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Positively interacting strains that 
co-circulate within a network 
structured population induce 
cycling epidemics of Mycoplasma 
pneumoniae
Xu-Sheng Zhang  1,2, Hongxin Zhao1, Emilia Vynnycky1,3 & Vicki Chalker1

Mycoplasma pneumoniae (MP) is considered a common cause of pneumonia, causing about 15–20% 
of adult community-acquired pneumonia (CAP) and up to 40% of cases in children. It has often been 
observed that MP epidemics last approximately 1–2 years and occur every 3–7 years, with the dominant 
strains alternating between epidemics. However, the underlying mechanism by which these cycles and 
changes in the dominant strains occur remains unclear. The traditional models for the periodicity of MP 
epidemics neglected two phenomena: structured contact patterns among people and co-circulating 
strains of MP. We also believe that the two distinctive aspects of MP epidemics: prevalent serotype 
shifts among epidemics and incidence cycling of MP, are interconnected. We propose a network 
transmission model that assumes two strains of MP are transmitted within a network structured 
population and they can interact as secondary infections with primary infections. Our studies show 
that multiple strains that co-circulate within a network structured population and interact positively 
generate the observed patterns of recurrent epidemics of MP. Hence our study provides a possible 
mechanism for the cycling epidemics of MP, and could provide useful information for future vaccine 
design and vaccine evaluation/monitoring processes.

Mycoplasma pneumoniae (MP) is an “atypical” bacterium that causes acute respiratory infection in humans of 
all ages. MP is considered a common cause of pneumonia: MP causes about 15–20% adult community-acquired 
pneumonia (CAP) and up to 40% cases in children; however, not every infected patient actually develops pneu-
monia1–3. MP infection generally tends to occur more frequently during the summer and autumn months when 
other respiratory pathogens are less prevalent; but the disease incidence does not appear to be related to season or 
geography4,5. For example, we also notice that MP infections have been observed to occur more frequently in win-
ter months in England and Wales6,7. Epidemics of MP tend to occur every 3–7 years in the general population6–8. 
Analysis of laboratory reports of MP infections in England and Wales from 1975 to 20099 has indicated that 
these epidemics last on average 18 months occurring at approximately four yearly intervals. MP is a polymorphic 
pathogen10,11: for example, Chalker et al.6 identified eleven strain types circulating in England and Wales during 
October 2010 to January 2011. MP strains can be differentiated based on differences in the P1 adhesin gene or 
in the number of repetitive sequences at a given genomic locus using multilocus variable number tandem repeat 
analysis (MLVA)12,13. Kenri et al.14 noticed that more than one serotype of MP were circulating within Japanese 
populations. Kogoj et al.15 observed a shift in the dominant MP strain between two epidemics that occurred in 
Slovenia in 2006 and 2016. Multiple strains of MP and their co-circulation were also observed in other countries 
(e.g.7,16–19). Although there are many different isolates and strains, analysis of repetitive elements distributed in 
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variable size and sequence over the genome of MP strains suggested two main types: P1 type 1 and P1 type 
214,16,20,21.

Humans are the sole reservoir of MP and transmission requires close contact. Outbreaks typically occur 
within closed populations, such as in schools, military premises and prisons. Airborne spread of aerosols and, 
potentially, indirect contact with contaminated items, may contribute to transmission. The transmissibility of an 
infectious agent can be estimated by calculating the basic reproduction number (R0), which is defined as the mean 
number of secondary infectious cases generated by one primary infectious case introduced into a totally suscep-
tible population22. Using seroprevalence data from a western population, Nguipdop-Djomo et al.9 estimated R0 
of MP to be 1.7 (95% confidence interval (CI) 1.6–1.9), indicating low transmissibility. The incubation period 
of MP averages 2 to 3 weeks. The duration of infectiousness is unclear and is commonly estimated to be up to 3 
weeks from onset of illness23. Immunity occurs post infection, but later re-infection with different subtypes is rec-
ognized, suggesting the immunity is not lifelong and no strong cross protection between different subtypes21,24,25. 
The duration of immunity ranges from 2 to 10 years26.

Seasonal forcing in transmission has been proposed as one determinant for the periodic patterns in other 
infectious diseases27; however, Omori et al.28 found that the seasonal forcing that occurs annually cannot generate 
the multi-year periodicity of MP incidence. They28,29 further proposed that the certain finite delay in the progres-
sion from immunity to the susceptible may provide an explanation to the occurrence of the cyclic epidemics of 
MP infections. More concretely, Omori et al.28 show that “minor variation in the duration of immunity at the pop-
ulation level must be considered essential for the MP epidemic cycle because the MP cyclic incidence pattern did 
not replicate without it.” As shown in Fig. 3 of 28, this requires that the distribution for the duration of immunity 
should have a variance of around 0.63. Up to now no empirical data are available for estimating the distribution 
of the duration of MP immunity.

The MP incidence in England and Wales has declined7 following the widespread use of macrolides antibiotics 
since introduction in the late 1990s’30. Due to the emergence of macrolide-resistant strains, MP infections are of 
increasing public health interest31,32. An understanding of the mechanisms by which recurrent epidemics of MP 
infection occur is urgently needed to enable control of future epidemics.

The two distinctive aspects of the MP epidemics: the prevalent serotype shifts among epidemics7,14,15,19,33 and 
cycling of MP incidence may be interconnected. This has been proposed before. It was argued16,17 that MP epi-
demics arise due to a change in the two main P1 types and variants of P1 sequences. Increased incidence of MP 
infection was observed to correlate with co-circulation of multiple strains within the population of England and 

Figure 1. Flow chart of the two-strain SIRS epidemic model. Arrows indicate transitions. Expressions next to 
arrows show the per capita flow rate between compartments. Births and deaths are not shown. Parameter κ is 
the degree of contacts each person possesses and μ is the effect of primary infection strain on the duration of 
infection by the secondary strain. Variables F1 (F2) and G1 (G2) are forces of infection of strain 1 (strain 2) that 
are defined in equation (4).
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Wales6. It was further speculated7 that dominant strain shift may be the cause of recurrent MP epidemics in 
view of the presence of multiple strains in observed increases of MP infection. Despite a lack of current data 
(due to limited focus on MP internationally and poor tools for detection and simultaneous strain discrimina-
tion) we speculate that serotype interactions such as synergistic associations and competition, in addition to the 
cross-immunity of differing P1 types, exist and play a possible role in the recurrent epidemics of MP infections. 
Previous transmission dynamics models (see the review of 28) neglected the following phenomena: co-circulation 
within human populations of multiple strains of MP and network structural contact patterns among people. 
Infection transmission depends on the contact rate as well as whom each individual contacts. Recent studies34 
showed that people do not mix randomly. For example, contact patterns between people may display the charac-
teristics of scale-free networks35 or small-world networks36. An important parameter of a network is its degree, 
defined as the number of other individuals to which one is connected. A well-mixed network (i.e., the loose 
network) will have a high average degree while a less mixed network should have a small average. Realistic net-
works of contacts that are relevant to infectious diseases usually have a small average degree37. On the contrary, 
the assumption of random mixing, in which every person is equally likely to contact any other person within the 
population27,38, results in a very large degree.

Network structured models describe the transmission dynamics as in spatial transmission processes among 
connected groups and thus induce spatial correlation between infections. Letting infection spread on a homo-
geneous population with a fixed random network structure, Rozhnova and Nunes39 illustrate that this spatial 
correlation within Susceptible-Infectious-Recovered-Susceptible models assists the generation of sustained cycli-
cal epidemics. However, strong spatial correlation (i.e., strong network structure) was needed for the cycles to 
persist when they just considered the transmission dynamics of a single strain in a population. Considering a two 

Figure 2. Features of LH sampling of model parameters and dynamic patterns of incidence. Here shown 
are dynamic patterns caused by two asynchronous strains under the condition of no interactions within the 
secondary infection (i.e., ν = μ = 1). The basic reproduction number R0 = 1.7 is assumed.
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strain version of the SIRS epidemic network model40, the restriction on model parameters especially the degree 
of contacts is much relaxed. Recurrent epidemics were also predicted by models in a population which did not 
have a network structure, but in which people could be re-infected or co-infected with multiple strains41. Neither 
of these studies considered MP infection. In this study, we consider a two strain model as depicted in Fig. 1 and 
explore whether inclusion of both factors – a) competition between strains in a network-structured population 
and b) re-infection and interaction of secondary infection strain with primary infection strain – can explain the 
observed cycles in MP incidence.

Results
We study two specific scenarios in relation to the occurrence of MP epidemic cycles. First, assuming that two 
strains of MP interact only through the cross-immunity during the reinfection process we sought to explore how 
network-structured contacts alone can help build up the characteristics of MP epidemics. Secondly we assume 
that the primary infection can influence the infectivity and duration of infectiousness of a secondary infection, 
in addition to the cross-immunity. Under this situation, we examine how these strain interactions can help gen-
erate sustained recurrent epidemics and thus relax the requirement of network contacts for the build-up of MP 
epidemics.

Special situation I: network contact and cross-immunity alone. This is the situation where inter-
action parameters ν and μ are both set to 1 so strains don’t interact within secondary infections. Preliminary 
sampling experiments show that under this situation the model system cannot generate recurrent epidemics when 
contact degree (κ) is greater than 6.0. 150,000 combinations of model parameters were sampled with ν = μ = 1 
and κ ranging from 2.5 to 7.0. Only 11222 combinations generate characteristically recurrent epidemics of MP 
that are of asynchronous strains and their features are shown in Fig. 2. Other 214 combinations generate recurrent 
epidemics that are of synchronous strains (see Fig. S1). The results shown in Fig. 2a illustrate that reproducing the 
characteristically recurrent epidemics of MP is not possible unless the contact degree (κ) is less than 6.0. That is, 
without strain interaction within the secondary infection (i.e., ν = μ = 1), it requires strong network-mediated spa-
tial correlation (c.f.39,40) to enable MP epidemic cycling. When cross-immunity (ψ) is not extremely strong (shown 
in Fig. 2a), two strains asynchronously shift among epidemics. It is worth mentioning two extreme situations when 
ψ = 0 and 1. The former corresponds to the case of co-circulation of two independent strains. Figure 2a show that 
under this situation, recurrent epidemics of MP can be generated only when the contact degree (κ) is further less 
than 4.8. The latter corresponds to the case of single strain circulation39,40. Recurrent epidemics can be produced 
when the contact degree (κ) is less than 4.2 (see Fig. S1) but the two strains completely synchronise.

For the model parameters that can generate recurrent epidemics of MP, the infectious period is negatively 
correlated while the duration of immunity is positively correlated with the degree of contact (Fig. 2b,c). This 
suggests that, all other parameters being equal: within a population of a relatively large contact degree, the infec-
tious period will need to become shorter while the duration of immunity needs to become longer for recurrent 

Figure 3. Two examples of epidemic curve from LH samples under the situation of no interaction within 
the secondary infection (i.e., ν = μ = 1). Panel (a) degree of contact (κ) = 5.69, cross-immunity (ψ) = 0.415, 
infectious period (D) = 17.2 days and duration of immunity (d) = 9.2 years, inter-epidemic period (EpiT) = 4 
years, the coefficient of variance of the incidence time series (CV) = 0.51; panel (b) κ = 3.34, ψ = 0.202, D = 37.7 
days, d = 4.1 years, and EpiT = 4 years, CV = 0.93. The legend is provided in the title to each figure. It is obvious 
that the proportion of individuals that are simultaneously immune to both strains is kept low in the two 
examples. The proportion of individuals immune to one strain alone is temporally highly anti-correlated with 
the proportion of these immune to the other strain alone, with the correlation coefficient −95% and −84% for 
panel (a) and panel (b) respectively.
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epidemics consistent with those observed to occur. Recurrent epidemics generated by a population of small con-
tact degree (κ being just larger than 2.5) have a high coefficient of variation and show strong oscillations while 
those generated by the population of large contact degree (κ being just less than 6.0) have low coefficient of var-
iation (Fig. 2d). Compared to other parameter combinations, both situations result in slightly shorter durations 
of recurrent epidemics and cycles of dominant strain shift (Fig. 2e,f), however. Cycles of dominant strain shift 
are positively associated with the presence of cross-immunity and the duration of immunity (Fig. 2g,2h), whilst 
durations of recurrent epidemics are insensitive to these parameters (data not shown).

Two examples of the predicted recurrent epidemics are demonstrated in Fig. 3: one is a regular recurrent 
epidemic and the other irregular. To illustrate the possible mechanisms of oscillation in incidence and the shift of 
the dominant strain, we also plot the changes in the susceptible individuals, and the individuals that are immune 
to strain 1 alone, and to strain 2 alone, and to both strains together. In Fig. 3a MP epidemics occur regularly with 
epidemic period of exactly 4 years and the coefficient of variance (CV) of the incidence time series is 0.51. Two 
strains alternate the dominancy symmetrically from one epidemic to another: when one strain is dominant the 
other strain remains at extremely low activities. That is, each separate epidemic is mainly caused by one strain. 
In Fig. 3b the duration of recurrent epidemics ranges from 3 years to 5 years with an average of four years. The 
average CV is 0.93, indicating a strong oscillation comparing to example shown in Fig. 3a. The epidemics also 
vary in the total number of infections. During each epidemic, infections can be due to either mainly one strain or 
two strains simultaneously.

Comparisons of the upper and bottom graphs in each panel of Fig. 3 show that infections oscillate following 
the changes in proportion of the population that is susceptible. The shift of the dominant strain during the oscil-
lating epidemics is due to changes in the proportion of the population that is immune to different strains: The 
incidence of one strain will increase when the proportion of people immune to it is low; at the same time the inci-
dence of the other strain will decrease because of the relatively high proportion of the population that is immune. 
This observation seems to support the hypothesis that a decline in immunity or an increase of the immunologi-
cally naïve population may result in the 4-year cycle of epidemic periods6.

Special situation II: network contact and strain interactions via cross-immunity during 
re-infection and interactions within secondary infection. Preliminary sampling experiments indi-
cate that the number of parameter combinations that can generate MP recurrent epidemics decreases quickly as 
the degree of contacts increases. When the degree of contacts (κ) exceeds 15, the combinations of model param-
eters for MP recurrent epidemics become extremely rare. To save the computational time, the model parameter 
values were sampled by dividing them into groups by the ranges of κ: 2.5–6, 6–8, 8–10, 10–12, 12–14, 14–16, 
16–17 with respective sampling sizes 200,000, 200,000, 250,000, 250,000, 250,000, 250,000, 500,000. We obtained 
23534 combinations of model parameter values that generate characteristically recurrent epidemics of MP that 
are of asynchronous strains; the maximum of κ is 16.2 (see Fig. 4a). Other 4426 combinations generate recurrent 
epidemics that are of synchronous strains (see Fig. S2).

The results shown in Fig. 4 indicate that compared to the above situation (I), allowing for strain interactions 
within secondary infections can lead to the characteristically recurrent epidemics of MP even in a population 
that has little network mediated spatial correlation. The maximum degree of contacts (16.2) is much larger than 
the maximum value of 5.9 that was required for situation I. The distributed patterns in Fig. 4a–c suggest that 
there is a critical threshold in the degree of contacts (denoted by κac for asynchronous strain recurrent epidemics 
thereafter in the paper) separating the mechanisms by which recurrent epidemics consistent with those seen for 
MP occur. For the parameter values given in Fig. 4, κac = 6.0. For populations that are of contact degree κ < κac, 
recurrent epidemics occur because of the spatial correlation induced by strong network structure whilst for the 
populations of relatively loose network structure (κ > κac), they occur because of the combination of spatial corre-
lation and strain interactions. We refer them as mechanism 1 and mechanism 2 respectively. It is clearly shown in 
Fig. 4a that although cross-immunity can be any level from 0 to 1 under mechanism 1, only weak cross-immunity 
levels (<0.4) are required under mechanism 2.

As shown above (special situation I), when κ < κac (mechanism 1), characteristically MP recurrent epidemics 
are readily generated irrespective of whether the primary infection affects the secondary infection. When strain 
interactions are present, complicated epidemics can be generated. Under the loose network structure (κ > κac) 
(mechanism 2), MP recurrent epidemics can be produced only when the primary infection enhances the infectiv-
ity (ν > 1) (Fig. 4b) and prolongs the infectious period (μ > 1) (Fig. 4c) of the secondary infection. Conversely, if 
strain interactions diminish the transmissibility of a secondary infection, shifts in the dominant strain in epidem-
ics cannot occur. As in special situation I, relatively short infectious periods of MP at populations of high contact 
degree are required while relatively longer durations of immunity are needed to generate the recurrent MP epi-
demics (Fig. 4d,e). The conditions for the emergence of synchronous strains are different and are shown in Fig. S2.

Dynamic patterns including the shape of oscillations and durations of recurrent epidemics and cycle of domi-
nant strain shift are shown in Fig. 4f–l. Figure 4f shows that the shape of the epidemic curve (i.e., CV of incidence 
along the time) is positively correlated with κ when κ > κac, while CV decreases with κ when κ ≤ κac. This suggests 
that within a looser networked population, the oscillation in incidence tends to become stronger. However, CV is 
not sensitive to the other model parameters (data not shown).

The cycle of dominant strain shift ranges from 3 to 30 years (Fig. 4g), which covers the observational ranges: 
10–16 years14,15. Figure 4j indicates that when κ < κac, the cycle of dominant strain shift can be 1–6 times the 
duration of recurrent epidemics; when κ > κac, the cycle of dominant strain shift approximates the epidemic 
cycle. Both the duration of recurrent epidemics and cycle of dominant strain shift are positively associated with 
the duration of immunity, especially under mechanism 2 (Fig. 4h,l). Under mechanism 2, they are weakly and 
positively associated with the infectious period (Fig. 4i,k). Otherwise, they are insensitive to other parameters (see 
Fig. 4g for the relationship between cycle of dominant strain shift and degree of contacts).
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Four typically recurrent epidemic examples are illustrated in Fig. 5. They show different oscillation patterns. In 
panel (a) two strains are of comparable activity levels with the strain that starts early dominating the epidemics; 
strain dominancy alternates regularly among epidemics cycle and oscillate with the same period of four years. In 

Figure 4. Features of LH samplings of model parameters and dynamic patterns of incidence. Here shown are 
dynamic patterns caused by two asynchronous strains that interact within the secondary infection. The basic 
reproduction number R0 = 1.7 is assumed. Panel (a) shows the maximum degree of contacts is 16.2 while panels 
(b) and (c) show that the critical degree for the asynchronous strains is κac = 6.0. In panels (d–l) the blue points 
represent the parameter values when contact degrees κ  ≤ κac and the red points for those with contact degrees 
κ > κac. The three values above each panel represent the correlation coefficients between the two variables for all 
values, the values when κ ≤ κac, and the values when κ > κac.
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panel (b) two strains shift dominancy with each strain dominating two epidemics consecutively before switching 
strain dominancy; the two consecutive epidemics are mainly activated by the dominant strain while the other 
strain remains at very low activity. In panel (c) although epidemics take place regularly, recurrent epidemics 
consist of two different epidemics: one with high peak and narrow active period, the other with lower peak but 
wide active period; two strains alternate their dominancy accordingly. In panel (d) two strains alternate with 
irregular peaks and total incidence within each epidemic. The diverse patterns may mimic real observations in 
MP epidemics7,14.

Comparing the levels of infection and of immunity can shed light on the underlying mechanisms of recurrent 
epidemics. It is obvious from the Fig. 5 that the proportion of individuals that are simultaneously immune to 
both strains is kept low except for panel (a) where it oscillates within a wide range and anti-correlates with the 
proportion susceptible. The proportion of individuals immune to one strain is temporally highly anti-correlated 
with the proportion of these immune to the other strain, with absolute correlation coefficients >80% for panels 
(b), (c) and (d); while for panel (a) they are weakly correlated. This difference reflects their different levels of 
cross-immunity. Panels (a) and (b) show predictions obtained for a situation in which the primary infection strain 
increases the infectivity of secondary strain (ν > 1). In panel (a) although the dominant strain shifts between 
epidemics, the difference in the proportion immune or susceptible to the dominant and non-dominant strains is 

Figure 5. Four examples of epidemic curve from LH samples that generate MP recurrent epidemics with 
two asynchronous strains that interact within secondary infections. Panel (a) degree of contact (κ) = 8.8, 
cross-immunity (ψ) = 0.01, infectious period (D) = 15.4 days, duration of immunity (d) = 4.3 years, relative 
infectiousness of secondary infection (ν) = 1.8, relative infectious period of secondary infection (μ) = 1.43, and 
inter-epidemic period (EpiT) = 4.0 years, the coefficient of variance of the incidence time series (CV) = 1.16; 
(b) κ = 5.1, ψ = 0.70, D = 14.4 days, d = 8.6 years, ν = 1.4, μ = 0.59, and EpiT = 4.0 years, CV = 0.48; (c) κ = 5.0, 
ψ = 0.42, D = 14.1 days, d = 8.8 years, ν = 1.2, μ = 0.77, and EpiT = 4.0 years, CV = 0.90; (d) κ = 3.67, ψ = 0.19, 
D = 32.6 days, d = 5.4 years, ν = 1.6, μ = 0.63, and EpiT = 4.0 years, CV = 0.60. The legend is provided in the title 
to each figure.
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small. In panel (b), one strain is dominant while the other remains at a very low incidence, which continues over 
further epidemics even if the proportion of individuals that are immune to the strain exceeds the proportion that 
is immune to the other strain. The dominancy only changes when the difference in immunity to a given strain 
increases substantially. So under this situation, every strain dominates continuously over two epidemics before 
the strain dominancy switches. As found for situation I, oscillations in the infection incidence follow changes 
in the proportion of the population that is immune and susceptible. The change of dominant strain during the 
recurrent epidemics is due to the exchange in immunity to different strain: the increase in infection activity of one 
strain follows the relatively low immunity to the strain6.

The findings assuming values for R0 of 1.3 and 1.5 are similar to those obtained assuming a value of 1.7, 
although the critical threshold value in the degree of contacts differs (see Fig. 6). Under a low value for R0 of 1.3, 
for example, the critical degree of contact decreases to κac = 4.7 and the maximum contact degree decreases to 7.4.

Discussion
In this study we demonstrate that spatial correlation mediated by contact network of human population and 
positive strain interactions within secondary infection work cooperatively to drive MP infection incidence into 
recurrent epidemics occurring every three to seven years with dominant strains shifting among epidemics.

Accounting for realistic host population structure in infectious disease modelling is important. It has been 
recognised that it is necessary to take true network contacts among human populations to explain the observed 
dissemination patterns of infectious disease (e.g.42). The results shown in Fig. 2 where no strain interaction is 
assumed illustrate that contact networks of degree less than 6 are required for the recurrent epidemics that occur 
every 3–7 years with alternation of dominant strain. A key property of a network is its degree distribution. For 
community, school and hospital networks, empirical studies suggest that the average degree is 6.537. Other studies 
show higher average degrees; For example, it was estimated to be about 8.3 within social encounter networks in 
Great Britain43 and 12.5 among Hong Kong residents, a population inhabiting one of the highest density locations 
in the world44. If this empirical information reflected the true characteristics of human contact networks, then 
the network model without strain interaction within secondary infection could not be a candidate mechanism 
for MP recurrent epidemics.

Interaction between different strains during re-infection (i.e. cross-immunity) is well known and has attracted 
much effort to study and measure it. Once an individual is re-infected by another strain, are there any interactions 
between the primary infection strain and the secondary infection strain within the secondary infection? Surely 
recovery from primary infection will not leave immunocompetent host individuals naïve. It is theoretically rea-
sonable to argue that the non-naïve individuals would have other changes which might in some ways alter the 
secondary infection by other strains (see41 for more general reasoning). For example, primary infection with 
one strain of dengue virus can enhance transmission of subsequent infection with another strain45. This occurs 
through a mechanism called “intrinsic antibody-dependent infection enhancement” and this phenomenon might 
be involved in many viral and bacterial infections46.

As to MP, it parasitizes the respiratory tract epithelium of humans, the primary infection with one strain can, 
for example, damage the airway47, which could then alter the ecological niche of the secondary infection strain. 
Further, the primary infections of the upper or lower respiratory tract can be followed by extrapulmonary com-
plications48. As far as the transmission dynamics are concerned, the modifications in the non-naïve individuals 
might change the infectivity and duration of secondary infection. To our knowledge, we have not found any clear 
empirical data for these interactions among strains of MP, although this may reflect a lack of research into MP 
pathogenicity. In principle, prior exposure of an individual to a strain could have no effect or either decrease or 
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increase the individual’s ability to clear an infection with a differing strain, with potential to increase or reduce the 
overall transmission. The theoretical analysis in this study shows that only positive strain interactions increase the 
infectiousness of a secondary infection to facilitate the generation of recurrent MP epidemics. It is expected that 
the experimental observations and measurement of strain interactions within secondary infections will provide 
vital proof to support or disprove the combination of network mediated spatial correlations and strain interac-
tions within secondary infections as a determinant of epidemic recycling of MP.

We found that there is a positive association between the durations of recurrent epidemics and the duration of 
immunity (Fig. 4h). This finding is consistent with that of 49 but differ from that of 28. Further, the cycle of domi-
nant strain shift also shows positive correlations with the duration of immunity (Fig. 4l). These positive correla-
tions become stronger under the mechanism whereby recurrent epidemics are generated by the combination of 
network mediated spatial correlations and strain interactions within secondary infection. Under this mechanism, 
both cycles are intermediately linked with the infectious period (Fig. 4i,k). In contrast to the observations of 27,28, 
the cycle of the dominant strain shift is insensitive to cross-immunity.

Despite our simplifying assumptions, the network model of the transmission dynamics of two strains pre-
sented here remains complicated. The distributions of both infectious period and the duration of immunity are 
implicitly assumed to be exponential. Omori et al.28 suggested that assuming that the duration of immunity fol-
lows a distribution with a variance about 0.63, which is much smaller than that of the exponential distribution, 
models that assume that people mix randomly can produce the periodicity of MP recurrent epidemics. Can 
the reduced variation in the distribution of the duration of immunity help build up the recurrent epidemics 
in our network model? To see this, we construct a SI1I2R1R1R2R2J1J2RR network model by separating recovery 
stages into two equal parts. Therein the immunity period follows a gamma distribution of shape parameter = 2. 
This model has 11 nodes and is described by 65 differential equations. Nonetheless, the simulations (data not 
shown) show that this more complicated model does not give any noticeably different results. It is a technical 
challenge in our network model to generate gamma distributed duration of immunity that is comparable to 
that required in28.

We modelled human population contact structure as a static, unweighted network wherein each individual 
has an equal number of links with other people (i.e. regular random network), although it is recognised that in 
reality, the number of contacts made by each person differs between individuals, varying by age and other popu-
lation groups (e.g.43,44,50,51). One previous study50 showed that the regular random network may offer a reasonable 
approximation to highly connected networks that approximate human contact patterns. Whilst the heterogeneity 
in contact networks is likely to affect the occurrence and size of outbreaks, its effect on the long-term dynamics 
of MP is unclear, given the low infectiousness of MP. For example, studies43 have postulated that, unless an infec-
tion is highly infectious, such as norovirus or some haemorrhagic fevers, the total time spent with others is more 
important for its transmission than the number of contacts made. This follows if, as is plausible, the duration of 
the contact decreases as the number of contacts made per person increases. Elucidating these issues is beyond the 
scope of this paper and will be studied in future work.

In this study we constrained both the interaction parameters ν and μ, which describe the effects of primary 
infection strain on the infectivity and duration of infection by secondary strain respectively, at the ranges from 
0.5 to 2.0. If we had widened their ranges, requirement for the limited contact degree is further reduced. This is in 
agreement with the previous studies41: under strong strain interactions alone, epidemic cycling becomes possible 
even under assumptions of the homogenous mixing.

To search for the model parameter combinations that generate the recurrent epidemics of MP, Latin hyper-
cube sampling52 was employed. As a statistical method for generating a near-random sample of parameter values 
from a multidimensional distribution, it has a short come: we do not know how many parameter combinations 
are adequate to guarantee that a full range of all possible outcomes are explored. This difficulty has been men-
tioned in Results section. Another method of sampling multi-dimensional parameters recommended by53 can 
avoid this difficulty through total sensitivity analysis54. This surely will merit using in the studies like ours.

In conclusion, we have illustrated that multiple strains that co-circulate within a network structured 
population and interact positively as secondary infections with primary infections generate the MP epi-
demics of 3–7 year interval and alternating dominant strains. This model supports the theory that epi-
demic shifts in MP may be attributed to population immunity not only to the immunogenic strain in 
question, but also with the influence of cross protection and other enhanced effects from the second strain 
type and that transmission via patient networks within the population combine to produce MP epidemic 
cycles. Though the strain interactions within a secondary infection are theoretically possible, currently 
no reliable evidence exists to suggest whether either a positive or negative strain interaction occurs. We 
hope this study can encourage experimental studies to detect and measure interactions between strains of 
MP. This will benefit our understanding of MP and provide crucial information for us to predict and thus 
control its recurrence.

Models and Methods
General structure of the model. We consider a Susceptible-Infectious-Recovered-Susceptible (SIRS) 
transmission dynamics model of two strains in view of the fact that isolates and strains of MP can be classified 
into two main types: P1 type 1 and P1 type 214,16,20,21. Within the SIRS model, a population of size N is modelled as 
a network in which every individual randomly contacts a fixed number (κ) of other individuals, and is classified 
into eight compartments (Fig. 1), namely those who are susceptible to infection with any strain (S), those who 
are infected and infectious with strain 1 or 2 (I1 and I2), those who have recovered from infection with a given 
strain and are susceptible to infection with the other strain (R1 and R2), those who are infected and infectious with 
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strain 1 or 2 after recovering from previous infection (J1 and J2) and those who are immune to infection with both 
strains (R). We refer to people in the I1 and I2 compartments as those with “primary infection”, and to people in 
the J1 and J2 compartments as those with “secondary infection”. Individuals are denoted by nodes and contacts 
between individuals by edges.

The epidemic dynamics is determined by the following transmission and transition processes. 
Susceptible nodes (S) become infected with strain i, i = {1, 2}, at rate λ through an edge with a node of 
primary infection Ii, or at rate νλ through an edge with a node of secondary infection Ji. Here parameter 
λ represents the constant transmission rate and parameter ν is the infectiousness of a secondary infec-
tion relative to a primary infection. Primarily infected nodes (Ii) stay infectious on average for D days 
before becoming fully immune (Ri) to the infecting strain i and partially so to the other strain. Recovered 
individuals (Ri) stay immune for an average of d days before becoming susceptible again, or becoming 
secondarily infected at rate (1-ψ)λ through an edge linked with a node of infection (I3-i or J3-i) to become 
secondarily infected J3-i, i = {1, 2}. Here ψ reflects the reduction in susceptibility due to previous exposure 
to the other strain (i.e., cross-immunity). Nodes of secondary infection Ji, i = {1, 2} stay infectious for an 
average of μD days before becoming fully immune to all strains (i.e., R). Here parameter μ defines the 
effect of having experienced primary infection on the duration of the secondary infection. Nodes of R stay 
fully immune for an average of d days before becoming susceptible again. Therefore naïve individuals are 
recruited into the population through birth and loss of immunity. These transitions and transmissions are 
defined according to the pairs or triplets involved in the process39,40,55. For simplicity we ignore clustering 
in the network (c.f.37,40,55).

Model equations. Similar to55, the proportions of people in eight compartments are represented by [S], [I1], 
[I2], [R1], [R2], [J1], [J2], and [R]. Because of the constant population size (i.e., the constant number of nodes), [S] 
+ [I1] + [I2] + [R1] + [R2] + [J1] + [J2] + [R] = 1. There are (8 × 7)/2 = 28 heterogeneous pairs within the network 
in which the two nodes of a pair are of different states. The proportion of the population that is in a pair ([XY]) 
is defined as

κ
≈XY n

N
[ ] (1)

XY

Here nXY is the number of pairs within the population. The number of homogenous pairs can be found 
from these equations for heterogeneous pairs: e.g., [RR] = − ∑ − ∑≠ ≠Y XR(1 [ ]) [ ]Y R X R . The state of the 
model system is defined by eight integers of nodes and 28 integers of heterogeneous pairs. To focus on the 
impact of spatial correlation mediated by network structure and interactions between strains, two strains are 
simply assumed to be antigenically indistinguishable within linked patients although they can actually be 
different56.

Infection transmission occurs through pair-link and the change of pairs is determined by the triples40. To 
close the model system, the proportion, [XYZ], of the triple XYZ with node Y having contacts with both X and Z 
is approximated in terms of the proportion of pairs as in55,

≈
−XYZ k
k

XY YZ
Y

[ ] 1 [ ][ ]
[ ] (2)

The flow chart of the epidemic model is shown in Fig. 1. The model is described by a set of 28 + 7 = 35 differ-
ential equations as,
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In the above equations, the different forces of infection are
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The model parameters are defined in Table 1. Compared with the model presented in40, here we introduce two 
interaction parameters to define the effects of experiencing primary infection on infectivity (ν) and the duration 
(μ) of a secondary infection. The complexity of the two strain network dynamics allows us to investigate the 
combined effects of strain interactions (cross-immunity during re-infection and effects of the primary infection 
on a secondary infection) on dynamic patterns of endemic infectious diseases, along with spatial competition 
embedded within the random network. Ignoring the stochasticity due to the limited size of population, here we 
focus on these by considering an infinitely large population (i.e., N → ∞).

Methods
We used Latin hypercube sampling52 to identify parameter values which led to model predictions of cycles in inci-
dence which were consistent with those observed. The values of the following parameters were sampled within 
the ranges listed in Table 1: infectious period (D), duration of immunity (d), degree of contact network (κ), 
cross-immunity (ψ), effects of primary infection on infectivity (ν) and duration (μ) of a secondary infection. This 
was done with the function randomLHS of the package lhs in R computing language58.

The basic reproduction number (R0) was fixed at 1.7 as estimated by9. When estimating R0, Nguipdop-Djomo 
et al.9 assumed random mixing among individuals and didn’t account for a network structured population. For a 
network structured population, the random mixing assumption will give rise to an over-estimate of R0 (Fig. 2 of 55),  
so we also consider this effect by assuming that R0 = 1.5 and 1.3 for MP. The total number of infections in our 
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model includes both asymptomatic and symptomatic infections. Since MP may affect all age groups (e.g.6,7,25), we 
consider the situation in which the life span is 70 years, the worldwide average life expectancy according to the 
world fact book57.

A value for the interaction parameters ν and μ of 1.0 implies that there is no interaction on the 2nd infection 
from the primary infection (This is a special situation considered in40). If they are less than 1.0, it means the inter-
actions diminish the relevant processes. On the contrary, if they are larger than 1.0, they enhance the processes. 
The ranges listed in Table 1 allow both increasing and decreasing effects to be selected. To constrain the interac-
tions within biologically reasonable limits, we allow both ν and μ to vary from 0.5 to 2.0. To consider the effect of 
network-mediated spatial correlation, the contact degree (κ) is allowed to vary from 2.5 to 25.

The Runge-Kutta fourth order method was used to solve the model equations (3–4). As our dynamic system is 
deterministic, there is one dynamical time series under each set of parameter values. For each time series in which 
infection persists, weekly rates of new infections with each strain are recorded: the first 800 years were discarded 
and 200 years were used for analysis. To monitor the time series data and calculate the inter-epidemic periods if 
periodic changes in the incidence of both strains and total number of infections occur, the spectrum function in 
the R computing language58 is employed. The inter-epidemic period (or the duration of epidemic cycle) will be 
denoted by EpiT. Following28, the coefficient of variance (CV) of the incidence time series was used to define the 
shape of epidemic curve and the strength of oscillation in infections over time. It was showed14 that CV in Japan 
MP epidemics 1982 to 1990 is about 0.7. In view of this, we regard the epidemics that possess the following char-
acteristics as reasonable approximates to what has been empirically observed in MP epidemics: 0.3 ≤ CV ≤ 1.4 
and 3 ≤ EpiT ≤ 7 years, along with dominant strain changing among epidemics. In the main text we refer to this 
as the “characteristically recurrent epidemics of MP”.
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parameter Definition Values or ranges source

L Average life span 70*365 days 57

D Infectious period of a single infection 14–42 days 23

d Duration of immunity 2–10 years 26

R0 Basic reproduction number 1.7 9

λ Transmission rate of single infection λ =
κ

+
− + −
R d

D d k
0( 1)

[ ( 2) ( 1)]
55

ψ Reduction in susceptibility to a secondary infection, 
resulting from a primary infection (“cross-immunity”) 0.0–1.0 –

ν Relative infectiousness of a secondary infection, 
compared to a primary infection. 0.5–2.0 Negative (<1) and positive (>1) effects

μ Factor by which the duration of a secondary infection 
differs from that of a primary infection. 0.5–2.0 Negative (<1) and positive (>1) effects

κ Degree of contact network: number of people with 
whom one person contacts. 2.5–25.0 assumed

Table 1. Model parameters.
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