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Abstract: 

Some manufacturers demonstrate their products so that customers can gain experience before making 

a purchase.  We present a novel application of a closed-loop supply chain where product returns from 

demonstrations of high-end IT equipment are substantial and the major delay in the system is due to the 

long demonstration time at the client sites.  In addition, the product lifecycle is short and the value 

erodes rapidly over time, with steep drops in the resale revenue when new product generations are 

introduced.  We present a finite lifecycle model that captures the key trade-offs in this environment, 

that is, either to reuse a collected ex-demo product for a next demonstration or to salvage its residual 

value in the secondary market and use a new product to satisfy the next demo request.  We derive two 

cost/revenue signals that enable us to distinguish between fast and slow value erosion.  We show that 

the fast/slow erosion decision is dynamic and depends on the rate of value erosion and the length of the 

demonstration time.  We analyze the optimal demo pool strategies and show that in the case of fast 

erosion it may be better to postpone reuse activities until later in the lifecycle.  We illustrate our model 

using empirical data from a large IT manufacturer and formulate several guidelines so as to better 

manage high value ex-demonstration product returns. 
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1. Introduction 

Manufacturers and retailers often demonstrate their products.  Through these demonstrations customers 

gain experience before making a purchase and reduce their uncertainty about the product’s performance 

and its ability to match their needs (Heiman et al., 2001).  Surprisingly, there is limited empirical 

evidence, or theoretical research, demonstrating the net monetary effects of demonstrations.  In many 

cases, the manufacturer’s financial risk of providing demo products may be limited.  This is true when 

the demonstration cost is low (e.g., downloadable software), or when the demonstration time is short 

compared with the product lifecycle so that products can be reused in repeat presentations or tests (e.g., 

car test drives).  For expensive, high-end, customized products such as high-end IT, audio & music, 

optical, medical and industrial equipment, the demonstration time is high.  These products are ‘time 

products’ in Heiman and Muller’s (1996) classification matrix, because the desirable and undesirable 

product characteristics are revealed slowly.  Hence, the manufacturer’s financial risk to demonstrating 

these products may be much higher. 

In this paper we consider product demonstrations of the last category, and we look at the demo 

services from a closed-loop supply chain perspective.  Closed-loop supply chains (Guide and Van 

Wassenhove, 2003; Guide et al., 2003; Dekker et al., 2004; Guide and Van Wassenhove, 2009) are 

supply chains designed and managed to explicitly account for return streams in the forward supply chain 

operations over the entire product lifecycle.  The area of reverse logistics and closed-loop supply chain 

management has evolved into a very rich research domain (for overviews, see e.g., Sasikumar and 

Kannan, 2009; Govidan et al. 2015; Govidan and Soleimani, 2017).  In our application, a closed-loop 

is formed by reusing demonstration equipment repeatedly before the equipment is retired and leaves the 

system.  Many other studies of reuse closed-loop supply chains can be found in the literature (e.g., 

Kroon and Vrijens, 1995; Krikke et al., 1999; Geyer and Jackson, 2004; Krikke et al., 2004; Geyer et 

al., 2007; Östlin et al., 2008; Atasu et al., 2008) but ex-demonstration product returns have not been 

adequately addressed in previous research. 

A key question in our problem involves deciding what to do with ex-demo products.  Returns 

from demonstrations can be substantial and may tie up large amounts of capital high-end products.  For 

instance, a large manufacturer of high-end IT equipment that the authors investigated can sell 

refurbished ex-demo equipment in the secondary market.  Another, less preferred, option is to recycle 

and scrap the products.  Due to the nature of such products (technology equipment) and their short 

lifecycles, the resale revenue decreases rapidly over time.  There is significant pressure to keep system 

delays short so as to enable more reuse and/or increase resale revenue. 

The importance of the marginal value of time in forward supply chains is well established 

(Blackburn, 1991).  Only more recently has the value of time (value erosion or value decay) been 

investigated in relation to product returns management (e.g., Blackburn et al., 2004; Guide et al., 2005; 

Guide et al. 2006; Guide et al., 2008; Ruiz-Benítez et al, 2014; Pazoki and Abdul-Kader, 2016; 

Kadanbala et al., 2017 and Difrancesco et al, 2018).  These studies have focused on different aspects 
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and influences of time-value on strategic, structural or operational decisions in the reverse supply chain, 

and have also applied different modelling approaches.  Atasu and Çetinkaya (2006) and Ruiz-Benítez 

et al. (2014) focus on inventory control policies to coordinate collections of returns between a collection 

point and a remanufacturer.  Guide et al. (2006) and Difrancesco et al. (2018) apply queuing network 

models and investigate the impact of system delays and value erosion for different reverse supply chain 

designs (Guide et al., 2006)), or to gain insight in return window decisions for online fashion retailers 

(Difrancesco et al., 2018).  Queuing theory based models are well-suited to deal with system delays and 

different value decay rates (typically, modelled through exponential functions), yet they focus on steady 

state behavior so that dynamic aspects (e.g., time varying demand and decisions) are more difficult to 

account for.  These models are also descriptive in nature: it is up to the decision modeler to propose and 

experiment with various alternatives.  Discrete-time, multiple period linear (LP) and integer 

programming (IP) models have also been employed (e.g., Guide et al., (2005); Fang et al. (2016)).  

These models do have the capability to deal with various time varying features (costs, demands and 

decisions), but they are less flexible in their ability to deal with delays (lead times and delays must be 

integer multiples of the base planning period).  With LP and IP models it may also be more difficult to 

uncover more general insights, especially if conclusions are to be derived from a rather limited set of 

computational experiments. 

A key difference between the previous studies and the study we present here is that we consider 

a finite lifecycle model (see e.g., Atasu and Çetinkaya (2006) and Geyer et al. (2007)).  This is of 

particular importance for high-end equipment (e.g. IT, medical and industrial applications) considered 

here where the product lifecycle is short and the number of reuse cycles are limited.  We investigate 

this problem in continuous time and we model it as special type of a Separated Continuous Linear 

Program (SCLP) (see e.g., Pullan (1996)), which we can convert (as shown in Appendix) into a 

Continuous time Transportation Problem (CTP).  To the best of our knowledge, we are not aware of 

other SCLP applications in the area of reverse logistics.  SCLP is an elegant modelling approach, 

especially for dynamic problems.  These models, however, are less popular than their approximate 

multiple period linear programming analogues, derived by time discretization.  The solution approach 

we present (as well as to SCLPs more generally, see e.g. Pullan (1996)) changes at discrete points in 

time over the planning horizon.  Our attention is devoted to uncover and explain where and why these 

switch points occur in the product lifecycle.  This analysis enables stronger and more generalizable 

conclusions compared to analyzing our problem in discrete time. 

We use a case example in Section 2 to describe and analyze the generic features of a 

demonstration service environment for high-end equipment that needs to be captured in a decision 

model.  Section 3 presents a generic, deterministic, continuous time, finite lifecycle model that captures 

the key trade-offs in the high-end equipment environment where a demonstration product is collected 

and reused for a further demo request, or its residual value is salvaged in the secondary market.  The 

objective is to maximize the revenue from selling ex-demo products in the secondary market while 
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making sure that all demo requests are met at minimum cost.  Value erosion is modelled as a non-

increasing secondary market revenue function.  We demonstrate that a zero-inventory policy holds and 

that the model can be transformed into a Continuous time Transportation Problem.  We derive two 

cost/revenue signals that enable us to distinguish between fast and slow value erosion.  We show that 

the fast/slow erosion decision is dynamic and depends on the rate of value erosion and the length of the 

demonstration time.  Sections 4 and 5 present the optimal demonstration pool strategies for both slow 

and fast erosion respectively.  The focus in our analysis is on identifying the different time epochs over 

the product lifecycle where the solution structure changes.  We show that in the case of fast erosion, it 

may be better to postpone the reuse activities until later in the lifecycle even if this means that more ex-

demonstration equipment will be scrapped later.  In Section 6, we illustrate the application of the model 

to derive the optimal strategy for an example, and show that for a specific case company substantial 

savings can be made.  The model and modelling approach has applicability for the design and 

management of closed-loop supply chains for high-end equipment and machinery products that are 

demonstrated before sale.  Our conclusions and areas for further research follow in Section 7. 

 

2. Product demonstrations at company X 

Company X’s European Demo Service Center (or demo store) is co-located with the factory where new 

and remanufactured IT products are produced.  The company’s product portfolio includes high-end, 

mid-range and entry-level servers, network storage systems and industry standard servers.  The demo 

store provides and manages demonstration equipment for sales and marketing support activities 

including participations in exhibitions and tradeshows, demonstrations and evaluations at resellers and 

end-customers, assignments to demo rooms or benchmark centers, and internal training of the sales 

force.  Company X generates, in Europe, revenues in excess of $200M each year from selling 

remanufactured products.  About 65% of these products involved ex-demonstration equipment, 20% 

were customer and partner returns and 15% were inventory excesses.  All these products were less than 

three years old, but involved up to five generations of technology. 

Figure 1 schematically presents the product flows through the demo service center. New 

products and components are ordered in the store (arc 1) based on demo requests by sales 

representatives for potential customers.  Typically, each demo is customized and built to match specific 

customer needs.  The complete demo solution may comprise products from different product lines, e.g., 

an IT server solution in combination with a storage system.  When products arrive in the store, they are 

forwarded and installed at the demo site (arc 2) where the client tests the equipment for a certain time 

– the demo loan period (in this case a maximum 3 months).  During the loan period the client may 

decide to purchase the equipment, in which case the equipment leaves the system (buyout) (arc 3).  

Alternatively, the demo is collected from the client and returned to the store (arc 4).  A demo returned 

at the store can be reused for a second or a third installation at a client site, or it can be retired and sent 

to the returns center (arc 5).  Here it is disassembled, tested, refurbished and sold in the secondary 
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market (arc 6); or scrapped and recycled.  The returns center also receives product returns from outside 

the demo process (arc 7).  These products are handled in the returns center in a similar way.  Finally, it 

is also possible to order products from the returns center into the demo store (arc 8) and use these 

(instead of new products) to satisfy demo requests. 

 

 

Figure 1: The demo process – a closed-loop supply chain 

 The demo pool managers at company X focused on the technical aspects of the equipment, 

rather than taking a supply chain perspective and looking at the entire system in terms of flows and 

bottlenecks.  The demo process was controlled by a set of simple rules (such as maximum loan period 

and maximum residence time of a product in the demo process before retirement), with the intention to 

use each newly ordered product in two or three demo installations. 

We analyzed the flows (as shown in Figure 1) for a selection of mid-range servers.  Different 

server configurations may exist, but their cost and price are mainly determined by a few core 

components (processor, server base unit, memory modules), which is typical in many types of high-end 

equipment.  The commonality between servers is high when we focus on the core components.  The 

analysis below concentrates on the server processors. These are a key component in every server; they 

are expensive (up to several $10,000), and are lifecycle defining.  New generations of processors are 

introduced into the market every nine to ten months.  A server’s sales price erodes constantly over time 

(values of 1-3% per month are not uncommon), and when new generations of processors are introduced, 

the sales price of the older technology drops sharply. 

Figure 2 shows the demand and pricing information for a specific processor (processor 1) over 

its lifecycle (we note that the numbers have been disguised).  The profile of the new products demand 

curve is almost triangular.  The profile of the demo requests curve exhibits a very similar pattern with 

a (less pronounced) peak near October-November 2015.  In this case the demo services seem well 
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coordinated with the new product sales.  The third curve, near the base of the graph, corresponds to the 

sales of refurbished products in the secondary market.  These volumes are much lower and lag (typically 

12 to 15 months) the shipments to the primary market.  This may be due to the limited availability of 

returned and refurbished products earlier in the lifecycle, or an undeveloped secondary market, or a 

strategic decision regarding when to start selling in the secondary market so as to avoid cannibalization 

effects on new product sales. 

 

 

Figure 2: Demand and price of processor 1 over its lifecycle 

 

The curves on the right in Figure 2 show typical processor sales prices over their lifecycle.  

Processors 1 and 2 were introduced in the market in November 2014.  Processor 2 is more powerful, 

hence the higher price.  In August 2015, a new generation processor became available, and consequently 

the prices for both processors 1 and 2 dropped considerably.  Processor 1’s active lifecycle finishes 

around August 2016, while processor 2’s lifecycle continues for a few more months.   
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Figure 3: Demo flow analysis for two processors 

 Figure 3 presents in more detail the different flows in the demo process for processors 1 and 2.  

The curves show the cumulative volumes over time of demo requests (arc 2 in Figure 1); new processors 

ordered in the store (arc 1 in Figure 1); collections from the client sites back to the store (arc 4 in Figure 

1); retirements to the returns center (arc 5 in Figure 1); and buyouts (arc 3 in Figure 1).  We note that 

all the demo requests in Figure 3 are satisfied: the earliest requests are always fulfilled by using new 

products (the new products curve in Figure 3 almost coincides with the requests curve).  For processor 

1, most requests after August 2015 are satisfied by reusing earlier collected products (the ‘new’ curve 
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is rather flat, but the requests curve is still increasing).  The horizontal displacement between the 

requests curve and the collections curve (adjusted for buyouts) is an indication for the actual demo loan 

time.  The actual time that the product stayed at the clients is several months, and usually much longer 

than the maximum target of three months.  Processor 2 is demonstrated over a longer period and most 

of its requests are satisfied by ordering new products in the store, even when collected / retired products 

were available.  The buy-out rates are low and rather insignificant before August 2015. 

Table 1 summarizes for 5 different processors a number of key measures.  (Note that not all 

processors had reached end-of-life when the data were collected.  The figures are total volumes over a 

time period starting at each product’s launch date until the time of data collection.) 

Table 1: Key measures of 5 processors used in demonstrations 

 Processor 1 Processor 2 Processor 3 Processor 4 Processor 5 

Total demo requests 298 1155 641 723 750 

New products ordered in 

the store 
239 986 554 633 669 

Buy out 70 279 134 144 86 

Units still in the system 

(+ others) 
33 257 307 159 366 

Average loan period 

(days) 
132 191 165 174 220 

Demo returns 

(retirements) 
136 450 113 342 217 

Other returns (outside the 

demo process) 
101 159 19 331 100 

Total returns 237 609 132 673 317 

Sales 2nd Market (demo 

and other returns) 
220 544 117 467 132 

Sales 1st Market 2836 4831 4908 5160 4902 

 

The following conclusions are apparent from Table 1.  Most demo requests (about 85%) are satisfied 

by new products.  The buyout rate (as a percentage of the total requests) is low (about 20%).  With 

respect to the loan period, only processor 1 seems under control.  For the others, the average loan period 

is above the maximum target of 3 months.  The returns from the demo process make up a significant 

fraction of the total returns at the returns center, typically more than 65%.  This ratio demo returns/other 

returns may decline over time.  Most demo returns arrive in the second half and near the end of the 

active lifecycle of the processor.  When new processor generations are introduced, clients can upgrade 

their servers, or trade-up the older processors for newer technology.  Upgrade and trade-up programs 

generate a second stream of returns, which may arrive much later, long after the active lifecycle of the 

old processor has finished.  These products have lost most of their value so that re-introduction in the 

secondary market is almost impossible.  (In Table 1, the ‘other returns’ for processor 4 are much higher 
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compared with other processors, and a significant fraction of these was due to upgrade and trade-up 

campaigns).  The last two rows show the volumes sold in the secondary market (refurbished products) 

and in the primary market (new product sales).  Company X manages to sell most of its demo returns 

in the secondary market, but there is a practice of delaying and spreading out sales over a rather long 

period (see Figure 2) to avoid cannibalization with new product sales. 

 Effective demo pool management is not an easy task.  There are several characteristics and 

control parameters which may affect the overall profitability or cost effectiveness of the operations. 

These include the shape of the demo request profile over the product’s lifecycle, the demo loan period, 

the buyout rate, the cost of new products, the sales price of refurbished products in the secondary market 

and its erosion over time, the time window in which to sell refurbished products, the secondary market 

capacity or potential, and the availability of other returns which can be used for demonstration.  

Company X used simple decision rules to control the demo store.  These rules may work well under 

certain conditions but may need modification or refinement in other situations. 

Our aim in this paper is to develop a model that captures the core aspects of a generic class of 

high-end equipment problems that require demonstration as part of the sales process, and to derive 

optimal policies for effective decision making in terms of reuse and/or resale in the secondary market 

of ex-demonstration product returns.  As in Guide et al., (2005) by discretizing the lifecycle or planning 

horizon into time buckets, multiple-period linear programming models that incorporate all the above-

mentioned features can be developed.  LP models are easy to solve and flexible in terms of handling 

various extensions.  On the other hand, it is difficult to obtain general insights through experimentation 

with LPs.  Therefore, we investigate the high-end equipment demonstration problem in continuous time, 

focusing our attention on the cost/profitability signals that drive the optimal solution and the moments 

in time in the planning horizon when the solution structure changes.  We present our model together 

with the assumptions in Section 3. 

 

3. Model, assumptions and notation 

The problem environment modelled is shown in Figure 4.  We assume that the requests d(t) for demos 

at any time t are known and occur over a finite lifecycle of length T, and that the demand profile is 

concave (or unimodal i.e., monotonically increasing for t ≤ m and monotonically decreasing for t ≥ m, 

with maximum at m) over [0, T).  A concave, or unimodal, demand profile is a good approximation for 

short lifecycle products (such as IT equipment) and has also been used in previous research (e.g., Atasu 

and Çetinkaya (2006) and Geyer et al. (2007)).  The requests must be satisfied at the time when they 

occur, either by new products ordered from a supplier (cost cN), or by reusing previously collected and 

refurbished demos.  The demo loan period L (residence time at the client site) is assumed to be constant 

and is the only major delay in the system.  That is, the time to order a product from the supplier, the 

time to transport/collect a demo product to/from a client site and the time for refurbishment are 

negligible (in practice, a few days at most) compared with the demo loan period (typically several 
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months).  It is possible to specify a buyout profile, but this only results in a modification of the original 

demo requests profile. It is therefore not incorporated in the model and all demo products are collected 

after loan period L, with a time-phased collection profile d(t-L) for L ≤ t < T+L. 

New products
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Return center
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Refurbish 

2
nd

 Market Scrap
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Planning horizon length T

Demo loan period L

Acquisition cost cN
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Refurbishment cost cR

Inventory holding
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Figure 4: Problem environment modelled. 

There is no starting inventory of new products in the demo system: new products are ordered 

from the supplier when these are required to fulfil a request.  For high-tech customized equipment 

demos are built-to-order after assessing the customer’s needs, and the store does not stock new products 

because these are too expensive.  The new products node in Figure 4 corresponds to a source (supplier) 

that can provide new products whenever required.  Collected ex-demo products enter the returned 

products inventory (cost cI) at the demo store and can be refurbished (cost cR) and reused for a next 

demo request.  Alternatively, collected ex-demo equipment can retire from the demo store and either 

be sold in the secondary market (after refurbishment), or scrapped (cost cS).  The scrapping cost can be 

negative and represents a (typically small) salvage value received from selling the retired equipment to 

a recycling vendor or scrap broker when the option to sell in the secondary market is exhausted.  At the 

beginning of planning period there is no inventory of collected ex-demo products in the store. 

In line with our application context of high-end customized products, we also assume all costs 

(cN, cR, cI and cS) to be constant.  These are valid assumptions since the product lifecycle is short.  We 

could easily incorporate transportation and collection costs, but these are very low in comparison with 

the dominant cost in our application (the new product acquisition cost cN).  In fact, because all demo 

requests have to be satisfied and collected, and because there is no difference in transportation and 

collection cost depending on whether new or refurbished products are used, both transportation and 
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collection cost can be considered as sunk cost - incorporating these does not affect the optimal demo 

policy.  We also note that the new product cost cN is high compared with the refurbishment cost cR and 

scrap cost cS.  This is due to the nature of the returns.  Almost all ex-demo products have been used over 

a rather limited time only (a few months) and are collected in excellent or like-new condition.  The 

refurbishment operations are low-touch, i.e., inspecting, testing and dis- and re-assemble (modular) 

demo equipment.  There is no hard repair involved. 

Apart from reuse, the main value recovery mechanism in this problem environment is through 

sales in the secondary market.  We account for value erosion or price decay in the secondary market.  

We assume that the secondary market sales price erodes over time from the launch of the product (time 

t = 0), until the end of the planning horizon T+L.  Retired demos are sold in the secondary market at 

time t and fetch a price ps(t).  We do not pose strong restrictions on the revenue function: we only 

assume that ps(t) is piecewise analytical and that it is non-increasing over time (i.e., ps(t1) ≥ ps(t2) for t1 

≤ t2).  Piecewise analytical means that ps(t) may have discontinuities: ps(t) is right-continuous but not 

necessarily left-continuous.  Our results remain valid for any erosion function that fits these conditions 

(including continuous, linear and exponential erosion, which are used in many studies).  As in most 

studies, in our model only revenue is affected by time.  Some studies also address erosion in other 

components (e.g., Guide et al. (2006) account for erosion in production and remanufacturing cost) 

and/or discount cash in/out flows (Guide et al. (2006) and Difrancesco et al. (2018)).  We have not 

incorporated a discount factor in this model because all cash in/out flows happen over a short lifecycle 

only.  Our model can be extended to deal with more time varying features and in Section 7, we comment 

on how our results are affected in the case where cash flows are discounted. 

The demand potential in the secondary market is further limited by a global market constraint 

or capacity, but there is no restriction (apart from the availability of ex-demo equipment) on when sales 

can start or when sales must end. 

The objective in the model is to maximize revenue gained from selling ex-demonstration 

products in the secondary market, whilst making sure that all demonstration requests are satisfied at 

minimum cost.  We model our problem as a deterministic, continuous time optimization problem.  Table 

2 summarizes the variables, parameters and main notation used in the model in the remainder of the 

paper. 

Table 2: Notation used 

Variables: 

XN(t) = new products used to satisfy demo requests at time t 

XR(t) = refurbished products used to satisfy demo requests at time t 

XM(t) = retired ex-demo products sold in the secondary market at time t 

XS(t) = retired ex-demo products scrapped at time t 

XI(t) = inventory of collected demos in the store at time t 
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Parameters and other notation: 

t = time index 

L = demo loan period (residence time with client) 

T = time horizon (lifecycle) over which demo requests occur 

d(t) = demand for demo products at time t 

D(t) = cumulative demand for demo products over [0, t) 

r(t) = ex-demo retirements at time t (to be sold in secondary market or scrapped) 

M(t) = cumulative sales revenue in the secondary market over [L, t) 

fD(T) = resale potential in the secondary market as a fraction 0 ≤ f ≤ 1 of the total demo 

demand D(T) 

N = the total number of new products used to satisfy all demo requests 

Q = the total number of refurbished ex-demo products sold in the secondary market 

S = the total number of ex-demo products scrapped 

cN = the new product acquisition cost, per unit 

cR = the refurbishment cost, per unit 

cS = the scrapping cost, per unit 

cI = the inventory holding cost, per unit per unit time 

pS(t) = revenue from selling a refurbished ex-demo product in the secondary market at time t 

 

Given the above, the model formulation is expressed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∫ 𝑐𝑁𝑋𝑁(𝑡)

𝐿

0

𝑑𝑡 + ∫ 𝑐𝑁𝑋𝑁(𝑡)

𝑇

𝐿

+ 𝑐𝑅𝑋𝑅(𝑡)𝑑𝑡 + 

∫ 𝑐𝑆𝑋𝑆(𝑡)
𝑇+𝐿

𝐿
+ (𝑐𝑅 − 𝑝𝑆(𝑡))𝑋𝑀(𝑡)𝑑𝑡 + ∫ 𝑐𝐼𝑋𝐼(𝑡)

𝑇+𝐿

𝐿
𝑑𝑡  (1) 

Subject to: 

𝑋𝑁(𝑡) = 𝑑(𝑡)  𝑓𝑜𝑟 𝑡 ∈ [0, 𝐿) 

𝑋𝑁(𝑡) + 𝑋𝑅(𝑡) = 𝑑(𝑡)  𝑓𝑜𝑟 𝑡 ∈ [𝐿, 𝑇)        (2) 

 

𝑋𝐼(𝑡) = 0  𝑓𝑜𝑟 𝑡 ∈ [0, 𝐿) 

𝑋̇𝐼(𝑡) = 𝑑(𝑡 − 𝐿) − 𝑋𝑀(𝑡) − 𝑋𝑆(𝑡) − 𝑋𝑅(𝑡)  𝑓𝑜𝑟 𝑡 ∈ [𝐿, 𝑇) 

𝑋̇𝐼(𝑡) = 𝑑(𝑡 − 𝐿) − 𝑋𝑀(𝑡) − 𝑋𝑆(𝑡)  𝑓𝑜𝑟 𝑡 ∈ [𝑇, 𝑇 + 𝐿)      (3) 

     

∫ 𝑋𝑀(𝑡)𝑑𝑡 ≤ 𝑓𝐷(𝑇)
𝑇+𝐿

𝐿
          (4) 

𝑋𝑁(𝑡), 𝑋𝑅(𝑡), 𝑋𝐼(𝑡), 𝑋𝑀(𝑡), 𝑋𝑆(𝑡) ≥ 0  𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇 + 𝐿)     (5) 
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The objective function Eq.(1) minimizes the cost of satisfying demo product requests by either new or 

refurbished products, the cost of scrapping or salvaging (after refurbishment) ex-demo retirements in 

the secondary market, and the inventory holding cost at the demo store.  Constraints (2) are the demo 

demand constraints: at any point t in [0, L) all request are satisfied by new products; at any point t in 

[L, T) requests are satisfied by either new or refurbished products.  Constraints (3) are inventory balance 

constraints for collected demo products at the store.  In [0, L) the inventory is zero (no collections 

available before L).  At any point t in [L, T), the change in inventory is equal to the time-phased demand 

d(t-L) (i.e., the collections at time t) minus the products that are refurbished and sold in the market at 

time t, those that are scrapped at time t and those that are refurbished and reused at time t.  The constraint 

for t in [T, T+L) is similar, but without the reuse option.  Constraint (4) is the secondary market capacity 

constraint: the total sales in the secondary market is limited to a fraction f of the total demo demand 

D(T).  Constraints (5) are the non-negativity restrictions. 

We analyze model (1)-(5) for a concave (or unimodal) demo demand profile and show that a 

zero inventory policy is optimal.  For any concave (or unimodal) profile it is readily observed that the 

request profile d(t) for  0 ≤ t < T and time-phased collection profile d(t-L), L ≤ t < T+L with L < T, 

intersect at exactly one point tS in time interval [L, T], from where the collections d(t-L) exceed and stay 

larger than the demand d(t) for the rest of the planning horizon.  There are no other intersections between 

d(t) and d(t-L).  This point tS is within in the interval [L, T) when d(t) peaks well before T, while tS = T 

when the peak occurs right at the end or when d(t) is constant  When the inventory holding cost cI ≥ 0 

and when revenue in the secondary market erodes, a decision must be made instantly:  reuse, sell or 

scrap.  There is no benefit from storing collections temporarily in inventory to fulfil later requests, or 

delay sales, because costs can only increase and revenue only decrease.  If the demand profile d(t) has 

multiple peaks and troughs (i.e. d(t) and d(t-L) intersect at different points in time), it may be 

economically attractive to temporarily store excess collections in inventory for later reuse until demand 

surges.  However, this does not happen with a concave (or unimodal) demand profile and it is optimal 

for the store to operate a zero inventory policy. 

With a zero inventory policy, we have 𝑋̇𝐼(𝑡) = 𝑋𝐼(𝑡) = 0 for all t and we can remove the 

inventory cost component from the objective function.  In addition, constraints (3) reduce to: 

 

𝑋𝑀(𝑡) + 𝑋𝑆(𝑡) + 𝑋𝑅(𝑡) = 𝑑(𝑡 − 𝐿)  𝑓𝑜𝑟 𝑡 ∈ [𝐿, 𝑇) 

𝑋𝑀(𝑡) + 𝑋𝑆(𝑡) = 𝑑(𝑡 − 𝐿)𝑓𝑜𝑟 𝑡 ∈ [𝑇, 𝑇 + 𝐿)       (6) 

 

If we now substitute XN(t) and XS(t) in the objective function (1) using Eq.(2) and Eq.(6), our model 

becomes: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑐𝑁 + 𝑐𝑆)𝐷(𝑇) − ∫ (𝑐𝑁 + 𝑐𝑆 − 𝑐𝑅
𝑇

𝐿
)𝑋𝑅(𝑡)𝑑𝑡 − ∫ (𝑝𝑆(𝑡) + 𝑐𝑆 − 𝑐𝑅

𝑇+𝐿

𝐿
)𝑋𝑀(𝑡)𝑑𝑡 (7) 
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Subject to: (2), (6), (4) and (5). 

 

The first term in Eq.(7) corresponds to the cost of a base demo policy, which involves using a new 

product for each demo request and scrapping all products after they have been collected.  The second 

term in Eq.(7) shows the potential improvement over the base demo strategy by reusing collected 

demos.  We call cN + cS – cR the reuse saving.  The third term in Eq.(7) shows the potential improvement 

over the base policy by selling retired and refurbished ex-demo products in the secondary market.  We 

call pS(t) + cS – cR the resale saving.  When both reuse and resale saving are ≤ 0 for all t, we cannot 

improve over the base strategy because none of the recovery options are economically attractive.  We 

are interested in the case where both reuse and resale savings are positive and compete against each 

other.  The optimal strategies when either the reuse saving or resale saving are negative can be derived 

as special, simpler, cases from the results presented in Sections 4 and 5 below. 

 We note that problem (7), (2), (6), (4) and (5) is a special Separated Continuous Linear Program 

(SCLP) (see e.g., Pullan, 1996).  In the Appendix we show that our problem can be transformed into a 

Continuous Transportation Problem (CTP), for which strong duality results exist (Anderson and 

Philpott, 1984) that resemble the well-known strong duality results for static Transportation Problems.  

We use these conditions to prove the optimality of the different solution structures that we derive in the 

next two sections.  The solution to our problem changes at discrete points in time.  Our analysis in the 

following sections focuses on identifying (using cost economic analysis) those moments in the planning 

horizon where these switches occur. 

First, we derive two signals that drive the optimal solution to our problem.  Consider a collected 

demo product and analyze if it is more profitable to reuse this product for a next request, or better to 

satisfy the next request by a new product and sell the collected ex-demo product in the secondary 

market.  All constraints, except constraint (4), in our model are equality constraints.  We distinguish 

two scenarios for constraint (4): a non-binding secondary market capacity constraint or a binding 

secondary market constraint. 

When there is no restriction on the sales potential in the secondary market (constraint (4) is not 

binding), in the reuse option we satisfy the new request at time t by refurbishing and reusing the 

available collected ex-demo product (cost cR).  After the demo loan period L, this product is collected, 

refurbished (cost cR) and sold in the secondary market, at price pS(t+L). The total cost for the reuse 

option is 2cR – pS(t+L).  In the no-reuse option, we use a new product to satisfy the request at time t 

(cost cN).  Both the available collected ex-demo product at time t and the new product collected at time 

t+L will be refurbished and sold in the secondary market, at prices pS(t) and pS(t+L).  The total cost for 

the no-reuse scenario is  cN + 2cR – pS(t) – pS(t+L).  The reuse scenario is preferred over the no-reuse 

scenario as long as pS(t) ≤ cN.  With non-increasing pS(t), the point in time when pS(t) drops below cN is 

a signal to start reuse.  We refer to the case where pS(t) ≥ cN for all t as the case where selling in the 
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secondary market is ‘profitable’.  When pS(t) drops below cN selling in the secondary market becomes 

unprofitable. 

When the secondary market constraint becomes binding, we assume that we can still sell one 

more product in the secondary market.  The cost for the reuse option is as before 2cR – pS(t+L).  In the 

no-reuse scenario, the only difference is that a new product that was used to satisfy the demo request at 

time t, will be scrapped (cost cS) after collection at time t+L. The total cost for the no-reuse option is 

then cN + cR + cS – pS(t).  Reuse is preferred when pS(t) – pS(t+L) = pS(t) ≤ cN + cS – cR.  A large drop 

in the sales revenue between selling now and later (i.e. larger than the reuse saving) is an indicator to 

retire and sell ex-demo equipment in the secondary market early and postpone reuse until later in the 

lifecycle (even if this involves scrapping the later retirements).  We denote the case where pS(t) ≤ cN 

+ cS – cR as the low erosion case, and the case where pS(t) > cN + cS – cR as the high value erosion 

case. 

Using these two indicators, we consider four scenarios for further analysis: 

Case 1: pS(t) ≥ cN and pS(t) ≤ cN + cS – cR: selling in the secondary market is ‘profitable’ and there is 

low value erosion 

Case 2: pS(t) drops below cN and pS(t) ≤ cN + cS – cR: selling in the secondary market becomes 

unprofitable at some time and there is low value erosion 

Case 3: pS(t) ≥ cN and pS(t) > cN + cS – cR: selling in the secondary market is ‘profitable’ and there is 

high value erosion 

Case 4: pS(t) drops below cN and pS(t) > cN + cS – cR: selling in the secondary market becomes 

unprofitable at some time and there is high value erosion 

We derive the optimal demo strategy for the low value erosion cases in Section 4.  The optimal 

strategies for the high value erosion cases are presented in Section 5.  In the Appendix we prove the 

optimality of the proposed solution structures using strong duality and reduced cost results for the CTP. 

 

4. Derivation of the optimal product demo policies with low value erosion 

4.1 Selling in the secondary market is always profitable (pS(t) ≥ cN) 

When pS(t) ≥ cN it is profitable to sell ex-demo products in the secondary market and we should exploit 

this option to its full potential.  This condition also implies that the resale saving pS(t) + cS – cR is larger 

than the reuse saving cN + cS – cR.  Resale is the preferred value recovery option at any time.  The 

optimal amount of products sold in the secondary market is equal to the secondary market potential: Q 

= fD(T).  While there is an incentive to sell as early as possible (pS(t) declines over time), there is no 

incentive to sell a collected demo product early in the lifecycle if this product could still be reused to 

satisfy a future demo request and if this would result in more scrapping (low value erosion).  The total 

number of new products used to satisfy all demo requests over the lifecycle T is N = Max{Nmin(L); 

fD(T)}.  Nmin(L) is the minimum number of new products required to satisfy all demo requests and can 
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be calculated (Eq.(8)) from the demo request profile d(t) and searching for the maximum number of 

requests over any time window of length L in the planning horizon T: 

𝑁𝑚𝑖𝑛(𝐿) = 𝑀𝑎𝑥0≤𝑡≤𝑇−𝐿{∫ 𝑑(𝑡)𝑑𝑡}
𝑡+𝐿

𝑡
.   (8) 

 

We consider two situations. 

Case 4.1.(a): Nmin(L) > fD(T) 

The number of new products used to satisfy all requests is N = Nmin(L).  New products are used for all 

demo requests before L and for the requests in excess of available collected demos between L and ts 

(i.e., d(t)-d(t-L)).  tS denotes the time when the collections exceed and remain larger than the requests.  

Reuse starts at time L: between L and ts all collections are reused; between ts and T, only the part of the 

collections required to satisfy new requests are reused (i.e., d(t-L)-d(t)).  The demo retirement profile 

(i.e., ex demos to be scrapped or sold in the secondary market) is r(t) = XM(t)+XS(t) = Max{0; d(t-L)-

d(t)} for L ≤ t < T+L.  Only the earliest retirements are sold in the secondary market (up to the market 

constraint fD(T)); later retirements are scrapped.  Let us define tf as the market saturation time, i.e., such 

that: 

 

∫ 𝑀𝑎𝑥{0; 𝑑(𝑡 − 𝐿) − 𝑑(𝑡)}𝑑𝑡 = 𝑓𝐷(𝑇)
𝑡𝑓

𝐿
.  (9) 

 

The secondary market revenue can then be calculated as 𝑀(𝑡𝑓) = ∫ 𝑝𝑆(𝑡)𝑟(𝑡)𝑑𝑡
𝑡𝑓

𝐿
, and the total amount 

of scrapped ex-demo products is S = Max{0, Nmin(L) – fD(T)}.  The policy is illustrated in the left-hand 

diagrams, Figure 5(a): the diagram on the top shows a triangular requests d(t) and collection d(t-L) 

profile, the requests that are satisfied by new products (XN(t) variable) and the collected demos that are 

scrapped after market saturation time tf. (XS(t) variable).  In this example L = 5, T = 20, ts = 12.5; tf = 

22.5.  The area where request and collection profile overlap corresponds to the collections that are 

reused.  The reuses XR(t) are also shown in the diagram at the bottom as well as retired ex-demos sold 

in the market XM(t). 
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Figure 5: Optimal demo policy when selling in the secondary market is profitable and value erosion is 

low for (a) Nmin(L) > fD(T) (left) and (b) Nmin(L) ≤ fD(T) (right). 

 

Case 4.1.(b): Nmin(L) ≤ fD(T) 

When Nmin(L) ≤ fD(T), it is optimal to use more than Nmin(L) new products to satisfy all demo requests.  

The extra amount of new products E(tf) is determined by a market saturation time tf.  In this situation, 

we apply the Nmin(L) new products ordering strategy (like in Case 4.1.(a)), but with no reuse of the 

collections in period [L, tf).  The earliest collections in [L, tf) are retired and sold in the secondary market, 

and E(tf) additional new products are required to satisfy demo requests in [L, tf).  E(tf) is calculated 

through Eq.(10): 

 

𝐸(𝑡𝑓) = ∫ 𝑀𝑖𝑛{𝑑(𝑡); 𝑑(𝑡 − 𝐿)}𝑑𝑡
𝑡𝑓

𝐿
 and such that fD(T) = Nmin(L) + E(tf). (10) 

 

The retirement profile is r(t) = d(t-L) for L ≤ t < tf and r(t) = Max{0; d(t-L)-d(t)} for tf ≤ t < T+L.  All 

retired ex-demo equipment is sold in the secondary market and there is no scrapping.  This policy is 

illustrated in the right-hand diagrams, Figure 5(b).  We show the same characteristics as in Figure 5(a) 

and the diagram is for tf = 11.5.  We note that, in the diagram on the top, the new products XN(t) follow 

the demo request d(t) profile until tf.  In the diagram at the bottom, collections between L and tf are sold 

in the market.  Reuse (XR(t)) starts at tf but the collections are not sufficient to satisfy all requests 

between tf and ts.  The XN(t) curve shows indeed that, in this example, new products are used to satisfy 
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some requests between tf and ts.  After ts, all excess collections (i.e., d(t-L)-d(t)) are retired and sold in 

the secondary market. There is no scrapping in this scenario. 

 

4.2 Selling in the secondary market becomes unprofitable at t* (pS(t) < cN) 

As long as the resale saving pS(t) + cS – cR ≥ 0, some value is recovered from selling in the secondary 

market.  Because we assume low erosion (pS(t) ≤ cN + cS – cR) and pS(t) is higher than cN (for t < t*), 

the resale saving pS(t) + cS – cR is always positive (i.e., when cR ≥ cS, which is a reasonable assumption).  

At t*, the preferred value recovery option switches to reuse.  It is straightforward to modify the optimal 

strategies from Section 4.1 to the case when resale becomes unprofitable at time t*.  We consider the 

same two scenarios: 

 

Case 4.2.(a): Nmin(L) > fD(T): 

When Nmin(L) ≥ fD(T), we need more new products to satisfy all demo requests than we could possibly 

sell in the secondary market.  Whether pS(t) drops below cN will not affect the optimal policy and the 

best strategy is as explained in Section 4.1 (Figure 5(a)) with N = Nmin(L) and Q = fD(T). 

 

Case 4.2.(b): Nmin(L) ≤ fD(T): 

When Nmin(L) ≤ fD(T), it is important to know if selling in the secondary market becomes unprofitable 

early in the lifecycle (t* < L), or later (t* ≥ L).  In the case where t* < L, every retired ex-demo product 

sold in the secondary market yields a loss.  We want to exploit the reuse option as much as possible and 

use only N = Nmin(L) new products to satisfy all requests (the reuse saving is larger than the resale 

saving).  All Nmin(L) products will be sold in the secondary market after collection and when they are 

not needed anymore.  This policy can also be visualized from Figure 5.1.(a), with the only difference 

that there is no tf and selling in the secondary market continues until T+L.  The secondary market 

capacity constraint is not binding and there is no scrapping. 

In the case where t* ≥ L, the optimal policy is to use more than Nmin(L) new products to satisfy 

all demo product requests.  As in Section 4.1, we can determine a market saturation time tf through 

Eq.(10).  When tf < t*, i.e., we use N = fD(T) new products in total to satisfy all demo requests and only 

start reuse after tf, which is the same policy as in case 4.1.(b), Figure 5(b).  When tf > t*, however, it is 

better to start reuse just after time t* and we do not saturate the entire secondary market.  The optimal 

strategy is therefore to postpone reuse until Min {tf; t
*}. 

 

4.3 Managerial insights 

The analysis of the low erosion case reveals that several problem parameters are key in order to derive 

and formulate an optimal demo strategy.  Time related and/or time varying characteristics are of 

particular importance to capture the dynamic nature of the policies and to identify the exact moments 

in time when policy switches occur.  The length of the demo loan period L relative to the length of the 
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product’s lifecycle T are two clear problem characteristics that impact the value recovery options.  When 

L is long relative to T there is less opportunity for reuse and more new products are required to satisfy 

all demo requests. With eroding secondary market sales prices pS(t), less revenue is recovered the longer 

demo products reside at the client sites. 

The demo loan period L can have a strong impact on Nmin(L) - the minimum number of new 

products required to satisfy all requests (see Eq.(8)).  Nmin(L) is a critical policy and cost driver in this 

problem environment and it is important to understand its sensitivity to changes in L and in the demand 

profile d(t).  Nmin(L) is larger for demo request profiles with a more pronounced peak.  We illustrate this 

in Figure 6, which shows four request profiles for 0 ≤ t < 20 and the sensitivity of Nmin(L) to changes in 

L: profile 1: constant demand (d(t) = 50); profile 2: concave decreasing (𝑑(𝑡) = 75 −
3𝑡2

16
); profile 3: 

decreasing right triangular (d(t) = 100-5t); and profile 4: convex decreasing (𝑑(𝑡) =
3(𝑡−20)2

8
).  Each 

profile has a total demand D(20) = 1000. Profile 4 has the most pronounced peak. 
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Figure 6: Nmin(L) as a function of L for different profiles 

From Figure 6 it is readily observed that (keeping L constant) Nmin(L) is larger for profiles with a more 

pronounced peak, and when L is small, Nmin(L) is more sensitive to changes in L for profiles with a 

higher peak.  Conversely, when L is large, Nmin(L) becomes less sensitive to changes in L  for profiles 

with a higher peak.  Demo managers need to be aware of the demo request profile and its impact on the 

subsequent reuse and recovery operations.  Profiles that are as level possess the greatest value recovery 

potential when reuse is the only option to avoid value loss. 

 The demo request profile d(t) and loan period L also define tS – the point in time when 

collections exceed and stay larger than the requests.  As shown in Sections 4.1 and 4.2, this is an 

important policy switch point because excess collections must find a final destination, either through 

scrapping or by sales in the secondary market.  The shape of the request profile impacts on the position 

of tS: it occurs somewhere within active lifecycle [0, T) for profiles that peak before T, or at time T for 

constant demand profiles and profiles with a peak demand at time T. 

The relations between revenue pS(t) and cost cN and between the sales potential in the secondary 

market fD(T) and Nmin(L) are the two another policy defining factors.  These define the possible 

switching point t*, where resale in the secondary market becomes unattractive, and a market saturation 
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time tf.  Each of these factors interact and may influence each other.  It is therefore not possible to define 

an optimal demo strategy based just on partial information (e.g., simply comparing ps(t) and cN while 

ignoring fD(T) and Nmin(L)).  All characteristics have to be considered as well as the positions of 

different switching points (tS, t
*, tf) in relation to L and T. 

 

5. Derivation of the optimal demo policies with high value erosion 

5.1 Selling in the secondary market is always profitable (pS(t) ≥ cN) 

As in Section 4.1, when pS(t) ≥ cN, it is profitable to sell in the secondary market and this recovery 

option should be exploited to its full potential.  The total number of ex-demo products sold in the 

secondary market is Q = fD(T).  In addition, because the revenue profile pS(t) exhibits large price drops, 

it may be better to sell collected ex-demo products early in the lifecycle and use new products to satisfy 

subsequent demo requests, even when these products have to be scrapped after collection.  In other 

words, it can be optimal to use more than Max{Nmin(L); fD(T)} new products to satisfy all demo 

requests.  We analyze the same two scenarios as before: 

 

Case 5.1.(a): Nmin(L) > fD(T) 

Let the market saturation time tf be defined as in Case 4.1.(a), Eq.(9) and let t and tf denote small 

time epochs.  When the difference in revenue between selling at time L+t and tf – tf is bigger than 

the reuse saving, i.e., pS(L+t) – pS(tf – tf) > cN + cS – cR, then the latest sold ex-demo products in 

Figure 5(a).1 (time period [tf – tf,, tf)) will be scrapped, whereas the earliest collections (time period 

[L, L+t)) will be sold in the secondary market (instead of being reused).  To satisfy the demo requests 

in time period [L, L+t), new products are used.  The key question is therefore to determine the largest 

possible value for t (and the corresponding value fortf) such that pS(L+t) – pS(tf – tf) ≥ cN + cS – 

cR and, 

 

∫ 𝑀𝑖𝑛{𝑑(𝑡); 𝑑(𝑡 − 𝐿)}𝑑𝑡 =  ∫ 𝑀𝑎𝑥{0; 𝑑(𝑡 − 𝐿) − 𝑑(𝑡)}𝑑𝑡 
𝑡𝑓

𝑡𝑓−∆𝑡𝑓

𝐿+∆𝑡

𝐿
 (11) 

 

The left hand side in Eq. (11) comprises of the collections in [L, L+t) that can possibly be reused; the 

right hand side in Eq. (11) are excess collections in [tf – tf,, tf) that can only be sold in the market or be 

scrapped.  We call the left integral in Eq.(11), 𝐸(𝐿 + ∆𝑡), that is, the extra number of new products (in 

addition to Nmin(L)) that will be used to satisfy all demo requests. 

A convenient way to find the values for t (and tf ) is to consider the function pS(t) = pS(t) – 

pS(t+L), which compares the sales revenues at times t and t+L.  If pS(t) is smaller than the reuse saving 

cN + cS – cR, value erosion is low (see Section 4).  Otherwise, when pS(t) > cN + cS – cR for some values 

of t, we look for the largest value of t (L ≤ t ≤ T) for which pS(t) > cN + cS – cR.  Let us denote this t-
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value by tR.  We can set tR = L+t as the upper limit in the left integral in Eq.(11), and find the 

corresponding tf value from Eq.(11).  This approach ignores the secondary market capacity constraint. 

We will never use more extra new products than we could possibly sell in the market (i.e., fD(T)).  The 

limiting value for this constraint 𝐸(𝐿 + ∆𝑡) = 𝑓𝐷(𝑇) thus defines another candidate upper limit tC for 

L+t.  Therefore, we can set L+t = Min{tR, tC} and require pS(L+t) – pS(tf – tf) ≥ cN + cS – cR. 

The optimal demo retirement profile is r(t) = d(t-L) for L ≤ t < L+∆𝑡 and r(t) = Max{0; d(t-L)-

d(t)} for L+∆𝑡≤t<T+L.  The secondary market revenue equals 𝑀(𝑡𝑓 − ∆𝑡𝑓) = ∫ 𝑝𝑆(𝑡)𝑟(𝑡)𝑑𝑡
𝑡𝑓−∆𝑡𝑓

𝐿
.  All 

retirements after tf - ∆𝑡𝑓 are scrapped. 

Figure 7(a) illustrates this policy.  We show the same problem characteristics as in Figure 5(a).  

Compared with the top diagram in Figure 5(a), we continue to use extra new products to satisfy demo 

requests for time t.  Because the market capacity is limited, the same quantity of products has to be 

scrapped, as indicated by the earlier start of the XS(t) curve.  In the bottom part of the diagram we 

observe that reuse, XR(t) is postponed by t and that the secondary market sales, XS(t) follow the 

collections d(t-L) from L to L+t, but also finish tf earlier. 

 

Figure 7: Optimal demo policy when selling in the secondary market is profitable and value erosion is 

high for (a) Nmin(L) > fD(T) (left) and (b) Nmin(L) ≤ fD(T) (right). 

Case 5.1.(b): Nmin(L) ≤ fD(T) 

Similar reasoning may be used for the case where Nmin(L) ≤ fD(T).  The optimal strategy is to use more 

than fD(T) = Nmin(L) + E(tf) new products to satisfy all demo requests (Section 4.1), yet we can sell only 

Q = fD(T) ex-demo products in the secondary market.  In order to determine the extra new products 
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required, we find the largest value for tf (and corresponding value for t) such that pS(tf+tf) – pS(T+L– 

t) ≥ cN + cS – cR and, 

 

∫ 𝑀𝑖𝑛{𝑑(𝑡); 𝑑(𝑡 − 𝐿)}𝑑𝑡 =  ∫ 𝑀𝑎𝑥{0; 𝑑(𝑡 − 𝐿) − 𝑑(𝑡)}𝑑𝑡 
𝑇+𝐿

𝑇+𝐿−∆𝑡

𝑡𝑓 +∆𝑡𝑓

𝑡𝑓

  (12) 

 

The left hand side in Eq.(12) comprises of collections in [tf , tf +tf,) that can possibly be reused. The 

right hand side in Eq. (12) are collections in excess of the demo product demand d(t) in [T+L-t, T+L) 

that can only be sold in the market or be scrapped.  We denote the left integral in Eq.(12) by E(tf +tf,).  

As before, the values for tf and t can be found from the function pS(t) = pS(t) – pS(t+L).  One 

candidate point for tf +tf, is the largest t-value (called tR) for which pS(t) > cN + cS – cR. The other 

candidate point tC is determined by the limit value of a ‘reduced’ secondary market capacity constraint 

E(tf +tf,) = fD(t)-E(tf) = Nmin(L).  Note that the market capacity must be reduced by the early sales E(tf), 

which generate the most revenue.  We can then set tf +tf = Min{tR, tC}, and the value for t can be 

calculated from Eq.(12). 

The optimal ex-demo retirement profile is r(t) = XM(t)+XS(t) = d(t-L) for L ≤ t < tf +tf and r(t) 

= Max{0; d(t-L)-d(t)} for tf +tf ≤ t < T+L.  Ex-demo products retiring after T+L-t are scrapped.  The 

revenue in the secondary market is 𝑀(𝑇 + 𝐿 − ∆𝑡) = ∫ 𝑝𝑆(𝑡)𝑟(𝑡)𝑑𝑡
𝑇+𝐿−∆𝑡

𝐿
.  This policy is illustrated 

in Figure 7(b).  Comparing the top diagrams in Figures 5(b) and 7(b), it is evident that we continue to 

use extra new products to satisfy demo requests for time tf.  While there was no scrapping in Figure 

5(b), an extra amount of products E(tf +tf,) are scrapped in Policy 5.1.(b), as shown by the XS(t) curve 

starting at T+L-t.  In the bottom part of the diagram we also observe that reuse, XR(t) is postponed 

until tf+tf and that the secondary market sales, XS(t) follow the collections d(t-L) from L until tf+tf , 

but also finish t earlier. 

 

5.2 Selling in the secondary market becomes unprofitable at t* (pS(t) < cN) 

As in Section 4.2 pS(t) dropping below cN at time t* is a signal to start reuse.  We can modify the optimal 

policies in Section 5.1 in a similar fashion as we modified the optimal strategies in Section 4.1. 

 

 

Case 5.2.(a): Nmin(L) > fD(T) 

When t* < L, we already need more new products to satisfy all demo demands than we could possibly 

sell in the secondary market.  When selling in the secondary market becomes unprofitable very early in 

the lifecycle before any collections are available (t* < L), the reuse recovery option is always preferred.  

The optimal strategy is to use only N = Nmin(L) new products to satisfy all demo requests.  As long as 
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the resale saving pS(t) + cN – cR is positive, we will sell retired ex-demo products in the secondary market 

until the market is saturated.  In case the resale saving becomes negative at some time tN before the 

market saturation time tf (see Figure 5(a)), secondary market sales will be halted and all retirements 

after tN will be scrapped. 

When t* ≥ L, t can be determined as explained in Case 5.1.(a).  Note that in Section 5.1 reuse 

is postponed until time Lt.  Because the reuse option is preferred over the resale option at time t*, we 

can modify the Section 5.1 policy so as to start reuse at time Min{Lt; t*}.  The optimal number of 

new products to satisfy all demo requests is N = Nmin(L) + E(Min{L+t; t*}).  With respect to the resale 

revenue in the secondary market, we halt sales in the secondary market as soon as the resale saving 

becomes negative or when the market is saturated, whichever occurs earliest. 

 

Case 5.2.(a): Nmin(L) ≤ fD(T) 

When t* < L, the optimal strategy is to use N = Nmin(L) new products to satisfy all demo requests.  We 

stop selling in the secondary market as soon as the resale saving becomes negative.  

When t* ≥ L, tf is determined as in Case 5.1.(b).  Because the reuse option is preferred over 

the resale option at time t*, we can modify the Section 5.1 policy so as to start reuse at time Min{tf+tf; 

t*}. The optimal number of new products used to satisfy all demo requests is given by N = 

Nmin(L)+E(Min{tf+tf; t
*}).  When L ≤ t* < tf; reuse starts right at time t*, i.e. earlier than tf (see Figure 

7(b)); when L ≤ tf+tf ≤ t* < T, reuse is as in Figure 7(b); when L ≤ tf ≤ t* < tf+tf reuse starts at t* between 

tf and tf+tf.  With respect to the resale revenue in the secondary market, sales in the secondary market 

are halted as soon as the resale saving becomes negative (time tN) or when the market is saturated, 

whichever occurs earliest. 

 

5.3 Managerial insights 

High value erosion may occur when the drop in resale revenue over the demo loan period pS(t) = pS(t) 

– pS(t+L) is larger than the reuse saving cN + cS – cR and when the secondary market capacity constraint 

is binding.  From an economic perspective it is better to salvage available collections in the secondary 

market and to keep satisfying demo requests with new products.  Reuse is postponed until later, i.e., 

until pS(t) drops below cN + cS – cR, or until the early sold collections have saturated the secondary 

market.  The high erosion case is less intuitive and more complex than the low erosion case.  The key 

piece of information needed to establish the presence of high value erosion is the pS(t)-function, which 

is defined or relevant in time interval [L, T).  For constant value erosion (e.g., linear price decay), pS(t) 

is constant.  For more complex price decay (e.g., exponential or piecewise linear decay with discrete 

drops in sales price) pS(t) is dynamic and changes over time.  The decision of whether high erosion 

applies may thus change during the lifecycle.  This makes sense because product returns early in the 

lifecycle (e.g., before the price drops in Figure 2) may be prone to high erosion whereas product returns 
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near the end of the lifecycle (e.g. after the price drops in Figure 2) may have lost most of their value or 

may have missed the high revenue time window in the secondary market.  Further delays for these last 

returns may have only limited financial impact so that low erosion applies.  pS(t) also depends on the 

demo loan period L: the longer L, the higher pS(t) for the same value of t.  However, pS(t) is defined 

over a longer time interval [L, T) when L is lower.  Short or medium demonstration times L could make 

products at some time during the lifecycle prone to high value erosion, whereas (very) long 

demonstration times could mean that the products have lost most of their resale value after 

demonstration, and should be controlled by a low erosion strategy. 

 The high erosion case introduces additional, potential policy switching points (tR, tC, and tN).  

The point tN is the time when resale revenue becomes negative and sales in the secondary market should 

stop.  The point tR is the largest time for which pS(t) > cN + cS – cR and tC is a market saturation time 

for selling early collections.  The minimum of tR and tC define a reuse postponement time (t or tf). 

 

6. Case example 

We now apply our generic analysis above to develop optimal demo policies for case company X noted 

in Section 2.  Figure 8 (left) shows the demo request profile of processor 1 over its 20 months lifecycle.  

In total 298 requests were received with an average demo loan period around 4.5 months (132 days see 

Table 1).  We base our calculations on an approximation by an isosceles triangular profile (d(t) = 3.5t 

for t < 10 and d(t) = 35 – 3.5(t-10) for 10 ≤ t ≤ 20).  This approximation provides a close fit for the peak 

in the real demo requests profile but overestimates the total demo demand (350 units in the 

approximation vs. 298 in real life).  Figure 8 (right) depicts the price erosion of the processor in the 

secondary market: pS(t) = $6000 - $100t when t < 11 and pS(t) = $2900 - $100(t-11) when t ≥ 11.  The 

price drop of $2000 at t = 11 corresponds to the introduction of a new generation processor.  We assume 

cN = $2400, cS = $0 and cR = $0 and that the secondary market sales capacity is limited to 180 units.  

Figure 8 (right) also shows the pS(L) curves for four demo loan period values: L = 2.5 months, L = 4.5 

months, L= 6.5 months and L = 12 months. 

 

Figure 8: Demo request profile and price erosion of processor 1. 

The pS(t) curves for L < 11 show a step in time interval [11-L, 11), i.e., before the price drop at t = 11, 

where they reach a value of $2000+$100*L, i.e., the revenue drop at t = 11 plus the constant erosion 
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rate during the loan period L.  Outside the interval [11-L, 11), the pS(t) curve show a constant level of 

$100*L. The reuse saving cN + cS – cR  = $2400.  The situations where L = 2.5 months and L = 12 

months are low erosion cases because pS(t) only reaches a maximum level of $2250 (L = 2.5 months) 

or $1200 (L = 12 months); the situations where L = 4.5 months or L = 6.5 months are high erosions 

cases (pS(t) reaches maximum values of $2450 and $2650, which is higher than the $2400 reuse 

saving).  Before we discuss each of the four cases in more detail, we present a summary policy map in 

Figure 9.  The diagram shows the optimal demo policy as a function of the demo loan period L and the 

secondary market sales potential f for the triangular demand profile and for the given price erosion 

profile pS(t). 

 

Figure 9: Policy map for the case example 

The dotted line in Figure 9 shows the Nmin(L) = fD(T) boundary. Points above this line correspond to 

scenarios where Nmin(L) is less than the market capacity fD(T); points below the line correspond to cases 

where Nmin(L) is larger than the market capacity fD(T) and thus, where scrapping applies.  By 

considering pS(t) vs. the reuse saving cN + cS – cR, two limit values for the demo loan period are found. 

Demo loan period values below L = 4 months and above L = 11 months correspond to low value erosion; 

L-values between 4 and 11 months define high erosion cases.  We can also consider the relationship 

ps(t) vs. cN. In this example, selling in the secondary market becomes unattractive after t = 16.  Unless 

necessary (e.g., when L > 16), we will not use new products after t = 16 to satisfy demo requests.  We 

have indicated these three boundaries in Figure 9, and we also show our four cases: (a) L = 2.5 months, 

(b) L = 4.5 months, (c) L = 6.5 months and (d) L = 12 months, which have clearly different 

characteristics in terms of erosion and Nmin(L) vs. fD(T) relation.  The f-value is f = 180/350 = 0.514. 

Table 3 summarizes key characteristics of the optimal strategies for the 4 different cases.  The 

time tS is the time when the collections exceed the demo requests.  For an isosceles triangular profile 
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with maximum at t =10, Nmin(L) is based on a symmetric L/2 time window around the maximum, 

𝑁𝑚𝑖𝑛(𝐿) = ∫ 𝑑(𝑡)𝑑𝑡
10+𝐿/2

10−𝐿/2
. 

Table 3: Characteristics and evaluation of four cases 

 

 

In all cases pS(t) drops below cN after t* = 16.  Low erosion case (a) has Nmin(L) = 82.03 < fD(T) 

= 180 and should be controlled according to policy 4.2.(b).  The tf value (calculated via Eq.(10)) is well 

below t* (9.98 < 16) so that this case reduces to policy 4.1.(b): a total of 180 new products are used to 

satisfy all demo request.  Reuse is postponed until tf = 9.98; all requests are satisfied by new products 

and all available collections are sold in the secondary market.  Between tf and tS, all collections are 

reused; the demand in excess of the available collections is satisfied by new products, and there are no 

secondary market sales.  Finally, between tS and T, all demo requests are satisfied through reuse, and 

collections in excess of the demo demand are salvaged in the secondary market until T+L.  There is no 

scrapping in this case.  The flows over time for case (a) are shown in the two diagrams at the top in 

Figure 10.  The left diagram shows reuse XR(t) and demo requests satisfied by new products XN(t); the 

right diagram shows the collections (d(t-L)) and the collections sold in the market XS(t).  The optimal 

case (a) policy generates a profit of $274.5k (= revenue $706.5k – new product cost (cN*N = $2.4k*180 

= $432k).  The last two columns in Table 3 report the profit of two alternative policies: the max reuse 

policy uses only Nmin(L) new products to satisfy all requests and sells excess collections, up to the market 

capacity, as soon as possible (i.e., between tS and T+L, see the second part of the XM(t) curve in Figure 

10, case (a)).  The no reuse policy satisfies each request by a new product (new product cost $2.4*350 

= $840k), and sells the fD(T) = 180 earliest collections.  Both these policies are quite different from the 

optimal case (a) policy and generate a loss (-$4.8k and -$33.8). 

Case L t S N min (L ) t f t f  or t N
revenue 

(k$)

cost new 

(k$)

profit 

(k$)

profit (k$) 

max reuse

profit (k$) 

no reuse

(a) L = 2.5 11.25 82.03 9.98 180 706.5 432 274.5 -4.8 -33.8

(b) L = 4.5 12.25 139.78 9.29 1.71 213.72 640.1 512.9 127.2 -88.5 -174.8

(c) L = 6.5 13.25 190.53 24.05 4.5 225.97 511.3 542.3 -31 -77.3 -287.8

(d) L = 12 16 294 23.93 294 343.1 705.6 -362.5 -362.5 -457.7
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Figure 10: Time flows for the different cases 

 

 The cases (b) and (c) are high erosion cases: case (b) with Nmin(L) = 139.78 < 180 = fD(T) and 

case (c) with Nmin(L) = 190.53 > 180 = fD(T).  Case (b) is controlled with policy 5.2(b) and case (c) 

with policy 5.2.(a).  For case (b), tf = 9.29 (calculated via Eq.(10)) and for case (c), tf = 24.05 (calculated 

via Eq.(9)).  For case (b), the maximum tf value is found from the pS(t) function for L = 4.5, where t 

= 11 still shows a value larger than the reuse saving.  We set tf = 11-9.29 = 1.71.  Also, for case (c), 

the maximum t value is determined by t = 11 in the pS(t) function for L = 6.5.  In this case, we set 

L+t = 11, so t = 11–6.5 = 4.5.  The positive values for t and tf clearly show that reuse is further 

postponed until t = 11 in the case of high erosion.  This means that extra new products are required to 

satisfy all demo requests: for case (c): 225.97 – 190.53 = 35.44 products (this is in addition to Nmin(L) 

= 190.53, and the extra amount of new products 35.44 < 180 market capacity); for case (b): 213.72 – 
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180 = 33.73 products (this is in addition to fD(T) = 180, and the extra amount of new products 33.73 < 

139.78 = Nmin(L) = ‘reduced’ market capacity).  The value t* = 16 is well above tf + tf = 11 (case (c)) 

and L+t = 11 (case (b)) and does not impact on the policies. 

The flows over time for cases (b) and (c) are shown in the middle section of Figure 10.  The 

curves for case (b) and (c) show a similar but somewhat shifted pattern.  We note that for both cases 

reuse XR(t) is postponed until t =11.  New products are ordered until tS = 12.25 (case (b)) and tS = 13.25 

(case (c)); market sales are clearly higher earlier in the lifecycle and also start earlier in case (b); there 

are no market sales between t = 11 and tS.  Both scenarios use more new products than the market 

capacity and these products are scrapped after the market is saturated.  The scrap flows XS(t) are not 

shown on the left diagrams, but they follow the collection curve near the end of the lifecycle and start 

when market sales have dropped to zero.  From Table 3, we observe that the optimal policy for case (b) 

yields a profit ($127.2k), whereas case (c) generates a loss (-$31k).  Both the max reuse and no reuse 

policies perform much worse and are very costly.  By comparing cases (a), (b) and (c), the demo loan 

period L has a huge impact on the overall profitability and cost effectiveness of the operations.  A two 

month decrease or increase compared with the current L-value for processor 1 could either generate a 

healthy profit or produce a steep loss. 

 Case (d) is a low erosion example with a long lead time L = 12, Nmin(L) = 294 > 180 = fD(t), so 

policy 4.2.(a) applies.  We use new products for all demo requests until time t = L = 12.  Reuse starts at 

t =12 with all available collections, but also new products are required for some of the requests until tS 

= 16.  At tS = 16, we only satisfy requests through reuse and market sales commence and continue until 

the market is saturated.  Remaining collections are scrapped.  The flows for case (d) are shown in the 

bottom part of Figure 10, and are a little different from the other three cases.  Table 3 shows that case 

(d) yields a loss (-$362.5k) and that the no-reuse policy is worse. 

 

Figure 11: Profit (k$) and N as a function of L and f 

Figure 11 shows for processor 1 the total profit (k$) (left) and the number of new products N used to 

fulfil all demo request (right) for the optimal demo policies as a function of the loan period L (values 

from 1 to 20) and the market capacity (f values from 0.1 to 1).  The profit diagram shows that the 

operations are only profitable when the demo loan period is short, and when the secondary market is 
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well developed.  Otherwise, profit can erode rapidly and the entire demo process becomes a very costly 

marketing approach. 

 The profit diagram reveals key changes in sensitivities, in particular for L-values around 11 

(when the drop in revenue occurs) and around f = 0.5-0.6 values for small L and gradually increasing 

to larger f values when L increases as indicated by the small arrows in Figure 11.  The latter is again 

due to the steep drop in sales revenue at t =11: for low L, Nmin(L) is small and in case the market is well 

developed, the N = fD(T) > Nmin(L) policy applies with most sales before t = 11.  A larger L, requires a 

better developed market (higher f) but there is also less opportunity to sell before t = 11, so overall profit 

decreases.  The diagram on the right showing N as a function of f and L displays a smoother impact of 

increasing L on N for constant f, especially for larger L.  This is due to the shape of the demand profile 

and Nmin(L) (see also Figures 6 and 9 showing a smooth concave increasing pattern).  For small L, N 

increases linearly with f (because of the N = fD(t) policy) and reduces a little for high f (because no new 

products are used after t* =16).  For larger L, N is less sensitive to changes in f (because Nmin(L) > fD(T) 

and some of the collections are scrapped).  The high erosion region, where more new products are used, 

is clearly visible in the diagram. 

 The optimal flow patterns in Figure 10 show that even for relatively simple demand profiles, 

product flows over the lifecycle can be quite different and are heavily influenced by lead time.  This 

information should appeal to managers.  The summary of policies in Figure 9 provide a clear 

informative guide to managers on when different policies should be used.  Furthermore, constructing 

flow diagrams like in Figure 10 provide a visual aid, which managers can use to better forecast product 

returns (collections) and plan and coordinate reuse and resale operations.  These diagrams show that we 

need to evaluate and consider all the relevant characteristics and information to identify an optimal 

policy. Making a judgement based on partial information (e.g., only considering pS(t) vs. cN and ignoring 

factors such a demo loan time L, market capacity f and the shape of the demo request profile d(t)), will 

result in incorrect decisions, which can be very costly for high-end IT product demonstrations.  Due to 

confidentiality, we cannot report exact estimates of savings by the case company in implementing the 

optimal strategies.  However, for products like processor 1, life cycle savings well in excess of $100k 

can be easily achieved with very modest changes (e.g., limiting the demonstration time to 3 months), 

whereas implementing an optimal strategy could generate savings in the region of $200k-$250k.  

Processor 1 is only one component from the case companies’ product portfolio, and from Table 1, its 

actual average demo loan time (132 days) compared ‘favorably’ against other processors with 

demonstration times between 165 and 220 days.  Such excessive demonstration times do not allow 

much opportunity for the reuse option, and indeed as evidenced from Table 1, 80% to 90% of the demo 

request are satisfied through new products.  The no-reuse benchmark policy in Table 3, was however 

the worst performing policy. 

Finally, managers can combine the policy map in Figure 9 with a profit/cost surface plot in 

Figure 11.  This can reveal for different demand and price erosion profiles where the key sensitivities 
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in profit are, and what policy changes are required to either drive performance improvement or to 

identify ‘safe zones’ (see Figure 11 left).  Managers should aim to operate well within a safe zone where 

small deviations in L and f would still generate a healthy profit. 

 

7. Conclusions and further research 

In this paper we discussed and investigated a closed-loop supply chain for providing demonstrations of 

expensive, high-end products, with a short lifecycle.  Potential customers request demos, while the 

manufacturer has the option to satisfy the requests either by new products or by reusing previously 

collected demos.  Ex-demo equipment can be sold in the secondary market, but the product’s sales price 

erodes over time.  Eroding sales prices may change the economics of reuse versus no-reuse (resale) 

during the lifecycle. 

We derived two measures, which are necessary to develop an optimal demo strategy in a 

deterministic setting with concave or unimodal demo demand profile over the product lifecycle.  The 

first indicator is whether or not the sales price pS(t) drops below the acquisition cost cN.  In general, the 

time when the sales price drops below cN is a signal to start reuse.  The second indicator is whether the 

drop in sales price over the demo loan time L is larger than the reuse saving cN + cS – cR.  Large drops 

in sales prices are characteristics of fast value erosion; small drops in sales price characterize slow value 

erosion.  Inspecting the ps(t) function provides a convenient way to identify high erosion.  We show 

that the distinction between high and low erosion depends on the stage in the product’s lifecycle and 

the demo loan period L.  In case of fast erosion, we also show that it may be better to postpone reuse 

until later in the lifecycle, even if this results in more products being scrapped.  The optimal strategy 

depends on the interactions of several indicators (i.e., if these are present) and on the availability of 

collected products (residence time L); the demo demand profile (d(t)) and the secondary market 

potential (fD(T)).  

The application of the generic analysis presented in this paper led to a number of useful insights 

for managers at the case company.  Managers could recognize the importance of the demo request 

profile, the value of time, and their effect on value recovery.  It became evident also that not all products 

should be treated in the same way: company X has products in its portfolio that belong to the four 

categories considered, and our analysis clearly shows that different optimal policies apply.  

Furthermore, by applying the generic analysis, managers became aware that more stringent controls 

and measures were required to manage the demo store, with respect to the demo loan period L.  Most 

of the products examined had average loan periods in excess of the recommended 3 months.  The longer 

L, the more new products are required to satisfy demo request and the lower the value recovery through 

reuse and/or resale in the secondary market. 

The context of our study focuses on demonstrations of high-end IT products.  Demonstrations 

of medical equipment (e.g., dental chair), optical, audio and measurement equipment and categories of 
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industrial equipment and machinery share many of the characteristics above although in some cases the 

product’s lifecycle may be longer.  For products with longer lifecycles, it may be recommended to 

incorporate an additional discount factor to compare cash flows at different times and calculate a net 

present value.  The indicators in the models above can be easily modified for this situation.  For 

example, assuming that f(t) is a decreasing discount function over time and that all cash in/out flows 

are discounted, it is not too difficult to show that the first signal (ps(t) vs. cN) is unaffected by the 

presence of the discount function.  Hence, all our results still hold for the low erosion case, but clearly 

total profit/or cost will be discounted.  The second indicator, however, is affected by the discount factor 

and becomes: ps(t) – ps(t+L)f(t+L)/f(t) vs. cN + (cS – cR)f(t+L)/f(t).  Because 0< f(t+L)/f(t) < 1, the discount 

factor amplifies the revenue price drop ps(t).  The effect on the reuse saving depends on the relation 

between cS and cR: if cS-cR < 0, also the reuse saving is amplified, otherwise it is decreased.  The reuse 

saving part becomes time dependent, rather than static which may change the high/low erosion decision 

(using ps(t) function).  However, the same generic approach presented in the paper can be used to 

further explore this situation. 

Value erosion is also important other contexts: in the mobile phone sector with new generation 

handsets introduced every 6 months, and in the fashion/clothing industry where increased online sales 

go together with increased product returns.  Returning, repacking, re-labelling and reselling fashion 

apparel in a short time window puts tremendous pressure on clothing companies, yet some stores do 

offer free returns.  Elements of the modelling approach we present can be used to capture several key 

profitability drivers for closed-loop supply chains where the rotation of assets and their subsequent 

recovery in the secondary market are important.  Certain aspects of the model are more generally 

applicable (e.g., rental or leasing of products), or could be further extended to incorporate revenue from 

rental or leasing, or other characteristics.  More time varying features and/or more constraints can be 

considered, but the analysis will be more involved.  Further extensions could also investigate more 

complex demand profiles (which may require inventory) and/or stochastic elements (demo loan period, 

demo demand, secondary market demand). 

Our modelling approach as a continuous time rather than a multiple period optimization 

problem enabled us to focus on the features that define and drive the optimal solution structure.  This 

modelling approach results in stronger and more general conclusions, which is of importance when 

delays, time value and dynamic features have to be accounted for.  Our model can be transformed into 

a Continuous time Transportation Problem.  For the more general Continuous time Minimum Cost 

Network Flow Problems - although NP-hard to solve (Klinz and Woeginger, 2004) - optimality and 

strong duality results were recently derived by Koch and Nasrabadi, (2014) under certain conditions.  

These models can be explored for generalizations of our problem. 
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Appendix 

We show how our problem can be transformed into a Continuous Transportation Problem (CTP).  We 

also demonstrate the optimality of the solution structures derived in Sections 4 and 5, relying on the 

strong duality results for the CTP (see e.g., Anderson and Philpott, 1984).  We present each identified 

structure as a solution to the CTP in a transportation tableau format.  The rows and columns display 

the supplies (new products or reuse from store) and demands (demo requests, secondary market and 

the scrapping) that are active in different time epochs.  Let cij(t) denote the cost function to supply 

demand j from supply i.  Based on the cells that characterize the solution, we calculate the dual cost 

functions i(t) and j(t) for the supply and demand cells via i(t) + j(t) = cij(t).  This resembles the 

reduced cost relationships in static Transportation Problems, but in the CTP the i(t) and j(t) are 

functions.  Next, we calculate the reduced cost functions cij(t) - i(t) - j(t) for the cells that are not 

used in the solution.  When all the reduced cost functions are ≤ 0, we conclude optimality. 

 

Figure 12: A balanced CTP 

 

Figure 12 shows our problem as a CTP.  We model the Demo Store as a supply node (supply 

of collected ex-demo products) with a time-phased (over loan period L), time varying supply equal to 

the time varying demand at the Demo Client Site node.  If we specify total demands fD(T) and D(T) 

for the Secondary Market and Scrap node, then we can set a total supply of (1+f)D(T) at the New 

Products node to balance the problem.  The arcs connecting the New Products node with the 

Secondary Market and Scrap nodes carry a zero cost.  Flows through these two arcs are virtual flows 

and do not affect the solution.  The only arc with a time varying cost is the arc from the Demo Store 

node to the Secondary Market node, with cost cR – pS(t). 

We illustrate the solution structure optimality through two examples.  Example 1 (see Section 

4.1 and Figure 5(a)) is for the case of low erosion and pS(t) ≥ cN over the entire planning horizon T+L.  

We further assume that the minimum number of new products needed to satisfy all demo requests is 

larger than the secondary market potential (Nmin(L) > fD(T)).  Example 2 (see Section 5.2 and Figure 

7(b)) is for fast erosion (pS(t) drops below cN at time t* with L < t* < T and the resale saving (pS(t) + cS 

– cR) becomes negative at a time  tN with T < tN < T+L -t).  In Example 2 we further assume Nmin(L) ≤ 
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fD(T), yet N = Nmin(L) + E(t*) > fD(t).  Because the resale saving becomes negative at tN, we do not 

saturate the full market potential but start scrapping at tN.  We recall that the demo request profile is 

concave over [0, T) and that the collections follow exactly the same profile, but time shifted over 

period L, i.e., horizon [L, T+L).  Further, let tS denote the time when the collections exceed (and stay 

larger than) the demand.  (All input functions are assumed to be piecewise analytic over [0, T+L).  

Piecewise analytic functions are right-continuous but not necessarily left-continuous.  They may be 

discontinuous at a finite number of points.) 

 

Example 1:  We examine the case where tS < tf < T (Figure 5(a) shows the example where tS < T < tf) 

and identify the epochs where the solution structure changes as follows:  

[0, L) : use new products for all requests (no collections available); 

[L, tS) : reuse the collections and use new products to satisfy the remaining demand; 

[tS, tf) : reuse the collections and sell excess collections in the secondary market; 

[tf, T) : reuse the collections and scrap excess collections; 

[T, T+L): scrap the collections. 
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Figure 13: Optimal CTP solution structure for Example 1. 

 

Figure 13 shows the CTP for Example 1 in a transportation tableau format.  We have suppressed the 

time dependency in the notation: the demo store supply functions are s1, s2, s3 and s4, the demo request 

functions d1, d2, d3 and d4 and the secondary market price functions p1, p2, p3 and p4.  In the top right 

corner in each cell we show the relevant cost function.  The cells with shaded borders fully 

characterize a feasible solution to the CTP.  With m supply cells and n demand cells we need m+n-1 

cells that do not contain a loop.  In this example the CTP solution is degenerate: we need 5+6-1 = 10 
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cells and these are all the cells with positive flow and cell (4, 5) with zero flow.  Note that 

d1+d2+d3+d4 = s1+s2+s3+s4 and d1+d2-s1 = s3+s4–d4 = Nmin(L) so that it is easily verified that the 

proposed solution structure is feasible.  The dual cost functions i(t) and j(t) are shown in the last 

column and bottom row; we arbitrarily set1(t) = 0. 

We calculate the reduced cost functions cij(t) - i(t) - j(t) for the cells (1, 3), (1, 4), (1, 5), (2, 

3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 6) and (5, 5).  If any of these would price out negatively, we 

conclude that the solution structure is not optimal; otherwise it is optimal. 

 

Cell (1, 3):  

c13 – 1 – 3 < 0 

cN – 0 – (p2 – p3 + cR – cS) < 0 

cN + cS – cR < p2 – p3   No, because there are no large price drops. 

 

Cell (1, 4):  

c14 – 1 – 4 < 0 

cN – 0 – (cR – cS) < 0 

cN + cS – cR < 0    No, because the reuse saving is positive. 

 

Cell (1, 5):  

c15 – 1 – 5 < 0 

0 – 0 – (– p3 + cR – cS) < 0 

p3 < cS – cR  No, because p3 > cN (selling is profitable) and cN + cS – cR > 0 

(reuse saving), so p3 > cN > cS – cR. 

Cell (2, 3):  

c23 – 2 – 3 < 0 

cR – (cR – cN) – (p2 – p3 + cR – cS) < 0 

cN + cS – cR < p2 – p3   No, because there are no large price drops. 

 

Cell (2, 4):  

c24 – 2 – 4 < 0 

cR – (cR – cN) – (cR – cS) < 0 

cN + cS – cR < 0    No, because the reuse saving is positive. 

 

Cell (2, 5):  

c25 – 2 – 5 < 0 

-p1 + cR – (cR – cN) – (– p3 + cR – cS) < 0 

cN + cS – cR < p1 – p3   No, because there are no large price drops. 

 

Cell (2, 6):  

c26 – 2 – 6 < 0 

cS – (cR – cN) – 0 < 0 

cN + cS – cR < 0    No, because the reuse saving is positive. 

 

Cell (3, 4):  

c34 – 3 – 4 < 0 

cR – (p3 – p2 + cS) – (cR – cS) < 0 

p2 – p3 < 0    No, because p is non-increasing. 
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Cell (3, 6):  

c36 – 3 – 6 < 0 

cS – (p3 – p2 + cS) – 0 < 0 

p2 – p3 < 0    No, because p is non-increasing. 

 

Cell (5, 5):  

C55 – 5 – 5 < 0 

-p4 + cR – cS - (– p3 + cR – cS) < 0 

p3 – p4 < 0    No, because p is non-increasing. 

 

We conclude that the solution structure is optimal. 

 

Example 2:  The epochs where the solution structure changes are as follows (Section 5.2):  

[0, L) : use new products for all requests (no collections available); 

[L, t*) : use new products for all requests, sell all collections in the secondary market; 

[t*, T) : reuse the collections for all requests and sell excess collections in the secondary 

market; 

[T, tN) : sell all collections in the secondary market; 

[tN, T+L): scrap all collections. 

 

Figure 14 shows the CTP for Example 2 in a transportation tableau format.  It is readily verified that 

the cells with positive flow (5 + 5 – 1 = 9 in total) are a feasible CTP solution. 
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Figure 14: Optimal CTP solution structure for Example 2. 

 

We calculate the reduced cost functions cij(t) - i(t) - j(t) for the cells (1, 3), (2, 2), (2, 3), (2, 5), (3, 

5), (4, 5) and (5, 4): 
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Cell (1, 3):  

c13 – 1 – 3 < 0 

cN – 0 –p2 < 0 

cN < p2     No, p drops below cN at time t*. 

 

Cell (2, 2):  

c22 – 2 – 3 < 0 

cR – (– p1 + cR) – cN) < 0 

p1 < cN     No, p doesn’t drops below cN until time t*. 

 

Cell (2, 3):  

c23 – 2 – 3 < 0 

cR – (– p1 + cR) – p2 < 0 

p1 – p2 < 0    No, because p is non-increasing. 

 

Cell (2, 5):  

c25 – 2 – 5 < 0 

cS – (– p1 – cR) – 0 < 0 

p1 + cS – cR < 0    No, because the resale saving is positive until tN. 

 

Cell (3, 5):  

c35 – 3 – 5 < 0 

cS – (– p2 – cR) – 0 < 0 

p2 + cS – cR < 0    No, because the resale saving is positive until tN. 

 

Cell (4, 5):  

c45 – 4 – 5 < 0 

cS – (– p3 – cR) – 0 < 0 

p3 + cS – cR < 0    No, because the resale saving is positive until tN. 

 

Cell (5, 4):  

c54 – 5 – 4 < 0 

(– p4 – cR) – cS – 0 < 0 

p4 + cS – cR > 0    No, because the resale saving becomes negative at tN. 

 

Because none of the cells price out favorably, we conclude optimality.  The same procedure can be 

applied to prove optimality of the different solution structures in Sections 4 and 5. 


