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Abstract

We study the choice of transportation modes within a city where commuters have hetero-

geneous preferences for a car. As in standard models of externalities, the market outcome

never maximizes aggregate welfare. We show that in the presence of multiple equilibria prob-

lems of coordination can worsen this result. We discuss two policy tools: taxation and traffic

separation (e.g. exclusive lanes for public transportation). Setting the optimal policy is a nec-

essary but not sufficient condition to maximize aggregate welfare. Even with a social planner

maximizing aggregate welfare, a city may find itself stuck in a situation where public trans-

portation remains inefficient and the level of congestion high.

JEL: R4, L5, H2.

Keywords: Modal choice, Coordination, Network effect, Cross-modal congestion.

1 Introduction

The cost of congestion is an increasingly important issue in urban areas. For instance, Duranton

and Turner (2011) estimate that a typical American household spends 161 person-minutes in a car

every day. Goodwin (2004) expected the annual cost of congestion in the UK to reach £ 30 billion

in 2010. De Palma and Lindsey (2011) report congestion costs between 0.5 and 1.5% of GDP
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in major United States and European urban areas. Most congestion is due to the use of private

cars. On the one hand, cars generate both congestion - on other cars and on public transportation

- and pollution. On the other hand, cars are necessary for the economy. Unfortunately, screening

commuters to reach the optimal share of cars is a complex policy challenge. Policies must iden-

tify tools that affect people’s behavior and improve efficiency. In practice, the most widely-used

policies addressing traffic issues are taxation,1 subsidies and traffic separation.2

In this paper, we build a theoretical model in which heterogeneous commuters simultaneously

decide whether to use a private car or public transportation. Car users generate congestion on

all commuters and users of public transportation enjoy a positive network externality. We do

not specifically model pollution costs, as this externality affects all commuters regardless of their

modal choice, and therefore does not affect this decision. In practice, considering the impact of

pollution would lower the socially optimal share of car users obtained with our model.

First, we explain how ex ante similar cities might end up with very different modal shifts.

This is a problem of coordination when a large share of commuters have similar preferences.

If commuters with preferences close to the mode all take the car, public transportation is not

efficient. Therefore, it is indeed a best response for those commuters to take the car. However,

if they all use public transportation, it becomes more efficient, and it is a best response for them

to use public transportation. In the presence of such multiple equilibria, the one involving the

highest share of public transportation always Pareto dominates all others. Second, we show that

the market outcome never maximizes aggregate welfare. This is a classic result when externalities

are present. Therefore, the market can present two types of inefficiencies. The first one is at the

margin: the market provides a too large share of car users in any decentralized equilibrium. The

second is more substantial: coordination failures may lead to the presence of inefficient equilibria.

1See de Palma and Lindsey (2011) for a survey of the different methods and impacts of congestion tolls.
2For instance through the use of exclusive lanes for public transportation. See Cain et al. (2006) and Echeverry et al.

(2005) for a larger discussion of the case of Bogota’s Transmilenio and its application to other countries. Our definition
is more general: any type of infrastructure that increases the marginal cost of congestion for cars and decreases it for
public transportation, and whose effect is marginally increasing in the share of car users.
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The coordination problem could easily be solved by a benevolent social planner announcing

a very high level of taxation if there are too many car users. However, if there are too many car

users, this announcement is not credible and the social planner must modify the level of taxation

in the interest of the commuters themselves. Thus, the social planner is constrained to announce

a credible taxation scheme. To ensure that all announcements are credible, we assume that com-

muters and the social planner take their decisions simultaneously. The social planner is a player of

the game whose objective function is common knowledge. The only way to overcome the commit-

ment problem would be to implement a mechanism where the social planner can credibly commit

not to play his best-response.

We consider a social planner using two policies to maximize aggregate welfare: a taxation

scheme (which, in our discrete choice setup, is equivalent to a fare subsidy) and traffic separation.

Optimal taxation is an increasing function of the share of car users. This is because the marginal

congestion externality is also increasing. Under reasonable assumptions, the optimal traffic sep-

aration is decreasing in the share of car users. Indeed, it is only a best response for the social

planner to implement high levels of traffic separation if she believes enough commuters use public

transportation. Due to coordination failures, it is not sufficient to set the optimal policy to reach the

optimal outcome. As detailed below, it is well established that policies implemented by a social

planner shape the patterns of public transportation use. We show that causality may run both ways:

the patterns of transportation also determine the policies taken by a social planner.

The question of optimal congestion has been addressed by many scholars from different fields.

Among economists, Pigouvian taxation is generally the preferred way to deal with congestion

problems (Beesley and Kemp, 1987, Calfee and Winston, 1998). The idea is that, given both ur-

ban layouts and consumers’ intrinsic preferences for a car, one should focus on the best way to

accommodate traffic flows and make car users pay for the marginal external cost they produce

(Anas and Small, 1998). The ‘games of congestion’ have been largely studied in economic theory

(Rosenthal, 1973) and many applied papers deal with congestion costs and car taxation. One of
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the most famous results is due to Vickrey (1963). He argues that pricing should vary at different

times of the day so as to make commuters pay for the marginal cost of congestion. The impact of

congestion on public transportation has usually been of minor interest, though some authors (e.g.

Mirabel, 1999, Dobruzkes and Fourneau, 2007) addressed the so-called ‘crossed modal externali-

ties’ (the impact of congestion generated by one mode of transportation on another). Congestion

costs have been shown to be convex both in terms of pollution (De Vlieger et al., 2000) and per-

ceived cost (Wardman, 2001).3

Another group of papers focuses on urban planning. It emphasizes the fact that the structure

of the city is the main driver of commuting patterns. The main idea to improve the performance of

urban transportation is to have a shift towards ‘transit-oriented development’. Belzer and Aultier

(2002) define such a development as follows: ‘mixed-use, walkable, location-efficient develop-

ment that balances the need for sufficient density to support convenient transit service with the

scale of the adjacent community’.4 Some economists indirectly address this dimension by con-

sidering a form of traffic separation (see Berglas et al., 1984, Arnott et al., 1992, de Palma and

Lindsey, 2002, de Palma et al. 2008). These papers propose various approaches for road pricing

and tolls in the presence of alternative roads, modes of transportation and consumer preferences.

Their settings differ from ours in various dimensions, but all share the aim to find a unique equi-

librium and an optimal policy corresponding to the idea of pricing the marginal externality. In

this paper, we show that, in the presence of multiple equilibria, internalizing marginal externalities

may not be sufficient.

Multiple equilibria derive from the intersection of congestion, positive externalities from pub-

lic transportation, and commuters’ heterogeneity. A relatively large literature exists on the network

3Time is valued 50% higher when spent in congestion. Hence, the cost of congestion is convex, as congestion (i)
increases travel time, and (ii) increases the marginal cost of travel time. This principle is applied by Santos and Bhakar
(2005) to assess the benefits of the congestion toll in London.

4Cervero et al. (2002, p.2) emphasize that it does ‘involve some combination of intensifying commercial devel-
opment around stations, inter-mixing land uses, layering in public amenities (e.g., civic spaces, landscaping), and
improving the quality of walking and bicycling’. One should also consider the book by Dittmar and Ohland (2003) that
summarizes the literature and ‘good practices’ in transit oriented development.
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effect of the number of transit users on the efficiency of public transportation. In a seminal con-

tribution, Mohring (1972, p.591) explains that ‘Transportation differs from the typical commodity

price theory texts in that travelers and shippers play a producing, not just a consuming role’: The

underlying idea is the existence of a so-called ‘dynamic network externality’. If the demand for

bus service doubles, a company is expected to double the number or buses serving the route at

the same per capita price. Thus, the waiting time for an individual commuting by bus decreases,

which improves the efficiency of public transportation. The combination of network externali-

ties in public transportation and automobile congestion is a feature of several economic models

(Tabuchi, 1993; Parry and Small, 2009). To repeat, those models focus on a unique equilibrium.

Commuters differ in their preference for the use of a private car (Beirão and Cabral, 2007; Handy

et al., 2005; Jensen, 1999; Steg, 2005; Hiscock et al., 2002 and Van Vught et al., 1996). Verhoef

and Small (2004) encompass this dimension by considering heterogeneous agents in a model of

pricing for car use only. Batarce and Ivaldi (2011) test this feature in a model of modal choice

applied to Santiago, Chile. Fosgereau and De Palma (2012) consider a model of bottleneck with

heterogeneous traffic distance, leading to different preferences.

The existence of similar cities characterized by different modal shifts was already documented

in the late 1980s by Pucher (1988). He observed that, ‘urban transportation and traveler behavior

vary widely, even among countries with similar per capita income, technology and urbanization.’

Kenworthy and Laube (1999) show that the fraction of workers using transit is six times higher in

wealthy Asian cities compared to the US.5 They also find that the commuting time is lower (and

cheaper) where the use of public transport is higher and that the cost recovery of transit increases

with the share of passengers using it.

The paper is organized as follows. In the next section, we present the model, show that a Nash

equilibrium always exists, give conditions for the existence of multiple equilibria and discuss their

relative Pareto efficiency. In Section 3, we derive the best response function of the social planner

5Similarly, Pucher and Renne (2003) computed that, in the US, public transport accounted for less than 2% of urban
travel in 2001.
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and study taxation and traffic separation. We show that in the presence of multiple equilibria, the

social planner may be unable to credibly commit to the policy associated to the global optimum.

We conclude in Section 4.

2 The model

2.1 Basic assumptions

We consider a closed city with a unit mass of commuters who have to make a discrete choice be-

tween using a private car or public transportation. In this section, we do not consider the existence

of a social planner. The use of a car generates congestion on the other commuters. Space is finite

and it is possible to increase neither the number of roads nor the number of the traffic lanes. The

traffic separation is the degree of separation of public transportation from the rest of the traffic,

denoted by α ∈ [0,1].6 Commuters are heterogeneous as they have different intrinsic preferences

for the use of a car (relative to public transportation).7 The outcome of the game is a share z of car

users and (1− z) of public transportation users.

The utility8 of a commuter i, traveling in a private car or with public transportation, is given,

respectively, by

Uc
i (α,z) =− fc− tc(α,z)+

εi

2
(1)

6α is exogenous in this section, but we allow the social planner to choose its level in the next section. We use a very
general definition of α , one that encompasses many possibilities to protect public transportation from congestion. The
condition being that increasing α decreases congestion for public transportation and increases congestion for car users.
This excludes the possibility of building an underground. We discuss this possibility in David and Foucart (2012) and
find that an underground is likely to worsen coordination problems. We model α as continuous as (i) there are different
degrees of separation (drawing a bus line is not the same as building a bus corridor or reserving some streets for public
transportation only) and (ii) traffic separation in a city is the sum of many smaller decisions in given areas that affect
the commuter trough is journey.

7This preference can be negative. One can imagine various alternative ways of modeling heterogeneity: different
valuation for time and money, different location within the city, ease of access to the public transportation network,
etc. We use the simplest formulation for the tractability of the model, and do not consider specifically the difference in
commuting time for different locations.

8All components of the utility functions (fixed costs, congestion, individuals’ heterogeneity and waiting time) are
expressed in monetary terms.
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and

U pt
i (α,z) =−W (z)− t pt(α,z)− εi

2
. (2)

The fixed cost associated with the use of the car is denoted by fc > 0.9

The functions tc(α,z) and t pt (α,z) (∈ IR+) represent the congestion faced by cars and public

transportation, respectively. They are assumed to be equal if there is no traffic separation between

cars and public transportation, and equal to zero if there are no users of cars (i.e. tc(0,z) = t pt (0,z)

and tc(α,0) = t pt (α,0) = 0 respectively). Both functions are increasing and convex in z, and a

higher degree of traffic separation (higher α) generates more congestion for cars (because there is

less space for them) and less congestion for public transportation. This last effect is assumed to be

amplified by z (that is, separation has an impact only if there is actually a problem of congestion).

Hence, we have ∀(α,z) ∈ [0,1]2:

∂ tc(α,z)
∂ z

> 0,
∂ 2tc(α,z)

∂ z2 > 0,
∂ tc(α,z)

∂α
> 0,

∂ 2tc(α,z)
∂ z∂α

> 0

∂ t pt(α,z)
∂ z

> 0,
∂ 2t pt(α,z)

∂ z2 > 0,
∂ t pt(α,z)

∂α
< 0,

∂ 2t pt(α,z)
∂ z∂α

< 0.

The individual parameter, εi, is the preference for using a car compared to public transportation. It

comes from a cumulative distribution function εi ∼ F (ε). F is assumed to be strictly increasing,

continuous and differentiable over its support (−∞,+∞). This support implies that some indi-

viduals love public transportation so much that they would never accept not to use it (εi→−∞),

while others will never use public transportation (εi→ +∞). Without loss of generality, we split

εi equally between the two utility functions. Later in the paper, it will be useful to use the inverse

distribution function of F(x). We define G(x) =−F−1(x) where x ∈ [0,1] is the unique real num-

ber x such that F(ε) = x. This allows us to use a function G(x) = εi such that there is a mass x of

commuters with ε > εi (with G(0) = +∞, G(1) =−∞).

9This is the additional cost compared to the use of public transportation, which is normalized to 0.
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The waiting time for public transportation is W (z) ∈ R+
0 . It displays a positive network ex-

ternality for public transportation users. The idea is that, if there are more users, the frequency of

public transportation increases and the waiting time decreases.10 For simplicity, we assume this

network externality to be linear. If there are (1− z) users of public transportation, the waiting time

of each of them is given by W (z), with

W ′(z)> 0 and W ′′(z) = 0.

Definition 1 ∆(α,z) is the additional congestion faced by car users in comparison to the conges-

tion faced by public transportation, i.e.

∆(α,z) = tc(α,z)− t pt(α,z).

Using the properties of tc(α,z) and t pt(α,z), we have:

Lemma 1 Properties of ∆(α,z).

(i) ∂∆(α,z)
∂α

> 0, ∀(α,z) ∈ [0,1]×]0,1];

(ii) ∂∆(α,z)
∂ z > 0, ∀(α,z) ∈ ]0,1]× [0,1];

(iii) Supermodularity of ∆(α,z): the effect of separation on the differential of commuting time

increases with congestion (with the number of car users), i.e. ∂ 2∆(α,z)
∂ z∂α

> 0.

Proof. (i) is straightforward from the properties of tc(α,z) and t pt(α,z). Property (ii) is derived

from the fact that as tc(0,z) = tpt(0,z),
∂∆(0,z)

∂ z = 0. And as, ∀(α,z) ∈]0,1]2, ∂ tc(α,z)
∂ z > ∂ tc(0,z)

∂ z and

∂ t pt(α,z)
∂ z < ∂ t pt(0,z)

∂ z , it is always true that ∂∆(α,z)
∂ z > 0. Property (iii), the supermodularity of ∆(α,z)

is obtained using ∂ 2tc(α,z)
∂ z∂α

> 0 and ∂ 2tc(α,z)
∂ z∂α

< 0. The definition of ∆(α,z) = tc(α,z)− t pt(α,z)

leads to: ∂ 2∆(α,z)
∂ z∂α

= ∂ 2tc(α,z)
∂ z∂α

− ∂ 2t pt(α,z)
∂ z∂α

> 0.

10Assume a public transportation provider collecting fees and providing costly quality given a binding budget con-
straint. As long as there are scale economies in the production function, an increased number of public transportation
users increases the quality for a given individual fee, or decreases the individual fee for a given level of quality. The
possible presence of discomfort externalities and/or capacity constraints in public transportation is studied in David and
Foucart (2012). We find that this does not solve - and may even worsen - the coordination problems.
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2.2 The game

The modal choice is a simultaneous game among a unit mass of commuters. It consists of each

commuter choosing the mode of transportation (car or public transportation) that maximizes his

utility given her expectation on z. Hence, commuter i commutes by car if Uc
i (α,z) > U pt

i (α,z),

i.e.

εi > fc−W (z)+ [tc(α,z)− t pt(α,z)].

If it is a best response ex post for a commuter j with ε j > εi to commute using public trans-

portation, it is also a best response for commuter i to do so.

Using Definition (1), the condition for commuter i to use a car becomes

εi > fc−W (z)+∆(α,z). (3)

2.3 Decentralized Equilibria

In this section, we first show that a Nash equilibrium always exists. Second, we derive the condi-

tions for the presence of multiple equilibria. Third, we show that one is Pareto dominant.

a. Existence

The existence of at least one Nash equilibrium where all commuters play a pure strategy is rela-

tively easy to show.11 Stability ex post comes from the fact that there always exists an equilibrium

where a share of commuters strictly prefers public transportation while the other prefers to use a

car.

Lemma 2 There exists at least one Nash equilibrium in pure strategies.

Proof. Remember F (ε) is assumed to be continuous and differentiable over its support (−∞,+∞).

This implies that there exists at least one commuter k with taste parameter εk such that, if all

11In general, it as been shown that such an equilibrium always exists in games with a continuum of players (Mas
Colell, 1984 and Rath, 1992).
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commuters with parameter ε j < εk use public transportation, and all commuters with εk < εi take

the car,

G(zk) = fc−W (zk)+∆(α,zk). (4)

Commuter k is indifferent between the private car and public transportation. Sharing the same

beliefs, commuters with ε j < εk strictly prefer public transportation and εk < εi strictly prefer their

car. Thus, it is a Nash equilibrium.

b. Multiplicity

The intuition behind the existence of multiple equilibria is the following. Assume that there is a

large share of commuters with similar preferences (ε) for the use of a car. When they believe

that most of them use public transportation, it is a best response for them to do so. This is a Nash

equilibrium with a low share of car users z. If, on the contrary, most of them believe that they will

use a car, they expect public transportation not to be efficient and, indeed, it will not be. This is

also a Nash equilibrium, involving a high z.

Proposition 1 There exist multiple equilibria (for a given α) if and only if there exists at least a

solution zk such that

∂G(z)
∂ z

∣∣∣∣
z=zk

>
∂ [ fc−W (z)+∆(α,z)]

∂ z

∣∣∣∣
z=zk

. (5)

Proof. The proof is presented in Appendix 1.1.

For this condition to be fulfilled, the difference in the costs between the two modes of trans-

portation must be sufficiently low and a sufficiently high mass of commuters must have similar

preferences. Consider the particular case of unimodal preferences. When the density around the

mode is high, the decision of the large share of commuters with similar preferences has a high

impact on the quality of public transportation and the level of congestion. If those commuters all

take public transportation, public transportation will be efficient. If they all take the car, public

transportation will be of bad quality. This is likely to lead to the presence of three equilibria, as
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plotted in Figure 1 (with α = 0). There are two stable12 equilibria, one with few users of public

transportation (a share z1 of car users) and one with a large fraction (a share z3 < z1 of car users).

There is also one unstable equilibrium, z2.

INSERT FIGURE 1 ABOUT HERE

(Illustration with multiple equilibria)

c. Efficiency

Proposition 2 If there are multiple equilibria, the equilibrium involving the highest use of public

transportation Pareto dominates all the other equilibria. The Pareto dominant equilibrium is

denoted ẑ.

Proof. The formal proof is provided in Appendix 1.2.

Figure 1 illustrates this proposition. Define three groups of people as A, B and C. Group A uses

a car in both equilibria, group C uses public transportation in both equilibria, and group B uses

public transportation when z = z3 and a car otherwise. As the costs of both public transportation

and car use are lower in z3, groups A and C are strictly better off. By revealed preferences, group

B is also better off in that equilibrium: they are better off by using a car in z3 than in z1, but they

use public transportation instead.

3 Social planner

In this section, we identify the optimal outcomes of this game in terms of traffic separation (α) and

share of car users (z). To reach an optimum, the social planner has two policy tools at her disposal:

traffic separation and taxation. To ensure the credibility of the announced policy, we consider that

12Those equilibria are locally stable in the sense that agents’ best response to any small perturbation to the equilibrium
z would bring this share back to equilibrium.

11



the policy choice is simultaneous to the modal choice.13 The timing of the game reflects the well-

known fact that governments face commitment problems in taxation. Consequently, as formalized

by Kydland and Prescott (1977, p. 473),14 a government maximizing aggregate welfare may lead

to a wrong outcome.

While traffic separation is directly chosen by the social planner, the share of car users is the

outcome of the modal choice of commuters. To be as general as possible, rather than setting a tax

level, the social planner announces a taxation scheme. This scheme can be made conditional on

the realized level of congestion T (z).15

The game of modal choice suffers from two types of inefficiencies. The first one, sub-utilization

of public transportation implies that, at the margin, the first best equilibrium requires more users

of public transportation at any initial Nash equilibrium. This would be easily solved by setting

the optimal policy in absence of the second inefficiency: coordination failure. When the optimal

policy leads to multiple equilibria, the right policy can lead to a wrong outcome.

3.1 Policy tools

We assume that the government has two policy tools at her disposal: the taxation of car users

(T (z)), and the possibility to change the traffic separation between cars and public transportation

(α). Due to the discrete choice nature of the model, a tax is equivalent to a fare subsidy.16 We

do not consider variations of taxation schemes that can have differential effects among car users

or time of the day.17 An illustration of the two policies is presented in Figure 2. On both sides

of the figure, the benchmark is the game without intervention. On the left-hand side, we present

13A sequential game where first, the social planner announces a policy, second, commuters make their modal choice
and third, the social planner can revise the policy would lead to the same results.

14“Even if there is an agreed-upon, fixed social objective function and policymakers know the timing and magnitude
of the effects of their actions, discretionary policy, namely, the selection of that decision which is best, given the current
situation and a correct evaluation of the end-of-period position, does not result in the social objective function being
maximized."

15As we identify coordination issues with the most general taxation function, this also holds for simpler and more
realistic ones.

16An alternative policy would be to allow the social planner to invest in lower W for a given value of z.
17One can refer to Parry (2002) for a comparison between a single lane toll, a uniform congestion tax across freeway

lanes, a gasoline tax, and a transit fare subsidy for the reduction of congestion.
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the effect of a fixed tax level T (z) = T > 0. The right-hand side represents the effect of traffic

separation α > 0.

We assume that a taxation policy would levy a tax T (z) on every car user and that this tax

is redistributed lump-sum among all commuters.18 Therefore, every commuter receives a transfer

zT (z). The utility functions become:

Uc
i (α,T,z) = − fc− tc (α,z)− (1− z)T (z)+

εi

2
,

U pt
i (α,T,z) = −W (z)− t pt (α,z)+ zT (z)− εi

2
.

After the introduction of a taxation policy, a commuter i uses public transportation if and only if

εi < ∆(α,z)−W (z)+T (z)+ fc.

INSERT FIGURE 2 ABOUT HERE

(Effect of taxation and traffic separation)

18Assuming alternative uses of the tax, ranging from throwing away its product to investing in public transportation
infrastructure, would not qualitatively affect the results.
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3.2 Maximizing welfare

The objective function of the social planner is to maximize the sum of all commuters’ utilities,19

and is common knowledge, i.e.

Max
α,z

∫ 1

0

[
φUc (α,z,G(x))+(1−φ)U pt

i (α,z,G(x))
]

dx

such that φ = 1 if G(x)≥ G(z)

= 0 otherwise

(α,z) ∈ [0,1]2

As T (z) is a lump-sum transfer among commuters, the taxes paid and received cancel out, and the

aggregate utility maximization problem rewrites:

max
α,z

 z∫
0

(
− fc− tc (α,z)+

G(x)
2

)
dx+

1∫
z

(
−W (z)− tPT (α,z)− G(x)

2

)
dx

 .
We first derive the optimality condition in terms of outcomes α∗ and z∗. Then, we consider the

corresponding optimal policy tools α∗ and T ∗(z). The first order conditions are20

G(z∗) = fc−W (z∗)+∆(α,z∗)+ ztc
z (α,z∗)+(1− z∗)

[
W ′ (z∗)+ tPT

z (α,z∗)
]

(6)

and

ztc
α (α∗,z)+(1− z) tPT

α (α∗,z) = 0, (7)

if there is an interior solution for α∗. Otherwise, if either ztc
α (α,z) + (1− z) tPT

α (α,z) > 0 or

ztc
α (α,z)+(1− z) tPT

α (α,z)< 0 ∀α ∈ (0,1), there is a corner solution. This case is discussed just

below lemma 3. As G is continuous, G(0) = +∞ and G(1) = −∞, equation (6) has only interior

19We present in David and Foucart (2012) the conditions for policies to be Pareto improving instead of maximizing
aggregate welfare. The main intuitions behind our results hold, although a strictly positive level of taxation is not always
Pareto improving.

20The partial derivatives with respect to z and α are denoted by tz and tα .
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solutions. Rearranging the terms to compare the private costs and the public benefits for commuter

i : G(z∗) = εi, equation (6) leads to the following condition:

W (z∗)−∆(α,z∗)− fc +G(z∗) = z∗tc
z (α,z∗)+(1− z∗)

[
W ′ (z∗)+ tPT

z (α,z∗)
]

. (8)

Thus, we have:

Proposition 3 In any Nash equilibrium, the share of car users is too high. For the share of car

users to be socially optimal, there must exist public transportation users that strictly prefer the car

in the decentralized equilibrium.

Proof. The right-hand side of equation (8) corresponds to the marginal social cost of increasing the

share of car users. This is clearly positive, as all negative externalities of a car are increasing with

z. On the left hand side is the individual preference for the car of the swing commuter z∗, such that

all commuters with ε < G(z∗) take public transportation and the rest use a car. For the equality to

hold, this must be positive. This implies that the socially optimal swing commuter strictly prefers

to use a car rather than public transportation. Indeed, by equation (4), for the consumer to be

indifferent, it must be true that G(z) = fc +∆(α,z)−W (z). As here, G(z) is higher, it means that

the commuter prefers the car.

This result is classic in the presence of externalities and recalls the literature on Pigouvian

taxation. The condition in (8) gives an insight into what can be socially optimal to solve the sub-

utilization of public transportation at the margin: in any decentralized state of the world, there are

not enough users of public transportation.

Lemma 3 For any level of z, the optimal level of traffic separation (α∗) is the one that minimizes

total congestion.

Proof. Straightforward from equation (7).

One can go further on the interpretation of the relationship between z and optimal traffic sepa-

ration α∗. In the presence of an interior solution, the second first order condition gives:
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z
(1− z)

=− tPT
α (α∗,z)
tc
α (α∗,z)

. (9)

The right-hand side of equation (9) is positive and represents a measure of the relative efficiency

of a traffic separation policy. As tc
α > 0 and tPT

α < 0, when z increases, an intuitive interpretation is

that the policy should be “accommodating”: α∗ has to decrease for the equality to hold.21 When

the share of car users is high, the best response of a social planner is to set a low level of traffic

separation. However, with a low level of traffic separation, commuters are incentivized to use the

car.

If there is no interior solution and if the former intuition holds, the social planner chooses

α∗ = 0 if z is sufficiently high, and α∗ = 1 if z is sufficiently small. If this intuition does not hold,

the result is the exact opposite.

3.3 Optimal policies and outcome

We define (α∗,z∗) as an outcome simultaneously satisfying the two first order conditions (equa-

tions 6 and 7). As for the decentralized equilibrium, several pairs (α∗,z∗) may satisfy these condi-

tions. If this is the case, the global maximum is denoted by (ᾱ∗, z̄∗).

Proposition 4 The optimal outcome (ᾱ∗, z̄∗) can be sustained by an optimal taxation scheme

T̄ ∗(z) = T ∗(ᾱ∗,z) corresponding to the social marginal impact of the use of a car when α = ᾱ∗:

T ∗(ᾱ∗, z̄∗) = z̄∗tc
z̄ (ᾱ

∗, z̄∗)+(1− z̄∗)
[
W ′ (z̄∗)+ tPT

z (ᾱ∗, z̄∗)
]

. (10)

21Formally, this is not always the case, as we do not have specific assumption on the sign of βα (α,z), with β (α,z) =

− tPT
α (α,z)
tc
α (α,z) . It is reasonable to believe that βα (α,z) ≥ 0 ∀ z ∈ [0,1]. In line with Tabuchi (1993), this implies that the

impact of bottlenecks is not marginally increasing. Indeed, on the one hand, by increasing the share of roads dedicated
to public transportation, the incidence of congestion on public transportation is reduced proportionally. On the other
hand, the creation of dissociated traffic lanes for public transportation generates bottlenecks for cars. The creation
of these bottlenecks is likely to increase congestion but at a marginally decreasing rate (by increasing the number of
bottlenecks, the impact of each one is reduced).
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Proof. The proof derives directly from the result obtained in equation (8). The optimal level of

taxation T̄ ∗(z̄∗) is such that the optimal share of car users holds in equilibrium. This equilibrium

is locally stable, as from equation (10), for any z′ < z̄∗, T̄ ∗(z′) < T̄ ∗(z̄∗) and for any z′′ > z̄∗,

T̄ ∗(z′′)> T̄ ∗(z̄∗)

The marginal social impact of car use in z̄∗ (the right hand side of equation 10) is the sum

of the social marginal congestion for cars and public transportation and of the social marginal

opportunity cost in terms of the network externality of car users not using public transportation.

The optimal tax defined in equation (10) is increasing in z (i.e. ∂T ∗(ᾱ∗,z)
∂ z ≥ 0). This means that,

comparing two similar cities, if the optimal share of car users is higher in one of the two cities, the

level of taxation in that city must also be higher. This result is due to the marginal cost of car use

(both in terms of congestion and in terms of network externalities) which is increasing in the share

of car users.

Proposition 5 If there exists zk such that

G(zk) = fc + T̄ ∗(zk)−W (zk)+∆(ᾱ∗,zk) (11)

and

∂G(z)
∂ z

∣∣∣∣
z=zk

>
∂ [ fc + T̄ ∗(ᾱ∗,z)−W (z)+∆(ᾱ∗,z)]

∂ z

∣∣∣∣
z=zk

, (12)

the optimal policy (ᾱ∗, T̄ ∗(z)) is associated with multiple equilibria. Thus no credible policy

ensures to achieve the optimal outcome (ᾱ∗, z̄∗).

Proof. The conditions (11) and (12) follow directly from equations (4) and (5), in presence of the

optimal policy. Consider the example in Figure 3. Assume that the optimal outcome (ᾱ∗, z̄∗) is

associated with an optimal policy (ᾱ∗, T̄ ∗(z)). Consider a social planner publicly announcing that

she will set the globally optimal policy (ᾱ∗, T̄ ∗(z)). This policy may still lead to multiple equilibria.

The social planner may as well announce another taxation function, with higher levels of T for

highest levels of z to deter commuters to take the car. She can also announce a higher level of α .
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However, this announcement is not credible: if the beliefs are such that most commuters take the

car, it is not a best response for the social planner to implement a too high level of taxation and/or

traffic separation. Hence, if the beliefs of the social planner are such that commuters coordinate

towards the bad equilibrium, her best response is to set the policy (α∗,T ∗(z)) which is locally

optimal at this equilibrium and distinct from (ᾱ∗, T̄ ∗(z)).22

INSERT FIGURE 3 HERE

(An illustration of an optimal policy leading to a wrong outcome)

A first problem is thus that, even if the social planner could credibly commit to T ∗(z) re-

gardless of the actual value of z, this may not be enough to coordinate commuters to the good

equilibrium. The second problem, more general, is that the social planner cannot credibly commit

to a policy that is not her best response given her (common knowledge) objective function. Indeed,

to force commuters to coordinate towards the best equilibrium, the social planner could announce

an extremely high tax for any z > z∗. However, if the beliefs of commuters are such that z would,

indeed, be higher than z∗, it is not a best response for the social planner to implement it. This is

precisely because the social planner is known to be willing to maximize aggregate welfare23 that

he may be unable to do so. So, the fact that some cities may end up in different equilibria does

not need to derive from social planners with different objective functions. Ex ante identical social

planners in cities with ex ante identical commuters may end up taking very different policies. In

particular, a social planner maximizing aggregate welfare may end up in a city where aggregate

welfare is not maximal.
22To repeat, while T ∗(α,z) is unique, T (α,z) 6= T (α ′,z) when α 6= α ′. Hence, T ∗(z) is not unique.
23One could consider a politician seeking reelection as an example of such a common knowledge objective function.

If everyone believes that the commuters coordinate towards the bad equilibrium, the politician does not implement
a policy that is likely to hurt a majority of voters. Therefore, the commuters actually coordinate towards the bad
equilibrium.
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3.4 Discussion

Just like central banks for monetary policies, an intuitive solution to the commitment problem is to

delegate policy tools. We show in Appendix 2 that delegation to a fully independent agency allows

reaching the best outcome in our specification. However, its practical implementation presents

important limitations. First, the agency must be credible in being independent from the social

planner and its objective function must be common knowledge. Second, it must be credible in

implementing a taxation function that deters multiple equilibria. Taxation must be high enough

to convince most car users to switch to public transportation even when W is very high. A social

planner, in particular if she is a politician seeking reelection, must be convinced that voters make

the difference between her and the agency. Also, the transition may be very costly. Not only be-

cause there may be some switching costs in practice such that the socially too high level of taxation

may have to be implemented for some time. But also because if commuters take their commuting

decisions based on the history of what have been the past equilibrium (as in Young (1993, 1996)),

it may take several periods of socially too high taxation before the optimal equilibrium is reached.

Therefore, such an agency must not only be independent, but also have long mandates. In addition,

the social planner delegating the policy tools must not discount the future too much.

As shown in Proposition (5), the right policy mix can lead to the wrong equilibrium. In addi-

tion, real world constraints may make the setting of an individual tax whose level is determined

by the realized aggregate outcome difficult to implement. In practice, congestion tolls may vary

throughout the day or evolve over time, but we are not aware of any taxation scheme made condi-

tional to the aggregate outcome. Such a tax whose amount is unknown ex ante would create too

much uncertainty for commuters. Considering a more realistic taxation scheme such as a fixed tax

whose level would be announced before the game of modal choice takes place can only worsen the

coordination problems we identify. Such a tax constitutes a subset of the general taxation function

considered throughout the paper.

For practical reasons, it can be difficult to simultaneously implement a policy of both taxation
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and traffic separation. Considering a fixed tax level, it is possible to evaluate the respective merits

of taxation and traffic separation using a very general criterion: their relative ability to lead to

Pareto improvements. We define β (α,z) =− tPT
α (α,z)
tc
α (α,z) in Section 3.2 as the marginal effect of α on

the relative commuting time ratio. Assume that βα (α,z)≥ 0. As discussed above, this corresponds

to the intuition that the impact of bottlenecks on the relative marginal congestion is not increasing.

Proposition 6 Assume there exist two distinct sets of policies, a policy of traffic separation (α1,0)

and a policy of taxation (0,T1), that yield the same equilibrium, z1, and that car users enjoy the

same utility under either of these two policies. Then, for any other two distinct sets of policies,

(α2,0) and (0,T2), yielding another equilibrium, z2, associated to a lower share of car user (z2 <

z1), the policy of traffic separation Pareto dominates the policy of taxation as car users are better

off.

Proof. See Appendix 1.3.

As α and T are higher and z is lower, public transportation users are better off in z2. So, for

Pareto efficiency, we need to focus on car users only. It follows from this Proposition that even

though we cannot theoretically exclude the possibility that one of the two policies is always better

than the other, if this is not the case, taxation should be preferred for small changes in z, while

separation should be preferred for larger changes. This relates to the two schools of thought we

presented in the literature review. If a social planner is convinced that the city is car-dependent,

and that any policy can only have a marginal impact on the modal split, then a policy of taxation

may be the best policy. But, if one believes that a large shift can take place, traffic separation is a

better choice.

4 Conclusion

We show that the combination of cross modal congestion and network externalities with hetero-

geneous commuters can lead to multiple equilibria. This explains why a priori similar cities might
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end up with very different patterns of car use. Some are characterized by an efficient public trans-

portation network and a low degree of congestion, others face inefficient public transportation and

high congestion.

We consider a social planner seeking to maximize the total welfare. She has two policy tools

at her disposal: traffic separation - which consists of separating cars and public transportation to

reduce the congestion generated by the former on the latter - and taxation. We show that both

of them have to be used to reach the first best. In addition, even considering the possibility for

the central planner to define the taxation as a function of the share of car users, setting the optimal

policies is a necessary but not sufficient condition to reach the optimal level of congestion. In some

circumstances, a city can be stuck in a situation where the use of public transportation remains

inefficient even if the optimal policies are implemented.

We identify two sources of inefficiencies. The sub-utilization of public transportation implies

that, at the margin, more commuters should use public transportation. This inefficiency can be

easily solved. The coordination failure suggests that commuters coordinate on a bad, Pareto dom-

inated equilibrium. In the presence of these multiple equilibria, the coordination issue may be

impossible to overcome by the social planner. Her incapacity comes from the very fact that she is

known to be maximizing total welfare. If the beliefs are such that commuters are stuck in a bad

equilibrium, her best response is to take the policy decision that maximizes total welfare given the

decisions of commuters. Therefore, it is not only the decisions of a social planner that influence

the way people commute in a city. It is also the way people commute, and more importantly how

they expect others to commute, that determines the policy decisions.

21



Bibliography

Anas, A., Arnott, R. and K. Small (1998). "Urban Spatial Structure" ; Journal of Economic Liter-

ature ; 36 ; 3 ; pp. 1426-1464

Arnott, R & de Palma, A and R Lindsey (1992). "Route choice with heterogeneous drivers and

group-specific congestion costs," Regional Science and Urban Economics, Elsevier, vol. 22(1),

pages 71-102, March.

Batarce, M and M Ivaldi (2011). "Travel Demand Model with Heterogeneous Users and Endoge-

nous Congestion: An application to optimal pricing of bus services" ; IDEI Working Papers,

Toulouse

Beesley, M and M Kemp (1987). "Urban Transportation" ; Handbook of Regional and Urban

Economics; vol. 2 ; chpt. 26 ; pp. 1023-1052

Beirão, G and Cabral, S (2007). "Understanding attitudes towards public transportation and private

car: A qualitative study" ; Transport Policy ; 14 ; pp. 478-489

Belzer, D and G Aultier (2002). "Transit oriented development: moving from rhetoric to reality" ;

Brookings Institutions Center on Urban Metropolitan Policy; Discussion paper ; 55pp.

Benhabib, J. and Rustichini, A. (1997). Optimal taxes without commitment.Journal of Economic

Theory, 77(2), 231-259.

22



Berglas, E, Fresko, D and D Pines (1984). “Right of Way and Congestion Toll”, Journal os Trans-

port Economics and Policy, Vol. 18, N◦2, pp. 165-187.

Calfee, J and C Winston (1998). "The value of automobile travel time: implications for congestion

policy"; Journal of Public Economics ; 69 ; pp.83-102

Cain A, Darido G, Baltes M, Rodriguez P and J Barrios (2006). "Applicability of Bogotá’s Trans-

Milenio BRT System to the United States", Federal Transit Administration Working Paper

Cervero R., Ferrell C and S Murphy. (2002). "Transit-Oriented Development and Joint Develop-

ment in the United States: A Literature Review" ; TCRP Research Results Digest Number 52 ;

National Research Council: Washington, D.C.

David, Q. and Foucart, R. (2012). Modal choice and optimal congestion (No. 12-03). Center for

Research in Economic Analysis, University of Luxembourg.

de Palma, A and R Lindsey (2002). "Private roads, competition, and incentives to adopt time-based

congestion tolling," Journal of Urban Economics, Elsevier, vol. 52(2), pages 217-241, September.

de Palma, A, Kilani, M and R Lindsey (2008). "The merits of separating cars and trucks," Journal

of Urban Economics, Elsevier, vol. 64(2), pages 340-361, September.

De Palma A and R Lindsey (2011). "Traffic congestion pricing methodologies and technologies",

Transportation Research Part C

De Vlieger I, De Keukeleere D and JG Kretzschmar. (2000). "Environmental effects of driving

behaviour and congestion related to passenger cars" ; Atmospheric Environment ; 34 ; pp.4469-

4655

Dittmar H and G Ohland (2003). "The new transit town: best practices in transit-oriented develop-

ment", Island Press.

23



Dobruszkes F and Y Fourneau (2007). "Coûts directs et géographie des ralentissements subis par

les transports publics bruxellois" ; Brussels Studies ; N◦7.

Duranton, G and M Turner (2011). “The Fundamental Law of Road Congestion: Evidence from

US Cities,” The American Economic Review, 101 (6), 2616–2652.

Echeverry JC, Ibáñez AM, Moya A, Hillón LC, Cárdenas M and A Gómez-Lobo (2005). "The

Economics of TransMilenio, a Mass Transit System for Bogotá", Economía, Vol. 5, No. 2 (Spring,

2005), pp. 151-196

Fosgereau, M and A de Palma (2012). “Congestion in a city with a central bottleneck”, Journal of

Urban Economics, 71, 3, 269-277

Goodwin, P (2004). "The Economic Costs of Road Traffic Congestion", ESRC Transport Studies

Unit, University College London Working Paper, 26pp

Handy S, Weston L and P Mokhtarian (2005). "Driving by choice or necessity?", Transportation

Research Part A: Policy and Practice ; pp. 183-203

Hiscock R, Macintyre S, Kearns A and A Ellaway (2002). "Means of transport and ontological

security: Do cars provide psycho-social benefits for their users ?" ; Transportation Research part

D ; 7 ; pp. 1119-1135

Jensen M (1999). "Passion and Earth in transport: a sociological analysis on travel behaviour" ;

Transport Policy ; 6 ; pp. 19-33

Kenworthy J and F Laube (1999). "Patterns of automobile dependance in cities: an international

overview of key physical and economic dimensions with some implications for urban policy" ;

Transportation Research part A ; 33 ; pp. 691-723

Kydland, F. E., and E.C. Prescott (1977). “Rules rather than discretion: The inconsistency of

optimal plans”; The Journal of Political Economy, 473-491.

24



Mas-Colell A (1984). "On a Theorem of Schmeidler" ; Journal of Mathematical Economics, 13,

201-206

Mirabel F (1999). "Répartitions modales urbaines, externalités et instauration de péages: Le cas

des externalités de congestion et des ‘externalités modales croisées" ; Revue économique ; 50 ; 5 ;

pp. 1007-1027

Mohring H (1972). "Optimization and Scale Economies in Urban Bus Transportation" ; The Amer-

ican Economic Review ; 62 ; 4 ; pp. 591-604

Parry I. (2002). "Comparing the efficiency of alternative policies for reducing traffic congestion" ;

Journal of Public Economics ; 85 ; 3 ; pp. 333-362

Parry I and K Small (2009). "Should Urban Transit Subsidies Be Reduced ?" ; The American

Economic Review ; 99 ; 3 ; pp. 700-724

Pucher J (1988). "Urban Travel Behavior as the Outcome of Public Policy: The Example of Modal-

Split in Western Europe and North America", Journal of the American Planning Association, Vol.

54, No. 4, pp. 509-520

Pucher J and J Renne (2003). "Socioeconomics of Urban Travel: Evidence from the 2001 NHTS"

; Transportation Quarterly ; 57 ; 3 ; pp. 49-77

Rath KP (1992). "‘A direct proof of the existence of pure strategy equilibria in games with a

continuum of players"’ ; Economic Theory, 2:427-433.

Rosenthal R (1973). "A class of Games Possessing Pure-Strategy Nash Equilibria" ; International

Journal of Game Theory ; 2 ; 1 ; pp. 65-67

Santos G and J Bhakar (2005). "The Impact of the London congestion charging scheme on the

generalized cost of car commuters to the city of London from a value of travel time savings per-

spective" ; Transport Policy ; 13 ; pp. 22-23

25



Steg L (2005). "Car use: lust and must. Instrumental, symbolic and affective motives for car use"

; Transportation Research part. A ; 39 ; pp. 147-162

Tabuchi, T (1993). "Bottleneck Congestion and Modal Split" ; Journal of Urban Economics ; 34 ;

pp. 414-431

Van Vugt M, Van Lange P and Meertens R (1996). "Commuting by car or public transportation ?

A social dilemna analysis of travel mode judgements" ; European Journal of Social Psychology ;

26 ; pp. 373-395

Verhoef E and K Small (2004). "Product Differentiation on Road. Constrained Congestion Pricing

with Heterogeneous Users" ; Journal of Transport Economics and Policy ; 38 ; 1 ; pp. 127-156

Vickrey W (1963). "Pricing in Urban and Suburban Transport" ; The American Economic Review

; 53 ; 2 ; pp. 452-465

Wardman, M (2001). "A review of British evidence on time and service quality valuations" ;

Transportation Research Part E: Logistics and Transportation Review, Volume 37, Issues 2-3,

April-July 2001, pp 107-128

Young P (1993). "The Evolution of Conventions" Econometrica, 61, 1, 57-84

Young P (1996). "The Economics of Convention"; The Journal of Economic Perspectives, 10, 2,

105-122

1 Proofs

1.1 Proof of Proposition 1

Proof. We know from Lemma (2) that an equilibrium is a solution to

G(zk) = fc−W (zk)+∆(α,zk).
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First, we show that the existence of a Nash equilibrium, zk, satisfying

∂G(z)
∂ z

∣∣∣∣
z=zk

>
∂ [ fc−W (z)+∆(α,z)]

∂ z

∣∣∣∣
z=zk

(13)

is a sufficient condition for the existence of multiple equilibria. Second, we show that this is a

necessary condition.

(i) If there exist such a zk, then for any η > 0 arbitrarily small, we have

G(zk) = fc−W (zk)+∆(α,zk)

G(zk +η) > fc−W (zk +η)+∆(α,zk +η)

G(zk−η) < fc−W (zk−η)+∆(α,zk−η).

Since the support of F is (−∞,∞) and therefore G(1) < fc−W (1)+∆(α,1) and G(0) > fc−

W (0)+∆(α,0). It implies that the functions must cross at least three times and there exist at least

three equilibria. So, condition (13) is a sufficient condition for the existence of multiple equilibria.

(ii) Assume that, at any Nash equilibrium zk, we have

∂G(z)
∂ z

∣∣∣∣
z=zk

<
∂ [ fc−W (z)+∆(α,z)]

∂ z

∣∣∣∣
z=zk

then for any η > 0, we have

G(zk) = fc−W (zk)+∆(α,zk)

G(zk +η) < fc−W (zk +η)+∆(α,zk +η)

G(zk−η) > fc−W (zk−η)+∆(α,zk−η).

Since the support of F is (−∞,∞), for any z′,z′′ : z′ < zk < z′′, G(z′) > fc−W (z′)+∆(α,z′) and

G(z′′)< fc−W (z′′)+∆(α,z′′). This implies that the functions cross only once and condition (13)

is necessary.
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From (i) and (ii), condition (13) is, indeed, a necessary and sufficient condition.

1.2 Proof of Proposition 2

Proof. Assume there exist T equilibria z1 > z2 > ... > zT

(1) We want to show that zT Pareto dominates any equilibrium z j, j = {1, ...,T −1}

(2) For any pair z j, z1 with z j > zT , there are three categories of commuters:

(a) Commuters with εi such that F(ε)< 1− z j. Their best response is to use public transportation

in both equilibria. Those users are better off in equilibrium zT as

t pt(α,zT )< t pt(α,z j) and W (zT )<W (z j),

then

t pt(α,zT )+W (zT )+
εi

2
< t pt(α,z j)+W (z j)+

εi

2

(b) Commuters with εi such that 1− z j < F(ε) < 1− zT . Their best response is using public

transportation in equilibrium zT and using a car in equilibrium z j. Those users are better off in

equilibrium zT . Indeed, as commuters reveal their preferences by choosing their mode, then for

any F(ε j) ∈ [1− z j,1− zT ]:

W (z j)+ t pt(α,z j)+ ε j > fc + tc(α,z j) (14)

and

W (zT )+ t pt(α,zT )+ ε j < fc + tc(α,zT ). (15)

As congestion increases in z,

fc + tc(α,z j)> fc + tc(α,zT ).
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Hence, it is straightforward that

fc + tc(α,z j)>W (zT )+ t pt(α,zT )+ ε j

(c) Commuters with εi such that 1− zT < F(ε). Their best response in both equilibria is to take

the car. Those users are better off in equilibrium zT as:

fc + tc(α,z j)> fc + tc(α,zT ).

1.3 Proof of Proposition 6

Proof. Starting from α0 ≥ 0 and T0 = 0 and given the definition and the properties of β (α,z) (note

that β (α,z) =− t pt
α (α,z)
tc
α (α,z) with βα(α,z)≥ 0 ∀z ∈ [0,1]), it is possible to define γ (α) such that

t pt (α1,z1)− t pt (α0,z1) =−γ (α1) [tc (α1,z1)− tc (α0,z1)] , (16)

with γ ′ (α)> 0.

(i) Consider two policies: α1 (α1 > α0 is associated with T = 0) and T1 (associated with α0)

yielding the same equilibrium z1. By definition, a commuter indifferent between the two policies

has an ε j such that

fc +T1−W (z1)+∆(α0,z1) = ε j = fc−W (z1)+∆(α1,z1) .

This simplifies to

T1 = ∆(α1,z1)−∆(α0,z1) ,
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which can be conveniently rewritten as

T1 = [tc (α1,z1)− tc
α0,z1]−

[
t pt (α1,z1)− t pt (α0,z1)

]
.

By assumption, this leads to

T1 = (1+ γ (α1)) [tc (α1,z1)− tc (α0,z1)] . (17)

(ii) Car users are indifferent between these two policies if ∃ α1, T1, z1 such that

(1− z1)T1 = tc (α1,z1)− tc (α0,z1) .

These conditions imply

(1− z1) [1+ γ (α1)] [tc (α1,z1)− tc (α0,z1)] = tc (α1,z1)− tc (α0,z1)

(1− z1) =
1

1+ γ (α1)
.

Now consider two alternative policies (α2 and T2) associated with a higher use of public trans-

portation (z2) with z2 < z1. Car users are now better off with traffic separation than with taxation

iff

(1− z2)T2 > tc (α2,z2)− tc (α0,z2) .

From the expression of T in equation (17),

(1− z2) [1+ γ (α2)] [tc (α2,z2)− tc (α0,z2)] > tc (α2,z2)− tc (α0,z2)

(1− z2) >
1

1+ γ (α2)
.

This is always true as z2 < z1, γ (α2)≥ γ (α1) and given that (1− z1) =
1

1+γ(α1)
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2 A delegation mechanism

Consider that the policy tools are delegated to an agency. The agency is fully independent of the

social planner. It is entirely credible in implementing traffic separation α∗ and committing to a tax

scheme such that the only equilibrium share of commuters is z∗. An optimal tax scheme always

exists and is any function T̂ (z) meeting the following conditions, ∀z′ > z∗ and z′′ < z∗:

G(z′)< fc + T̂ (z′)−W (z′)+∆(α∗,z′),

G(z′′)> fc + T̂ (z′′)−W (z′′)+∆(α∗,z′′),

G(z∗) = fc + T̂ (z∗)−W (z∗)+∆(α∗,z∗). (18)
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