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Summary. There is discussion if traffic displays spontaneous breakdown. This pa-
per presents computational evidence that stochastic car following models can have
a control parameter that moves the model between displaying and not displaying
spontaneous phase separation for some densities. Those phases can be called “lam-
inar” and “jammed”. Models with spontaneous phase separation show three states
as a function of density: a first state at low density, where those models are homo-
geneously laminar; a second state at high density, where they are homogeneously
jammed; and a third state at intermediate density, where they consist of a mix be-
tween the two phases (phase coexistence). This is the same picture as for a gas-liquid
transition when volume of the gas is the control parameter.

Although the gas-liquid analogy to traffic models has been widely discussed, no
traffic-related model so far displayed a completely understood stochastic version of
that transition. Having a stochastic model is important to understand the poten-
tially probabilistic nature of the transition. Most importantly, if indeed models with
spontaneous phase separation describe certain aspects correctly, then this leads to
an understanding of spontaneous breakdown. Alternatively, if models without spon-
taneous phase separation describe these aspects better, then there is no spontaneous
breakdown (= no breakdown without a reason). Interestingly, even models without
spontaneous phase separation can still allow for jam formation on small scales, which
may give the impression of having a model with spontaneous phase separation.
Keywords: traffic flow theory, car following models, traffic breakdown, traffic sim-
ulation, phase transition, phase separation, critical point

1 Introduction

The capacity of a road is an important quantity. If demand exceeds capacity,
queues will form, which represent a cost to the driver and thus to the economic
system. In addition, such queues may impact other parts of the system, for
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example by spilling back into links used by drivers who are on a path that is
not overloaded.

This paper discusses freeway capacity. The question concerns the max-
imum flows that freeways can reach, and if the maximum flows sometimes
observed (> 2500 vehicles per hour and lane) are sustainable flows or short-
term fluctuations. Let us assume that there is traffic with a fairly high density
ρ on a freeway, but vehicles are still able to drive at some fast velocity v.
Throughput is q = ρ v. The question is what will happen if density is further
increased: Can q further increase because ρ increases more than v decreases?
Will q gradually decrease because ρ increases but v decreases faster? Or is
there a possibility that traffic will break down, leading to stop-and-go traffic?

More technically, the question is if there is, for each density ρ, a velocity
V (ρ) and corresponding throughput Q(ρ) = ρ V (ρ) at which traffic flow is
smooth and homogeneous. Or is there a density range where that homogeneous
traffic flow is unstable, and traffic has a tendency to reorganize into a stop-
and-go pattern, with possibly lower throughput?

It is important to note that this paper’s focus is on homogeneous situa-
tions. This concerns both the geometry of the system, which is assumed to be
closed (such as a long ring) and spatially uniform (no bottlenecks, no changes
in speed limit, no grades, etc.), and the initial condition, which is assumed
to be traffic with the same density everywhere along the ring. Clearly, this
is a theoretical construct, but the issue is to sort out theoretical questions.
Again, the main question is if in such a situation the initially homogeneous
traffic has a tendency to reorganize into a stop-and-go pattern; this is what
is meant by (spontaneous) “breakdown” in this paper. This is in contrast to
induced phases, such as queues upstream of a bottleneck. Induced phases are
important, but they are outside the scope of this paper.

There is in fact a long history of publications about breakdown behavior
in freeway traffic, sometimes called “reverse lambda shape of the fundamental
diagram” [1, 2], “hysteresis” [3], “capacity drop” [4], “catastrophe theory” [5],
and the like. From the modeling side, there have since long been discussions
about an analogy to a gas-liquid transition [6, 7], and recent work has estab-
lished traffic models which display deterministic versions of a liquid-gas-like
transition [8, 9].

Yet, measurements by Cassidy [10] indicate that there can be stable homo-
geneous flow at all densities. Many of the “reverse lambda” observations could
also be caused by geometrical constraints, in the following way [11]. A bottle-
neck downstream of a measurement location can cause the following temporal
sequence of measurements: (1) The system starts with low flow at low densi-
ties. – (2) Both flow and density keep increasing, along the “free flow” branch
of the fundamental diagram. – (3) This flow can be larger than what can flow
through the bottleneck. Then, a queue starts forming at the bottleneck, but
that does not immediately influence the measurement. – (4) Eventually, the
queue will have spilled back to the measurement location. At that point in
time, data points will move to a much higher density, while the flow value will
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drop to the bottleneck capacity. It can take up to 20 minutes for the transition
zone (transition from free flow to queue) to traverse a fixed detector location,
leading to fundamental diagram data points that lie between the free flow
and the queue state [11]. This mechanism generates data that looks similar to
data that one would expect from a spontaneous breakdown in a homogeneous
system, as explained above. Unfortunately, many of the published data sets
do not provide enough information about the geometrical layout and the full
spatio-temporal picture of the dynamics in order to resolve this question.

Because measurement locations upstream of bottlenecks generate funda-
mental diagrams that in the past were used to support the spontaneous break-
down hypothesis, at this point few measurements remain that can truly be
used to help with the question. The maybe strongest empirical evidence for
spontaneous breakdown is an experiment where a number of vehicles drive in
a spatially homogeneous circle for an extended period of time [12]. In that
experiment, traffic remains laminar for many minutes, but eventually “breaks
down” into a stop-and-go pattern. Other evidence is indirect: Assume homo-
geneous traffic operating at a certain density, and assume the introduction
of a strong disturbance, say by stopping one car for several seconds. If the
introduced disturbance heals out over time, then homogeneous traffic at that
density is stable; if the disturbance grows over time, then the homogeneous
solution is unstable at this density. This implies that stable jams, embedded
in laminar traffic, support the spontaneous breakdown hypothesis. There are
at least three references (Figs. 2 and 3 in [4]; Fig. 3 in [13]; Fig. 4 in [14])
where the data in fact points to the existence of a stable jam, embedded both

upstream and downstream in free traffic, and where the outflow from the jam
is lower than the inflow. In the 2nd and the 3rd of these references, one can in
addition see that the jam is remaining compact. In the 1st of these references,
the data to decide this question is not sufficient.

This question is not just academic. The correct use of technical devices
such as ramp metering [15] or adaptive speed limits [16] depends on the an-
swer. For example, let us assume that the homogeneous solution is unstable
in a certain density range, and that the alternative stop-and-go solution has a
lower throughput than homogeneous traffic at the same density. In this case,
the task of ramp metering might be to keep the density away from the unstable
range. If density approaches this value, on-ramp traffic should be reduced.

If, in addition, breakdown is probabilistic, that is, the homogeneous solu-
tion can survive for certain amounts of time, then the question becomes which
risk of breakdown one would be willing to accept. Accepting higher flow rates
in the ramp metering algorithm might increase average throughput, but it
might also increase the probability of breakdown. There is discussion to in-
clude aspects of stochastic transitions into the Highway Capacity Manual [17].

If, in contrast, the homogeneous solution is stable everywhere, then the po-
tentially positive effects of ramp metering need to be derived from something
other than breakdown.
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Given this state of affairs, it makes sense to look at modeling. The task is
to understand which model solutions are possible at all. This understanding
will lead to the predictions of additional features that will go along with one
mechanism or the other, and it might be possible to measure them, and so
the issue will hopefully be eventually resolved.

It is important to note that this paper looks at the issue of spontaneous
jam formation in a spatially homogeneous system, e.g. traffic in a long closed
ring. In order to be clear about that, the term “spontaneous phase separa-
tion” will be used. This is different from boundary-induced phases, such as
queues upstream of bottlenecks. Boundary-induced phases are clearly impor-
tant in traffic, possibly more important than the issue of spontaneous phase
separation. Nevertheless, the issue of spontaneous phase separation needs to
be understood before conclusive statements on boundary-induced phases can
be made.

This paper starts with Sec. 2 which recalls the general idea of a gas-liquid
transition. Sec. 3 describes the simulation setup including the car following
model that is used, discusses space-time plots of the resulting dynamics, and
investigates transients vs. the steady state. Sec. 4 then establishes how a
coexistence state can be numerically detected for a given model. Sec. 5 reports
similar results for cellular automata (CA) models. Sec. 6 discusses how these
results relate to deterministic models; the paper is concluded by a discussion
and a summary.

2 Phases and phase transitions

The analogy between a gas-liquid transition and the laminar-jammed transi-
tion of traffic was pointed out many times (e.g. [7, 9]). The description of traffic
in the well-known 2-fluid-model [18] assumes the existence of two phases; and
all simulation models which use spatial queues (e.g. [19–21]) will display two
phases because of the definition of the dynamics. The two phases in models
with queues are however much easier to understand than the phases in more
realistic models.

In a gas-liquid transition, one observes the following (Fig. 1):

• In the gas state, at low densities, particles are spread out throughout the
system. Distances between particles vary, but the probability of having
two particles close to each other is small.

• In the liquid state, at high densities, particles are close to each other.
There is no crystalline structure as in solids, but the density is similar.
Because of the fact that the particles are so close to each other, it is
difficult to compress the fluid any further.

• In between, there is the so-called coexistence state, where gas and liquid
coexist. In typical experiments in gravity, the liquid will be at the bottom
and the gas will be above it. Without gravity, droplets form within the gas
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Fig. 1. Schematic representation of the gas-liquid transition in one dimension.
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Fig. 2. (a) “Standard” pressure-temperature (PT) diagram with critical point. For
T > Tc or p > pc, there is no gas-liquid transition any more. In that case, dis-
tinguishing between liquid and gas phases does not really make sense. (b) Phase
diagram of the gas-fluid model as a function of the density and the temperature T .

and remain interdispersed. The droplets will slowly merge together into
bigger droplets (coagulation). The final state of the system is having one
big droplet of liquid, surrounded by gas.
If a system in the coexistence state is compressed, more droplets form
and/or existing ones grow, but the density both inside and outside the
droplets remains constant. That is, the system reacts by allocating more
space to the liquid, but not by changing the density either of the gas or the
liquid. Let us call those two densities ρ1 and ρ2, with ρ1 < ρ2. Eventually,
all the space is used up by the liquid. At this point, the system will be
homogeneous again and remain so if density is increased further.

The above picture is probably known to many people, e.g. from high school
or undergraduate physics. Still, it is important to be clear about the details.
The above description refers to a view where temperature is kept constant and
volume is controlled. With regards to pressure, one should recall that pressure
does not change in the coexistence state. If one uses pressure instead of volume
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as the control parameter, then there is no finite range of control parameter
values where the system is in coexistence (Fig. 2(a)). For the traffic analogy,
it will be important to use volume as the control parameter. The inverse of
volume is system-wide density, which is a more common variable for traffic
systems. It is, however, important to distinguish system-wide density, which
we will denote by ρL = 1/V , from any local density.

Also note that the above description refers to two phases, called “liquid”
and “gas”, but to three states, called “liquid”, “gas”, and “coexistence”. The
first two states are homogeneous states, since they contain only one phase and
are thus spatially homogeneous. The coexistence state contains both phases
together.

The above picture is correct in equilibrium, which essentially means after
waiting “long enough” while the system is at a fixed ρL. If one compresses the
system rather quickly beyond ρ1, then the system is not able to immediately
re-organize into droplets: Some time is necessary to achieve this.

The kinetics of the droplet formation (e.g. [22]) is ruled by a balance
between surface tension and vapor pressure. Since surface tension pulls the
droplet together, it increases the pressure inside the droplet. This interior
pressure pushes water molecules out of the droplet. Vapor pressure outside
the droplet is the balancing force – it pushes particles into the droplet.

Surface tension and thus interior pressure depend on the droplet radius –
the smaller the droplet, the larger the surface tension and thus the interior
pressure. The result is that slightly above ρ1 large droplets are stable, but
small droplets are not. Stable and unstable droplets are separated by a critical
radius rc(ρ): Droplets smaller than rc in the average shrink and thus in the
average eventually dissolve; droplets larger than rc in the average grow.

When ρL comes from a low density, the homogeneous phase can survive
for some time even slightly above ρ1, because small droplets are suppressed,
while large droplets are not (yet) there. This super-critical gas is thus meta-

stable. Only after some waiting time one or more droplets will become, by a
fluctuation, large enough to go beyond rc, at which point these droplets will
continue to grow until they have swallowed up enough molecules to reduce the
gas density outside the droplets to ρ1. A direct consequence of meta-stability
is hysteresis : When coming from low densities, it is possible to have ρL > ρ1

and still remain in the gas phase.
The description so far refers to a constant temperature. However, ρ1 and

ρ2 depend on the temperature (Fig. 2(b)). With increasing temperature the
densities approach each other, meaning that the densities inside and outside
the droplets become more similar. Eventually, there is a temperature Tc where
ρ1(Tc) = ρ2(Tc). At this point, the densities inside and outside the droplets
become the same, which means that they become indistinguishable. In other
words: for T ≥ Tc there is no coexistence state any more; the system is
homogeneous at every density ρL.

Said again differently: Depending on the temperature T , our system will ei-
ther display spontaneous transitions between gas and coexistence and between
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coexistence and liquid, or there will be no spontaneous phase separation at all.
(In that latter case, boundary-induced phase separation is still a possibility.)

We will now move on to describe the supporting evidence for the claim
that traffic models can show a similar behavior. As is typical in computational
science, our evidence is based on computer simulations. It is backed up by
generic knowledge about phase transitions as they are well understood in
physics.

3 Simulations

In this paper, we will start by using the model by Krauß [23]. As one will see
in Sec. 5, the precise details of the model do not really matter. Nevertheless,
they are given for technical completeness. The velocity update of the Krauß
model reads as follows:

vsafe = ṽ(t) +
g(t)
τ − ṽ(t)

v̄(t)/(b τ) + 1
(1)

vdes = min{v(t) + a ∆t, vsafe, vmax} (2)

v(t + ∆t) = max{0, vdes − ε a η} . (3)

g is the gap (front-bumper-to-front-bumper distance minus space a vehicle
uses in a jam), ṽ is the speed of the car in front, v̄ = (v + ṽ)/2 is the average
velocity of the two cars involved, vmax is the maximum velocity, a is the
maximum acceleration of the vehicles, b their maximum deceleration for ε = 0,
ε is the noise amplitude, and η is a random number in [0, 1]. The meaning of
the terms is as follows:

• Eq. 1: Calculation of a “safe” velocity. This is the maximum velocity that
the follower can drive to be sure to avoid a crash [23]. The equation states
that the follower tries to have the same velocity as the leader, with a gap
proportional to the leader’s velocity: g = τ ṽ. If the gap is larger than
that, vsafe is larger than the velocity of the leader; if the gap is smaller
than that, then vsafe is smaller than the velocity of the leader.

• Eq. 2: The desired velocity is the minimum of: (a) current velocity plus
acceleration, (b) safe velocity, (c) maximum velocity (e.g. speed limit).

• Eq. 3: Some randomness is added to the desired velocity.

After the velocities of all vehicles are updated, all vehicles are moved.
The Krauß model has been proven to be free of crashes for numerical

time steps ∆t smaller than or equal to the reaction time, τ [23]. We will use
∆t = τ = 1 as has conventionally been used for the Krauß model. We further
use a = 0.2, b = 0.6, vmax = 3 for all simulations.

The model as defined above is free of units. A reasonable calibration is:
one time unit corresponds to one second, and one space unit correspond to
7.5 meters, which is the space that a vehicle occupies in a jam. The reaction



8 D. Jost, K. Nagel

time is then 1 second, and vmax = 3 corresponds to 22.5 m/s or 81 km/h.
a = 0.2 means a maximum acceleration of 1.5 m/s (5.4 km/h) per second.
b = 0.6 corresponds to a maximum deceleration of 16.2 km/h per second.

All simulations are done in a 1-lane system of length L with periodic
boundary conditions (i.e. the road is bent into a ring). Let N be the number
of cars on the road. The (global) density is ρL = N/L.

Before analysing the Krauß model quantitatively, it is instructive to look
at space-time plots (Fig. 3). The following refers to the subfigures (i)–(vi) of
Fig. 3. They are arranged so that they correspond to Fig. 2(b). The bottom

row corresponds to a smaller noise amplitude ε = 1.0. One recognizes

(iv)The laminar state: All cars drive at high speed. The available space is
shared evenly among the cars. The traffic is homogeneous.

(v) The coexistence state: The slow cars are all together in one big jam. On the
rest of the road, the cars drive at high speed. In consequence, the traffic
is very inhomogeneous.

(vi)The jammed state: The density is so high that no single car can drive fast.
As in (iv), the traffic is homogeneous.

In contrast, the top row (i)–(iii) corresponds to a larger noise amplitude ε =
1.8. Here, many small jams are distributed over the whole system. There is
neither a larger area of free flow, nor a major jam. The traffic is homogeneous
at all densities. Note that “homogeneous” here means “homogeneous on large
scales”. In (i) and (ii), there is structure, i.e. small jams and laminar flow, but
these are not visible when looking at the plots from a distance. In contrast,
the coexistence state, as in (v), will never look homogeneous (see Sec. 4 for a
more technical version of this).

For many parameters of the Krauß model, there is a unique equilibrium
state, which the system will attain after a finite time trelax, no matter how
it was started. Deciding when the equilibrium is reached is not trivial. Our
criterion was to look at the number of jams in the system (Fig. 4). The sys-
tem was once started with equidistant vehicles (maximally homogeneous) and
once with all vehicles in a “mega-jam” (maximally inhomogeneous). Initially,
the number of jams in the system shows very different behavior in those two
simulations. However, eventually that number becomes the same in both sim-
ulations, at which point it was assumed that equilibrium was reached. A jam

here is defined as a sequence of adjacent cars driving with speed less or equal
vmax/2. This definition of a jam is used nowhere else in this paper; it is only
used to decide how long a simulation needs to run until one can assume that
it has reached equilibrium.
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(i) ε = 1.8, ρ = 0.2 (ii) ε = 1.8, ρ = 0.3 (iii) ε = 1.8, ρ = 0.75

↑ above Tc

↓ below Tc

(iv) ε = 1.0, ρ = 0.2 (v) ε = 1.0, ρ = 0.3 (vi) ε = 1.0, ρ = 0.75

Fig. 3. Space-time plots for different parameters. Space is horizontal; time increases
downward; each line is a snapshot; vehicles move from left to right; fast cars are
green, slow cars red. L = 600 for all plots.

4 Establishment of a phase diagram via a measure of

inhomogeneity

One needs to establish a criterion that distinguishes homogeneous from co-
existence states. As pointed out before, coexistence states, for example at
ε = 1.0 and ρ = 0.3 in our model, see Fig. 3(v), are characterized by the
coexistence of laminar and jammed traffic. Inside the coexistence regime, the
phases coagulate, leading to one large laminar and one large jammed section
in the system. When approaching the boundaries of the coexistence regime,
this characterization will become less clear-cut, and it may be possible to have
more than one jam. Typically, there will be one major jam and many small
ones, and for many measurement criteria this will cause enough problems to
no longer be able to differentiate between the coexistence and a homogeneous
state. This is particularly true for criteria that attempt a binary classifica-
tion into homogeneous or not. In contrast, our criterion will show a gradual
transition.

The criterion is defined as follows: Partition the road into segments of
length ` (for simplicity let ` divide L without remainder). For each segment
the local density ρ` can be computed as the number of cars in that segment
divided by `. An interesting value is the variance of the local density (see, e.g.,
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Fig. 4. Time evolution of the number of jams. All four curves are for 1000 cars and
ρ = 0.3. Each curve is an average over at least 80 realizations, each with a different
random seed.

[24]):

Var(ρ`) =
`

L

L/`
∑

i=1

(ρ`(i) − ρL)
2

, (4)

where ρL is the systemwide average density. Note that since density values
always lie within [0, 1], the variance cannot exceed 1/4.

This value picks up how much each individual measurement segment of
length ` deviates, in terms of its density, from the average density. Assume
a system consisting of jammed and laminar traffic. If there is a jam in one
segment, then the segment’s density will be much higher than the average
density. Conversely, if there is only laminar traffic in a segment, then the
segment’s density will be much lower than the average density. Var(ρ`) takes
the average over the square of these deviations.

Fig. 5 shows this value as a function of the global density ρ and the noise
parameter ε. Each gridpoint is the result of a computer simulation. The simu-
lations run until the average number of jams over the last 100’000 time steps
is (almost) equal for a system started with a big jam and a system started
with laminar flow (recall Fig. 4). The variance of the local density is averaged
over those same 100’000 time steps.

Look at Fig. 5 for fixed noise ε, say ε = 1. One sees that at densities up to
ρ ≈ 0.2, the value of Var(ρ`) is close to zero, indicating a homogeneous state,
which is in this case the laminar state. Similarly, for densities higher than 0.8,
Var(ρ`) is again close to zero, indicating a homogeneous state, which is in this
case the jammed state. In between, for 0.2 ≤ ρ ≤ 0.8, the value of Var(ρ`) is
significantly larger than zero, indicating a coexistence state.

Now slowly increase ε. We see that the two critical densities approach each
other (see Fig. 5). At ε ≈ 1.7, the coexistence phase goes away; for larger ε,
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Fig. 5. 3d-plot and contour plot of the density variance for the Krauß model. Both
plots show the same data. The outermost isoline is Var(ρ`) = 0.01, the innermost
Var(ρ`) = 0.09. L = 1000 and ` = 62.5

we do not pick up any inhomogeneity at any density (look at the contour
plot in order to get information about behavior not visible in the 3d plot).
Compare this to the theoretical expectation in Fig. 2(b), where for increasing
T the two densities eventually merge and thus the different phases go away.
Note that close to but slightly above the critical ε, the system still looks like it
possesses different phases (see Fig. 3(i) and locate the corresponding ε = 1.8
and ρ = 0.2 in Fig. 5). These structures exist, however, on small scales only.
This means that for system size L → ∞ and measurement interval ` → ∞
(but ` � L), all intervals of size ` will eventually return the same density
value. A segment length of ` = 62.5, as used for Fig. 5, is already sufficient
in order to not measure any inhomogeneity for the states in Fig. 3(i) and (ii).
This will not be the case for coexistence states: In coexistence state, there
will always be segments with different densities, unless ` ≈ L. This is because
droplets will coagulate so that they will eventually show up on all possible
length scales `.

Remember again that ε is a model parameter while ρ is a traffic observable.
That is, once one has settled for an ε, the model behavior is fixed, and one has
decided if one can encounter spontanoues phase separation (= spontaneous
jam formation) or not. If one can encounter spontaneous phase separation, it
will come into existence through changing traffic demand throughout the day
– traffic can move from the laminar into the coexistence and potentially into
the jammed state and back.

As a side remark, let us note that there is also another regime without
spontaneous phase separation for ε → 0. Albeit potentially interesting, this is
outside the scope of this paper.

In summary, one obtains, for the above traffic model and a spatially ho-
mogeneous geometry, a phase diagram as in Fig. 2(b), which is the schematic
phase diagram for a gas-liquid transition in fluids. Again, the important fea-
ture of this phase diagram is that there are three states for low temperatures



12 D. Jost, K. Nagel

(small T or small ε): gas/laminar; coexistence; liquid/jammed. For higher
temperatures, the coexistence range becomes more and more narrow, while
the density of the gas phase and the density of the liquid phase in the coex-
istence state approach each other. Eventually, these densities become equal,
and the coexistence state dies out. The only notable difference is that for our
traffic model the phase diagram is bent to the left with increasing ε.

There are other criteria which can be used to understand these types of
phase transitions. In particular, one can look at the gap distribution between
jams, and one would expect a fractal structure at the critical point, i.e. at
ρ ≈ 0.2 and ε ≈ 1.7. This is indeed the case but goes beyond the scope of this
paper; see [25] for further information.

5 Cellular automata models

Many of the arguments regarding the nature of a stochastic and possibly criti-
cal phase transition [26–30] have been made using so-called cellular automata
(CA) models. CA models use coarse spatial, temporal, and state space res-
olution. For traffic, a standard way is to segment a 1-lane road into cells of
length lc, where lc is the length a vehicle occupies in the average in a jam,
i.e. lc = 1/ρjam ≈ 7.5 m. Cells are either occupied by exactly one car, or
are empty. Vehicles move by jumping from one cell to another. As with the
Krauß model, the time step for the CA models is best selected similar to the
reaction time; a time step of 1 second works well in practice. Taking this time
step together with lc, one finds that a speed of 135 km/h corresponds to five
cells per time step; this is often taken as maximum velocity vmax.

A possible CA velocity update rule is [31]:

• Deterministic car driving:

vt+ 1

2

= min[gt, vt + 1, vmax] , (5)

where gt is the gap (number of empty cells ahead) at time t.
• Randomization:

vt =

{

max[0, vt+ 1

2

− 1] with probability pslow(vt)

vt+ 1

2

else
, (6)

where pslow(v) is a velocity-dependent randomization. Often-selected val-
ues are

pslow(v) =

{

p0 = 0.5 if vt = 0

p>0 = 0.01 if vt > 0
.

which models that drivers, once stopped, are a bit sloppy in re-starting
again. p>0 = p0 = 0.5 returns the CA of [32].
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Fig. 6. 3d-plot and contour plot of the density variance for the CA model. Both plots
show the same data. Instead of the noise parameter ε, the randomness-parameter
p>0 is varied from zero to one.

With this family of models, one can again plot the density variance (Fig. 6).
Instead of the noise amplitude ε, the parameter p>0 is used. p>0 = 0 means de-
terministic driving except when accelerating from zero; increasing p>0 means
increasingly more randomness when moving. In Fig. 6, one finds a behavior
similar to Fig. 5: For small p>0, the system displays three states (laminar,
coexistence, and jammed). For p>0 → 0.5, the system becomes eventually a
system without spontaneous phase separation.

From this plot, it is impossible to decide exactly at which p>0 the transition
from a model with to a model without spontaneous phase separation takes
place. Nevertheless, this plot makes clear why there was so much discussion
about possible fractals for the original model [32] in which p>0 = 0.5: That
model is indeed close to the critical point, and in consequence one should
expect fractals up to a certain cut-off length scale. That cut-off length scale
should depend on the distance to the critical point; further investigations are
necessary to exactly determine the correct value of the critical point.

6 Phase transitions in deterministic models

Only stochastic models can display spontaneous transitions between homoge-
neous and coexistence states. The nature of the transition can however also
become clear in deterministic models. We will discuss these similarities first for
a deterministic car following model and then for deterministic fluid-dynamical
models.

A possible car-following model is [33]

a(t) = α · (V (g(t)) − v(t)) , with V (g) = vf · (tanh(g + lc)− tanh(lc)) , (7)

where a is the acceleration, g is again the gap, V (.) is a desired velocity, lc
is the space a vehicle occupies in a jam (7.5 m in the previous models), and
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vf is the free speed. For this model, it was shown [9] that the homogeneous
solution of the model is linearly unstable for densities where dV/dg > α/2.
The instability sets in for intermediate densities; for low and high densities
all models are stable in the homogeneous (laminar or jammed) state. One can
thus select the curve V (g) and the parameter α such that the model either
has unstable ranges, or not. If all parameters, including the density, are such
that the homogeneous solution is not stable, then the system rearranges itself
into a pattern of stop-and-go traffic, corresponding to the coexistence state.
The density of the laminar and the jammed phase in the coexistence state are
independent from the average system density, that is, if in that state system
density goes up, it is reflected in the jammed phase using up a larger fraction
of space.

Fluid-dynamical theory, of the type

∂tρ + ∂x(ρ v) = 0 (8)

∂tv + v ∂xv =
1

τ
(V (ρ) − v) + α(ρ) ∂xρ + ν(ρ) ∂2

xv (9)

can, depending on the choice of parameters including the V (ρ)-curve, either
display or not display spontaneous phase separation [34]. For example, the
homogeneous solution of the model with α(ρ) = c2

0/ρ and ν(ρ) = ν0 is lin-
early unstable at densities where |dV/dρ| > c0/ρ [34]. This is similar to the
instability condition for the car following model above; note that V ′(ρ) and
V ′(g) are, albeit related, not the same.

As pointed out before, these models are deterministic. In no situation will
these models display stochastic transitions.

7 Discussion

As mentioned in the introduction, there is discussion in the literature if traffic
shows spontaneous jam formation, or if all jams are caused by geometrical
constraints such as bottlenecks. That discussion was in the past hampered
by the fact that no clear picture for spontaneous jam formation in stochas-
tic models was available: The introduction of the slow-to-start CA (s2s-CA)
models was guided by the observation that the original CA [32] model did
not display true meta-stability, but no convincing overall picture emerged.
In particular, it was never clarified if or why the origial CA displayed frac-
tal properties, and how these fractal properties change when moving towards
s2s-CA models. In contrast, the present paper allows, for people sufficiently
versed in the theory, a clear prediction: The original CA should display frac-
tal properties up to a certain cut-off; that cut-off should become larger and
eventually diverge with decreasing p>0; it should then become smaller again,
until eventually one cannot speak of fractals any more.

In addition, better understanding allows to make better predictions for
properties besides spontaneous breakdown. For example, one would predict
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that a traffic queue, when operating at an average density between ρ1 and ρ2,
would show phase separation; those phases should have the densities ρ1 and
ρ2, and they should coagulate with increasing distance from the bottleneck.
Unfortunately, coagulation is a slow process, and for that reason once more
the issue cannot be resolved easily.

8 Summary

This paper shows, via computational evidence, that a specific stochastic car
following model can either display or not display spontaneous phase separa-
tion, depending on the choice of parameters. The two phases are: “laminar”,
and “jammed”. Models with spontaneous phase separation possess two ho-
mogeneous states, which correspond to the phases. They also possess a third
state, at intermediate densities, which is a coexistence state. It consists of
sections with jammed and sections with laminar traffic.

With respect to cellular automata (CA) models, it turns out that one of
the early CA models for traffic [32] is a model without spontaneous phase sep-
aration, but close to such a model, which explains the near-fractal structures
which have been observed. In contrast, the so-called slow-to-start models [31]
display clear phase separation.

Some of these findings can also be understood by looking at determin-
istic models for traffic, either car-following or fluid-dynamical. However, the
stochastic elements of the transition cannot be explained by deterministic
models. An important stochastic element is meta-stability, which means that a
“super-critical” homogeneous state can survive for long times before it “breaks
down” and reorganizes into stop-and-go traffic.

It is important to understand this possibility of stochastic models to be
in different regimes if one considers to enter the notion of traffic breakdown
probabilities into the Highway Capacity Manual. If traffic is best described by
a model without spontaneous phase separation, then there is, in our view, no
theoretical justification for (spontaneous) breakdown probabilities. If, how-
ever, traffic is best described by a model with spontaneous phase separation,
then such breakdown probabilities make sense.
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11. J. C. Muñoz and C. F. Daganzo. Structure of the transition zone behind freeway
queues. Transportation Science, 37(3):312–329, 2003.

12. Y. Sugiyama, A. Nakayama, M. Fukui, M. Kikuchi, K. Hasebe, K. Nishinari,
S.-i. Tadaki, and S. Yukawa. Observations, theories, and experiments for free-
way traffic as physics of many-body system. In M. Schreckenberg P. Bovy,
S. Hoogendoorn and D.E. Wolf, editors, Traffic and granular flow ’03. in press.

13. B. S. Kerner and H. Rehborn. Experimental properties of complexity in traffic
flow. Phys. Rev. E, 53(5):R4275–R4278, 1996.

14. B. S. Kerner and H. Rehborn. Experimental properties of phase transitions in
traffic flow. Phys. Rev. Letters, 79(20):4030–4033, 1997.



Probabilistic Traffic Flow Breakdown In Stochastic Car Following Models 17

15. B. Persaud, S. Yagar, D. Tsui, and H. Look. Breakdown-related capacity for
freeway with ramp metering. Transportation Research Record, 1748:110–115,
2001.

16. H. Zackor, R. Kühne, and W. Balz. Untersuchungen des Verkehrsablaufs im
Bereich der Leistungsfähigkeit und bei instabilem Fluß. Forschung Straßen-
bau und Straßenverkehrstechnik 524, Bundesminister für Verkehr, Bonn–Bad
Godesberg, 1988.

17. L. Elefteriadou. Personal communication, Nov 2001.
18. R. Herman and I. Prigogine. A two-fluid approach to town traffic. Science,

204:148–151, 1979.
19. DYNAMIT www page. See its.mit.edu and dynamictrafficassignment.org, ac-

cessed 2003.
20. DYNASMART. See www.dynasmart.com and dynamictrafficassignment.org,

accessed 2003.
21. C. Gawron. An iterative algorithm to determine the dynamic user equilibrium in

a traffic simulation model. International Journal of Modern Physics C, 9(3):393–
407, 1998.

22. E.M. Lifschitz and L.P. Pitajewski. Statistische Physik, Teil 1. Lehrbuch der
Theoretischen Physik. Akademie-Verlag, 1987.

23. S. Krauß. Microscopic modeling of traffic flow: Investigation of collision free
vehicle dynamics. PhD thesis, University of Cologne, Germany, 1997. See
www.zaik.uni-koeln.de/~paper.

24. D. Helbing and T. Platkowski. Drift- or fluctuation-induced ordering and self-
organization in driven many-particle systems. Europhysics Letters, 60(2):227–
233, 2002.

25. D. Jost. Breakdown and recovery in traffic flow models. Master’s thesis, ETH
Zurich, Switzerland, 2002. See e-collection.ethbib.ethz.ch.

26. K. Nagel. Life-times of simulated traffic jams. International Journal of Modern
Physics C, 5(3):567–580, 1994.

27. K. Nagel and M. Paczuski. Emergent traffic jams. Phys. Rev. E, 51:2909–2918,
1995.

28. M. Sasvari and J. Kertesz. Cellular automata models of single lane traffic. Phys.
Rev. E, 56(4):4104–4110, 1997.
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