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On the use of flexible excess hazard
regression models for describing long-term
breast cancer survival: a case-study using
population-based cancer registry data
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Abstract

Background: Breast cancer prognosis has dramatically improved over 40 years. There is, however, no proof of
population ‘cure’. This research aimed to examine the pattern of long-term excess mortality due to breast cancer
and evaluate its determinants in the context of cancer registry data.

Methods: We used data from the Geneva Cancer Registry to identify women younger than 75 years diagnosed
with invasive, localised and operated breast cancer between 1995 and 2002. Flexible modelling of excess mortality
hazard, including time-dependent (TD) regression parameters, was used to estimate mortality related to breast
cancer. We derived a single “final” model using a backward selection procedure and evaluated its stability through
sensitivity analyses using a bootstrap technique.

Results: We analysed data from 1574 breast cancer women including 351 deaths (22.3%). The model building
strategy retained age at diagnosis (TD), tumour size and grade (TD), chemotherapy and hormonal treatment (TD) as
prognostic factors, while the sensitivity analysis on bootstrap samples identified nodes involvement and hormone
receptors (TD) as additional long-term prognostic factors but did not identify chemotherapy and hormonal
treatment as important prognostic factors.

Conclusions: Two main issues were observed when describing the determinants of long-term survival. First, the
modelling strategy presented a lack of robustness, probably due to the limited number of events observed in our
study. The second was the misspecification of the model, probably due to confounding by indication. Our results
highlight the need for more detailed data and the use of causal inference methods.
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Background
Breast cancer is a major disease worldwide. Its prognosis
has, however, improved rapidly during the last four de-
cades [1–3]. Accordingly, there are increasing numbers
of women who have survived breast cancer. Despite this,
there is evidence for a lack of population ‘cure’, that is,
the probability of dying as a consequence of the disease
persists for many years after diagnosis [4, 5] even for
women who were screen-detected [6].

The estimation of net survival has allowed these trends
to be observed [7–9]. Unlike all other metrics, net sur-
vival evaluates the mortality arising only from the dis-
ease of interest, disregarding the influence of other
causes of death [10]. In the context of long-term survival
this is fundamental because the likelihood of death from
other causes increases with follow-up time (i.e. with age-
ing of the patients). The use of net survival allows accur-
ate comparisons of patient’s subgroups across space and
time, between which mortality from other causes may
vary considerably [9, 11].
Although there is a great interest, both clinically and

epidemiologically, in the determinants of long-term
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survival for breast cancer patients, follow-up beyond 5
or 10 years has not been widely considered. The few
studies with long-term observations have demonstrated
that the associations of some covariables do vary with
time since diagnosis in the long term [12], very few how-
ever considered very long-term follow-up and/or mul-
tiple covariables [13, 14]. In particular, the influence of
treatment represents an interesting line of investigation
since it is likely that certain treatments lead to severe
long-term side effects [13, 15].
The Geneva Cancer Registry offers an ideal context to

study the evaluation of determinants of long-term net
survival. The cancer registry, initiated in 1970, allows
long follow-up of cancer patients. The availability of de-
tailed information for each woman’s tumour enables
multivariable survival analysis.
In this research, we aim to evaluate long-term associa-

tions between prognostic factors and the excess mortality
hazard for breast cancer patients diagnosed in Geneva, fo-
cusing especially on treatment variables. To reach this
aim, we focus on early-stage tumours, which were surgi-
cally resected. We use flexible excess hazard regression
models to account for potential time-varying and
non-linear associations. We apply a systematic model se-
lection process to build a “final” regression model, and
check the stability of our “final” model by conducting a
sensitivity analysis using bootstrap sampling.

Methods
Patient cohort
The Geneva Cancer Registry collects information on inci-
dent cancer cases from various sources, including hospi-
tals, laboratories and private clinics, all of whom report
newly diagnosed cancer cases. Trained registrars systemat-
ically extract information from the medical records and
conduct further investigations in the case of missing data.
The registry regularly estimates cancer patient survival,
taking as the reference the date the diagnosis was con-
firmed or, if it preceded the diagnosis and was related to
the disease, the date of hospitalisation. In addition to
standard examination of death certificates and hospital re-
cords, patient’s vital status is assessed annually by match-
ing the Registry’s database with information held by the
Cantonal Population Office which maintains a live register
of the resident population.
We included all women diagnosed with an invasive pri-

mary breast cancer in the Geneva Canton between 1995
and 2002. We restricted the sample to patients diagnosed
with pathological TNM stage I and II disease who were
treated with surgery (N = 2029). Among those patients,
we excluded patients older than 75 years (N = 232). Infor-
mation on stage was missing among only 60 (2.57%) pa-
tients with surgery. All women were followed up until
31st December 2013 (11 years of minimum follow-up).

Ethical approval
The Geneva Cancer Registry has a general authorization
to collect nominative data, and to analyze the anon-
ymized data. Since the study did not require additional
clinical information, approval of the Ethics Committee
was not required.

Prognostic factors and treatment
We focused on established prognostic factors and on
treatment. Age at diagnosis (years) was included a priori
as an irrefutable prognostic factor [16]. We considered
tumour size (mm), degree of differentiation (Well vs. Mod-
erately/Not differentiated), nodal involvement (No vs. Yes)
and hormone receptor status (Negative vs. Positive) which
together reflect the severity of the disease. We included
radiotherapy, chemotherapy and hormonal treatment fol-
lowing surgery (each Yes vs. No, within 6months after
diagnosis) in order to examine the long-term associations
of these systemic treatments with survival.

Statistical modelling of the excess mortality hazard
We estimated the excess mortality hazard due to cancer
for the patient group. The excess mortality hazard corre-
sponds to the mortality hazard related only to the dis-
ease of interest (in our case, breast cancer) and is
defined as the difference between the mortality observed
amongst a cohort of patients and their expected (back-
ground) mortality [17, 18]. The association between cov-
ariables and excess mortality can vary with time since
diagnosis, particularly when considering long-term
follow-up. For example, a particular treatment might
have a strong influence on excess mortality one year
after diagnosis but a weaker influence at ten years
(time-dependent, TD, association). Furthermore, continu-
ous variables can display non-linear (NL) associations (for
example, excess mortality might increase exponentially
with age). We handled such complex associations through
the flexible excess hazard model proposed by Charvat et
al. [19], which follows the work of Remontet et al [20].
This excess hazard model is implemented in the “mexhaz”
package written for R software [19, 21].

Model building strategy
We applied the model building strategy suggested by
Wynant and Abrahamowicz [22]. This iterative back-
ward elimination procedure involves testing, for each
variable, the presence of significant TD and, for continu-
ous variables only, NL associations as well as the overall
significance of the variable itself. An initial model in-
cluding all variables, as well as all possible TD and NL
associations, is fitted. Potentially spurious NL and TD
associations are then eliminated one by one by using
likelihood ratio tests and with a statistical threshold for
significance of 0.05. Our initial model included:
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– age at diagnosis (continuous, NL and TD
associations included),

– tumour size (continuous, log-transformed, NL and
TD associations included),

– nodal involvement (binary, TD association included,
“Yes” as reference category),

– grade of the tumour (binary, TD association
included, “Moderately/Not differentiated” as
reference category),

– hormone receptor status (binary, TD association
included, “Positive” as reference category),

– radiotherapy (binary, TD association included, “No”
as reference category),

– chemotherapy (binary, TD association included, “No”
as reference category) and

– hormonal treatment (binary, TD association
included, “No” as reference category).

The model building strategy resulted in a single derived
model (the “final” model), which included only those vari-
ables found to be significant, along with any significant
TD and/or NL associations for these variables.

Sensitivity analyses
We conducted a sensitivity analysis to examine the sta-
bility of the derived “final” model using a bootstrap tech-
nique [23]. This involved re-applying the model
selection procedure to 300 random samples, drawn, with
replacement, from the cohort of cancer patients. This
procedure allows the evaluation of the strength of asso-
ciation between a particular covariable and the excess
mortality hazard by the calculation of the bootstrap in-
clusion frequency (BIF) [23]. The BIF is the proportion
of times a specific variable was included by the model
selection process over the total number of bootstrap
samples. We further considered only models where the
association was plausible (outliers where estimated
values of the Excess Hazard Ratio (EHR) were greater
than 100 or less than 0.01 were excluded). We then plot-
ted all the estimated functional forms of each covariable
(N ≤ 300 due to convergence issues, see below), along
with the averaged functional form calculated on all the
retained samples.

Results
Patient cohort
The study included 1797 women diagnosed with first
primary invasive breast cancer between 1995 and 2002
which was classified as stage I or II at diagnosis and
treated surgically (Table 1). Data were missing for at
least one co-variable for 12.4% of women. The highest
proportion of missing data was for the size of the
tumour (N = 72, 4.0%). Only women with complete data
for all variables were considered for the modelling

analyses (N = 1574, 87.6%) [24]. Of these, 351 died
(22.3%) and 236 were censored (14.9%) before the end of
follow-up. The median follow-up time was 12.8 years.

“Final” derived model
The single derived model resulting from the model
building strategy included associations with the excess
mortality hazard which were linear and TD for age, lin-
ear and time-constant for size of the tumour, TD for
grade of the tumour, time-constant for chemotherapy
and TD for hormonal treatment. All the other variables
(nodal involvement, hormone receptor status and radio-
therapy) were considered not associated with the excess
mortality hazard and were therefore excluded.

Stability of the “final” derived model
The sensitivity analysis suggested that the model derived
for the patient cohort was not very stable. For 60 out of
300 bootstrap samples (outliers included), the model did
not reach convergence. The variables size of tumour, hor-
mone receptors status, age at diagnosis, grade and nodal
involvement displayed the highest BIFs in the sensitivity
analysis (Table 2, more than 80%). However, not all of
them were selected in the “final” model; here neither
nodal involvement nor hormone receptor status showed
evidence of an association with the excess mortality haz-
ard. The covariables describing treatment were less fre-
quently selected in the sensitivity analysis, with a BIFs of
75.4, 59.6 and 45.0% for chemotherapy, radiotherapy and
hormonal treatment respectively, whilst in the “final”
model, chemotherapy and a TD association for hormonal
treatment were retained. Although TD associations were
frequently observed in the sensitivity analysis for the
covariables hormone receptors status and age (BIF 95.4
and 87.1% respectively), only the TD association for age
was found to be significant in the “final” model. NL as-
sociations for age and size of the tumour were not
retained in the “final” model, which was consistent with
the low BIFs observed in the sensitivity analysis (18.8
and 34.2% respectively).
Figures 1, 2 and 3 display the associations between

each of the covariables and the excess mortality hazard,
as obtained from the sensitivity analysis (excluding out-
liers). The mean association across all samples (black
solid line) is also displayed. These show that within the
sensitivity analysis we observed a TD association for age:
excess mortality increased with age during the first 10
years of follow-up (Fig. 1a-b) but reversed after this
point (Fig. 1c). Figure 2 shows that excess mortality in-
creased linearly with tumour size and that this associ-
ation was constant over time since diagnosis. Nodal
involvement was associated with higher excess mortality.
There was evidence of a TD association for hormone re-
ceptor status, with negative receptors being associated
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with an increased risk of dying from breast cancer only
during the first 5 years of follow-up. This was similar for
grade: women with well differentiated tumours displayed
a lower risk of dying from breast cancer, an association
which also tended towards the null at the end of
follow-up. Radiotherapy was associated with a decreas-
ing risk of dying during the first 10 years after diagnosis,
whereas receipt of chemotherapy and hormonal

treatment were associated with an increasing risk during
the entire follow-up period.

Discussion
The determinants of long-term survival are currently of
particular interest because of the dramatic increase in
the number of patients surviving breast cancer matched
to the observation that these women are never ‘cured’.

Table 1 Characteristics of the patients diagnosed with breast cancer between 1995 and 2002

Radiotherapy Chemotherapy Hormonal treatment Total

No Yes No Yes No Yes

N % N % N % N % N % N % N %

Age group

< 40 16 5.5 71 4.7 14 1.4 73 9.2 39 7.9 48 3.7 87 4.8

40–49 79 27.1 280 18.6 125 12.4 234 29.6 149 30.3 210 16.1 359 20.0

50–59 78 26.8 574 38.1 348 34.6 304 38.4 158 32.1 494 37.9 652 36.3

60–69 87 29.9 448 29.7 374 37.2 161 20.4 114 23.2 421 32.3 535 29.8

70–79 31 10.7 133 8.8 145 14.4 19 2.4 32 6.5 132 10.1 164 9.1

Total 291 100 1506 100 1006 100 791 100 492 100 1305 100 1797 100

Size in mm

0–9 44 15.1 227 15.1 222 22.1 49 6.2 84 17.1 187 14.3 271 15.1

10–19 91 31.3 709 47.1 512 50.9 288 36.4 172 35 628 48.1 800 44.5

20–29 66 22.7 329 21.8 170 16.9 225 28.4 120 24.4 275 21.1 395 22.0

30–39 45 15.5 115 7.6 56 5.6 104 13.1 51 10.4 109 8.4 160 8.9

40+ 27 9.3 72 4.8 33 3.3 66 8.3 38 7.7 61 4.7 99 5.5

Missing 18 6.2 54 3.6 13 1.3 59 7.5 27 5.5 45 3.4 72 4.0

Total 291 100 1506 100 1006 100 791 100 492 100 1305 100 1797 100

Nodal involvement

N+ 82 28.2 418 27.8 127 12.6 373 47.2 137 27.8 363 27.8 500 27.8

N0 201 69.1 1064 70.7 863 85.8 402 50.8 351 71.3 914 70 1265 70.4

Missing 8 2.7 24 1.6 16 1.6 16 2 4 0.8 28 2.1 32 1.8

Total 291 100 1506 100 1006 100 791 100 492 100 1305 100 1797 100

Differentiation

Well differentiated 186 63.9 927 61.6 497 49.4 616 77.9 346 70.3 767 58.8 1113 61.9

Moderately/ poorly
differentiated

84 28.9 533 35.4 472 46.9 145 18.3 114 23.2 503 38.5 617 34.3

Missing 21 7.2 46 3.1 37 3.7 30 3.8 32 6.5 35 2.7 67 3.7

Total 291 100 1506 100 1006 100 791 100 492 100 1305 100 1797 100

Hormone receptors

Positive 220 75.6 1300 86.3 920 91.5 600 75.9 253 51.4 1267 97.1 1520 84.6

Negative 38 13.1 174 11.6 45 4.5 167 21.1 194 39.4 18 1.4 212 11.8

Missing 33 11.3 32 2.1 41 4.1 24 3 45 9.1 20 1.5 65 3.6

Total 291 100 1506 100 1006 100 791 100 492 100 1305 100 1797 100

Complete data

Complete 216 74.2 1358 90.2 900 89.5 674 85.2 397 80.7 1177 90.2 1574 87.6

Missing 75 25.8 148 9.8 106 10.5 117 14.8 95 19.3 128 9.8 223 12.4

Total 291 100 1506 100 1006 100 791 100 492 100 1305 100 1797 100
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Understanding the impact of prognostic factors and of
treatment with time since diagnosis is therefore increas-
ingly important. In this context, population-based data
are crucial to understand how treatment influences the
outcomes for all cancer patients. These aims should be
distinguished from those of web-based models, which
provide patients with an estimation of his/her survival
according to his/her values of prognostic factors.

Our approach
In order to estimate the long-term associations of prog-
nostic factors and treatment with the risk of dying from
breast cancer, we used observational data from the
population-based Geneva Cancer Registry. For this pur-
pose, we restricted our cohort to a relatively homoge-
neous group of younger patients (less than 75) with
localised disease (stage I and II) and who had received
surgery. The severity of the disease was controlled for
through the combination of several covariables, and the
analyses accounted for differences in individual charac-
teristics. Furthermore, the estimation of the mortality re-
lated to the disease, after controlling for other causes,
was based on flexible excess hazard regression models,
which enable the assumptions of linear and time con-
stant excess hazard ratios to be relaxed. Both of these
assumptions are clinically unlikely in the context of
long-term survival. We used a recommended strategy
[22] for selection of covariables and their complex asso-
ciations, and performed a sensitivity analysis to evaluate
the reproducibility of the model [23].
Despite using a fairly homogeneous group of patients,

this optimised and up-to-date modelling strategy, a clear
process for variable and complex association selection and
a sensitivity analysis, our results demonstrated a lack of
stability and model misspecification, associated with un-
realistic effects of some treatments (e.g. chemotherapy).

Modelling issues
First, our sensitivity analysis demonstrated that the set of
covariables included (eventually with NL and/or TD func-
tional forms) in the “final” model for the excess mortality
hazard was unstable. Because of this demonstrated in-
stability, results obtained from a single model should be
interpreted with caution. This is best illustrated by the fact
that 20% of models did not reach convergence during the
sensitivity analysis, as well as the fact that several variables
selected for the single derived model were rarely retained
in the sensitivity analysis (low BIF, e.g. TD for hormonal
treatment). Meanwhile others not retained in the derived
model were often selected by the sensitivity analysis (high
BIF e.g. hormone receptors).
There are a number of possible reasons for this lack of

robustness. The first is related to the context in which the
study was conducted. Since breast cancer patients present
with high survival, the number of events (“excess” death)
is relatively low in breast cancer data, even where
long-term follow-up is available. This is especially true for
the fairly small Geneva population (495,000 inhabitants)
and for the study population which was restricted to
early-stage cancer patients. It is recommended that at least
10 events per parameter should be included when estimat-
ing regression coefficients [25, 26]. Because we considered
both time-dependent and non-linear associations for all
prognostic variables, the number of parameters included
in our model was large relative to the number of deaths.
The convergence issues that we encountered are therefore
likely to be explained, in part, by a lack of information
from the observed data. However, decreasing the number
of parameters (either by reducing the number of variables,
or excluding some complex associations) would not have
been a better strategy, given that our core aim was to try
to better understand the long-term associations of prog-
nostic covariables for breast cancer patients. Neither was
it practical to increase the number of women in order to
increase the number of events since this could only have
been done by including women with advanced disease (for
which treatment protocols are very different) or by includ-
ing elderly women (who do not have the opportunity for
long-term follow-up, and for whom the excess regression
modelling would not make sense on the longer term [10].
The analysis excluded 12.3% of the cohort because of

missing data, thus leading to a loss of information.
However this proportion is relatively low for these types
of observational data and complete-case analyses have
been proved to be sufficiently efficient for such ranges of
missing data proportion [24]. Also, our aim was to
highlight the difficulties encountered with modelling
in the context of observational data. We therefore
performed a complete-case analysis in order not to
dilute the message with issues related to multiple
imputation.

Table 2 Bootstrap Inclusion Frequency (BIF) for each co-variable
and their type of associations following the sensitivity analysis

BIF (%)

Main Non-linear Time dependent

Age 92.9 18.8 87.1

Size of the tumour 99.6 34.2 57.1

Nodal involvment 85.8 – 55.4

Grade of the tumour 90.8 – 51.7

Hormone receptors 97.1 – 95.4

Radiotherapy 59.6 – 18.8

Chemotherapy 75.4 – 32.9

Hormonal treatment 45 – 20.4

“-”: Not applicable
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Fig. 1 Excess hazard ratio for age at diagnosis, excluding outliers, using 70 years as the reference (a) 1 year after diagnosis. b 5 years after
diagnosis. c 10 years after diagnosis
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It is possible that the lack of stability may have been a re-
sult of the modelling approach. We consider this unlikely,
however. The flexible regression model we applied has been
purposefully designed to estimate excess mortality hazard
[19] and take into account complex associations. The
model selection strategy has previously been shown to be

efficient and successful in detecting the correct complex as-
sociations as well as eliminating spurious ones [22].
The second main issue was that our strategy was un-

able to fully control for confounding by indication lead-
ing to model misspecification. This would be an issue
even with a perfectly robust model. This confounding is

Fig. 2 Excess hazard ratio for tumour size, excluding outliers, using 20mm as a reference. a 1 year after diagnosis (b) 5 year after diagnosis (c) 10
year after diagnosis
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best illustrated by the unexpected results for chemother-
apy and hormonal treatment. Women receiving these
treatments experienced an increased risk of dying from
breast cancer compared to women who did not receive
them (Fig. 3). This reflects the fact that the patients in
the cohort who received chemotherapy and hormonal
treatment were probably those with more advanced dis-
ease at diagnosis, among the early-stage cases (Table 1).
This represents a limitation of our strategy, which was
not able to account for the fact that almost all women
who were likely to benefit from these therapies were
given them, resulting in a sparse comparison group within
the patient cohort (confounding by indication). We per-
formed a stratified analysis to explore this (data not

shown). We grouped patients with very similar character-
istics together and compared their survival according to
receipt of chemotherapy or not. This similarly showed an
increased risk in the excess hazard of death associated
with chemotherapy. This strongly suggests that additional
information about the prognosis of patients not receiving
chemotherapy is missing from our dataset, and that this
led to misspecification of the model.
In addition, interactions between treatment received

and other co-variables might be required. Although we
planned to examine the existence of such interactions,
they were tricky to implement due to the convergence is-
sues we encountered during the modelling process, and
not reasonable to explore in our small sample size dataset.

Fig. 3 Excess hazard ratio for categorical covariables, excluding outliers. a Nodal involvement with Yes as reference category. b Grade with
Moderately/Not differentiated as reference category. c Hormone receptor status with Positive as reference category. d Radiotherapy with No as
reference category. e Chemotherapy with No as reference category. f Hormonal treatment with No as reference category
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Other possible strategies
Our results point towards the need for different statis-
tical strategies in addition to our modelling strategy to
be better able to examine these effects more than only
the associations. Causal inference analyses would be one
suitable approach [27–29]. The objective of causal infer-
ence is to mimic the randomised trial that would have
been set for the research question by using observational
data and specific statistical techniques. Propensity score
methods could, for example, be implemented within the
flexible regression models we have used here [30, 31]. In
our work, we assumed that people were treated at the
date of diagnosis, which is probably not correct for all
patients. Also, some changes in the prognostic factors
values for some patients (e.g. growth of the tumor size)
may suggest that a treatment needs to be undertaken
later on after the diagnosis. In the presence of such
time-varying confounding, other approaches such as
parametric g-formula [32], structural nested models or
marginal structural models with inverse probability
weighting would also be of interest, especially for the
long-term treatment effect [33, 34] . All these ap-
proaches assume the models to be well specified, which
is not so easy to achieve. Various approaches, including
using machine learning techniques, have been developed
to minimise model misspecification [35]. This would
however require much more detailed data, including co-
morbidities and other factors used to define the treat-
ment choice. Furthermore, software to implement causal
inference techniques is not yet available for the excess
mortality hazard. Further methodological research is
thus required to enable such analyses to be conducted.

Clinical interpretations
Nevertheless, a few cautious clinical interpretations can be
drawn from these data. Some co-variables presented high
BIFs within the sensitivity analysis and the observed associ-
ations appeared stable to the exclusion of outliers suggest-
ing that they are indicative of a robust, underlying
associations. Consistent with Jatoi et al. [14] we found that
patients with negative hormone receptors presented a
higher excess mortality during the first years after diagnosis
compared to those who have positive hormone receptors
(BIF 95.4%). Regarding age at diagnosis, our results
matched those found by Cluze et al. [16] which showed
the risk of dying from breast cancer was associated with in-
creasing age at 1 and 5 years after diagnosis but that this
association reversed at 10 years (BIF 87.1%). In addition to
hormone receptor status and age at diagnosis, tumour size,
grade and nodal involvement displayed associations which
were similar to those described in a previous meta-analysis
[12]. Although our results are broadly consistent with pre-
vious studies, caution should be exercised in reporting the
size of these associations, given that they have been derived

from models, which display a lack of robustness. We ob-
served a time-dependent association for radiotherapy: pa-
tients treated with radiotherapy exhibited a decreased
excess mortality hazard in the first 10 years following their
diagnosis but an increased hazard afterwards. This associ-
ation was, however, sensitive to the inclusion or exclusion
of outliers. That said, it could potentially correspond to late
side effects of treatment, in particular cardiac complica-
tions, which are known as a likely consequence of irradia-
tions given close to the heart [36–38].

Conclusion
Our research aimed to estimate the long-term associa-
tions of prognostic factors and treatment for breast can-
cer using flexible excess hazard-based regression models
for patients diagnosed in Geneva between 1995 and
2002. Our study highlights the challenges of interpreting
these associations in observational data and as well as the
need for high quality and detailed clinical information at a
population level so that these associations can be exam-
ined in detail. With such data, causal inference methods
could be applied to be able to describe an effect rather
than an association. However, applying causal inference
methods requires further methodological work and the
development of specialist software for the use of causal in-
ference in the context of excess hazard modelling.
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