χf̄0(χ).

Here, λ ≥ 0, and

• χ =
{
col(σi

0, σ
i
1), col(x

i
0,0, x

i
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i
V,0, x

i
V,1),

col(xi
p,0, x

i
p,1), col(x

i
K,0, x

i
K,1)

}N

i=1
,

• ziα,j = ziα(σi
j), for j = 0, 1,

• f̄0(χ) = f0({xi
V,0, x

i
p,0, x

i
K,0}Ni=1),

• Λ = ΠN
i=1Λi where

Λi = Λi
σ × d(Λi

V ) × Λi
V × Λi

p × Λi
K ,

with Λi
α being the ith component of Λα, for α ∈

{σ, x0, xV , xp, xK},
• hi

0 = sup
ui∈[−w,w]2

{
Hi(t, xi, pi, ui, σi

0)|t=σi
0

}
, and

• hi
1 = sup

ui∈[−w,w]2

{
Hi(t, xi, pi, ui, σi

0)|t=σi
1

}
.

Let us decode two of the above compact adjoint differential
equations. First, we note that, by considering piTV =
[pi1, p

i
2, p

i
3, p

i
4], piTp = [pi5, p

i
6], piTK = [pi7, p

i
8] and by

replacing xi
V , xi

p, xi
K , and ui by its components, and by

considering

Σi = 〈(xi
3 − xi

4, x
i
1 − xi

2), col(−pi1x
i
8 + pi2x

i
7, p

i
3x

i
8 − pi4x

i
7)〉

Σ̃i = 〈(xi
3 − xi

4, x
i
1 − xi

2), col(−pi5, p
i
6)〉

to simplify the notation, we conclude that

Hi(t, xi, pi, (ui
1, u

i
2), σ

i
0) =−1

2
α1

(
(ui

1)
2 + (ui

2)
2
)

+e−δ(t−σi
0)xi

0

[
Σi+Σ̃i(ui

1x
i
8 − ui

2x
i
7)
]
.

Straightforward computations lead us to the fact that the
compact form (9) can be expressed in a detailed form as
follows





−ṗi0 =ei(t)
[
Σi + Σ̃i(ui

1x
i
8 − ui

2x
i
7)
]

−ṗiV =−[ṗi1, ṗ
i
2, ṗ

i
3, ṗ

i
4]

=ei(t)xi
0[x

i
8p

i
3 − xi

7p
i
4 + pi6(x

i
8u

i
1 − xi

7u
i
2),

−(xi
8p

i
3 − xi

7p
i
4 + pi6(x

i
8u

i
1 − xi

7u
i
2)),

−xi
8p

i
1 + xi

7p
i
2 − pi5(x

i
8u

i
1 − xi

7u
i
2),

−(−xi
8p

i
1 + xi

7p
i
2 − pi5(x

i
8u

i
1 − xi

7u
i
2))]

−ṗip =0

−ṗiK =−[ṗi7, ṗ
i
8]

=ei(t)xi
0[〈(xi

3 − xi
4, x

i
1 − xi

2), (p
i
2,−pi4)〉 − Σ̃iui

2

〈(xi
3 − xi

4, x
i
1 − xi

2), (−pi1, p
i
3)〉+Σ̃iui

1],

(10)

where ei(t) = e−δ(t−σi
0). It is clear from the above that

ṗi1 = −ṗi2 and ṗi3 = −ṗi4.

4.2 The transversality conditions

In order to express the transversality conditions in detail,
we still need to compute both the gradient of the cost
functional with respect to the state variable endpoints and
the normal cone to the endpoint constraint sets.

The cost functional term that depends on the state vari-
able at its end points only involves the state variable at
the initial time. Thus, we may write:

(∇xK
f0)

i|σi
0
= α2N2x

i
K(σi

0)N2 =
[
0, α2x

i
8(σ

i
0)
]

(11)

(∇xp
f0)

i|σi
0
= α3(x

i
p(σ

i
0)−M2x

i
V (σi

0))
T

= α3

[
xi
5(σ

i
0)−xi

2(σ
i
0), x

i
6(σ

i
0)−xi

4(σ
i
0)
]
(12)

(∇xV
f0)

i|σi
0
=−α3(x

i
p(σ

i
0)−M2x

i
V (σi

0))
TM2

= −α3

[
0, xi

5(σ
i
0)−xi

2(σ
i
0), 0, x

i
6(σ

i
0)−xi

4(σ
i
0)
]
. (13)

Obviously, (∇x0f0)
i|σi

1
= 0, for all i.

Now, it is the turn to compute the limiting normal cones
to the sets Λx0

, Λσ, ΛV , Λp, and ΛK . We consider the
normal cone introduced by Mordukhovich, also known
by limiting normal cone, - NL

C (c) denotes the limiting
normal cone of the set C at the point c ∈ C - which has
the advantage of being smaller and, thus, enabling more
precise conditions. For a reference on a definition, check
Mordukhovich (2006). The derivation of the normal cones
to Λσ, ΛV , and Λp is straightforward, and it yields:

NL
Λσ

(σ̄)={p̂σ∈R2N: p̂1σ,0∈R, p̂i−1
σ,1 =−p̂iσ,0, i = 2, . . . , N,

p̂Nσ,1 ∈ R},
NL

ΛV
(x̄V )={p̂V ∈ R8N: p̂1V,0M

T
1 ∈R2, p̂iV,1=0, p̂iV,0M

T
2 =0

i = 1, . . . , N, p̂iV,0M
T
1 =−p̂i−1

V,1M
T
2 ,

i = 2, . . . , N},
NL

Λp
(x̄p)={p̂p∈ R4N: p̂1p,0∈R2,p̂ip,0 =−p̂i−1

p,1 ,i = 2, . . . , N,

p̂Np,1∈R2}.
Since x̄0 = d(x̄V ), the normal cone to Λx0 can be easily
related to NL

ΛV
via the gradient of the function d. Since

∇d(x̄V ) = 2x2
0[x1 − x2, x2 − x1, x3 − x4, x4 − x3, 0, 0, 0, 0],

it is not difficult to conclude that

NL
x0

= {p̂0: 2p̂0x
2
0[x1 − x2,x2 − x1,x3 − x4,x4 − x3,

0, 0, 0, 0] ∈ NL
ΛV

}.
Due to the specific interdependence of the various time
subintervals in the definition of ΛK , the computation of
NL

ΛK
(x̄K) requires some more attention. Let us apply the

definition of normal cone applied to the reference point
x̂K,0 = col(x̂i

K,0 : i = 1, . . . , N) in ΛK . Without any loss of
generality, let us consider N ≥ 3. Then, p̂K,0 = lin(p̂iK,0 :

i = 1, . . . , N) ∈ NL
ΛK

(x̂K,0) if, ∀xK,0 ∈ ΛK ,

0≥ 〈p̂K,0, xK,0 − x̂K,0〉
= 〈p̂1K,0N

T
1 , N1(x

1
K,0− x̂1

K,0)〉+〈p̂1K,0N
T
2 , N2(x

1
K,0− x̂1

K,0)〉

+

N∑

i=2

[
〈p̂iK,0N

T
1 , N1(x

i
K,0− x̂i

K,0)〉

+〈p̂iK,0N
T
2 , N2(x

i
K,0− x̂i

K,0)〉
]
.
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−ṗiK = xi
0(p

i
V + pipU

i)Dxi
K

(
Aixi

V

)
.

(9)

The tranversality conditions are given by

{
(−hi

0, h
i
1), (p

i
0,0,−pi0,1), (p

i
V,0,−piV,1),

(pip,0,−pip,1), (p
i
K,0,−piK,1)

}N

i=1
∈NΛ(χ)+λ∇χf̄0(χ).

Here, λ ≥ 0, and

• χ =
{
col(σi

0, σ
i
1), col(x

i
0,0, x

i
0,1), col(x

i
V,0, x

i
V,1),

col(xi
p,0, x

i
p,1), col(x

i
K,0, x

i
K,1)

}N

i=1
,

• ziα,j = ziα(σi
j), for j = 0, 1,

• f̄0(χ) = f0({xi
V,0, x

i
p,0, x

i
K,0}Ni=1),

• Λ = ΠN
i=1Λi where

Λi = Λi
σ × d(Λi

V ) × Λi
V × Λi

p × Λi
K ,

with Λi
α being the ith component of Λα, for α ∈

{σ, x0, xV , xp, xK},
• hi

0 = sup
ui∈[−w,w]2

{
Hi(t, xi, pi, ui, σi

0)|t=σi
0

}
, and

• hi
1 = sup

ui∈[−w,w]2

{
Hi(t, xi, pi, ui, σi

0)|t=σi
1

}
.
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Σi = 〈(xi
3 − xi

4, x
i
1 − xi

2), col(−pi1x
i
8 + pi2x

i
7, p

i
3x

i
8 − pi4x

i
7)〉

Σ̃i = 〈(xi
3 − xi

4, x
i
1 − xi

2), col(−pi5, p
i
6)〉

to simplify the notation, we conclude that

Hi(t, xi, pi, (ui
1, u

i
2), σ

i
0) =−1

2
α1

(
(ui

1)
2 + (ui

2)
2
)

+e−δ(t−σi
0)xi

0

[
Σi+Σ̃i(ui

1x
i
8 − ui

2x
i
7)
]
.

Straightforward computations lead us to the fact that the
compact form (9) can be expressed in a detailed form as
follows
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−ṗip =0

−ṗiK =−[ṗi7, ṗ
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where ei(t) = e−δ(t−σi
0). It is clear from the above that

ṗi1 = −ṗi2 and ṗi3 = −ṗi4.

4.2 The transversality conditions

In order to express the transversality conditions in detail,
we still need to compute both the gradient of the cost
functional with respect to the state variable endpoints and
the normal cone to the endpoint constraint sets.

The cost functional term that depends on the state vari-
able at its end points only involves the state variable at
the initial time. Thus, we may write:

(∇xK
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Obviously, (∇x0f0)
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= 0, for all i.

Now, it is the turn to compute the limiting normal cones
to the sets Λx0

, Λσ, ΛV , Λp, and ΛK . We consider the
normal cone introduced by Mordukhovich, also known
by limiting normal cone, - NL

C (c) denotes the limiting
normal cone of the set C at the point c ∈ C - which has
the advantage of being smaller and, thus, enabling more
precise conditions. For a reference on a definition, check
Mordukhovich (2006). The derivation of the normal cones
to Λσ, ΛV , and Λp is straightforward, and it yields:

NL
Λσ

(σ̄)={p̂σ∈R2N: p̂1σ,0∈R, p̂i−1
σ,1 =−p̂iσ,0, i = 2, . . . , N,

p̂Nσ,1 ∈ R},
NL

ΛV
(x̄V )={p̂V ∈ R8N: p̂1V,0M

T
1 ∈R2, p̂iV,1=0, p̂iV,0M

T
2 =0

i = 1, . . . , N, p̂iV,0M
T
1 =−p̂i−1

V,1M
T
2 ,

i = 2, . . . , N},
NL

Λp
(x̄p)={p̂p∈ R4N: p̂1p,0∈R2,p̂ip,0 =−p̂i−1

p,1 ,i = 2, . . . , N,

p̂Np,1∈R2}.
Since x̄0 = d(x̄V ), the normal cone to Λx0 can be easily
related to NL

ΛV
via the gradient of the function d. Since

∇d(x̄V ) = 2x2
0[x1 − x2, x2 − x1, x3 − x4, x4 − x3, 0, 0, 0, 0],

it is not difficult to conclude that

NL
x0

= {p̂0: 2p̂0x
2
0[x1 − x2,x2 − x1,x3 − x4,x4 − x3,

0, 0, 0, 0] ∈ NL
ΛV

}.
Due to the specific interdependence of the various time
subintervals in the definition of ΛK , the computation of
NL

ΛK
(x̄K) requires some more attention. Let us apply the

definition of normal cone applied to the reference point
x̂K,0 = col(x̂i

K,0 : i = 1, . . . , N) in ΛK . Without any loss of
generality, let us consider N ≥ 3. Then, p̂K,0 = lin(p̂iK,0 :

i = 1, . . . , N) ∈ NL
ΛK

(x̂K,0) if, ∀xK,0 ∈ ΛK ,

0≥ 〈p̂K,0, xK,0 − x̂K,0〉
= 〈p̂1K,0N

T
1 , N1(x

1
K,0− x̂1

K,0)〉+〈p̂1K,0N
T
2 , N2(x

1
K,0− x̂1

K,0)〉

+

N∑

i=2

[
〈p̂iK,0N

T
1 , N1(x

i
K,0− x̂i

K,0)〉

+〈p̂iK,0N
T
2 , N2(x

i
K,0− x̂i

K,0)〉
]
.
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By recalling the definition of the constraint set ΛK and by
regrouping the terms, we readily obtain, ∀xK ∈ ΛK , the
inequality

0≥ 〈p̂1K,0N
T
1 , N1(x

1
K,0 − x̂1

K,0)〉

+

N−1∑

i=1

〈p̂iK,0N
T
2 + gi,i+1p̂

i+1
K,0N

T
1 , N2(x

i
K,0 − x̂i

K,0)〉

+〈p̂NK,0N
T
2 , N2(x

N
K,0 − x̂N

K,0)〉.
By considering all the feasible variations of both compo-
nents of xK,0, we obtain NL

K(x̂K,0) as the set
{

[p̂iK,0, 0]∈R4: p̂1K,0+ [0, g1,2p̂
2
K,0N

T
1 ]∈ NL

Ṽ 1(N1x̂1
K,0

)
(x̂1

K,0)

p̂iK,0N
T
2 + gi,i+1p̂

i+1
K,0N

T
1 ∈ NL

V̄ i(gi−1,iN2x̂
i−1
K,0

)
(x̂i

K,0),

i = 2, . . . , N − 1, p̂NK,0N
T
2 ∈ NL

V̄ N (gN−1,NN2x̂
N−1
K,0

)
(x̂N

K,0)

}
.

4.3 The maximum condition

Now, let us compute the optimal candidate control strate-
gy which has to maximizing the Pontryagin function along
the optimal trajectory and associated adjoint variable. Due
to the quadratic structure of the Hamiltonian and the
fact that the control constraints are decoupled, we readily
conclude that, L-a.e. in [σi

0, σ
i
1],

ûi
1(t) = Satw

(
xi
8(t)x

i
0

α1
e−δ(t−σi

0)Σ̃i(t)

)

ûi
2(t) = Satw

(
−xi

7(t)x
i
0

α1
e−δ(t−σi

0)Σ̃i(t)

)
.

Here, Sata(z) is the saturation function which is defined
by taking the values −a, z, and a, if, respectively, z < −a,
−a ≤ z ≤ a, and z > a, and the functions Σ̃i, xi

8 and
xi
7 are evaluated along the optimal control process. This

simple structure allows us to obtain the explicit form for
the optimal control function given above. To facilitate
the analysis to find a control multi-process satisfying the
Maximum Principle, the nine situations that might arise
are compiled in the Table 1.

Table 1. Optimal Control Function
ûi
1 ûi

2 H̄i(ûi
1, û

i
2)− Σi

−w −w −w
(
Z̃i

8 + Z̃i
7 + α1w

)

−w −Z̃i
7

α1
−w

(
Z̃i

8 +
α1w

2

)
+

(Z̃i
7)

2

2α1

−w w −w
(
Z̃i

8 − Z̃i
7 + α1w

)

Z̃i
8

α1
−w w

(
−Z̃i

7 − α1w

2

)
+

(Z̃i
8)

2

2α1

Z̃i
8

α1

Z̃i
7

α1

1

2α1

(
(Z̃i

8)
2 + (Z̃i

7)
2
)

Z̃i
8

α1
w −w

(
−Z̃i

7 +
α1w

2

)
+

(Z̃i
8)

2

2α1

w −w w
(
Z̃i

8 − Z̃i
7 − α1w

)

w −Z̃i
7

α1
w

(
Z̃i

8 − α1w

2

)
+

(Z̃i
8)

2

2α1

w w w
(
Z̃i

8 + Z̃i
7 − α1w

)

Here, for convenience, we omit the time variable and
define H̄i(ûi

1, û
i
2) = Hi(t, xi, pi, (ûi

1, û
i
2), σ

i
0), Z̃i

7 =

−Σ̃ie−δ(t−σi
0)xi

0x
i
7, and Z̃i

8 = Σ̃ie−δ(t−σi
0)xi

0x
i
8.

5. CONCLUSIONS

This article concerns the derivation of a Maximum Prin-
ciple for the optimal control of a multi-process control
system with a two vortex driven particle in the plane.
The obtained conditions supply enough information to se-
lect control processes which are candidates for optimality.
The problem was presented in full generality and some
additional constraints on the initial values of the state
variable will simplify the conditions which are amenable
for analysis.
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Abstract—This article concerns the investigation of an optimal
control framework based on the Maximum Principle of Pontrya-
gin for the motion planning of Autonomous Underwater Vehicles
(AUVs) that take into account not only its own direct propulsion
through its actuators, but also the motion effects of the water
column flow fields, notably, the point vortices which might be
naturally present or intentionally generated in order to achieve
the desired motion features. We do not enter into issues related
to the AUV mechanical design, but assume that this can such that
the shape of the (movable or not) vehicle surfaces, are such that
the water column flow field energy can be used with advantage to
the required motion. In this context, we simply assume that the
vehicle is a point mass unicycle such that the effect of the water
column vortices can be controlled to contribute to the desired
AUV’s longitudinal and rotational velocities. The control action
is exercised by generating or using an existing vortex - specified
by its location at circulation - at a time as well as by varying
the “exposure” of the AUV to each one of the vortices. A control
multiprocesses framework is chosen in order to derive necessary
conditions of optimality in the form of a Maximum Principle of
Pontryagin. These conditions provide enough relations in order
to fully specify the optimal motion.

Index Terms—Maximum Principle of Pontryagin, multiprocess
system, point vortex

I. INTRODUCTION

The relevance of AUV’s as marine platforms carrying
sensors to better understand the geophysical and biological
phenomena in the ocean bottom and water column as well as
in the ocean-atmosphere interface has been widely recognized
[1], [2], [3]. The enormous R&D investment, by the research
establishment, governance institution, and the multiple types
of stakeholders in designing systems in which AUV’s, often
articulated with other type of vehicles, and human operators
play a critical role, has been huge and all the current perspec-
tives point to further growth [4]. This is not surprising - as
the marine environment is increasingly regarded has holding
important keys for a sustainable permanence of humans on
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Unit SYSTEC - POCI-01-0145-FEDER- 006933/SYSTEC funded by ERDF
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Matemática da Universidade do Porto funded by FCT, and the Project STRIDE
- NORTE-01-0145-FEDER- 000033, funded by ERDF NORTE 2020.

the Earth, the more urgent is to understand the complex,
intertwined, myriad of its processes, there are not that many
tools for the efficient gathering of the badly required data, and
AUV’s have revealed to be one of the most important one -
and it is attested by the increasing number and sophistication
of laboratory facilities (e.g., https://www.eumarinerobots.eu/)
and the huge body scientific and technical literature.

Obviously, the challenges are huge. The nature and depth
of issues span a wide range: from systems centered, [1], to
vehicle or group of vehicle’s centered, [6], the ultimate goal
is to design systems enabling the extraction of data, and also
enable the intervention, in an opaque, often hostile and highly
variable milieu with maximal efficiency. This means that it is
extremely important to control the all the activities on the AUV
or group of AUV’s - such as, motion (navigation, guidance,
and vehicle actuators control), payload data gathering and
intervention, communication, computation, data transmission,
and power and safety management - system in order to achieve
the planned goals while optimizing the on-board resources. In
abstract, this requires solving extremely complex optimiza-
tion based feedback control problems with minimal power
consumption while satisfying the “on-line” requirements. The
above issues raise the question of how to take advantage of the
huge energy available in the flow fields, abounding in most of
the marine environments, in order to mitigate the extent of the
challenges. It is not an exaggeration to state that the efforts
along this direction have been timid, e.g., [3], when comparing
with the effort on vehicle’s systems and technologies, from
which the above and [5], and references therein are very far
from being representative. On the other hand a significant
research effort has been spent in designing understanding and
developing motion control systems inspired by the remarkable
capabilities of propulsion and motion control demonstrated
by fish in the underwater environment. See, for example, [3],
[12]–[14] and references therein. This is not surprising since
this investigation will serve to assess ideas to inspire novel
efficient underwater locomotion systems that take advantage
of the ocean dynamics.

Here, we provide a step in this direction by investigating the
optimal control problem formulated in order to drive a AUV
between two given points with minimal effort in a flow field
defined by two point vortices at any point in time, [8], [9],
[14]. We consider that the position and initial circulation of



each one of the point vortices, and the fraction of exposure of
the AUV - regarded as a unicycle particle - to each one of the
vortices are the controls available for propulsion and steering.
Moreover, the flow field is such that each point vortex has
a exponentially decaying circulation with a given decay rate.
Thus, the objective is to formulate the general minimum effort
motion control problem outlined above and present and discuss
necessary conditions of optimality, in the form of a maximum
Principle of Pontryagin, [15], associated its solution. Given
the structure of the chosen propulsion ad steering scheme,
we cast the optimal control problem of interest in the control
multiprocesses framework, first considered in [10], [11].

In section II, we present the dynamic equations for point
vortices with constant circulation moving in a plane and, then,
we particularize to the specific case of interest in this article,
in which we have the vector field defined by two point vortices
with a given exponentially decaying circulation. In section III,
we present the general optimal control problem central and
explain the rationale behind the chosen controlled dynamics,
as well as some of the key assumptions that enable an elegant
formulation in the multiprocess context which is amenable
to the application of the Maximum Principle. In section IV,
necessary conditions of optimality in the form of a Maximum
Principle of Pontryagin are applied to the problems here stated.
Some conclusions are outlined in the last section.

II. PROBLEM FORMULATION

Vortices are two-dimensional points, each one with its
own circulation, that induce a velocity field in the plane
(formally, such velocity field is a singular solution of the
two-dimensional incompressible Euler equations on the whole
plane). Consider n point vortices located in (xi, yi) with
circulation Ki (i = 1, . . . , n). The evolution of the vector
field in R2 is given the ODE system ( [7]–[9]):

(ẋi, ẏi) =
1

2π

n∑

j=1,j 6=i
Kj

(−(yi − yj), (xi − xj))
‖(xj , yj)− (xi, yi)‖2

, (1)

where (xi(0), yi(0)) = (x0, y0) , and ‖ · ‖ is the Euclidean
distance.

As stated above, we are interested in the case n = 2 and the
circulation decays in time, that is, we consider the circulation
given by e−δ(t−t0)Ki , where the Ki’s are constants (i = 1, 2).
The option n = 2 is justified by the fact that it is the minimal
number of vortices ensuring motion controllability, being the
minimality important due to the fact that creating a vortex
requires a significant amount of energy from the AUV. The fact
that the dissipation of energy in the water column is relatively
fast makes it reasonable to consider that its circulation decays
exponentially in time with a pre-specified rate, and that, after
some time, the effect of an “old” vortex can be neglected.
These considerations provide the rationale to the vector field
dynamics component of the control system model in the
problem investigated in this article. The AUV has to ensure
that it can control its motion and, so, it requires two relevant
vortices. On the other hand, since generating a vortex is

expensive from the power consumption perspective, the quest
for optimality leads to the natural decision to create a new
vortex, when the effect of at least one of currently active ones
becomes negligible. This rationale justifies the consideration
of an optimal control problem with two “dominant vortices”.

We will introduce a notation that will facilitate the rep-
resentation of the dynamics of the overall system. Let xV =
col(x1, x2, x3, x4), xV1 = col(x1, x3), and xV2 = col(x2, x4),
the position coordinates of the, respectively, joint vortices, first
vortex, V1, and second vortex, V2 . We have xV1

= M1xV

and xV2 = M2xV , where M1 =

[
1 0 0 0
0 0 1 0

]
, and

M2 =

[
0 1 0 0
0 0 0 1

]
. Now, by using (1) with n = 2, we

obtain the following dynamics for the vortices

ẋV = d(xV,0)A(t, t0,K1,K2)xV , (2)

where d(xV,0) =
(
(x1(t0)− x2(t0))2 + (x3(t0)− x4(t0))2

)−1
,

and, by denoting by δ the prescribed rate of decay,

A(t, t0,K1,K2) :=
e−δ(t−t0)

2π




0 0 −K2 K2

0 0 K1 −K1

K2 −K2 0 0
−K1 K1 0 0


 .

An important observation with significant implications on the
developments of the next two sections is that ḋ(xV,t) = 0.
This conclusion can be reached with a few calculations.

III. MULTIPROCESS OPTIMAL CONTROL PROBLEM

A controlled multiprocess system,

{(xi, ui) ∈ AC × L∞ : i = 1, . . . , N} ,
consists in a finite number of dynamic control systems which
are active in, possibly different, free endpoint time intervals,
subject to their own state variable and control constraints,
while sharing joint time and state endpoint constraints, that
is,





ẋ = ul cos(θ) + uixv
i
x

ẏ = ul sin(θ) + uiyv
i
y

θ̇ = w + 1+cos(2θ)
2

hi(t, x, y) ∈ Ci [ti0, t
i
1]L − a.e.

ūl ∈ [um, uM ]
w̄ ∈ [−wM , wM ]
dynamics of (vix, v

i
y)

(3)

h̄({((x, y)(ti0), (x, y)(ti1)) : i = 1, . . . , N}) ∈ C̄, (4)

where ūl and w̄ are the longitudinal and angular velocities, and
(vix, v

i
y) represents the planar flow field at the vehicle location.

In order to cast the problem in the multiprocesses frame-
work, let us represent the state at the time segment i as
follows: the control variables uij = (uix,j , u

i
y,j) ∈ [−ζ, ζ]2,

j = 1, 2 , define the extent of exposure of the particle to
each vortex at each time, and the overall state variable xi ,
given by col(xi0, x

i
V , x

i
p, x

i
K , x

i
θ) ∈ R10 , where xi0 is the

distance between both vortices positions, xiV = (xiV1
, xiV2

) ,
with xiV1

= col(xi1, x
i
3) and xiV2

= col(xi2, x
i
4) are the position



of both vortices, xip = col(xi5, x
i
6) is the position of the

particle, xiK = col(xi7, x
i
8) the circulation of both vortices

and xiθ = xi9 is the angular component of the particle related
with the vortices, satisfies the dynamics in the interval [σi0, σ

i
1]

(being σi0, and σi1 decision parameters):





ẋi0 = 0

ẋiV = xi0A(t, σi0, x
i
K)xiV

ẋip = ul

[
cos(xiθ)
sin(xiθ)

]
+ xi0U

iA(t, σi0, x
i
K)xiV

ẋiK = 0

ẋiθ = w +
1+cos(2xiθ)

2

,(5)

A(t, σi0, x
i
K) = e−δ(t−σ

i
0)




0 0 −xi8 xi8
0 0 xi7 −xi7
xi8 −xi8 0 0
−xi7 xi7 0 0




and U i =

[
ui1 ui3 0 0
0 0 ui2 ui4

]
, with ui =

col(ui1, u
i
2, u

i
3, u

i
4), where uiV1

= col(ui1, u
i
2) and

uiV2
= col(ui3, u

i
4) the control components associated to

the first and the second vortices, respectively, as well as the
boundary conditions (σi0, x

i(σi0), σi1, x
i(σi1)) ∈ Λi.

The cost functional to be minimized consists in the overall
power consumption required in the overall effort to steer
the AUV. The goal is to choose the set of N triples
(xi(ti0), xi(ti1), ui) that optimize a given global performance
function J(xi(ti0), xi(ti1), ui) , while the associated controlled
multiprocess system satisfies the constraints (3) and (4).

Thus, the application the maximum principle, [10], [11],
asserts that, for a given optimal control multiprocess,
there exists a multiprocess adjoint variable {pi}, pi :
[σi0, σ

i
1] → R10 , that satisfies the adjoint system, i.e., −ṗi =

∇xiHi(t, xi, pi, ui) , where Hi is the Pontryagin (also known
as the un-maximized Hamiltonian) given by Hi(t, xi, pi, ui) =
〈pi, f i(t, xi, ui)〉 , on [σi0, σ

i
1], and the transversality condition

(−hi0, pi(σi0), hi1,−pi(σi1)) ∈ NL
Λi . Moreover, the satisfaction

of all endpoint constraints the free end-times and values
of state variable at each segment, the optimal control ui

maximizes a.e. in [σi0, σ
i
1] the map v → Hi(t, xi, pi, v). The

specific form of these relations and the fact that they are
complete make it amenable to the computation of the optimal
control process.

A. Formulation of the optimal control problem

The formulation of the optimal control problem of the
motion of the AUV in a given time interval [0, T ] involves
the specification of (i) the control functional to be optimized,
(ii) state and control to be satisfied pointwise in time, (iii)
terminal endpoint state and time constraint to be met, and
obviously, (iv) controlled dynamic equations that will dictate
how the trajectory of the system evolves while satisfying all
the constraints.

We started already with the later by explaining how vortices
evolve over time. In order to control its motion, the AUV has
to generate an additional vortex at a certain point in time and
then define the extent of its body exposure to the last two
vortices during a given time interval initiated at the vortex
creation time. As mentioned earlier, the scheme assumes that
the vortex with lower circulation can be neglected, i.e., residual
impact in the motion, or that the AUV has ways to have
null exposure to that vortex. Another important issue issue
concerns the definition of the value of the control specifying
the extent to the exposure of the AUV to a given vortex.
Instead of considering the field at the position of the AUV,
we consider the field at the position of the vortex. This greatly
simplifies not only the formulation of the problem but also the
complexity of the necessary conditions of optimality.

It is clear that the considered framework is particularly
amenable to a multiprocess formulation, since the overall time
interval [0, T ] can be considered as the union of a set of distinct
time intervals in which the vortex dynamics change as a result
of the discrete component of the control action. Let us consider
N ∈ N adjacent subintervals, i.e., there exists a partition {ti :
i = 0, . . . , N, s.t. t0 = 0, ti−1 < ti, i = 1, . . . , N, tN = T},

satisfying [0, T ] =

N⋃

i=1

Ii , where Ii = [ti−1, ti]. Since for

each interval we have to mention its final and initial points,
independently of the neighboring intervals, we will consider
Ii = [σi0, σ

i
1], being obvious that σ1

0 = 0, σN1 = T , and
σi1 = σi+1

0 , for i = 1, . . . , N −1. Let us now specify the state
and control variables and its components for each subinterval
by attaching an upper index i, xi = col(xi0, x

i
V , x

i
p, x

i
K , x

i
θ)

at [σi0, σ
i
1], being:

• xiV = col(xi1, x
i
2, x

i
3, x

i
4) with xiV1

= M1x
i
V and xiV2

=
M2x

i
V as explained in the previous section,

• xip = col(xi5, x
i
6) is the position of the AUV,

• xiK = col(xi7, x
i
8) where xi7 =

Ki
1

2π
and xi8 =

Ki
2

2π
, and

• xi0 = d(xiV,0),
• xiθ = xi9.

For t ∈ [σi0, σ
i
1], let

A(t, σi0, x
i
7, x

i
8) = e−δ(t−σ

i
0)




0 0 −xi8 xi8
0 0 xi7 −xi7
xi8 −xi8 0 0
−xi7 xi7 0 0


 .

It is obvious that we have ẋiK = 0 and ẋi0 = 0. Given the
trivial dynamics, one may ask the reason why these have been
chosen as state variables. The reason is simple: the choice of
their initial value affect the evolution the system, or, in the case
of xi0, if they fully depend explicitly on other variables, their
choice facilitates the application of the necessary conditions
of optimality.

In general, the decision variables of this problem
comprise, not only, the feasible initial values of the
state variable at the initial time of each interval, i.e.,
(xiV (σi0), xip(σ

i
0), xiK(σi0), xiθ(σ

i
0)) - notice that, here,



x0(σi0) = d(xiV,0(σi0)) - but also the control functions
ui which are in L∞([σi0, σ

i
1];R4) and take values in

Ωi = [−ζ, ζ]4, for some ζ > 0.
Thus, the dynamics of the system on the interval [σi0, σ

i
1]

are governed by (5). Now, we turn to the time and state
endpoint constraints. We start with the time variable. First,
note that this formulation applies to either T > 0 being
pre-defined or also a decision variable of choice. The mul-
tiprocess time constraints are given by σ̄ ∈ Λσ, where σ̄ =
col
(
(σi0, σ

i
1) : i = 1, . . . , N

)
, and Λσ := {σ̄ ∈ R2N : σ1

0 =
0, σN1 = T, σi0 = σi−1

1 , i = 2, . . . N}. Later, it will be con-
venient to use also the notation σ̄j = col(σ̄ij : i = 1, . . . , N),
for j = 0, 1. Notice that since x0(σij) = d(xV (σij)), for
i = 1, . . . , N , for j = 0, 1, we have

x̄0 = col(x0(σi0), x0(σi1)) : i = 1, . . . , N) ∈ d(ΛV ),

being the later defined next. From the definitions, we have:

x̄V =
(
(xiV (σi0), xiV (σi1)) : i = 1, . . . , N

)
∈ ΛV ,

where

ΛV :={x̄V ∈ R8N : M1x
1
V (0) = x1

V1,0, M2x
1
V (0) ∈ R2,

x1
V (σ1

1) ∈ R4, xiV (σi1) ∈ R4,

M1x
i
V (σi0) = M2x

i−1
V (σi−1

1 ),

M2x
i
V (σi0) ∈ R2, i = 2, . . . , N}.

Since the particle evolves continuously in time, we have:

x̄p =
(
(xip(σ

i
0), xip(σ

i
1)) : i = 1, . . . , N

)
∈ Λp,

where

Λp:= {x̄p ∈ R4N :x1
5(0) = x5,0, x

1
6(0) = x6,0,

x1
5(T ) = x5,T , x

1
6(T ) = x6,T , x

i−1
5 (σi−1

1 ) = xi5(σi0),

xi−1
6 (σi−1

1 ) = xi6(σi0), i = 2, . . . , N}.

The AUV have an angular component, so we have

x̄θ =
(
(xiθ(σ

i
0), xiθ(σ

i
1)) : i = 1, . . . , N

)
∈ Λθ,

where

Λθ:={x̄θ ∈ R2N : xiθ(σ
i
1) ∈ R, i = 1, . . . , N, x1

θ(0) = θ0,

xi−1
θ (σi−1

1 ) = xiθ(σ
i
0), i = 2, . . . , N}.

Finally, it remains to characterize the constraints on the
circulation. Remark that, for given numbers K2 > K1 > 0,
we have x1

7(σ1
0) = N1x

1
K,0 ∈ [−K1,K1] and x1

8(σ1
0) =

N2x
1
K,0 ∈ Ṽ 1(N1x

1
K,0) := (V̄ 1 ∪ (−V̄ 1))(N1x

1
K,0), where

V̄ 1(N1x
1
K,0) is given by

• [N1x
1
K,0,K2], if N1x

1
K,0 > 0, and

• [−K2, N1x
1
K,0], otherwise,

being x1
K,0 = x1

K(σ1
0), and N1 and N2, respectively, the

matrices [1 0] and [0 1]. Moreover, for i = 2, . . . , N , and by
denoting xiK,0 = xiK(σi0) and gi−1,i = e−δ(σ

i
0−σi−1

0 ), we have

• N1x
i
K,0 := gi−1,iN2x

i−1
K,0,

• N2x
i
K,0 ∈ (V̄ i∪(−V̄ i))(gi−1,iN2x

i−1
K,0), where, for some

1 < ᾱ < |N2x
i−1
K,0|−1g−1

i−1,iK̄, with K̄ satisfying

K̄ ≥ ᾱ max
i=2,...,N

{|gi−1,iN2x
i−1
K,0|},

V̄ i = [ᾱgi−1,iN2x
i−1
K,0, K̄] or [−K̄, ᾱgi−1,iN2x

i−1
K,0] if

N2x
i−1
K,0 is, respectively, positive or negative. Notice that

an example of such a K̄ is K̄ = K2 and, again, let
Ṽ i := (V̄ i ∪ (−V̄ i))(gi−1,iN2x

i−1
K,0).

The choice of the numbers ᾱ and K̄ relies on the trade-
off between the realism of the two vortices model and the
optimality of such a solution. Now, we may express the
constraints for the set of boundary values of the vortices
circulation by

x̄K ∈ ΛK ,

where x̄K = col
(
(xiK,0, x

i
K,1) : i = 1, . . . , N

)
(again here,

xiK,1 = xiK(σi1), and

ΛK :={x̄K ∈ R4N : xiK,1 ∈ R2, for i = 1, . . . , N,

x1
K,0 ∈ [−K1,K1]× Ṽ 1(N1x

1
K,0),

xiK,0 ∈ V̂ i, for i = 2, . . . , N},
with V̂ i = {gi−1,iN2x

i−1
K,0} × Ṽ i(gi−1,iN2x

i−1
K,0). The con-

straints to be satisfied by the circulation appear to be somewhat
intricate. However, its “raison d’łtre” ensures that, without, any
loss of generality, the “second” or “younger” vortex is always
the one with higher circulation. This condition facilitates the
formulation of the problem since simpler functions suffice to
express the constraints.

Now, we pursue with the specification of the cost func-
tional. We choose it as a weighted sum of the various items
contributing to power consumption, notably, the continuum
time steering control function, and the energy associated with
the creation of the vortices. This last term involves two
components: level of circulation and the distance at which
the new vortex is generated. Thus, we should have

J(ū, x̄(σ̄0), σ̄):=
1

2

N∑

i=1

[
α1

∫ σi1
σi0
‖ui(t)‖2dt+ α2‖N̄xiK(σi0)‖2

+ α3‖xip(σi0)−M2x
i
V (σi0)‖2

]
,

where α1, α2, and α3 are the non-negative weighting coeffi-
cients, and N̄ =

[
0 1

]
.

Then, the multiprocesses control process can be defined as
follows

(P) Minimize J(ū, x̄(σ0), σ̄)

subject to

{
differential equations (5)

ui ∈ [−ζ, ζ]4
[σi0, σ

i
1]-a.e.

for i = 1, . . . , N, and

σ̄∈Λσ, x̄0∈d(ΛV ), x̄V ∈ΛV , x̄p∈Λp, x̄K∈ΛK , x̄θ∈Λθ.
For future convenience, we express the cost functional

J(ū, x̄(σ̄0), σ̄) as the sum

f0

(
{(x(σ0), x(σ1))i}Ni=1

)
+
α1

2

N∑

i=1

∫ σi1

σi0

‖ui(t)‖2dt,



where f0

(
{(x(σ0), x(σ1))i}Ni=1

)
is given by

1

2

N∑

i=1

[
α2‖N̄xiK(σi0)‖2 + α3‖xip(σi0)−M2x

i
V (σi0)‖2

]
.

IV. MAXIMUM PRINCIPLE FOR THE MULTIPROCESSES
OPTIMAL CONTROL PROBLEM

Now, we apply the Maximum Principle of Pontryagin for
the multiprocess optimal control problem (P) described in the
previous section. Of course, these conditions are expressed
having as a reference the optimal control process which is
usually singled out by the upperscript “*”. However, in order
to mitigate the already heavy burden of the notation, we omit
it here.

By importing the notation adopted to the primal variable to
the adjoint variable p, we have pi = lin(pi0, p

i
V , p

i
p, p

i
K , p

i
θ)

and may express the Pontryagin function as follows

H(t, x̄, p̄, ū, σ̄) =
N∑

i=1

Hi(xi, pi, ui, σi0)χ[σi0,σ
i
1](t),

where χ[σi0,σ
i
1] is the indicator function [σi0, σ

i
1], and

Hi(·) = xi0(piV + pipU
i)AixiV + ulp

i
p

[
cos(xiθ)
sin(xiθ)

]

+piθ(w +
1+cos(2xiθ)

2 )− 1
2α1‖ui‖2,

with Ai = A(t, σi0, x
i
K,0). Now, we readily conclude that the

adjoint system is, for i = 1, . . . , N , given by




−ṗi0 = (piV + pipU
i)AixiV

−ṗiV = xi0(piV + pipU
i)Ai

−ṗip = 0

−ṗiK = xi0(piV + pipU
i)DxiK

(
AixiV

)

−ṗiθ = ulp
i
p

[
− sin(xiθ)
cos(xiθ)

]
− piθ sin(2xiθ)

(6)

where DyF denotes the Jacobian of the vector valued map F
w.r.t. the variable y. The transversality conditions are given by
{

(−hi0, hi1), (pi0,0,−pi0,1), (piV,0,−piV,1), (pip,0,−pip,1),

(piK,0,−piK,1), (piθ,0,−piθ,1)
}N
i=1

∈ NΛ(•) + λ∇ΠNi=1•f̄0(•).
Here,
• λ ≥ 0 ,
• • =

{
(σi0, σ

i
1), (xi0,0, x

i
0,1), (xiV,0, x

i
V,1), (xip,0, x

i
p,1),

(xiK,0, x
i
K,1), (xiθ,0, x

i
θ,1)
}N
i=1

,

• zi•,j = zi•(σ
i
j), for j = 1, 2,

• f̄0(•) = f0({xiV,0, xip,0, xiK,0}Ni=1) ,
• Λ = Λσ × d(ΛV )× ΛV × Λp × ΛK × Λθ ,

• hi0 = sup
ui∈[−ζ,ζ]4

{
Hi(•, ui)|t=σi0

}
, and

• hi1 = sup
ui∈[−ζ,ζ]4

{
Hi(•, ui)|t=σi1

}
.

Let us decode two of the above compact adjoint differen-
tial equations. First, we note that, by considering piV =

[pi1, p
i
2, p

i
3, p

i
4], pip = [pi5, p

i
6], piK = [pi7, p

i
8], and by replacing

xiV , xip, xiK , and ui by its components, and by considering

Σi = 〈(−xi3 + xi4, x
i
1 − xi2), (pi1x

i
8 − pi2xi7, pi3xi8 − pi4xi7)〉,

to simplify the notation, we conclude that

Hi(•, ui) = e−δ(t−σ
i
0)xi0

[
Σi + pi5(−xi3 + xi4)(ui1x

i
8 − ui3xi7)

+ pi6(xi1 − xi2)(ui2x
i
8 − ui4xi7)

]
+ pi9

(
w +

1 + cos(2xi9)

2

)

+ul(p
i
5 cos(xi9) + pi6 sin(xi9))− 1

2
α1‖ui‖2.

Straightforward computations lead us to:




−ṗi0 = e−δ(t−σ
i
0)
[
Σi

+pi5(−xi3 + xi4)(ui1x
i
8 − ui3xi7)

+pi6(xi1 − xi2)(ui2x
i
8 − ui4xi7)

]

−ṗiV = −[ṗ1, ṗ2, ṗ3, ṗ4]

= e−δ(t−σ
i
0)xi0[xi8p

i
3 − xi7pi4 + pi6(xi8u

i
2 − xi7ui4),

−(xi8p
i
3 − xi7pi4 + pi6(xi8u

i
2 − xi7ui4)),

−xi8pi1 + xi7p
i
2 − pi5(xi8u

i
1 − xi7ui3),

−(−xi8pi1 + xi7p
i
2 − pi5(xi8u

i
1 − xi7ui3))]

−ṗip = 0

−ṗiK = −[ṗ7, ṗ8]

= e−δ(t−σ
i
0)xi0.

[〈(xi3 − xi4, xi1 − xi2), (pi2 + pi5u
i
3,−pi4 − pi6ui4)〉,

〈(xi3 − xi4, xi1 − xi2), (−pi1 − pi5ui1, pi3 + pi6u
i
2)〉]

−ṗiθ = −pi9 sin(2xi9)

+ul(−pi5 sin(xi9) + pi6 cos(xi9))

(7)

It is clear that ṗi1 = −ṗi2 and ṗi3 = −ṗi4. In order to
express the transversality conditions in detail, we still need
to compute both the gradient of the cost functional w.r.t. to
the sate variable endpoints and the normal cone to the endpoint
constraint sets. The cost functional term, that depends on the
state variable at its end points, only involves the state variable
at the initial time. Thus, we may write:

(∇xKf0)i|σi0 = α2N̄x
i
K(σi0)N̄ = [0, α2x

i
8(σi0)] (8)

(∇xpf0)i|σi0 = α3(xip(σ
i
0)−M2x

i
V (σi0))T

= α3[xi5(σi0)− xi2(σi0), xi6(σi0)− xi4(σi0)] (9)
(∇xV f0)i|σi0 = −α3(xip(σ

i
0)−M2x

i
V (σi0))TM2

= −α3[0, xi5(σi0)− xi2(σi0), 0, xi6(σi0)− xi4(σi0)](10)

Obviously, (∇xf0)i|σi1 = 0, ∀i . The limiting normal cones to
the sets Λx0 , Λσ , ΛV , Λp, Λθ and ΛK are – NL

C (c) denotes
the limiting normal cone of the set C at the point c ∈ C –
(i = 2, · · · , N , j = 1, · · · , N ):

NL
Λσ (•)= {p̂σ∈ R2N :p̂1

σ,0 ∈ R, p̂i−1
σ,1 = −p̂iσ,0, p̂Nσ,1 ∈ R},

NL
ΛV (•)={p̂V ∈ R8N :M1p̂

1
V,0 ∈ R2, p̂iV,1 ∈ R4, M2p̂

i
V,0 ∈ R2

M1p̂
i
V,0 = −M2p̂

i−1
V,1 },

NL
Λp(•)= {p̂p∈ R4N :p̂1

p,0∈ R2, p̂ip,0 = −p̂i−1
p,1 , p̂

N
p,1 ∈ R2},

NL
Λθ

(•)= {p̂θ∈ R2N :p̂1
θ,1 ∈ R, p̂i−1

θ,1 = −p̂iθ,0, p̂1
θ,0 ∈ R}.



Since x̄0 = d(x̄V ), the normal cone to Λx0
can be easily

related to NL
ΛV

via the gradient of the function d. Since
∇d(x̄V ) = 2x2

0[x1−x2, x2−x1, x3−x4, x4−x3, 0, 0, 0, 0],
it is not difficult to conclude that

NL
x0

= {p̂0 : 2p̂0x
2
0[x1 − x2, x2 − x1, x3 − x4, x4 − x3,

0, 0, 0, 0] ∈ NL
ΛV }.

Due to the specific interdependence of the various time subin-
tervals in the definition of ΛK , the computation of NL

ΛK (•)
requires some more attention. Let us apply the definition of
normal cone applied to the reference point x̂K,0 = col(x̂iK,0 :
i = 1, . . . , N) in ΛK . Without any loss of generality, let us
consider N ≥ 3. Then, p̂K,0 = col(p̂iK,0 : i = 1, . . . , N) ∈
NL

ΛK (x̂K,0), if ∀xK,0 ∈ ΛK :

0 ≥ 〈p̂K,0, xK,0 − x̂K,0〉
= 〈N1p̂

1
K,0, N1(x1

K,0− x̂1
K,0)〉+〈N2p̂

1
K,0, N2(x1

K,0− x̂1
K,0)〉

+
N∑

i=2

[
〈N1p̂

i
K,0, N1(xiK,0− x̂iK,0)〉

+〈N2p̂
N
K,0, N2(xNK,0− x̂NK,0)〉

]
.

By recalling the definition of the constraint set ΛK and by
regrouping the terms, we readily obtain, ∀xK ∈ ΛK , the
inequality

0 ≥ 〈N1p̂
1
K,0, N1(x1

K,0 − x̂1
K,0)〉

+
N−1∑

i=1

〈N2p̂
i
K,0 + gi,i+1N1p̂

i+1
K,0, N2(xiK,0 − x̂iK,0)〉

+〈N2p̂
N
K,0, N2(xNK,0 − x̂NK,0)〉.

By considering all the feasible variations of both components
of xK,0, we obtain NL

K(x̂K,0) as the set (i = 2, · · · , N ):
{

(p̂iK,0, 0)∈ R4: p̂1
K,0+ [0, g1,2N1p̂

2
K,0]∈ NL

Ṽ 1(N1x̂1
K,0)

(x̂1
K,0),

N2p̂
i
K,0 + gi,i+1N1p̂

i+1
K,0∈ NL

V̄ i(gi−1,iN2x̂
i−1
K,0)

(x̂iK,0),

N2p̂
N
K,0∈ NL

V̄ N (gN−1,NN2x̂
N−1
K,0 )

(x̂NK,0)
}
.

Now, let us compute the optimal candidate control strategy
which has to maximizing the Pontryagin function along the
optimal trajectory and associated adjoint variable. Due to the
quadratic structure of the Hamiltonian and the fact that the
control constraints are decoupled, we readily conclude that,
L-a.e. in [σi0, σ

i
1],

ûi1(t) = Satζ

(
xi0x

i
8(t)pi5
α1

e−δ(t−σ
i
0)(−xi3(t) + xi4(t))

)
,

ûi2(t) = Satζ

(
xi0x

i
8(t)pi6
α1

e−δ(t−σ
i
0)(xi1(t)− xi2(t))

)
,

ûi3(t) = Satζ

(
−x

i
0x
i
7(t)pi5
α1

e−δ(t−σ
i
0)(−xi3(t) + xi4(t))

)
,

ûi4(t) = Satζ

(
−x

i
0x
i
7(t)pi6
α1

e−δ(t−σ
i
0)(xi1(t)− xi2(t))

)
.

Here, Sata(z) is the saturation function which is defined
by taking the values −a, z, and a, if, respectively, z < −a,
−a ≤ z ≤ a, and z > a, and the functions xi8 and xi7
are evaluated along the optimal control process. The optimal
control multiprocess satisfying the Maximum Principle have
81 possibilities to occur. These results will be presented and
discussed in a forthcoming paper.

V. CONCLUSIONS

To the best of our knowledge, this the first time that a
Maximum Principle is derived for a control problem whose
dynamics are defined by controlled vortices, and, moreover,
that a multiprocesses framework is considered. Under some
reasonable simplifying assumptions, our problem formulation
considers a system - environment and AUV - that optimizes
the impact of vortices in the AUV motion.

REFERENCES

[1] Maciel, B., Lobo Pereira, F. and Sousa, J.B., Sensor Systems on Net-
worked Vehicles, Networks and Heterogeneous Media, Vol 4, no 2, 2009,
pp. 223247.

[2] McGuillivary, P., Rajan, K., de Sousa, J. Borges and Leroy, F., Integrating
autonomous underwater vessels, surface vessels and aircraft as persistent
surveillance components of ocean observing studies, in IEEE/OES Au-
tonomous Underwater Vehicles (AUV), 2012.

[3] New underwater robot swims and senses like a fish, FP7 project no.
35903, 2013, http://cordis.europa.eu/news/rcn/35903-en.html

[4] Melli, J. A hierarchy of models for the control of fish-like locomotion,
PhD Thesis, Dep. of Mech. & Aero.Eng., Princeton Univ., Sept 2008.

[5] Fossen, T.I., Guidance and Control of Ocean Vehicles, John Wiley &
Sons, 1998.

[6] Ghabcheloo, R., Aguiar, A.P., Pascoal, A., Silvestre, C., Kaminer, I., Hes-
panha J., “Coordinated path-following in the presence of communication
losses and time delays”, SIAM journal on control and optimization, 2009,
Vol. 48, pp. 234–265.

[7] Batchelor, G.K., An introduction to fluid dynamics, 1992, Cambridge
University Press.

[8] Protas, B., “Vortex dynamics models in flow control problems”, Nonlin-
earity, 2008, Vol. 21, IOP Publishing, pp. 203–236.

[9] Newton, P.K., The N-Vortex Problem: Analytical Techniques, 2001, Vol.
145, Springer Verlag.

[10] Clarke, F. H., and Vinter, R.B., “Optimal multiprocesses”, SIAM J. on
Control and Optimization, 1989, Vol 27, pp. 1072–1091.

[11] Clarke, F. H. and Vinter, R.B., “Applications of optimal multiprocesses”,
SIAM J. on Control and Optimization, 1989, Vol 27, pp. 1048–1071.

[12] Hou, T., Stredie, V. and Wu, T., “Mathematical modeling and simulation
of aquatic and aerial animal locomotion”, J. of Computational Physics,
2007, Vol 225, pp. 1603–1631.

[13] Triantafyllou, M., Techt, A., Zhu, Q., Beal, D., Hover, F. and Yue, D.,
“Vorticity Control in Fish-like Propulsion and Maneuvering”, Integrative
and Comparative Biology, 2002, Vol 42, pp. 1026-1031.

[14] Pereira, F. L., Grilo, T., and Gama, S., “Optimal Multip-rocess Control
of a Two Vortex Driven Particle in the Plane”, IFAC 2017 - 20th
World Congress International Federation of Automatic Control, Toulouse,
France, 9-14 July 2017

[15] Pontryagin, L., Boltyanskii, V., Mischenko, M., and Gamkrelidze, R.,
The Mathematical Theory of Optimal Processes, Gordon & Breach, NY,
1962.



76 CHAPTER 7. A MULTIPROCESS FRAMEWORK FOR THE OPTIMAL...

Sequel of the above article. In the sequel of the above article, we integrated the differential
conditions provided by the Maximum Principle and, by using the same notation of IFAC’s paper,
Pereira et al. (2017a), we continued the investigation of its optimal multiprocesses problem. We
give the expressions for the state and adjoint variables in the integral form and the transversality
conditions on each time intervals.

In Pereira et al. (2017a) there are some typos whose corrections are:

• Page 5, first column: piV = [pi1, p
i
2, p

i
3, p

i
4], pip = [pi5, p

i
6], piK = [pi7, p

i
8];

• page 5, second column: (∇xf0)i|σi1 = 0, ∀i;

• page 5, second column: NL
ΛV

(x̄V ) = {p̂V ∈ R8N : p̂1
V,0M

T
1 ∈ R2, p̂iV,1 ∈ R4,

p̂iV,0M
T
2 ∈ R2, i = 1, . . . , N, p̂iV,0M

T
1 = −p̂i−1

V,1M
T
2 ,

i = 2, . . . , N}.

In this multiprocess problem we have several variables that are constants in time, in
each of the subintervals Ii =

[
σi0, σ

i
1

]
. They are, xi0, xiK , pip, (p1 + p2)i and (p3 + p4)i. So, for

t ∈ [σi0, σ
i
1] we have





xi0(t) = x̄i0
xiK(t) = x̄iK
pip(t) = p̄iP
(p1 + p2)i(t) = p̄i1,2

(p3 + p4)i(t) = p̄i3,4

⇔





xi0(t) = 1
(xi1,0−xi2,0)2+(xi3,0−xi4,0)2

xiK(t) = [x̄i7, x̄
i
8]

pip(t) = [p̄i5, p̄
i
6]

pi2(t) = p̄i1,2 − pi1(t)

pi4(t) = p̄i3,4 − pi3(t)

. (7.1)

Remark: Here, we denote the constants, that represent the values taken by the variables
on that time interval, with a bar on top of the variables.

For the adjoint variables pi1 and pi3 taking the respective dynamic equations and applying
7.1 we have

{
−ṗi1 = ei(t)x̄i0

(
x̄i8p

i
3 − x̄i7pi4 + p̄i6(ui1x̄

i
8 − ui2x̄i7)

)

−ṗi3 = ei(t)x̄i0
(
−x̄i8pi1 + x̄i7p

i
2 − p̄i5(ui1x̄

i
8 − ui2x̄i7)

) ⇔

{
−ṗi1 = ei(t)x̄i0

(
(x̄i8 + x̄i7)pi3 − x̄i7p̄i3,4 + p̄i6(ui1x̄

i
8 − ui2x̄i7)

)

−ṗi3 = ei(t)x̄i0
(
−(x̄i8 + x̄i7)pi1 + x̄i7p̄

i
1,2 − p̄i5(ui1x̄

i
8 − ui2x̄i7)

) ⇔

[
ṗi1
ṗi3

]
= ei(t)x̄i0

([
0 −(x̄i8 + x̄i7)
x̄i8 + x̄i7 0

] [
pi1
pi3

]
+ x̄i7

[
p̄i3,4
p̄i1,2

]
+ (x̄i8u

i
1 − x̄i7ui2)

[
−p̄i6
p̄i5

])
.

This is a first order linear differential equation, so, by the integral factor method, we get the
next solution

[
pi1
pi3

]
= (Ci(ω(t)))T

ˆ t

0
ei(τ)x̄i0C

i(ω(τ))(x̄i8u
i
1(τ)− x̄i7ui2(τ))

[
−p̄i6
p̄i5

]
dτ

+
x̄i7

x̄i7+x̄i8

(
I − (Ci(ω(t)))T

) [ −p̄i1,2
p̄i3,4

]
+ (Ci(ω(t)))T

[
pi1,0
pi3,0

]
,

(7.2)
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with ω(t) = 1
δ e
i(t)(−1 + eδt)(x̄i8 + x̄i7)x̄i0, and Ci(ω(τ)) =

[
cos(ω(t)) sin(ω(t))
− sin(ω(t)) cos(ω(t))

]
.

By (7.1) and (7.2) we obtain

[
pi2
pi4

]
=

[
p̄i1,2
p̄i3,4

]
− (Ci(ω(t)))T

ˆ t

0
ei(τ)x̄i0C

i(ω(τ))(x̄i8u
i
1(τ)− x̄i7ui2(τ))

[
−p̄i6
p̄i5

]
dτ

− x̄i7
x̄i7+x̄i8

(
I − (Ci(ω(t)))T

) [ −p̄i1,2
p̄i3,4

]
− (Ci(ω(t)))T

[
pi1,0
pi3,0

]
.

Now, we will study the evolution of the dynamics for the vortices, so the equations can
be written in detail by the following way





ẋi1 = −x̄i0e−δ(t−σ
i
0)x̄i8(xi3 − xi4)

ẋi2 = x̄i0e
−δ(t−σi0)x̄i7(xi3 − xi4)

ẋi3 = x̄i0e
−δ(t−σi0)x̄i8(xi1 − xi2)

ẋi4 = −x̄i0e−δ(t−σ
i
0)x̄i7(xi1 − xi2)

⇔
{
x̄i7ẋ

i
1 + x̄i8ẋ

i
2 = 0

x̄i7ẋ
i
3 + x̄8ẋ

i
4 = 0

, (7.3)

since x̄i7 and x̄i8 are constants for t ∈ [σi0, σ
i
1], then

{
d
dt(x̄

i
7x
i
1 + x̄i8x

i
2) = 0

d
dt(x̄

i
7x
i
3 + x̄i8x

i
4) = 0

⇔
{
x̄i8x

i
2 = x̄i1,2 − x̄i7xi1

x̄i8x
i
4 = x̄i3,4 − x̄i7xi3

, (7.4)

with x̄i1,2 , x̄i3,4 ∈ R. Thus, substituting (7.4) in (7.3) and using the fact that it is a first order
linear differential equation, we obtain

{
ẋi1 = −e−δ(t−σi0)x̄i0x̄

i
8

(
xi3 − xi4

)

ẋi3 = e−δ(t−σ
i
0)x̄i0x̄

i
8

(
xi1 − xi2

) ⇔

{
ẋi1 = e−δ(t−σ

i
0)x̄i0

(
−(x̄i7 + x̄i8)xi3 + x̄i3,4

)

ẋi3 = e−δ(t−σ
i
0)x̄i0

(
(x̄i7 + x̄i8)xi1 − x̄i1,2

) ⇔

[
ẋi1
ẋi3

]
= e−δ(t−σ

i
0)x̄i0

([
0 −(x̄i7 + x̄i8)
x̄i7 + x̄i8 0

] [
xi1
xi3

]
+

[
x̄i3,4
−x̄i1,2

])
⇔

[
xi1
xi3

]
= 1

x̄i7+x̄i8

(
I − (Ci(ω(t)))T

) [ x̄i1,2
x̄i3,4

]
+ (Ci(ω(t)))T

[
xi1,0
xi3,0

]
.

(7.5)

Using this result in (7.4) we have

[
xi2
xi4

]
=

1

x̄i8

([
x̄i1,2
x̄i3,4

]
− x̄i7(Ci(ω(t)))T

[
xi1,0
xi3,0

])
− x̄i7
xi8(x̄i7 + x̄i8)

(
I − (Ci(ω(t)))T

) [ x̄i1,2
x̄i3,4

]
.
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We can see that in a considerable number of equations there appears the terms xi1 − xi2
and xi3 − xi4, so we will present these calculations below





xi1 − xi2 = xi1 − 1
x̄i8
x̄i1,2 +

x̄i7
x̄i8
xi1

xi3 − xi4 = xi3 − 1
x̄i8
x̄i3,4 +

x̄i7
x̄i8
xi3

⇔





xi1 − xi2 = 1
x̄i8

((x̄i7 + x̄i8)xi1 − x̄i1,2)

xi3 − xi4 = 1
x̄i8

((x̄i7 + x̄i8)xi3 − x̄i3,4)
⇔

[
xi1 − xi2
xi3 − xi4

]
= 1

x̄i8
(Ci(ω(t)))T

(
−
[
x̄i1,2
x̄i3,4

]
+ (x̄i7 + x̄i8)

[
xi1,0
xi3,0

])
.

(7.6)

By the dynamics of the fish, we can get the trajectory for it given by

[
ẋi5
ẋi6

]
= ei(t)x̄i0

[
−(xi3 − xi4)(x̄i8u

i
1 − x̄i7ui2)

(xi1 − xi2)(x̄i8u
i
1 − x̄i7ui2))

]
⇔

[
xi5
xi6

]
=

[
xi5,0
xi6,0

]
+

ˆ t

0
ei(τ)x̄i0

[
−(xi3 − xi4)(x̄i8u

i
1(τ)− x̄i7ui2(τ))

(xi1 − xi2)(x̄i8u
i
1(τ)− x̄i7ui2(τ))

]
dτ ⇔

[
xi5
xi6

]
=

[
xi5,0
xi6,0

]
+

ˆ t

0
ei(τ)x̄i0(x̄i8u

i
1(τ)− x̄i7ui2(τ))

[
0 −1
1 0

]
(xiV1(τ)− xiV2(τ))dτ .

Therefore, the Pontryagin’s function, for t ∈ [σi0, σ
i
1], is

H i(t, xi, pi, ui, σi0) = ei(t)x̄i0
(
−(xi3(t)− xi4(t))(x̄i8p

i
1(t)− x̄i7pi2(t) + p̄i5(x̄i8u

i
1(t)− x̄i7ui2(t))

+(xi1(t)− xi2(t))(x̄i8p
i
3(t)− x̄i7pi4(t) + p̄i6(x̄i8u

i
1(t)− x̄i7ui2(t)))

)

−1
2α1((ui1)2 + (ui2)2).

(7.7)

The transversality conditions are, in an explicit way, for each one of the time intervals,
Ii = [σi0, σ

i
1],

For i = 1:



−p̂1
σ(0) = p̄1

σ,0

p̂1
0(0) = p̄1

0,0

p̂1
1(0) = p̄1

1,0

p̂1
2(0) = p̄1

2,0 − α3(x1
5(0)− x1

2(0))

p̂1
3(0) = p̄1

3,0

p̂1
4(0) = p̄1

4,0 − α3(x1
6(0)− x1

4(0))

p̂1
5(0) = p̄1

5,0 + α3(x1
5(0)− x1

2(0))

p̂1
6(0) = p̄1

6,0 + α3(x1
6(0)− x1

4(0))

p̂1
7(0) = p̄1

7,0

p̂1
8(0) = p̄1

8,0

and





p̂1
σ(σ1

1) = −p̂2
σ(σ2

0)

−p̂1
0(σ1

1) = p̂2
0(σ2

0)

−p̂1
1(σ1

1) = p̄1
1,1

−p̂1
2(σ1

1) = p̂2
1(σ2

0)

−p̂1
3(σ1

1) = p̄1
3,1

−p̂1
4(σ1

1) = p̂2
3(σ2

0)

−p̂1
5(σ1

1) = p̂2
5(σ2

0)

−p̂1
6(σ1

1) = p̂2
6(σ2

0)

−p̂1
7(σ1

1) = 0

−p̂1
8(σ1

1) = 0

.
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For i = 2, · · · , N − 1:




−p̂iσ(σi0) = p̂i−1
σ (σi−1

1 )

p̂i0(σi0) = −p̂i−1
0 (σi−1

1 )

p̂i1(σi0) = −p̂i−1
2 (σi−1

1 )

p̂i2(σi0) = p̄i2,0 − α3(xi5(σi0)− xi2(σi0))

p̂i3(σi0) = −p̂i−1
4 (σi−1

1 )

p̂i4(σi0) = p̄i4,0 − α3(xi6(σi0)− xi4(σi0))

p̂i5(σi0) = −p̂i−1
5 (σi−1

1 ) + α3(xi5(σi0)− xi2(σi0))

p̂i6(σi0) = −p̂i−1
6 (σi−1

0 ) + α3(xi6(σi0)− xi4(σi0))

p̂i7(σi0) = p̄i7,0

p̂i8(σi0) = p̄i8,0

and





p̂iσ(σi1) = −p̂i+1
σ (σi+1

0 )

−p̂i0(σi1) = p̂i+1
0 (σi+1

0 )

−p̂i1(σi1) = p̄i1,1

−p̂i2(σi1) = p̂i+1
1 (σi+1

0 )

−p̂i3(σi1) = p̄i3,1

−p̂i4(σi1) = p̂i+1
3 (σi+1

0 )

−p̂i5(σi1) = p̂i+1
5 (σi+1

0 )

−p̂i6(σi1) = p̂i+1
6 (σi+1

0 )

−p̂i7(σi1) = 0

−p̂i8(σi1) = 0

.

For i = N :



−p̂Nσ σN0 ) = p̂N−1
σ (σN−1

1 )

p̂N0 (σN0 ) = −p̂N−1
0 (σN−1

1 )

p̂N1 (σN0 ) = −p̂N−1
2 (σN−1

1 )

p̂N2 (σN0 ) = p̄N2,0 − α3(xN5 (σN0 )− xN2 (σN0 ))

p̂N3 (σN0 ) = −p̂N−1
4 (σN−1

1 )

p̂N4 (σN0 ) = p̄N4,0 − α3(xN6 (σN0 )− xN4 (σN0 ))

p̂N5 (σN0 ) = −p̂N−1
5 (σN−1

1 ) + α3(xN5 (σN0 )− xN2 (σN0 ))

p̂N6 (σN0 ) = −p̂N−1
6 (σN−1

0 ) + α3(xN6 (σN0 )− xN4 (σN0 ))

p̂N7 (σN0 ) = p̄N7,0

p̂N8 (σN0 ) = p̄N8,0

and





p̂Nσ (T ) = p̄Nσ,1

−p̂N0 (T ) = p̄N0,1

−p̂N1 (T ) = p̄N1,1

−p̂N2 (T ) = p̄N2,1

−p̂N3 (T ) = p̄N3,1

−p̂N4 (T ) = p̄N4,1

−p̂N5 (T ) = p̄N5,1

−p̂N6 (T ) = p̄N6,1

−p̂N7 (T ) = 0

−p̂N8 (T ) = 0

.
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Chapter 8

Conclusions and Future Work

The bulk of this Ph.D. thesis is consecrated to the derivation of necessary conditions of
optimality in a form of a Maximum Principle of Pontryagin to solve the optimal control problems
presented in chapters 5, 6, and 7.

In chapter 5, the minimum time control problems were solved for the motion of a
passive particle, between two given points, advected by a Couette or Poiseuille flow. Using the
Maximum Principle of Pontryagin we found the solutions. These simple problems constituted
a first approach to the more ambitious optimal control problem, namely a particle driven by a
flow/solution governed directly by the Euler or Navier-Stokes equation. Here, we have simply
considered known solutions of these equations.

The minimal energy problem to move a particle from one initial point to a final
destination, driven by a flow generated by one vortex, was solved in chapter 6, as well as
the corresponding necessary conditions of optimality in a form of a Maximum Principle of
Pontryagin. With this problem, we have started the study of optimal control problems to move
particles in a fluid. This was the first effort to gain some insight and the main idea to the
optimal multiprocesses problem presented in chapter 7.

An open question, the most important in this thesis, is to obtain solutions for the
optimal multiprocesses problems presented in chapter 7, where the ideas and formulations are
explained in Pereira et al. (2017a), Pereira et al. (2017b) and Grilo et al. (2018). In the future,
some approaches to solve them may consist in the relaxation of the conditions imposed to this
problems, to gain "sensibility" to extrapolate the results to more general and robust cases.

From our point of view, among all these approaches, it can be considered that, at first,
the two vortices have constant circulations, in each of the time intervals [σi0, σ

i
1], which makes

that the Pontryagin function, H i(t, xi, pi, ui) , be constant, for i = 1, · · · , N . We can try to solve
this problem for N = 2 and N = 3, and then extend (if possible) to arbitrary values for N , in
order to derive the optimality conditions in the form of a Maximum Principle of Pontryagin.
In a second step, and with the insight of the previous case, we consider the original problem
(with decaying circulations), and solve it for N = 2 and N = 3, and then to try to derive
the optimality conditions N , in the form of the Maximum Principle. Of course, the numerical
methods are always available to obtain the numerical approximation of the solution for these
problems.
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