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Abstract

High-density, strand-specific cDNA sequencing (ssRNA–seq) was used to analyze the transcriptome of Salmonella enterica
serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a
strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-
annotated, and 39- or 59-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified
beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the
annotation of a number of hpothetical genes. ssRNA–seq was also combined with microarray and proteome analysis to
further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA–seq provides a novel
and powerful approach to the characterization of the bacterial transcriptome.
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Introduction

DNA sequencing has been exploited to determine the whole

genome sequence of hundreds of prokaryotic and eukaryotic

species, facilitating gene identification, transcriptomics and the

linkage of genotype to phenotype. To date, genome-wide analysis

of the transcriptome has relied to a significant degree on the use of

DNA microarrays. However, recent advances in DNA sequencing

technologies have facilitated the determination of nucleotide

sequence with a genomic read depth several orders of magnitude

greater than was previously possible. These novel sequencing

approaches have been successfully applied to studies on the

transcriptome of eukaryotic genomes [1,2] and to chromatin

immunoprecipitation analysis [3,4].

Bacterial genomes are relatively small and have a high density of

coding sequences (CDS) in comparison to most eukaryotes. For

example, the chromosome of Salmonella enterica serovar Typhi (S.

Typhi), the causative agent of typhoid fever, is ,4.8 Mbp in

length, with ,4,700 genes currently defined in available

annotation [5,6]. S. Typhi, unlike most Salmonella serotypes that

have a broad host range and are associated with localised

gastroenteritis, are host adapted (human restricted) and cause

systemic infections. The genome of S. Typhi harbours many

interesting features including horizontally acquired genetic islands

specific to this serotype and ,220 pseudogenes. These pseudo-

genes are potentially inactivated but many are intact in related

host-promiscuous serovars such as S. Typhimurium [7]. S. Typhi

express a polysaccharide, known as the Vi capsule, which is

encoded on a large composite element known as Salmonella

pathogenicity island (SPI)-7 that resembles a conjugative transpo-

son [8]. S. Typhi also harbours several putative prophage

elements, some of which are absent from S. Typhimurium and

E. coli [9]. Prophages can encode virulence-associated cargo genes,

which are not essential for phage viability [9].

In this study we exploit a novel ssRNA-seq method to identify

the transcriptional template strand for both coding and non-

coding sequences of S. Typhi Ty2 at a whole genome level using

Illumina-platform high-throughput sequencing. We have identi-

fied many putative novel small non-coding RNAs (ncRNAs) and

characterised mRNA expressed by pseudogenes. Strand-specific

analysis has facilitated the re-annotation of a number of genes and

by combining transcriptomic with proteome analyses, we have

validated the expression of previously hypothetical genes. Further,

we quantify differences in gene transcription in an ompR mutant

and identify novel regions under control of this virulence-

associated locus.

Results

Mapping DNA sequence reads generated by Illumina-
based ssRNA–seq to the annotated S. Typhi Ty2 genome

In order to characterise the S. Typhi transcriptome using

ssRNA-seq, RNA was prepared from S. Typhi Ty2 grown to mid-

log phase in LB broth. Since 16S and 23S rRNA was anticipated

to be the most abundant RNA species these were depleted prior to

sequencing by oligonucleotide hybridisation-mediated selective

capture and separation using magnetic beads. The depleted RNA

was reverse transcribed to cDNA and sequenced on an Illumina

PLoS Genetics | www.plosgenetics.org 1 July 2009 | Volume 5 | Issue 7 | e1000569



GAI. The resulting 36-base reads were mapped to the S. Typhi

Ty2 genome. The sequence coverage per base was subsequently

plotted and visualised using the genome browser Artemis and

DNAplotter, [10,11] (Figure 1A). To generate the transcript map

each base on each strand of the genome was assigned a value

derived from the alignment of sequence reads generated from each

S. Typhi cDNA sample (Table 1). The method employed yields

RNA transcript reads in a strand-specific manner and is

particularly powerful because it can be used to identify small

RNAs and to resolve transcripts originating from overlapping

DNA sequences in a manner not possible using low-density

microarrays.

To facilitate analysis of the S. Typhi Ty2 transcriptome we

calculated the arithmetic mean per base-pair (AM) of mapped

sequence reads for the predicted coding strand of the genes

currently annotated on the genome and subtracted that of the

putative non-coding strand to identify outliers (Figure 1B). Ninety

one percent of the reads mapped to the previously annotated S.

Typhi Ty2 coding strand, providing evidence for successful

deconvolution of the nucleotide sequence in a strand-specific

manner. This is almost certainly an underestimate of the strand

specificity of this method as the remaining 9% of sequences

mapped to the unannotated strand were either upstream of a CDS

encoded nearby on the opposite strand, putatively identifying

riboswitches and promoter regions, or mapped to unannotated or

potentially mis-annotated regions. Examples of analyses where

strand specific reads were readily identified are shown in Figure 2.

As previously reported for ssRNA-seq analysis of eukaryotic RNA

[2], the sequence coverage varied across each CDS, indicated by

peaks and troughs (Figure 2). However, this profile was remarkably

consistent between biological replicates. Importantly, many

intergenic regions and 34% of the annotated CDS had few

(AM,1) or no mapped reads. For sequence data mapped to a

region where CDS orientation is highly ‘‘mosaic’’ the plots align

predominantly to the predicted annotation (Figure 2B), further

illustrating the strand-specific nature of the ssRNA-seq data.

Sequence reads that mapped to non-coding strands may represent

Author Summary

We have applied a novel, strand-specific variation of RNA–
seq (ssRNA–seq) to an analysis of the prokaryotic enteric
pathogen Salmonella enterica serovar Typhi, the causative
agent of Typhoid fever. Strand-specific data facilitated a
high-resolution analysis of RNA transcription at a whole
genome level with base-pair resolution. Using this
technique, we were able to resolve overlapping transcripts
of many genes, identify novel small RNAs, improve the
accuracy of annotation, verify operon structure, and
identify both transcriptionally active and inactive regions.
We have compared the ssRNA–seq approach to standard
RT–PCR and microarrays, validating the data. ssRNA–seq
was used to redefine the OmpR operon that contributes to
the pathogenicity of Typhi, identifying several novel OmpR
regulated genes and operons. Finally, we have linked the
ssRNA–seq data to the proteome and have provided
simple open-access informatics tools to simplify interro-
gation of the data.

Figure 1. Genome-wide assessment. (A) Circular plot of the reads mapping to the S. Typhi Ty2 genome. The outer circle is marked in megabases
(0–4). The outermost circles represent CDS on the forward (outermost) and reverse (second outermost) strand coloured according to functional class
assigned to CT18 annotation [5], respectively. The inner jagged circle represents a plot of mapped sequence reads with a minimum quality score of
30. Dark shading represents greater (green) than the average and lower (purple). Each base is represented as a pileup of reads and averaged over a
window size of 10000 bp. Peaks represent highly sequenced transcripts such as fliC (1013788..1015308), viaB locus (4494169..4506949) and
sdhCDABsucABCD (2198361..2208317). (B) Identification of highly expressed genes on the coding and non-coding strands. Log10 of AM of the coding
strand minus Log10 AM of reads mapped to the corresponding reverse strand (y-axis) for each S. Typhi Ty2 CDS (x-axis). Greatest and lowest 20 genes
are identified by locus tag or gene name.
doi:10.1371/journal.pgen.1000569.g001

Strand-Specific Transcriptome of S. Typhi
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Table 1. Analysis of ssRNA–seq data mapped to the Ty2 genome.

Flowcell ID/lane 876/2 1104/2 1354/1 876/5 1354/2 1104/3

Strain BRD948 BRD948 BRD948 BRD948DompR BRD948DompR BRD948DompR

Mass of Total RNA (ug) 300 100 100 300 100 100

Total Number of Reads 5608589 7183969 5848604 5375891 3098524 7399877

Reads Mapped 5438270 6513814 5356994 5249193 2774513 6454861

Percentage of Total Mapped to Ty2 (%) 97.0 90.7 91.6 97.6 89.5 87.2

Number of Reads that Mapped Uniquely 1493759 2942477 2326287 1749240 610817 2119151

Percentage of Mapped Uniquely (%) 26.6 41.0 39.8 32.5 19.7 28.6

Reads Mapped to CDS 1235932 2212650 1937241 1500449 491028 1617543

Reads Mapped to NC sequences 257827 729827 389046 248791 119789 501608

Reads mapped to hypothetical genes 131242 266139 264871 248791 78606 275976

GC content (ALL) 0.520 0.418 0.454 0.531 0.496 0.393

GC content (UNIQUE) 0.503 0.443 0.471 0.517 0.479 0.419

doi:10.1371/journal.pgen.1000569.t001

Figure 2. ssRNA–seq data sequence data mapped to the S. Typhi Ty2 genome and visualised using Artemis software. (A) Salmonella
pathogenicity island 1. Sequence data represented as a plot aligned with the annotation after strand specific filtering (annotation represented above
or below genes (N.B., not all gene annotations are represented); forward strand blue and reverse strand red, window size = 200 bp). (B) Exemplar
genomic region with multiple divergently transcribed genes supports the strand specific mapping of sequence data and previously published
annotation. The histidine utilisation operon hutHUCGI [62] is transcribed from the reverse strand, followed by three hypothetical genes conserved in
E. coli. The molybdenum transport system is encoded by two divergently transcribed operons and has been characterised in E. coli [63] followed by
the galactose operon galETKM [64] (forward strand blue and reverse strand red) (window size = 200 bp). (C) An example of a potential mis-annotation.
Hypothetical gene t2145 identified as an outlier in Figure 1B exhibits significant sequence reads mapped to opposite strand and upstream region of
gltA. Forward strand (blue) and reverse strand (red). Window size = 200 bp.
doi:10.1371/journal.pgen.1000569.g002

Strand-Specific Transcriptome of S. Typhi
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transcriptionally active but previously unannotated features of the

genome. Indeed, these data enabled us to identify putative errors

in the annotation of some genes, including many genes annotated

as hypothetical, such as the locus t2145 (Figure 2C). A large

amount of sequence data mapped to the opposite strand from this

annotated CDS (Figure 2C), which suggests this may not be a

hypothetical gene at all but instead the 59 region, and a putative

novel cis-regulatory element, of the gltA (t2146) gene [5,6]. In

support of this hypothesis, the intact reading frame for this

predicted gene is not conserved outside the Salmonella but the DNA

sequence itself is conserved in this location in many enteric

bacteria, including Escherichia, Klebsiella and Enterobacter.

In order to provide an overview of the gene classes active in the

genome-wide transcriptome, we determined the AM for each CDS

and by using the previously assigned functional group classification

[5] we assigned the number of sequence reads to each of the 12

functional classifications, which were then normalised, relative to

total genome content of each class (Figure 3). A ratio of .1

represents a more highly transcriptionally active class. The ratios

for outer membrane/surface structures, regulators, conserved

hypotheticals and central intermediary metabolism were ,1.

Interestingly, transcriptional reads for CDSs associated with

energy metabolism, information transfer and pathogenicity/

adapation/chaperones were over-represented in the transcriptome

with the ratio ranging from 1.57 to 2.23. As may be expected,

transcriptionally silent prophage elements (ratio ,0.75) are under

represented with most of this transcript mapping to putative phage

cargo genes (discussed later). Genes predicted to encode proteins

required for degradation of both macromolecules and small

molecules are under-represented in the reads, which is consistent

with these genes being under tight transcriptional control in rich

media. Interestingly, although pseudogenes represent 4.6% of the

predicted CDS of S. Typhi Ty2, only 0.69% (ratio ,0.15) of the

entire ssRNA-seq generated transcriptome mapped to these genes,

indicating a 10-fold reduction in expected transcriptional activity.

ssRNA–seq and proteome analysis of S. Typhi
hypothetical genes

Many annotated predicted genes of the published S. Typhi

genomes were assigned in the absence of clear protein homologies

or direct evidence for transcription or translation into a protein

product. We therefore carried out a comprehensive survey of

transcript sequence and proteomic analysis of predicted genes in S.

Typhi Ty2. We determined the AM sequence coverage and

Figure 3. Overview of the S. Typhi Ty2 transcriptome generated by ssRNA–seq according to functional classification. The total
number of reads/bp mapped to each CDS are assigned to functional class described previously [5]. These data were then normalised by the number
of CDS for each function encoded within the entire genome. A ratio of 1 represents transcription of functional class on par with its genome content.
A ratio of more than one represents a transcriptionally over-active class, and less than one, under-active.
doi:10.1371/journal.pgen.1000569.g003

Strand-Specific Transcriptome of S. Typhi
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mapped peptides identified from fractions of S. Typhi Ty2 using

LC-MS, for each predicted gene in the available annotation. The

proportion of predicted genes in each functional class with AM

sequence coverage .1 and those with at least one mapped peptide

from proteomic analysis were determined (Figure 4, Table S1).

The groups with the greatest proportion of transcriptionally active

genes were those of information transfer (transcription and

translation) and degradation of macromolecules, as would be

expected for actively dividing bacteria in mid log phase.

Pseudogenes, phage/IS elements, and ‘unknown’ genes were the

least transcriptionally active and few peptides were mapped to

products of genes from these classes. Relatively few pseudogenes

had significant transcription and very few peptides mapped to

these interrupted genes, suggesting that following pseudogene

formation, transcription and translation are rapidly lost. It is also

evident that functionally unassigned predicted hypothetical genes

are frequently transcriptionally inactive with few mapped peptides.

This may be because these are genes are only activated by specific

environmental signals such as in vivo within host tissues or they are

not true CDS and represent mis-annotation.

We also identified a variable [12] and previously unannotated

region of the S. Typhi Ty2 genome to which mapped a number of

transcriptome sequence reads (Figure 5). In this region, transcript

data identified six transcribed CDS allowing us to refine the

annotation of this region. These highly transcribed genes encode

(from left to right) a protein with similarity to hypothetical proteins

from a number of sequenced enteric bacteria (previously

annotated as t0869); a protein with similarity only to a single

protein from a marine Bacillus sp NRRL B-14911; two proteins

with similarity to a restriction endonuclease/methylase pair (t0872

and t0871); and a conserved hypothetical protein with a broad

phylogenetic range of matches. The last transcribed gene in this

region is a putative phage integrase, which is adjacent to a

conserved tRNA-Asn; the whole region is bounded by a 24 bp

direct repeat of the 39 end of the tRNA gene, indicating that this

region is likely to be capable of independent integration and

excision. Also encoded in this region are two duplicated type-IV

pilV-like proteins, MobA-family and TraD-family conjugal

transfer proteins, and a number of other genes of unknown

function that show little evidence for transcription under these

conditions.

Non-coding (nc) RNA sequences
Forty-two of the 82 ncRNAs annotated by Rfam in S. Typhi

Ty2 generated transcripts that were detectable by ssRNA-seq

analysis, with a range of AM between 1.2 and 438.18 reads/bp

(Figure 6A). In addition, many sequence-reads mapped to novel

Figure 4. Overview of S. Typhi Ty2 transcriptome and
proteome assigned to functional class. The percentage of CDS
in each functional class with an AM$1 (grey bar). The percentage of
hypothetical CDS with at least one mapped sequenced peptide
(FDR,0.076) (red).
doi:10.1371/journal.pgen.1000569.g004

Figure 5. Annotation of a variable region of S. Typhi Ty2. Alignment of ssRNA–seq sequence data to an unannotated region of Ty2 provided
evidence for putative CDS. This region is encoded between annotated genes t0869 and t0874. It may have been missed in the published annotation
due to the variation between Ty2 and the previously sequenced S. Typhi CT18 strain [5]. Resequencing of 21 S. Typhi isolates identified 2 different
configurations of this variable region [12] and were annotated as ST20a and b. This figure represents ST20b. Colour code: white - previously
annotated genes; pale green - hypothetical genes; orange - conserved hypothetical genes; pink - genes involved in integration or mobilisation; red -
DNA modification genes. DR; direct repeats. Transcript represented by plot (log scale, forward strand (blue) and reverse strand (red), window size
200 bp). Note that the previously annotated CDS t0872 (white) represents only the 39 end of the gene. The remaining segment of the gene is
indicated (red).
doi:10.1371/journal.pgen.1000569.g005

Strand-Specific Transcriptome of S. Typhi
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Figure 6. Previously identified and novel putative ncRNA. The AM for each intergenic feature (mean and range) derived over three biological
replicates. (A) Previously identified ncRNA and (B) ncRNA elements identified by this study. (C) Putative ncRNA elements in SPI-1. Identification of 4
intergenic regions of sequenced transcript, 3 predicted to be cis-acting 59 elements (upstream of sprA (RUF_220c, 1) sprB (RUF_219c, 2) iagA
(RUF_221, 4), and 1 possible 39 UTR (downstream of sprB, RUF_218c, 3), within the cell invasion locus, SPI-1. Transcript represented by plot (predicted
ncRNA represented by red box, log scale, forward strand (blue) and reverse strand (red), window size 200 bp).
doi:10.1371/journal.pgen.1000569.g006

Strand-Specific Transcriptome of S. Typhi
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intergenic regions of the S. Typhi Ty2 genome that were not

previously annotated. Further analysis of such reads has allowed us

to annotate an additional 55 genomic features as small ncRNAs

based on these data. Many of these novel ncRNAs were not

unique to S. Typhi Ty2, since putative homologues were identified

in other S. enterica serovars and other bacterial species (Table S2).

We also identified 25 CDS that were preceded by putative 59

UTR transcripts, 13 of which were more than 150 bp in length

(Table S2), as well as 5 novel putative 39 UTR, 2 of which are

adjacent to sprB and ramA. Subsequently, we determined the AM

for each predicted ncRNA (Figure 6B, Figure S1A, S1B), showing

that 91 of the 245 elements had an average AM.1. Taken

together, this sequence data suggests that there may be many

previously unidentified functional ncRNAs present in S. Typhi,

that are conserved in other bacteria.

Recently a survey of Hfq bound ncRNAs was reported [4]. We

mapped 52 ncRNAs identified in this study to S. Typhi Ty2 using

annotation from the Rfam database [13]. Five of these had an

average AM.1, the minimum of which was 1.75 (istR-2) and the

maximum 13.38 (STnc250). The lack of overlap between these

two datasets may be due to different experimental strategies for

isolating and enriching RNA species. The RNA isolation method

used in this study was optimised to remove contaminating proteins

and may therefore remove RNA species bound to Hfq.

Furthermore, the RNA preparation includes a rRNA depletion

step, Hfq is known to bind sRNA to mRNA to regulate ribosomal

initiation. This has been reported to occur both pre- [14] and post-

ribosome initiation [15]. It is therefore possible that HFQ-bound

sRNAs are being removed, prior to sequencing.

Transcription and translation in prokaryotes are commonly

regulated by changes to the conformational structure of cis-acting

ncRNAs called riboswitches. These RNAs generally bind

metabolites related to the function of their associated downstream

genes [16,17,18,19,20] and have been identified using bioinfor-

matics methods based on sequence conservation of the 59 UTR.

Several known riboswitches, such as btuB [17,21] and TPP [19]

were highly represented in the ssRNA-seq data (Table S2). To

analyse the putative ncRNAs for the potential to act as putative

cis-regulatory elements we used a combination of ssRNA-seq,

sequence conservation, secondary structure conservation and

further homology search using covariance models. Subsequently,

RNAz was used to rank candidates. One of the most interesting

regions encoding putative novel ncRNAs was Salmonella pathoge-

nicity island 1 (SPI-1) [22] (Figure 4C). Two of these SPI-1

associated transcripts were identified [23] as candidate ribos-

witches, here designated RUF_220c (1) and RUF_219c (2) (Figure

S2A, S2B). RUF_220c and RUF_219c are located directly

upstream of the araC-like regulators sprA (t2988) and sprB

(t2987), respectively. A third candidate element, which is predicted

to be a 39UTR designated RUF218c (3), is encoded on the

antisense strand of the sitD gene, an iron transport protein [24],

and a hypothetical protein O30622 (t2767), which may have been

acquired independently of the rest of SPI-1 [24]. The sequence of

RUF_218c is conserved across cyanobacteria, firmicutes and

proteobacteria. The sitA gene maps sequenced transcripts (average

AM = 1.27) and 7 uniquely mapping peptide hits, whereas sitB,

sitC and sitD have slightly lower levels of expression (AM = 0.37,

0.38 and 0.61, respectively) and map no sequenced peptides in our

proteome preparations. It is possible that RUF218c is an antisense

repressor of these proteins, as it is predicted to form a moderately

stable minimum free energy secondary structure compared to a

shuffled ensemble of sequences that have the same di-nucleotide

composition (p = 0.0090). The fourth candidate element, named

RUF_221 (4), maps to the 59 UTR of iagA (t2999) (Figure 6C), an

invasion regulator [25]. The predicted structure of this RNA (34%

G+C) is not supported by other analyses (RNAz probability of

0.0037 and shuffling p value = 0.2627) (Figure S1C). There was

also high sequence coverage in the 59 UTR of t3658 (STY3917 in

CT18), an orthologue of glmS of E. coli, a glutamine fructose-6-

phosphate amino transferase. In certain Gram-positive micro-

organisms a riboswitch has been characterised in the 59 UTR of

the glmS gene, that also encodes a glutamine fructose-6-phosphate

amino transferase [26], suggesting that a candidate cis-regulating

element is also present in S. Typhi.

A further previously unidentified putative non-coding feature

is RUF_107c (complement strand, base range 101116..101223),

which is highly expressed in these S. Typhi Ty2 samples. This

element, predicted to be highly structured by RNAz (p = 0.9396),

has approximately 115 paralogues in Salmonella (Figure S1A).

Further, it is conserved across ,82 bacterial species but is chiefly

restricted to Enterobacteriaceae. The genomic context of

RUF_107c and its paralogues is not consistent with a cis-

regulatory or a transposable element, as the sequence does not

consistently co-occur with either CDSs or near transposases,

respectively.

Integrated prophage and other putative mobile genetic
elements

S. Typhi harbours a number of distinct prophage, whose

complement can vary between the different evolutionary lineages

[9,12]. Such prophages are regarded as being predominantly

transcriptionally silent in the genome and can harbour

horizontally acquired ‘cargo’ genes potentially encoding factors

that modify the virulence of the host bacteria [27,28]. Our

analysis confirms that most of the resident prophage are indeed

predominantly transcriptionally inactive (Figure 7) but it is worth

noting that the ssRNA-seq mapping was sufficiently sensitive to

highlight low level transcription across phage regions involved in

maintaining lysogeny (Figure 7). However, we noted that four of

the prophages did harbour transcriptionally active regions and

that some of these mapped over well-known cargo genes such as

sopE encoded by the SopE phage (Figure 7A). Cargo genes are

non-essential for phage proliferation but may confer fitness to the

lysogenised host bacterium [29,30,31]. Similar analysis of this

prophage and others within the S. Typhi Ty2 genome highlights

several transcriptionally active regions, which may encode novel

cargo genes. Bioinformatics analysis of these regions, in some

cases, supports this hypothesis, in that the genes do not encode

known phage proteins and have differing GC content than other

S. Typhi genes [9]. The SopE prophage expresses another region

distinct from sopE that could encode three putative cargo genes,

which are similar to hypothetical proteins found in Vibrio cholerae

(Figure 7A, t4323, t4324 and t4325). Database searches using the

transcriptionally active regions in the ST35 prophage (base

range 3500845..3536809) reveal sequence similarity to hypo-

thetical genes found in E. coli O157 (Figure 7B genes t3414,

t3415). The ST46 prophage (4666742..4677430) encodes three

transcriptionally active genes; two have sequence similarity to

protein kinases and the third is a candidate threonine/serine

kinase (Figure 7D, t4519, t4520, t4521). Thus, these methodol-

ogies may provide a novel approach to identifying phage cargo

genes expressed during the lysogenic phase. A total of 73

peptides mapped to the four prophages (Figure 7, Table S4) and

59 (81%) mapped to highly transcribed regions containing

known or putative cargo genes. Of these remaining, 5 peptides

mapped to the highly transcribed cI repressor gene required for

maintenance of lysogeny.

Strand-Specific Transcriptome of S. Typhi
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Pseudogenes
S. Typhi, in common with other host-adapted pathogens,

harbours a large number (,220) of putatively inactivated

pseudogenes [5,6,12]. Genome degradation may contribute to

host restriction by inactivating pathways essential for infections in

the non-permissive host. Theoretically, putative pseudogenes can

still express a functional truncated protein domain, as for example

has been demonstrated for truncated cytotoxin in Chlamydia

trachomatis [32,33]. Based on comparative sequence analysis of 21

S. Typhi and two S. Paratyphi A genome sequences, the 220

pseudogenes of S. Typhi strain Ty2 have been assigned to four

groups based on their predicted relative age [34]. We were able to

identify nine pseudogenes in S. Typhi Ty2 that exhibited high

levels of transcription, a property that was independent of their

predicted age (Figure S3), suggesting that transcription may be

being maintained to express functional domains as RNA or

peptides. We did identify one pseudogene, hdsM (t4575) with

sequenced peptide data, mapping to the open reading frame

upstream of the inactivating stop codon. This represents the only

significant evidence in this study of peptides mapping to putative

pseudogenes. This, combined with the relative lack of transcription

from other S. Typhi pseudogenes, supports the current interpre-

tation that the majority of these genes are no longer active.

ssRNA–seq and microarray analysis of a S. Typhi ompR
mutant

The global regulator OmpR is known to regulate the levels of

transcription from a number of distinct loci within the S. Typhi

genome, including the viaB locus [35] associated with Vi capsule

production and the outer membrane porins ompC and ompS

[36,37,38]. OmpR is also known to interact with the endogenous

two-component regulator of SPI-2, ssrAB in S. Typhimurium

[39,40]. The complete OmpR regulon in S. Typhi has not been

fully defined. We therefore prepared RNA from S. Typhi Ty2 and

an otherwise isogenic S. Typhi Ty2 ompR mutant growing

simultaneously in LB broth to mid-log phase (OD = 0.6). This

RNA was then subjected to ssRNA-seq analysis and supporting

conventional microarray analysis as control (see Methods).

To perform a quantitative ssRNA-seq comparison between

sequenced products from the S. Typhi and ompR mutant RNA

pools the AM was determined for all CDSs and, for the purposes

of this analysis, these values were treated as intensity values similar

to those derived by microarray scanning. We did not compare

expression of ncRNA in this analysis. Using the AM and the

LIMMA package for microarray analysis the data were quantile

normalized [41]. Prior to Benjamini-Hochberg false discovery rate

estimation and correction (BH-FDR), 305 genes had significantly

different levels of sequenced transcript (2-fold change and p-

value,0.05) (Figure S4) in S. Typhi Ty2 compared with ompR

mutant derivative. Following application of BH-FDR, differences

in sequence transcript was significant in fifteen of these genes (2-

fold, adj p,0.05), all exhibiting a significant decrease in

transcription in the ompR mutant. Consistent with previous

reports, the entire viaB locus including tviABCDE, vexABCDE is

represented in these 15 genes, [35] as well as envZ, the sensing

component of the OmpR regulon. The four remaining genes were

slsA (t3757), hyaA (t1458) and hypothetical genes t1459 and t1641

that are discussed below. Importantly, we confirmed that these

genes were differentially expressed in the ompR mutant by a further

method, quantitative PCR assays (data not shown).

Many of the 305 genes with significantly different transcript

levels in the ompR mutant before BH-FDR correction, such as

ssrAB, ompC and ompS, were reported previously to be OmpR

regulated in Salmonella [36,38,39]. Furthermore, 71 of these genes

appear to be encoded as 28 separate operons with similar

differential expression patterns (Table S4). Indeed, some of these

Figure 7. Transcriptionally active prophage genes. (A) Genetic organisation of the SopE prophage aligned with mapped sequence reads
illustrates ‘‘expression’’ of the sopE moron (AM = 283) and another putative cargo region (t4323–t4325, AM = 21.4, 40.3, 18.6, respectively).
Transcription of the cI repressor is required for maintaining lysogeny and this region mapped an AM = 5.15 compared with median AM for entire
phage = 0.93. (B) Genetic organisation of the ST35 prophage. The low GC region maps significant sequence coverage compared with the prophage
‘‘machinery’’, putatively identifying it as cargo. Putative prophage cargo in (C) ST2-27 and (D) ST46 with transcriptionally active low GC regions. (All
plots, forward strand blue and reverse strand red, window size = 200 bp).
doi:10.1371/journal.pgen.1000569.g007
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clusters of genes including ttrRS, ssrAB, cheBY, narZY, flgMN, flgHIJ,

modAB, phnUV, hycGH, rplEXN, rplFR, aceBAK, have been previously

confirmed as operons. This suggests ssRNA-seq identified blocks of

differentially transcribed genes increasing our confidence in these

findings despite exclusion following application of BH-FDR.

Other examples of genes identified by ssRNA-seq include ssrA

and ssrB (expression ratios of 0.09 and 0.31 respectively) known

regulators of SPI-2 previously reported to be influenced by OmpR

[39,40]. Furthermore, the flagella genes fliH, fliI, fliM, with

expression ratios of 2.08, 2.49 and 2.26 respectively, were in the

original list of 305 genes.

Since ssRNA-seq is a new approach to mRNA expression

analysis we performed independently a classic microarray analysis

on the mRMA prepared from wild type S. Typhi Ty2 and ompR

mutant derivatives as described in Methods and compared the

data. We confirmed similar differential expression of 38 of the

original 305 genes (two-fold, p,0.05) identified by ssRNA-seq

independently by this DNA microarray expression analysis (Figure

S4, Table S3). Of the 17 genes of this type that were decreased in

expression in both experiments, ssRNA-seq reported a greater

difference (ompR/WT) in the expression levels of these apparently

down-regulated transcripts compared with microarrays (Figure

S4). Genes previously characterised as OmpR-regulated with

decreased levels of expression in S. Typhi Ty2 ompR mutants were

tviABCDE, vexABCDE, ompC and ompS. Genes not previously

described in the OmpR regulon identified in these data included

the slsA (t3757) gene that is encoded within SPI-3 (also confirmed

by direct RT-PCR), that is conserved throughout Salmonella and a

putative inner membrane associated isochorismatase hydrolase.

Isochorismatase hydrolase has been characterised in the phenazine

biosynthesis pathway in Pseudomonas aeruginosa, potentially involved

in antimicrobial activity and induced neutrophil cell death [42].

The hydrogenase uptake gene, hyaA2 (t1458) is also under

represented in the S. Typhi Ty2 ompR ssRNA-seq data, the

microarray data and direct RT-PCR assays. Salmonella encodes

three predicted hydrogenase operons, two hydrogenase 1 operons

(hyaACDEFt1048 and hyaA2B2C2D2E2F2t1454) and a hydroge-

nase 2 operon (hybOABCDEFG) that are important factors in

respiration. Interestingly, two subunits of each operon, hyaA and

hyaB2, are pseudogenes in S. Typhi Ty2 and CT18 [5,6]. All three

of these operons contribute to virulence in the S. Typhimurium

murine model [43]. Furthermore, expression of the gene

divergently transcribed from hyaA2, a putative secreted choloyl-

glycine hydrolase (t1459) is also significantly decreased. The family

of choloylglycine hydrolases cleave carbon-nitrogen bonds,

exclusive of peptide bonds, and include conjugated bile acid

hydrolase and penicillin acylase [44].

Intriguingly, 21 genes were increased in expression by the loss of

ompR as determined by both ssRNA-seq and microarray analysis.

Two contiguous flagellin regulatory genes, flgN (t1749) and flgM

(t1748) were increased in expression in the ompR mutant. FlgM is a

negative regulator of flagella biosynthesis and a mutation in this

gene attenuates virulence in S. Typhimurium [45]. FlgN is

required for the efficient initiation of filament assembly [46]. The

glyoxylate shunt genes (aceBAK) are also increased in expression in

S. Typhi Ty2 ompR (confirmed for aceA by RT-PCR) and fatty acid

catabolism by isocitrate lyase is crucial for macrophage persistence

in Mycobacterium tuberculosis [47]. Three genes t3544, t3543 and

t3538 that are predicted components of a ribose/arabinose

transport operon were also increased in expression. Furthermore,

predicted genes t1788-90 were greatly increased in expression in

the ompR mutant. These genes are contiguous and encode proteins

with sequence similarity to a sialic acid transporter, a secreted

protein and a sialic acid lyase respectively and are not present in E.

coli. Molybdate transport is a crucial co-factor for anaerobic

metabolism and transcription from two genes, modAB, required for

its transport were increased in the ompR mutant. The levels of

transcription of dppA, cstA, ybeJ, ybfM, glnH and t1709 were also

increased in S. Typhi Ty2 ompR and these encode proteins

annotated as periplasmic dipeptide transporter, carbon starvation

response, glutamate transport, putative outer membrane, gluta-

mine transport and a hypothetical protein, respectively.

Discussion

We show here that Illumina-based ssRNA-seq sequencing

technology allows the analysis of the transcriptome of the bacterial

pathogen S. Typhi at the whole genome level and in a strand-

specific manner. This technology therefore provides a powerful

new approach to studies on bacterial gene expression, pathoge-

nicity and mechanisms involving gene regulation at the level of

transcription. By converting RNA to DNA it is possible to profile

expression at a genome-wide level in such detail that even subtle

features such as regulatory RNA features and small RNA

sequences can be readily identified. Indeed, we were readily able

to identify known attenuators and similar features in front of the

Threonine (thr), Tryptophan (trp) and other operons (Figure S5).

The depth of sequence analysis is sufficient to differentiate levels of

expression, facilitating studies on bacteria or their mutant

derivatives growing in different environments or conditions.

Visualisation and interpretation of the transcript map was

simplified by the exploitation of powerful bioinformatics mapping

software and a modified version of the genome browsing tool

Artemis [48]. Further, the transcriptome analysis was linked to the

proteome, providing validation for a number of previously

hypothetical genes. Indeed, the analysis was a useful tool for

improving the annotation of the genome, redefining the limits of

genes and transcripts and identifying novel small CDSs. Our

analysis confirmed the expression of many known riboswitches

that have recently been characterised and identified many more

candidates. Indeed, we have mapped significant sequence data to

the 59 UTR of over 127 genes using ssRNA-seq. Many of the

currently annotated riboswitches were predicted bioinformatically

and their functionality was previously assessed through in vitro

phenotyping assays [16,17,19]. Our genome-wide survey predicts

such elements on a whole genome level providing candidates for

further biological analysis. Three of these candidate regions were

located in SPI-1, where they may impact on the expression of

virulence genes.

Pseudogenes have contributed to apparent genome degradation

in a number of host-adapted pathogens. Pseudogenes harbour

potentially inactivating mutations that are normally identified

through genome annotation programmes. However, the exact

mechanisms by which pseudogenes impact on Salmonella patho-

genesis is not fully understood but is believed to involve a loss of

pathways that diversify the mechanisms the pathogen uses to

survive in different hosts and tissues [49]. In this report, we

demonstrate that the transcription of many pseudogenes is low or

absent in a manner that is independent of the predicted age of

pseudogene acquisition. However, we did identify several

pseudogenes that are transcribed in rich media and peptides

mapped to one of these. However, overall the evidence supports

the concept that most S. Typhi pseudogenes are indeed null

mutations.

Analysis of the prophage like elements encoded within the S.

Typhi genome demonstrates that these are largely transcription-

ally silent regions. Even so, the analysis was sensitive enough to

identify genes that contribute to maintenance of the prophage

Strand-Specific Transcriptome of S. Typhi
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state such as repressors of lysogeny. However, using ssRNA-seq

analysis we are able to highlight transcriptionally active regions

within largely inactive prophage elements. Some of these

correlated with previously characterised cargo genes such as sopE

that can contribute to pathogenicity. We postulate that other

transcriptionally active regions within these prophage elements

may be novel ‘‘cargo genes’’. Peptides were mapped back to some

of these regions.

Finally, we believe that the approaches described here are

potentially applicable to any bacterium and provide a simple route

towards the analysis of gene expression. The method, as outlined,

has the advantage of providing strand-specific analysis allowing

high resolution transcription maps to be generated. The method

described is generic in that it can be performed with relatively

minimal manipulation of nucleic acid and all the bioinformatics

tools described are freely available. Further work will be required

to optimise the use of ssRNA-seq for routinely analysing

transcription in bacteria. For example, we do not yet know how

accurate the quantitative analysis will be at a genome level in

different bacteria. Our comparisons between ssRNA-seq and

DNA microarray analysis for comparing differential gene

expression using S. Typhi wild-type and ompR mutant derivatives

indicates that the two approaches may be complementary but that

they may not yield completely overlapping data. Indeed, previous

work has shown that different microarray platforms are subject to

considerable variability in reported transcription [50,51]. Never-

theless, by combining both approaches we have identified sets of

both known and novel OmpR regulated genes.

Materials and Methods

Bacterial strains, growth, and RNA preparation
The bacteria used were all derivatives of S. Typhi Ty2 [6]. The

ompR null mutant was made in the S. Typhi Ty2 by the red

recombinase method [52] using the kanamycin resistance plasmid,

pkd13, and primers ggatcgtctgctgacccgtgaatctttccatctcatgggtg-

taggctggagctgcttc and gtctgaatataacgcggatgcgccggatcttcttccacattcc-

ggggatccgtcgacc. Cultures were grown in LB to OD600 = 0.6, fixed

with 2:1 volumes of RNAprotect Bacteria (Qiagen) and harvested.

RNA was isolated from the pellet using SV RNA isolation kit

(Promega) according to manufacturers instructions. RNA quality

was determined using Bioanalyser (Agilent) and quantified using the

ND-1000 (NanoDrop Technologies) after every manipulation step.

23S and 16S rRNA were depleted using MicrobExpress kit

(Ambion). Genomic DNA was removed with two digestions using

Amplification grade DNAse 1 (Invitrogen) to below PCR-detectable

levels. The effect of incomplete DNAse treatment was a general

increase in background (Figure S6). RNA was reverse transcribed

using random primers (Invitrogen) and Superscript III (Invitrogen) at

45 C for three hours and heat denatured at 70 C for 15 minutes.

Second strand synthesis was omitted in order to retain strand specific

sequence determination; validation of this method is presented in full

elsewhere (Croucher N, Fookes M, Perkins T. et al, submitted).

Highly transcribed genes fliC, tviB and vexA, with a maximum

amplicon of 250 bp, were used as targets for a PCR as a positive

control for reverse transcription.

Library construction and sequencing
Sequencing libraries for the Illumina GA platform were

constructed by shearing the enriched cDNA by nebulisation

(35psi, 6 min) followed by end-repair with Klenow polymerase, T4

DNA polymerase and T4 polynucleotide kinase (to blunt-end the

DNA fragments). A single 39 adenosine moiety was added to the

cDNA using Klenow exo- and dATP. The Illumina adapters

(containing primer sites for sequencing and flowcell surface

annealing) were ligated onto the repaired ends on the cDNA

and gel-electrophoresis was used to separate library DNA

fragments from unligated adapters by selecting cDNA fragments

between 200–250 bps in size. Fragmentation followed by gel-

electrophoresis were used to separate library DNA fragments and

size fragments were recovered following gel extraction at room

temperature to ensure representation of AT rich sequences.

Ligated cDNA fragments were recovered following gel extraction

at room temperature to ensure representation of AT rich

sequences. Libraries were amplified by 18 cycles of PCR with

Phusion polymerase. Sequencing libraries were denatured with

sodium hydroxide and diluted to 3.5 pM in hybridisation buffer

for loading onto a single lane of an Illumina GA flowcell. Cluster

formation, primer hybridisation and single-end, 36 cycle sequenc-

ing were performed using proprietary reagents according to

manufacturers’ recommended protocol (https://icom.illumina.

com/). The efficacy of each stage of library construction was

ascertained in a quality control step that involved measuring the

adapter-cDNA on a Agilent DNA 1000 chip. A final dilution of

2 nM of the library was loaded onto the sequencing machine.

Read mapping and visualization
We used the computational pipeline developed at the Wellcome

Trust Sanger Institute, (http://www.sanger.ac.uk/Projects/

Pathogens/Transcriptome/). We mapped all reads to the S. Typhi

Ty2 genome using MAQ and discarded all reads that did not align

uniquely to the genome. The quality parameter (2q) used in

MAQ pileup was 30. MAQ pileup prints an array of delimited

information formatted as one line per genomic base. Each base is

assigned a value for the number of piled sequences and the

mapped strand for each read, represented by a ‘‘.’’ (forward) and

‘‘,’’ (reverse). For example, Forward strand: all_bases, 7887, G, 45,

@.............................................; Reverse strand: all_bases, 914, G,

6, @,,,,,,,; Overlapping Strands: all_bases, 7690, G, 38,

@,,,,,.,.,,..,,,,,,.................... These data were then mapped strand

specifically using the perl script maqpileup2depth.pl returning a

plot file with two columns which can be read into Artemis as a

graph by using commands ‘‘Graph, Add User Plot’’.

Secondary structure and conservation analyses for S.
Typhi non-coding candidates

Candidate ncRNA sequences from Salmonella enterica subsp.

enterica serovar Typhi Ty2 complete genome (EMBL ACC:

AE014613.1) were searched against RFAMSEQ (a subset of the

EMBL nucleotide database) using the Rfam search pipeline based

upon WU-BLAST filters followed by covariance model (CM)

scoring [13]. CMs have been proven to be vastly more accurate

than BLAST for scoring ncRNAs [53]. Reliable matches were

subsequently aligned and a consensus RNA secondary structure

predicted folded using WAR [54]. Covariance models (CMs) were

built for each resulting alignment; these researched searched

against RFAMSEQ using the Rfam pipeline until there were no

new reliable hits [13]. The subsequent alignments and secondary

structures were inspected and modified by hand where improve-

ments could be made. The secondary structure diagrams [55] and

phylogenetic trees were built from these results. The alignments

were then screened with the RNAz suite of tools for de-novo

ncRNA prediction tool [23]. The original candidate sequences

from S. typhi Ty2 were also analysed for individual secondary

structure content using a permutation test. One thousand shuffled

sequences with the same di-nucleotide content were generated for

each native sequence. The distribution of predicted minimum

free-energy (MFE) values of folding for the shuffled ensembl of
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sequences was used to determine the significance of the MFE value

for the native sequence. There is an extensive literature on this

approach with mixed success, the method is best suited to highly

stable structures such as microRNAs [56,57,58].

Comparative analysis of ssRNA–seq and microarray data
AM per base pair was determined using the script tram.pl and

this value used as an expression value like fluorescence intensity on

a microarray. The data from both microarray and ssRNA-seq

were quantile normalised and differential analysis performed using

the LIMMA package [41].

Microarray scanning, hybridisation
We isolated RNA from three biological replicates and for each,

four slides were hybridised using 16 mg of RNA and compared to

the same amount of BRD948 RNA. The dyes were swapped for

two arrays in each replicate. Low density spotted microarrays were

used. Design, hybridisation and scanning were performed as

previously described in Doyle et al [59] and array data submitted

to Array Express. Overall 216 genes were identified as being

differentially transcribed (2-fold, adj p-value,0.05) and 73 of these

were reduced in transcription compared with BRD948.

Cellular fractionation and protein sequencing
Whole cells were fractionated as previously described by Hantke

[60]. Protein samples were reduced and alkylated with iodoace-

tamide prior a separation in a 4–12% NuPAGE Bis-Tris gel

(Invitrogen). Gels were stained with colloidal Coomassie blue

(Sigma) and bands were excised and followed by in-gel digestion

by trypsin (sequencing grade; Roche). The extracted peptides were

analyzed with on-line nano LC-MS/MS on an Ultimate 3000

Nano/Capillary LC System (Dionex) coupled to a LTQ FT Ultra

mass spectrometer (ThermoElectron) equipped with a nanoelec-

trospray ion source (NSI). Samples were first loaded and desalted

on a PepMap C18 trap (0.3 mm id65 mm, Dionex) then

separated on a BEH C18 analytical column (75 mm id610 cm)

[7] over a 30 or 45 or 60 min linear gradient of 4–32% CH3CN/

0.1% FA based on the gel band’s size and intensity. The mass

spectrometer was operated in the standard data dependent

acquisition mode controlled by Xcalibur 2.0. The survey scans

(m/z 400–1500) were acquired on the FT-ICR at a resolution of

100,000 at m/z and the three most abundant multiply-charged

ions (2+ and 3+) with a minimal intensity at 1000 counts were

subject to MS/MS in the linear ion trap. The dynamic exclusion

width was set at 610 ppm. The automatic gain control (AGC)

target value and maximum injection time were set at 16106 and

1000 msec for FT and 16104 and 250 msec for ion trap

respectively. The instrument was externally calibrated. The Raw

files were processed by BioWorks 3.3 and then submitted to a

database search in Mascot server 2.2 (www.MatrixScience.com)

against an in-house built Typhi Ty2 genomic 6-frame translated

database [61]. All peptides with a posterior error probability

(probability that an individual peptide was identified by chance

alone) of 1% or less were accepted for subsequent analysis,

resulting in an overall false discovery rate of about 0.1%. The

analysed proteomic data has been submitted to EBI PRIDE

database (www.ebi.ac.uk/pride/) with and can be viwed under

PRIDE accession number 9770–9774.

Peptide mapping script
The peptide sequences were mapped to all matching positions in a

6-frame translation of the entire genome and only peptides that

mapped to one region of the genome were included in these data.

Supporting Information

Figure S1 Paralogues of putative ncRNA identified in this study.

AM for paralogues (mean and range) of (a) RUF_107c and (b)

RUF_175c.

Found at: doi:10.1371/journal.pgen.1000569.s001 (0.29 MB PDF)

Figure S2 Predicted secondary structure of transcript mapping

to (a) RUF_220c, the upstream region of sprA, (b) RUF_219c, the

upstream region of sprB and (c) RUF_221, the upstream region of

iagA.

Found at: doi:10.1371/journal.pgen.1000569.s002 (0.81 MB PDF)

Figure S3 AM values for pseudogenes with respect to predicted

age. Eldest pseudogenes, left and most recent, right.

Found at: doi:10.1371/journal.pgen.1000569.s003 (0.25 MB PDF)

Figure S4 Genes differentially expressed (2-fold, p,0.05) in

both the microarray data and Illumina generated data.

Found at: doi:10.1371/journal.pgen.1000569.s004 (0.28 MB PDF)

Figure S5 Threonine leader attenuation. Translation of the

threonine rich leader peptide, ThrL, arrests transcription of the

downstream threonine biosynthesis genes.

Found at: doi:10.1371/journal.pgen.1000569.s005 (0.22 MB PDF)

Figure S6 Impact of DNA contamination on ssRNA-seq.

Artemis representation of ssRNA-seq data plots from S. Typhi

Ty2. Uppermost plot A represents data from a sample that was

digested by two rounds of DNAse 1 and passed quality control that

are described in the methods. Lower most plot B represents data

from a sample that was digested with only one round of DNAse 1

digestion and had detectable DNA contamination. Both datasets

were mapped using the same parameters. ds-DNA preferentially

ligates to linkers and absorbs sequencing capacity, which reduces

the overally efficacy of ssRNA-seq. All plots that were used in this

study were scanned for contaminating gDNA, which normally

maps consistently across the genome whereas completely DNAse 1

digested samples contain regions of no mapped sequence data.

Found at: doi:10.1371/journal.pgen.1000569.s006 (0.07 MB PDF)

Table S1 Ty2 Annotated genes with at least one sequenced

peptide mapped.

Found at: doi:10.1371/journal.pgen.1000569.s007 (0.02 MB

XLS)

Table S2 Depth coverage of known non-coding RNAs and

novel RUFs for each experiment.

Found at: doi:10.1371/journal.pgen.1000569.s008 (0.14 MB

XLS)

Table S3 Genes differentially expressed in DNA microarray

experiments.

Found at: doi:10.1371/journal.pgen.1000569.s009 (0.05 MB PDF)

Table S4 Ty2 genes annotated as phage genes with uniquely

mapped sequenced peptides.

Found at: doi:10.1371/journal.pgen.1000569.s010 (0.04 MB

XLS)
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