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Abstract 

A link between brain dysfunction and advanced kidney disease was first noted in the 1930s. Terms 

such as “uremic encephalopathy”, “dialysis disequilibrium syndrome” and “dialysis dementia” were 

later used to describe impairment of brain function in severe uremic states or during the rapid 

initiation of early dialysis regimens. Recent data, however, suggest brain damage can be present at 

earlier stages in chronic kidney disease (CKD), and manifest with a continuum from mild 

involvement (mild cognitive impairment, MCI) up to clinically relevant dementia. Being a 

prodromal stage, MCI should be identified and studied before irreversible damage is present. MCI 

is detectable in up to 30-60% of patients with mild CKD (MCI-CKD). Brain imaging and 

electrophysiological studies suggest that MCI-CKD represents a more complex clinical entity 

different in many ways from MCI seen in the general population, which is more often age-related 

and linked to widespread vascular disease. Moreover, even hemodialysis regimens used today 

appear unable to prevent MCI-CKD, and may even worsen it, whereas kidney transplantation seems 

to limit disease progression. This suggests that factors not fully correctable by dialysis, including 

uncleared “middle molecules”, inadequately controlled hyperparathyroidism or chronic anemia, 

may contribute to impaired cognition. Furthermore, MCI-CKD is not only related to a reduced 

glomerular filtration rate (GFR) and/or the presence of albuminuria, but also carries an increased 

mortality risk. Most current observations are drawn from retrospective data and based on 

comparisons made across different studies. However, new tools now available in neuroscience 

(fMRI, brain tractography, two-photon microscopy, high-throughput robotic analysis of neuronal 

cultures) hold the promise of better insights into the characterization of MCI-CKD, its pathogenesis, 

and potential biomarkers. 

 

Introduction 

CKD is now seen as a systemic disease involving also the central nervous system [1], but the link 

between the kidney and different organ systems and disease went unnoticed for a long time. The 

king of Poland, Stephen Bathory (1533-1586) suffered from CKD due to polycystic kidney disease 

and depression [2]. Similarly, Wolfgang Amadeus Mozart was also thought to have had CKD [3] 

and depression [4]. A list of “Famous People Who Have Died from Kidney Disease” [5] includes 

many who suffered from both CKD and depression or other signs of mental illness.  
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Is this a coincidence or actually evidence of a link between kidney disease and brain dysfunction? 

This is not a merely an academic question because all forms of mental illness can seriously impair 

an individual’s quality of life, and are frequently associated with progression of diseases and 

premature mortality so it is worth the efforts trying to answer it. 

Europe and much of the industrialized countries are experiencing growing numbers of patients with 

CKD within their aging populations [6]. CKD is complex and potentially fatal: (i) all organs are 

affected, sooner or later; (ii) the balance of plasma volume, electrolytes, acid-base and minerals, 

metabolites, hormones, and proteins is disturbed, and (iii) patients often need a multidisciplinary 

team approach managing complex comorbidities, drug regimens, and special diets. Although the 

prognosis of patients with CKD remains poor, their increasing life expectancy has shifted medical 

attention from life-threatening emergencies to long-term complications and sequelae, and how to 

improve quality of life [7]. Indeed, kidney failure has detrimental effects on health-related quality of 

life (HRQoL), reaching levels similar to those seen in patients with metastatic cancer [8]. This 

might be due to psychological factors, being both kidney disease and cancer chronic diseases with 

bad prognosis. However, although the effect of CKD on quality of life is more evident in advanced 

stages (stage G4+) and in older patients [9-10], a large study has shown a significant decrease in 

HRQoL as early as CKD stage G2 [11].  

Notably, neurological and cognitive impairments [12], and depression [13] are among the most 

debilitating consequences of CKD contributing to the significantly reduced HRQoL [14]. 

 

Mild Cognitive Impairment in CKD (MCI-CKD) 

Historical perspective 

The recognition of the association of uremia with brain dysfunction goes back to the 1930s when 

Toulouse, Marchand and Courtois postulated “a specific disease entity with azotemia as one of the 

most characteristic symptoms: azotemic acute psychotic encephalitis” [15]. The disease was 

subsequently renamed “uremic encephalitis” or “uremic encephalopathy” [16], including “the full 

spectrum of organic brain syndromes, progressing from mild impairment of intellect to coma” [17]. 

At the same time, post-mortem studies in humans, particularly by Olsen [18], and in animal models, 

were devoted to identifying the underlying brain abnormalities. The major anatomical changes 

observed in uremia were white matter abnormalities, brain atrophy, and neuronal degeneration [17]; 
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functional alterations were also observed, consisting of changes in the permeability of the blood-

brain barrier with resultant brain edema [19], and altered content of neurotransmitters [20]. 

Initially, “uremic encephalopathy” was thought to be reversible by hemodialysis based on the 

assumption that it was caused by retained small molecule toxins. Already in 1967 Fishman, 

however, predicted that “it is very likely that no single toxic compound will be identified” [17], 

meaning that brain alterations might be due to multiple individual and additive causes. 

At the end of the 1960s another neurological state, caused by aggressive dialysis in advanced 

uremic states, was identified and called (dialysis) “disequilibrium syndrome” [21]. In the 1970s a 

peculiar form of dementia associated with chronic dialysis, called “dialysis dementia”, was also 

described and attributed to trace metals, most likely aluminum [22]. 

In the 1990s, significant improvements in dialysis methods and regimens were achieved, and the 

occurrence of advanced, untreated uremic states was significantly reduced. The incidence of 

“disequilibrium syndrome”, “dialysis dementia” and “uremic encephalopathy” was beginning to 

decline and attention shifted to the potentially beneficial brain effects of epoetin and growth 

hormone in CKD [23]; probably due to the wider availability of these new therapeutic options. 

Furthermore, as dialysis outcomes were steadily optimized, in part due to working groups such as 

DOQI in the 80-90s, the meaning of the term “uremia” was changing from the terminal stages of 

body intoxication to the “residual syndrome” defined by Depner [24] as the effects not corrected by 

dialysis and possibly the result of other retained metabolic waste products. 

With the success of the KDOQI classification of CKD in 2002, the term uremia was confined to the 

terminal condition of (often more acute) intoxication. Dialytic techniques then focused on the 

removal of medium-sized molecules, such as beta-2 microglobulin, responsible for amyloid 

deposition in tissues, including the brain [25]. Unfortunately, no data are available yet on the 

prevention of MCI using these new techniques. 

At the same time milder neurological disease states, and more specifically cognitive decline in 

earlier CKD stages, came into focus. Thus, current studies no longer consider “uremic 

encephalopathy” as such, but are more commonly concerned with the recognition and nature of 

cognitive decline in CKD. 

 

Cognitive assessment 
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Cognitive decline is one of the behavioral manifestations of brain damage in CKD. Other 

manifestations of brain dysfunction are sleep disturbances and depression, which represent a wide 

topic that is not covered in the present review. 

CKD patients show high prevalence of depression that can often appear as a reversible form of 

cognitive impairment, hence it is often called “pseudodementia” or “functional dementia” [26]. The 

identification of this form is difficult and the reader should refer to more specialized reviews (see 

e.g. [27]). 

Depression might itself be an effect of cognitive impairment. Prototypical forms of dementia such 

as Alzheimer’s disease and dementia with Lewy bodies, are, in fact, accompanied by a high 

prevalence of depression [28]. Furthermore, cognitive impairment usually persists after significant 

improvements in depressive symptoms (see e.g. [29]). Therefore, the coexistence of depression and 

MCI-CKD might be part of a more general phenomenon, rather the presence of two different 

nosological entities. 

Similarly, the association of peripheral neuropathy and cognitive impairment in CKD patients can 

be observed in other conditions such as diabetes [30], vitamin B-12 deficiency [31] and amyloidosis 

[32]. These associations await to be better understood in the population of CKD patients. 

The cognitive decline can manifest with a continuum from mild involvement, or mild cognitive 

impairment (MCI), up to clinically relevant dementia, when interference with daily life and 

independency is present. Being a prodromal stage, MCI should be identified and studied in CKD 

before irreversible damage is present. MCI is characterized by mild impairment in several key 

cognitive domains, i.e., executive functions of memory (learning and attention), problem solving 

(processing), and self-control (emotion - depression).  

These domains can be captured by screening tests, e.g. the Montreal Cognitive Assessment 

(MoCA), and neuropsychological tests, often leading to the diagnosis of MCI (Figure 1). The 

MoCA has been specifically designed for the detection of MCI, with a sensitivity of 80 to 100% and 

specificity of 50 to 76% using a cut-point of 25/26 [33].  

Routine screening for MCI in CKD patients is not yet recommended, notwithstanding the high 

prevalence of the condition. This could be partially explained by the lack of intervention strategies 

once the condition has been recognized. However, the nephrologist should suspect cognitive 

impairment when the patient (or the caregiver) reports forgetfulness/confusion about medications,  

appointments, or inappropriate calls, or when the patient reports depression or altered sleep patterns, 
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and when the patient is not able to answer questions without the family member/caregiver, and in 

all cases of history of stroke or unexplained falls. 

MCI is a transitional stage, preceding clinical dementia, with cognitive impairment exceeding 

normal aging and age-associated decline [34]. The main difference between dementia and MCI is 

that in the former the severity of cognitive impairment usually interferes with activities of daily 

living; however, it is almost certainly a spectrum with evidence that modifiable cardiovascular risk 

factors, physical exercise, and cognitive training can slow progression [35] . 

Nature of cognitive impairment 

In recent years several clinical studies have concentrated on the burden of MCI in CKD patients 

(see e.g. [36-38]). Among patients with CKD, the prevalence of MCI has been estimated to be as 

high as 30%[39]  - 63% [40], which is approximately twice as high as in the age-matched general 

population. The stage of CKD is apparently related to the risk of MCI: the lower the eGFR the 

higher the risk of MCI (see also Table 1). Notably, discernible cognitive changes may appear 

already in early CKD stages [41].  

Interestingly, patients with end-stage renal disease (ESRD) have a similar MCI burden with or 

without hemodialysis, or peritoneal dialysis (Table 1). This is surprising because recent data show 

that hemodialysis modifies cerebral blood flow as a function of ultrafiltration volume [42]. 

However, after 12 months this brain hemodynamic effect correlates with a better performance with 

the MoCA test for MCI [43]. This observation is also supported by the improvement of the 

cognitive functions after the start of dialysis, possibly with better results using peritoneal dialysis 

compared with hemodialysis [44]. Therefore, the decline of cerebral blood flow observed during 

hemodialysis may not contribute to MCI. 

This might be interpreted as the presence of toxins not eliminated by the dialysis process, or the 

deficit of (as yet unknown) neuroprotective substances produced by the kidney that have not been 

directly replaced yet.  

Much effort has been devoted to identifying specific risk factors for MCI in patients with CKD. To 

address this problem, investigators had to control several risk factors known for MCI in the general 

population, such as age, a family history for MCI, the education level, exposure to environmental 

chemicals, physical inactivity, diabetes, heart disease, stroke or other past brain injuries, male 

gender, hypertension, smoke, weight and hypercholesterolemia [45]. Genetic susceptibility towards 
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MCI, such as apoE genotype, is likely to play the same role in the general population and in CKD 

patients [46]. Nephrologists can easily recognize that many of these factors accompany CKD itself. 

However, when these confounders are taken into consideration, other CKD-specific risk factors can 

be identified such as albuminuria [47], normalized brain tissue volume, hemoglobin levels, 

glycaemia, serum parathyroid hormone and uric acid levels[48]. Another CKD-specific risk factor 

for MCI is the frequent presence of electrolyte disorders. Among these, hyponatremia is relatively 

frequent in ESRD and has been associated with lower scores for tests of MCI [49]. However, it 

should be underlined that hyponatremia is also a risk factor for MCI in non-CKD patients [50]. 

Other possible CKD-related factors for MCI are the duration of CKD, poor nutrition/protein energy 

wasting, neuro-psychological aspects, functional impairment, anemia, acidosis, disturbed sleep, and 

polypharmacy [51], although they are difficult to assess and have not been explored in any detail. 

The relative contribution of these and other factors and the still poorly understood underlying 

mechanisms remain major obstacles to prevention and treatment. 

In the population of CKD patients under dialysis, additional risk factors for MCI are related to the 

process and adequacy of renal replacement therapies. Specifically, risk factors for MCI are the total 

number of dialysis-related hypotension events [52] and, counterintuitively, a high equilibrated Kt⁄V 

>1.2 [39]. 

With respect to the dialysis modality, the risk for MCI is lower when the patients are placed on 

peritoneal dialysis or a central venous catheter is avoided [53]. However, the effects of different 

dialysis modalities on MCI could be spurious because of a selection bias of the patients, since 

randomization is usually not feasible.  

Kidney transplantation appears to reduce MCI (see Table 1) and this change is likely to be stable at 

1 and 2 years after transplantation, suggesting the potential for some reversibility [54]. The reasons 

for this effect are still unclear. An attractive and untested hypothesis is that the kidney produces 

neurotrophic factors that are necessary for normal cognition in the long-term. However, several 

other hypotheses are equally possible at this stage. 

Recent data suggest that a specific mechanism of brain impairment in CKD may be linked to 

chronic inflammation [13], altered levels of serum uric acid, parathyroid hormone levels, low 

glycemia [48] and of neuropeptide Y (NPY), a sympathetic neurotransmitter thought to be involved 

in cognition and memory [55] and dysregulated in CKD [56]. The relevance of NPY is partially 

supported by the presence of autonomic dysfunction in CKD [57]. MCI itself is a risk factor for 
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mortality, as already mentioned, and contributes significantly to the poorer quality of life of CKD 

patients [51].  

 

Is MCI-CKD a new and recognized clinical entity? 

MCI represents highly heterogeneous phenotypes with different underlying etiologies (Figure 2). 

The MCI diagnosis relies (at least in part) on questionnaires testing multidimensional abilities of the 

patient (arithmetic, basic motor skills, time and place perception, repeating word list, language use 

and comprehension). This multidimensional testing procedure may lead to the grouping of different 

disease entities under a single heading of “MCI”.  

Indeed, the concept of MCI was developed in the field of dementia, particularly for the population 

at risk of Alzheimer's disease. Only much later this concept has been applied to the study of 

cognitive changes in CKD.  

Therefore, it is very instructive to use the large body of neurophysiological and imaging data 

available from patients with MCI in the general population and to compare these with the MCI 

pattern found in the population of CKD patients. To distinguish these two populations, we will use 

the term MCI-GP when referring to the general population and MCI-CKD when referring to the 

CKD population. 

A large body of data comes from electroencephalographic (EEG) recordings. The first EEG studies 

in CKD were performed in the early 1960s [58, 59]. In a recent study comparing EEGs from MCI-

GP with MCI-CKD, subtle differences emerged between the two populations: MCI-GP was 

characterized by alterations in the alpha rhythm (8-13 Hz) whereas MCI-CKD was characterized by 

alterations in the delta frequencies (<4Hz) [60] . The interpretation of these differences is 

speculative: the alpha rhythm in the occipital cortex is normally present during quiet wakefulness 

and is thought to represent sensory information processing, modulated by the cholinergic input to 

the cortex. Conversely, the delta rhythm is normally present during sleep and is thought to derive 

from abnormal interaction between the thalamus and the cortex. Therefore, MCI-GP might be 

characterized by an altered cholinergic input, whereas in MCI-CKD an altered cortico-thalamic 

connectivity might prevail, although this is entirely speculative.  

Imaging data based on Magnetic Resonance Imaging (MRI) yielded results concerning the brain 

alterations in MCI-CKD. Unfortunately, no study directly compared patients with MCI-GP and 

MCI-CKD using MRI. Morphological data on the brain in CKD were initially available only on 
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post-mortem samples; the first imaging study in living patients with CKD, using MRI, was 

published in the 1990s and focused on uremic encephalopathy, the involvement of basal ganglia, 

and its reversibility with dialysis [61] . 

Recent data show a reduction in gray matter (particularly in amygdala, hippocampus) with sparing 

of white matter in MCI-GP [62, 63]. Conversely, MCI-CKD presented with mostly white matter 

loss (demyelination), particularly in deep white matter, and reduced gray matter volume (possibly 

correlated to the axonal damage following demyelination) [64]. Again, the interpretation of these 

morphological differences is speculative, and toxic effects of uremic substances cannot be excluded. 

An advanced MRI technique called “Diffusion Tensor Imaging” (DTI) provided more detail of 

damages in the white matter. DTI allows the visualization of major brain axonal bundles (such as 

the corpus callosum) and is therefore also called “brain tractography”. No direct comparison 

between MCI-GP and MCI-CKD exists, and so we must rely on separate reports. In MCI-GP 

modifications in white matter tracts were found in right and left frontal lobe, fornix, corpus 

callosum, right temporal lobe, hippocampus head, corpus callosum right, and forceps major [65], 

with lower connectivity at the level of the Basal Nucleus [66]. Conversely, in MCI-CKD DTI 

showed abnormal myelination in the anterior limb of the internal capsule [67, 68] and whole brain 

microstructural changes [69]. 

Finally, functional imaging data relying on brain oxygenation levels (fMRI) or positron emission 

tomography (PET) scans have been used to characterize brain activity in MCI-GP and MCI-CKD, 

but again without direct comparison. The first PET study of the brain in uremia was conducted in 

2004, again focusing on the basal ganglia [70]. fMRI data showed similarities in cerebral blood 

flow in patients with MCI-CKD and those with affective disorders [71] , whereas this finding has 

not been observed in patients with MCI-GP. 

Additional information on brain architecture/function comes from animal models. Different animal 

models of MCI (without CKD) have been proposed, including aged or hypertensive rodents, and 

transgenic mice overexpressing Aβ at an early phase before extensive brain deposits [72] . These 

animals show various degrees of cortical atrophy and damage to the cholinergic system [73] . 

Conversely, animal models of CKD (subtotal nephrectomy or high adenine diet) with cognitive 

impairment [74, 75] show altered sleep patterns [76]  with normal neural architecture [77] . 

The electrophysiologic, imaging and animal model data suggest differences between MCI-GP and 

MCI-CKD (see Table 2). These differences are likely to stem from the underlying pathogenesis of 

cognitive impairment in individuals with and without CKD. Since MCI-GP is likely to be a clinical 
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entity distinct from MCI-CKD, the latter should be considered as a distinct reno-cerebral syndrome. 

However, formal testing of this difference has not yet been carried out and further questions are still 

open: is gender influencing/modifying the development of MCI-CKD, the same way it is known to 

influence MCI-GP? Is the CKD stage important? Is the etiology of CKD relevant (there is evidence 

that albuminuria and eGFR are associated with MCI)? 

Taking an historical standpoint, this reno-cerebral syndrome differs from “uremic encephalopathy”, 

because it appears well before the uremia and does not improve with dialysis. It might be (partially) 

reversible, although data on this are still scarce. Finally, it is a milder neurological phenotype, 

presumed to be a very early stage of what may become full-blown clinical dementia. In that respect 

it is a potential health and resource-demanding “time bomb” in the CKD population and urgently 

needs to be addressed.  

 

Open questions and opportunities for MCI-CKD: Imaging and ‘omics’ 

Although the first description of uremic encephalopathy was published some 80 years ago, our 

understanding of brain dysfunction in CKD, prevention and treatment, is still in its infancy. The 

pathogenesis MCI-CKD remains in the realm of hypothesis and its specificity when compared with 

MCI-GP is based on limited data. Nevertheless, the problem has gained increasing attention among 

nephrologists as shown by a rapidly increasing number of publications describing neurological and 

psychological changes in CKD patients: the number of published papers containing the keywords 

“CKD” and “brain” were only 130 up to the year 2012, whereas in the years 2013-2018 they are 

328 (data from Pubmed). 

The main advance in our understanding of this syndrome in the last 80 years has been more of a 

change in terminology, from uremic encephalopathy to (what we call here and today) MCI-CKD. 

While this suggests a growing recognition of the problem of MCI, it also risks failing to take full 

account of earlier data and published findings. 

We will try to summarize what we believe are the main open questions worth addressing with the 

aid of newer technologies: 

1. Does the distinction between MCI-GP and MCI-CKD really exist or does MCI-CKD only 

represent an ‘extreme’ or ‘accelerated’ phenotype of MCI-GP? 
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2. What is the contribution of accelerated aging and conventional cardiovascular risk factors to 

MCI-CKD? 

3. Do we have firm criteria for the diagnosis of MCI-CKD? 

4. What is the ‘natural history’ of MCI-CKD? 

5. Can MCI-CKD be treated, prevented or even reversed? 

6. Can we properly assess the personal and socio-economic burden of MCI-CKD? 

Why should we be more optimistic today about an advance in this field? There are at least two 

reasons: one is the theoretical approach, and the second is technological. 

On the theoretical side, the formal comparison of MCI-CKD and MCI-GP is urgently needed and is 

likely to deepen our understanding of all forms of MCI. At present, the ability to diagnose and treat 

MCI is almost non-existent. Psycho-therapeutic approaches or physical exercise can be helpful, but 

are of limited efficacy. Newer dialysis techniques (e.g. hemodiafiltration) in patients with MCI-

CKD represent an opportunity to evaluate these potential therapeutic approaches. Furthermore, 

most studies have been focused on the association of eGFR and/or albuminuria and MCI, but it is 

plausible that other measures of kidney function could be useful in understanding the kidney-brain 

link [78]. Moreover, the axis involving sympathetic-para-sympathetic imbalance and inflammation 

in CKD warrants further investigation. 

On the technological side, new high throughput tools have become available that may provide new 

information on the early identification and pathogenesis of MCI-CKD. These techniques promise to 

unravel (novel) (neuro)toxins and to systematically verify their neurotoxic potential.  

So far, fMRI and brain tractography have not been used systematically in this field, particularly to 

compare MCI-CKD and MCI-GP. The ability of these techniques to combine morphological and 

functional imaging of the human brain in vivo with neuro-psychological testing is a unique 

opportunity. Furthermore, new transgenic animal models are now available that allow studying 

brain activity at the single neuron level in vivo: transgenic animals with neurons expressing proteins 

constitutively fluorescent or that change their fluorescence with activity to localize and define 

particular neuronal populations, and also neurons that can be selectively activated using laser pulses 

(optogenetics). New technologies such as 2-photon microscopy and super-resolution microscopy 

should allow us to overcome some of the major limitations of previous imaging techniques. The 
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“Clarity” method can facilitate an unprecedented ability to investigate the 3D location of neurons in 

great detail. Robotic systems for drug identification and well-characterized neuronal cell lines 

would allow us to formally and thoroughly test large lists of potential uremic (neuro)toxins, as well 

as new drugs, and their combined effects. The possibility of deriving stem cells from patients and 

brain organoids could represent a new in vitro model for studying the pathogenesis and reversibility 

of MCI. 

The widespread availability of “omic” technologies (proteomics, peptidomics, genomics, 

transcriptomics, metabolomics, etc) provides a large amount of data that may predict or explain the 

occurrence of MCI and its neurological counterparts. Finally, new statistical techniques to handle 

‘big data’, such as Systems Genetics [79] and Imaging Genetics [80], network analysis and the 

application of artificial intelligence algorithms promise a new level of understanding.  

These new technological and methodological advances promise the opportunity to gain a new and 

better understanding of MCI-CKD, as well as MCI-GP. MCI-CKD will become an increasing 

problem faced by the nephrology community and it is therefore essential that we liaise closely with 

our clinical colleagues in neurology, neuro-psychology, and radiology, as well as basic scientists in 

neuroscience to address this anticipated major personal health and socio-economic burden. 
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Table 1: Prevalence of MCI and dementia in different populations 

Population Prevalence of MCI Prevalence 

of dementia 

References 

Healthy subjects 7%-26% 13% [81-83] 

Early CKD 

(stage 3) 

14% Unknown [39,84] 

Late CKD (stage 

4-5) 

16-38% Unknown [85, 86] 

Hemodialysis 26-60% 15%-36% [41, 87, 88] 

Peritoneal 

dialysis 

35% 3.9%-31% [41, 82, 89] 

Transplantation (only studies 

comparing pre-post 

transplant scores) 

22% [56] 
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Table 2. Morphological, functional and pathogenetic features of MCI-CKD 

 MCI general 

population 

MCI-CKD References 

Pathogenesis Unknown Uremic (neuro)toxins  

Tractography Lower connectivity of 

the Basal Nucleus 

Internal capsule 

demyelination 

[65, 66, 68]  

MRI Reduced amygdala and 

hippocampus gray matter 

Deep white matter 

demyelination 

[48, 61, 64, 67, 69, 71]  

EEG Altered cortical 

synchronization at alpha 

frequencies 

Altered cortical 

synchronization at delta 

frequencies 

[58-60]  

Animal 

models 

Cortical atrophy, damage 

to the cholinergic system 

Normal neural 

architecture 

[72-74]  
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Figures legend 

Fig. 1. Clinical testing of mild cognitive impairment (MCI) in CKD patients. The diagnosis 

of MCI requires normal execution of routine tasks, and without interference with daily 

activity. Neuropsychological testing can be useful for screening, although a full diagnosis 

requires further documentation. The neuropsychological tests usually evaluate multiple 

cognitive domains that are summarized in a single score. The Montreal Cognitive 

Assessment has been validated as having better sensitivity then Mini Mental State 

Examination (MMSE) for MCI screening. 

Fig. 2. MCI subtypes. According to the number of cognitive domains involved, and the 

presence of memory impairment, MCI is further sub-classified, which can partially separate 

MCI into different etiologies. 


