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ABSTRACT Optically pumped magnetometers have opened many possibilities for the study of human brain 

function using wearable moveable technology. In order to fully exploit this capability, a stable low-field 

environment at the sensors is required. One way to achieve this is to predict (and compensate for) changes in 

the ambient magnetic field as the subject moves through the room. The ultimate aim is to account for 

dynamically changing noise environments by updating a model based on measurements from a moving sensor 

array. We begin by demonstrating how an appropriate environmental spatial noise model can be developed 

through Free-energy based model selection. We then develop a Kalman-filter based strategy to account for 

dynamically changing interference. We demonstrate how such a method could not only provide realistic 

estimates of interfering signals when the sensors are moving, but also provide powerful predictive 

performance (at a fixed point within the room) when both sensors and sources of interference are in motion. 

INDEX TERMS Magnetoencephalography, Kalman Filter, Magnetic Sensors, Noise Cancellation, 

Magnetic Noise, Magnetometers, Magnetic Field Measurement, Optically Pumped Magnetometers.

I. INTRODUCTION 

Magnetoencephalography (MEG) is a non-invasive brain 

imaging method based on the measurement of femto-Tesla 

magnetic field change outside of the head [1]. The technique 

can provide spatially resolved and direct estimates of neuronal 

current flow which update millisecond by millisecond [2]. 

Until recently, MEG systems have been large static devices 

which occupy the centre of a shielded room.  Now, optically 

pumped magnetometers (OPM) have demonstrated the 

measurement of fields from the human brain [3]. As these 

sensors are small and light, they can be worn in a helmet and 

are no longer bound to remain at a fixed location within the 

room [4], stimulating a great deal of neuroscientific and 

clinical interest. This new technology also introduces an 

additional challenge to MEG; not only must the brain’s 

electrical activity be estimated, but the highly non-stationary 

changes in environmental interference due to sensor 

movement must also be accounted for. In this, paper we set out 

a possible theoretical framework to address this issue. 

Principally, this work is motivated by a practical necessity. 

Currently, the most sensitive and compact commercial OPM 

systems [5] are based on SERF (spin exchange relaxation free) 

devices, which provide measures of magnetic field but are 

optimally sensitive at zero field. This means the field at the 

sensor head must be nulled in some way. This can be achieved 

internally (using on-board coils) and therefore typically (to 

date) with the subject nominally static [3], [6]; or externally by 

augmenting the static shielding factor of the room with bi-

planar coils surrounding the subject [4], [7].  For example, 

within a typical three-layer MEG shielded room one will 

expect a residual static field of 20 nT with a 5 nT/m gradients 

[7] whilst the dynamic range of a typical SERF device is 

±1.5 nT (at maximum resolution). At present, however, the 

use of additional coils constrains the region of movement of 

the subject (around ±15 cm) and attenuates, but does not 

remove, any sensor interference due to head-movement. The 

aim of this paper is to provide a comprehensive and 

continuously updated model of the environmental noise 

generated outside and inside the room. Given accurate 
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knowledge of head-position and trajectory in this way not only 

could the impact of movement through static fields be 

mitigated, but also the changing structure of the higher 

frequency interference be predicted. We foresee these 

methods will require a mixture of both external and internal 

coil compensation strategies, but ultimately both will require 

a model of the environmental noise. 

Here we borrow concepts from the classical empirical 

Bayesian framework for M/EEG brain imaging [8], [9] and 

apply them to modelling magnetic fields external to the sensor 

array. The main distinction is that for the first time we have a 

moving MEG sensor which can provide us with novel samples 

from the environment; as the sensor is moving and the 

environment is changing, we also must track these changes. 

The use of dynamic estimators in M/EEG is not new and 

extends from Kalman filters [10], [11] to complex non-

stationary off-line model estimators [12], [13]. In this work we 

make use of the Kalman filter, a Markovian optimal quadratic 

estimator [14] widely used for tracking and estimating states 

and disturbances (see [15], [16] for reviews on the field). It has 

been used on several fields for de-noising, tracking (e.g. 

sources of epileptic foci [11], [17], characterising disturbances 

and, more commonly, for estimating process states on modern 

control systems [18]–[20]. 

This paper proceeds as follows. We begin by explaining 

how the Bayesian M/EEG brain imaging framework can be 

extended to estimate environmental noise. We demonstrate 

our approach by showing how candidate models of the 

external noise space can be compared in the stationary case. 

We introduce the Kalman filter as a practical way of exploiting 

the information gained from moving sensors. Given an 

optimal source space model we make use of a Kalman filter to 

update and track non-stationary dynamics. Finally, we 

demonstrate how this framework extends to the case of a 

single moving sensor tracking moving sources of disturbance. 

 
II. METHDOS 

A. ROOM SPACE INVERSE PROBLEM 

Traditional M/EEG brain imaging consists of finding the 

sources of neural activity within the brain, typically modelled 

by a cortical manifold of current dipoles. Here the set of 

sensors is located within the search space, and the objective is 

to populate the surrounding space with magnetic dipoles that 

will generate the magnetic fields measured by the sensors (See 
 

Figure 1 Fig. 1). This will allow us to both characterise 

sources of disturbance and estimate the magnetic field at every 

usable location of the shielded room by computing a new 

forward problem. 

 

Figure 1. Proposed spatial model. Environmental magnetic noise can be 
approximate by a shell of magnetic dipoles surrounding the 
measurement space. Here we assume that the shell is cubic but that 
each point of the shell contains a magnetic dipolar source at arbitrary 
orientation. The first objective is to select an optimal scale for this shell 
based on environmental noise data measured at the sensors (blue 
circles). 

 

Let us define the environmental magnetic fields recorded by 

𝑁𝑐 (theoretical) tri-axial sensor locations as 𝐵 ∈ ℜ3𝑁𝑐×𝑁𝑡, for 

𝑁𝑡 time samples. Then, 𝑁𝑑 magnetic dipoles are placed around 

the region of the room that will be mapped (on a cubic shell in 

this case), these dipoles have fixed locations and unknown 

orientation. The magnetic moments of these dipoles are the 

unknowns: 𝑚 ∈ ℜ3𝑁𝑑×𝑁𝑡. The propagation model between 

dipoles and sensors can be modelled with an extended version 

of the general linear model: 

 𝐵 = 𝐿𝑚 + 𝐻𝐽 + 𝑒 (1) 

Where 𝐿, 𝐻 ∈ ℜ3𝑁𝑐×3𝑁𝑑 are gain (lead-field) matrices 

linking magnetic field 𝐵 to external sources 𝑚 (magnetic 

dipoles) and brain (cortical) current flow 𝐽 ∈ ℜ3𝑁𝑑×𝑁𝑡 

respectively (and with different units) , and 𝑒 represents 

unexplained additive noise. For clarity (as here we focus on 

estimation of 𝑚) we can parcel the component of 𝐵 due to 

brain activity (𝐻𝐽, which will be small compared to the 

environmental interference) into a composite error term 𝜖: 

 𝐵 = 𝐿𝑚 + 𝜖 (2) 

The propagation model used to compute the lead-field 

matrix 𝐿 corresponds to the magnetic dipole equation: 

 𝐿 =
𝜇0

4𝜋
(
3𝑟 (𝑙𝑚⃗⃗⃗⃗ ⋅ (𝑟 − 𝑟 𝑑)) − 𝑟2𝑙𝑚⃗⃗⃗⃗ 

𝑟5
) (3) 

that relates the moment orientation 𝑙𝑚⃗⃗⃗⃗  of a magnetic dipole at 

𝑟 𝑑 with a sensor location 𝑟 . The reconstruction of the expected 

amplitudes 𝑚̂ is performed with the traditional Maximum 

Likelihood optimisation [21]: 

 𝑚̂ = 𝑄𝐿𝑇(𝐿𝑄𝐿𝑇 + 𝑄𝜖)
−1𝐵, (4) 

with 𝑄 ∈ ℜ3𝑁𝑑×3𝑁𝑑 being the prior source (i.e. environmental 

interference) space covariance matrix. As in the traditional 

solutions for brain imaging, 𝑄 should include prior 

information such as spatial smoothness (LORETA [22]), data 

driven projections (Beamformers –EBB [23], [24], or sparsity 

(Multiple Sparse Priors –MSP [8]), etc. For our tests here, we 

use EBB as it presented the better performance on preliminary 

tests (specially in computational burden). In EBB an empirical 
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prior source covariance matrix 𝑄𝐸𝐵𝐵 is estimated based on the 

measured data B and the lead-field matrix L [24]: 

 𝑄EBB = ℎ1diag(Γ); 

               Γi = 1
𝛿𝑖

⁄ (𝐿𝑖
𝑇(𝐵𝐵𝑇)−1𝐿𝑖)

−1, 
(5) 

∀𝑖 = 1,… ,3𝑁𝑑, where 𝐿𝑖 is the 𝑖-th row of 𝐿, and diag(⋅) is 

an operator that converts a vector into a diagonal matrix. Each 

dipole projection is normalised with 𝛿𝑖 = (𝐿𝑖
𝑇𝐿𝑖)

−1. With 

respect to the noise variance prior 𝑄𝜖 ∈ ℜ3𝑁𝑐×3𝑁𝑐, for 

simplicity we define it as an identity matrix 𝑄𝜖 = ℎ0𝐼, with ℎ0 

being a regularisation parameter [25]. 

 

The parameters {ℎ0, ℎ1} can be optimised by an 

expectation-maximization algorithm, using the negative 

variational free energy 𝐹 as a cost function [26]. With this 

approach, every solution of the OPM room-level inverse 

problem will be related to a final 𝐹 value that can be used for 

model comparison. The Free energy is a trade-off between 

accuracy and complexity of the model. Summarizing, the 

accuracy depends on both the relation between the data 

covariance and the model-based covariance, penalised by the 

size (determinant) of the model-based covariance. The 

complexity, on the other hand, penalises the difference 

between the prior at parameter level and the optimised 

posterior values (see [27] for practical examples of using Free 

energy for model comparison, and [28] for implementation 

details within this framework). 

B. STATE SPACE REPRESENTATION 

The traditional general linear model of (2) is static. Here we 

must deal with non-stationary noise sources and moving 

sensors. Therefore, we have extended this model to the well-

known discrete-time state-space representation (See [29] for a 

wider explanation on dynamical models): 

 𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝑅𝑘𝑢𝑘 + 𝑤𝑘−1 (6) 

 𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝜖𝑘 (7) 

The essence of this representation is that the current value 

of the states 𝑥𝑘 in (6) can be estimated from their weighted 

previous estimate 𝐴𝑘𝑥𝑘−1 (i.e., Markovian) and a projected 

input 𝑅𝑘𝑢𝑘, plus some unknown state disturbances 𝑤. The 

output of the system 𝑦𝑘 in (7) depends on both states and 

inputs, plus some output (sensor) noise 𝜖. 

Applied to our problem, the states will be the magnitude of 

the magnetic fields at the dipoles 𝑚 and the output will be the 

magnetic fields measured by the sensors 𝐵; therefore, the 

output matrix 𝐶 becomes the lead-field matrix 𝐿. For this 

specific scenario, there is no direct input (autonomous 

system), then 𝑢 = 0 and the state-space representation 

becomes: 

 𝑚𝑘 = 𝐴𝑘𝑚𝑘−1 + 𝑤𝑘−1 (8) 

 𝐵𝑘 = 𝐿𝑚𝑘 + 𝜖 (9) 

Contrary to M/EEG, where we have prior knowledge to 

construct the state transition matrix 𝐴𝑘 ∈ ℜ3𝑁𝑑×3𝑁𝑑 (see [10], 

[11]), here we lack a temporal model of the sources of 

disturbance; thus, we make a simple data-driven selection by 

setting: 𝐴𝑘 = diag(Γ𝑘), with Γ𝑘 being computed as in (5) with 

only data recorded at sample time 𝑘. With this selection, we 

give updating priority to those regions more likely to be active 

at sample time 𝑘 due to the current data 𝐵𝑘 projected over the 

states and normalised. There are many other possible 

variations for this transition matrix which we touch on in the 

discussion. 

Note that the state-space representation allows one to 

decompose the uncertainty into sensor noise 𝜖 ∈ ℜ3𝑁𝑐×𝑁𝑡 and 

other sources of disturbance 𝑤 ∈ ℜ3𝑁𝑑×𝑁𝑡 . In future, prior 

knowledge of these disturbances could be introduced in 𝑤𝑘 

(the trains follow the same path, the air conditioner always has 

the same power spectrum, etc.). 

C. KALMAN FILTER IMPLEMENTATION 

To our knowledge, the simplest candidate to deal with our 

specific problem is the Kalman filter, a Markov model 

estimator of the discrete-time state-space system 

representation [14]. The Kalman filter is a dynamic extension 

of the Maximum Likelihood optimisation of (4), which here is 

known as the Kalman gain: 

 𝐺𝑘 = 𝑃𝑘
−𝐿𝑇(𝐿𝑃𝑘

−𝐿𝑇 + 𝑄𝜖)
−1 (10) 

The main difference with the traditional static scenario of 

(4) is that the source space covariance matrix 𝑃𝑘 is 

dynamically updated at the Kalman filter. 

The Kalman filter begins with a prediction stage, where 

both current expected values of the states 𝑚𝑘 and their 

variance 𝑃𝑘 are predicted based on their previous sample 

estimation: 

 

𝑚𝑘
− = 𝐴𝑘𝑚𝑘−1:   1. Prediction in states 

𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1𝐴𝑘

𝑇 + 𝑊 : 2. Prediction in posterior 

covariance of states 

 

Where the super index (⋅)− implies prediction (i.e., only 

based on temporal modelling), and 𝑊 is the state disturbance 

covariance 𝐸(𝑤𝑤𝑇) = 𝑊. 

The next step is to compute the Kalman gain with (10), 

which is followed by a correction stage using the current value 

of the measurements 𝐵𝑘: 

 

𝐺𝑘 = 𝑃𝑘
−𝐿𝑇(𝐿𝑃𝑘

−𝐿𝑇 + 𝑄𝜖)
−1: 3. Compute Kalman gain 

𝑚𝑘 = 𝑚𝑘−1 + 𝐺𝑘(𝐵𝑘 − 𝐿𝑚𝑘
−) :  4. Update on states 

𝑃𝑘 = (𝐼𝑁𝑑
− GkL)Pk

− :  5. Update on posterior 

covariance of states 

 

Note that for a perfect scenario, GkL = I𝑁𝑑
 and the 

uncertainty on the states would be zero; i.e., the state 

covariance matrix 𝑃𝑘 is the term to be minimised through time 

at the Kalman filter. 
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For this room-level inverse problem, the Kalman filter 

parameters can be initialised as follows: 

- Sensor noise covariance 𝑄𝜖: The regularisation parameter 

ℎ0 from 𝑄ϵ = ℎ0𝐼3𝑁𝑑
 can be computed with any 

regularisation strategy [30]. Here we assume same noise 

levels over the whole simulation; therefore, we just compute 

a general cross validation with prior data [31]. 

- Initial state moments 𝑚0: They can be initialised by solving 

the EBB inverse problem for the first sample time. 

- State disturbance covariance 𝑊 and posterior state 

covariance 𝑃0: In absence of prior information, we can 

initialise both with identity matrices: 𝑃0 = 𝑊 = 𝐼3𝑁𝑑
. 

D. EXPERIMENTAL SET-UP 

We propose the following simulation workflow to show the 

proof of principle for our approach: 

1. We demonstrate how it is possible to use model selection 

in order to compare between different environmental 

source spaces. 

2. We test the Kalman filter and show that it can improve on 

stationary estimates when the sources of interference are 

non-stationary.  

3. We extend this formalism to a moving sensor array. 

4. Then, we show how the Kalman filter formulation can be 

used to update a moving source of noise model whilst the 

sensors themselves are moving. 

The end goal is for a wearable system that can be used to 

estimate and update a model of the sources of magnetic noise 

in the environment. This model would be updated as the 

subject moves around the room and as the environmental noise 

conditions change. Given such a model, we can make a 

prediction of the sensor level field changes required to 

maintain the system at its optimal operating point and 

minimize the influence of environmental noise. 

 
III. RESULTS 

A.  FINDING AN OPTIMAL SHELL TO DESCRIBE THE 
EXTERNAL NOISE 

For this work we will assume an optimal shell, at some 

scale, on which we can place sources that will well describe 

the environmental noise. In this first scenario, we show how 

we can use Free energy for model comparison among possible 

shells. Importantly, the Free energy value comes with no 

knowledge of the ground truth. 

This test consists of placing 𝑁𝑐 = 8 tri-axial sensors (i.e., 

24 individual single-axis sensors) equally distributed in a 

usable space of 40 × 40 × 40 cm, and 𝑁𝑑 = 218 magnetic 

dipoles on a cubic shell surrounding them. The magnetic 

dipoles shell has 15 possible distances to the centre of the 

room: 𝑑 = {0.5, 0.6, … , 1.9} m.  We simulated two magnetic 

dipoles with uncorrelated waveforms (one sinusoid with 

random frequency between 1 and 10 Hz and one chirp 

                                                 
1 https://www.fil.ion.ucl.ac.uk/spm/ 

sweeping the same frequency range). Both simulated sources 

sit on one of the shells and are placed randomly with free 

orientation. We test with 100 trials of 1 s at 100 Hz sample 

frequency. The solver used is EBB over three different signal-

to-noise levels: SNR = {−10, 0, 10} dB. We used Free energy 

as the objective function to estimate the true shell containing 

the sources. We plot Free energy relative to the maximum 

observed over all models, with the best (most likely) model at 

zero Free energy. 

Fig. 2 shows corrected Free energy results after 100 trials 

per layer computed with EBB within SPM121. Each figure 

panel shows a different shell containing the sources: 𝑑 =
{0.6, 1.1, 1.8} m (near, mid, and far from the centre of the 

shielded room) for the three tested SNRs. Note that the peak 

Free energy metric always coincides with the true shell, and 

that the larger the true shell the less important its position (as 

the fields have become more homogenous at a distance). 

 
Sources at d=0.6 m from centre  

 

Sources at d=1.1 m from centre  

 
Sources at d=1.8 m from centre 

 
Figure 2. Modelling the impact due to different shells of magnetic 
dipoles. Here there are three simulated cubic shells with nearest faces 
situated at 0.6, 1.1 and 1.8m from the room centre. In each simulation, a 
shell contains two magnetic interfering sources at 10 (blue), 0 (orange) 
or -10 (yellow) dB SNR. Based on the sensors within a 40 cm cube at the 
centre of the room, we can compare shell models as these shells 
increase in size (x-axis). The three curves (blue, orange, yellow) show 
the model evidence for 15 different candidate shells. 

 

The main purpose of this simulation is to demonstrate that 

it is possible to use model comparison (with no knowledge of 

ground truth) to decide upon an optimal shell containing 

environmental noise sources. In practice, we would expect this 

stage, which assumes stationarity, to be based on data 

extending over a long period of time. This would then give an 

appropriate spatial support to models which account for 

dynamic changes in source activity. 
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B.  TESTING THE KALMAN FILTER 

Now that an appropriate spatial basis to model the 

interfering sources has been constructed, we introduce and 

motivate the use of the Kalman filter. The aim here is to 

account for dynamically changing noise environments using 

measurements from moving sensor arrays. The Kalman filter 

is Markovian, it has access to the previous system state, and 

for this reason we compare it to two extremes. The first, in 

which the system is assumed to be stationary (as in the 

majority of M/EEG brain imaging) using the traditional 

full-window EBB implemented on SPM12 (SPM-EBB) [24], 

[28]. The second in which the same EBB algorithm only has 

access to the current sample (Sample-EBB). Note that 

Sample-EBB is a worst-case scenario, used here to provide us 

with a minimal performance measure, which has no 

knowledge of anything but the present sample.  Note that, For 

the full SPM-EBB algorithm, we removed the temporal 

projector [32] –a singular value decomposition of sensor level 

data which provides a useful pre-whitening and de-noising 

function -for a fair comparison with the other solvers.  

For this experiment we keep the same number of sensors, 

sources and SNR as outlined above and assume that the shell 

model is established (the grid of dipoles is fixed at 𝑑 = 1.2 m). 

Now that we have enough space inside the shell, we have also 

augmented the size of the usable space to 1 m3 and placed the 

8 tri-axial sensors at the corners of this space (larger space 

allows wider subject movement). 

Here we address the problem of non-stationary temporal 

dynamics; for example, an air-conditioning system turning on 

and off. To construct a realistic dynamic environment, we 

simulate three sinusoidal sources for 5 s periods, one at the 

beginning, one at the middle, and one at the end of the 

window. The location of the sources (on the shell) and their 

frequency randomly varied across 100 trials of 10 s each.  

The three algorithms were used to create estimates of the 

true source distribution. Note that the use of Free energy for 

model comparison now becomes problematic as each solver 

uses different time windows and therefore different data. As a 

metric of fit that would also penalize over fitting, we 

positioned a virtual sensor at the centre of the room and 

compared the data at this sensor due to the estimated model 

with the data due to the true model. As this virtual sensor was 

not used in the fit it provides a measure of the generalizability 

of the model. Fig. 3 shows this set-up with the three sources 

(black), the set of sensors (blue), and the waveform at the 

virtual sensor (brown). 

Fig. 4A shows the variance explained at the measurement 

sensors under the different models. As the SNR decreases, the 

models, predictably, can account for less of the measured data.  

The best models however will not necessarily be those that 

explain the most sensor data, as these models may not 

generalize across new measurement locations. In order to 

remove this over-fitting concern, we looked at a virtual sensor 

within the centre of the room- which was not used to fit the 

model.  Fig. 4B shows the how well the estimated model 

predicted the data measured at this sensor. 

 

Figure 3. Example of a single trial realization of the configuration used. 
Three magnetic dipoles with different, non-stationary, time-series (left of 
figure) are placed randomly at the walls of the shell.  Eight tri-axial 
sensors (blue asterisks) are used to measure these fields. A source 
estimate based on these measurements is made and this is estimate is 
projected back to a tri-axial virtual sensor (brown asterisk) at the centre 
of the room. 

 

 
A. Variance explained at real 

sensors 

 
B. VE at virtual sensor 

 
C. Spatial correlation at source 

level  

 
D. Temporal correlation at 

sources 
Figure 4. Tests with dynamic sources (average of 100 trials). (A) The 

sensor level variance explained by the different algorithms.  (B) The 
data explained at the virtual sensor, although like A, cannot be due to 
over-fitting. (C)  The correlation between the true source distribution 
(over space) and the estimated source distribution and (D) The temporal 
correlation between the true and estimates sources at the true source 
locations. 

 

We also computed the spatial (Fig. 4C) and temporal 

Fig. 4D) correlation at source level. Spatially, we computed 

the correlation between the power estimated across the source 

distribution and the power within true source distribution (only 

three random active dipoles per trial). The temporal 

correlation was computed by comparing the true and estimated 

time-series at the known source locations. Note that for all 

these metrics, the Kalman filter and SPM-EBB methods have 

similar performance and improve upon model estimates using 

Sample-EBB. 

It should be noted that had we included a de-noising stage 

(e.g. a temporal projector) within the SPM-EBB algorithm, 
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this algorithm would have outperformed the Kalman filter (as 

the de-noised principle signal components could have been 

extracted from the full time-series, removing a great deal of 

noise).  However, the main aim of this example was to create 

a baseline for the next experiment, where we begin to move 

the tri-axial sensor, precluding the use of a continuous 

stationary data segment. 

C. MOVING SENSOR, WITH FIXED NON-STATIONARY 
NOISE 

Ultimately, we wish to exploit the mobility of the sensor 

array to sample fields over a greater volume and hence further 

elaborate the model of environmental noise. Here we repeat 

the previous test (with 3 sources of non-stationary noise at 

different locations in each trial) but only with a single tri-axial 

sensor that we move through the usable space. Fig. 5 shows 

an example of the trajectory used here (Fig. 5, coloured line). 

We modulated the sensor location across the three axes with 

sinusoids at frequencies between 1 and 5 Hz.  This meant that 

within a 10s window (the sensor crosses five times at each 

point, i.e. 2s period) the sensor traversed the whole of the 

usable space. We quantified SNR (which depends on sensor 

position) as the average SNR over the complete sensor 

trajectory. Note that this strategy requires an update of the 

forward model at each sample time (𝐿𝑘 ∈  ℜ3×3𝑁𝑑) 

precluding the use of the stationary SPM-EBB solver.  

 

 

Figure 5. A single moving tri-axial sensor used to estimate the 
interference model. Here the 3 sources of non-stationary interference 
were again (as in Fig. 3) randomly positioned on the shell for each trial. 
The sensor was modulated sinusoidally across the usable space of 1 
m3. The colours indicate the sensor position over time. The goal once 
again was to use this moving sensor data to build a model to predict 
magnetic field changes at a virtual sensor in the centre of the room. 

 

Based on this moving sensor data, the Kalman filter was 

able to effectively track the magnetic field dynamics with over 

70 % of accuracy for SNR = 0 dB. Fig. 6A shows the average 

variance explained (VE) by the prediction at the virtual sensor 

over 100 trials with the three SNR levels.  Fig. 6B shows the 

single-trial comparison between the true and predicted virtual 

sensor signals (SNR = 0 dB) for Sample-EBB (top) and 

Kalman (lower panel) approaches. The main difference of 

note is that the Kalman filter estimate evolves smoothly 

whereas the sample-EBB produces impulsive estimates of the 

time-series. Note that the waveform being predicted is non-

stationary and that the measurement sensors are in constant 

motion relative to the virtual sensor.  

 
A. Variance explained at virtual sensor 

 
B. Comparison of single trial waveforms 

Figure 6. Prediction of signal at static virtual sensor based on 
measurements from a single tri-axial sensor moving within a shell 
containing 3 non-stationary noise sources (A) Average variance 
explained by the Sample-EBB (blue) and Kalman (yellow) models over 
100 trials. (B) Single trial waveform comparison at the virtual sensor. 
Top panel shows sample-EBB in which the estimates are impulsive (the 
algorithm has no access to the past). Lower panel shows the smoothly 
evolving Kalman filter estimate. 

D. MOVING SENSOR WITH MOVING STATIONARY 
NOISE SOURCE 

In our final scenario, we extend the benchmark to deal with 

a moving source –such as a train crossing under the room, or 

another person moving within the room- whilst the sensor 

array is also moving. Here, we use a single sinusoidal source 

which moves around the room following the path shown in 

Fig. 7 (coloured). The tri-axial sensor was set up to follow the 

3D sinusoidal-shape trajectory of Fig. 5. Fig. 7 shows the 

(moving) sensor measurements (red traces –note the 
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significant distortion) due to the moving source (colour coded 

according to location). The right panel shows the true signal at 

the virtual tri-axial sensor fixed at the centre of the room.  We 

test the performance of both solvers (Sample-EBB and 

Kalman) with Variance Explained at the virtual sensor and the 

distance (tracking) error between the true and estimated source 

location. The distance metric is the Euclidean distance 

between the peak source estimate and the true source location; 

note however that the peak source estimate is quantized by the 

source spacing of 23 cm). 

 

 

Figure 7. Moving sensors (red) with moving interference source 
(multi-coloured). The trajectories of the tri-axial sensor (red) and the 
source (graded from black to blue) are shown in the middle panel. The 
corresponding time-series in the left panel. Note how the sinusoidal 
time series due to the moving source looks highly distorted at the 
virtual sensor (right panel, brown) and almost unrecognisable based on 
the sensor measurements (left panel, red). 

 

Fig. 8A shows the sample by sample tracking error for 

Sample-EBB (top) and Kalman (lower panel) with SNR =
 10 dB for a single trial of data. Note how the Kalman filter, 

after an initialisation period (~1s), begins to track the 

movement of the source (ideal performance, given the grid 

quantization, is shown by red traces). The sample EBB-SPM 

algorithm, by contrast, is unable to track the source location.  

On average (Fig. 8B), the Kalman filter distance error is 

comparable to the grid spacing. 

 

 

 

 

 

 

 

 

 

 

 

 
A. Tracking error 

 
B. Distance error 

Figure 8. Moving tri-axial sensor updating a model of a moving source 
(A) Tracking distance error for one trial for the Sample-EBB (top) and 
the Kalman filter (lower panel). The ideal error (red) is non-zero as the 
source spaced is quantized with a grid-spacing of 23 cm. Note the 
tracking convergence of the Kalman filter after 1sec. (B) The average 
distance between the estimated and true source location for sample 
EBB (blue) and Kalman (yellow). Note the Kalman error is comparable to 
the grid spacing. 

 

Fig. 9A shows the average variance explained at the static 

virtual sensor for two noise levels SNR =  {10, 0} dB after 

100 simulations. As expected, the Kalman filter outperformed 

the sample EBB and, despite the challenging recording 

scenario, was able to predict more than 70 % of the variance. 

Fig. 9B shows a comparison of the predicted waveforms 

(single trial) at the static virtual sensor with the ground truth 

(blue) at a SNR = 0 dB. Again, note that the sample EBB can 

provide good impulsive estimates at the signal extrema (top 

panel), yet the Kalman filter provides smoothly evolving 

estimates over time. This result is encouraging considering the 

complexity of the problem faced and the absence of any 

filtering or information about the source trajectory. 
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A. Variance explained 

 
B. Comparison of single trial waveforms 

Figure 9. Model predictions at static virtual sensor for a moving tri-axial 
sensor and moving interference source (A) Variance explained by the 
Sample-EBB (blue) and Kalman filter (yellow) models. (B) Single trial 
time-series estimates (orange) at the static virtual sensor as compared 
to ideal performance (blue dotted) for sample-EBB (top panel) and 
Kalman filter (lower panel).  

IV. DISCUSSION 

Magnetoencephalography is entering a new era of wearable 

arrays in order to measure brain function during natural human 

behaviour. A pre-requisite to measure brain function is to be 

able to account for the dynamically changing noise 

environment. Here we demonstrate how mobile OPM arrays 

could be used to build up dynamic models of environmental 

noise, and how these models can be updated as the sensors 

move around the room. 

Here we used classical M/EEG brain imaging methods to 

estimate and update environmental noise models. The 

approach is attractive as these models are familiar to the 

community, and in contrast to models of brain function, 

models of external interference should be much more 

straightforward and tractable. 

The first step in the modelling of environmental noise is to 

create some spatial support on which magnetic sources lie. 

This comparable to defining a cortical manifold in which we 

allow current to flow. Unlike the cortical manifold, based on 

subject anatomy, the true environmental manifold will be a 

complex structure, which factors in the Earth’s field, nearby 

traffic and elevator shafts, amongst other things.  Here we 

assume that these external fields can be approximated by a 

cubic shell containing evenly spaced but randomly oriented 

magnetic dipoles. We demonstrate how the dimensions of this 

cube can be optimized using model evidence to arrive at the 

most accurate description of the interference with the least 

complexity. The optimal shape, dimension and grid spacing of 

this support will vary from site to site but can be optimized in 

exactly the same way as has been done for the cortex using 

model evidence [33]–[35].   

Given a spatial model to accommodate possible interfering 

sources, the next problem is to track them in time. We 

demonstrated its feasibility by performing a simple, single 

source reconstruction and comparing it with a traditional 

estimator (SPM-EBB) and a sample by sample version of the 

same algorithm (Sample-EBB, which becomes the baseline). 

We then tested these solvers with a dynamic environment 

where sources were switched on and off (like elevators, air 

conditioners and underground trains). Importantly, once the 

sensors begin to move, traditional approaches – which assume 

a constant spatial relationship between source and signal over 

time- are no longer applicable. However, we have shown that 

the Kalman filter is able to accommodate these non-stationary 

changes by virtue of its Markovian update scheme. 

Perhaps the most challenging scenario was the tracking of a 

moving source (the elevator, the train, someone else in the 

room) with a single tri-axial sensor that was also in motion. 

The complexity of the problem is evident on Fig. 4. However, 

the Kalman filter managed to track the source trajectory and 

reconstruct up to 70 % of the field at a static virtual sensor. 

It is worth noting that these results were achieved without 

using many current alternatives for model prediction 

commonly used in control systems and navigation [18]. For 

example, trains, elevators, air conditioning systems would 

have specific features: they would follow the same trajectory, 

have the same frequency spectrum, etc. In future 

developments, this prior knowledge could be fed into the term 

𝑤 in (8).  Another possible direction for innovation is in the 

choice of the transition matrix 𝐴𝑘. Here we used a transition 

matrix based on the most recent beamformer source space 

estimate (the most likely next active sources will be the current 

active sources).  However, another alternative would be to 

consider ARMA models generated from long recordings 

within the room [36]. 

At present, the empirical phase of this work is constrained 

by the dynamic range of the OPM sensors (approx. ±1.5nT 

with maximum ADC resolution) as compared to the noise 

field in the room with gradients of ~5nT/ metre [4], [7]. The 

next empirical stages will be a combination of external coils 

to reduce the remnant fields [7] and the use of less sensitive 

devices (but with greater dynamic range) to characterize the 

very large fields within the shielded room. Once this first stage 

is complete and an approximate environmental noise model 

(where the errors between predicted and measured field do not 

exceed the dynamic range of the OPMs) can be constructed 

then we hope to be able to dynamically adjust the OPM null 

point (with internal coils) dependent on position. This should 

ultimately allow us not only to create ever maturing and more 
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precise models of the environmental noise; but should also 

allow a greater repertoire and range of subject movement.  
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