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RESUMEN

Resumen —

Las aplicaciones de datos paralelos se componen de varios procesos que

aplican el mismo cómputo (kernel) a diferentes conjuntos de datos. Además,

durante su ejecución, estas aplicaciones necesitan comunicar resultados parciales.

Las plataformas heterogéneas son aquellas donde cada recurso de cómputo

del sistema es probablemente diferente a los otros, y están compuestas por

aceleradores. La conexión entre los elementos se realiza mediante redes de

diferente rendimiento y características. Estos tienen que trabajar juntos para

ejecutar una aplicación o resolver un problema, lo cual es lo complicado de este

escenario. Por ello, el problema del equilibrado de carga de las aplicaciones

paralelas de datos en plataformas heterogéneas se está investigando y resolviendo

mediante distribuciones no uniformes de la carga de trabajo entre todos los

recursos disponibles. Este problema se ha demostrado NP-Completo. La

literatura ha desarrollado varias heurísticas para encontrar soluciones óptimas

en las que diferentes modelos de rendimiento de computación y comunicación se

utilizan como métrica en los algoritmos de partición. Los modelos nos permiten

describir el funcionamiento del sistema, mientras que las heurísticas son el enfoque

que se utiliza para encontrar una solución satisfactoria. Discutimos el papel de

estos modelos y, finalmente para mejorar estos enfoques heurísticos, sustituimos

métricas basadas en volumen de comunicaciones por una métrica basada en los

tiempos de comunicaciones. Estos tiempos son obtenidos mediante un modelo
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analítico a través de una herramienta simbólica que manipula, evalúa y representa

el coste de la comunicación de una partición con una expresión analítica utilizando

el modelo de rendimiento de comunicación τ–Lop.

Palabras clave — Modelado de Rendimiento en Comunicaciones, Modelos

Funcionales de Rendimiento de Cómputo, Plataformas Heterogéneas, Algoritmos

de Particionamiento, Optimización de la Comunicación, Kernels de Datos

Paralelos.
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ABSTRACT

Abstract — Data-Parallel applications are composed of several processes that

apply the same computation (kernel) to different amounts of data. While

its execution, these applications need to communicate partial results. The

heterogeneous platforms are those where each computation resource of the

system is probably different from the others, and are composed of accelerators.

The connection between the elements is made through networks of different

performance and characteristics. These have to work together to execute

an application or solve a problem, which is the complicated part of this

scenario. Therefore, the load balancing problem of Data-Parallel applications

in heterogeneous platforms is being investigated and solved by non-uniform

distributions of the workload among all available resources. The objective of

this solution is to find a partition that minimizes the cost of computation

and communication, which is not trivial. This problem is demonstrated as

NP-Complete. The literature has developed several heuristics to find optimal

solutions where computation and communication performance models are used

as metrics in the partitioning algorithms. The models allow us to describe

the functioning of the system, while heuristics are the approach used to find

a satisfactory solution. We discuss the role of these models and finally, to

improve these heuristic approaches, we replace metrics based on communications

volume with a metric based on communication times. These times are

obtained through a symbolic tool that manipulates, evaluates and represents

the cost of communication of a partition with an analytic expression using the

vii
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communication performance model τ–Lop.

Keywords — Communication Performance Modeling, Functional Compu-

tation Performance Models, Heterogeneous Platforms, Partitioning Algorithms,

Communication Optimization, Data-Parallel Kernels.
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1
INTRODUCTION & MOTIVATION

There are some terms we should know to understand the scope of work. Data-

Parallelism applies computation to every single component of a data collection,

so the workload is directly proportional to the full size of data and dependent on

the data locality. This paradigm allows parallelism scaling with the amount of

data. Data-Parallel Kernels or kernels, are the main components of scientific

applications running on High Performance Computing Platforms (HPC). In

heterogeneous platforms, the kernel workload or data space is non-uniformly

distributed between all the processes in proportion to their features, specifically

in their computational capabilities (speed). With this, we can avoid the waiting

times of the faster processes with respect to the slow ones and obtain a balanced

workload. A key point here is to determine accurately the speed of a process.

There are two techniques used to represent the speed with a numerical value

or with a more elaborated function of the workload size. These techniques

are Constant Performance Models (CPM) and Functional Performance Models

1
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Figure 1.1: Communication channels, as shared memory and network, often
show far different performance. Note that neighbor data regions (probably
with higher interaction) have been assigned to processors linked by the slower
network channel. The overall result is that such partition introduces so significant
communication inefficiencies that may completely defeat the original balancing
purpose. A Communication Performance Model of the kernel should guide the
elaboration of load-balancing data-partitions of optimal communication costs.
Processes are represented as pi.

(FPM) respectively. The assigned area to every processor is directly proportional

to its speed. Lastovetsky et al., 2007 define si(x) as a function of the problem data

size x. To define the FPMs of the processors, a speed array is used representing

these speeds to their corresponding processor. With this, a certain partition is

created as we can see it in Figure 1.1, which is made up of rectangles assigned

to a specific processor. Each rectangle will use its computational resources to

process the amount of data given to it. These rectangles are characterized by

their position in the matrix by starting coordinates and dimensions. Therefore,

given a problem to be solved, the goal is to determine the shape of the rectangles

and their position in the partition to minimize the execution time of the kernel.

All the processors execute the same program, but applied to a different data

partition. The code typically executes a loop. Each step of the loop has two

phases, the communication with the rest of processes, and the computation of

2
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its own data in the rectangle. However, leaving aside the seminal mathematical

work of Beaumont et al., 2001, current practice on partitioning algorithms have

disregarded communication costs. The communication may have a determinant

influence in the overall execution time of a kernel. Therefore, a partition with

a balanced load in terms of computing can lead to this same partition having a

communication that affects the total time of execution of the kernel, and in this

way, the computational load balance process is useless. In this work we introduce

accurate predictions of the communication cost of a numerical kernel on a given

partition using an Analytical Performance Communication Model, with the aim

of using it in partitioning and optimization strategies.

The complexity of numerical kernels has grown in tandem with the complexity

of the underlying computing platforms. Accelerated computing, mostly

known nowadays as Heterogeneous Computing has quickly changed the High

Performance Computing field. Current HPC platforms are composed of multi-

core nodes and accelerators connected by networks of different performance and

features. Graphics processing units (GPUs) are increasing the energy efficiency of

a computing system by offering a good performance per watt ratio. As a result,

the usage of a GPU to accelerate an application has been a standard approach

for several years.

The motivation of this work is the evaluation of the cost of communications

as a metric for data partitioning in heterogeneous platforms to achieve an

improvement in the overall execution time and performance of a kernel. For

this we have modeled the communication based on specific parameters of the

platform where the kernels will be executed, knowing this way, the characteristics

and properties which defines the platform, an issue that will be explained later.

We use an analytical expression to predict the cost of communication. This

expression is applicable to any type of communication, either the estimation of

a complete kernel, a collective or a simple point-to-point communication. It is

quantified in terms of units of time. Until now, this communication metric has

not been modeled on heterogeneous platforms due to its lack of precision. We

3
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focus on the τ–Lop analytical communication performance model Rico-Gallego

et al., 2015; Rico-Gallego et al., 2017, because it considers contention and process

mapping, has a rich expressiveness and has demonstrated good accuracy on both

homogeneous and heterogeneous platforms.
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2
OBJECTIVES

This chapter presents the objectives of the Master Thesis. Studying certain

partitioning algorithms, we have detected possible improvements to introduce

in this scope. Therefore, using the τ–Lop library proposed by Rico-Gallego et al.,

2015; Rico-Gallego et al., 2017, we perform its deployment as a metric in this

type of partitioning algorithm. In addition, during the development of this work,

we find the need to perform a comprehensive measurement of the parameters

that make up this model, so, we explain the process performed in detail in order

to demonstrate the effectiveness of this measurement. Finally, we propose a

hierarchical heuristic that aims to improve others proposed by other authors in

their respective works. We will study an example of these proposals (Beaumont

et al., 2001), and we will improve their contribution. Thus, main contributions

of this Master Thesis are:

1. A new communication-based metric for data partitioning in heterogeneous

5
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platforms, based on the τ–Lop analytical performance model.

2. Prove flexibility and accuracy of the new approach for introducing new

heuristics to the partitioning algorithms based on new locality and

hierarchical orders.

Also, we can define specific secondary objectives during this document:

1. Carry out the measurement of the model parameters in different communi-

cation patterns and channels for a specific platform.

2. Analyze how the τ–Lop model adapts to the different kernels on HPC

platforms.

During this work we used a tool that mechanizes the construction and

evaluation of τ–Lop communication cost expressions, in particular those of hybrid

kernels which provides with a C++ procedural interface to represent and evaluate

any τ–Lop cost expression.

6
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3
A BRIEF REVIEW OF

COMMUNICATION PERFORMANCE
MODELS

An analytical communication performance model represents communications

as a parameterized formal expression which is evaluated to obtain the cost

of the communication. These expressions are represented in terms on time.

Communication performance models are characterized by a set of parameters

which are different for each platform due to its specific features. Firsts models

were proposed more than two decades ago for the clusters of that time, composed

by single processor nodes. LogP Culler et al., 1993, a foundational model for

the then-emerging homogeneous clusters represents the cost of a communication

by four parameters: L is the network delay, and represent the latency of the

network, o is the overhead or cycles that a CPU devotes to send the message, g

is the gap per message and represents the minimum time interval between two

7
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consecutive injections to the network, and, finally, P is the number of processes.

LogP model was improved by LogGP Alexandrov et al., 1995, which includes a

new parameter G (gap per message) allowing to represent the influence of the

network bandwidth in the transmission of large messages. In LogGP, shown in

Figure 3.1, the cost of a point-to-point transmission of a message of size m is

represented as: Tp2p(m) = 2 o+L+ (m− 1)G. More advanced models have been

later proposed, as PlogP Kielmann et al., 2000, that considers parameters gap

per message and overhead linear functions of the message size, achieving higher

accuracy.

Figure 3.1: Representation of the cost of a point-to-point message transmission
under the LogGP model, one message of size m = 5 at the left and two messages
at the right. Note that the gap delays the emission of the second message

Unlike the homogeneous case, modeling the cost of the communications

of current heterogeneous platforms is so far a relatively unexplored field, and

nonetheless a central one. Heterogeneous models proposals are the HLogGP

model Bosque et al., 2006, based on LogGP, the LMO model Lastovetsky et

al., 2006, based on the Hockney model, and lately τ–Lop Rico-Gallego et al.,

2017. The scalar parameters of LogGP are expanded in HLogGP to represent the

os, or and g as vectors of P components, where P is the number of processors

in the machine. L and G now depend on each pair of processors in the

network, so they become matrices of P × P components. A problem of this

model is that the parameters have to be measured for each pair of processors

in the system, and hence, the number of tests is of order O(P 2). The cost

expression of a point-to-point message transmission between processors pi and

8
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Figure 3.2: τ -Lop p2p cost analysis T 0
p2p(m) of a shared memory transmission of

a message split up in k = 3 segments of size S. The transmission entails four
steps and six transfers (arrows).

pj can be represented as Ti→j(m) = Lij + oSi
+ oRj

+ (m − 1)Gij. LMO model

targets the impact of the heterogeneity of the processors on the communication

cost of a set of operations, namely point-to-point, one-to-many (scatter and

gather) and broadcasting. The cost of a message transmission is defined as

Ti→j(m) = Lij + Ci + mti + Cj + mtj + m
βij

, where Ci is the fixed processing

delay of process pi, ti is the per-byte delay, Li j is the fixed network delay, and βij

is the transmission rate of the channel connecting the processors pi and pj. Like

HLogGP, the number of parameters is of order O(P 2) in a generalized P -node

cluster. τ–Lop, shown in 3.2, is an analytical communication performance model

that considers contention and process mapping with a rich expressiveness and has

demonstrated good accuracy on both homogeneous and heterogeneous platforms

Rico-Gallego et al., 2017. τ–Lop will be explained later in Section 5.1.

9
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4
PROBLEM DEFINITION

We studied a load-balanced partition of a 2D data-space between a set of processes

characterized by different computing power based on Beaumont et al., 2001 as a

formal optimization problem. They also proposed a heuristic with its variables,

constraints and objective function based on dynamic programming which builds

a column-based partition. The solution of Beaumont et al., 2001 is explained in

Section 6.1.

Collective operations is a concept in parallel computing in which data is

simultaneously sent to or received from many processes. Models described in

Chapter 3 lead to a poor expressive power on collective operations. They ignore

the network topology and the contention in the network channels. As a result,

they are not able to accurately capture the cost of the complex patterns which

arise in the communication phases of data-parallel kernels. The growing trend to

heterogeneous computing poses hence substantial challenges for modeling their

communications:

10
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pi ma mb

pj mdmc

[Tc (ma)+Tc (mb)] || [Tc (mc)+Tc (md)]0 1 0 1

t0 t1t1

time

t2 t3 t4

Figure 4.1: Cost modeling scenario commonly found in heterogeneous platforms.
Processes pi and pj transmit a sequence of two messages of different size through
two different communication channels c0, in white, and c1, in grey. The processes
compete for c0 from t0 to t1. Later for c1 from t2 to t3. Above is the overall τ–Lop
cost, an expression hard to evaluate in practice.

1. Accuracy: The prediction of the communication times of a certain partition

in an accurate way is very important due to the high impact that this can

have on the total execution time in the current heterogeneous platforms.

To do this, we use τ–Lop communication performance model and we

demonstrate its accuracy with respect to real communication times.

2. Contention awareness: This is a very important aspect to take into account

as it significantly influences communication times, and is also one of the

main contributions of the τ–Lop model. Transmission are represented in

Figure 4.1, that are made by the processes by sending a message through

a channel. Contention represents the number of concurrent transmissions

through the same channel, which negatively influences the time it takes for

such transmission to finalize, since they all use the same channel.

3. Process mapping awareness: Process mapping directly influences communi-

cation cost. This can be seen in the Figure 4.2, where rectangles are made

by the amount of data given to a process in a specific node. This is because

the organization of the rectangles assigned to each process in a partition

can carry slow communications due to the fact that most communications

are made through slow channels. Nodes are represented with different col-

ors in Figure 4.2, what causes that communication between different nodes

are through network channel, and shared memory between processes on the

11
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Figure 4.2: A load-balanced partition can be altered afterward using a
Communication Performance Model. Note that the second tiling should be more
efficient in terms of communication costs.

same node.

4. Manageable cost expressions: The transmissions are represented as

expressions in τ–Lop model as we can see in Figure 4.1. These expressions

in heterogeneous platforms become unmanageable. Thus, we need tools for

supporting the automatic generation, composition and evaluation of cost

expressions. We used a tool named τ–Lop Tool in Section 5.2 which resolve

this situation.

Beaumont et al., 2001 calculate the communication time using the total

volume of data moved between processes. It represents the total volume of

communications, and is minimized as the rectangles become as square as possible.

The solution minimizes the volume of communication using as a metric the

sum of the half perimeters of the resultant rectangles. They discussed the

matrix multiplication of dense matrices using the SUMMA algorithm, described

in Section 5.2.3.

The rational behind this metric is that communication volume is proportional

to the perimeter of the resultant rectangles, which is minimized when rectangles

become as square as possible. They solve this optimization problem of the

communication volume with a integer program, which has three inputs: P

number of processes, size of the 2D data space (N2), and the speed vector

12
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S = {s1, s2, . . . , sP}, where si is the relative speed of the process pi. The objective

is to tile the data space using the proportional speed of the processes with P non-

overlapping rectangles of size ni = wi × hi, 1 ≤ i ≤ P . The program has various

restrictions. The two first restrictions (4.1a) and (4.1b) groups the whole data

space using the P non-overlapping rectangles for a good tiling. Last restriction

(5.1a) is used to balance the load of a single partition in a non-uniform way,

where every process is related with a rectangle of an area proportional to its

speed. Thus, every process spends the same ti = ni/si computational time in

solving its assigned rectangle, or at least, little differentiated computation times

ti = ni/si. The goal is to find a partition of the data space which minimizes the

communication cost.

P∑
i=1

ni = 1. (4.1a)

Rectangles are non-overlapping and tile the unit square. (4.1b)
n1

s1
=
n2

s2
= · · · = nP

sP
. (4.1c)

The total volume of Beaumont communication metric β disregards the real

time cost of communications. Facing the challenges above discussed requires

a more sophisticated metric capturing the characteristics of the heterogeneous

platform and the specific kernel communication patterns. We used τ–Lop

communication performance model proposed by Rico-Gallego et al., 2017 as an

alternative metric, an approach that should be able to output a more accurate

communication cost estimation. As pointed out in Chapter 3, a communication

performance model represents communications as a parameterized formal

expressions. The evaluation of this expression determines the cost of the

communication in terms of real time.

Once the problem is defined, in Chapter 5 we will study the τ–Lop Model to

know it in depth and how to apply it as a metric to the Beaumont problem

described in Section 6.1. Also, the measurements of the parameters for the

model included in Section 5.3 is a contribution of this Master Thesis. The

13
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implementation and explanation of this metric is described in Section 6.2.1, and

later we propose an alternative heuristic for data partitioning in Section 6.2.2.
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5
τ-LOP MODEL STUDY

Rather than the half-perimeter expression used for Beaumont algorithm β, the

new optimization objective is finding the partition which minimizes its τ–Lop

cost expression Θ, explained next. Thus, the full partition space generated by

Beaumont et al., 2001 algorithm is now reevaluated tagging each tiling with its Θ

value, superseding the total volume of communications metric β previously used.

To implement a metric based on τ–Lop, we must first know how this library

works. We will study that in this section, where we will learn the use of τ–Lop

and later use it as a metric in the implementation.

5.1 Model Description and Explanation

The τ–Lop communication performance model represents a point-to-point

message transmission as a sequence of data transfers. It can model following
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features:

1. Concurrent transfers: the channel bandwidth shrinks if the transfers are

transmitted at the same channel and time. This causes the memory

bandwidth gets exhausted. As a result, the cost grows linearly with the

number of cores.

2. Message segmentation: demands less intermediate memory because storing

the whole message is not needed. In addition, it speeds up the

communication progress by overlapping the sending of segments with their

reception.

3. Collectives: which implements the possibility to have multiples senders and

receivers simultaneously.

4. Protocol cost additions: limitations on buffer space impose MPI libraries to

set up communication protocols, such as rendezvous, so that sender waits

for receiver, who on arrival notifies the sender to proceed. Protocols charge

additional cost, mainly at the beginning of the communication.

τ–Lop is constituted by different parameters that explain below. Lc(m, τ),

known as the transfer time, is the cost of τ concurrent transfers of size m through

a communication channel c. oc(m), known as the message overhead, represents

the time to start the data injection into the channel. The different values oc(m)

and Lc(m, τ) are known as themodel parameters, specific for each target platform.

The number of transfers composing a transmission depends on the nature of the

used channels and the communication middleware. The shared memory channel

(c = 0), for instance, uses an intermediate memory buffer between source and

destination user buffers, so a transmission in shared memory needs two transfers,

with cost T 0
ptp(m) = o0(m) + 2L0(m, 1). This can be appreciated in Figure 5.1.

In a network channel (c = 1) as Infiniband, communication libraries usually take

advantage of its RDMA capabilities to transmit a message in only one transfer,

hence with a cost T 1
ptp(m) = o1(m)+L1(m, 1). As a transfer may flow with others
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Figure 5.1: A message transmission in τ–Lop is composed by two transfers on the
shared memory channel. p is the packing time which happen when the message
is not contiguous in memory, and L is the transfer time.

competing for the bandwidth of channel c, its cost Lc(m, τ) depends not only on

the message size m, but also on the number τ of such concurrent transfers.

The main distinguishing feature of τ–Lop is its ability to capture the fact that

the contention for the channel increases the cost of each individual transfer. τ–Lop

represents the cost of A concurrent transfers with the ‖ operator, defined so that

A ‖Lc(m, 1) = Lc(m,A) and more generally A ‖Lc(m, τ) = Lc(m,A × τ). The ‖

operator is then extended to the transmission level so that A ‖T c(m) represents

the cost of A concurrent transmissions of a message of size m contending for the

channel c.

T0
p2p(m) = o0(m) + 2L0(m, 1). (5.1a)

This can be appreciated in Figure 5.2 where two point-to-point transmissions

concurrently progressing through the shared memory channel. Each transmission,

with the cost defined by (5.1a), is composed of two transfers actually contending

for the communication channel, leading to an increase in the cost:

2 ‖T0
p2p(m) = 2 ‖ [o0(m) + 2L0(m, 1)] = o0(m) + 2L0(m, 2). (5.2a)

The concurrency of transfers has its impact on the cost of transmissions.

The expression A‖L(m,τ) represents the cost of A concurrent sets of in turn τ
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Figure 5.2: Cost of the concurrency of two transmissions in shared memory
through a intermediate buffer expressed in terms of τ–Lop.

Figure 5.3: τ–Lop cost of stage 2 of a binomial broadcast, expressed in terms of
concurrent transfers.

concurrent transfers. It is defined as A‖L(m,τ) = L(m,A×τ).

As example of concurrent transmission in a homogeneous platform, the

binomial tree broadcast algorithm is used for instance for short messages and

a small number of processes. The number of involved processes grows with

successive stages, while the message size remains constant. The height of a

binomial tree of P processes is h(P ) = [log2(P )], and hence it requires [log2(P )]

stages.

Figure 5.3 illustrates the concept. It shows the pair of message transmissions

A=2 taking place at second stage of the binomial tree broadcast. One of

these transmission is the process p=8 sending to process p=12, and the next
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transmission is the process p=0 sending to process p=4. Both transmission

progress concurrently through shared memory. The cost of the first stage equals

the cost of a message transmission T(m). The cost of subsequent stages is

expressed by next equation as 2‖T (m), 4 ‖T (m), 8 ‖T (m) :

A ‖L(m, τ) = A ‖
s−1∑
j=0

Lj(m, τj) (5.3a)

Hence, the cost of the whole broadcast on a full tree would be as follows:

Θbin(m) =
[log2(P )]−1∑

i=0

(2i ‖T (m)) (5.4)

Homogeneous platforms cost expressions are formulated as n ‖T c(m) and

T c(m1) + T c(m2). However, in heterogeneous platforms expressions as

T c1(m1) ‖T c2(m2), are common. Rico-Gallego et al., 2017 extends τ–Lop with

three simplifying formal assumptions that allow us to evaluate these more com-

plex cost expressions. They are needed to unblock the expansion path of these

expressions on L terms, while still keeping a high overall accuracy in real hybrid

kernels.

A1. A sequence of transmissions progressing through the same channel has

the cost of a single transmission of a message of aggregate size, that is,

A ‖T c(m1) + A ‖T c(m2) = A ‖T c(m1 +m2).

A2. Two message transmissions through the same communication channel

progress concurrently during the transmission time of the shorter one:

T c(m1) ‖T c(m2)= 2 ‖T c(m1) + T c(m2−m1),m2≥m1

A3. Two transmissions progressing through different communication channels

do not interfere. The total cost is the maximum of the individual costs:

T c1(m1) ‖T c2(m2) = max{T c1(m1), T
c2(m2)}.

With these expressions, τ–Lop allows us to address the problems related to
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containment and model concurrent transmissions, making it a simple task. As an

example, we take the expression from Figure 4.1.

[T c0(ma) + T c1(mb)] ‖ [T c0(mc) + T c1(md)]

It leads to different developments depending on the relative message sizes.

Thus, in Figure 4.1, at time t0 we have two concurrent transmissions of messages

ma and mc through the same channel c0, where mc ≥ ma, mb ≥ md, and

T c1(mb) ≥ T c0(mc −ma). Applying A2, the expression becomes:

2 ‖T c0(ma) + [T c1(mb) ‖(T c0(mc −ma) + T c1(md))].

This expression is made up of two terms. The first one, 2 ‖T c0(ma) represents

the cost of time between t0 and t1. The second one represents the cost of

two transmissions that start at t1 and progress through different channels.

Therefore, these two transmissions are represented as individual costs T c1(mb)

and T c0(mc − ma). When applying the third axiom A3 we have a joint cost

max{T c1(mb), T
c0(mc − ma)}, which is T c1(mb) by hypothesis. In other words,

T c0(mc−ma) first term results in 2 ‖T c0(ma)+[T c1(mb) ‖T c1(md)], where we have

two transmissions that progress concurrently through c1. By applying A2 to the

second term, the cost finally becomes an expression directly evaluable using the

parameter values of the model:

2 ‖T c0(ma) + 2 ‖T c1(md) + T c1(mb −md),

As we have seen, τ–Lop allows us to estimate the cost of communications on

heterogeneous platforms. All this with a precision shown in Rico-Gallego et al.,

2017. Even so, the process is quite complex, which is a practical problem to

use the library. Because of this, it is necessary to create a tool that automates

the process of composing, storing and evaluating cost expressions, whether for

homogeneous or heterogeneous systems. Next, we will explain the operation of

the tool for the automation of this process.
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Algorithm 1 Creation of simple transmissions
Transmission *Tx = new Transmission (c, m, τ);
Process *src = new Process (src_rank, src_node);
Process *dst = new Process (dst_rank, dst_node);
Transmission *Ty = new Transmission (src, dst, m, τ);

5.2 τ–Lop Tool for Composing Cost Expressions

As we have seen before in Figure 4.1, cost expressions from τ–Lop are represented

as a set of sequences of transmissions which progress concurrently for modeling

communications with the following tool. In this section, we describe the

tool interface and how to use it. There are three main steps to obtain the

communication cost. First, we must describe individual message transmissions.

Then, we can build concurrent sequences of transmissions. Finally, τ–Lop library

evaluates the communication cost of the modeled problem.

5.2.1 Modeling Simple Transmissions

The fundamental software object of the τ–Lop Library is the Transmission. Its

three attributes c, m and τ represent the cost of an individual τ–Lop transmission

of the form τ ‖T c(m). Also, there are others objects. Process object, it contains

the node where it runs with its rank in the kernel. Algorithm 1 shows two ways

of creating a Transmission, specifying the channel in the case of instance Tx, and

by specifying the source and destination processes, as in the case of Ty, where the

channel is internally determined. These channels are integer numbers starting

from 0, assigned increasingly to the highest performance communication channel.

For example, c = 0 could be shared memory, c = 1 IB-network channel and c = 2

TCP-network channel.

To offer the principle of composition, τ–Lop provides two higher level objects.

TauLopSequence contains one or more transmissions carried out in sequence.

TauLopConcurrent contains a set of TauLopSequence objects that progress

concurrently. We can see this in the Algorithm. We create simple cost expressions.
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Object conc1, is a sequence of two simple transmissions that propagate through

a channel c of the form T c(m1) + T c(m2), and then conc2, two concurrent

transmissions on the same channel c of the form T c(m1) ‖T c(m2). With this

we can evaluate the heterogeneity of the different platforms that are composed

of multiple transmissions through different channels. In this respect Algorithm 2

composes the expression of Figure 4.1 and evaluates it through the TauLopCost

object.

Algorithm 2 Cost expressions for sequences and concurrents transmissions.
TauLopSequence *seq1 = new TauLopSequence ();
seq1→add (new Transmission(c, m1, 1));
seq1→add (new Transmission(c, m2, 1));

TauLopConcurrent *conc2 = new TauLopConcurrent ();
TauLopSequence *seq2;
seq2 = new TauLopSequence ();
seq2→add (new Transmission (c, m1, 1));
conc2→add (seq2);
seq2 = new TauLopSequence ();
seq2→add (new Transmission (c, m2, 1));
conc2→add (seq2);

5.2.2 Modeling Collective Operations

This tool allows modeling and estimating the cost of MPI-like collective operations

with different algorithms. A collective executes in the context of a communicator,

a central concept to MPI. With this tool, using a function we cat set the

communicator with the rank-to-node map, which defines the communication

channel used to communicate every two ranks. There are two types of mapping

used for MPI jobs, they are known as MAPPING_SEQ and MAPPING_RR,

which are Sequential and Round Robin respectively. The rank numbers are

sequentially assigned to processing units on the same node up to complete

the node, then the assignment continues with the next node, and so on. In

MAPPING_RR, which is the default option in MPICH, rank numbers are

sequentially assigned jumping over the nodes of the cluster. There are also other
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Algorithm 3 Estimate of the communication cost of a broadcast collective.
Communicator *world = new Communicator (P);
Mapping *seqMap = new Mapping(P, Q, MAPPING_SEQ);
world→map(seqMap);
int root = 2;
int m = 1024;
Collective *bcast = new BcastBinomial();
double t = bcast→evaluate(world, &m, root) ;

kinds of mapping which are more irregular.

Algorithm 3 predicts the cost of a binomial tree broadcast between P processes

deployed in sequential mapping on a homogeneous multi-core machine with P/Q

nodes, being Q the number of cores per node. It is necessary to clarify that m is

hence a vector containing the message size of each involved process, indexed by

process rank. In the broadcast case, only the root process needs to specify the

size of the message, what it does in the position 0. That is why m is passed by

reference to evaluate.

However, the cost of collective operations depends on many factors. Among

these factors is the number of processes, the characteristics of the network, the

message size, the type of algorithm used and its implementation. Some of these

factors can be observed in the Algorithm 4. This algorithm predicts the cost of

a collective implemented by two different algorithms, called Ring and Recursive

Doubling (RDA). Ring executes the algorithm in P − 1 steps, where in each of

these the process with rank p sends a message of size m to the process with

rank p + 1 and receives it from p − 1. RDA executes the algorithm in log2 P

steps, doubling the size of the message in each of its steps, where each process p

communicates with the process p ⊕ 2s in each step. In the Allgather algorithm,

each process sends a message m and receives a message P × m. Therefore,

the impact of different mapping algorithms and message sizes m on the cost

of communication can be directly evaluated. The tool provides an interface to

implement additional collectives and their algorithms.

For instance, a simple Binomial Tree algorithm has a cost under τ–Lop given
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Algorithm 4 Comparing the communication cost of two algorithms executing
the Allgather collective.
int P = 8;
int nodes = {0, 1, 1, 2, 0, 2, 1, 0};
int m = {...} ;
Communicator *comm = new Communicator (P);
Mapping *custMap = new Mapping(P, nodes);
comm→map(custMap);

Collective *allg_ring = new AllgatherRing();
Collective *allg_rda = new AllgatherRDA();

double t_ring = allg_ring→evaluate(comm, &m);
double t_rda = allg_rda→evaluate(comm, &m);

by ΘBin(m) =
∑log2(P−1)
i=0 [2i‖T c(m)], capturing the fact that each stage doubles

the number of involved processes. The τ–Lop capability of modeling contention

is key in the accurate cost modeling current kernels.

5.2.3 Modeling Data-Parallel Kernels

The formal expression Θ produced by modeling a kernel rapidly becomes complex

enough to require an automatic processing. It is necessary to use a tool

for supporting the automatic generation, composition and evaluation of cost

expressions, in particular that of a data-parallel kernel. τ–Lop tool, a C++

procedural interface to represent and next evaluate any cost expression which

targets real world data-parallel scientific applications, such as linear algebra

packages, digital signal processing, computational fluid dynamics, etc.

In this section, we model three of two kernels which show different features,

communication patterns. The first kernel, Wave2D, solves a partial differential

wave equation in 2D using a 1D data partition. It uses point-to-point

communication between the processes involved in the algorithm. The second

kernel is a distributed matrix multiplication algorithm, named SUMMA, which

uses a broadcast collective in a heterogeneous 1D data partition.
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Also, here we discusses the automatic building and evaluation of the τ–Lop

communication model of a data parallel kernel. As τ–Lop cost expressions on a

heterogeneous platform rapidly become complex enough to be unmanageable, the

τ–Lop library is used. Needless to say, the inputs of the library are:

• τ–Lop parameters for a specific platform.

• Kernel communications.

• Data space partition.

The output is the cost of the kernel communications in the platform in terms of

time. Integration of the library and the Beaumont algorithm is straightforward.

For each and every generated partition, the Beaumont algorithm invokes the

library interface to compose and evaluate the associated cost expression Θ. A pair

of kernels are used throughout the paper as conduit examples, namely the two

dimensional wave equation and the parallel dense matrix multiplication, Wave2D

and SUMMA respectively. They were chosen by their opposite communication

needs. SUMMA has a communication complexity O(N2), while Wave2D shows

just O(N). Following, we discuss how the library builds and evaluates both.

Wave2D Model Building

The Wave2D kernel simulates a wave behavior under boundary conditions using

the technique of finite differences. The 2D wave equation is formulated as ∂2u
∂t2

=

c2
(
∂2u
∂x2

+ ∂2u
∂y2

)
with initial conditions u(x, y, 0) = I(x, y) and ∂

∂t
u(x, y, 0) = 0. The

discrete solution u(x, y, t) is approached in the mesh x ∈ [0, N), y ∈ [0, N) and

t ∈ [1, T ), with N the size in elements of the mesh and T the number of considered

iterations. Along time, u(x, y, t+1) is given by New, generated from its previous

instances, the matrices Cur and Old, u(x, y, t) and u(x, y, t − 1) respectively,

according to the stencil in the right side of Figure 5.4, which illustrates a data

partition between P = 8 processes. The point-to-point transmissions T from
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Figure 5.4: A 2D partition for solving the wave equation. Each process
recomputes its rectanglesNew, Cur and Old along time. The computation stencil
is New(i, j) = 2(1−2C2)Cur(i, j)−Old(i, j)+C2Cur(i−1, j)+C2Cur(i+1, j)+
C2Cur(i, j − 1) +C2Cur(i, j + 1). Note that it imposes communications in Cur.
Process p1 sends its perimeter elements of Cur, which will form the halo of its
neighbors.

p1 to its neighbors are shown. For instance, if ηi denotes the neighborhood of

pi in the clockwise order, then η1 = {2, 4, 3, 6, 0, 5}. Non-blocking sends (and

receives) are used. Because of the computational balance, all the processes start

their transmissions at once after the computing stage, so the cost per iteration

allocated to a process pi will be:

Θp = ‖
j∈ηp

T c(j)(m(j)) (5.5)

where ηp is the set of neighbor processes of p, m(j) the size of the message sent

to neighbor pj, and c(j) the channel used to send the message. We can appreciate

that the transmissions from the processes P are progressing concurrently in the

channel c(j). Is determined the τ–Lop cost of I iterations of the algorithm as:

ΘW2D = I ×
[
P−1
‖
p=0

Θp

]
(5.6)

The theoretical model ΘW2D from Algorithm 5 of the expression (5.6)
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estimates its cost with P = 8 processes and M = 4 nodes. This model, to

be evaluated must be expressed as a function of the machine specific parameters.

Overhead o and Transfer Time L are the parameters of the model measured in the

specific platform and used to evaluate the cost expression. Thus, the complexity

grows with the number of processes in a partition, needing a automatic approach

for this. Processes in the vector p are created with the appropriate rank, and rank-

to-node mapping described in the vector nodes. The inner for loop traverses the

set of neighbors processes ηp for every source process and builds the transmissions

in a TauLopSequence object, which can be used to for a concurrency object conc

of type TauLopConcurrent to represent concurrency of sequences of transmissions.

Function getBoundarySize(src, dst) returns the number of halo bytes to be

interchanged by processes ranks src and dst. These sequences are composed

of Transmission, which are composed by source and destination processes,

the message size m, and the number of concurrent transmissions as τ . The

communication channel c is figured out from the information of the source and

destination processes. Hence, every transmission is modeled as 1 ‖T c(m) =

[oc(m) + Lc(m, 1)]. Each per-process TauLopSequence objects are added to an

unique concurrent TauLopConcurrent object according to the expression (5.6),

which is finally evaluated to predict the overall communication cost.

We shown the accuracy of the Wave2D estimation in Figure 5.5. There are

two lines, which are the times estimated by τ–Lop tool with the parameters, and

the real times of the communication. The platform was described in 5.3.
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Algorithm 5 Wave2D kernel: Cost modeling and evaluation
int P = 8;
int nodes = {0, 1, 2, 3, 0, 1, 2, 3};
Process *p [P];

for rank ∈ {0, . . . , P − 1} do
[rank] = new Process (rank, nodes[rank]);

end for
TauLopConcurrent *conc = new TauLopConcurrent ();

for src ∈ {0, . . . , P − 1} do
int *ηp = getNeighbors(src);
for dst ∈ {ηp} do

m = getBoundarySize(src, dst);
*seq = new TauLopSequence ();
seq→add (new Transmission (p[src], p[dst], m, τ=1));
conc→add (seq);

end for
end for

TauLopCost *tc = new TauLopCost ();
conc→evaluate (tc);
double t = tc→getTime ();
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Figure 5.5: Wave2D measured communication cost compared to the tool
estimation on Infiniband (left) and Ethernet/TCP (right) networks. The plots
represent the communication time per iteration of the kernel for a matrix size of
N=512 elements
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SUMMA Model Building
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Figure 5.6: The SUMMA algorithm on a heterogeneous platform with P = 6
processes. A rectangle of different size is assigned to each process. White
rectangles are assigned to processes running on the node 0, and grey rectangles
to that on the node 1. The figure shows the iteration k. p1 sends its part of the
pbc to p0, p3 and p5. We say that p1 overlaps them. Likely p1 sends its part of
the pbr to the processes in the same column, p4.

The SUMMA algorithm computes the dense matrix multiplication C = A × B.

For simplicity, we assume square matrices. The block is the unit of computation,

and its size is set to take advantage of the hardware memory hierarchy. The

elements of the matrices are grouped into blocks of size b× b. With this we can

determine the size of the matrices as N × N blocks, to be partitioned into P

non-overlapping rectangles assigned to the P processes.

SUMMA executes in N iterations. Figure 5.6 shows an iteration k in an

example of the algorithm with P = 6 processes.

In iteration k, every process computes partial results for the blocks on its

assigned rectangle of C, as cij +aik× bkj. Needless to say, previously each process

has to receive the k-th column block aik of A and the k-th row block bkj of B.

After N iterations, each block of matrix C will have the value cij =
∑N
k=1 aik×bkj.

Each iteration k is composed of three stages:

1. Processes owning the k-th pbc of the matrix A send the blocks to the

processes in the same row,

2. Processes owning the k-th pbr of the matrix B send the blocks to the
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processes in the same column

3. Each process pi updates the blocks in its assigned rectangle of matrix C.

There are different communication patterns as point-to-point for two processes

communication, ring for communication between processes in the same row or

column, and broadcast for communication between a set of processes in the same

column that is possible because columns have the same width in the Beaumont

algorithm. The communication of sending and receiving blocks of the pbc and

pbr can be evaluated under these patterns. We will evaluate point-to-point

and ring patterns for the kernel. Next, the analytical model of the SUMMA

kernel ΘSUMMA will be built. As an example, the point-to-point pattern of

communication is modeled here. The Ring and broadcast patterns are similar. As

first step, we represent the horizontal communication cost of sending pbc blocks

in matrix A.

The cost of the sequence of transmission is represented as Θpbc
k,p. This is

performed by each process p holding the pbc to its overlapping processes (in

set ηp). These transmissions goes through a specific channel cj with a specific

message size mj.

Θpbc
k,p =

card(ηp)∑
j=1

T cj(mj) (5.7)

P pbc
k is the set of all the processes holding the pbc in the iteration k, which is

composed in Fig. 5.6, for instance, by p1 and p4. Θpbc
k is the global cost of all of

them.

Θpbc
k = ‖

p∈P pbc
k

Θpbc
k,p (5.8)

Next, is time to model vertical communication cost of sending the blocks of

pbr in matrix B. Cost of transmissions in a column col is modeled as Θpbr
k,col, which
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represents a sequence of point-to-point transmissions from the process holding the

pbr to the rest of processes in the same column, represented by the set ηcol.

Θpbr
k,col =

card(ηcol)∑
j=1

T cj(mj) (5.9)

P pbr
k is the set of all the processes holding the pbr in the iteration k. This

set is composed in Fig. 5.6, for instance, by p0, p1 and p3. Θpbr
k represents the

concurrency and the global cost of the sequences of transmissions on the columns

of the partition in the iteration k.

Θpbr
k = ‖

p∈P pbr
k

Θpbr
k,col(p) (5.10)

Finally, we can establish the total cost of the SUMMA algorithm as:

ΘSUMMA =
N−1∑
k=0

[
Θpbc
k + Θpbr

k

]
(5.11)
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Algorithm 6 SUMMA kernel: Cost modeling and evaluation
int P = 8;
int nodes = {0, 1, 2, 3, 0, 1, 2, 3};
double t = 0.0;

for k ∈ {0, N − 1} do
// Horizontal communication (pbc on matrix A)
TauLopConcurrent *concH = new TauLopConcurrent ();
for src ∈ {0, . . . , P − 1} do

if hold_pbc(src, k) then
TauLopSequence *seq = new TauLopSequence ();
for dst ∈ {0, . . . , P − 1} do

m = overlapSize(src, dst) × b2 if m > 0 then
seq→add (new Transmission (p[src], p[dst], m, τ=1));

end
end
concH→add (seq)

end
end
TauLopCost *tcH = new TauLopCost ();
concH→evaluate (tcH);
double tpbc = tcH→getTime ();

// Vertical communication (pbr on matrix B)
TauLopConcurrent *concV = new TauLopConcurrent ();
for src ∈ {0, . . . , P − 1} do

if hold_pbr(src, k) then
TauLopSequence *seq = new TauLopSequence ();
for dst ∈ {ηcol(src)} do

if src 6= dst then
m = getColumnWidth(src) × b2;
seq→add (new Transmission (p[src], p[dst], m, τ=1));

end
end
concV→add (seq)

end
end
TauLopCost *tcV = new TauLopCost ();
concV→evaluate (tcV );
double tpbr = tcV→getTime ();

// Accumulate horizontal and vertical times
t += tpbc + tpbr

end
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The kernel of SUMMA kernel by the τ–Lop model is modeled in Code 6, which

evaluates the global communication cost of ΘSUMMA.

Horizontal communication of the pbc blocks in each iteration k is

achieved using point-to-point transmissions. As we know, we must build

a TauLopConcurrent object which contains pbc communications. This

TauLopConcurrent is created by the sequences of transmissions of the pbc blocks.

Each Source(src) process that holds the pbc creates a sequence TauLopSequence

as seq. Every Transmission to an overlapped destination processes dst is added

to its sequence seq. The size of Transmissions is obtained using the function

overlapSize(src, dst) and the size of a block b2. At the end, we evaluate all the

concurrent communications in concH of each process holding the pbc. Thus, we

obtain a time named as tpbc in terms of time.

Vertical communication of the pbr in each iteration k is also point-to-point.

In each column, a process performs the transmissions in concurrency with one

process of the rest of columns. Every process holding pbr blocks in the iteration

k (function hold_pbr(src, k)) perform a point-to-point transmission to the rest

of the processes in its column (set ηcol(src)). Here, the size of the message of the

transmission m is the width of the column, obtained by getColumnWidth(src)

function and the size of a block b2. Transmissions are added to sequential objects,

which will compose the concurrent object concV . The number of sequential

objects are equal the number of columns. This is because transmissions in each

column progress concurrently. As in Horizontal communication, the concurrent

communications in concV are evaluated and time tpbr obtained in terms of time.

Total estimated communication time of the SUMMA algorithm is the sum

of vertical and horizontal communication represented by tpbc and tpbr over the

number of iterations N .

We shown the accuracy of the SUMMA estimation in Figure 5.7. There are

two lines, which are the times estimated by τ–Lop tool with the parameters, and

the real times of the communication. The platform was described in 5.3.
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Figure 5.7: SUMMA measured communication cost compared to the tool
estimation on Infiniband (left) and Ethernet/TCP (right) networks. The plots
represent the communication time per iteration of SUMMA for matrix size of
N=512 blocks of b=32 double precision elements

5.3 Parameters Measurement for τ–Lop Model

The work of this section has been developed in an accurate manner, and is the

basis for the construction of the automatic tool. Therefore, we consider necessary

the detailed explanation of this process.

As we have explain in previous Section 5.1, the model is composed by different

parameters. Lc(m, τ), known as the transfer time, and oc(m), known as the

message overhead. These parameters must be measured in an independent way

for each platform. Also, they depends on the network channel c. The parameters

are measured using an amount of repetitions, with a maximum of 1000 repetitions.

Each repetition makes a transmission of a message size m, with its own time.

With this transmission time we can establish which amount of time is related to

a specific parameter. It is not necessary to execute all the repetitions. This is

because we also implement a trust factor of c = 0.95, so when the time difference

between an amount of repetitions, normally 30, is bigger than this factor, it

automatically stops. Both parameters are measured for a message size value m.

Also, transfer time is measured for a specific τ value.
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In the case of the message overhead, parameters are measured using a

PingPong/RTT data exchange of a m = 0 message size, so transfer time is

Lcj(0, 1) = 0. This communication protocol depends on the channel that we

are using in the measurement. These different types of communication are shown

in Figure 5.8, which are Eager and Rendezvous. Thus, in shared memory o0(m)

the protocol used is Eager for the whole range of m message sizes, which is

implemented using the primitives MPI Send() and MPI Recv() for all ranges of

messages. This communication is composed of two point-to-point transmissions.

The cost of each transmission is the addition of the overhead and the sequence

of s transfer to reach destination. To measure this we create a job with P = 2

processes in one node, distributed each of them on different sockets. We can

define the cost of the operation as:

o0(m) = 2× RTT c(0)

2
−

s−1∑
j=0

Lcj(0, 1) =
RTT c(0)

2
(5.12a)

In case that we are using a network channel as TCP or Infiniband we also

estimate o1(m) under the Eager protocol, but when the message size reaches

a threshold size H, the protocol change to Rendezvous. This protocol is

implemented using MPI Ssend primitive and before the data transmission starts

the sender process sends a RTS (Request to Send) to the receiver, which responds

with a CTS (Clear to Send) when is ready, avoiding the sender to flood the

receiver. This way, only one transfer is needed, leading to a cost of:

o1(m) = Pingc(0)−
s−1∑
j=0

Lcj(0, 1) = Pingc(0) (5.13a)

RTT c operation is not used for the rendezvous protocol because it would add

a second point-to-point response message by the process Pj. Thus, it can start

such response message RTS before the process Pi finished the reception of CTS.

This overlapping would lead to a wrong overhead estimation.

For measure the transfer time, we need to create specific groups of processes,

synchronize them and then start the measurement. These number of processes
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Figure 5.8: RTT c and Pingc operations to measure overhead oc(m) parameter
under eager and rendezvous communication protocols respectively. These
operations are used in shared memory and any network communication channels.

establish the τ value, that is, the number of concurrent transmission progressing

through the channel. They way we did this is shown in Algorithm 7.
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Algorithm 7 Groups creation to measure transfer time parameter
int me;
MPI Group group;
MPI Comm group (comm, &group);
MPI Group newgroup;
int *ranksv = (int *) malloc (sizeof(int) * p);

for int P = 2; i<numprocesses; P++ do
for int i = 0; i<P; i++ do

ranksv[i] = i;

end
MPI Group incl(group, p, ranksv, &newgroup);
MPI Group rank(newgroup, &me);
MPI Comm create(MPI COMM WORLD, newgroup, &newcomm);

if me != MPI UNDEFINED then
MPI Barrier(newcomm);

Here we measure the transfer time parameter
measureTransferTime(data);
MPI Comm free(&newcomm);

end
MPI Barrier(MPI COMM WORLD);
MPI Group free(&newgroup);
free(ranksv);

end
MPI Barrier(MPI COMM WORLD);
MPI Group free(&group);

In MPICH and Open MPI, communication between processes in shared

memory progresses through intermediate buffers, so two transfers are needed

to reach the destination buffer. Thus, a Ring operation in defined for these

exchanges. This operation is implemented using MPI Send and MPI Recv when

τ=1 and MPI SendRecv when τ> 1. This entails a transmission to process Pi+1,

and a transmission from process Pi−1, with wraparound and a wait operation

until both complete. These different forms to measure the cost is because with

P = 2 and τ = 1 using a MPI SendRecv transmission could lead to a buffer

re-usage in future repetitions, so the time is influenced by this. To measure this,
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Figure 5.9: RTT c operation used in the measure of Transfer Time parameter
under shared memory transmissions. This operation is used when τ = 1.

we create a job on the platform with P processes in one node, distributed with

Round Round method along the sockets. We can define the cost of transfer time

in shared memory when τ=1 as:

RTT c(0) = 2× [o0(m) + 2L0(m, τ)] (5.14a)

L0(m, τ) =
RTT c(0)

2
− o0(m)

2
(5.15a)

Also, the cost when τ>1 is calculated as:

Ring0τ (m) = o0(m) + 2L0(m, τ) (5.16a)

L0(m, τ) =
Ring0τ (m)− o0(m)

2
(5.17a)
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Algorithm 8 Parameter measurement of transfer time under shared memory
int maxreps = 10000;
int stop = 0;
int reps = 0;
double t = 0.0;
int rank, source, dest;

while (stop == 0) and (reps < maxreps) do
dest = (rank + 1) % numprocs;
source = (rank - 1) % numprocs;
if source < 0 then

source = numprocs - 1;

end
if numprocs=2 then

if rank = 0 then
T[reps] = MPI Wtime();
MPI Send(buffer, M, MPI BYTE, dest, 0, comm);
MPI Recv(buffer, M, MPI BYTE, dest, 0, comm, MPI Status Ignore);
sum += T[reps] = MPI Wtime() - T[reps];

end
else

MPI Recv(buffer, M, MPI BYTE, dest, 0, comm, MPI Status Ignore);
MPI Send(buffer, M, MPI BYTE, dest, 0, comm);

end
end
else

T[reps] = MPI Wtime();
MPI Sendrecv(buffer, M, MPI BYTE, dest, 0, buffer, M, MPI BYTE,
source, 0, comm, MPI Status Ignore);
sum += T[reps] = MPI Wtime() - T[reps];

end
t = sum / reps;

// Here we calculate the transfer time parameter as define in the formulation
TransferTimeAdapt(t, M, overhead);

end

As shown in Algorithm 8, we can appreciate how the transfer time is measured

under the different forms. Thus, the algorithm behaviour is shown in Figure 5.9.
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The communication between processes through TCP and Infiniband networks

requires three intermediate transfers to reach the destination buffer. The first and

last transfer will progress through shared memory, with a cost measured in 5.15a

and 5.17a. To measure the transfer time parameter under network channels we

useMPI Send andMPI Recv. 2τ processes are mapped using Round Robin in two

nodes, so contiguous processes will run in different nodes. This communication

operation has two stages. The first step is when each process Pi sends to the

process Pi+1. The second step is when each process Pi receive from the process

Pi−1. The overlap of copy to the NIC internal buffer and transmission through

the network is unavoidable, so we do not considered this because of its random

behaviour. The cost of a TCP transfer can be determined as:

Ring1τ (m) = 2× [o1(m) + 2L0(m, τ) + L1(m, τ)] (5.18a)

L1(m, τ) =
Ring1τ (m)

2
− o1(m)− 2L0(m, τ) (5.19a)

In Infiniband is quite different because it use RDMA mechanism which involve

that shared memory transfer time is not taken into account. The cost of a

Infiniband transfer can be determined as:

Ring1τ (m) = 2× [o1(m) + L1(m, τ)] (5.20a)

L1(m, τ) =
Ring1τ (m)

2
− o1(m) (5.21a)

The platform where we measured the parameters is a cluster composed of

NVidia Tesla M2075 GPUs and Intel Xeon E5649 multi-core (8-cores and 12-

cores) CPUs. Range of processes is from P = 2 running in one node to

P = 47 in sixteen nodes. Processes are deployed in the available computing

resources. Two types of network are used, a 40 Gbps QDR Infiniband and a

1Gbps Ethernet/TCP . The communication library is Open MPI. We shown the

accuracy of the communication cost predictions of the τ–Lop Tool in composing
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and evaluating the Wave2D and SUMMA kernel communications in previous

Section 5.2.3.
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6
IMPLEMENTATION

We presented the problem of finding a load-balanced partition of a 2D data-space

between a set of processes characterized by different computing power. Beaumont

et al., 2001 proposed it as a formal optimization problem. They also proposed a

heuristic base on dynamic programming which builds a column-based partition.

This heuristic minimizes the communication volume using the sum of the half

perimeters as a metric of the resultant partition rectangles which are assigned to

each computation unit.

The main feature in this metric is that the communication volume is

proportional to the perimeter of the resultant rectangles, which is minimized when

rectangles become as square as possible. We will study this metric discussing

shortcoming of the solutions. Later, we present a new metric based on the τ–Lop

communication performance model. We focus on the problem of non-uniformly

partitioning a 2D data space between processes with different capabilities on a

heterogeneous system, with the goal of minimizing the communication cost.
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6.1 Beaumont Optimization Solution

Beaumont et al., 2001 formulate the partitioning of a kernel data space in

an optimization problem as a integer program. The program inputs are the

number of processes P , the size of the 2D data space (N2) and the speed array

S = {s1, s2, . . . , sP}, where si is the relative speed of the process pi. With this,

the objective is to partitioning the data space with P non-overlapping rectangles

with its own sizes ni = wi× hi, 1 ≤ i ≤ P , being proportional to the speed of the

process. The problem is relaxed and reformulated in terms of a linear program

with the following constraints:

P∑
i=1

ni = 1. (6.1a)

Rectangles are non-overlapping and tile the unit square. (6.1b)
n1

s1
=
n2

s2
= · · · = nP

sP
. (6.1c)

Restrictions (6.1a) and (6.1b) stand for tiling the whole data space (unit

square) with the P non-overlapping rectangles. Last restriction (6.1c) implies

the non-uniform load balance of the partition, in which every process is assigned

with a rectangle of an area in proportion to its speed. As a consequence, the

execution time ti = ni/si will be equal for every process. The linear programming

optimization problem has now a solution that is later approximated by scaling

up the unit square partition to the size of the problem N ×N . Thus, the goal is

to find a partition of the data space which minimizes the communication cost.

Beaumont et al., 2001 proposed to minimize the next objetive function, which

shows the sum of the half perimeters of the rectangles assigned to each process. It

represents the total volume of communications, and is minimized as the rectangles

become as square as possible.

β =
P∑
i=1

(wi + hi) , (6.2)
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As Beaumont et al., 2001 demonstrated, this problem is NP-Complete. Thus,

to solve this a geometrical heuristic to obtain a near optimal solution and an

algorithm to find it is proposed. It consists of the following steps:

1. Order the relative speed vector S is such a way that: s1 ≤ s2 ≤ . . . ≤ sP .

2. Using a dynamic programming technique, the algorithm generates a new

set of arrangements by adding rectangles in the previous specified order in

S. For each previously generated arrangement, the new rectangle of pi is

added to the last column (as a new row) by increasing its width, and also

as a new column of height hi = 1 and width wi = si. The half perimeter

metric is used to evaluate every additional arrangement.

3. A rollback is the last stage to decide the optimal composed arrangement

based on the half perimeter metric.

The complexity of the algorithm is polynomial O(p3) and it provides the

optimal shape of the rectangles for every process, the optimal number of columns

and the optimal number of processes per column, using the half perimeter metric.
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(a) First and second tiles

(b) Full tile space

Figure 6.1: The Beaumont partitioning algorithm at work. Here, it incrementally
builds a partition space for P = 4 processes characterized by the ordered relative
speed vector S = {0.15, 0.2, 0.25, 0.4}. Each step adds a process to each tiling of
the previous partition space in two different ways.The result is that the number of
candidate tilings doubles in each step. The communication volume metric decides
the winner tiling, that of volume β = 4.0.
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A simple example with P = 4 processes with relative speeds S =

{0.15, 0.2, 0.25, 0.4} distributed in M = 2 nodes of a hypothetical heterogeneous

platform. This example is shown in Figure 6.1. Background colors represent the

node, where every color is a different node. Each step in the algorithm (c, p)

contains a set of arrangements built from every generated arrangements in the

previous (c−1, p−1) and (c, p−1) steps, with p the number of processes already

added to the partition and c the number of columns. The half perimeter metric

function β is used to assign a value to every new arrangement. This value in the

example is minimum in one of the partitions of the step (c = 2, p = 4).

Beaumont algorithm deals with the problem of partitioning on heterogeneous

platforms, minimization of the communication volume by using the half perimeter

metric is oblivious to the following three points:

• Kernels use specific communication patterns, which are not captured by the

communication volume metric. For instance, a finite-element PDE solver

usually communicates every process halo to its nearest neighbors (boundary

rectangles), while a matrix multiplication kernels communicates with all

the processes in the same row and column. Intuitively hence each different

kernel will have its different optimum partition. However, the half perimeter

metric outputs the same partition for widely different kernels: SUMMA and

Wave2D, for instance, share the same solution.

• Heterogeneous platforms are characterized for using different types of

networks. Processes communicate using available these communication

channels, as shared memory, high performance networks, and high

throughput networks as those connecting clusters in a grid.

• Half perimeter metric represents the volume of point-to-point communi-

cation between boundary rectangles in the partition. Anyways, kernels

implementations use advanced communication modes for improving its per-

formance, as collective communication, which are not captured by the com-

munication volume metric.
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6.2 Using the τ–Lop Metric

The total volume of communication metric β disregards the real time cost

of communications. It is necessary to implement a metric which captures

the characteristics of the heterogeneous platform and the specific kernel

communication patterns.

6.2.1 Modifying the Original Metric

We propose a communication performance model metric for being able to be

output a more accurate communication cost estimation. A communication

performance model provides with an analytic framework that represents

communications as a parameterized formal expression described in 5.1. The

evaluation of this expression determines the cost of the communication in terms

of real time, as a function of system parameters.

The new objective is to replace the half-perimeter expression (6.2) with the

new optimization based in finding the partition which minimizes its τ–Lop cost

expression Θ. In terms of Figure 6.1, the full partition space generated by the

Beaumont algorithm is now reevaluated tagging each tiling with its Θ value,

superseding the total volume of communications metric β previously used. Thus,

the goal is to automatically built and evaluate Θ.

τ–Lop metric is a function of three variables and hence could be notated as

Θ(k, π,D), with k standing for the kernel, π for the target platform and D for

the data partition. For readability, however, we will adopt a lighter notation

when convenient. Instead, the half-perimeter metric is a function of just the data

partition and hence it could also be represented as β(D).

A simple study case which provides some insight on the application of the

metrics β(D) and Θ(k, π,D) is presented. A more complex but still easy to

handle ordered speed vector S = {0.05, 0.05, 0.08, 0.1, 0.1, 0.12, 0.2, 0.3} of with
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Table 6.1: Cost results under the half-perimeter metric β(D), where D belongs
to the set of tilings generated by the algorithm of Beaumont applied to the
speed vector S = {0.05, 0.05, 0.08, 0.1, 0.1, 0.12, 0.2, 0.3} of with P = 8 processes.
Adapted from Beaumont et al., 2001, only the lowest β value for the set of tilings
in each step (c, p) is shown. Note that the optimum partition according to the
metric contains c = 3 columns.

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

c = 1 1.05 1.20 1.54 2.12 2.90 4.00 5.90 9.00
c = 2 2.10 2.28 2.56 2.94 3.50 4.38 5.76
c = 3 3.18 3.38 3.66 4.00 4.58 5.50
c = 4 4.28 4.48 4.78 5.20 5.88
c = 5 5.38 5.60 5.98 6.50
c = 6 6.50 6.80 7.28
c = 7 7.70 8.10
c = 8 9.00

P = 8 processes will be used. The mapping of the processes on the nodes (which

determines the communication channels) is given by V = {0, 1, 2, 3, 0, 1, 2, 3},

that is, process with rank p runs on node V [p]. We suppose a hypothetical

platform ofM = 4 nodes numbered from 0 to 3, with two available communication

networks TCP and Infiniband. The latency L and overhead o which composes

τ–Lop parameters characterizing the platform have been measured in Section 5.3.

Regarding the kernel k, we evaluate SUMMA with two different communication

patterns, namely point-to-point and Ring. The Wave2D kernel, however, allows

only point-to-point communication.

Table 6.1 shows that the winner tiling under the half-perimeter metric β

is an arrangement of c = 3 columns. Table 6.2 shows the communication

times obtained by the Θ metric from the Wave2D and SUMMA kernels under

different configurations of the example platform. Note that also three-columns

winners are the rule here, but exceptions appear sometimes. The τ–Lop Θ

metric captures the specific configuration of the platform and finds the actual

best partition. As well, the cost returned by τ–Lop is a meaningful time cost

estimation of the communications in the kernel on the platform, which allows

us further optimization. Figure 5.7(a) shows the winner tiling of Table 6.1,
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Table 6.2: Cost results under the τ–Lop metric for SUMMA and Wave2D kernels
using two communication patterns on TCP and Infiniband networks. The metric
is only applied to the partitions generated in the last step of p = 8 processes.
Times are in µ-seconds.

SUMMA SUMMA SUMMA SUMMA W2D W2D
IB IB TCP TCP IB TCP

P2P Ring P2P Ring P2P P2P

c = 1 173244.8 180487.5 2330548.5 2697341.8 32.12 366.33
c = 2 64170.7 64168.6 836118.8 801639.1 36.29 398.19
c = 3 54819.7 51752.4 826615.7 805764.9 41.01 408.01
c = 4 65392.8 69677.8 893995.8 1071080.8 44.35 429.56
c = 5 87969.1 96925.4 1153902.4 1424385.5 61.52 395.08
c = 6 112666.2 126582.4 1492147.5 1825473.0 39.32 497.45
c = 7 141312.4 157749.0 1886612.5 2259679.5 36.05 649.06
c = 8 173244.8 180487.5 2330548.5 2697341.8 32.12 366.33

while Figure 5.7(b) to Figure 5.7(h) show the winner tiling of Table 6.2. The

most relevant conclusion is that partitions differ for some combinations of

kernel, specially for different networks and patterns, leading to wide different

arrangements, while half perimeter metric is oblivious of them. Interestingly,

Wave2D estimations for both Infiniband and TCP networks entail a 1D partition

of the data space as the optimal for this example.
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Figure 6.2: Optimum partitions according to Beaumont et al., 2001 original
algorithm metric and τ–Lop metric results. In the case of τ–Lop metric, partitions
are shown for every combination of kernel, network type and communication
mode. Numbers indicate the ranks of the processes while background color
represents the node of the process.

To have a clearer graphic visualization, we can apply the Θ metric to the

partitioning process followed in the Figure 6.1. Therefore, in the following Figure

6.3, we can observe the different stages of the partitioning algorithm for both

metrics (β, Θ). The winners of both metrics are highlighted. If we appreciate the

different values for the winning partitions, we can see that for β metric the cost

of the communications costs according to the Θ metric is higher than the winner

of Θ metric.
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Figure 6.3: The Beaumont partitioning algorithm at work for different β and
Θ metrics. It incrementally builds a partition space for P = 4 processes
characterized by the ordered relative speed vector S = {0.15, 0.2, 0.25, 0.4}. Each
step adds a process to each tiling of the previous partition space in two different
ways.

6.2.2 Hierarchical ordering

There is a problem with the heuristic implementation using the half perimeter

metric which does not reduce the sum of half perimeters values. It does not

promote rectangles as square as possible, as can be deduced from the Figure 6.4,

and hence it wrongly does not output optimum values. It just generates partitions

with tiles which just grow in size to the right and down. This building path ignores

the topology, that is, misses the tilings where the processes in the same machine

are as close as possible. For this, we propose an alternative hierarchical order.

Thus, we replaced the original growing order in the Beaumont algorithm by the

hierarchical order.
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Figure 6.4: Output partition of the Beaumont algorithm using the half-perimeter
metric compared to that of using the hierarchical order and the τ–Lop metric.
The kernel is SUMMA using Ring pattern on a TCP network. Matrix size is
N = 512.

The hierarchical order works as follows. Regarding the example at the end of

the section 5.1, the input vector S = {0.05, 0.05, 0.08, 0.1, 0.1, 0.12, 0.2, 0.3} is now

transformed in S ′ = {0.15, 0.15, 0.28, 0.4}, with M = 4 components, that is, the

number of nodes. Every entry s′i is the sum of the speeds of all processes in the

nodeMi, as determined by V = {0, 1, 2, 3, 0, 1, 2, 3}. After applying the Beaumont

algorithm to S ′, resultant rectangles are horizontally split in proportional slides

to processes speeds in each node.
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7
RESULTS

We used Fermi as platform for ours tests, which is a highly heterogeneous

platform with a set of between M = 2 and M = 8 twelve-core nodes, each with

two connected GPUs. Nodes are 2-socket Intel Xeon E5649 processors (2.53 GHz)

with two attached NVidia Tesla M2075 GPUs. The nodes are linked by both

Infiniband QDR (40 Gbps) and TCP/Ethernet networks (1 Gbps). Processes

in the same node communicate using shared memory, and processes running

in different nodes communicate using the specific network in each experiment.

We used two types of network because they represent different HPC platforms:

while high performance networks as Infiniband are used in supercomputers, high

throughput TCP networks usually connect clusters in grids.

Operating system is CentOS 6.5. In the CPUs, a process uses the function

dgemm of the Intel MKL library to compute the SUMMA kernel on a rectangle

of double precision elements, and the implementation of the stencil Figure 5.4

of the Wave2D kernel. In the GPUs, cuBlas library for SUMMA and a self-
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(c) Broadcast pattern

Figure 7.1: Example of communication patterns used in the tests made for both
metrics (Θ and β). The example represent M = 4 nodes and P = 8 processes in
a sequential mapping. In case of Broadcast, only one step is shown, where process
p = 1 sends its data to all the processes

made kernel for Wave2D are used with the same purpose. Open MPI 1.8.1

is used for communication. In SUMMA, row communication uses the non-

blocking primitives, MPI_Isend and MPI_Irecv, while column communication

uses blocking primitives MPI_Send and MPI_Recv. Non-blocking point-to-point

communication primitives are used in Wave2D.

We tested both metrics (Θ and β) under three different communication

patterns, which are Ring, P2P and Broadcast. The behaviour of these patterns

is shown in Figure 7.1 as an example. We have P = 8 processes distributed

across M = 4 nodes in a sequential mapping. Broadcast pattern performs a

communication in which each process sends data to the rest of processes, and also

receives data from all of them. P2P pattern communicates two processes to each

other, sending and receiving data between them. Last, Ring pattern performs

the communication in a way that a process receives data from its previous and

sends to its next.

Similar to Figure 1.1, we consider platform configurations with between five

and twenty processes of different computing power. Table 7.1 shows the different

configurations of CPU and GPU processes which have been actually tested. CPU

processes execute in different number of cores using OpenMP threads. The M

column represents the number of nodes used. Columns c = κ indicate the number

of processes in the row with κ cores assigned. The point here is that having
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Table 7.1: Characterization of the set of nodes layouts used in the evaluation.
They are provided by the SLURM scheduler.

Name M c=11 c=10 GPU P

M2 2 1 1 3 5
M3 3 2 1 4 7
M4 4 2 2 6 10
M5 5 3 2 7 12
M6 6 3 3 9 15
M7 7 4 3 10 17
M8 8 4 4 12 20

processes with different computational capabilities increases the heterogeneity of

the configuration. Column GPU indicates the number of processes running on

GPUs. P column is the number of total processes, and it is the summation of

the former three columns. In this platform they use a dedicated core in the node

for MPI communication and management of the data transfers between host and

GPU memories. The cost of these transfers is included in the computational

model of a GPU process as discussed by Zhong et al., 2015.

We ensure that the results are reliable and reproducible that have been proven

by experiments. We indicate the spread of data by showing the standard deviation

around the mean, that in some cases is imperceptible in the plots (specially for

the Wave2D case, which is executed for a large number of steps). A kernel is

executed by a set of processes, each proceeding as a sequence of communication

and computation stages. For every individual measurement of a communication

stage, the maximum time from all the processes involved in the communication

is taken, under the assumption of that this maximum time is the actual total

time of the communication. The computation is balanced using computational

performance models as we explained in Section 1. Hence, we assume that all

processes start the communication stage at the same time. The showed times are

the mean of a set of measurements for any combination.

Figure 7.2 shows communication performance of SUMMA kernel on two

distinct partitions. These partitions are generated by the Beaumont algorithm,
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Figure 7.2: Comparison of SUMMA measured communication times on winners
partitions under the metrics β and Θ respectively. Measurements are taken
along the complete execution of the kernel for increasing number of nodes (and
processes) on an Infiniband network and different communication modes (point-
to-point, Ring and Broadcast). Matrices size is N = 512.

by two different metrics, which are the winners under the half-perimeter (β) and

the τ–Lop (Θ) metrics. There are not differences between results in Infiniband

network. This is partially due to the S predefined order, which guides the

generation of tilings as the algorithm progresses. At this point, it is needed

to clarify that the times obtained for the range of nodes M in the x-axis are not

smooth and linear, because in every case the partitions generated are completely

different given the configuration of processes running on computational resources

described in table 7.1.

We observed a special behavior under τ–Lop metric winners. There is a wide

difference in performance between communication channels, as TCP and shared

memory, τ–Lop winners show that closer rectangles are assigned to processes

running on the same node. This grouping benefits the performance of the

Ring communication pattern, because such arrangements reduce the network

communication.

As we said in the previous Section 6.2.2, there is a problem with the heuristic

implementation using the half perimeter metric which does not reduce the sum

of half perimeters values. It does not promote rectangles as square as possible so

we proposed an alternative hierarchical order with the performance effects shown

in Figure 7.3. This hierarchical order allows to decrease the complexity of the
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Figure 7.3: Comparison of SUMMA measured communication times on winners
partitions under the metrics β and Θ respectively. This time, the tiling space
has been generated using the grouping processes heuristic. Measurements are
for increasing number of nodes (and processes) on a TCP network and different
communication modes (point-to-point, Ring and Broadcast). Matrices size is
N = 512.

Beaumont algorithm from O(P 3) to O(M3), where usually M << P .

Additionally, we tested that in case of SUMMA on Infiniband networks, the

RDMA mechanism discourages the usage of the hierarchical order, because it

promotes the horizontal communication between processes in every two nodes.

That is, in Figure 6.4 we can see that processes p0 and p4 running on node M0

communicate concurrently the pbc to the processes p2 and p6 running on nodeM2.

The consequence is that sender processes flood the destination node, degrading

the performance because of contention, with no overall appreciable benefit over

the β metric. Note, as well, that the discussion about behaviors of TCP and

Infiniband networks communications is partially derived from the τ–Lop cost

modeling and estimations, before actual performance measurements, which in

our view is an important contribution of this work.

We can observe the different output partitions of the Beaumont algorithm

using half-perimeter metric and τ–Lop metric under the hierarchical order for

the previous example in Figure 6.4. Serving SUMMA on Infiniband networks,

the RDMA mechanism discourages the usage of the hierarchical order. This is

cause it promotes the horizontal communication between processes in every two

nodes. Figure 6.3(b) shows processes p0 and p4 running on nodeM0 communicate
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Figure 7.4: Comparison of Wave2D measured communication times for partitions
generated by Beaumont algorithm using the half perimeter metric β and the
τ–Lop metric Θ using hierarchical heuristic. Measurements are for increasing
number of nodes (and processes) on Infiniband and TCP networks and point-to-
point communication mode. Matrix size is N = 512. Times are in milliseconds
per iteration of the Wave2D simulation.

concurrently the pbc to the processes p2 and p6 running on node M2. In this case,

there is not much difference between metrics. This is cause the sender processes

flood the destination node, degrading the performance because of contention, with

no overall appreciable benefit over the half perimeter metric. Also, Figure 7.4

shows results of executing algorithm on the partitions generated using both

half perimeters and performance model metrics. In both cases, point-to-point

communication is the only pattern allowed. There is a significant performance

improvement when the partition algorithm is guided by the τ–Lop metric, both

for Infiniband and TCP networks.

Last set of performance figures are for matrices of size N = 256, shown in

Figure 7.5 and Figure 7.6 for SUMMA kernel under Infiniband and TCP networks

and different patterns, and Figure 7.7 for the Wave2D kernel on both networks. In

these figures, we observed that for a higher communication volume in matrices of

size the performance improvement for ring pattern in SUMMA is due to the usage

of the hierarchical order, that reduces the network communication. Performance

improvement of the Wave2D kernel is reduced with respect to Figure 7.4 because
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Figure 7.5: Comparison of SUMMAmeasured communication times for partitions
generated by Beaumont et al. algorithm using the half perimeter metric
β and τ–Lop metric Θ using the hierarchical order. Measurements are for
increasing number of nodes (and processes) on an Infiniband network and different
communication modes (point-to-point, Ring and Broadcast). Matrices size is
N = 256.

the message sizes interchanged for matrix of size N = 256 is as an average quarter

than N = 512.

To calculate speedup, we use the formule β/Θ, which compare each metric.

We show the maximum and average speedups for the set of processes and node

numbers in table 7.3. For the SUMMA kernel, as expected, when it is executed

using advanced communication patterns (Ring) the improvement is higher, due

to the half perimeter metric does not match the communication pattern and

it is oblivious of the arrangement of the rectangles in the partition. We can

not appreciate improvements under Infiniband network. Wave2D kernel shows

high improvements in any network and matrix size. Wave2D communication

pattern, although proportional to the volume of communication, is influenced by

the closeness of the rectangles assigned to processes in the same node.

As demonstrated, this method provides with enough information and details,

including accurate estimations, for such development without HPC resource

consumption.
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Figure 7.6: Comparison of SUMMAmeasured communication times for partitions
generated by Beaumont et al. algorithm using the half perimeter metric β and
τ–Lop metric Θ using the hierarchical order. Measurements are for increasing
number of nodes (and processes) on a TCP network and different communication
modes (point-to-point, Ring and Broadcast). Matrices size is N = 256. Times
are in seconds of the complete execution of the kernel.

Table 7.2: Maximum and Average Experimental SUMMA Communication
Speedups

SUMMA SUMMA SUMMA SUMMA SUMMA SUMMA
IB IB IB TCP TCP TCP

N P2P Ring Bcast P2P Ring Bcast

Maximum 256 1,08 1.11 1.27 1.25 2.25 1.32
512 1.29 1.25 1.23 1.63 1.77 1.33

Average 256 0.99 0.98 0.98 1.08 1.59 1.00
512 0.98 0.96 0.98 1.08 1.41 0.92

Table 7.3: Maximum and Average Experimental W2D Communication Speedups

W2D W2D
IB TCP

N P2P P2P

Maximum 256 1.27 2.42
512 1.65 2.47

Average 256 1.07 1.28
512 1.23 1.45
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Figure 7.7: Comparison of Wave2D measured communication times for partitions
generated by Beaumont et al. algorithm using the half perimeter metric β and
τ–Lop metric Θ using the hierarchical order. Measurements are for increasing
number of nodes (and processes) on Infiniband and TCP networks and point-to-
point communication mode. Matrix size is N = 256. Times are in milliseconds
per iteration of the Wave2D simulation.
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8
CONCLUSIONS

In this work, which is based in Rico-Gallego et al., 2018 and Rico-Gallego et al.,

2015, we study the weaknesses of the partitioning algorithms and its metrics as

Beaumont et al., 2001. We propose improvements for the measurement of the

parameters, as well as the use as a metric for the partitioning of data and, finally,

we study a hierarchical heuristic to improve communications.

Optimization of the communication in partitioning algorithms for data parallel

kernels running on heterogeneous HPC platforms is needed. For this, non-uniform

workload distribution between processes are proposed which is solved by using a

geometrical volume-based metric to estimate the communication cost.

We demonstrate the importance of a correct measurement of parame-

ters,achieving a fairly high efficiency index in this aspect, which will have a high

impact on the importance of the tool in terms of time estimation based on com-

munication.
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We also present a new metric using analytical communication performance

models to estimate the communication with a good accuracy. This metric

estimates the communication costs of a certain kernel, in the case of this work,

Wave2D and SUMMA, in a precise manner and improving the results obtained by

half-perimeter metric. We also describe a tool which can automatize this process.

This tool is quite novel since in this area there are no tools that contemplate these

problems efficiently. It is based in τ–Lop model which can be used in partitioning

algorithms to achieve higher performance partitions, better fitted to the platform

details, as different networks and communication channels, and also to kernel

features, as communication patterns.

The τ–Lop communication model encourage the development of better

oriented heuristics (hierarchical order) to improve partitions for different HPC

networks and kernels. Experimental results on a highly heterogeneous HPC

platform confirm comparable performance of the SUMMA kernel to that of

volume-based metrics on an Infiniband network, whereas they show a high

improvement in a TCP network, as well as for Wave2D kernel in both networks.

This is because, in TCP, communications have a high degree of impact, while

Infiniband, being a high-speed network, the differences we achieve by grouping

speeds by nodes and not by processes, are not so remarkable.
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