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Abstract

Networks can be found in various domains such as biology, sociology and economics [5]. When
analyzing a particular network, it is important to count some of its sub sections, this primitive is
called subgraph count and its relevance has been growing lately due to its ability to characterize
and describe a network. Motif finding [20] and computing graphlet degree distributions [24] are
only a few applications of this primitive.

Counting subgraphs is a particularly difficult task since it is related to the subgraph
isomorphism problem which is known to be in the NP-Complete complexity class [31]. The
inherent difficulty of this task makes it hard to scale the problem to both large networks and
high order subgraph sizes.

Two approaches used to smooth these types of problems are to sample the problem, trading
a lower result accuracy for faster execution times, and take advantage of parallelism, lowering
the elapsed time as more processing units are included.

In this work, we will apply both those ideas at the same time and propose an adaptive strategy
which is able to mold itself to the given network along with the subgraphs to be count. Since we
can’t know the time that a particular task will take beforehand, we start with conservative, small
sampled tasks and tune its characteristics to increase its duration in a controlled environment
until an ideal task, that runs in the desired time frame, is crafted. We name that ideal time
interval the sweet spot and both defining and reaching it in a rapid fashion are core goals of
this work.

The results attained by using these ideas are very promising as we found very accurate counts
with limited time frames to be computed.
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Resumo

Redes podem ser encontradas em variados domínios tais como biologia, sociologia e economia [5].
Ao analisarmos uma rede em particular, pode ser importante contar algumas das suas sub
secções, esta primitiva é denominada contagem de subgrafos e a sua relevância tem vindo a
crescer recentemente devido à sua habilidade de caracterizar e descrever a rede em questão.
Contagem de Motifs [20] bem cálculo de distribuições de graphlet degree [24] são apenas algumas
das aplicações que usam como base esta primitiva.

A contagem de subgrafos é uma tarefa particularmente difícil que está relacionada com o
problema do isomorfismo de subgrafos que está na classe de complexidade NP-Completa [31]. A
dificuldade inerente desta tarefa faz com que seja complicado escalar o problema para redes de
dimensões superiores, bem como subgrafos de tamanhos maiores.

Existem duas estratégias utilizadas para atacar estes tipos de problemas: trocar uma menor
precisão de resultados por tempos de execução e tirar partido de paralelismo.

Neste trabalho, vamos tentar aplicar ambas estas ideias em simultâneo e propusemos uma
estratégia adaptativa que se consegue moldar quer à rede, quer ao conjunto de subgrafos a serem
contados. Visto que não é possível saber o tempo que uma determinada tarefa vai demorar,
começamos com tarefas pequenas e conservativas e vamos afinando as suas características com
o objetivo de aumentar o seu tempo de execução num ambiente controlado, até chegarmos ao
intervalo de tempo desejado. Esse intervalo é denominado sweet spot e temos como objetivo
fulcral deste trabalho defini-lo e atingi-lo rapidamente.

Os resultados obtidos ao usar as estas ideias foram bastante promissores visto que conseguimos
contagens muito precisas com tempos de execução limitados.
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Chapter 1

Introduction

Complex networks have become more popular over the years due to their inherent ability to solve
multidisciplinary problems once they are modeled accordingly. Applications of network science
methods can be found in fields such as mathematics, physics, biology or sociology [5]. With the
surge of the internet, the volume of data available on different fields is increasing exponentially
making the efficient study of these complex systems the more important. The social problem
of finding the minimum distance connecting two different persons [2] and route planning in
road/transport networks [5] are only a few examples of real world applications taken from the
study of network science.

Since the applications of this area are rapidly expanding to every scientific field, different
and more complex methods of analyzing the respective networks are required depending on the
desired goals. Computing the average vertex degree, finding sets of closely connected components
to define them as communities [4] or discovering patterns in networks that are over represented
when comparing to an arbitrary network with similar characteristics (motifs [20]), are only a few
ways to synthesize and extract valuable information from a given network. Counting a particular
set of subgraphs in a large network can thus be seen as a primitive task used by more advanced
metrics in order to extract valuable information.

Even though the previous mentioned task of counting subgraphs can be seen as a primitive
task, its computational complexity is not "primitive" at all. This count is bounded by the subgraph
isomorphism problem, that is the problem of, given two graphs G and H, finding whether G

contains a subgraph isomorphic to H, is known to be in the NP-Complete class [15]. This
restriction makes it so that counting high order subgraphs or counting them in a large network
cost too much computational time with small increases to those dimensions. To showcase how
fast this problem can scale, consider the Brightkite network presented at 4.1, counting all
subgraph types with 3 nodes took only a second to be computed and 12 million occurrences were
found. If we change the subgraph size to 4, the task takes 100 seconds to complete and near 200
million subgraphs are found. Note that this experience was completed using the G-Trie exact
count method [27], which is an efficient state of the art data structure which we describe in more
detail in Section 2.2.4.
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2 Chapter 1. Introduction

Figure 1.1: The Dolphins Network along with its 3 5-clique subgraphs.

With this exponential increase of complexity when increasing the size of the subgraphs wanted
and/or the size of the queried network, different strategies have been used in order to reach those
dimensions. Using parallelism is a way of taking full advantage of the available computational
resources and parallel strategies are able to, in most cases, reach almost linear speedups meaning
that we can divide the total time that a task would take to complete by the work units at our
disposal. Another way in which this goals can be reached is by using sampling instead of having
the exact count. It is possible to only search for a fraction of the subgraphs and if we were to
extrapolate those results, we would get an approximate count rather than the exact one. This
option is only viable if we can tolerate some error but it is really useful to get a general idea of
the network’s properties in a much smaller amount of time.

The main purpose of this work is to tackle the mentioned problems and to be able to search
for higher end subgraphs in larger networks. We chose to adapt a state of the art data structure
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and algorithm called G-Tries [27] so that we would use both parallelism and sampling to lower
computational times and make it possible to run more difficult tasks. Another problem we tried
to tackle is the difficulty of knowing beforehand how much time a certain task in a given network
would take since a seemingly lower order subgraph count in a network can be run in seconds and
can take hours or days if the network were to change. In order to respond to that we present an
adaptive scheme that changes and adapts its strategy to accommodate to the given network and
subgraphs as good as possible with no previous information.

In this work, the count of subgraphs of a given size is done in an adaptive fashion, that means
that we want to start with small and controlled tasks and successively tweak some parameters
in order to adapt those so that we can create jobs that run in a desired time frame. We use
a Master-Slave parallel scheme so that the Slaves can focus on doing pure computation while
the Master makes sure to process each result as it arrives, crafting the next tasks using every
previous result and in the end it will deliver its best guess to the subgraph counting problem.
The user of our work is able to select a time limit in which he wants the results to be delivered
and it is the Master’s job to make good use of that time frame. The notion of a sweet spot is
present in this work and it is related to a time interval in which our ideal task should run. If
we have 1 minute to run our method and set the sweet spot to 1 second, the desired goal is to
start by finding a single job that takes 1 second to run, and then run it as close to 60 times as
possible. A revamped G-Trie data structure 3.2.2 is used so that multiple slaves can work on it
at the same time with possibly different tasks.

1.1 Thesis organization

This work is divided into 5 chapters.

Chapter 1 starts of by introducing subgraph counting and gives a high level overview of its
limitations along with some ways in which we propose to tackle those problems.

Chapter 2 introduces terminology and related problems while describing some existing
approaches for subgraph counting. These approaches are divided into three categories: classical,
parallel and sampling. In this chapter, we also dive into ways of representing a network when
the adjacency matrix is not small enough to fit into memory.

Chapter 3 showcases our solution to the problems presented earlier while diving into its
methodologies and difficulties. We also try to justify some of the choices made along the way
and present details on the different components that are part of our final project.

Chapter 4 is reserved for experimental results. Here we try to show results that can back up
our previous choices in the different degrees of freedom associated with this work.

Chapter 5 rounds up this thesis by summing up the work done and highlighting our
contributions and then future work is reflected upon.





Chapter 2

Background and Related Work

2.1 Concepts and Terminology

• A graph G is a set of vertices V (G) along with their connections E(G). The size of a graph
is usually determined by its number of vertices | V (G) |. An edge (u, v) ∈ E(G) if there is
a connection from u to v.

• In a directed network, the order of the vertex on an edge is relevant since (u, v) ∈ E(G) 6=⇒
(v, u) ∈ E(G). In non directed graphs however, this is not true since all of the edges in this
type of network are bidirectional.

• A graph is typically represented by a adjacency matrix Adj which is a | V (G) | × | V (G) |
boolean matrix. Adj[u][v] = 1 if (u, v) ∈ E(g).

• A graph H is said to be a subgraph of G if E(H) ∈ E(G) and V (H) ∈ V (G). That
subgraph is said to be induced if ∀u,v ∈ V (H), (u, v) ∈ E(H) ⇐⇒ (u, v) ∈ E(G). A
occurrence of H in G happens if there is a set of vertex that induce H. We define multiple
occurrences as different set of vertex that induce a particular subgraph H.

• A vertex u neighborhood N(u) is the set of vertex v so that (u, v) ∈ E(G). A vertex
u exclusive neighborhood respective to a vertex set S is composed by v so that v ∈
Vexc(u, S)⇐⇒ v ∈ N(u), v /∈ N(w)∀w ∈ S.

• A k-sized graph/subgraph is a network with size (| V (G) |) k. A k-clique is a graph of size
k in which every vertex is connected to every other ∀u,v(u, v) ∈ E(G).

• The degree of a vertex v is the number of different vertex u to which it is connected. In
a directed network we can differentiate between indegree and outdegree depending if we
are considering u, (u, v) ∈ E(G) or u, (v, u) ∈ E(G). In non directed networks, there is no
need to distinguish these measurements since they are always the same.

• In the remaining sections, we will be considering simple graphs, that is unweighted graphs
with no self loops (u, u) /∈ E(G) and no multi edges, meaning that there is only, at most,
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6 Chapter 2. Background and Related Work

one edge connecting two vertex. We also assume a label of the vertex so that a size-k graph
will have nodes labeled 1..k.

• A permutation is a unique ordered way in which we can arrange a set of elements. Two
permutations are distinct if at least one of the elements is in a different position in the set.
For a set of k elements, there are k! unique permutations.

• We define two graphs G1 and G2 as isomorphic if they have the same size and there is a
permutation p of G2, Gp

2 so that ∀u,v, (u, v) ∈ E(G1) =⇒ (u, v) ∈ E(Gp
2)

• An automorphism is a particular type of isomorphism that maps vertices from G so that
the resulting graph is isomorphic to G.

2.1.1 Subgraph Count

Given a network G and a size k, the subgraph counting problem lies on counting all occurrences
of each different size k subgraph on the original network. A occurrence of a particular subgraph
is defined as a distinct induced group of vertex.

2.1.2 Network Motifs

Even though this work is not intended to be focused solely on motif discovery, this task is still
one of the main problems we are trying to tackle.

Motifs were introduced by Milo et al. [20] as patterns whose frequency is much higher than
the one found in similar random networks. This task is not to be confused with Frequent Graph
mining since a subgraph with high frequency in the original network is not necessarily a motif.

Most of the approaches to the motif discovery problem can be divided in four main tasks:

• Finding and counting all of the k-sized subgraphs occurrences in the original network

• Generate a set of similar random networks.

• Count the frequency of each of the original subgraphs in the random networks

• Compute the significance for each subgraph type

When considering a network G, we define a similar random network as a graph with the
same size as k with the same number of edges in which the node degrees are preserved. The
significance that is calculated at the end of the motif find procedure is usually the Z-score
which is a measure that takes into consideration the number of standard deviations from a score
to the mean of all the results.
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Figure 2.1: Motif example in a directed network. Picture taken from [25]

In picture 2.1 we can see an example of a motif in a subgraph along with the respective
similar random networks. The Feed Forward Loop presented only has one or zero occurrences on
the generated networks while it can be found multiple times in the original network. We can see
that the random networks preserve both indegree and outdegree for every vertex.

2.2 Subgraph Count Algorithms

We can classify the algorithms for subgraph counting in two major groups. The network-centric
approach that fully extracts the count of all subgraphs with the desired size and then matches
each of those with the matching isomorphic type. Subgraph-centric options start with a specific
isomorphism class and count its occurrences on the network. A set-centric approach can also be
considered as an intermediate approach between the two major ones if we are neither searching
all of the subgraphs, neither only one of them but rather a specific set. One can, for instance,
only be interested in 4-cliques and "squares" while doing a subgraph count of size 4 on a certain
Network.

We will now showcase the classic subgraph count algorithms in a chronological order and
focus on strategies which are pillars to this work. Afterwards sampling and parallel options will
be analyzed.
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Algorithm Year Strategy Sample
MFinder 2002 Network No
ESA 2004 Network Yes
ESU 2005 Network Yes
Grochow 2007 Subgraph No
G-Trie 2010 Set Yes

Table 2.1: Description of subgraph count algorithms along with its release date, the type of
strategy used and the possibility of a sample option

2.2.1 MFinder

Milo’s algorithm for counting the number of occurrences of all the k-sized subgraphs [20] was the
first attempt at solving the problem and had some flaws. It exhaustively found all the subgraphs
with the desired size and stored them in a table. After each occurrence find, the algorithm
would check for a isomorphism match of the respective vertices in the table and would only store
it if that isomorphism was not found, meaning that we are exploring a new occurrence. For
each subgraph to be found, every permutation of its nodes would be reached, that sums to k!
occurrences instead of only one along with the need to traverse the search tree that many times.

2.2.2 ESU

Wernicke [33] tackled a large portion of the problems laying in the available motif finding strategies.
He not only proposed a faster algorithm for the enumeration of all the size-k subgraphs on the
original network but also presented an alternative for the random network generation.

At any stage of this algorithm we have a set of vertex and choosing one by one we try to
expand them. Choosing a vertex, we expand them to a set with vertex with higher label and
who are only neighbours with the chosen vector across the partial subgraph created so far. If we
have two vertex a and b in our partial subgraph and we are expanding a, the expanding set is
composed by vertices with label higher than a which are not neighbours with b. The labeling
restriction helps with symmetry breaking since we only extend a vertex from another and not
the other way around and it is this property that makes sure that each subgraph is not only
found but is found exactly once. After this step the algorithm will try to recursively extend
a vertex at a time and stop if either the desired subgraph size is reached or no vertex can be
extended under the two previous stated conditions. This method provides a computing tree and
bellow the root are the sets of each vertex coupled with its extension set. Figure 2.2 showcases
the algorithm flow and the fashion in which it makes sure to only count a occurrence once.
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Figure 2.2: ESU search tree to count all occurrences of 3 sized subgraphs in a small network.

2.2.3 Symmetry breaking conditions

Since the first algorithms for subgraph count and consequent motif find had size limitations,
Grochow et al. [7] presented a new idea based on a singular query subgraph, a subgraph-centric
approach. A complete census would be computed in this fashion by using a graph enumeration
tool such as McKay’s geng and directg [18].

In order to address the problem of finding the same subgraph more than once due to
isomorphisms, Grochow et al. [7] purposed a novel algorithm to limit those tests using symmetry
breaking conditions. The isomorphism tests to see what type of subgraph was found were also
improved in this method.

Successive calls to find isomorphisms for the wanted subgraph onto the original network are
made in a backtracking search. This phase tries to select nodes with many neighbors which are
already mapped and whose degree is higher. A single call to this method extends the partial
match by a single node. That new node has to be connected to the remaining nodes according to
the wanted subgraph type isomorphism we are trying to find. These tests at early stages made
sure that we are able abort computations in earlier stages, which was not possible in previous
methods. A single subgraph type can be mapped in a network in different ways. For instance, a
triangle a, b, c can me mapped into the 3-clique subgraph type in 6 different ways. In order to
avoid this repetition due to symmetries, some restrictions are computed and those symmetry
breaking conditions ensure that there is a unique match of a group of vertex to a subgraph.
Simply ignoring automorphisms and count the same occurrence more than once (in a different
order) and then dividing the final count by the respective permutations is a naive approach that
would take excessive time. Grochow’s method only detects each subgraph exactly once thus
saving time.



10 Chapter 2. Background and Related Work

Using a labelling for the nodes, conditions of the form L(n) < L(m) for two nodes, we
make sure that any ambiguity due to them being in the same equivalence class is settled. This
conditions are enforced until all the nodes are fixed.

2.2.4 G-Tries

The G-Tries are a novel data structure proposed by Ribeiro and Silva [27] with the purpose of
improving the available algorithms and speeding up the process of subgraph counting. This data
structure is the main pillar of this work.

It takes advantage of common substructure between graphs, like a prefix tree would, being
able to compress space usage. G-Tries also uses symmetry breaking conditions in order to make
sure we find each subgraph only once and not waste redundant computation time. Besides being
fast, G-Tries are also generalist, being able to be used in most graph types such as directed,
weighted or colored. It also allows for a query on a particular set of subgraphs, from a single one
to the all of the k-sized subgraphs.

In a string trie, every node represents a single letter, in a G-Trie the node represents a
vertex in the graph. Having two nodes with the same parent in the G-Trie means that you will
have the same graph if you remove that node.

Figure 2.3: G-Trie for all 4 size subgraphs

The process of creating a G-Trie is also similar to creating a trie. We start with an empty
tree and insert the desired subgraphs in an iterative fashion. We traverse the tree until we find a
node in which none of the children matches our subgraph and in this case all of the remaining
nodes will have to be created. The problem with this method is knowing in which order should
we consider the subgraph vertex since a different order could lead to a different G-Trie. A
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canonical form has to be used in order to shape the G-Trie in a deterministic fashion and there
is a custom canonical form designed in order to increase the memory compression by identifying
and taking advantage of common substructure. That canonical form is illustrated at the figure
2.3 and other less efficient canonical forms are shown to be less compressed [25].

G-Tries are also advantageous to use for space complexity reasons. This tree organization
scheme occupies less memory and scales better for larger sizes. Increasing the amount of common
substructures leads to a lower space usage that what we would have if we were to simply use the
adjacency matrix for each of the queried subgraph [28].

After having the G-Trie ready, we can start counting the respective subgraphs on a given
network. Here we will be partially matching the graph trough the G-Trie until we either get
to a final node or to a dead end. At a given node, we compute the set of remaining nodes that
can still be added to the partial graph and choose one of them, check if it matches the current
node, and if so, then recursively try to match the rest of the G-Trie and in the end, change the
chosen vertex. We check if a vertex matches the a G-Trie node if it has the same connections
to the previous vertices and if so we either continue the algorithm or stop if we reach a leaf. The
former means that we found a specific subgraph from the desired set and in that case we can
increment its count.

Some previous methods of counting did not include any automorphism tests and we would have
to count the same subgraph multiple times (n!) and divide the final count by that number similarly
to what was done in [20]. G-Tries are also equipped with symmetry breaking conditions that
remove the need to compute the same subgraph over and over. This idea was introduced by [7]
and was adapted to the G-Tries. In each G-Trie node we have a list of conditions regarding
the label of the nodes. For instance l(a) < l(b), l(d) < l(c) means that both the label of a has to
be lower than the label of b and the same with d and c. The structure of the conditions is also
ready to remove redundant conditions in order to decrease the time required to test them.

2.2.5 Other sequential algorithms

We chose to focus our attention on some classical algorithms which introduced fundamental steps
that allowed for the former ones to be conceived. There are however many more ways available
to tackle the subgraph count problem. There are some methods which are better for some cases
and worse for others but there are also some fundamentally different strategies of tackling this
problem.

FaSE [21] uses a customized G-Trie that is build during the algorithm execution on the fly,
instead of building it before even starting any kind of computation. FaSE creates intermediate
topological classes postponing temporally the isomorphism tests. This algorithm is divided into
two steps, the enumeration, which is similar to other explored algorithms, and encapsulation,
where the intermediate topological features are stored.

QuateXelero [10] is an exact method for subgraph count that tries to decrease isomorphism



12 Chapter 2. Background and Related Work

tests and presents a quaternary tree data structure at its core. That quaternary tree is similar to
the G-Trie and computes partial classifications for enumerated subgraphs.

There are some analytic algorithms that attempt to bypass the step of counting all occurrences
by taking advantage of combinatorial characteristics of the networks. Due to the usage of those
properties, this methods are often limited to particular network types and subgraph sizes.

acc-Motif [19] is an analytical algorithm to count subgraphs of size k + 2 in a rapid fashion
based on the count of induced subgraphs with size k. The main drawback of this method its
inability to easily be adapted to larger sizes. This algorithm is conceived using combinatorial
techniques along with a frequency histogram.

ESCAPE [23] provides an algorithmic framework used to compute the exact count for the
5-sized subgraphs. This analytical method uses pattern division and exploits degree orientations
related to the graph in order to achieve high performance counts. In this method, only four
subgraphs are required to be enumerated so that the final 5-size counts are outputted and this
result is proven as part of the work. This method avoids the enumeration along with its inherent
combinatorial complexity.

2.3 Parallel Approaches

In order to fully take advantage of a computer or a cluster of them, parallelism can be explored
and in ideal scenarios, close to linear speedup can be achieved. This means that a task that
took x units of time to compute would ideally take x

n units of time when n refers to the number
of available cores. There is work in both distributed and shared memory related to subgraph
counting. In distributed schemes, the programmer can count on multiple independent work units,
each with their own memory. In shared programming, all the different work units share the same
memory. Generally speaking, when using shared memory, the cost of communication is lowered
but its harder to account for race conditions between different work units. There can also be
hybrid approaches where there are multiple units, each with its own shared memory.

2.3.1 Parallel G-Trie for Distributed Architectures

The G-Trie data structure and census computation algorithm produces a search tree in
which every call to a procedure is independent from one another. Noticing that and with
the goal of accelerating the subgraph count problem, Ribeiro et al [26] adapted the former
work to a distributed parallel scheme using the message passing interface (MPI) implementation
OpenMPI [6].

In order to start a parallel algorithm it is useful to be able to divide the wanted work in logical
pieces usually called work-units. In this particular algorithm every recursive call to the matching
function, which tries to match a group of vertex with a new one in order to later associate it
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with a size-k subgraph, is considered as a work-unit and the main problem is to divide those
work-units among all processors. Even though the algorithm is traversing a computation tree,
the work load is not balanced among the nodes making it hard to statically divide the work
without ending up with some workers doing substantially less work than others. The dynamic
fashion in which this algorithm divides its work is a receiver-initiated scheme. Each processor
chooses part of the available work and computes it while periodically checking for messages
from the other processes. That check phase has the goal of seeing if any other processing is
requesting more work and if that is so, the recursive calls are stopped and the computation state
stored, the remaining work is divided and half of it is send to the message sender. Due to how
imbalanced the associated tree can be, the work is divided in a round robin fashion and the
processor who is giving part of its computation array keeps the currently explored nodes. This
algorithms is tailored so that there is a threshold related to remaining work so that a unit with
little computation to do doesn’t spend time splitting it. This case would end up in the original
processor simply asking a different thread for work division. In a final phase, each subgraph type
count has to be aggregated in order to get the final count and this is accomplished by using the
native reducing procedures of the used interface.

2.3.2 Parallel G-Trie for Shared Memory

When performing a census on a G-Trie, we are essentially traversing different tree branches
that are independent from one another. Noticing that, Aparício et al. [1] adapted the previous
G-Trie census algorithm to a Multicore Architecture in order to parellelize a single census.
Simply dividing the branches in a static fashion was not good enough due to how imbalanced
different k-sized subgraph counts can be for a single network. In this work each core is assigned
a thread and the vertex are divided among them. Each thread will now compute the census
as it would in a sequential fashion until it has no more work to do. When a thread finishes its
work, it asks for another random thread to split some of the remaining work. Since different
threads may find the same subgraph type with different sets of vertex, each thread would have a
private count of each subgraph type and in the end, the global frequencies would be attained by
summing every thread counts.

2.3.3 Parallel ESU for discovery of motifs

In order to speed up motif discovery, Ribeiro et al [26] provided a method of performing all
of the required steps for motif discovery in parallel, namely the census and both the random
network creation and subgraph count. Since in the ESU algorithm [33] the calls to extend a
partial subgraph are independent for each other, they can be computed in parallel with no
synchronization required. After being able to divide the bigger picture into smaller tasks, two
methods are presented for managing the work distribution. A Master-Slave strategy and a
Distributed strategy. The first one has a dedicated worker "master" that divides work among the
remaining workers while those remaining "slaves" are doing the computations. The distributed
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strategy has all of the workers responsible for both computing and communicating to divide work.
Before starting the main computations, a pre-processing phase takes place. The required jobs are
divided among workers either by sending all of it to a single unit, expecting that other workers
will steal some of the work, or by statically dividing the jobs among work units in a round-robin
manner. In the Master-Slave strategy, the master is continuously receiving messages from its
slaves. If it gets a message requesting work it can either send unprocessed work or add that slave
to a queue of workers waiting for jobs. If it receives a message with more work, it can send it
directly to an idle worker or add it to the work queue. This process ends if all of the workers
are idle. In the Distributed option, the work division is made by all of the cores which are all
equal in this strategy. Each worker keeps computing its work until it has no more computation
to do. In that case it asks another random worker for part of its remaining computations and
continues. The choice of another core to steal work from is random due to how imbalanced and
unpredictable the tree branches can be. If a request for more work is made to another core
waiting for work, another random choice is made and if that process keeps repeating among
all the workers, we can conclude that there is no more computation to be made and the count
process is finished. The final step of this process is to gather the results from each worker to a
chosen one, responsible for the significance calculation. This is done by fixing an order in a vector.
A position in that vector denotes both the network and the count of a particular subgraph type.
The workers are then organized in a binary tree fashion with the selected worker at the top.
After aggregating all of the results, that root worker sequentially computes the significances and
later return the found motifs.

2.3.4 More parallel approaches

Even though we dived into the parallel options which were the most related to our work, there is
more to parallelism in graph analysis.

Ahmad and Ribeiro [29] tackled the subgraph count problem in a parallel fashion using
MapReduce. MapReduce is a programming model aimed to process large amount of data and it
is inspirited by the map and reduce operations available in the functional programming paradigm.
The presented method works on top of G-Tries, it is able to dynamically share work among
the available work units and it is directed to cluster computing in the cloud.

Lin et al. [14] takes advantage of parallelism in a different manner. Their work focus is on
Graphical Processing Units (GPU) and its inherent parallel aspects due to its high number of
processing units in order to simultaneously perform different subtasks related to motif discovery.
The CUDA framework is used in this work in a very detailed fashion and its respective results
are not only competitive to the existing CPU approaches timewise but also cost effective when
the prices of these different processing units are considered.

An hybrid option between CPU and GPU usage is presented by RA Rossi and R Zhou [30].
By simultaneously taking advantage of both these types of processing units along with its
different strengths, a fast algorithm for extracting information from a network regarding induced
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k subgraphs is presented. The results obtained by this method fully use the available processing
resources and are not only fast but also cost and energy efficient.

2.4 Subgraph sampling

With the goal of being able to aim for higher order subgraphs or to be able to find them in larger
networks, there has been work dedicated to trade accuracy for speed in the form of sampling.
Most of the sequential algorithms presented in the respective section can be adapted to search
only a given fraction of the subgraphs rather than the whole set. This is typically done by moving
in the computing tree only with a certain probability when there is a tree like structure. The
way of distributing the fraction across levels is not obvious and can be achieved using different
strategies.

2.4.1 Kashtan

Kashtan et al. [9] introduced the concept of sampling in motif discovery. After the initial census
on the original network, this method would sample each of the random networks instead of
exhaustively counting each subgraph occurrence by picking a random edge from the graph and
then iteratively choosing a random neighbour edge until the desired size is reached. The sampled
subgraph is then composed by all of the nodes found along with all of the edges between them
(not only the expanded ones in the sampling process).

2.4.2 Rand-ESU

The ESU algorithm was presented along with a sampling version [33], making it possible to
effectively trade speed for result accuracy. In order to sample the ESU-tree a given probability is
divided across all the levels except the last one so that the product of each partial probability on
the levels was the original probability. If there are k levels, assigning a probability of p

1
k on each

level would assure the previous condition. Wernicke noticed that a cut on a branch closer to the
tree would highly influence the rest of the run compared to a cut closer to the leafs.

2.5 Alternative graph representations

We are trying to explore the subgraph problem on large and complex network in which the size of
the graph has to be addressed. Since a typical representation of a graph as an adjacency matrix
takes O(V 2) size, for large graphs, this may not fit in memory and alternative representations
have to be explored.

Paredes and Ribeiro. [22] studied this issue and proposed several different options to represent
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a graph so that it would be small enough to fit in memory. Of course that we are giving up the
O(1) cost of the operation to see if there is a connection between two nodes and so the execution
times are expected to be higher when using this options. Graph representations such as a sorted
list so that binary search can be used and hash table based on both nodes and edge are explored
in depth. In the end Paredes uses a hybrid approach, combining several methods, and reaches
performances only two times slower than the adjacency matrix.



Chapter 3

Methodology

In order to solve the subgaph counting problem, we purpose a high-level adaptive strategy whose
goal is to be able to deliver the best guess possible relative to the frequency of each subgraph
type in a given time frame. Afterwards we concretize this idea using the G-Trie data structure
with its sample version as the base and modify in order to make parallelism possible. Sampling
is used since we are trying to search complex networks in which the exact count would take too
much time and the parallel component will make sure that we can do more computation in that
selected time frame, compared to a sequential approach.

This work is directed so that it is possible to shape the algorithm according to the queried
network’s characteristics, the subgraph size and the available time. We want to find a task that
is able to run in a desired time frame and once task is crafted, we can complete it over and over
until the available time is over. The ideal sweet spot is a time frame in which we want our
computation to fit. The goal is to tune some parameters, namely the fraction associated with
sampling, so that we can rapidly craft a task that would lead to that sweet spot.

3.1 Overview

Algorithm 1 High-level methodology overview
1: idealTask ← findSweetSpotTask()
2: while not timeIsOver() do
3: idealTask

4: end while
5: aggregateResults()
6: outputSubgraphCount()

17
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Algorithm 2 High-level Sweet spot find method
1: task ← initialTask

2: while elapsedTaskT ime /∈ idealInterval do
3: task ← refineTask()
4: end while
5: return task

A simplified version of our methodology is described at algorithm 3.1. We start by finding
our ideal task (line 1) and then repeat it until the time period given by the user runs out (lines 2
- 3). After the time runs out, we gather the results and output them (lines 5 - 6). Note that
the definition of the ideal task can be provided by the user or by some automatic parameters
suggested at sections 3.4.1 and 3.4.2 and besides that, the aggregation phase can be updated as
new results arrive.

The general process of finding the ideal task, given a time frame, is described in algorithm
2. We start by computing some initial task (line 1) and proceed by refining it until it fits the
desired time frame (lines 2 - 4). After the "perfect" task is crafted, the process stops, and its
characteristics are returned (line 5).

We want to make sure that we can run this method in networks in which the time required to
do a complete census would be overwhelming. With that in mind we chose to start with a small,
conservative sampling fraction of the desired count such as 10−10, measure the time associated
with that fraction and change it until it fits our time goal for a task. Along with that initial
probability initialProb, we also provide a multiplicative factor initialMultFactor to determine
the next probability to be tried. A single task in this algorithm can still take too much time to
run and in this case, we decided to lower the probability to the last "feasible" task, change the
multiplicative factor and continue from that point.

The Sampled G-Trie presented by Ribeiro and Silva [26] is the algorithm used to do the
successive sampled census required. More information about what fraction is used and its
distribution among the different G-Trie nodes will be detailed at section 3.2.4.1. Parallelism is
included in this methodology so that we can achieve the desired sweet spot faster, by sending
different workers to compute different tasks. Also, parallelism will make sure that we can have
more repetitions of the final, ideal job as more cores are added. In order to enable parallelism, the
original G-Trie was modified so that it would support multiple units performing computations
on the structure simultaneously. This is described at section 3.2.2.



3.2. Parallel methodology 19

3.2 Parallel methodology

3.2.1 Parallel opportunities in the subgraph counting problem

Parallelism was considered and applied to this work with the main goal of making it possible to
run potential different jobs independently from one another at the same time. Each job can be
assigned to a single work unit with its own sampling probability distribution. Parallelism could
also be applied to a make a single run faster [1] but it is not the main focus of this work.

3.2.2 Revamped G-Trie

In order to be able to run our parallel algorithm, the G-Trie structure had to go trough some
changes. It was possible to have a copy of the G-Trie in each work unit and simply run the
wanted tasks in that particular copy but that would possibly take too much space. With the goal
of lowering that space usage, and given the fact that we would be mostly doing memory reads
until the count increment stage after a match between the original network and a particular
subgraph type is achieved, we adapted the base structure so that it was possible to run several
census at the same time in a parallel fashion.

The base data structure was changed in a way that each work unit would have its own copy
of each non shared variables. We coupled those variables in a structure and chose to use an array
of those structures rather than single arrays for each variable due to cache efficiency problems.
When a variable was requested, instead of loading into memory every work unit’s variable of
the same type, we would be loading all of the non shared variables related to that thread. This
arrangement of the variables only proved to be the right choice after also making sure that the
structure combining all of those variables would take exactly a cache line (in a hypothetical case,
any number of fully filled cache lines would work) because if that was not the case, we could
have a thread’s respective structure being divided among different cache lines and that would
result in constant cache misses. This was achieved by adding a padding dummy variable to fill
the remaining of the structure.

This padding adjustment decreased the number of cache misses and was proven instrumental
in order to achieve linear scaling on the parallel G-Trie.

We also added the possibility of searching a custom set of subgraphs instead of the whole set.
This was done by adding a boolean label to the G-Trie nodes that would tell us if that node
was enabled or disabled. This feature would propagate the disabled nodes to ancestor nodes (if
all of the edges of particular node lead to a disabled node, that node could be disabled as well)
and the labeling was done in a DFS fashion as can be seen in picture 2.3.
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3.2.3 Master-Slave Architecture

A master/slave architecture is a programming model where one or more components, the masters,
have control over the remaining components, the slaves. The master, in this strategy, is often
the one who decides what jobs each slave is doing and is the entity responsible for scheduling
and dividing work among the slaves as well as aggregating their respective results. The slaves
are mostly responsible for requesting a task, doing its associated computation and delivering the
results back to the master.

Usually we can separate some different stages in this strategies, the work division phase, the
computation phase and the result aggregation stage. The work division phase can be either
static or dynamic. In static approaches, the work division can be made at the beginning, with
the associated disadvantage that a static partition may provide unbalanced work among slaves,
potentially forcing the slaves to be idle after their respective share of the work is completed,
wasting computational resources. Dynamic approaches tend to have higher overheads due to
more frequent communication across work units but will likely provide a more balanced work
division. Dynamic work divisions can be made either by the master, who will create new tasks
as soon as slaves computations are ending, or by the slaves who can steal part of the work from
other workers when they finish their initial share.

The Master-Slave paradigm was the one chosen to make use the of multiple cores available.
This strategy was used since we found it useful to have a central entity managing all of the jobs
with the possibility to interrupt some and change parameters of the future ones with no need
of synchronization among the remaining working cores. This strategy was chosen over others
specially due to the adaptive component of this work. Since we start with little information, it is
useful to have a central master trying to queue different magnitude tasks and adjust them to the
desired time frame.

3.2.4 Adapting Master-Slave to the subgraph counting problem

The main idea of this architecture is to have a queue of jobs generated by the master and a
queue of results to hold the calculations performed by the slaves. The job queue will be updated
as results of previous tasks come to the master in an adaptive fashion. For instance if we notice
that a job with a set of parameters took too much time, the master can simply stop all of the
workers who are doing similar things and they would poll the queue for new tasks to perform.
In this method, the slaves simply grab tasks from the queue, compute the census associated
with the task and send the results to a results queue. The master will be keeping track of both
completed tasks and queued ones and will manage the slaves work while processing completed
computations and crafting better tasks for future stages.
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3.2.4.1 Work units and Job Queue

We define a work unit as the essential information that a certain worker should have in order to
complete a particular task crafted by the master. A work unit, in this architecture, is defined by
a scheme, a fraction and the labels regarding the subgraphs that we want to count. The fraction
in this work unit is the part of the graph that we want to sample. There are different ways in
which we can divide the same fraction across the G-Trie levels and the available schemes are
the ones proposed by Ribeiro and Silva [26] and can be divided in three when fixing the subgraph
size k and the fraction f .

• low: P0 = k−1√f, ..., Pk−3 = k−1√f, Pk−2 = k−1√f, Pk−1 = 1

• medium: P0 = 1, ..., Pk−4 = 1, Pk−3 =
√

f, Pk−2 =
√

f, Pk−1 = 1

• high: P0 = 1, ..., Pk−3 = 1, Pk−2 = f, Pk−1 = 1

The initial motivation for having these different ways to divide the probabilities across
different levels was to have more flexibility regarding the distribution of that particular fraction
among the G-Tries nodes. For a fixed fraction, we could chose the low scheme if we wanted
faster and less accurate results, high scheme if we had enough time and wanted a count as precise
as possible or medium as an in between option. At later stages of development, the option to
switch schemes was particularly important since we found it impossible to reach some desired
time frames with the high scheme since it was bounded by the exact computations associated
with the previous size problem (k − 1). This happens due to the fact that fraction of each level
but the last is 1. In those cases we can switch the scheme to low and craft tasks with the desired
time frame while running the same adaptive ideas.

The job queue holds this sort of structures and it is filled by the master who tries to keep it
with 2× ncores at every computation stage. The same queue is polled by the slaves at any stage
in which they aren’t doing any computation. More details on the this queue implementations
can be read at the section 3.2.6.1.

3.2.4.2 Aggregating partial results

After doing a specific task, each worker will communicate the results found to the master. We
keep track of the sampled count of each subgraph enabled, the time elapsed in the respective
calculation along with the fraction and scheme using during the census. There is a result queue
to which the slaves send this gathered information and the master will periodically poll it in
order to process its results and take actions for future tasks.
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3.2.4.3 Acting according to ongoing computation state

Even though both previous mentioned queues would be enough for this strategy to work, we
would not be able to check neither the running jobs for each slaves neither would we be able
to check if a particular task was taking too much time. In order to address this problem, third
structure was used in this strategy, a vector of running jobs with a entry for each slave. The
purpose of this structure was to make it possible to the master to scan what every slave was
doing giving it the ability to interrupt some of the tasks. This third queue would hold, for each
running task, the id of the thread that was processing it, the time associated with the start of the
task along with the respective work unit with the information described above at section 3.2.4.1.

3.2.5 Finishing criteria

With the purpose of allowing for multiple goals, we set a few ways to stop the whole sampled
subgraph count process. We can provide running time and/or a convergence metric and
convergence value. If the master notices that it has been running for longer than the time
set by the user, it will stop the slaves and output the results. The same will happen if the results
converge to a given value given a certain metric. If we finish a job with probability 1 over all of
the labels, the program will also end since we just did a complete census and the results will be
the ones got at that final iteration.

3.2.6 Master-Slave work flow

Our whole process is always controlled by the master and it is the master that is called at the
beginning of this strategy. Algorithm 3 describes this component’s work flow.

After being initially called, the master starts by doing some setup operations (line 1).
This setup includes launching the slaves threads, filling the job queue with some initial tasks,
loading the network and the G-Trie among other beginning tasks. It will then start its main
body consisting of generating tasks and aggregating upcoming finished computations (lines
2-9) until the given time is over. The slaves are checked periodically to see if they are doing
meaningless computation such as tasks running for longer the desired ideal frame and tasks whose
characteristics are already proven to result in higher executions than desired (line 3). If the job
queue is getting empty, the master fills it with new tasks based on the previous results attained
(line 4). The master will check for new results and process them if so. This result process stage
will partially aggregate the latest result and update some variables which are instrumental in
determining future tasks (lines 5-7). At the end of the available time, the master does some
cleanup operations such as shutting down the slaves and then it can simply output our results as
the guess for the subgraph count problem since the master is updating results as they come by
(lines 10-11).
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Algorithm 3 Master Workflow
1: setup()
2: while not finished() do
3: checkSlaves()
4: addTasks()
5: if newResults() then
6: res← resQueue.pop()
7: processResults(res)
8: end if
9: end while

10: cleanup()
11: outputResults()

The slaves workflow is simpler than the masters but very important nonetheless. It can be
described at algorithm 4.

The slaves are always on a loop computing whatever results required (lines 1-7). If they have
work to do they start by getting a work unit from its queue, run the associated task and output
the results to the result queue (lines 2-5).

Algorithm 4 Slave Workflow
1: while true do
2: if workToProcess() then
3: workUnit← workQueue.pop()
4: res← runCensus(scheme, fraction, labels)
5: resQueue.push(res)
6: end if
7: end while

3.2.6.1 Parallel synchronization, cancel methods and implementation details

One of the goals of using this architecture was to remove part of the inherent synchronization
that would need to happen if there was no master managing all of the slaves.

There are, however, a few sections that are protected with locks. Namely the working and the
results queue. The master must be sure that no slave is popping the tasks queue when adding
new tasks and when the master is getting results from the respective queue, no other unit can be
accessing it. We decided to implement our version of a parallel queue, coupling each queue with
its respective lock mechanism, so that it would have to be acquired in order to do the regular
queue operations such as pushing, popping and emptiness test.

One important feature of this working structure is the ability to remove/cancel jobs at any
time required. For this to happen, we used two cancel types on the slaves: the asynchronous and
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the deferred types. When at the deferred state, a thread can only be canceled at a cancellation
point. This is useful if we have a series of operations that need to be considered atomic. The
asynchronous type allows a thread to me canceled at will.

We chose to set cancellation points both at the beginning and the end of each iteration and
chose to set the census as asynchronous so that it can be interrupted at any time. If, for instance,
a cancel request is made right after a finished census, the cancellation type is already deferred
and the slave will only cancel after sending its respective results. It was this deferred option that
made sure that a thread wouldn’t be cancelled, for instance, after acquiring a particular lock,
which could cause a deadlock after being cancelled.

The slaves are periodically checked by the master and can be set to be canceled if they are
taking too much time (this threshold is set to be 2× sweetSpotF inish by default) or if they are
doing a task that is known to run outside the sweet spot. This final situation can happen if
the master notices that a certain task is taking too much time and all of the tasks with a fraction
above that one are to be cancelled. The slaves are also canceled if a finish state is reached.

3.3 Adaptive Methodology

The adaptive fashion in which we reach our ideal tasks is at the core of this work. In one hand,
we want to reach that sweet spot quickly but on the other, we don’t want to start many tasks that
will have to be canceled due to their excessive duration. Assuming that we have no idea of the
time that a certain sample with a given fraction will take to compute, we have to be conservative
with our initial probability so that we have a baseline which can be increased afterwards. We
don’t want to discard valuable computational time just because a tasks takes a bit more time
than our ideal task duration. We added a threshold over the desired time limit so that we can
both use those results and we can use that elapsed time as a upper bound for our computations.

3.3.1 Sweet Spot

The idea of a sweet spot is a time frame in which a single task should compute for the best
approximation of the subgraph count problem. Ideally, when a sweet spot is set, the goal
is to run the corresponding task totalT ime/sweetT ime times during the available time period.
Even though this concept is a parameter of our program, we present a few methods of logically
defining a sweet spot.

One may think that the ideal task should be associated with a low time frame task so that it
can be repeated over and over until the time given by the user for the subgraph count problem is
over. This approach has the apparent advantage of being able to fit several tasks in the given
elapsed time with the motivation that more tasks should provide a better guess for this problem.
The problem is that, despite the high number of runs, we are always running them with a small
probability and that factor can have a negative impact in our final approximation.
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Figure 3.1: Plot showcasing a typical fashion in which a sweet spot is reached. We can observe
that the fraction increases at the same multiplicative rate until its associated task takes more
time than expected and from that point it lowers the multiplicative factor and continues this
method until the sweet spot is reached.

We can think that the ideal sweet spot should be related to a task which maxes its elapsed
time. The motivation to this option is that running a census with a higher probability should
give us a better estimate but its drawbacks are the lower sample size along with the tighter time
restrictions since we can’t be sure of the elapsed time of a task before hand, making it hard to
guess the associated probability and thus making it possible that our "ideal task" will not even
end. An in between strategy can also be considered, in which we want an average timed task
running an average number of times so that we can get the advantages of both approaches with
less impactful disadvantages.
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3.3.2 Reaching our ideal task

Regardless of the strategy used among the ones referred above, we need to have an algorithm that
is able to craft a task that will fit in the given sweet spot restrictions. We present algorithm
5 that proves to reach sweet spots in a rapid fashion. This algorithm has two main parameters:
The initial probability and the initial multiplicative factor (lines 1 - 2). The initial probability
should be conservative so that we have a lower bound task as soon as possible. Afterwards, we
want to tweak the tasks characteristics so that we reach our desired job (lines 4 - 13). If we
notice that a task’s elapsed time is below our time interval, we can simply create a new task with
a new increased probability and reach that probability by multiplying the previous one by the
respective multiplicative factor (lines 5 -6). It is also possible that after multiplying a completed
task’s fraction by the associated multiplicative factor, we face a new tasks whose time frame
is above our sweet spot. In that case we should proceed by returning back to the previous
task’s fraction, lower the multiplicative factor, get a new fraction and continue searching for the
ideal task (lines 7 - 10). If we find that a certain task fits the given time frame, that task will be
the ideal one and the sweet spot finding phase can be considered over (12 -14).

Algorithm 5 High-level sweet spot reaching algorithm
1: p← initialProb

2: f ← initialMultFactor

3: sweetReached← false
4: while not sweetReached do
5: if taskT ime < sweetSpot then
6: p← p× f

7: else if taskT ime > sweetSpot then
8: p← p

f

9: f ← f
2

10: p← p× f

11: else
12: sweetReached← true
13: end if
14: end while

3.4 Approximating the counting

Due to our method’s property of receiving several results for potential different tasks, we decided
that a simple average of each count ,with its respective extrapolation ,would not suffice.

A weighted mean was the metric used since it can emphasize experiences with higher sampled
fractions, which should lead to more precise counts. With a set of n extrapolate results res

and associated sample fractions frac, if we were to fix a subgraph, its estimate is given by the
formulae below.
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wAvg =
∑n

i=0 resi × fraci∑n
i=0 fraci

We are interested on following the distribution of the results over the time so that we can
potentially stop computations when we notice that recent results are not changing our global
estimate by much. Calculating the result dispersion can be achieved by using variance and its
standardized version, coefficient of variance. Since we always want to give more weight to tasks
made with higher sampling portions, we will present weighted versions of these measures.

wV ar =
∑n

i=0 fraci × (resi − wAvg)2∑n
i=0 fraci

wCoeffV ar = wStdDev

wAvg
=
√

wV ar

wAvg

Since our method is able to run tasks with execution times as little as seconds for several hours,
it can be dangerous to store all the results at all times and the calculation of this metrics would
take more time as more results got processed. In order to solve this problem, we adapted these
formulae so that only the last run, along with a few fixed numbered variables were needed. Those
new variables that are updated as a new result comes by are the number of tasks completed n,
the sum of the fractions used

∑n
i=0 fraci, the sum of squared weighted results

∑n
i=0 fraci × res2

i

and the sum of the weighted results
∑n

i=0(fraci × resi).

The new weighted average can be simply computed with the following.

wAvgnew = (wAvgold ×
∑n−1

n=0 fraci) + resn × fracn∑n
n=0 fraci

After updating the remaining variables, we can get the new weighted variance along with
weighted coefficient of variance.

wV ar =
∑n

i=0 fraci × (resi − wAvg)2∑n
i=0 fraci

=

∑
fraci × (res2

i − 2× resi × wAvg + wAvg2)∑n
n=0 fraci

=

∑
fraci × res2

i + 2×
∑

fraci ∗ wAvg +
∑

wAvg2∑n
n=0 fraci

The coefficient of variance can be computed as before.
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3.4.1 0 probability run and new ideas

The high scheme mentioned earlier at section 3.2.4.1 is the starting scheme used in our runs.
There is a chance that , for a set of network and subgraph size k, the defined sweet spot

couldn’t be achieved despite the fraction sampled. This weird phenomena is explained by the
definition of the high scheme. The probabilities in this idea are scattered among the G-Trie
nodes so that only the k − 1 level represents that fraction. This means that the count for that k

is bounded by the exact count of k − 1 in this scheme.

This realization made us adapt our algorithm so that it would always start of by computing
the lower bounded 0 probability in the high scheme (with the only goal of seeking a lower bound
for the default scheme) run and if the respective elapsed time was over the defined by the user, we
could switch the method to low, which can be easily adapted to lower time frame, and start the
algorithm from there. Since this run with 0 probability provided a lower bound for the scheme,
its respective execution time can be seen as a good time frame to run a task if we want it to be
repeated many times. We propose a choice of the sweet spot of 2× tzeroP rob for these situations.

3.4.2 Automating parameters

Both defining and finding the sweet spot are among the core of this work. If we knew exactly the
perfect task to fit a given sweet spot, then we would not have the need of searching for that sweet
spot and could start to replicate those task’s characteristics between the available cores. Even if
this is not the case, we could luckily end up finding the sweet spot after only a few attempts
with the right initial parameters or we could have a set of parameters that would make it so that
adding more cores would not accelerate the process of finding that time frame. For instance if we
were starting our algorithm with a starting probability of 1E − 5 and the starting multiplicative
factor of 2, the tasks generated would be 1E − 5, 2E − 5, 4E − 5, 8E − 5, 1.6E − 4, 3.2E − 4, ...1
for a sufficiently large sweet spot. If we were to discover that the ideal task would be achieved
with the fraction 2.56E − 3, that would be 8 tasks after the initial one and if we were to split
those across the available cores, after having more than those 8 slaves, the time to reach the
sweet spot would be the same since, despite the number of available workers, there would always
be one that would start that particular task (this only happens if the infrastructure is scalable).
With this problems in mind, we believe that the best way is to take the number of cores into
account when choosing the initial factors. If we fix an initial probability we can, for instance,
chose a multiplicative factor so that, at the beginning, we would have one worker computing the
census associated with the initial probability ip and other computing the exact task (probability
1). We could accomplish this by choosing the multiplicative factor mf depending on the available
cores nc so that.

ip×mfnc = 1 =⇒ mf = nc

√
1
ip
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This strategy can be adapted to cover any desired initial interval (by replacing 1 with the
desired higher bound).





Chapter 4

Experimental Results

In order to showcase the results with, as many processors as possible and with as little noise as
possible, we used a parallel machine with 64 logical cores provided by DCC. This Machine has 4
CPU sockets, each with 8 physical cores with each core being able to run 2 threads. This adds
up to 64 processing units along the four AMD Opteron 6376 processors.

The code was an extension to the existing G-Trie base code and was thus developed using
C++11 using gcc 4.8.3 as the compiler. Due to portability options, we chose to use POSIX
Threads as our parallel model.

Since there are many degrees of freedom among the variables of this algorithm, we want to
showcase the choices made in some variables by isolating the remaining ones and then combining
the choices into more advanced versions. Plots for those experiences were attained using R and
Rstudio.

4.1 Network Data

Name Vertex Edges Representation
Dolphins 62 159 Adjacency Matrix
Virgili 1133 5451 Adjacency Matrix
Power 4941 6594 Adjacency Matrix
Brightkite 58228 214078 Hybrid
Flickr 105938 2316948 Hybrid
Pennsylvania 1088092 1541898 Hybrid

Table 4.1: Different networks used

In order to test the quality of our work for different types of networks, we chose a few different
ones with increasing dimensions and some different edge density. We also chose networks related
different fields such as social networks, road networks and animal networks. The networks
presented are all undirected, unweighted and uncolored for legibility and result comparison

31
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reasons but our strategy is ready to be used in other networks with the above features. All of the
following networks can be found in the Koblenz Network Collection [11] and The Snap Library
[12].

Dolphins [16] is the smallest network presented and was used mostly in the early development
stages due to its small size, making it easy to reach high order motifs even in the exact version
of the algorithm. It is an animal network that describes frequent associations between bottlenose
dolphins and has 62 vertex with 159 edges.

Power [32] is a network that represents information about the Western United States of
America power grid. Edges in this network refer to power supply lines between the vertex, that
can be either generators, transformators or a substation. This network has 4941 vertices coupled
with 6594 edges.

Virgili [8] showcases e-mails sent between members of the University Rovira i Virgili
(Tarragona, Spain). The nodes and edges in this network refer to students and e-mails sent
respectively. The Virgili network gathers information about 1133 users over 5451 communications.
An interesting observation about this network is that, despite having a lower vertex and edge
count than the Power network, it takes longer to perform computations on. For instance, if we
count all of the 6-sized subgraphs in this network, we take more than a minute, compared to less
than a second for the same task performed in the Power network.

Brightkite [3] is a social network that describes relations between users from different
locations. A connection between two nodes lets us know that they are friends with each other. This
network has 58228 users and 214078 edges representing friendship. This amount of users/vertex
would lead to a adjacency matrix with over 2 ∗ 109 entries, that is approximately 2GB which is a
huge lower bound for our program since it only covers a portion of the memory, that high lower
bound is particularly problematic since the graph is sparse and only has an average of about
7 connections per vertex compared to the 582282 potential connections saved by an adjacency
matrix. The representations of both this network and others with higher vertex count is now the
hybrid scheme proposed by [22] which allows to have an efficient memory representation while
only being less than 50% slower.

Flickr [17] is an image network created by linking images with similar metadata attributes.
The images are vertex in this network and a link between two images exists if they share the
same location, tags, etc. This data set has 105938 images along with 2316948 links between
them. The representation used for this network is the hybrid scheme rather than the adjacency
matrix option.

Pennsylvania [13] is a road network of Pennsylvania, United States of America. Nodes in
this network refer to either endpoints or intersections while the edges describe roads between
those entities. This is the biggest network considered and has 1088092 vertex coupled with
1541898 road connections. Note that even though this network has the most vertex, it has less
edges than the Flickr network.



4.2. Scalability of parallel methodology 33

4.2 Scalability of parallel methodology

Regardless of the accuracy or any metrics provided by this algorithm, we first need to make sure
that the parallel tasks running on the new G-Trie (section 3.2.2) can scale to a larger amount
of workers allowing for multiple tasks to run simultaneously with no significant performance loss.

16

128

1024

2 8 32

# slaves

# 
ta

sk
s 

pe
r 

sl
av

e

Granularity

1

2

4

8

16

32

Figure 4.1: Tasks completed by slaves across different singular task execution times. The results
are taken from computing the census in the Brightkite network for the size 4 subgraphs with
15 minutes to run.

Figure 4.1 shows that the ratio of tasks done per slave close to constant as more cores are
added to computations. This is showcased over tasks with different granularity and have the
inherent overhead included in the results observed. Note that the number of slaves used in this
work is not equal to the total number of cores since we are using a master dedicated to control
and distribute work units. This results that, despite the sweet spot used, we can use more
cores to obtain more runs in the end.

To the data provided by the picture 4.1 it is added the table 4.2 where we can see details
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Network K-Size Fraction Baseline
#slaves: #tasks

2 4 8 16 32
Brightkite 4 0.004 867 1.978 3.738 7.353 13.651 25.354
Brightkite 4 0.007 517 2.002 3.691 7.25 14.008 25.988
Brightkite 4 0.02 186 2.011 3.909 7.597 14.091 26.672
Brightkite 4 0.03 125 1.968 3.936 7.64 14.864 26.784
Brightkite 4 0.07 56 1.964 3.821 7.286 14.679 27.375
Brightkite 4 0.12 32 1.938 3.656 7.688 14.063 27.219
Flickr 3 0.004 1071 1.923 3.128 5.625 10.963 19.894
Flickr 3 0.012 391 1.726 3.061 5.757 11.156 19.77
Flickr 3 0.02 242 1.876 2.971 6.041 11.306 19.814
Flickr 3 0.04 128 1.609 3.516 6.023 10.781 19.617
Flickr 3 0.09 60 1.867 2.933 5.6 11.083 19.7
Flickr 3 0.19 29 1.862 3.207 5.862 11.414 20.448
Pennsylvania 7 0.0004 1229 1.956 3.57 6.782 13.193 25.101
Pennsylvania 7 0.005 345 1.988 3.736 7.133 13.881 27.203
Pennsylvania 7 0.01 226 1.85 3.708 7.367 14.19 27.624
Pennsylvania 7 0.02 144 1.965 3.889 7.368 14.257 28.139
Pennsylvania 7 0.03 110 1.991 3.8 7.327 14.1 27.955
Pennsylvania 7 0.08 56 2 3.732 7.339 14.196 27.982

Table 4.2: Comparison of the number of tasks computed with a different number of cores among
different networks

on the runs that lead to the plot along with more results over different networks with different
subgraph sizes. Here we can observe the speedups relative to the number of tasks attained with
only one slave which he named baseline. We can see that for a wide range of values, doubling
the number of slaves results in next to double the speedup with some diminishing returns as
we get closer to the machine limits. Part of these diminishing returns can be justified by the
overhead of the master slave architecture who has to both initialize, finish and monitor more
processing units.

Both the results presented at figure 4.1 and table 4.2 were attained by running our algorithm
with an initial probability which would lead to a tasks duration according to the wanted granularity
(2, 4, 8, 16, 32) along with an initial multiplicative factor of 1 so that we would compute the same
sized tasks over and over. The probability that would lead to a task fit to a particular time
frame was retrieved by running the same algorithm with the sweet spot set to the desired
time frame.

4.3 Reaching the Sweet Spot

Reaching the sweet spot is an important task regarding our work and we want it to be as
fast as possible so that we save time for more repetitions of the ideal task relative to that time
frame. Figure 4.2 presents a particular case of this stages showing how the time elapsed by the
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successive performed tasks is updated until we overshoot the desired result and from that point
we can do a process similar to the binary search method in order to divide our lower and upper
bounds, tightening them until the ideal task is conceived. The initial similar and unpredictable
times are caused by conservative initial tasks that can have very low precision and execution
times.
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Figure 4.2: A plot showing the time variance of the tasks until the sweet spot is reached. The
first iterations are not conclusive since their associated probability is really low, but we can see
the way in which the fraction changes influence the time taken to compute the respective tasks.
The dotted lines represent the wanted sweet spot.

We want to motivate the choice of some parameters by showcasing its ability to fasten the
sweet spot reaching steps.

To further motivate the use of parallelism in this strategy, we showcase at table 4.3 that for
different sweet spots and other variables, having more work units leads to a faster process
of finding the desired task. Here we have to take into account that the minimum time possible
is bound by the sweet spot lower interval and it can be reached if the initial distribution of
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probabilities across slaves makes it so that one of those initial tasks is completed in the wanted
time interval.

From this point on, we will assume that our parallel strategy is useful in both stages of finding
the sweet spot and ideal task repetition. The remaining of the information will be delivered
by experiences made with only 1 slave.

ip im ss
#cores: elapsed time

2 4 8 16 32
0.0001 2 [6-8] 44.0497 16.1577 12.2288 6.43386 6.01137
0.00001 1.1 [10-14] 459.438 160.655 72.9032 37.7238 21.0014

Table 4.3: Comparison of the time required to reach the sweet spot computed with a different
number of cores among different parameters for the Brightkite network and subgraph 4 count

We mentioned the virtue of setting conservative initial probabilities in our algorithm. To show
what little time loss could be achieved by under estimating the ideal task by many magnitude
orders, we tested our method for a wide range of initial probabilities and initial multiplicative
factors. Our initial guess was that having low, conservative initial probabilities would not be bad
when coupled with high multiplicative factors since we could rapidly discard jobs whose runtime
was much lower than the desired one.

Table 4.4 collected the time to reach the sweet spot [10− 15] relative to a task attained
by running sampling with fractions close to 0.0625. We can see that generally, if we are close to
the ideal probability, the time to reach that is lower, as expected. If we move far away from that
fraction, we can verify that the time doesn’t change drastically and can even be similar for most
cases. This algorithm was idealized so that the probability would be increasing until the ideal
one and over estimating in the beginning could lead to very slow runtimes in this stage since
we could be performing several tasks which would have to be canceled due to its elapsed time
being above the wanted one. Parallelism would make this conservative choices even better since
more slaves would be able to reach from the conservative fraction to the desired one faster while
choosing an over estimate first probability would lead to multiple slaves having to abort ongoing
computations.

We did the same experience as presented in table 4.5 with a lower sweet spot of [2− 4]
and found that the results were similar. The associated ideal probability was near 0.0125 and
again, tasks with initial probabilities close to that reached the time frame faster but not if
that probability was above the ideal one. We can for instance see that the lowest probability
which was tested was many orders of magnitude lower than the ideal fraction still manage to out
perform the highest which was only 10 times above that, showcasing the advantages of being
conservative.

In order to exaggerate how bad a wrong initial fraction choice could be, we jumped to a more
time consuming task by increasing the size of the subgraphs to be count. In order to fill the
same sweet spot of [2− 4], the associated probability was 0.00001. The results were gathered
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in table 4.6 and here, even the given 15 minutes were not enough for some first probabilities
above the ideal one. The lowest fractions tested still managed to be competitive with the ones
closer to the ideal one.

In the same tables mentioned before, we also tweak the initial multiplicative factors. Even
though the presented ones can be better depending on the initial probabilities chosen, we can
see how bad the lower versions can perform if the initial fraction is far from the ideal one. This
table strengthens our initial believes that the first tasks should start of low on probabilities but
somehow high on the multiplicative factor. We didn’t expect such good results for the seemingly
high initial multiplicative factor of 8.

ip im 1.1 2 4 8

0.1 55.0008 58.3749 39.4208 35.6055
0.01 112.18 51.6731 73.1356 43.8778
0.001 169.493 36.8594 51.4888 18.8083
0.0001 198.198 40.1411 54.2231 21.8838
0.00001 233.7 67.7562 23.5501 134.216
0.000001 266.645 51.7172 32.2805 102.609
0.0000001 304.518 52.3028 64.2436 93.0482
0.00000001 337.474 82.5525 91.4379 87.2837
0.000000001 371.167 88.4405 43.3636 60.7231
0.0000000001 404.011 64.5019 67.8906 53.0995

Table 4.4: Time elapsed in order to reach the sweet spot of [10− 15] seconds in the most time
consuming network flickr with size 3 across different parameters

ip im 1.1 2 4 8

0.1 timeout 35.5633 24.4945 57.7288
0.01 5.95253 2.25315 5.92643 5.9274
0.001 26.8345 5.80789 6.21456 7.02522
0.0001 2.19312 2.19836 2.00911 7.98265
0.00001 92.9445 17.736 2.00869 2.19205
0.000001 123.818 22.11554 13.1221 10.1744
0.0000001 155.892 25.1325 16.2458 21.7627
0.00000001 189.027 31.1317 19.9499 21.1927
0.000000001 219.988 34.616 19.4646 21.3
0.0000000001 246.517 40.53 22.835 21.487

Table 4.5: Time elapsed in order to reach the sweet spot of [2− 4] seconds in the most time
consuming network flickr with size 3 across different parameters
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ip im 1.1 2 4 8

0.01 timeout timeout timeout timeout
0.001 timeout 79.8941 48.1256 timeout
0.0001 96.4992 33.4786 49.1907 37.4812
0.00001 32.6154 23.6641 24.8593 38.4217
0.000001 43.9132 27.4307 23.229 35.0774
0.0000001 58.1563 31.3275 24.4292 29.7246
0.00000001 45.0733 24.8558 28.5985 27.5082
0.000000001 46.2733 27.3502 32.5875 24.018
0.0000000001 46.1457 26.3342 23.8007 23.9522

Table 4.6: Time elapsed in order to reach the sweet spot of [2− 4] seconds in the most time
consuming network flickr with size 4 across different parameters

4.4 Quality of the approximation

At the end of the day, the most important factor for this algorithm, is to get the best estimate
which lessens its associated error. We will consider relative percent error and percent accuracy
in this examples.

error = | countexact − countapprox |
countexact

accuracy = 1− error

Figure 4.3: Labels of the different k sized subgraphs. This label is achieved by performing a DFS
on the G-Trie 2.3

The labels presented in the following examples where multiple subgraph types are available
can be consulted in figure 4.3. In cases where we only had a single accuracy value for a single
census, the average between the different accuracy across the subgraph types was used.

Figure 4.4 shows us that a single run can be away from the exact count but that won’t deviate
our global guess using the weighted average. Even in smaller, beginning tasks, we can see that
we can get near the exact count in a surprisingly rapid fashion.
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Figure 4.4: Progression of both individual and aggregated results in the Brightkite network
sized 4 across different subgraph types. Every task run was done with 1e−7 probability.

In figures 4.5, 4.6 and 4.7, we tried to study the effect of the chosen sweet spot on the
final guess for the subgraph counting problem. We initially guessed that having a low sweet

spot would lead to many tasks being computed, and that ideal task would be found faster in
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the initial stage of our algorithm. This was not exactly the case since we found out that in
some cases, the additional time to find a higher sweet spot and even the reduced number
of sampled tasks gave us better results in the end. Figure 4.5 guides us towards thinking that
choosing a small time frame for our ideal task is good if the run time is also low.
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Figure 4.5: Precision across different sweet spots subgraph types for the Brightkite

network size 4. This results were obtained after 100 seconds of run time

If we increase the available runtime, higher sweet spots begin to become preferable since
the time spent to find its associated task becomes less significant as we let the algorithm run
longer and we are also able to perform that task more often as described at figure 4.6.
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Figure 4.6: Precision across different sweet spots subgraph types for the Brightkite

network size 4. This results were obtained after 300 seconds of run time.

If we let our program run for a really long time, we begin to notice that it is even more
advantageous to increase both the sweet spot and its associated finding time in return of
more accurate runs that, even though would be performed less times, provide better estimates to
the counting problem across different subgraph types. This can be observed at figure 4.7.
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Figure 4.7: Precision across different sweet spots subgraph types for the Brightkite

network size 4. This results were obtained after 15 minutes of run time.

In the end we decided to get an exact count along with its sequential running time and take
percentages of that time and feed them to our algorithm, testing it with all of the mentioned
components all together. The results from figure 4.8 were good especially given the fact that,
even though we calculated it beforehand, the program didn’t knew the time to get the exact
run. The presented results use increasing sweet spot as more time is added, a low initial
probability along with a high initial multiplicative factor.
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Figure 4.8: Average precision across different fractions of exact time. Brightkite network
with 4-size subgraphs





Chapter 5

Conclusion

5.1 Contributions

This work tackled the subgraph count problem using both parallelism and sampling. Those two
components were coupled with a third major one, the adaptive scheme. Every major component
added performance to the task and provided good results with the right parameters.

With the ideal task crafted beforehand, our method was separated in two stages: The sweet
spot reaching stage and the ideal task repetition stage. Both those stages used sampling and
were improved as the available work units increased.

Using this ideas, we were able to achieve very accurate results for the subgraph count with
limited time at our disposable and we would like to think that the time conceived to our method
is used in an efficient manner.

5.2 Future work

Even though this work was satisfying and provided good results for the subgraph counting
problem, there are a few options that could still be explored as future work.

• Removing subgraphs - The presented revamped G-Trie 3.2.2 is equipped with a non
explored feature, the ability of removing subgraphs from the G-Trie. Along with a proper
coefficient of variation, we could, after a few runs, decide that a particular subgraph count
was "good enough" since new results were not changing our final approximation of its count.
If that were the case we could disable that particular subgraph so that future census would
take less time. After removing a subgraph, the sweet spot finding phase could start over
and the new task would have a higher precision since the computational time is lowered
with the removal of nodes. We believe that this would made it possible to find accurate
counts faster and focus on harder to find, rarer subgraphs.
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• Adapting to cluster computing - In this work, we explored the shared memory paradigm
and got good results, making it obvious that parallelism usage is helpful in this particular
strategy. We would like to adapt this program to be able to run in a cluster of computers.
This could be done using OpenMPI [6] and if each single unit had enough sub units, a
hybrid scheme combining OpenMPI between machines and Pthreads locally should be
interesting to explore.

• Dive into more complex topologies For both practical and readability reasons, this
work’s focus was on non directed, non weighted and non colored networks. Since one of
the advantages of G-Tries is its flexibility, it would be curious to find out how could our
method help counting subgraphs with some of those topological features. There would
be more subgraphs of each size and thus, it is harder to compute even low k subgraph
counts on those networks, making it even more useful to be able to use the available time
efficiently even if we are not able to get the exact count, which could take many hours to
complete.

• Explore convergence and its metrics The execution time given by the user to our
algorithm was the core of the stopping conditions allowed by our infra structure. Even
though some metrics of convergence and coefficient of variability were presented, they were
not explored in detail and could be useful in justifying early stops in computations, if those
were not contributing as much to the overall count guesses and use the adaptive nature of
our ideas to craft tasks molded to every degree of freedom in a more successful fashion.
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