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Abstract
We introduce a hybrid machine learning algorithm for designing quantum optics experiments to produce specific quantum
states. Our algorithm successfully found experimental schemes to produce all 5 states we asked it to, including Schrödinger
cat states and cubic phase states, all to a fidelity of over 96%. Here, we specifically focus on designing realistic experiments,
and hence all of the algorithm’s designs only contain experimental elements that are available with current technology.
The core of our algorithm is a genetic algorithm that searches for optimal arrangements of the experimental elements, but
to speed up the initial search, we incorporate a neural network that classifies quantum states. The latter is of independent
interest, as it quickly learned to accurately classify quantum states given their photon number distributions.

Keywords Machine learning · Genetic algorithm · Artificial intelligence · Quantum state engineering · Quantum optics

1 Introduction

As artificial intelligence (AI) and machine learning develop,
their range of applicability continues to grow. They are
now being utilised in the fast-growing field of quantum
machine learning (Dunjko and Briegel 2017; Biamonte
et al. 2017; Schuld et al. 2015), with one particular
application demonstrating that AI is an effective tool for
designing quantum physics experiments (Knott 2016; Krenn
et al. 2016; Melnikov et al. 2018; Arrazola et al. 2019;
Sabapathy et al. 2018). In this vein, here we introduce a
hybrid algorithm that designs and optimises quantum optics
experiments for producing a range of useful quantum states,
including Schrödinger cat states (Ourjoumtsev et al. 2007;
Huang et al. 2015; Etesse et al. 2015) and cubic phase states
(Gottesman et al. 2001).
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The core of our algorithm, named AdaQuantum1 and
introduced in (Nichols et al. 2018) and (Knott 2016), uses
a genetic algorithm to search for optimal arrangements
of quantum optics experimental equipment. Any given
arrangement will output a quantum state of light, and the
algorithm’s task is to optimise the arrangement to find
states with specific properties. To assess the suitability of
a given state, we require a fitness function that takes as
input a quantum state and outputs a number—the fitness
value—that quantifies whether the state has the properties
we desire or not. Our previous works largely focused on
quantum metrology, where our algorithm found quantum
states with substantial improvements over the alternatives
in the literature (Nichols et al. 2018; Knott 2016). While in
Nichols et al. (2018) and Knott (2016) the fitness function
assessed the phase-measuring capabilities of the states, in
this paper, instead, we look at producing a range of useful
and interesting states (introduced below) to a high fidelity,
and hence we use as our fitness function the fidelity to our
target states.

1The algorithm, AdaQuantum, is named after Ada Lovelace, the
worlds first computer programmer, and resident of Nottingham, where
our own algorithm was born.
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The search space for our genetic algorithm is huge,
which means that typically the algorithm has to simulate
and evaluate a vast number of quantum optics experiments
in order to finally find strong solutions. This introduces a major
challenge in our work: the speed, efficiency, and effective-
ness of our algorithm depend in a large part on simulating
and evaluating the experiments as quickly and accurately
as possible. If short-cuts could be found that allow a given
experimental set-up to be evaluated approximately without
the full simulation being performed, then this would greatly
improve our optimisation: the approximate evaluations
would provide a quick guide for the search to progress
in the right direction, and subsequently the exact evalu-
ation, using the full quantum simulation, would provide
the precise fitness value, thus validating and fine-tuning
the search. Efficient computational models of this sort
for approximating the fitness function are often known as
surrogates or meta-models (Jin 2011).

In this paper, we use one such approximation during the
evaluation stage: instead of explicitly calculating the fidelity
of our output state to the desired states, we use a deep
neural network (DNN) that learns to classify what type of
state has been outputted, and approximately how close this
state is to the target state. Explicitly calculating the fidelity
the large number of times required to run our algorithm
takes a surprisingly long time, whereas using our DNN, we
get a useful, albeit modest, speed-up. While in the work
presented here the speed-up is only small, our results can be
seen as a proof of principle, paving the way for much more
demanding fitness functions, such as the Bayesian mean
squared error (Rubio et al. 2018; Nichols et al. 2018), to
be approximately evaluated in this way. Once the DNN has
guided the search in the right direction, the fidelity is then
used to provide the exact fitness function (see Section 4.1
for the full description of our algorithm).

Our DNN for classifying quantum states is likely to be
of independent interest, as it quickly learnt to recognise
a quantum state just given its photon number distribution.
This has potential uses in a wide range of applications, such
as quantum computing or quantum cryptography, where it
can be valuable to quickly recognise what type of quantum
state has been produced.

Our hybrid algorithm, utilising a genetic algorithm to
perform the automated search and a neural network to clas-
sify the outputted quantum states, quickly and efficiently
found new quantum optics experiments to produce a range of
useful quantum states to a high fidelity. This complements
the recent work of Arrazola et al. (2019) who used machine
learning to also find quantum optics experiments to produce
a range of specific states, with one key difference being that
our experiments are specifically designed to be practical,
which comes at the cost of our states being of a lower
fidelity than those in Arrazola et al. (2019).

This paper is structured as follows. First, we introduce
a general experimental scheme for engineering optical
quantum states, and introduce the various quantum optics
experimental elements that are typically used. We then
introduce the main goal of our work: finding experimental
set-ups to create specific quantum states. We then describe
the methods we use: firstly the genetic algorithm, which
searches through different arrangements of the experimental
equipment to find those that produce our desired states;
and secondly our neural network, which classifies quantum
states and enables a speed-up in our search algorithm.
Finally, we present our results.

2 Quantum state engineering with light

The state-engineering scheme we use is shown in Fig. 1.
Firstly, two input states, |ψ0a〉 and |ψ0b〉, are input into the
two modes. The two modes then pass through a sequence
of operators Ôi where i = 1, .., m, and the final step is to
perform a heralding measurement on one mode, producing
the final state |ψf 〉. With appropriate choices of input states,
operators, and measurements this scheme is able to replicate
a wide range of the quantum state engineering protocols
in the literature, such as Ourjoumtsev et al. (2007), Huang
et al. (2015), Etesse et al. (2015), Bartley et al. (2012),
and Gerrits et al. (2010). The main difference between the
present paper and the usual methods is that we do not
choose the input states, operators, and measurements, but
instead we use a genetic algorithm to search for states with
the desired properties (see Section 4.1 for details of the
algorithm).

Our objective is to find practical experiments, and so we
construct our state engineering protocols from elements of
an experimentally-ready toolbox of quantum optics states,
operators, and measurements, which is summarised in the
table below.

Input states Apparatus

Fock, |n〉 Beam splitter, ÛT

Coherent, |α〉 Phase shift, ein̂θ

Squeezed, |z〉 Displacement, D̂(α)

TMSV, |z〉12 Number measurement, |n〉 〈n|

Here, we only introduce the most important details of the
toolbox; more details can be found in Appendix 1. Firstly,
the input states we include are the single-mode squeezed
vacuum |z〉, the two-mode squeezed vacuum (TMSV) |z〉12,
the coherent state |α〉, and Fock states |n〉; the parameters z,
α and n are constrained by what is possible experimentally
(Mehmet et al. 2011; Müller et al. 2015; Claudon et al. 2010;
Morin et al. 2012; Ourjoumtsev et al. 2006; Huang 2015).

6 QuantumMachine Intelligence (2019) 1:5–15



Measure
.....

a

b

Fig. 1 The state engineering scheme we consider begins with two
input states, |ψ0a〉 and |ψ0b〉, which are input into the two modes.
The states then subsequently pass through a number of operators Ôi .
To produce the final quantum state |ψf 〉, a heralding measurement is
performed on one mode

Next are the operators, of which the most important is the
beam splitter ÛT , where T is the probability of transmission,
which serves to mix and entangle the two modes, enabling
more exotic and useful states to be produced when part
of the entangled state is measured. The other operators we
use are the displacement operator D̂(α) and the phase shift
ein̂θ . In addition, we include the identity operator Î, because
we are promoting the easiest-to-implement schemes, which
would contain as many identities as possible.

The final step of the state engineering scheme is to
perform a heralding measurement on one mode of the final
state. If, for example, we wish to herald on the one photon
state, we can perform a photon number resolving detection
(PNRD), and only keep the output state if one photon is
detected. A measurement outcome of one photon therefore
heralds the desired final state. The heralding measurement
corresponds to acting on the two-mode, pre-measurement
state with 〈1| ⊗ Î, followed by normalisation. We are
then left with the single mode final state |ψf 〉. Recent
progress in PNRD (for example using transition edge
sensors (Humphreys et al. 2015; Gerrits et al. 2010)) has
enabled detections of larger numbers of photons possible,
so here we allow for heralding number measurements of up
to 8 photons.

Many more states, operators and measurements can be
included in this toolbox. As discussed in our paper that fully
introduces our algorithm (Nichols et al. 2018), the algorithm
is design with flexibility in mind, so it is straightforward for
more elements to be added (or removed) from the toolbox,
depending on the available equipment or desired goal. But
here we consider a simplified toolbox to discover whether
such a limited toolbox of experimentally viable elements
can still produce a range of quantum states to a high
fidelity. In Nichols et al. (2018), we include experimental
noise, but in this work, we stick to pure states and perfect
operators/measurements.

3 Finding experiments to engineer specific
quantum states

The task we set our algorithm, AdaQuantum, is to find
experimental designs to produce a range of specific “target”

states to a high fidelity (where the fidelity between two
pure states |ψ〉 and |φ〉 is defined as F ≡ | 〈ψ | φ〉|2). The
target states are shown in the table below (normalisation
is omitted): these states have a range of properties and are
studied and used by both theorists and experimentalists.
Figure 2 shows an artist’s impression of our algorithm,
AdaQuantum, producing a range of quantum states.

Name State

Cat |cat〉 � |α〉 + eiθ |−α〉
Squeezed cat Ŝ(z) |cat〉
Zombie |α〉 + ∣

∣e2πi/3α
〉 + ∣

∣e4πi/3α
〉

ON |0〉 + δ |n〉
Cubic phase exp

(

iγ q̂3
)

Ŝ(z) |0〉

Here, δ, γ ∈ R; Ŝ(z) is the squeezing operator, given

by Ŝ(z) = exp
[

1
2 (z∗â2 − zâ†2)

]

, where z ∈ C and

â† and â are the creation and annihilation operators,
respectively (Barnett and Radmore 2002); and q̂ is the
position quadrature operator, given by q̂ = (â + â†)/

√
2.

The first state we search for is the optical Schrödinger cat
state. This state is inspired by Schrödinger’s famous thought
experiment in which he proposed to put a macroscopic
system—a cat—in a superposition of two distinct states
(Schrödinger 1935). The implications of this thought
experiment still spark heated debate and disagreement, but
what escapes controversy is that it would be both important
and interesting to create a macroscopic superposition of two
distinct states. The optical Schrödinger cat state is moving

Fig. 2 An artist’s impression of our algorithm, AdaQuantum, which
designs experiments for engineering quantum states. The algorithm
is designed for flexibility and can produce a wide range of quantum
states: the illustration depicts, among others, the production of a
Schrödinger cat state, a three-headed cat state (Lee et al. 2015), and a
GKP state (Gottesman et al. 2001). Artwork by Joseph Namara Hollis
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towards this goal, as it is a superposition of two distinct
coherent states, |α〉 and |−α〉. While the magnitude of α

so far produced in experiments is far from making the
state macroscopic, the optical Schrödinger cat state might
eventually be produced as a macroscopic superposition,
given that |α〉 is the state produced from a “perfect” laser.
Optical Schrödinger cat states (often referred to as just “cat
states”) have been produced in a number of experiments,
such as Ourjoumtsev et al. (2007), Huang et al. (2015), and
Etesse et al. (2015).

The next two states are derived from the Schrödinger
cat state. First, we can consider squeezing a cat state by
applying the squeezing operator, as shown in the table. The
resulting squeezed cat state, whilst in one sense being more
exotic than the cat state, is not necessarily more difficult
to produce experimentally (Huang et al. 2015; Etesse et al.
2015). The squeezed cat state can, for example, provide
substantial enhancements in quantum metrology (Knott
et al. 2016). Next, instead of making a superposition of two
coherent states with different phases as in the cat state, we
can make a superposition of three, with the relative phases
now differing by 2π/3. Such a state can be called a three-
headed cat state (Lee et al. 2015; Jiang et al. 2016), but
here we prefer the name zombie cat state, as it represents
the superposition of three distinct macroscopic states: dead,
alive, and undead.

We used the algorithm to search for cat states, squeezed
cat states, and zombie cat states, with the following
parameters: α ∈ [0, 2], θ ∈ [0, 2π ], and z ∈ C with
|z| ∈ [0, 1.4].

Next, we consider the ON state, which is a superposition
of the vacuum |0〉 with an n-photon state |n〉. By controlling
the relative weighting δ, it has been shown that the
quantum Fisher information of this state, which is often
used to quantify the state’s phase-measuring potential, can
be made arbitrarily large whilst keeping the photon number
arbitrarily small (Rivas and Luis 2012) (but this state cannot
actually achieve infinitely precise measurements (Hall and
Wiseman 2012; Hall et al. 2012)). These states are also
important for continuous variable quantum computation
because they can be used as a resource to implement cubic
phase gates (Sabapathy and Weedbrook 2018). The latter
enable universal quantum computation (Kok and Lovett
2010) (a non-Gaussian gate such as a cubic phase gate is
essential, as Gaussian gates alone cannot be universal (Kok
and Lovett 2010)). The ON states we searched for have
δ ∈ [0, 1] and n ∈ [1, 10].

Another state useful for continuous variable quantum
computation is the cubic phase state, which too can be used
as a resource to enable cubic phase gates (Gottesman et al.
2001; Sabapathy and Weedbrook 2018; Ghose and Sanders
2007; Takagi and Zhuang 2018; Gu et al. 2009). The cubic
phase states we searched for have γ ∈ [0, 0.25] and z ∈ R

with z ∈ [0, 1.4]. Note that “true” cubic phase states are
only obtained for infinite squeezing.

4Methods

4.1 Using a genetic algorithm to design experiments

We will first introduce the general method of using a genetic
algorithm (GA) to design experiments, before describing
in more detail how our specific algorithm works. In order
to use a GA, we must encode each possible arrangement
of states, operators and measurements into a vector, which
is known as a genome. The genome contains all the
information necessary to re-construct a given experimental
setup, including all the parameters of the experimental
elements. The GA then starts by creating a collection of
genomes, which together are known as the population. Next,
the experimental setup corresponding to each genome is
simulated, and the fitness function for each output state is
evaluated. The fitness function must take a quantum state as
an input, and output a number, the fitness value. The latter
quantifies whether the states has the properties we desire
or not. In this paper, our fitness function will be a measure
of how close the output state is to one of those states we
are searching for, which are introduced in Section 3. But
as discussed in Nichols et al. (2018), the flexibility of our
algorithm allows for a wide range of fitness functions to be
used to find quantum states for any number of applications.

After the population of genomes is assessed for their
fitness, the “fittest” genomes, i.e. the genomes with
the largest fitness values, are then selected, and a new
population of genomes (the children) is generated by mixing
some of the genomes together (crossover), by randomly
modifying (mutating) others, and keeping some genomes
unchanged (the elite children). This next population should,
in principle, be comprised of genomes that are “fitter”
than before. This process repeats through a number of
generations, until it is unlikely that any more generations
will result in improvements. At this stage, if the algorithm
has been designed appropriately, then the fittest genomes
will encode optimised solutions. Through this process, our
GA evolves quantum experiments that are highly suited to
the task at hand. A flow chart of our algorithm is given in
Fig. 3.

In order to assess each genome, we must simulate
the quantum optics experiment that this genome encodes,
then evaluate the fitness function on the output state. As
introduced in Nichols et al. (2018), our simulation of the
quantum optics experiments utilises a number of techniques
to increase its efficiency. The result is a powerful simulation
that allows us to simulate experiments with a truncation of
up to 170 photons (in two modes) in the order of seconds,
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Fig. 3 Flowchart of a genetic algorithm. We first create an initial
population of genomes, we evaluate these using the fitness function,
and then select the “fittest” genomes. We then create a new population,
named the children, using three methods, elite, crossover, and
mutation, which are described in the main text. The process then
repeats until we have found a genome that fulfils our requirements, or
until some exit criteria are met (e.g. given by the maximum allowed
running time)

thus allowing a broad range of exotic states—with important
contributions at high photon numbers—to be assessed.

4.1.1 Our three-stage algorithm

One significant challenge in our approach is that to simulate
each experiment accurately we need to truncate the Hilbert
space at a high number, but the higher the truncation is, the
slower the algorithm will run. Our search space of quantum
experiments is huge, and to do an effective search, we need
to evaluate a large number of different experiments, but this
becomes increasingly more computationally expensive for
larger truncations. To overcome this, our GA, introduced in
Nichols et al. (2018), has three stages:

1. A large number of random genomes are created and
evaluated. In this stage, the truncation of the Hilbert
space is small (we vary this, but it is often around
30), and therefore the quantum simulation is only
approximate. But it is fast. A collection of genomes
with the best fitness values are selected for the next
stage. While the simulation here is only approximate,
it still provides a valuable guide as to where the GA is
likely to find experiments with higher fitness values—
this stage seeds the GA in the subsequent stage with
a substantially better starting population than picking
purely at random.

2. We run MATLAB’s inbuilt GA (https://uk.mathworks.
com/help/gads/index.html) with a medium-sized popu-
lation. The simulation is less approximate than stage 1

(because the truncation is larger, around 80), and hence
slower. This stage only runs for a set number of genera-
tions, usually 10. This stage performs a medium-speed
global search and provides the final stage with a strong
population.

3. In the final stage, the simulation is accurate but slow.
In this stage, the fitness function will first simulate the
circuit specified by the input genome at a very low
truncation, then repeat this, increasing the truncation
on each iteration, either until the average number
of photons in the final state converges or until the
maximum truncation is reached (where the maximum
truncation is specified by the user). This ensures the
results are reliable and accurate, while still running
in a reasonable time. Here, we again use MATLAB’s
inbuilt GA (https://uk.mathworks.com/help/gads/index.
html), but the population is smaller, and the search is
more local.

4.1.2 Overcoming challenges in evaluating our fitness
function

As our task is to find specific states, the obvious fitness
function here is to evaluate the fidelity between the target
state and the state outputted in each simulation. For
example, if we wish to find a cat state, then we can calculate
the fidelity to a cat state. But which cat state should we be
evaluating against? An (unnormalised) cat state given by
|α〉 + eiθ |−α〉 has three real-valued parameters (the value
of θ and the magnitude and phase of α), so we should
compare against every combination of these parameters.
Even restricting to small cat states, e.g., |α| ≤ 2, and
discretising the parameters, we still have a large number
of cat states to compare against (in the order of 105 for
this paper). This is not a problem in stages 2 and 3 of our
algorithm, because the run-time is dominated by simulating
each experiment. But in stage 1, where the truncation is
small, the overhead from evaluating the fidelity becomes
significant.

This problem is exacerbated when we consider how our
algorithm will commonly be used to design new quantum
experiments. Generally, we expect a user to specify which
states, operators, and measurements they have available, and
then to run the algorithm to find which states, and to what
fidelity, can be produced with their given equipment. In this
case, in stage 1 of the algorithm, ideally, we would search
for all of the quantum states of interest (e.g. the 5 classes
used in this paper) simultaneously, but this would require a
vast number of fidelities to be computed for each simulation
(around 106 for this paper).

We overcome this problem by using a deep neural
network (DNN) to classify each quantum state, thus
bypassing the need to calculate each fidelity. The DNN is
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introduced in detail in the next section, but it suffices for
now to consider the DNN as a black box for which we input
a quantum state, and the DNN outputs a classification. More
specifically, we input a quantum state into the DNN, and the
DNN will output a probability distribution as to whether the
state is a cat state, squeezed cat state, zombie cat state, ON
state, cubic phase state, or none of the above. For example,
if we input the state |α = 1〉 + |α = −1〉 into the DNN, it
should give the output “cat state”. We add a class of state
that we call “other”, so that we know whenever a simulation
produces a state that is not close to any of our desired states.
See the next section for more details of the DNN, including
how we train it to perform the classification.

When used in stage 1 of our algorithm, this method
of using a DNN has two significant advantages over the
alternative method of calculating the fidelities. Firstly, once
the DNN is trained to classify states it runs substantially
faster than calculating the fidelity. Secondly, the DNN
classifies for all 5 states (or more) simultaneously. We
therefore use the DNN as follows: In stage 1, we evaluate
a large number of genomes, using the DNN to classify
each. We then take a number of the genomes that come
closest to producing cat states, according to the DNN, and
then send these genomes through stages 2 and 3, using the
fidelity as the fitness function (population sizes for the runs
of AdaQuantum in this paper are given in Appendix 2).
We then repeat stages 2 and 3 for the other 4 states. When
used in this way in stage 1, the DNN is around two orders
of magnitude faster than calculating all the fidelities. The
overall structure of our hybrid algorithm that incorporates
both the DNN and the GA is shown in Fig. 4.

Our algorithm AdaQuantum is available free-to-use on
GitHub (https://github.com/paulk444/AdaQuantum).

4.2 A neural network for classifying quantum states

Having explained how and why we choose to utilise a DNN
for classifying quantum states, we will now introduce neural
networks, and explain how we construct and train ours.

A classifier deep neural network (DNN) is a machine
learning technique used to classify data into a set of classes.
In our case, we input a quantum state, and the DNN will
output a probability distribution as to whether the state is
a cat state, squeezed cat state, zombie cat state, ON state,
cubic phase state, or none of the above. Data is input to the
DNN as a vector 
x ∈ R

n. The network is built up of layers
of “neurons”. In a given layer, each neuron is assigned a
value that is calculated by first taking a linear combination
of the values in the previous layer, then doing a non-linear
activation function. Mathematically, this is expressed as:


xi+1 = σ
(

Mi 
xi + 
bi

)

Randomly produce a large number of genomes and simulate the 
corresponding experiments, using the DNN to classify each 

resulting output state

Select genomes that 
produce cat states

Run GA on these 
genomes*, with 

fidelity as the fitness 
function

Select genomes that 
produce squeezed 

cat states

Run GA on these 
genomes*, with 

fidelity as the fitness 
function

…

Repeat 
for other 
states

…

Output: experiment 
to produce a cat 

state

Output: experiment 
to produce a 
squeezed cat

Fig. 4 A flowchart of the overall structure of our hybrid algorithm
that incorporates both a deep neural network (DNN) and a genetic
algorithm (GA) to design experiments to produce a range of quantum
states. *The GA runs in stages 2 and 3 of the 3-stage algorithm
discussed in Section 4.1.1 of the main text

where 
xi+1 are the neuron values for the next layer, Mi is
matrix of weights, 
bi ∈ R

n is a bias vector, and σ is the
activation function, which is applied element-wise.

Our final layer has 6 neurons, each corresponding to
a class of state; this layer uses a different activation
function than the rest of the network and produces a
probability distribution, corresponding to the probability
that the network thinks the input state was each of the
classes (e.g. if the first neuron in the output layer is 0.9,
the network has determined that the input state has a 90%
probability of being a cat state). The neuron with the
maximum probability therefore indicates which class the
input state is predicted to belong to. The values of Mi and 
bi

must be learnt by the network so that it produces the desired
output—this is achieved by training, which is described
below. A visualisation of the neural network is shown in
Fig. 5.

To train the neural network, we first need some labelled
training data, which should take the form of a set of quantum
states, and a label for each state (the label gives the “class”
of each state, for example a “cat state”). This was generated
by sampling parameter values for the states from a random
distribution. In other words, we first create a cat state with
ramdomly generated parameters (where the parameters for
the cat state are α and θ ). By associating with this state the
label “cat state”, we now have our first piece of training
data. This is repeated for the cat state a number of times
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Fig. 5 Our deep neural network
(DNN) for classifying quantum
states. We input the number
distribution of a quantum state,
and the DNN outputs a
probability distribution
corresponding to the
probabilities that the inputted
state was one of a fixed set of
classes (introduced in Section 3):
cat state, squeezed cat state,
zombie cat state, ON state, cubic
phase state, or none of the above

(approx. 1700 in this paper), before moving on to the other
classes of quantum states. We repeat this process to create
the testing data. Once the training (and testing) data has
been generated, this can be used to train (and test) the DNN.
The goal of the DNN is therefore to take in a given state,
and correctly tell us which of the classifications this state
belongs to.

When producing quatum states for the training and
testing data, the coefficients of the quantum states in the
Fock basis were then calculated using either the analytic
expressions (where possible), or by matrix representations
of operators acting on the vacuum state (in both cases
using a truncated Hilbert space) (Barnett and Radmore
2002). Some states with random coefficients were also
generated (labelled other). The generated training states
are inputted to the neural network and a loss function (the
softmax cross entropy) is computed using the values of
the output layer, and the actual label of the state. The
aim of training the network is to modify the values of the
biases and weights so that this loss function is minimised;
to achieve this, we used an optimisation algorithm called
Adam (Kingma and Ba 2014), a variation on the stochastic
gradient descent method commonly used in machine
learning.

Data must be inputted to the neural network as a real,
finite-dimensional vector, but our quantum states belong to
a complex, infinite-dimensional Hilbert space. We choose
to convert the complex coefficients of each state (in the
truncated Fock basis) to real numbers by taking the modulus
of the Fock coefficients (throughout the paper we refer to
the set of moduli of the Fock coefficients as the “number
distribution”). We tried inputting the phase information as
extra inputs to the DNN, but this did not improve the
accuracy.

A common problem encountered in machine learning
is overfitting, which occurs when the model learnt by the
neural network fits to outliers in your training data set, but
does not generalise well (as an extreme example, if the DNN
has enough free parameters it can “memorise” the whole
training set given enough training iterations). One method
to detect this is to split your data set in two: training and
testing. The network is trained using only the data in the
training set. Its accuracy can then be evaluated on the testing
data set (which the network has never seen before). If the
accuracy of the network on the testing set is significantly
less than its accuracy on the training set, then it is likely that
overfitting has occurred. Using larger training/testing data
sets can help to avoid overfitting, as well as techniques such
as dropout and regularisation, all of which we experimented
with here.

We implemented our DNN in TensorFlow (Abadi et al.
2016). We used a training data set containing 10,000
states, and a testing data set of 3000 states, where
approximately one-sixth of the states in each data set belong
to each class. After some experimentation, we settled on
a DNN consisting of 3 fully connected hidden layers,
comprising 25, 25, and 10 neurons, respectively. After 5000
steps (epochs) of training, the network classified the test
data with an accuracy of 99.3%. Our DNN is available
on GitHub (https://github.com/lewis-od/Quantum-Optics)
(which includes the code for generating states for the
training data).

A standard metric to monitor how well a neural network
is classifying data, aside from the accuracy, is the confusion
matrix. This is a 6 × 6 matrix (in our case), where the rows
represent the actual classes of the states, and the columns
represent the classes predicted by the network. The entry in
the ith row and j th column shows how many states of class
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Table 1 The results found by running AdaQuantum to find experimental schemes to produce 5 different quantum states

Target state Target parameters Experiment Experiment parameters Fidelity

Cat α = −2 − i, θ = 0 〈6| ÛT1 |z1, z2〉 z1 = 0.701e4.10i , z2 = 0.156e0.847i , T1 = 0.407 99.85%

Squeezed cat α = −0.2̇ + 0.2̇i, z = 1.09 + 0.47i 〈4| ÛT2 |z3〉12 z3 = 1.28e0.422i , T2 = 0.499 99.78%

Zombie α = −0.28 + 0.53i 〈4| D̂1(α1)ÛT3 |z4, 0〉 z4 = 1.26e2.64i , T3 = 0.724, α1 = 2.16e0.265i 96.84%

ON n = 2, δ = 0.32 〈8| ÛT4 |z5〉12 z5 = 0.985e6.28i , T4 = 0.606 97.77%

Cubic phase γ = 0.05, z = 0.29 〈5| ÛT5 |z6, 1〉 z6 = 0.586e3.14i , T5 = 0.612 96.11%

Normalisation constants are omitted. Also, in the heralding measurements, we omit the identity operator that acts on the remaining mode, i.e.
〈n| ≡ 〈n| ⊗ I, where 〈n| acts on the first mode and I acts on the second mode. The final column shows the fidelity of the output state with the
target state. All of these states can be made using present day experimental equipment, and all experimental designs produced states with a fidelity
of at least 96% with their target state. See Fig. 6 for a schematic of the experiment to produce an ON state

i were classified as class j . The confusion matrix calculated
using our test data was:

Cat Sq.-Cat Zombie ON CP Other

Cat
Sq.-Cat
Zombie

ON
CP

Other

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

497 3 0 0 0 0
0 500 0 0 0 0
1 0 499 0 0 0
0 0 1 499 0 0
5 7 3 0 485 0
0 0 0 1 0 499

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

From this, we can see that the network is best at classifying
squeezed cat states; however, it has also classified 10 states
incorrectly as squeezed cat states. It is also clear that the
network is worst at classifying cubic phase states, which is
to be expected as they have the most complex structure of
all the states we are interested in. Also note that no states
were incorrectly classified as “other”, meaning we were
unlikely to falsely classify states that we are looking for as
being useless.

5 Results

We ran AdaQuantum to find the 5 states introduced
in Section 3, and obtained the results in Table 1. The
hyperparameters and settings of the genetic algorithm that
were used to obtain these results are given in Appendix 2.
All of the states were found to a fidelity above 96%, and two
of them were over 99.7%.

As an example, to produce an ON state to a fidelity of
97.77%, we first send a two-mode squeezed vacuum state
through a beam splitter. This creates the two-mode state
ÛT4 |z5〉12. Next, we do an 8-photon heralding measurement
on the first mode of the output. As explained in Appendix 1,
we can calculate the output state from such a heralding
measurement by acting with 〈8| ⊗ I, where I is the identity

(acting on the second mode). Finally, we normalise this
state. The full ON state in this example is therefore given by

N (〈8| ⊗ I) ÛT4 |z5〉12 , (1)

where N is the normalisation constant. Note that in Table 1,
the normalisation constant and the identity are omitted
for all states. The single-mode state given in Eq. 1 has a
97.77% fidelity to the target ON state. A schematic of this
experiment is shown in Fig. 6.

Similar schemes—with similar simplicity—were found
for all 5 states. As discussed above, all of the experimental
elements used here are accessible with current technology,
with perhaps the biggest challenge in producing the states
in Table 1 being the larger-number heralding measurements
(Humphreys et al. 2015; Gerrits et al. 2010). The purpose
of this paper is to introduce the method of using such an
algorithm, and demonstrate its effectiveness; future work
will undertake a deeper analysis of the capabilities of
AdaQuantum and the experiments and states that it has
produced.

out

Fig. 6 A sample experiment designed by AdaQuantum: this arrange-
ment of quantum optics elements creates an ON state to a fidelity of
97.77%. See Table 1 for details and parameter values. As desribed in
the main text, this state is created by sending a two-mode squeezed
vacuum state (|z5〉12) through a beam splitter (UT4 ), and then acting
with the POVM |8〉 〈8| on the first mode of this two-mode state
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6 Conclusion

We have introduced a hybrid machine learning algorithm
for designing quantum optics experiments. A genetic algo-
rithm was used to search for optimal arrangements of
experimental elements that produce a range of useful
and interesting optical quantum states, and a deep neu-
ral network was used to speed up the evaluations of
each experimental arrangement by quickly and accurately
classifying quantum states. Combining these techniques,
our algorithm found experimental arrangements to pro-
duce all 5 states we asked it to, all to a high fidelity.
This demonstrates the power and flexibility of the tech-
nique of using methods from artificial intelligence and
machine learning to design and optimise quantum physics
experiments.
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Appendix 1. Quantum optics toolbox details

Input states The squeezed vacuum is given by |z〉 =
Ŝ(z)|0〉 where the squeezing operator is Ŝ(z) =
exp

[
1
2 (z∗â2 − zâ†2

)
]

and z = reiθs where r is the (pos-

itive and real) amplitude, θs ∈ [0, 2π ] is the squeezing
angle and â (â†) is the annihilation (creation) operator.
Squeezed states can be made up to r ≈ 1.4, but this is
extremely challenging experimentally so we set the limit
to r = 1.3 (Mehmet et al. 2011). Similarly, the two-
mode squeezed vacuum is given by |z〉12 = Ŝ12(z)|0, 0〉,
where the two-mode squeezing operator is Ŝ12(z) =
exp (z∗âb̂ − zâ†b̂†), where â and b̂ act on modes 1 and 2,
respectively, and again z is complex. The coherent state
is given by |α〉 = D̂(α)|0〉 where the displacement oper-
ator is D̂(α) = exp (αâ† − α∗â), α = |α|eiθc where |α|
is the amplitude, and θc ∈ [0, 2π ] is the coherent state
phase. The amplitude of the coherent state can be large
in experiments, so instead it is limited by the numerical
methods we use: we set the limit to α = 4. The final
input state is the Fock state of which the simplest is the
vacuum |0〉. Single photons, |1〉, can be emitted from a
quantum dot (Müller et al. 2015; Claudon et al. 2010)
or heralded (Morin et al. 2012). We also consider the

two-photon state, |2〉, which has been made in Ourjoumt-
sev et al. (2006) and Huang (2015). Higher number Fock
states can be made, e.g. by heralding, but are challeng-
ing to produce to a high fidelity and are not included
here.

Operators The beam splitter is described by the unitary

operator ÛT = e−iθb(e
iφb â†b̂+e−iφb âb̂†), where â and b̂

are annihilation operators for the two modes, and we
choose the arbitrary phase to be φb = −π/2. Here,
T = cos2 θb is the transmissivity of the beam splitter
and therefore for a 50:50 beam splitter θb = π/4 giving
ÛT =50. Next, the displacement operator, D̂(β) (defined
above), is implemented by mixing the state with a large
local oscillator at a highly transmissive beam splitter
(Paris 1996) (β has the same restrictions as α). The phase
operator is given by ein̂θ where n̂ = â†â and θ ∈ [0, 2π ].

Measurements After we have applied a number of
operators, we perform a heralding measurement on one
mode of the final state. For example, if we wish to
herald on the one photon state, we can perform a number
resolving detection (Humphreys et al. 2015; Gerrits et al.
2010), and only keep runs that measure one photon.
The measurement is given by a projection (Nielsen and
Chuang 2010): to follow the single photon example, we
project with |1〉〈1| ⊗ Î. We are then left with a separable
state |1〉 ⊗ |ψf 〉, but we can ignore the measurement
mode, and after normalisation, we are left with the
final one mode state: |ψf 〉. This whole process can be
more easily modeled by acting on the two-mode, pre-
measurement state with 〈1|⊗ Î. In the main text, we drop
the identity and just write 〈1|, and this measurement is
always performed on the first mode of Fig. 1.

Appendix 2. Running AdaQuantum

To obtain the results in this paper, we ran AdaQuantum
with the following settings (see Nichols et al. (2018) for
a detailed description of how AdaQuantum works): The
population sizes for stages 1, 2, and 3 are 8 ×106, 5 ×106,
and 104, respectively. Stages 2 and 3 use MATLAB’s
build-in genetic algorithm (https://uk.mathworks.com/help/
gads/index.html), and both these stages have the same
hyperparameters (except for the population sizes). We
use the scattered crossover function, with crossover
fraction 0.3. We use tournament selection, with a
tournament size of 8. MATLAB did not have a mutation
function with enough flexibility for our purposes, so
we introduced a mutation functions that we call power
mutation, which is based on Deep and Thakur (2007).
In short, power mutation mutates every gene in the
genome by a random distance, whose maximum magnitude
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is determined by the value of a hyperparameter named
power, for which power= 1 will mutate each gene to a
completely random new value, whereas power= ∞ does
not mutate at all. Here, we used power= 10. The number
of elite children was 10.
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