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Abstract

We present a new investigation of the thermal history of the intergalactic medium (IGM) during and after
reionization using the Lyα forest flux power spectrum at 4.0z5.2. Using a sample of 15 high-resolution
spectra, we measure the flux power down to the smallest scales ever probed at these redshifts
(−1log(k/km−1 s)−0.7). These scales are highly sensitive to both the instantaneous temperature of the
IGM and the total energy injected per unit mass during and after reionization. We measure temperatures at the
mean density of T0∼7000–8000 K, consistent with no significant temperature evolution for redshifts
4.2z5.0. We also present the first observational constraints on the integrated IGM thermal history,
finding that the total energy input per unit mass increases from u0∼4.6 to 7.3 eV -mp

1 from z∼6 to 4.2 assuming
a ΛCDM cosmology. We show how these results can be used simultaneously to obtain information on the timing
and the sources of the reionization process. Our first proof of concept using simplistic models of instantaneous
reionization produces results comparable to and consistent with the recent Planck constraints, favoring models
with ~ -

+z 8.5rei 0.8
1.1.
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1. Introduction

The epoch of hydrogen reionization represents one of the
most dramatic phases of evolution of the universe. During this
period, the UV radiation from the first luminous sources
reionized the neutral hydrogen (and He I) atoms in the diffuse
intergalactic medium (IGM), driving the transition from a
neutral to a highly ionized universe. Understanding sources and
timing of this transformation can reveal crucial information
on the properties of the first objects and the environment in
which they were formed. When and how reionization happened
therefore remains a primary subject of interest in extragalactic
astrophysics (for a review, see Becker et al. 2015a).

The most direct probes of the highly ionized IGM have been
obtained from observations of intergalactic Lyα absorption
along the lines of sight to high-redshift quasars. Measurements
of Lyα transmission along some lines of sight suggest that
reionization was largely complete by z∼6 (e.g., McGreer
et al. 2015). On the other hand, large fluctuations in IGM
opacity remain at z6, suggesting that lingering evidence of
reionization may remain in the IGM to somewhat lower
redshifts (Fan et al. 2006; Becker et al. 2015b; Bosman et al.
2018; Eilers et al. 2018). While current constraints from cosmic
microwave background (CMB) observations are consistent
with a rapid reionization at redshift zrei;7.7±0.7 (Planck
Collaboration et al. 2018), measurements of the fraction of
neutral hydrogen at high redshift have also been obtained from
the presence of Lyα damping wings (Mortlock et al. 2011;
Simcoe et al. 2012; Greig et al. 2017; Davies et al. 2018) and
from the weakening of Lyα emission lines in z∼6–8 galaxies
(e.g., Caruana et al. 2014; Schmidt et al. 2016; Sadoun et al.
2017; Mason et al. 2018). The available data seem to generally
support a late reionization scenario (with the bulk of

reionization happening at z∼ 6–8) but are still consistent with
a relatively broad range of reionization histories.
The sources responsible for reionization also remain

uncertain. Star-forming galaxies have commonly been con-
sidered the most likely candidate (e.g., Finkelstein 2016;
Bouwens et al. 2015, 2016). Scenarios in which active galactic
nuclei (AGNs) make a substantial contribution, however,
continue to be considered (e.g., Giallongo et al. 2015; Madau
& Haardt 2015; D’Aloisio et al. 2017; Parsa et al. 2018).
Further insight may be gained from using the IGM thermal

history to constrain the reionization process. The temperature
of the IGM should increase significantly via photoionization
heating during hydrogen reionization, and because its cooling
time is long, the low-density gas retains some useful memory
of when and how it was reionized (Miralda-Escudé &
Rees 1994; Abel & Haehnelt 1999; Upton Sanderbeck et al.
2016). At the mean density of the IGM the characteristic
signature of reionization is expected to be an increase in
temperature of tens of thousands of kelvin as an ionization front
sweeps through (e.g., D’Aloisio et al. 2018), followed by
cooling (over Δz∼ 1–2) toward a thermal asymptote set
primarily by the balance between photoheating by the UV
background (UVB) and adiabatic cooling due to the expansion
of the universe (e.g., McQuinn et al. 2009). The interplay
among these effects is expected to lead to a power-law
temperature–density (T–ρ) relation for the low-density gas
( r rD =  10¯ ) of the form

D = Dg-T T , 10
1( ) ( )

where T0 is the temperature at the mean density and γ – 1 is the
slope of the relation (Hui & Gnedin 1997; Puchwein et al.
2015; McQuinn & Upton Sanderbeck 2016).
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Following reionization, the increase in gas pressure due to
the boost in temperature smooths out of the gas on small scales
(e.g., Gnedin & Hui 1998; Rorai et al. 2013; Kulkarni et al.
2015). The degree of “Jeans smoothing” in the IGM prior to a
given redshift is sensitive to timing and the total heat injection
during and after reionization. Measurements of both the gas
temperature evolution and the Jeans smoothing at redshifts
approaching reionization (z4) can therefore constrain the
timing of this process and potentially provide information on
the nature of the ionizing sources.

In the past two decades the Lyα forest in quasar spectra has
been the main laboratory for the study of the thermal state of
the IGM. In combination with cosmological hydrodynamical
simulations, previous efforts have used a variety of statistical
approaches to measure the IGM temperature–density relation at
1.5z5.4 from the shapes of the Lyα absorption lines
(e.g., Ricotti et al. 2000; Schaye et al. 2000; McDonald et al.
2001; Theuns et al. 2002; Bolton et al. 2008, 2014; Lidz
et al. 2010; Becker et al. 2011; Rudie et al. 2012; Boera et al.
2014, 2016; Hiss et al. 2018; Rorai et al. 2017a, 2018).
However, the widths of these features are sensitive to both the
instantaneous temperature of the gas (thermal broadening) and
Jeans smoothing (which increases the Hubble broadening) due
to the heat injection at higher redshifts. In previous works the
impact of pressure smoothing either has generally not been
included or has been considered a source of systematic error.
For example, Viel et al. (2013a) and Iršič et al. (2017a) account
for this effect by adding the redshift of reionization as a
nuisance parameter for their warm dark matter constraints.

On the other hand, the first direct measurement of the
characteristic filtering scale over which the gas is pressure
smoothed (λP) has recently been obtained from the analysis of
the Lyα absorption correlations using close quasar pairs at
z∼2–3 (Rorai et al. 2017b). This method largely disentangles
the impacts of thermal broadening and pressure smoothing;
however, the lack of known quasar pairs at higher redshifts
prevents it from being used at redshifts closer to hydrogen
reionization.

An alternative means of simultaneously constraining temp-
erature and Jeans smoothing is presented by the Lyα flux
power spectrum (Puchwein et al. 2015; Nasir et al. 2016,
hereafter N16; Walther et al. 2019). N16 demonstrated, using
hydrodynamical simulations, that the Lyα flux power spectrum
exhibits different scale dependences for the temperature and
Jeans smoothing. In particular, probing small scales (wave-
number log(k/km−1 s)−1) increases the sensitivity to
different reionization scenarios (see also Oñorbe et al. 2017
for an independent analysis). Although the 1D flux power
spectrum statistic has been already explored in several works
(e.g., Kim et al. 2004; McDonald et al. 2006; Viel et al. 2013a;
Palanque-Delabrouille et al. 2015; Iršič et al. 2017a; Yèche
et al. 2017), the lack of high-resolution, high signal-to-noise
ratio (S/N) Lyα forest spectra has so far prevented these small
scales from being measured at redshifts approaching reioniza-
tion (but see Walther et al. 2018 for an analysis at z< 4).

In this paper we present a new measurement of the Lyα flux
power spectrum at z∼4−5.2 obtained from a sample of high-
resolution, high-S/N spectra. We extend the measurement to
previously unexplored small scales (log(k/km−1 s)=−0.7).
By comparing the data to predictions from a suite of
hydrodynamical simulations, we investigate the IGM temper-
ature evolution and, simultaneously, its integrated thermal

history. We then demonstrate how the combined constraints
offer new insights on the timing and sources of the hydrogen
reionization process.
For this work we have adopted the parameterization of

the Jeans smoothing effect described in N16. We characterize
the integrated thermal history of the IGM using the cumulative
energy per unit mass, u0, injected into the gas at the mean
cosmic density during and after the reionization process. As we
demonstrate, this quantity can be directly used to constrain
reionization models.
This paper is organized as follows. In Section 2 we introduce

the observational sample of high-resolution spectra. An
overview of the simulations used to test and interpret the
measurements is presented in Section 3. In Section 4 we
introduce the power spectrum method, discussing the effect of
the most relevant thermal parameters. In Section 5 we present
the observational power spectrum results and discuss the
strategies applied to take into account and reduce systematic
uncertainties. The calibration and analysis of the synthetic
power spectrum models are described in Section 6. The
Markov chain Monte Carlo (MCMC) analysis, comparing
models with the observational measurements, is described in
Section 7, where we also present our main results for the IGM
temperature at the mean density and the integrated thermal
history. As an example of how our thermal constraints can be
used to test reionization histories, we apply our results to
instantaneous reionization models in Section 8. We summarize
our findings and conclude in Section 9. Tests for various
systematic effects are described in the appendices.

2. Observational Spectra

We obtained high-resolution spectra of a sample of 15
quasars spanning emission redshifts 4.8zem5.4. The
quasars and their basic properties are listed in Table 1. The
spectra for 11 of the objects were obtained with the Keck High

Table 1
List of Quasars Used for This Analysis

Name zem
zLyα C/N Instrument

zstart zend

J2111−0156 4.89 3.99 4.79 20 HIRES
J0011+1446 4.94 4.03 4.84 33 HIRES
J1425+0827 4.95 4.04 4.85 40 UVES
J1008−0212 5.04 4.11 4.94 22 UVES
J1101+0531 5.05 4.12 4.94 23 UVES
J0025−0145 5.07 4.12 4.95 26 HIRES
J1204−0021 5.09 4.16 4.99 15 HIRES
J0131−0321 5.12 4.23 5.08 20 HIRES
J0957+0610 5.17 4.22 5.07 27 UVES
J0741+2520 5.19 4.24 5.09 17 HIRES
J0915+4924 5.20 4.25 5.10 16 HIRES
J0747+1153 5.26 4.30 5.16 18 HIRES
J1659+2709 5.32 4.34 5.21 25 HIRES
J0306+1853 5.36 4.37 5.22 42 HIRES
J0231−0728 5.42 4.43 5.31 31 HIRES

Note.For each object we report the name (Column (1)) based on the J2000
coordinates of the object and the emission redshift (Column (2)). The redshift
intervals associated with the Lyα absorption used for this analysis are also
reported with the corresponding median C/N level per pixel (Columns (3), (4),
and (5)). Finally, the instrument with which the spectrum was taken is listed in
Column (6).
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Resolution Echelle Spectrometer (HIRES; Vogt et al. 1994),
while the remaining four were taken with the Ultraviolet and
Visual Echelle Spectrograph (UVES; Dekker et al. 2000) on
the Very Large Telescope (VLT).

The spectra were reduced using a custom set of IDL routines
that include optimal sky subtraction (Kelson 2003) and
extraction techniques (Horne 1986). For each object a single
1D spectrum was extracted simultaneously from all exposures
after individually applying telluric absorption corrections and
relative flux calibration to the 2D frames. Telluric corrections
were modeled based on the ESO SKYCALC Cerro Paranal
Advanced Sky Model (Noll et al. 2012; Jones et al. 2013). For
the UVES data we found that flux calibration derived from
standard stars yielded sufficiently accurate agreement between
overlapping orders. For HIRES, however, this approach
produced well-known moderate (∼10%) interorder flux
discrepancies. For all except one of our HIRES quasars,
therefore, we used lower-resolution spectra from Keck/ESI,
VLT/X-Shooter, or Gemini/GMOS to derive a custom
response function for each exposure. The remaining object,
J2111−0156, was calibrated using a response function from a
standard star. We verified that our final flux power spectra
remained essentially unchanged if standard-star flux calibration

was used for every object. We therefore do not expect this
aspect of the reduction to significantly impact our results.
The HIRES objects were observed using a 0 86 slit,

giving a nominal resolution FWHM of ∼6 km s−1. The UVES
spectra were taken with a 1 0 slit, giving a nominal resolution
of ∼7 km s−1. The telluric models for the UVES data, however,
indicated somewhat higher resolution consistent with a typical
seeing of 0 8. Consequently, we adopt a resolution of 6 km s−1

for the full data set, which is sufficient to resolve small-scale
features in the Lyα forest. We therefore expect that even the
smallest scale of the flux power spectrum measured in this
work (log(k/km−1 s)=−0.7, or Δv∼30 km s−1) will not be
strongly affected by the finite spectroscopic resolution (but see
Section 5.6.3). For all the quasars, the echelle orders were
redispersed onto a common wavelength scale with a dispersion
of 2.5 km s−1 per pixel.
According to the analysis presented in N16 using mock

observations with a redshift pathΔz=4, a continuum-to-noise
ratio (C/N) of ∼15 per 3 km s−1 pixel is necessary to break the
degeneracy between thermal broadening and pressure smooth-
ing and measure the thermal parameters with a statistical
uncertainty of ∼20%. Conservatively, we have chosen our
sample imposing this minimum threshold inside the Lyα forest
region.

Table 2
List of Hydrodynamical Simulations Used in This Work

Model L(h−1 cMpc) Mgas(h
−1Me) zOT ζ =T Kz

0
5 ( ) γ z=5 =u z

0
5( -meV p

1)

S10_0.3z7 10 9.97×104 7 0.3 3162 1.52 1.3
S10_0.3z9 10 9.97×104 9 0.3 3388 1.49 2.3
S10_0.3z15 10 9.97×104 15 0.3 3388 1.51 5.0
S10_0.55z7 10 9.97×104 7 0.55 4553 1.51 1.9
S10_0.55z9 10 9.97×104 9 0.55 5086 1.48 3.3
S10_0.55z12 10 9.97×104 12 0.55 5110 1.51 5.2
S10_0.55z15 10 9.97×104 15 0.55 5093 1.52 7.4
S10_0.55z19 10 9.97×104 19 0.55 5074 1.52 10.0
S10_1z7 10 9.97×104 7 1.0 6607 1.50 2.7
S10_1z9 10 9.97×104 9 1.0 7413 1.51 4.7
S10_1z12 10 9.97×104 12 1.0 7510 1.51 7.6
S10_1z15 (10–512) 10 9.97×104 15 1.0 7413 1.50 10.6
S10_1z19 10 9.97×104 19 1.0 7457 1.52 14.7
S10_1.8z7 10 9.97×104 7 1.8 9725 1.49 3.9
S10_1.8z9 10 9.97×104 9 1.8 10866 1.50 6.8
S10_1.8z12 10 9.97×104 12 1.8 10900 1.51 10.9
S10_1.8z15 10 9.97×104 15 1.8 10865 1.51 15.5
S10_1.8z19 10 9.97×104 19 1.8 10827 1.52 21.4
S10_3.3z7 10 9.97×104 7 3.3 13803 1.48 5.5
S10_3.3z9 10 9.97×104 9 3.3 15488 1.50 9.9
S10_3.3z12 10 9.97×104 12 3.3 15821 1.48 16.3
S10_3.3z15 10 9.97×104 15 3.3 15488 1.52 23.2

S10_1z9_g1 10 9.97×104 9 1.0 7413 1.00 4.7
S20_1z15 (20–1024) 20 9.97×104 15 1.0 7413 1.50 10.6
S40_1z15 (40–2048) 40 9.97×104 15 1.0 7413 1.50 10.6
S40_1z9 (40–2048–zr9) 40 9.97×104 9 1.0 7413 1.51 4.7
S10_1z15_256 10 7.97×105 15 1.0 7413 1.50 10.6
S10_1z15_768 10 2.95×104 15 1.0 7413 1.50 10.6

Note.Entries in bold correspond to the Sherwood simulations first introduced in Bolton et al. (2017); the model names used in that work are given in brackets. For
each simulation we report the name (Column (1)), box size (Column (2)), mass resolution (Column (3)), redshift at which the gas becomes optically thin (Column (4)),
and constant factor used to rescale the photoheating rates for different thermal histories (Column (5)). The thermal parameters that describe the T–ρ relation at
z=5 are also listed: the temperature of the gas at the mean density (Column (6)) and the power-law index γ (Column (7)). Finally, the cumulative energy per unit
mass deposited into the IGM at the mean density by z=5 is given in Column (8) (see text for details). Further details on the simulation methodology are presented in
Bolton et al. (2017).
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We have fitted the continuum in our spectra using spline fits
guided by power-law extrapolations of the continuum redward
of the Lyα emission line. Given the high levels of absorption at
z4, the continuum measurements are necessarily character-
ized by large uncertainties (∼10%–20%). We therefore use
these estimations only to derive a rough estimate of the C/N
level. In measuring the power spectrum, as described in
Section 5.1, we adopt an approach that does not require a priori
knowledge of the continuum. The redshift coverage and the
median C/N for the Lyα forest region of our sample are
reported in Table 1. The majority of the spectra have larger
C/N than our cut, with a typical value per pixel in the range of
20–30. This high C/N assures that the power spectrum
measurement at small scales will not be strongly affected by
uncertainties in the noise modeling.

3. The Simulations

To test systematics associated with the observed power
spectrum and to interpret our observational results, we used
synthetic spectra derived from hydrodynamical simulations and
processed to closely match the characteristics of the real data.
We ran a large set of hydrodynamical simulations that span a
range of thermal histories at z>4. The simulations run
following the Sherwood simulations suite (Bolton et al. 2017),
which uses a modified version of the parallel smoothed particle
hydrodynamics code P-GADGET-3, an updated and extended
version of GADGET-2 (Springel 2005). The models adopt the
cosmological parameters Ωm=0.308, ΩΛ=0.692, h=0.678,
Ωb=0.0482, σ8=0.829, and ns=0.961, consistent with the
CMB constraints of Planck Collaboration et al. (2014). Initial
conditions were obtained using transfer functions generated by
CAMB (Lewis et al. 2000). Because the vast majority of the
absorption systems probed by the Lyα forest at z>4
correspond to overdensities r rD =  10¯ , our analysis will

not be affected by the star formation prescription (Viel et al.
2013b). Therefore, to increase the computational speed, gas
particles with temperature T<105 K and overdensity Δ>103

are converted to collisionless particles (Viel et al. 2004).
The bulk of our simulations use a box size of 10 h−1 cMpc

and 2×5123 gas and dark matter particles, corresponding to a
gas particle mass of 9.97×104 h−1Me. In addition, we use
runs with larger box size and different mass resolution to test
numerical convergence (see Appendix F).
We note that our simulations are not intended to self-

consistently model reionization. Instead, we employ models
with a wide variety of thermal histories so that our ultimate
constraints on the temperature and integrated heating of the
IGM are as general as possible. The gas in our models becomes
optically thin at a redshift zOT, after which it is photoionized
and heated by a uniform UVB, which is a scaled version of the
background from Haardt & Madau (2012). The thermal history
of a given simulation is therefore determined by the choice of
zOT and UVB scaling factor.
The photoheating rates from Haardt & Madau (2012)

( i
HM12) for the different species (i=[H I, He I, He II]) have

been rescaled proportionally by a constant factor ζ using the
relation z= i i

HM12 (see Table 2). The combination of zOT and
ζ will determine both the instantaneous temperature and the
total integrated heating per unit mass at the epoch where the
power spectrum is measured. Models with larger zOT and/or ζ
will tend to have higher values of u0.
A summary of the simulations used in this work is listed in

Table 2. For each model we selected the simulation outputs
between 4.0z5.4 with a redshift step Δz=0.1. At each
redshift, synthetic spectra of the Lyα forest were produced by
choosing 5000 “lines of sight” throughout the simulation box.
In Section 6.2 we describe how these lines of sight were
combined to create realistic mock spectra.

Figure 1. Examples of the evolution of parameters governing the thermal state of the IGM in our simulations. Left panels: evolution as a function of redshift of the
temperature (top) and the cumulative energy per unit mass at the mean density (bottom) for models in which heating begins at the same zOT but the photoheating rates
are changed. Right panels: models with the same photoheating rates and different zOT. While increasing the photoheating rate produces larger values in both the
temperature and u0, models with different zOT converge to the same value of T0 provided that sufficient time has elapsed after the onset of heating. The values of these
quantities at z=5 for all our simulations are also listed in Table 2. The full suite of thermal histories is plotted in Figure 34.
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Following N16, the integrated thermal history in our
simulations is parameterized using u0, the cumulative energy
deposited per unit mass into the gas at the mean density. At
each redshift u0 is defined as

ò
å

r
=

+


u z

n dz

H z z1
, 2

z

z
i i i

0
OT

( )
¯ ( )( )

( )

where r̄ is the mean mass density and ni and òi represent,
respectively, the number density and the photoheating rates for
the species i=[H I, He I, He II]. As shown in N16 (see their
Figure4), this parameter correlates with the density power
spectrum of the cosmic gas in the simulations, with larger u0
corresponding to a smoother distribution of gas for over-
densities Δ<10. These are the overdensities at which the Lyα
forest is sensitive at z>4 (e.g., Becker et al. 2011), suggesting
that, at these redshifts, u0 serves as a useful parameterization
for the prior IGM thermal history. In Section 6.3.3 we will
further consider the redshift range of integration over which u0
optimally correlates with the flux power spectrum.

Examples of the evolution of u0 in our models are presented
in Figure 1, along with the corresponding evolution of the
temperature at the mean density, T0 (for the complete set of
models, see Appendix I). The left panels show how increasing
the photoheating rate in the simulations produces larger values
in both the temperature and u0. The right panels show models
with the same photoheating rate but different zOT. These
converge to the same value of T0 provided that sufficient time
has elapsed after the onset of heating (Δz∼ 1–2; e.g., McQuinn
& Upton Sanderbeck 2016); however, they remain distinct in
terms of u0 values, reflecting differences in the total integrated
thermal history and therefore in the amount of pressure
smoothing.

4. The Lyα Flux Power Spectrum

Both thermal broadening and pressure smoothing tend to
reduce the amount of small-scale structure in the forest.
Figure 2 shows the effect of thermal broadening (top panel) and

pressure smoothing (bottom panel) on simulated Lyα forest
spectra at z=5. While the impacts of T0 and u0 are visually
similar, the scale dependences of these effects make it possible
to break the degeneracy (e.g., N16; Oñorbe et al. 2017).
The top row of Figure 3 demonstrates how the shape of the

1D Lyα flux power spectrum at z=5 varies for models with
different instantaneous temperature (left panel) and integrated
thermal histories (right panel). Similar results were shown in
N16 but are expanded here to include a broader range of
thermal histories. As described in Section 6.3.1, we use post-
processing to vary the T0 for a fixed u0 (top left) or to impose
the same T0 for models with different u0 (top right). We also
demonstrate the impact of varying γ (bottom left) and the
effective optical depth, τeff (bottom right). As noted by N16,
the scale dependences of T0 and u0 differ somewhat. While the
impact of pure thermal broadening increases continuously
toward smaller scales, the effect of changing u0 peaks near
log(k/km−1 s)∼−0.9 to −0.8.
Comparing the two panels of the first row of Figure 3, it is clear

that in order to distinguish models characterized by an early
reionization (large u0) from those with high T0 values, it is
necessary to probe the power spectrum down to log(k/km−1 s)∼
−0.7. Our effort to measure the power spectrum down to these
scales is described in the following section.

5. Data Analysis

In this section we describe our procedure for measuring the flux
power spectrum from the observed spectra. The following
strategies have been tested using synthetic spectra for two
reasons: first, to detect and quantify systematic effects in the
calculation of the power spectrum, and second, to guarantee a fair
comparison between simulated models and the observed data.

5.1. Rolling Mean

We performed the power spectrum measurement on the flux
contrast estimator

d =
-F F

F
, 3F

–
– ( )

Figure 2. Effect of thermal broadening and integrated heating on simulated Lyα forest spectra at z=5. Top panel: effect of thermal broadening on the absorption
features in models characterized by the same integrated heating (u0 = 4.78 eV -mp

1) but post-processed to different instantaneous temperatures. Bottom panel: effect of
pressure smoothing on the Lyα absorption for models with the same temperature (T0 = 7000 K) but different thermal histories.
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where F is the transmission in the Lyα forest and F– is the mean
flux. When computing δF, we need to first divide out the
intrinsic shape of the quasar spectrum, which can impact the
power spectrum at large scales (log(k/km−1 s)−2; e.g., Kim
et al. 2004; Viel et al. 2013a; Iršič et al. 2017a). However,
directly estimating the continuum is difficult at z 4 owing to
the high levels of absorption in the Lyα forest. We therefore
used a rolling mean approach, wherein F̄ is estimated locally
by smoothing the observed spectrum using a boxcar average.
We used a boxcar window of 40 h−1 cMpc, which was chosen
to be short enough to roughly capture relevant features in the
quasar continua over the forest (see Appendix A.1 for details).
Examples of this approach are presented in Figure 4.

5.2. Proximity Regions

Regions near a quasar are subjected to the local influence of
its UV radiation field and are therefore expected to show lower
Lyα absorption with respect to the cosmic mean. To avoid any
proximity effect bias, we excluded these regions from the

analysis. The UV flux of a bright quasar is thought to affect
regions 10 proper Mpc along its line of sight (e.g., Scott et al.
2000; Worseck & Wisotzki 2006). We conservatively masked
30 proper Mpc blueward of the quasar redshift Lyα emission
line. Moreover, to exclude possible blueshifted Lyβ absorption,
we also masked a velocity interval corresponding to 10 proper
Mpc redward of the Lyβ emission line. Excluding the
proximity regions moderately changes the power (by 5%)
only for the highest redshift bin at z=5, although the
correction is always well within the statistical error.

5.3. DLAs

We excluded damped Lyα (DLA) systems from our spectra.
DLAs were identified visually and masked prior to computing
the power spectrum. This step changes the power up to ∼5%–

10%, which is within the statistical uncertainties at all scales.

5.4. Bad Pixels

We masked bad pixels characterized by negative or zero flux
errors. We also masked discrete regions affected by sky

Figure 3. Effects of varying our model parameters on the 1D flux power spectrum at z=5.0. In all panels we plot a fiducial model with T0=7000 K, γ=1.5,
u0=4.78 eV -mp

1, and τeff=1.85 using a black solid line. The four parameters are varied separately as indicated in each panel. Residuals dPk/Pk relative to the
fiducial value are displayed for each scale. For comparison, the 68% errors relative to the observational power spectrum computed in this work at z=5 are also shown
(shaded green region). Models with higher temperature show decreasing power toward smaller scales with the most prominent effect at scales log(k/km−1 s)>−1
(top left). Changes in the integrated thermal history (top right) produce variations in the pressure smoothing experienced by the gas. This effect has a somewhat
different scale dependence than pure thermal broadening. The power spectrum at this redshift is not highly sensitive to variations in γ (bottom left), although
decreasing γ tends to increase the power at log(k/km−1 s)−0.8. Differences in the effective optical depth (i.e., mean flux) create changes in the normalization of the
power spectrum (bottom right).
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emission line residuals, which tend to be noisy. These features
mainly impact smaller scales than the ones we want to compute
(log(k/km−1 s)−0.5), but they may affect the evaluation of
the correct noise power (see Section 5.6.2) and therefore need
to be removed.

5.5. Lyα Sections and Redshift Subsamples

We compute the flux power spectrum on sections of 20
h−1 cMpc (comoving distance). This scale was chosen to be
small enough that we would have enough subsamples (N> 30)
to evaluate the statistical uncertainty in the flux power via
bootstrapping, yet large enough to avoid significant windowing
affects (see Appendix A.2). Each of the Lyα sections has been
examined by eye to avoid sections containing too many masked
pixels. The power spectrum results from the useful sections are
then collected and averaged in redshift bins of Δz=0.4
centered at z=4.2, 4.6, and 5.0.

5.6. Measuring the Power Spectrum

For each of the 20 h−1 cMpc forest regions we calculate
the power spectrum from the flux contrast δF defined in
Equation (3). Our spectra are unevenly sampled because they
are masked, so we use a Lomb–Scargle algorithm (Lomb 1976;
Scargle 1982) to compute the raw power of each region
(Pmasked(k)). In all of our calculations we use k-bins
logarithmically spaced with Δlog k=0.1. To obtain the final
power spectrum values, PF(k), for each section, we first correct
the raw Pmasked(k) for the effect of masking. Second, we

subtract from the corrected Pdata(k) an estimate of the
contribution to the power from noise, PN(k). All these steps
are described in the following sections.

5.6.1. Masking Correction Function

The masking procedure described in Sections 5.3 and 5.4,
and in particular the masking of sky line residuals, impacts the
power spectrum owing to the application of a complex window
function. In order to correct for this, we apply a masking
correction function, Cm(k), to the raw power obtained from
each of the 20 h−1 cMpc Lyα forest sections,

= ´P k P k C k , 4mdata masked( ) ( ) ( ) ( )

where Pdata(k) is the corrected quantity used to infer the final
power and Pmasked(k) is the raw power initially computed from
masked spectra.
We determine the effect of masking for each of the Lyα

forest sections contributing to the analysis using the following
procedure. First, we create hundreds of synthetic spectra with
the same characteristics (i.e., size, noise, redshift) of each of the
real 20 h−1 cMpc sections with and without the same masking
applied. The final correction is then obtained from the average
of the ratio between the power of the unmasked (Psim) and
masked (Psim

mask) simulated spectra,

=C k
P k

P k
. 5m

sim

sim
mask

( ) ( )
( )

( )

Because the impact of masking on the power spectrum in
principle depends on its underlying shape, possible systematics
may arise from choosing a particular simulation run to compute
Cm(k). We use the 20 h−1 cMpc run of Table 2 for the final
correction; therefore, we quantify these possible uncertainties
in Appendix A.5.

Figure 4. Examples of observed 20 h−1 cMpc Lyα forest sections extracted
from our sample. Top panel: Lyα forest at z;4.4 extracted from the spectrum
of J0741+2520 with a C/N per pixel of ∼17. Bottom panel: Lyα forest at
z;4.9 extracted from the spectrum of J0306+1853 with a C/N per pixel of
∼40. The corresponding values of the boxcar rolling mean, measured within a
40 h−1 cMpc window, are also shown (green dashed line).

Figure 5. Demonstration of the subtraction of the noise power from the raw
power spectrum of an observed 20 h−1 cMpc section of Lyα forest. The
original power computed directly from the spectra (black solid line) shows a
flattening toward the smallest scale becoming roughly constant for
log(k/km−1 s)−0.2 when the noise starts to dominate. Assuming white
noise, we fit the noise power with a constant value at the smallest scale (red
dashed line) and then subtract it from the total power spectrum obtaining the
corrected, “noiseless” version (green solid line).
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5.6.2. Noise Subtraction

In principle, the noise power can be directly computed from the
flux error array output by the data reduction pipeline (e.g., Iršič
et al. 2017a; Walther et al. 2018). This approach, however, relies
on the precision of the pipeline; underestimating or overestimating
these uncertainties could significantly impact the final power,
especially at the small scales we are interested in. We therefore
estimate the amount of noise for each forest section directly from
the raw power spectrum of the data. At the smallest scales
(log(k/km−1 s)−0.2) the power is dominated by noise
fluctuations and, assuming that the noise in adjacent wavelength
bins is uncorrelated, can be fitted with a constant value. We then
assume that PN is constant over all scales and subtract it from the
total power obtaining the “noiseless” power spectra. This method
is illustrated in Figure 5 and has been tested on synthetic data after
adding the observational noise arrays to the simulated lines of
sight (see Appendix A.3).

5.6.3. Resolution Correction

In this work we forward-model the synthetic spectra
generated from simulations to match the instrumental resolu-
tion and pixel size of the data. For reference, however, we
include a version of the observed flux power spectrum that has
been corrected for resolution as

=
-

P k
P k P k

W k R d, ,
, 6

R p
F

data N
2 v

( ) ( ) ( )
( )

( )

using the window function adopted in Palanque-Delabrouille
et al. (2015),

= -W k R d kR
kd

kd
, , exp

1

2

sin 2

2
. 7R p

p

p

2v
v
v

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

( )
( )

( )

Assuming our nominal resolution R=2.55 km s−1 (FWHM=
6 km s−1) and pixel size d pv =2.5 km s−1, the correction for
the smallest scale considered in this work (log(k/km−1 s)=
−0.7) is ~W 0.76R

2 .
We note that the actual spectral resolution of the data will

depend on the seeing of the observation and may be different
from the nominal one. A possible error in the power spectrum

due to uncertainties in the spectral resolution, even when
forward-modeling the simulations, must therefore be taken into
account. We estimate an error of 10% in the spectral resolution,
corresponding to an uncertainty in the power of 5% at
log(k/km−1 s)−0.7. This correction is smaller than our
statistical error, so we do not expect that uncertainties in the
resolution will significantly affect the measurements (see
Appendix A.4).

5.7. Metals

The flux power spectrum measured directly from the
observational spectra contains both the power coming from
the Lyα forest and a small contribution from intervening metal
lines. These lines tend to show individual components
significantly narrower than Lyα (b15 km s−1), which will
increase the power on small scales (e.g., Lidz et al. 2010). This
section describes our approach to quantifying and removing the
effect of metals on our final power spectrum measurements.
The high level of Lyα absorption at high redshift makes it

very challenging to directly identify all metal lines in the forest.
We therefore estimate the metal power spectrum directly from
regions of quasar spectra redward of the Lyα emission line,
where only metal absorption systems are present (e.g.,
McDonald et al. 2005; Palanque-Delabrouille et al. 2013).
The metal power measured in this way will not take into
account transitions with rest-frame wavelength shorter than the
Lyα line. Correlation features like the one observed for Si III
(λ1206) in McDonald et al. (2006), however, will tend to affect
the power spectrum on scales larger than the ones considered in
this work (log(k/km−1 s)−2.5).
We measured the metal power spectrum from two samples of

high-resolution quasar spectra. First, we use a subset of the
spectra listed in Table 1 with emission redshift 4.5zem
5.3. Second, we use a sample of spectra of quasars with
emissions redshifts 3.4zem4.1 from Boera et al.
(2014, 2016) (Table 3). The latter sample allows us to measure

Table 3
List of Quasars Used for the Analysis of the Metal Power

Spectrum at z∼4.2

Name zem

J010604−254651 3.36500
J162116−004250 3.70270
J132029−052335 3.70000
J124957−015928 3.63680
J014049−083942 3.71290
J115538+053050 3.47520
J014214+002324 3.37140
J123055−113909 3.52800
J110855+120953 3.67160
J005758−264314 3.65500

Note.For each object we report the name (Column (1))
based on the J2000 coordinates of the quasar and the
emission redshift (Column (2)). All the spectra have been
taken with the UVES spectrograph (see Boera et al. 2014
and Murphy et al. 2019 for details). Figure 6. Metal power spectra measured redward of the Lyα emission line.

The metal contribution at z∼4.2 (blue dashed line) computed from the
quasars with emission redshifts 3.4zem4.1 of Table 3 is compared with
the metal power measured at z∼5.4 (red dashed line) from the quasar
subsample with 4.5zem5.3 of Table 1. The average is given by the black
solid line. For comparison, the metal power spectrum computed from the XQ-
100 data sample at z∼4.2 (Iršič et al. 2017a) is also shown (blue dotted line).
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the metal power spectrum over observed wavelengths similar to
those spanned by the Lyα forest at 4.0z4.4. While
metals redward of Lyα are not a perfect estimate of those that
appear in the forest at higher redshifts, analyzing multiple
samples allows us to check for redshift evolution in the metal
power spectrum.

Figure 6 shows the comparison between our measurements of
the metal power spectrum at z∼4.2 (blue dashed line) and at
z∼5.4 (red dashed line), obtained using the same data analysis
procedure described in the previous sections. The most significant
difference in the metal power between these two redshifts is at
large scales (log(k/km−1 s)−1.5), where the contribution of
metals to the final flux power spectrum measurement is less
relevant. Note that our measurement of the metal power spectrum
at z∼4.2 is also in good agreement with the one computed from
the XQ-100 data sample at the same redshift (Iršič et al. 2017a)
(blue dotted line) even if the latter is slightly noisier.

Given the weak evolution in redshift of the metal power
(already noted in previous works; e.g., Palanque-Delabrouille
et al. 2013), we corrected our final power spectrum measurements
assuming a metal contribution constant with redshift and equal to
the average between our two measured metal power spectra (black
solid line in Figure 6). The effect of the metal correction on the
final flux power spectrum is shown in Appendix A.6.

5.8. The New Power Spectrum Measurements

The main observational results of this work are presented in
Figure 7, where we plot the final Lyα flux power spectrum
measured from our data. The values are tabulated in
Appendix K and reported as a function of scale for the three
redshift bins centered at z=4.2, 4.6, and 5.0. Solid colored

lines and data points represent the power spectrum results
without the resolution correction described in Section 5.6.3,
while the corresponding dashed lines are the measurements
corrected for finite resolution and pixel size. The 1σ errors are
estimated from the bootstrap covariance matrix of the data,
corrected and regularized following the procedure described in
Section 5.9.
Our measurements at scales log(k/km−1 s)−1 are the first

ones made at these redshifts (see Walther et al. 2018 for an
analysis at z< 4). At larger scales, however, we can compare
with the results derived from high-resolution spectra by Viel
et al. (2013a) and medium-resolution data by Iršič et al.
(2017a). These comparisons are presented in Appendices C
and D.

5.9. Covariance Matrix

As demonstrated in previous works (e.g., Viel et al. 2013a;
Iršič et al. 2017a), the covariance matrix obtained via
bootstrapping of a limited data set is necessarily noisy. We
therefore regularized the observed covariance matrix using the
correlation coefficients estimated from the simulated spectra
following an approach similar to the one used by Lidz et al.
(2006). We first used the simulations to verify the ability of the
bootstrapped errors to reproduce the real statistical variance.
For this test, using the 40 h−1 cMpc box simulation S40_1z15,
we created hundreds of samples of simulated lines of sight that
closely reproduce the characteristics of the observational data
(see Section 6.2 for details), and we compare the variance
computed directly from these realizations with the uncertainty
obtained from the bootstrapping of only one synthetic sample
randomly chosen. We verify that, as already shown by previous

Figure 7. Our measurements of the Lyα flux power spectrum for the Δz=0.4 bins centered at z=4.2 (blue), 4.6 (green), and 5.0 (red). Higher effective optical
depths determine an increase in the power toward higher redshifts. Values are obtained following the steps presented in Section 5 with (dashed lines) and without
(solid line and data points) instrumental resolution correction. Vertical error bars are 1σ errors taken from the corrected and regularized covariance matrix
(Section 5.9). Note that the larger number of spectra contributing to the z=4.6 bin (roughly double the number of spectra of the other two bins) are reflected in the
significantly smaller errors.
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studies (e.g., Kim et al. 2004; Iršič et al. 2013; Palanque-
Delabrouille et al. 2013), the bootstrapping technique under-
estimates the cosmic variance by up to ∼25%, with the
discrepancy level increasing toward smaller scales. We there-
fore increased the observational bootstrapped error at all scales
by ∼15%–25%, where the correction has been computed
separately for each redshift.

The elements of the final covariance matrix, Cij, are then
computed as

=C R C C , 8ij ij ii jj
data data ( )

with

=R
C

C C
, 9ij

ij

ii jj

sim

sim sim
( )

where Cii
data are the diagonal elements of the bootstrapped

observational covariance matrix, corrected as previously
described, and Csim are the elements of the simulated
covariance matrix obtained from the multiple realizations of
synthetic lines of sight.

For comparison, Figure 8 shows the simulated and
observational covariance matrices for the redshift bin at

z=5. As expected, the bootstrapped matrix is noisier, but
both the matrices show a similar structure, with correlations
increasing toward the smallest scales, log(k/km−1 s)−1.5.
This similarity gives us confidence that the simulation model
used for the covariance matrix regularization is reasonably
capturing the data properties. We note that the off-diagonal
correlation structure will depend somewhat on the precise
shape of the power spectrum and therefore on the thermal
parameters characterizing the model. In Appendix B we verify
that the particular choice of the simulation S40_1z15 for this
analysis is not significantly affecting our final constraints.

6. Simulation Analysis

In this section we describe how we calibrate and analyze
synthetic spectra to create power spectrum models that will be
used to fit the observational measurements in Section 7.

6.1. Constructing Mock Lines of Sight

To ensure the correct comparison between simulations and
observational data, we need to produce mock lines of sight with
the same resolution and redshift coverage as our observed
sample. We first resample and smooth the synthetic Lyα
spectra produced from the simulations in Table 2 to match the
spectral resolution and the pixel size of the real spectra. We
then progressively merge multiple synthetic sections randomly
selected from the Δz=0.1 simulation snapshot closest to the
Lyα forest redshift that we want to cover. We choose an
arbitrary starting point along each section, taking advantage of
the periodicity of the simulation box. We take into account the
mild redshift evolution of the mean flux along the line of sight
by rescaling the optical depths such that the global effective
Lyα optical depth (t = - Flneff ( ¯ )) in the simulation box
follows the relation

t =
+ z

1.56
1

5.75
. 10eff

4.0
⎜ ⎟⎛
⎝

⎞
⎠ ( )

See Appendix G for details. We note that while we use
Equation (10) to calibrate the optical depth evolution within
each simulated line of sight, the overall Lyα mean flux of each
redshift bin will be treated as a free parameter in our models.
When required for testing purposes (see Appendix A), the

spectral noise at the same level of the corresponding
observational line of sight is added to the synthetic spectra,
as well as the same pixel masking. Because the power spectrum
computed from the real data is corrected for these systematics,
the final power spectrum models used for the MCMC fit are
computed without noise or pixel masking.

6.2. Modeling the Power Spectrum

To retrieve the final flux power spectrum for each of the
models in Table 2, we average the power computed from
hundreds of mock data samples. Each measurement has been
obtained following a similar procedure to the one described in
Section 5, with a few necessary expedients:

1. Lyα sections: As for the real data, we compute the flux
contrast estimator (Equation (3)) using a 40 h−1 cMpc
boxcar rolling mean over the reconstructed line of sight.
After the rolling mean is applied, we redivide the line
of sight into the original 10 h−1 cMpc sections and use

Figure 8. Example of the Lyα flux power spectrum covariance matrix
computed by directly bootstrapping the data (bottom panel) and from many
realizations of our 40 h−1 cMpc simulation model (top panel) for the redshift
bin at z=5. The bootstrapped matrix is visibly noisier than the simulated one
owing to the limited sample size; however, the correlation structures are similar
between the two panels, with stronger correlations toward smaller scales.
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these to compute the power spectra. We verified that
discontinuities in the flux on the border between
individual sections do not substantially affect the roll-
ing mean.

2. Mass resolution and box size corrections: Our 10
h−1 cMpc models with 2×5123 gas and dark matter
particles represent a necessary compromise in terms of
computational resources (Bolton & Becker 2009) and
need to be corrected for small errors due to box size and
resolution convergence. Therefore, we rescaled our
models by factors obtained from reference simulations
with larger box size (40 h−1 cMpc box) and higher mass
resolution (2× 7683 particles) in the convergence tests
presented in Appendix F.

6.3. Varying Model Parameters

To be able to fit the power spectrum measurement of
Section 5.8, we need a grid of models that cover the parameter
space that we want to explore. In each redshift bin we consider
four parameters to describe the power spectrum: the thermal
parameters T0, u0, and γ and the effective Lyα optical depth,
τeff. While the large set of simulations listed in Table 2 spans a
wide range of thermal histories, by themselves they are not
sufficient to evaluate the power spectrum in all the possible
combinations of thermal parameters. We therefore use the
interpolation scheme described below.

6.3.1. Varying T0 and g

In order to separate the impact of thermal broadening and
Jeans smoothing in the power spectrum models, we applied a
simple post-processing procedure to the simulated spectra. This
is achieved by translating and rotating the entire T–ρ plane of
the simulations to match the new T0 and γ values. We
recompute the optical depths in each of our models over an
extended range of power-law T–ρ relationships, with
T0=3000–15,000 K in steps of 1000 K and γ=0.7–1.7 in
steps of 0.1.

We note that at z4 the Lyα forest is mainly sensitive to gas
close to the mean density (e.g., Becker et al. 2011). For this
reason we do not expect to place strong constraints on γ. We
nevertheless treat γ as a free parameter in our fitting code. The
impacts of T0 and γ on the flux power spectrum are
demonstrated in Figure 3. Note that scales log(k/km−1 s)
−0.8 seem to be insensitive to variations in γ, while considerable
changes in this parameter create minor shifts in the power for
scales log(k/km−1 s)−0.8.

6.3.2. Varying τeff

We rescaled the optical depths in our models to span a wide
range of τeff values. At each redshift the reference value has
been obtained from Equation (10), while the entire range of
optical depths covered by our models is τeff=0.6–2.2 in steps
of 0.1. Different mean fluxes within each redshift bin have been
obtained by multiplying Equation (10) by single, fine-tuned
scalars when calibrating the simulated lines of sight. The
impact of varying τeff on the power spectrum is shown in the
bottom right panel of Figure 3.

6.3.3. Varying u0

By post-processing our simulations to a common set of
thermal parameters, we can isolate how the power spectrum
depends on the integrated heating. N16 demonstrated that the
flux power spectrum at z=5.0 (averaged over scales
−1.5log(k/km−1 s)−0.8) correlates with u0. They
further argued that the correlation is strongest when u0 is
integrated between z=12 and 5, reflecting the timescales over
which the Jeans smoothing is sensitive to heat injection. Here
we reevaluate this redshift dependence using our more
extended suite of models. For each of the redshift bins at
which we compute the power spectrum and each of the scales
sensitive to u0 (−1.4log(k/km−1 s)−0.8) we empirically
determine the “characteristic” redshift range of integration
(Dzu0¯ ) for which the power is closest to a one-to-one function
of u0. The method is demonstrated in Figure 9. We first post-
process all of the 10 h−1 cMpc simulations of Table 2 to the

Figure 9. Examples of the relationship between the power spectrum at z=5.0 computed for log(k/km−1 s)=−1.1 and u0 obtained integrating over the characteristic
redshift rangeD = -z 13.6 5.8u0¯ (left panel) and integrating over a nonoptimal redshift rangeD = -z 19 5.0u0 (right panel). Different colors correspond to different
simulations post-processed to the same values of T0=10,000 K, γ=1.5, and τeff=1.85.
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same values of T0, γ, and τeff. We then fit a power law to kPk

versus u0, where u0 is integrated using Equation (2) over a
redshift interval Dzu0. The preferred interval, Dzu0¯ , is the one
that minimizes the χ2 for this fit.

The characteristic Dzu0¯ computed for the scales −1.4
log(k/km−1 s)−0.8 are reported in Figure 10 for the
different redshift bins. As expected, the sensitivity of the
power spectrum to the previous thermal history varies slightly
with the redshift at which the power spectrum is measured. The
Lyα structures observed at progressively lower redshifts seem
to slowly lose sensitivity to earlier epochs; while the power
spectrum measured at z=5.0 still maintains sensitivity up to
z13, at z=4.2 the forest traces the thermal history of the
gas mainly for z12. Interestingly, we find that the power
spectrum at z=5.0 is less sensitive to heating happening at
z6, even though the power spectra at z=4.6 and 4.2 retain
sensitivity all the way down to their respective redshifts. We
generally expect that the gas density distribution will exhibit
some delay in responding to changes in gas pressure. Further
investigation revealed that a delay did appear for all three
redshifts when peculiar velocities were turned off. The delay
increased with the redshift at which the power spectrum was
measured, with a delay at z=5.0 that was larger than the one
found with peculiar velocities turned on. This suggests that
peculiar velocities may play a role by decreasing the delay
between heat injection and a change in the power spectrum.
Presumably this occurs because, as the gas is heated, redshift
distortions created by accelerating the gas precede changes in
the density field. This effect may partly explain the lack of a
gap at z=4.2 and 4.6. For now we adopt these relations

as empirical and leave more detailed physical insights to
future work.
Because the Dzu0¯ values are generally constant among

different scales within the same redshift bin, we adopt average
values (black dashed vertical lines in Figure 10) as integration
bounds in Equation (2). The fiducial redshift range over which
u0 is integrated is given in Table 4. We note that our u0–kPk

relationship, while remarkably tight over scales sensitive to u0,
does exhibit scatter. In the final MCMC analysis, therefore, the
amount of scatter about the u0–kPk fit at each scale has been
included as systematic uncertainty. We note that while we
chose our fiducial redshift ranges to maximize the sensitivity of
the power spectrum to u0, in principle we could constrain this
parameter integrated within any reasonable redshift range if
properly accounting for the systematic uncertainty in the u0
versus kPk fit.

7. Thermal State Constraints

To obtain constraints on the IGM temperature and integrated
thermal history from the observational power spectrum
measurements obtained in Section 5, we adopted a Bayesian
MCMC approach to measure T0, u0, γ, and τeff for each of the
three redshift bins independently. In this section we present the
method and the main findings of this analysis.

7.1. The MCMC Analysis

We constructed a grid of power spectrum models following
the post-processing approach given above, where for a given
choice of T0, γ, and τeff the dependence of the power spectrum
on u0 is derived from the fits described in Section 6.3.3. We
then perform a multilinear interpolation among the grid points
of the four-dimensional parameter space. We implemented the
interpolation scheme using a Bayesian MCMC approach. At
each redshift, applying flat priors for all variables, we obtain
the set of parameters that maximize a Gaussian multivariate
likelihood function:

pD D= - - -- C C
N

ln
1

2

1

2
ln det

2
ln 2 , 11T 1 ( ) ( )

where D is the residual vector between the power spectrum
values of the data and the model and C is the N×N data
covariance matrix (where N is the number of data points).
We tested the interpolation scheme by removing one of the

models used for the interpolation and using it to generate mock
data (see Appendix H). We found that the parameters u0 and T0
are recovered accurately. Small biases (within the 68%
uncertainties) appear in the recovered values of γ and τeff
owing to their intrinsic degeneracy at large scales and the
poor sensitivity of the high-redshift power spectrum to γ.

Table 4
Fiducial Redshift Ranges Used to Compute the u0

Parameters for Fitting the Flux Power Spectrum at Different
Redshifts

z Dz u
fid

0

4.2 4.2–12
4.6 4.6–13
5.0 6.0–13

Note.Redshift bins are indicated in Column (1), with the
corresponding fiducial u0 redshift intervals in Column (2).

Figure 10. Characteristic Dzu0¯ computed for −1.4log(k/km−1 s)−0.8.
For each log(k/km−1 s) on the y-axis, the colored horizontal line covers the
redshift interval that produces the best fit between the power spectrum and the
integrated heating. Each panel shows the results for a different redshift bin.
While there is a mild evolution with redshift, the Dzu0¯ values are generally
constant within the same redshift bin. We use the average Dzu0¯ indicated by
the black dashed vertical lines to compute the fiducial u0 parameters at each
redshift.
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Fortunately, however, the relatively weak constraints on these
parameters do not bias our results for T0 and u0.

To test the reliability of the best-fitting values, for each redshift
we ran three independent chains of 2×105 iterations (half of
which are discarded as burn-in) from different randomly chosen
initial parameters. We verify that all the chains were converged by
comparing the between-chain and within-chain variances for each
parameter using the Gelman–Rubin test.

7.2. Results

Figures 11–13 display the posterior likelihood distributions
for the parameters T0, u0, γ, and τeff at redshifts 4.2, 4.6, and
5.0, respectively. While the inclusion of small scales
(log(k/km−1 s)−1.0) in the power spectrum allows rela-
tively tight constraints on both T0 and u0, some degeneracy
between these two variables is still noticeable at all redshifts.
This is expected since both of these parameters act on
intermediate scales in a similar way. Degeneracies between γ
and τeff increase with redshift, with slightly weaker constraints
on τeff obtained toward higher redshifts. As expected, γ shows
broad bounds at all redshift (with the 1σ contours covering
almost the entire parameter space), reaffirming that the Lyα
forest at high redshifts mainly probes gas around the mean
density and is not highly sensitive to the slope of the T–ρ
relation. Figures 11–13 demonstrate that our measurements

of u0 and T0 are not highly affected by degeneracies with γ
and τeff.
The final results of the MCMC analysis are summarized in

Table 5. The temperatures are constrained with ∼15%
uncertainties at all redshifts, while the error on u0 varies from
∼18% for the z=4.2 and z=4.6 redshift bins up to ∼30% at
the highest redshift, in good agreement with the forecast
presented by N16. Our results for τeff are highly consistent with
the measurements of Becker et al. (2013) at z=4.2. We are
somewhat higher at z=4.6, but altogether our constraints
appear to bridge the evolution of τeff at z4 measured by
Becker et al. (2013) and at z5 from Bosman et al. (2018)
(see Appendix G).
In Figure 14 we show the best power spectrum models

compared with the measurement. Visually there is good
agreement with the data at all redshifts.
The final temperature constraints at the IGM mean density

are presented in Figure 15. Our new results (green points) are
compared with the previous measurements of Becker et al.
(2011) (gray triangles) at z>3.5 obtained with the curvature
method. We have added the systematic uncertainty for Jeans
smoothing estimated by Becker et al. to those data. See also
Appendix E for a more comprehensive comparison of recent
temperature measurements at the redshifts covered by our
analysis. Our temperature measurements show good agree-
ments with this previous work in the overlapping redshift bins.

Figure 11. Probability distributions for the parameters T0, u0, γ, and τeff obtained from the MCMC analysis of the power spectrum at z=4.2. Contours show the 68%
and 95% marginalized 2D probability distributions, while the black histograms display the 1D marginalized posterior distributions for each parameter.
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This accord is significant because we analyzed a largely
independent set of quasar spectra with a different method and
using a new suite of hydrodynamical simulations. Most
significantly, we now explicitly fit for u0, removing the
systematic uncertainty in T0 related to Jeans smoothing.
Overall our T0 values are consistent with little evolution over
4.2z5.0. Given the known trend of increasing tempera-
tures at z4 (e.g., Becker et al. 2011; Boera et al. 2014;
Walther et al. 2019), our measurement at z=4.2 may include a
contribution from the initial phase of IGM reheating due to the
He II reionization (e.g., Worseck et al. 2011; Syphers &
Shull 2014). We consider this possibility in the final part of our
analysis, when we use the new thermal constraints to evaluate
hydrogen reionization scenarios.

Finally, in Figure 16 we present our first constraints on the
integrated thermal history of the IGM. Our u0 measurements
are plotted at the minimum redshift of the fiducial ranges given
in Table 5. As expected, u0 increases from z=6 to z=4.2,
reflecting ongoing heat injection after reionization.

8. Reionization Constraints

Our observational constraints on T0 and u0 can, in principle,
be used to test any reionization model for which a thermal
history can be calculated. While we leave for future work the
analysis of extended and more realistic reionization scenarios,

in this section we demonstrate the potential of this approach
using semianalytical models of instantaneous reionization.

8.1. Modeling Instantaneous Reionization

We model the thermal history of instantaneous hydrogen
reionization using a semianalytical approach similar to the one
adopted in Upton Sanderbeck et al. (2016). To obtain T0 as a
function of redshift, we solve the equation describing the
temperature evolution of a Lagrangian fluid element at the
cosmic mean density, i.e., with Δ=1 (e.g., Miralda-Escudé &
Rees 1994; Hui & Gnedin 1997; McQuinn & Upton
Sanderbeck 2016),

= - +
D

D
+

dT

dt
HT

T d

dt k n

dQ

dt
2

2

3

2

3
, 12

B tot
( )

where H is the Hubble parameter and ntot is the total number
density of particles (electrons and ions). Equation (12) is valid
in the approximation that the number of particles remains fixed,
describing well the post-reionization gas. The first term on the
right-hand side of Equation (12) takes into account the cooling
due to adiabatic expansion, while the second term gives the
adiabatic heating and cooling due to structure formation. The
thermal history at the mean density has been shown to depend
weakly on this second term (McQuinn & Upton Sanderbeck
2016); we will therefore ignore it in our calculation. The

Figure 12. Same as Figure 11, but for the power spectrum at z=4.6.
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differences among the models will depend instead on the third
term, which encodes photoheating (the only heating source
considered in these calculations) and radiative cooling
processes. We can expand this term as

å åå= + +
dQ

dt

dQ

dt

dQ

dt
R n n , 13

X

X

i X
i X e X

photo, Compton
, ( )

where dQ dtXphoto, / is the photoheating rate of ion X,
dQ dtCompton is the Compton cooling rate, and Ri,X is the
cooling rate coefficient for the ion X and cooling mechanism i.
Because we are modeling the temperature of the gas at the end
of hydrogen reionization, in Equation (13) we will consider
only the H I (dominant) and He I photoheating. As for the
cooling term, we include Compton and H II recombination in
our calculations. As discussed in McQuinn & Upton
Sanderbeck (2016), these represent the relevant cooling
processes that shape the temperature evolution. We compute
these cooling terms using the rate coefficients provided by Hui
& Gnedin (1997). The optically thin photoheating after
reionization is modeled as (e.g., Upton Sanderbeck et al. 2016)

n
g a

a»
- +

dQ

dt

h
n n

1
, 14

X X

X bk
A X X e

photo,
, ( )˜

where νX is the frequency associated with the ionization
potential of species X, and γX is the corresponding approximate

power-law index of the photoionization cross section, for
which we assume γX=2.8 for H I and γX=1.7 for He I.
Equation (14) is valid in the approximation of photoionization
equilibrium with an ionizing background that has a power-law
specific intensity of the form nµn

a-J bk. In detail, the
photoheating rate will also depend on αA,X, the case A
recombination coefficient associated with the transition from
X I→X for species Xä[H I, He I]; on the number density of
the species ÎX̃ [H, He]; and on the electron number density ne.
To compute the total energy deposited into the gas by

photoheating, u0, we just need to consider the third term of
Equation (12) (and the first term of Equation (13)). The

Figure 13. Same as Figure 11, but for the power spectrum at z=5.0.

Table 5
Best-fitting Values and Marginalized 68% Confidence Intervals for the Fits to

Our Power Spectrum Measurements

z T0/10
3 (K) u0(eV -mp

1) γ τeff

4.2 -
+8.13 0.97

1.34
-
+7.29 1.35

0.98
-
+1.21 0.28

0.23
-
+1.02 0.04

0.04

4.6 -
+7.31 0.88

1.35
-
+7.10 1.45

0.83
-
+1.29 0.26

0.19
-
+1.41 0.09

0.08

5.0 -
+7.37 1.39

1.67
-
+4.57 1.16

1.37
-
+1.33 0.27

0.18
-
+1.69 0.11

0.10

Note.The power spectrum redshift (Column (1)) is reported along with the
best-fitting values of T0 (Column (2)), u0 (Column (3)), γ (Column (4)), and τeff
(Column (5)).
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equation to solve for u0 will then be

å= +
dT

dt k n

dQ

dt

2

3
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tot

photo, ( )

Because the specific internal energy can be expressed as
=u k TB m

3

2

1 , Equation (15) can be solved as

år
=

du

dt
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dt

1
, 16

X

X0 photo,

¯
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where r̄ is the mean mass density.

8.2. Instantaneous Reionization Parameters

We parameterize our models using three numbers: the redshift
of instantaneous reionization, zrei, the temperature reached by the
IGM during hydrogen reionization, Trei, and the spectral index of

the post-reionization ionizing background, αbk. Figure 17 presents
the effects on the evolution of T0 (top row) and u0 (bottom row) of
these three parameters. The first column shows models with the
same zrei and αbk but different reionization temperatures. Radiative
transfer calculations suggest that temperatures during reionization
should reach 17,000 KTrei25,000 K (e.g., Miralda-Escudé
& Rees 1994; D’Aloisio et al. 2018); however, we explored Trei
down to 10,000 K and up to 30,000 K, where the upper range is
similar to the hottest scenario of short and late reionization
considered in D’Aloisio et al. (2018). The second column in
Figure 17 demonstrates how changing the timing of reionization
influences the histories of T0 and u0. We tested models spanning a
range of redshifts from zrei=5.5 up to zrei=12. Finally, the third
column shows the effect of changing the spectral index of the
post-reionization ionizing background. The value of αbk can be
connected to the intrinsic spectral index of the sources, αs, via
the expression αbk≈αs−3(β− 1), where β is the logarithmic
slope of the column density distribution of intergalactic hydrogen
absorbers (Upton Sanderbeck et al. 2016), which is valid at z3
when the physical mean free path of 1 ryd photons λMFP=
cH−1. The value of β may vary, but for this analysis we adopt
β=1.3 from Songaila & Cowie (2010).
Here we focus on two cases: reionization driven by star-

forming galaxies with a soft αbk=1.5 (αs∼ 2.4, within the
commonly adopted range between 1 and 3; e.g., Bolton &
Haehnelt 2007; Kuhlen & Faucher-Giguère 2012), and models
of quasar-driven reionization with αbk=0.5 (corresponding to
αs∼ 1.4; e.g., Telfer et al. 2002; Shull et al. 2012). We note
that radiative transfer calculations have shown that the
temperature increase from the passage of an ionization front
may not depend strongly on the spectrum of the ionizing
sources (D’Aloisio et al. 2018). We therefore constrain Trei
independently from αbk.

8.3. Method

To be conservative, the constraints on instantaneous
reionization models presented in this paper will be obtained

Figure 15. Temperature at the mean density of the IGM obtained in this work
(green points) and from the curvature measurement of Becker et al. (2011)
(gray triangles) at z3.5. The Becker et al. T0 values have been inferred
assuming γ∼1.5. Vertical error bars are 68% confidence intervals for this
work. For Becker et al. the small error bars are the 68% statistical uncertainties,
while the extensions in lighter gray include the Jeans smoothing uncertainty
estimated by those authors.

Figure 14. Best-fitting models for our high-resolution power spectrum
measurements. The best-fit models at z=5.0 (red solid line), z=4.6 (green
solid line), and z=4.2 (blue solid line) are superimposed on the corresponding
observational measurement (color-coded data points and dotted lines). The
corresponding best-fitting parameters are also reported.

Figure 16. Our constraints on the integrated heat input into the IGM, computed
for the fiducial redshift range indicated below each point. Error bars are
marginalized 68% confidence intervals. Note that, for each of the observational
power spectra, the fiducial redshift range used to compute u0 has been chosen
to maximize the sensitivity of the power spectrum to this parameter and
therefore minimize the measurement’s errors (see Section 6.3.3 for details).
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using the thermal parameters in the lowest redshift bin (z= 4.2)
only as upper limits because they may be affected by the
extra heating due to the He II reionization. For each combina-
tion of parameters (αbk, zrei, Trei) we obtain three likelihood
values corresponding to the redshifts of the observational
constraints: < <= =L T u,z z

model 0
4.2

0
4.2[ ], = =L T u,z z

model 0
4.6

0
4.6[ ],

and = =L T u,z z
model 0

5.0
0

6.0[ ]. These probabilities describe how
well a model can simultaneously fit the observed values of T0
and u0 at each redshift. A given Lmodel is obtained by
associating the model’s T0 and u0 values with the probability
derived from the corresponding full posterior distribution in
Figures 11, 12, or 13 (middle panels).

The final probability of each model is computed by
multiplying the independent likelihood values obtained at each
redshift:
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8.4. Results

Before presenting the final results, we stress that, unlike
previous attempts to constrain reionization using the instanta-
neous temperature alone (e.g., Theuns et al. 2002; Raskutti
et al. 2012), the power of our approach relies on the
simultaneous use of measurements of both T0 and u0.
Figure 18 demonstrates how these measurements separately
constrain the likelihood contours for our galaxy-driven
reionization models. In the top panel the 68% and 95%
probability contours are shown for the temperature constraints
only, while in the middle panel they are given for the u0
constraints only. The models that better fit the T0 and u0 data
cover two different but intersecting regions in the Trei versus zrei
parameter space. Applying both constraints simultaneously
therefore reduces the allowed parameter space considerably
(bottom panel of Figure 18).
Figure 19 shows the final 68% and 95% 2D probability

contours for models of instantaneous reionization driven by
softer (αbk= 1.5; green contours) and harder sources
(αbk= 0.5; blue contours). For softer sources the favored

Figure 17. Evolution of the temperature of the IGM (top row) and the total energy injected per unit mass (bottom row) at the mean density, for toy models of
instantaneous hydrogen reionization. A fiducial model with Trei=15,000 K, zrei=9, and αbk=1.5 is plotted in orange in each panel. The left column shows the
effect of varying the reionization temperature. The middle column shows how the evolution of T0 and u0 is influenced by the redshift of instantaneous reionization.
The right column varies the spectral index of the post-reionization ionizing background. In all panels, the green points with 68% error bars are the observational
constraints obtained in this work. For comparison, in the right column we also report the values of temperature and heating extracted from the empirically calibrated
UVB model of Puchwein et al. 2019 (cyan stars).
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models are the ones with zrei∼8 and reionization temperature
of 20,000 KTrei25,000 K. These temperatures are con-
sistent with the values predicted by radiative transfer models
(e.g., Miralda-Escudé & Rees 1994; McQuinn 2012; D’Aloisio
et al. 2018). For harder sources the thermal data prefer earlier

reionizations and lower temperatures (Trei20,000 K). These
results are driven by the fact that for harder post-reionization
ionizing backgrounds the IGM temperature needs more time to
cool in order to match the relatively low values observed at
z5. We note that even lower Trei would be needed to fit the
observations if we included the contribution of He II photo-
heating, which has been conservatively excluded. Radiative
transfer calculations may disfavor Trei17,000 K, as this
would imply reionization front speeds unexpectedly low even
for the early stages of reionization (D’Aloisio et al. 2018).
Some of the parameter space in Figure 19 preferred by harder
sources may therefore be disfavored on physical grounds.
In Figure 17, we also compare our constraints to the

empirically calibrated UVB model recently presented by
Puchwein et al. (2019). Their predictions for the instantaneous
temperature are larger than our measurements and are
inconsistent with our new constraints at around the 2σ level.
Furthermore, the cumulative energy input into the IGM at mean
density also exceeds our constraint at z=6 and is again
inconsistent at around 2σ. This suggests that there is slightly
too much IGM heating at z>6 in the fiducial Puchwein et al.
(2019) model, under the assumption of a ΛCDM cosmology.
This difference will be exacerbated further for models where
AGN provide a substantial contribution to the photon budget
for reionization.
Finally, we compare our results to constraints on the redshift

of instantaneous reionization derived from the most recent
Planck measurements of the Thompson scattering optical depth
(Planck Collaboration et al. 2018). We marginalized over Trei
and αbk (where αbk was allowed to vary from 0.5 to 1.5) to
obtain the 1D probability distribution on zrei from the IGM
thermal history. Figure 20 compares our marginalized con-
straints on zrei (green solid line) to those derived for an
instantaneous reionization from the Planck baseline optical
depth constraint τe=0.0544±0.0073 (based on Planck TT,
TE, EE+lowE+lensing; Planck Collaboration et al. 2018) (red
dotted–dashed line). The two distributions are broadly
consistent and have comparable constraining power, with

-
+z 8.5rei 0.8

1.1 from the thermal history and -
+z 7.7rei 0.7

0.7 from
the Planck results. The combined probability distribution (blue
dashed line) gives -

+z 8.1rei 0.5
0.5 . While we emphasize that the

instantaneous reionization adopted in this section is simplistic,
the proof of concept presented here demonstrates the potential
of our observational constraints to inform reionization
scenarios.

9. Conclusions

In this work we have presented the first simultaneous
constraints on the instantaneous temperature and integrated
thermal history of the IGM at z>4 and demonstrated how
these results can be used to test different scenarios of hydrogen
reionization. We have utilized a sample of 15 Keck/HIRES
and VLT/UVES high-resolution and high-C/N spectra to
obtain new measurements of the Lyα forest flux power
spectrum over redshifts 4.0z5.2, for the first time
pushing the measurement down to the smallest scales currently
accessible to high-resolution quasar spectra at these redshifts
(log(k/km−1 s)�−0.7). We fit the new flux power spectra to
obtain robust constraints on the instantaneous IGM temper-
ature, T0, and integrated energy input per unit mass, u0,
marginalizing over the slope of the T–ρ relation and the
effective optical depth, and assuming a ΛCDM cosmology.

Figure 18. Constraints on instantaneous reionization parameters from our T0
and u0 measurements. The three panels show the 68% and 95% probability
contours in the Trei vs. zrei parameter space for αbk=1.5, obtained when
considering only the temperature results (top panel), only the u0 measurements
(middle panel), and both together (bottom panel).
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In agreement with previous results from the curvature
method (Becker et al. 2011), we find temperatures of
T0∼7000–8000 K and no strong temperature evolution over
4.2z5.0. Our first constraints on u0 show a significant
increase from u0∼4.5 eV -mP

1 at z>6 to 7.1 eV -mP
1 at

z>4.2–4.6. These results are consistent with a heating from
reionization at z>6 and residual photoionization heating
over z∼6–4.

Our constraints on T0 and u0 can be used to test any
reionization scenario for which the temperature and the energy

injection into the IGM can be calculated. As a proof of concept
we analyzed simplistic, semianalytical models of instantaneous
reionization. These toy models depend on three parameters: the
IGM temperature reached during reionization (Trei), the redshift
of reionization (zrei), and the spectral index of the post-
reionization UVB (αbk), which is related to the sources driving
the reionization process. We find that our measurements prefer
instantaneous reionization redshifts near zrei∼8 with
Trei∼20,000 K for a relatively soft UVB dominated by
ionizing photons from star-forming galaxies. Our fully

Figure 20. 1D probability distribution for zrei obtained in this work after marginalizing over Trei and αbk (green solid line) and from the Thompson optical depth
constraints of Planck Collaboration et al. (2018) (red dot-dashed line), assuming an instantaneous reionization in both cases. The combined probability distribution
distribution is plotted as a blue dashed line.

Figure 19. Constraints on instantaneous reionization models for two choices of the post-reionization ionizing background spectrum. The 2D 68% and 95% probability
contours in the Trei vs. zrei parameter space are reported for softer (αbk = 1.5; green contours) and harder ionizing (αbk = 0.5; blue contours) backgrounds.
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marginalized constraints on the reionization redshift,
-
+z 8.5rei 0.8

1.1 , are moreover comparable to those from recent
Planck results.

While tests of more realistic scenarios of reionization are left
for future work, the proof of concept presented here
demonstrates the potential of the IGM thermal history at high
redshift to impose tight constraints on the timing—and possibly
the sources—of reionization.
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Appendix A
Systematic Effects

In this appendix we review some of the steps of our analysis
to check and quantify possible systematic uncertainties arising
from the specific strategies adopted.

A.1. Rolling Mean

As described in Section 5.1, we computed the flux contrast
δF of Equation (3) using a rolling mean along the entire Lyα
forest region. The application of this technique on both
simulated and observational lines of sight guarantees a fair
comparison between models and the real measurement when
the continuum level is unknown, but it may introduce possible
bias when comparing our power spectrum with previous works
in which the power was computed from continuum-normalized
spectra. Using the simulations, we tested different averaging
functions and window sizes in order to minimize the impact of
the rolling mean on the power spectrum at the relevant redshifts
and to verify the ability of the rolling mean to capture
continuum fluctuations. As demonstrated below, we found that
a 40 h−1 cMpc boxcar rolling mean is able to recover the power
at all relevant scales even in the presence of continuum
fluctuations.

Figure 21 shows, for our three redshift bins, the comparison
between the power spectrum computed from simulated data
sets using the rolling mean technique (green dashed line) and

using a fixed mean flux (black solid line). Both the synthetic
samples of lines of sight used in this test have been created
following the procedure described in Section 6. For the rolling
mean model, we first imposed on each of the lines of sight a
random continuum selected from the real continua fitted for
the XQ-100 survey (López et al. 2016). We then run the
40 h−1 cMpc boxcar rolling mean directly on the total Lyα +
continuum flux. Differences between the two power spectra are
shown in the bottom panel of each plot and compared with the
statistical error characterizing our observational sample (green
shaded region; see Section 5.9). We note that, at all redshifts,
the discrepancies between the two models always lie well
within the statistical error, with systematic uncertainties σroll
typically 0.20σstat. We therefore do not expect our results to
be sensitive to this averaging choice.

A.2. Windowing Effects

As explained in Section 5.5, we compute the observational
power spectrum in 20 h−1 cMpc sections of Lyα forest.
Dividing the spectra into many small regions may introduce
artificial excess power at intermediate and small scales owing
to a windowing effect. This effect does not not appear in the
simulations because of their periodicity.
In Figure 22 we present the effect on the flux power

spectrum of dividing the spectra into smaller sections. At each
redshift bin, the power computed from the largest 40 h−1 cMpc
simulation box (baseline; solid black line) is compared with the
power computed from the same simulation but dividing each of
the native synthetic spectra into sections of 10 h−1 cMpc (blue
dot-dashed line) and 20 h−1 cMpc (green dashed line). Changes
in the power are reported as fractions of the baseline power
spectrum values in the bottom panel of each plot. While cutting
the spectra into 10 h−1 cMpc sections introduces an excess of
power at the small scales (log(k/km−1 s)−1.1) of ∼20%–

25%, the windowing effect for the 20 h−1 cMpc sections is less
significant, with variations in the power 8% at all scales. We
therefore opted for the latter section size in our analysis.

A.3. Noise Subtraction

In this appendix we test the noise power subtraction method
described in Section 5.6.2 using synthetic data sets generated
from simulations. For each synthesized line of sight we use the
error and the flux arrays of one of our observed spectra to fit a
linear correlation between the signal and the noise level. Using
these correlations, we then add noise to the simulated samples
in a flux-dependent way. We construct synthetic samples of
lines of sight following the procedure described in Section 6.2
using our 20 h−1 cMpc simulation box and compute the power
spectrum with and without adding noise. In Figure 23 we show
the noisy (red dot-dashed line) and noiseless (baseline; black
solid line) power spectra obtained for each redshift bin.
We finally applied the noise power subtraction method to the

noisy model and compare the corrected power spectrum (green
dashed line in Figure 23) to the noiseless baseline. The
noiseless power is recovered with errors of 2%. This suggests
that this step of the data analysis is not introducing relevant
systematic effects in the final results.

A.4. Instrumental Resolution

In this appendix we review the effect of uncertainties in the
instrumental resolution when smoothing the synthetic spectra to
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match the resolution of the observed data. We calibrate the
synthetic Lyα forest spectra using different instrumental resolu-
tions, taking our nominal values of FWHM=6kms−1 as a
baseline.

Figure 24 shows the variations in the power spectrum
expected for a change of +10% (red dot-dashed line) and
−10% (green dashed line) in the observed spectral resolution.
We note that the power changes by 5% at all scales (see
lower panel of each plot).

A.5. Masking Correction Function

In this appendix we analyze the systematic uncertainties
arising from the choice of a particular simulation in computing
the masking correction, Cm(k), described in Section 5.6.1. For
the fiducial masking correction we adopted the simulation
S20_1z15 of Table 2. To demonstrate that this particular choice
of model (with T0∼ 7500 K and γ∼ 1.5 at the redshifts of
interest) does not relevantly affect the final power spectrum
measurements, we compare our fiducial results with the
measurements obtained when computing the masking correc-
tion from post-processed runs with different values of T0 and γ.
In particular, we tested two extreme cases: a colder model,

C km
test1( ), with T0∼4000 K and γ∼1.5, and an isothermal

model, C km
test2 ( ), with T0∼7500 K and γ∼1.0.

Figure 25 shows the power spectrum obtained using
different masking correction functions for the redshift bins
considered in our analysis. In all the cases, computing the
masking correction using models with different thermal
parameters affects the small scales only mildly, with variations
in the power of 4% for scales log(k/km−1 s)−1.1. We
therefore do not expect that uncertainties in the masking
correction function will relevantly affect our final constraints.

A.6. Metal Correction

The Lyα forest region is affected by narrow metal line
contaminants that may increase the flux power at the small
scales. To correct for the metal contribution, we subtract the
metal power evaluated in Section 5.7 from the final power
spectrum measurements. The effect of the metal subtraction on
the power spectrum measurements is presented in Figure 26 for
our three redshift bins. As expected, only the small scales
(log(k/km−1 s)−1.0) are significantly affected. The varia-
tions are relatively small (<10%) and well within the statistical
errors of our final measurements.

Figure 21. Effect of the rolling mean on the power spectrum measurements. At each of the three redshift bins we show the power spectrum computed using a
40 h−1 cMpc boxcar rolling mean (green dashed line) compared with the values obtained using a standard global flux average (black solid line). For the rolling mean
calculation a random quasar continuum has been imposed on each synthetic line of sight. Differences between the two power spectra are reported in the bottom panel
of each plot and are compared with the 68% statistical error for our observed sample (green shaded region).
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Figure 22. Windowing effect on the flux power spectrum. At each redshift, the baseline model (black solid line) has been computed from the largest simulation box
(40 h−1 cMpc). We also show the power spectrum computed from the same simulation box but after dividing each of the native spectra into smaller sections of
10 h−1 cMpc (blue dot-dashed line) and 20 h−1 cMpc (green dashed line). Changes in the power as fractions of the baseline power spectrum are shown in the bottom
panel of each plot. Given the small variations in the power for the 20 h−1 cMpc sections, we opted for this section size when computing the power spectrum from the
observed data. For comparison, the green shaded region in the bottom panel shows the 68% statistical errors for our observational results.
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Figure 23. Noise power subtraction test. At each of the three redshift bins we show the power spectrum model for the 20 h−1 cMpc simulation box with (red dot-
dashed line) and without (baseline; black solid line) the addition of realistic noise (see text for details). Applying the noise power subtraction method described in
Section 5.6.2 to the noisy model, we obtain the corrected power spectrum (green dashed line), which is compared with the baseline in the lower panel of each plot. The
noiseless power is recovered with high precision, with 2% changes from the baseline power at all scales. For comparison, the statistical 68% errors for the
observational results are also shown (green shaded regions).
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Figure 24. Effect of instrumental resolution on the Lyα flux power spectrum. For each of our redshift bins we show the power spectrum obtained from the
20 h−1 cMpc simulation box after smoothing the flux spectra by different instrumental resolutions. The baseline model (black solid line) has been calibrated assuming
the correct nominal slit resolution, while a 10% lower (red dot-dashed line) and higher (green dashed line) resolution has been used for the smoothing of the other two
models. Variations in the power spectrum at different scales are reported in the lower panels as fractions of the baseline power and are 5% at all scales. For
comparison, the statistical 68% errors for the observational results are also shown (green shaded regions).
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Figure 25. Effect of the choice of thermal model for calculating the masking correction function. For each redshift, the power spectrum corrected with the fiducial
Cm(k) function (solid colored lines and data points) is compared with the results obtained using masking correction function C km

test1( ) computed from a post-processed
model with T0=4000 K and γ=1.5 (dashed colored line) andC km

test2 ( ) from a model with γ=1.0 and a temperature T0=7500 K (dotted colored line). Variations
in the power spectrum as a fraction of the fiducial power are reported in the bottom section of each panel and compared with the statistical 68% uncertainties (green
shaded regions). Uncertainties in the masking correction functions produce negligible variations (4%) at the small scales of the final power spectrum measurement
that are well within the corresponding statistical errors.
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Appendix B
Covariance Matrix Uncertainties

In this appendix we test how strongly the choice of
simulation model for the covariance matrix regularization
affects the final constraints on T0 and u0. In principle, off-
diagonal coefficients of the covariance matrix will mildly

depend on the shape of the power spectrum and therefore on
the thermal parameters characterizing the models.
Figure 27 shows the results for T0 and u0 obtained when

using a covariance matrix derived from the fiducial model
S40_1z15 (Covariance matrix_1) and from the S40_1z9 model
(Covariance matrix_2). Both the nominal results and error
estimates shows only modest (3%) changes.

Figure 26. Effect of the metal correction on the Lyα power spectrum measurements for the three redshift bins considered in this work. In each panel the average metal
power computed in Section 5.7 (black solid line) is subtracted from the total power (colored solid lines and data points) to obtain the corrected measurement (colored
dashed lines). The effect of metals at small scales is more relevant in the lowest redshift bin because the amount of Lyα absorption is lower. Nevertheless, the changes
in power due to the metal contribution, reported in the lower panels as a fraction of the total power, are always <10% and well within the statistical errors (green
shaded regions).
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Appendix C
Comparison with Viel et al. (2013)

In this appendix we compare our power spectrum measure-
ments to those from Viel et al. (2013a). While Viel et al.
(2013a) included somewhat lower resolution spectra from
Magellan/MIKE, for consistency we limit our comparison to
their measurements obtained with the HIRES spectrograph.

We consider two main differences between our new estimates
and the older Viel et al. (2013a) power spectra: flux contrast
estimators and cosmic variance. First, Viel et al. (2013a)
normalized the spectra using a spline continuum estimate and
then computed the mean flux in large sections of data. To test
whether this affected the results, we recomputed the Viel et al.
(2013a) power spectra by applying the procedure described in
Section 5 to the Viel et al. data, using the same sections of spectra.
Note that, given the somewhat larger scales probed by Viel et al.,
we do not expect any relevant effect due to noise or resolution.
We verified that we were able to reproduce the previous results
with good precision and no significant bias was introduced by the
different flux contrast estimators.

We next consider whether sample size may be playing a role.
In each of our redshift bins the number of independent lines of
sight contributing to our measurement is always more than
double the number in Viel et al. (2013a). In particular, for the
z=4.2 bin we used 12 lines of sight versus 4 in Viel et al.
(2013a), for the z=5.0 bin we used 12 versus 5, while at
z=4.6, where the largest differences between the power
spectra are seen, we used 15 quasars versus 5 in the
previous work.

To determine whether cosmic variance can explain the
discrepancy between our results and those of Viel et al.
(2013a), we computed the power spectrum from subsamples of
our data. Figure 28 shows the comparison between the Viel
et al. (2013a) power spectra (black dashed lines) and the 68%
(darker shaded regions) and 95% (lighter shaded regions)
contours of the distribution of power spectrum realizations
obtained from a Monte Carlo sampling of our lines of sight. For
each redshift bin we randomly select from our sample the same
number of lines of sight contributing to the Viel et al. (2013a)
measurement and use them to compute the power spectrum.
Repeating the process for many (∼200) realizations, we verify
that the Viel et al. (2013a) results fall within this distribution.
At z=4.2 and z=5.0 most of the Viel et al. (2013a) values

fall within the 68% contours. For the z=4.6 bin the agreement
is slightly worse but still largely within the 95% region. We
note that the errors in different k bins are correlated, as
discussed in Section 5.9. We further note that our sample size is
still relatively modest, and our Monte Carlo technique is likely
to underestimate the cosmic variance at the 95% level.

Figure 27. Effect of varying the simulation used for the covariance matrix regularization. The measurements of T0 (left panel) and u0 (right panel) are reported for two
different choices of simulations for the covariance matrix regularization: model S40_1z15 (filled markers) and model S40_1z9 (open markers).

Figure 28. Comparison with previous HIRES results. For each redshift bin, the
power spectrum measurements obtained by Viel et al. (2013a) (black dashed
lines) are compared with the 68% (darker shaded regions) and 95% (lighter
shaded regions) contours of the power spectrum realizations obtained with a
Monte Carlo sampling of our lines of sight (LOS), when using the sample size
of Viel et al. (see text for details). At all redshifts there is a broad consistency
with the Viel et al. (2013a) values.
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Appendix D
Comparison with Irsĭc ̆ et al. (2017)

In this appendix we compare our power spectrum measure-
ment at z=4.2 to the one from Iršič et al. (2017a). These
authors use spectra from the XQ-100 Legacy Survey (López
et al. 2016), collected using the lower-resolution VLT/X-
Shooter spectrograph (R∼11 km s−1 corresponding to an
FWHM=26 km s−1 for the VIS arm). We therefore limited
our comparison to the power spectrum scales where the
resolution correction for the Iršič et al. (2017a) measurements
is 20%, corresponding to log(k/km−1 s)<−1.4.

Figure 29 presents the comparison between the Iršič et al.
(2017a) power spectrum (black points) and our measurements
(blue points) at z=4.2. For both data sets we also include the
final 68% uncertainties (colored shaded regions). Even if the
X-Shooter power spectrum shows tendentially lower values
than ours, the two measurements are consistent within the 68%
uncertainties at all scales but one point (at the scale
log(k/km−1 s)=−1.92). A possible explanation for the offset
in the power at scales log(k/km−1 s)−1.9 may be
differences in the spectra samples and in the redshift coverage
of the z=4.2 bin: while we include spectra falling within a
broad Δz=0.4 redshift bin, Iršič et al. (2017a) adopt a
narrower Δz=0.2 bin. Nevertheless, as for the Viel et al.
(2013a) power spectrum, we verified that, using the same
X-Shooter spectra, we were able to reproduce the Iršič et al.
(2017a) results at the considered scales without introducing any
significant bias due to possible differences in the analysis.

Appendix E
Comparison to Previous Temperature Measurements at

High z

In Figure 30 we compare our IGM temperature measure-
ments to previous constraints from the literature over the
redshift range covered by our analysis. We note that the
temperature values from Iršič et al. (2017b) (pink stars) and
Garzilli et al. (2017) (brown circles) and the z4.2 results
from Walther et al. (2018) (orange squares) are all obtained
from the flux power spectrum measurements of Viel et al.
(2013a), although calibrated with different sets of simulations;
therefore, they are not fully independent. Among these
constraints, the larger error bars reported for Iršič et al.
(2017b) reflect a 1.5 correction factor applied by these authors
to the nominal errors associated with the Viel et al. (2013a)
measurements.
While generally within the 68% uncertainties of our new

results, previous estimates from the flux power spectrum
statistic suggest a significant decrease in temperature at
z4.6. Our thermal constraints, however, obtained from a
larger and higher-quality sample of high-resolution spectra, do
not show any strong evolution in the temperature at these
redshifts (see also Appendix C for a comparison between our
recent flux power spectrum measurements and the ones from
Viel et al. 2013a).

Figure 29. Comparison with previous X-Shooter results at z=4.2, limited to
the scales where the resolution correction for the X-Shooter data is 20%. The
power spectrum obtained by Iršič et al. (2017a) (black points) is compared with
our results for the lowest redshift bin (blue points). The two measurements are
generally consistent within the 68% uncertainties (colored shaded regions).

Figure 30. Comparison with previous temperature measurements over the
redshift range covered by our analysis. Our results (green points) are compared
with the temperature values obtained from the curvature analysis of Becker
et al. 2011 (gray triangles) and with the thermal estimates from the power
spectrum statistic of Iršič et al. (2017b) (pink stars), Garzilli et al. (2017)
(brown circles), and Walther et al. (2018) (orange squares). Note that the
temperature values from Irsĭc̆ et al. and Garzilli et al. and the z4.2 results
from Walther et al. are all obtained from the flux power spectrum
measurements of Viel et al. (2013), although calibrated with different sets of
simulations; therefore, they are not fully independent. Vertical error bars are
68% statistical uncertainties for all the data. For Becker et al. the nominal errors
have been increased to include the Jeans smoothing uncertainty estimated by
those authors.
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Appendix F
Numerical Convergence

In this appendix we examine the convergence of the Lyα
flux power spectrum in the simulations used in this work. We
used multiple simulations with the thermal history model 1_z15
in Table 2. All of the synthetic Lyα forest lines of sight were

produced using the procedure described in Section 6.1. The
flux power spectrum was then computed as in Section 6.2.
The tests are shown in Figure 31, where the convergence

with box size for a fixed mass resolution (Mgas= 9.97×
104 h−1Me) is reported in the left column and the convergence

Figure 31. Convergence of the flux power spectrum with box size and mass resolution for the redshifts relevant in this work. Power spectra for this test were computed
from noise-free mock lines of sight using the procedure described in Section 6.2. The left column shows the convergence with box size at a fixed mass resolution
(Mgas = 9.97 × 104 h−1 Me), while the right column displays the convergence with respect to the highest mass resolution model (S10_1z15_768 in Table 2) for a
fixed box size (L = 10 h−1 cMpc). Variations in the power spectrum as a fraction of the reference power are plotted in the bottom section of each panel and compared
with the statistical 68% uncertainties (green shaded regions). Both resolution and box size corrections have been applied to our fitting models.
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with mass resolution for a fixed box size (L= 10 h−1 cMpc) is
displayed on the right. The results show that a small correction
for both box size and mass resolution needs to be applied to the
power spectra derived from our nominal 10 h−1 cMpc simu-
lations. When increasing the box size, the power decrease up to
∼15%, particularly at very small scales (log(k/km−1 s)>−1).
In contrast, when increasing the mass resolution, the power
toward small scales (log(k/km−1 s)−1.4) increases pro-
gressively, reaching a correction of ∼15% at z=5.0 for our
nominal mass resolution. Because the corrections are in
opposite directions, the final scale factor for box and mass
resolution convergence is 5% at all scales. However, we note
that in principle the mass resolution convergence may depend
on the underlying IGM density structure and, consequently, on
the choice of a particular thermal history model. We therefore
verified that the entity of this possible systematic effect was
negligible when compared to the 68% statistical uncertainties
characterizing the observational data and that the final thermal
constraints were not affected by the numerical corrections.

We further verified, using lower mass resolution simulations,
that increasing the box size up to L=160 h−1 cMpc for a fixed
mass resolution does not introduce additional power at the
scales considered in this work.

Appendix G
Effective Optical Depth Evolution

As explained in Section 6.1, when constructing mock
samples, we account for the mild redshift evolution of the
mean flux along the line of sight by initially rescaling the
effective Lyα optical depth using Equation (10). In this
appendix we show how the choice of this relation for the τeff
evolution, while somewhat arbitrary, represents a reasonable
transition between the measurements of Becker et al. (2013)
and the newer results of Bosman et al. (2018). Figure 32
presents the comparison among the different τeff evolutions.
The results from the analysis of Becker et al. (2013) (gray
triangles) at z<4 are smoothly connected to the most recent
measurements of Bosman et al. (2018) (red squares) at z>5

by the fiducial fit adopted in this work (green dashed line). For
comparison, we also show the constraints on the optical depth
obtained from our MCMC chains and reported in Table 5
(green points). We recover values broadly consistent with
Equation (10) for the three redshift bins.

Appendix H
Interpolation Uncertainties

In this appendix we describe the test performed to verify the
interpolation scheme implemented in the MCMC analysis. For
this we remove one model from the interpolation grid (in the
example below we excluded the model S10_0.55z9 of Table 2)
and test how well the thermal parameters for this model are
recovered when it is used to generate artificial data.
Figure 33 displays the correct values (red squares) overlaid

on the parameter constraints obtained from the MCMC analysis
at z=5.0. The thermal parameters T0 and u0 are recovered
accurately by the analysis, with discrepancies 5%. The

Figure 32. Evolution of effective optical depth with redshift. Measurements from
Becker et al. (2013) (gray triangles) and Bosman et al. (2018) (red squares) are
shown along with the fiducial evolution of Equation (10) (green dashed line).
Constraints from our MCMC analysis are also reported for comparison (green data
points). Error bars represent 68% uncertainties for all data points.
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correct values of γ and τeff fall within the 1σ probability
distribution, although the peaks of their posterior distributions
are somewhat biased toward lower values. As expected, the
power spectrum at these redshifts is not sensitive enough to
break the degeneracy between γ and τeff. The poor constraints
on γ, however, do not affect our constraints on T0 and u0.

We have also tested how well our interpolation scheme was
able to recover the thermal parameters of a completely

independent model. We fit the power spectrum extracted from
a simulation using the UVB model of Puchwein et al. (2019)
assuming nonequilibrium ionization, and we verified that the
values of T0 and u0 (see Figure 17) were recovered within the
68% uncertainties given by our MCMC method. This gives
some reassurance that, as intended, our results do not
significantly depend on the specific thermal histories adopted
for the modeling in this work.

Figure 33. Probability distributions for the parameters T0, u0, γ, and τeff at z=5, recovered when fitting the synthetic power spectrum generated from the model
S10_0.55z9. For this test the model has been removed from the set of comparison simulations. Contours plots show the 68% and 95% 2D probability distributions,
while the black histograms display the 1D marginalized posterior distributions for each parameter. The input model parameters are presented for comparison (red
squares).
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Appendix I
Thermal History Overview

For illustrative purposes we show in Figure 34 the evolution
of the thermal parameters u0 and T0 for all the simulations
listed in Table 2. While these models are not meant to represent
realistic reionization scenarios, they provide a wide range of
thermal histories and can be used to explore the thermal state of
the IGM in a relatively model-independent way.

Appendix J
Integrated Heating versus Real-space Flux Cutoff Scale

In this appendix we show the relationship between u0 and the
characteristic real-space flux power cutoff scale, λP, as defined

by Kulkarni et al. (2015). At each redshift we compute λP for
all the models of Table 2 following the method described in
Kulkarni et al. We then fit a relationship between the
corresponding u0 computed over the fiducial redshift range.
Figure 35 shows the best-fitting relationship between u0 and λP
for the redshifts considered in this work. While a certain level
of scatter about the fit is present at all redshifts, there is clearly
a positive correlation between the two variables. Using the
current constraints on u0, we can then attempt to obtain a rough
estimate of λP (green square with error bars).
We note that these estimates for λP are smaller than the

recent constraints at 2<z<4 from quasar pairs presented by
Rorai et al. (2017a), suggesting that the pressure smoothing
scale increases toward lower redshift as the IGM is photoheated

Figure 34. Evolution of the parameters governing the thermal state of the IGM in all of the simulations used for this analysis. Top panel: evolution as a function of
redshift of the cumulative energy per unit mass, u0, for models with a wide range of optically thin redshifts (zOT) and photoheating rates (∝ζ). Bottom panel:
corresponding evolution of the gas temperature at the mean density, T0.
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further (see the instantaneous temperature measurements
presented by Becker et al. 2011)

Appendix K
Lyα Flux Power Spectrum Measurements

In Tables 6–8 we report the power spectrum measurements
obtained in this work for the three redshift bins centered at

z=4.2, 4.6, and 5.0. In each table the values of the power
spectrum obtained with (Column (3)) and without (Column (2))
instrumental resolution and pixel size correction (R.C.) are
reported for each scale (Column (1)). The corresponding 68%
uncertainties are shown in Column (4). The covariance
matrices for the power spectrum measurements may be found
in the online version of this article.

Figure 35. Relationship between the integrated heating per unit mass u0 and the real-space flux power cutoff scale λP of Kulkarni et al. (2015). Colored points
correspond to the different simulations of Table 2. While some scatter about the fit (black dashed line) is always present, there is a significant positive correlation
between the two variables. For reference, along the fit at each redshift we plot our value of u0 with the corresponding value of λP (green squares with 68% errors).
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Table 6
Power Spectrum Measurement for the Redshift Bin Centered at z=4.2

log(k/km−1 s) Pk(km s−1) Pk(km s−1)(R.C.)  σ

−2.2 91.4065 91.4324 27.0528
−2.1 82.4448 82.4819 17.3864
−2.0 70.2289 70.2789 19.4023
−1.9 74.6290 74.7128 17.9354
−1.8 56.1625 56.2625 10.6905
−1.7 43.7497 43.8733 7.6836
−1.6 30.6775 30.8155 6.1441
−1.5 27.2371 27.4304 4.1755
−1.4 21.1838 21.4225 2.9169
−1.3 14.3394 14.5968 2.3634
−1.2 7.9927 8.2213 0.9394
−1.1 4.2090 4.4020 0.4863
−1.0 2.0377 2.1891 0.2347
−0.9 0.8415 0.9444 0.1039
−0.8 0.3525 0.4241 0.0493
−0.7 0.1638 0.2208 0.0281

Note. Values in Column (3) have been corrected for instrumental resolution.
The reported values have been obtained from the analysis of 51 sections of 20
h−1 cMpc of Lyα forest with z ò [4.0, 4.4), extracted from a total of 12 quasar
lines of sight. The mean redshift for this bin is =z 4.24¯ .

Table 7
Power Spectrum Measurement for the Redshift Bin Centered at z=4.6

log(k/km−1 s) Pk(km s−1) Pk(km s−1)(R.C.)  σ

−2.2 128.8440 128.8804 15.5333
−2.1 111.7963 111.8463 13.5236
−2.0 91.4603 91.5253 10.6477
−1.9 94.5054 94.6114 11.2976
−1.8 74.2880 74.4201 7.6046
−1.7 64.1286 64.3093 6.5800
−1.6 53.5776 53.8172 5.3659
−1.5 40.5199 40.8068 3.6843
−1.4 28.5061 28.8268 3.0231
−1.3 21.0848 21.4623 1.6939
−1.2 12.1394 12.4857 0.8407
−1.1 6.0252 6.3006 0.4470
−1.0 3.1159 3.3457 0.2371
−0.9 1.4523 1.6273 0.1078
−0.8 0.5897 0.7071 0.0584
−0.7 0.2588 0.3465 0.0342

Note.Values in Column (3) have been corrected for instrumental resolution.
The reported values have been obtained from the analysis of 114 sections of 20
h−1 cMpc of Lyα forest with zò[4.4, 4.8), extracted from a total of 15 quasar
lines of sight. The mean redshift for this bin is =z 4.58¯ .

Table 8
Power Spectrum Measurement for the Redshift Bin Centered at z=5.0

log(k/km−1 s) Pk(km s−1) Pk(km s−1)(R.C.)  σ

−2.2 162.4708 162.5166 30.6076
−2.1 163.8056 163.8787 28.1692
−2.0 157.6143 157.7257 25.4039
−1.9 121.8037 121.9401 23.5215
−1.8 81.6827 81.8278 11.8521
−1.7 87.0669 87.3118 12.4211
−1.6 72.5758 72.8998 10.3949
−1.5 52.7895 53.1629 7.4238
−1.4 37.5451 37.9670 4.5890
−1.3 26.6637 27.1404 2.6700
−1.2 15.8800 16.3323 1.4250
−1.1 10.2757 10.7436 1.0259
−1.0 4.6382 4.9787 0.5013
−0.9 2.1834 2.4443 0.2166
−0.8 1.0184 1.2185 0.1182
−0.7 0.3671 0.4897 0.0613

Note.Values in Column (3) have been corrected for instrumental resolution.
The reported values have been obtained from the analysis of 44 sections of 20
h−1 cMpc of Lyα forest with zò[4.8, 5.2), extracted from a total of 12 quasar
lines of sight. The mean redshift for this bin is =z 4.95¯ .
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