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We propose a new numerical method to solve the Cahn-Hilliard equation coupled with 
non-linear wetting boundary conditions. We show that the method is mass-conservative 
and that the discrete solution satisfies a discrete energy law similar to the one satisfied by 
the exact solution. We perform several tests inspired by realistic situations to verify the 
accuracy and performance of the method: wetting of a chemically heterogeneous substrate 
in three dimensions, wetting-driven nucleation in a complex two-dimensional domain and 
three-dimensional diffusion through a porous medium.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Capillarity and wetting phenomena, driven primarily by interfacial forces, are ubiquitous in a wide spectrum of natural 
phenomena and technological applications. Examples range from the wetting of plant leaves by rainwater and insects walk-
ing on water to coating processes, inkjet printing, oil recovery and microfluidic devices; for reviews, see e.g. [1,2]. From a 
historical point of view, two of the concepts essential to the understanding of capillarity and wetting were introduced and 
studied already in 1805: these are the Laplace pressure [3] and the Young-Dupré contact angle [4]. Later, following the work 
of Plateau on soap films [5], Poincaré [6] linked interfacial phenomena with the theory of minimal surfaces.

Wetting phenomena typically involve a fluid-fluid interface advancing or receding on a solid substrate and a contact line 
formed at the intersection between the interface and the substrate. The wetting properties of the substrate determine to a 
large extent the behaviour of the fluids in the contact-line region, and in particular the contact angle at the three-phase 
conjunction, defined as the angle between the fluid-fluid interface and the tangent plane at the substrate. At equilibrium, 
this is precisely the Young-Dupré angle. When one of the two fluids moves against the other, the contact angle becomes 
a dynamic quantity, and when the problem is formulated in the framework of conventional hydrodynamics, the contact 
line motion relatively to the solid boundary results in the notorious stress singularity there, as first noted in the pioneering 
studies by Moffat [7] and Huh and Scriven [8]. Since then there have been numerous analyses and discussions of the 
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singularity over the years, e.g. Refs. [9–11] and also recent studies in Refs. [12,13] (with the latter one revisiting the classical 
Cox-Hocking matched asymptotic analysis and providing a correction to it).

A popular model for interface dynamics is the Cahn-Hilliard (CH) equation [14,15], which belongs to the class of phase-
field and diffuse interface models. Originally proposed to model spinodal decomposition and the mechanism by which a 
binary mixture can separate to form two coexisting phases due to, e.g., a change of temperature [15], it has been used in 
a wide spectrum of different contexts such as solidification phenomena [16] and Saffman-Taylor instabilities in Hele-Shaw 
flows [17]. To account for wetting phenomena and contact lines on solid boundaries, the CH equation can be coupled to a 
wall boundary condition [18]. Such CH model has been employed successfully in various situations, including microfluidic 
devices [19–22], flow in porous media [23], rheological systems [24], and patterning of thin polymer films [25]. Other 
potential applications include micro-separators [26], fuel cells [27] and CPU chip cooling based on electro-wetting [28]. Many 
of these applications are characterised by the presence of chemically heterogeneous substrates and/or complex geometries, 
which make their numerical simulation challenging.

The form of the wetting boundary condition is dictated by the form of the wall free energy. For liquid-gas problems 
linear forms have been adopted, e.g. in the pioneering study by Seppecher [29] and Refs. [30,31]. But a cubic is the lowest-
order polynomial required so that the wall free energy can be minimised for the bulk densities and prevents the formation 
of boundary layers on the wall ahead of a moving contact line such as precursor films or any density gradients that might 
alleviate the discontinuity. Cubic forms have been adopted for binary fluid problems, e.g. Refs. [32,33], but also for liquid-
gas ones, Refs. [34,35]. The latter studies, in particular, showed asymptotically that a CH model can alleviate the contact 
line discontinuity without any additional physics (and at the same time completing but also correcting Seppecher’s work). 
Detailed asymptotic analysis of the unification of binary-fluid CH models can be found in Ref. [36].

Various approaches have been proposed in the literature for the numerical solution of the CH equation. Because of the 
high order of the equation and its multiscale features (scale separation between interface size and the characteristic length), 
most existing time-stepping schemes are implicit or semi-implicit. Several of these schemes aim to satisfy discrete mass 
and energy laws in agreement with the underlying continuum model. Discretisation in space can be achieved using finite-
difference methods [37,38], finite element methods [39–41], or spectral methods [42]. In addition, the computation time 
can be reduced by applying adaptive mesh refinement [43,44] and time-step adaptation [45].

Among the several linear schemes for the CH equation with homogeneous Neumann boundary conditions introduced 
in [46], the authors have shown by means of numerical experiments that, their second-order optimal dissipation scheme, 
referred to as OD2, is the most accurate and the one introducing the least numerical dissipation. In this work, we outline a 
numerical scheme that extends and appropriately generalises OD2 as follows: (a) it includes a non-linear wetting boundary 
condition; (b) it adopts an efficient energy-based time-step adaptation strategy. In contrast with the time-adaptation scheme 
introduced in [45], where the time step is adapted to limit numerical dissipation, here we base the time-step adaptation 
directly on the variation of free energy. With this method we are able to solve the CH system efficiently and systematically 
to capture wetting phenomena in both two- and three-dimensional (2D and 3D, respectively) settings, and in a wide range 
of situations, including confinement with complex geometry, chemical and topographical heterogeneities, or both.

Like the OD2 scheme on which it was based, the time-stepping scheme we propose is semi-implicit and linear. We show 
that it is also mass-conservative and satisfies a discrete free-energy law with a numerical dissipation term of order 2 in 
time. Space discretisation is achieved using a finite-element method, leading to an unsymmetrical sparse linear system to 
solve at each iteration. We use a mesh refinement strategy to capture interfaces precisely, and an adaptive time step to limit 
the variation of free energy at each step, with the aim of increasing the resolution in time during fast phenomena.

To test the efficiency of the proposed numerical scheme we consider several wetting problems as test cases. We first 
study relaxation towards equilibrium in two situations: the spreading of a sessile droplet and the coalescence of two sessile 
droplets on a flat, chemically homogeneous substrate. We then consider two-component systems in complex geometries 
delimited by chemically heterogeneous substrates in both 2D and 3D.

In Section 2, we introduce the CH system and the non-linear wetting boundary condition. In Section 3, we outline our 
numerical scheme and prove the associated conservation properties. In Section 4, we present the results of several numerical 
experiments. Conclusions and perspectives for future work are offered in Section 5.

2. Phase-field model for wetting phenomena

Throughout this study, � ⊂ Rd corresponds to a d-dimensional domain, ∂� denotes its boundary with outward unit 
normal vector n, �S is the solid substrate and �G = ∂� \ �S . The CH system we use to describe the dynamics of two 
immiscible fluids in contact with a solid substrate, is a free-energy-based model. The starting point is the introduction of 
a locally conserved field, denoted by φ : � → R, that plays the role of an order-parameter: two equilibrium values, say 
+1 and −1, represent the pure phases, and the interface is conventionally located at the points where φ = 0 [14,15]. We 
consider systems with a free energy given by

E(φ) := Em(φ) + E w(φ) (1)

:=
∫
�

(
1

ε
Fm(φ) + ε

|∇φ|2
2

)
d� +

∫
∂�

F w(φ)dσ , (2)



B. Aymard et al. / Journal of Computational Physics: X 2 (2019) 100010 3

where the two terms, Em and E w , represent the mixing and wall components of the free energy, respectively. Here Fm(φ) =
1
4 (φ2 − 1)2 and F w is taken to be a cubic polynomial, following e.g. Refs. [34,35]:

F w(φ) =
√

2

2
cos θ(x)

(
φ3

3
− φ

)
, (3)

where θ = θ(x) is the equilibrium contact angle, which can depend on the spatial position x. From the expression of the 
free energy, we calculate that, for a sufficiently smooth function ψ : � →R:

d

dα
E(φ + α ψ)

∣∣
α=0 =

∫
�

(
1

ε
fm(φ) − ε�φ

)
ψ d� +

∫
∂�

( f w(φ) + ε∇φ · n)ψ dσ , (4)

with fm = F ′
m and f w = F ′

w , so the chemical potential is equal to

μ := δE

δφ
= 1

ε
fm(φ) − ε�φ, (5)

and the natural boundary condition associated with the surface energy is

ε∇φ · n = − f w(φ) =
√

2

2
cos θ(x)(1 − φ2). (6)

We assume that the dynamics of the system is governed by the CH equation,

∂φ

∂t
= ∇ · (b(x)∇μ), (7)

where b(x) is a mobility parameter, assumed to be uniform hereafter. This leads to the following mass-conservation prop-
erty:

d

dt
M(φ) := d

dt

∫
�

φ d� =
∫
∂�

b ∇μ · n dσ , (8)

so the mass flux at the boundary can be specified using the condition b∇μ · n = ṁ(x), where ṁ(x) is the desired mass flux. 
In particular, we will set ṁ(x) = 0 at the solid boundary, �S . In summary, the equations we are solving in this study are:

∂φ

∂t
= ∇ · (b(x)∇μ), (9a)

μ = 1

ε
fm(φ) − ε�φ for x ∈ �, t ∈ (0, T ], (9b)

ε∇φ · n = − f w(φ), (9c)

b ∇μ · n = ṁ(x) for x ∈ ∂�, t ∈ (0, T ]. (9d)

In addition to the conservation of mass, Eqs. (9a) to (9d) imply the following energy-conservation law, involving the phase 
field and the chemical potential:

d

dt
E(φ(t)) = −‖√b ∇μ‖2

L2 +
∫
∂�

ṁ μdσ . (10)

An advantage of the cubic surface energy (3) over other surface energy formulations (see [47] for a review of wetting 
boundary conditions for binary fluids) is that the well-known hyperbolic tangent profile is an equilibrium solution in more 
than 1 dimensions. Specifically, the function

φ(x) = tanh

(
x · u√

2ε

)
, where u = (± sin θ, cos θ)T (11)

is solution to the CH equation posed in the half plane {y ≥ 0} with the boundary condition (3) at {y = 0} and constant 
θ(x) = θ . A schematic representation of this solution and the corresponding fluid-fluid interface is given in Fig. 1.

A drawback of the cubic wall energy (3) is that the conservation of energy no longer seems to imply stability bounds for 
the solution, making it impossible to use the tools traditionally employed (see e.g. [48]) to prove the existence of a solution. 
Indeed, an application of the trace inequality gives only that, under appropriate regularity assumptions on φ:
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Fig. 1. Schematic of the profile geometry of a fluid-fluid interface intersecting a solid boundary and illustration of the stationary solution (11).

∥∥∥φ3
∥∥∥

L1(∂�)
≤ C

(∥∥∥φ3
∥∥∥

L1(�)
+
∥∥∥∇(φ3)

∥∥∥
L1(�)

)
(12a)

= C

(∥∥∥φ3
∥∥∥

L1(�)
+ 3

∥∥∥φ2 ∇φ

∥∥∥
L1(�)

)
(12b)

≤ C

(∥∥∥φ3
∥∥∥

L1(�)
+ 3

2α

∥∥∥φ4
∥∥∥

L1(�)
+ 3α

2
‖∇φ‖2

L2(�)

)
∀α > 0, (12c)

where we used Hölder’s inequality and Young’s inequality with a parameter. Therefore, the wall energy cannot be controlled 
by the mixing energy for arbitrary domains. This issue can be remedied by a simple modification of the wall energy outside 
of the physical range [−1; 1]; instead of (3), we consider the following wall energy:

F ∗
w(φ) =

√
2

2
cos θ(x) ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
2
3 − (φ + 1)2

)
if φ < −1;(

φ3−3φ
3

)
if φ ∈ [−1,1];(

− 2
3 + (φ − 1)2

)
if φ > 1.

(13)

This function is such that F ∗
w (φ) = F w(φ) for φ ∈ [−1, 1], F ∗

w ∈ C2(R), and (F ∗
w)′′ is absolutely continuous, which makes it 

possible to prove the second order convergence of our time-stepping scheme, see Section 3. Another possibility would have 
been to choose constant values for F ∗

w outside of the interval [−1; 1], but this would have led to F ∗
w being only C1(R), 

making it more difficult to show second order convergence theoretically. The weak formulation of Eqs. (9a) to (9d) with the 
modified wall energy (13) is as follows: find (φ, μ) such that

φ ∈ L∞(0, T ; H1(�)),
∂φ

∂t
∈ L2(0, T ; (H1(�))′), μ ∈ L2(0, T ; H1(�)), (14)

and the following variational formulation is satisfied:

〈∂tφ,ψ〉 + (b ∇μ,∇ψ) = (ṁ,ψ)∂� ∀ψ ∈ H1(�) and a.e. t, (15a)

(μ,ν) = ε (∇φ,∇ν) + 1

ε
( fm(φ), ν) + ( f ∗

w(φ), ν
)
∂�

∀ν ∈ H1(�) and a.e. t, (15b)

with f ∗
w := (F ∗

w)′ and where 〈·, ·〉, (·, ·) and (·, ·)∂� denote, respectively, the duality pairing between (H1(�))′ and H1(�), 
the standard inner product in L2(�), and the standard inner product in L2(∂�). For simplicity of notations, the symbols F w , 
f w and E will refer in the rest of this paper to F ∗

w , f ∗
w , and Em + ∫

∂�
F ∗

w dσ , respectively.

2.1. Existence of a solution

We can show the following existence result for the weak formulation of the Cahn-Hilliard system with the modified 
boundary condition presented above, under appropriate regularity assumptions for the initial condition and the mass flux 
ṁ.
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Theorem 2.1. Assume that φ0 ∈ H1(�) and ṁ ∈ C([0, T ]; L2(∂�)). Then there exists a pair of functions (φ, μ), with

1. φ ∈ L∞(0, T ; H1(�)) 
⋂

C([0, T ]; L2(�)),
2. ∂tφ ∈ L2(0, T ; (H1(�))′),
3. φ(0) = φ0 ,
4. μ ∈ L2(0, T ; H1(�)),

that solve the variational formulation Eqs. (15a) and (15b).

Proof. See Appendix A. �
3. Numerical method

In this section we introduce a new time-stepping scheme to solve the CH equation (7) with the non-linear wetting 
boundary condition (6), which is a generalisation of the optimal dissipation scheme of order 2, OD2, developed in [46]. We 
decided to extend this particular scheme because, as already mentioned in the Introduction, the authors of [46] showed 
that, among all the linear schemes they proposed, it is the most accurate and the least dissipative. And in selected test 
cases, they showed that for a large enough time step, it is the only scheme that leads to the correct equilibrium solution. 
We refer to our scheme as OD2-W, with W denoting wetting, and show that it leads to a consistent discrete energy law.

We also develop a new adaptive time-stepping strategy which, combined with adaptation in space, leads to a fully adap-
tive finite element method. An excellent introduction to the finite element method and corresponding mixed formulations 
can be found in Ref. [49] and to mesh generation and adaptive refinement in Ref. [50].

3.1. OD2-W scheme

In this section, we assume for simplicity that ṁ = 0 and that θ is uniform on ∂�. We denote by �t the time step, and by 
φn and μn+1/α the numerical approximations of φ and μ at times tn and tn + 1

α �t , respectively. To define a discretisation
in time of the CH system appropriate for wetting phenomena, we follow the approach proposed in [46] to design an 
optimal dissipation scheme, and consider the following generic implicit-explicit numerical scheme: given φn ∈ H1(�), find 
(φn+1, μn+ 1

α ) ∈ H1(�) × H1(�) such that, ∀(ψ, ν) ∈ H1(�) × H1(�),(
δtφ

n+1,ψ
)+

(
b ∇μn+ 1

α ,∇ψ
)

= 0 ∀ψ ∈ H1(�), (16a)(
μn+ 1

α , ν
)

= ε
(
∇φn+ 1

α +β,∇ν
)

+ 1

ε

(
f̂m(φn, φn+1), ν

)
+
(

f̂ w(φn, φn+1), ν
)

∂�
∀ν ∈ H1(�). (16b)

In these expressions, f̂m, f̂ w are functions to be specified, linear in their second argument. The parameter α ∈ {1, 2} de-
termines the accuracy of the numerical scheme, and the parameter β ∈ [0, 1 − 1/α] controls the numerical diffusion. The 
function φn+ 1

α +β is defined by linear interpolation between φn and φn+1,

φn+ 1
α +β :=

(
1 − 1

α
− β

)
φn +

(
1

α
+ β

)
φn+1, (17)

and δtφ
n+1 is the approximation of the time derivative of φ given by

φn+1 − φn

�t
. (18)

In most numerical experiments presented in this paper, we consider the case (α, β) = (2, 0) (OD2-W), but we note that 
other common choices include (α, β) = (1, 0) (OD1-W) and (α, β) = (2, O(�t)) (OD2mod-W). By taking ψ = μn+ 1

α and 
δtφ

n+1 in (16), we obtain

E(φn+1) − E(φn)

�t
= −‖√b ∇μn+ 1

α ‖2
L2(�)

− N D(φn, φn+1), n = 0,1, . . . , (19)

where N D(φn, φn+1), representing the non-physical numerical dissipation introduced by the time-stepping scheme, can be 
broken down in three parts:

N D(φn, φn+1) = εN Dphilic(φ
n, φn+1) + 1

ε
N Dphobic(φ

n, φn+1) + N Dwall(φ
n, φn+1), (20)

with
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N Dphilic(φ
n, φn+1) = �t

∫
�

[
1

α
− 1

2
+ β

] ∣∣∇δtφ
n+1
∣∣2 d�,

N Dphobic(φ
n, φn+1) =

∫
�

(
f̂m(φn, φn+1) δtφ

n+1 − 1

�t
(Fm(φn+1) − Fm(φn))

)
d�,

N Dwall(φ
n, φn+1) =

∫
∂�

(
f̂ w(φn, φn+1)δtφ

n+1 − 1

�t
(F w(φn+1) − F w(φn))

)
dσ .

(21)

Notice that the philic dissipation is always nonnegative, with N Dphilic(·, ·) = 0 if (α, β) = (2, 0) (OD2-W), N Dphilic(·, ·) =
O(�t2) if (α, β) = (2, O(�t)) (OD2mod-W), and N Dphilic(·, ·) =O(�t) if (α, β) = (1, 0) (OD1-W). The two other terms can 
be expanded using Taylor’s formula, taking into account that Fm is a polynomial of degree 4 and using the integral form of 
the remainder:

N Dphobic(φ
n, φn+1) =

∫
�

δtφ
n+1
(

f̂m(φn, φn+1) − fm(φn) − 1

2
�t f ′

m(φn) δtφ
n+1

− 1

6
�t2 f ′′

m(φn) (δtφ
n+1)2 − 1

24
�t3 f ′′′

m (φn) (δtφ
n+1)3

)
d�, (22a)

N Dwall(φ
n, φn+1) =

∫
∂�

δtφ
n+1
(

f̂ w(φn, φn+1) − f w(φn) − 1

2
�t f ′

w(φn) δtφ
n+1
)

− 1

2�t

φn+1∫
φn

f ′′
w(φ) (φ − φn)2 dφ dσ . (22b)

This suggests the following choices for the functions f̂m and f̂ w :

f̂m(φn, φn+1) = fm(φn) + 1

2
�t f ′

m(φn) δtφ
n+1 =

[
3

2
(φn)2φn+1 − 1

2
(φn)3 − φn + φn+1

2

]
, (23a)

f̂ w(φn, φn+1) = f w(φn) + 1

2
�t f ′

w(φn) δtφ
n+1

= −
√

2

2
cos(θ) ×

⎧⎪⎪⎨
⎪⎪⎩

2 + φn + φn+1 if φn < −1;
1 − φnφn+1 if φn ∈ [−1,1]
2 − φn − φn+1 if φn > 1,

(23b)

= −
√

2

2
cos(θ) × (1 + (1 − φn) ∧ 0 + (1 + φn) ∧ 0 − (−1 ∨ φn ∧ 1)φn+1), (23c)

where the last expression is convenient for programming purposes. We note that this methodology to derive a second-order 
scheme can be applied mutatis mutandis when using the unmodified wall energy (3), although we haven’t been able to 
prove the existence of a solution to the weak formulation in that case. Doing so leads to f̂ w(φn, φn+1) = −(

√
2/2) cos θ (1 −

φn φn+1), which coincides with (23b) when φn ∈ [−1, 1]. In either case, we have the following property:

Property 3.1. Assume that α = 2 and β = 0. Then the numerical dissipation term in Eq. (19) is such that

|N D(φ(tn),φ(tn+1))| ≤ C�t2, (24)

with C :=
(

C1 ‖φ‖C([0,T ],L∞(�)) ‖∂tφ‖3
C([0,T ],L3(�))

+ C2 ‖∂tφ ‖3
C([0,T ],L3(∂�))

)
, provided that all the terms in the definition of C are 

well-defined.

Proof. In [46], the authors show that:

N Dphilic(·, ·) = N Dphilic(φ
n, φn+1) = N Dphilic(φ(tn),φ(tn+1)) = 0;∣∣N Dphobic(φ(tn),φ(tn+1))
∣∣≤ �t2

(
C1 ‖φ‖C([0,T ],L∞(�)) ‖∂tφ‖3

C([0,T ],L3(�))

)
.

(25)

For the wall term, we obtain from Eqs. (22b) and (23b):
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|N Dwall(φ(tn),φ(tn+1)| ≤ C2 �t2
∫
∂�

∣∣δtφ
n+1
∣∣3 dσ

≤ C2 �t2 ‖∂tφ‖3
C([0,T ],L3(∂�))

. �
(26)

In addition to the energy law (19), the numerical scheme (16) satisfies a discrete version of the conservation law (8)
presented in Section 2.

Property 3.2. The numerical solution satisfies the following mass conservation law:∫
�

φn d� =
∫
�

φ0 d� for n = 0,1,2, . . . (27)

Proof. Choose ψ = 1 in Eq. (16a). �
3.1.1. Space discretisation and adaptive mesh refinement

Our approach for mesh adaptation is based on a method proposed in [51], and implemented through the free software 
FreeFem++ based on the finite element method [53] and the software functions adaptmesh for the mesh adaptation in 2D 
(as part of FreeFem++) and mshmet [54] and tetgen [55] for the mesh adaptation in 3D. The idea of the method is to define 
a metric on the computational domain based on the solution at the current time step, and to use for the next time step a 
mesh that is uniform in that metric. The metric we consider corresponds to the following metric tensor, depending only on 
the phase field φ:

G(x) = R(x)diag(λ̃i(x)) R(x)T, λ̃i(x) = min

(
max

(
1

γ
|λi(x)|, 1

h2
max

)
,

1

h2
min

)
, (28)

where (λi(x))d
i=1 are the eigenvalues of the Hessian of φ at x, R(x) is the matrix containing the associated orthonormal 

eigenvectors, and γ > 0 is a parameter controlling the interpolation error. A standard algorithm of Delaunay type is used 
to generate a mesh that is equilateral and uniform with characteristic length 1 in that metric. This mesh definition ensures 
that the interpolation error of the phase field is roughly equi-distributed over the parts of the domain where h−2

max ≤
1
γ maxi=1→d |λi | ≤ h−2

min.
In most of the simulations presented in the next section, we set hmin to a value lower than or equal to ε/5, to ensure 

that enough mesh points are available for the discretisation of the interface region in its normal direction, and hmax to a 
value small enough that a good approximation of the chemical potential is possible. For 3D simulations, however, choosing 
hmin ≤ ε/5 when ε is of the order of 0.01 leads to a prohibitive computational cost; in these cases we have thus used a less 
precise value, as specified in the relevant sections.

For a given mesh T =⋃NT
i=1 Ti , we use the standard finite element space

Vh = {φ ∈ C(�) : φ|Ti ∈ Pρ for i = 1, . . . , NT }, (29)

with Pρ the space of polynomials of degree ρ . In the numerical experiments below, we used both quadratic elements 
(ρ = 2) and linear ones (ρ = 1). Space discretisation is achieved by replacing H1(�) by Vh in the variational formula-
tion (16), leading to a sparse unsymmetric linear system at each iteration, which we solve using the multi-frontal method 
umfpack [52].

3.1.2. Time step adaptation
Here we assume that ṁ = 0 in the boundary condition (9d). From Eqs. (8) and (10), this implies that M(φ) is constant in 

time and E(φ) decreases. Numerical exploration suggests that large free-energy variations are usually caused by topological 
changes of interfaces, corresponding to physical phenomena such as the coalescence of droplets. Since capturing such phe-
nomena precisely is crucial to the accuracy of the solution, we propose an adaptive strategy aimed at limiting the variation 
of free energy at each time step. We adapt the time step based on the dissipation of free energy:

�n+1 E := −�tn b ‖∇μn+ 1
α ‖2

L2 �tn := tn+1 − tn

which is equal to E(φn+1) − E(φn) up to numerical dissipation. Five parameters enter in our time-adaptation scheme:

• �tmin, �tmax: the time steps below which we stop refining and beyond which we stop coarsening, respectively.
• �Emin: the variation of free energy below which we increase the time step at the next iteration.
• �Emax: the variation of free energy beyond which we refine the time step and recalculate the numerical solution.
• f > 1: the factor by which the time step is multiplied or divided at each adaptation.
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Algorithm 1: Time step adaptation.
Data: �tmin, �tmax, �Emin, �Emax, f , φn, �tn

1 Compute a solution (φ∗, μ∗) of (16) using time step �tn ;
2 Compute |�∗ E| := �tn b ‖∇μ∗‖2

L2 ;

3 if (|�∗ E| > �Emax and �tn > �tmin) or (E(φ∗) − E(φn) > �Emax/100) then
4 Set �tn = �tn

f and go back to 1;

5 else
6 φn+1 = φ∗ ;
7 if (|�∗ E| < �Emin and �tn < �tmax) then
8 �tn+1 = f �tn ;

9 n = n + 1 and go back to 1.

The condition (E(φ∗) − E(φn)) > �Emax/100 serves to guarantee that the method does not blow up. The choice of 
a nonzero right-hand side is motivated by the fact that, when the system is close to equilibrium, it can happen that 
E(φ∗) > E(φn). This is because, in contrast with the sign of N Dphilic(φ

n, φn+1), which is always positive or zero according 
to Eq. (21), the signs of N Dphobic(φ

n, φn+1) and N Dwall(φ
n, φn+1) are in general unknown. In the numerical experiments 

presented in Section 4, we chose �tmin = 0. Since the numerical dissipation term scales as �t2, the inequality E(φn+1) ≤
E(φn)+�Emax/100 will always hold for �t small enough, so the refinement process is guaranteed to terminate at each 
iteration.

4. Numerical results

The new numerical method is applied on a number of test cases. As already noted in Section 3.1.1 for the implementa-
tion we have used FreeFem++ [53] and the software functions adaptmesh (part of FreeFem++) for the mesh adaptation 
in 2D, mshmet [54] and tetgen [55] for the mesh adaptation in 3D and umfpack for the linear solver. For the description 
of the geometry, post-processing and 3D visualisation, we use the gmsh [56]. In Section 4.1 we check that the numerical 
scheme leads to the correct equilibrium solution in the simple case of a droplet spreading on a philic or phobic substrate. 
In Section 4.2 we study the convergence of the method with respect to the time step and the mesh size, when a uni-
form mesh and a constant time step are used. In Section 4.2 we illustrate the time-adaptation scheme in the case of two 
droplets coalescing on a substrate. Finally, Section 4.4 demonstrates the ability of the numerical scheme to scrutinise wet-
ting phenomena in more complicated geometries, and in the presence of heterogeneous substrates. The code used for the 
simulations is available online, see Ref. [57].

4.1. Equilibrium contact angle

We consider a 2D sessile droplet on a flat substrate where we impose the no-flux condition and the wetting condition (6)
incorporating the modified wall energy (13) and uniform contact angle θ :

∇μ · n = 0, ε∇φ · n = − f w(φ) (30)

Our aim in this section is to check that our method is able to accurately capture the imposed contact angle, θ . Fig. 2 shows 
the equilibrium position of a droplet for different values of θ , for b = 1 and ε = 5 × 10−3. In all cases we used the scheme 
OD2-W with adaptation in space using the parameters hmax = 10 hmin = 0.01, and we computed the contact angle of the 
φ = 0 isoline at the substrate. A very good agreement is achieved between the imposed equilibrium contact angle and the 
observed numerical one.

4.2. Convergence of the method

Here, we study the convergence of the method when both time step and mesh size decrease. The problem we considered 
to that purpose is the coalescence of two adjacent sessile droplets as they spread on a flat substrate. For the simulation, we 
used the initial condition

φ(x,0) = 1 − tanh

(√
(x − x1)2 + y2 − r√

2ε

)
− tanh

(√
(x − x2)2 + y2 − r√

2ε

)
, (31)

in the domain [0, 2] ×[0, 0.5], with x1 = 0.65, x2 = 1.35, r = 0.25, and at the boundary we imposed a uniform contact angle, 
θ = π/4, using the wall energy (13). Only linear elements were used.

For the convergence as h → 0, we solved the problem numerically for several values of h, without mesh adaptation and 
for ε = 0.1, so that enough data points could be generated at a reasonable numerical cost. Since the exact solution to the 
CH equation in this case is not known analytically, we calculated the error by comparison of the numerical solutions to the 
solution obtained with the smallest value of h. Results are presented in Fig. 3. As we can see, the observed convergence rate 
is almost equal to 2, which is the optimal rate in the case of linear basis functions.
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Fig. 2. Equilibrium position of a droplet on substrates with different wetting properties. In all cases, θ denotes the angle appearing in boundary condi-
tion (30) and θ∗ denotes the angle calculated numerically. Blue corresponds to φ = 1 and green to φ = −1.

Fig. 3. Convergence of OD2-W with respect to the mesh size, without mesh adaptation. In this case, h corresponds to the uniform mesh size, given as input 
to the mesh generator of gmsh, and h∗ = 0.01.

Now we address the convergence with respect to the time step. For this case, we used the parameters ε = 0.1, b = 104, 
and the minimum time step we considered was �t∗ := 0.00665. In Fig. 4, we present convergence curves for OD1-W, OD2-
W, and OD2mod-W. We note that the convergence rates are close to the expected ones, and that the use of OD2 gives 
significantly more accurate results than the other two methods. In Fig. 5, the total numerical dissipation produced by the 
numerical schemes is presented. Here too, the numerical results agree with the theoretical results of Section 3.

4.3. Time-adaptation scheme

In this section, we examine the performance of the adaptive time-stepping scheme in the case of two droplets evolving 
on a chemically homogeneous substrate. We start from the situation where φ = −1 everywhere except in two half-circles, of 
radius r = 0.25 and centred at (0.65, 0) and (1.35, 0), where φ = 1. We used the following parameters: b = 10−4, ε = 0.01, 
f = √

2, �t0 = 0.02, �tmin = 0, �tmax = 16�t0, �Emin = 0.0001, �Emax = 0.0002, hmax = 0.05 hmin = 0.001, and for θ we 
considered three values: π/4, π/2, 3π/4.

Snapshots of the phase field and of the chemical potential at different times of the simulation are presented in Figs. 6
and 7 for the case θ = π/4 and θ = 3π/4, respectively. The case θ = π/2 is less interesting because, in view of the initial 
condition, the droplets remain essentially motionless throughout the simulation; we do not present snapshots of the solution 
in that case.

The evolution of the time step, of the number of recalculations, and of the free energies is displayed in Fig. 8. In all 
three cases, the time step is refined several times at the first iteration, to accommodate for the discontinuity of the initial 
condition. Since the initial angle between the interface and the substrate is equal to π/2, the number of recalculations 
performed at the first iteration is higher for θ = π/4, 3π/4 than for θ = π/2. After the initial refinement, the time step 
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Fig. 4. Convergence of the numerical method with respect to the time step, without mesh adaptation. In the case of OD1-W, the rate of convergence is 
close to the expected value of 1. In the other two cases, the rate of convergence is close to the expected value of 2.

Fig. 5. Total numerical dissipation generated by the numerical schemes in the simulation used to produce Fig. 4. OD2-W is by far the scheme producing the 
least numerical dissipation, even for relatively large time steps. OD2mod-W, on the other hand, introduces significant numerical dissipation for large time 
steps, owing to the large value of β that was chosen for the simulation, but is much less dissipative than OD1-W for small time steps.

steadily increases to its maximum allowed value for θ = π/2 and θ = 3π/4, but when θ = π/4 a second refinement occurs 
to capture the coalescence of the droplets.

In this latter case, we observe, simultaneously with the second refinement of the time step, an increase in the rate of 
dissipation of free energy. After the formation of a new stable interface, the total free energy continues to decrease, but 
more slowly, as a new droplet, formed by the merging of the two original droplets, moves towards its equilibrium position. 
We clearly identify the coalescence time by looking at the singularity in the curve corresponding to the mixing energy. This 
energy increases before coalescence, as the interfaces are being stretched, and it decreases steadily after. The wall energy, 
on the other hand, decreases at first and increases in the later stage of the simulation. As prescribed by Algorithm 1, the 
time step detects the variations of free energy; it decreases when the rate of variation of the total free energy increases, 
and conversely.

For comparison purposes, we also included in Figs. 8d to 8f data corresponding to the case where a fixed time step is 
used for the simulations presented in this section. There does not currently exist any result with conditions on the time 
step that ensure the stability of OD2, and we haven’t been able to show stability results for OD2-W either. In practice, 
we observed that the time step required to ensure stability of OD2-W with the set of parameters we use in this test case 
would lead to a very high computational cost. We point out that, contrary to what we expected, the time step required to 
achieve stable integration in time with the modified wall energy (13), which we use here, seems to be generally smaller 
than with the cubic formulation (3). To keep the computational cost at a reasonable level, we carried out the simulations 
with a fixed time step using the method OD1-W, the greater stability of which enabled us to choose �t = 0.02. In Figs. 8d 
to 8f, we see that, for the same contact angle, the curves corresponding to a fixed and an adaptive time step are almost 
indistinguishable. The agreement is also very good at the level of the phase field and chemical potential, although we do 
not present snapshots of the solutions obtained with a fixed time step.

The CPU times corresponding to the three contact angles considered are presented in Table 1. Without adaptation, the 
simulations take significantly longer to run, which is consistent with the fact that more iterations (20000) were necessary 
to reach the final time. In addition, among the simulations that used an adaptive time-step, the difference between the CPU 
times is also significant, with the case θ = π/4 taking more than twice as long as the case θ = π/2.
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Fig. 6. Phase field and chemical potential during the coalescence of two sessile droplets on a hydrophilic substrate for θ = π/4. The snapshots correspond 
to iterations 500, 1000, 1500, 2000, 2500, and 3000, which correspond to times 2.26, 19.55, 34.13, 49.03, 83.20 and 273.64. Blue colour represents phase 
φ = 1 and green phase φ = −1.

Fig. 7. Phase field and chemical potential when the contact angle is set to 3π/4. The snapshots correspond to iterations 500, 1000, 1500, which correspond 
to times 1.47, 17.32, and 115.71.

4.4. Wetting in complex geometries and with heterogeneous substrates

We now present the results of numerical experiments in more complicated and realistic settings, in both 2D and 3D 
systems.
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Fig. 8. Simulation data for the numerical experiments presented in Section 4.3 (two droplets on a substrate), when using the adaptive time-stepping 
scheme (Algorithm 1). As expected, the total free energy decreases with time for all three values of the contact angle. In the case θ = π/4, we note a peak 
in the mixing component of the free energy and a refinement of the time step at the coalescence time.

4.4.1. 3D droplet on a chemically heterogeneous substrate
We study the dynamics of a 3D sessile droplet on flat substrate with chemical heterogeneities, i.e. the contact angle 

has a spatial dependence now, say θ = θ(x, y). This situation typically arises in electro-wetting settings [58]. It is widely 
accepted that the droplet shape can be controlled using patterned substrates, e.g. Ref. [59,60], that may also be modelled 
efficiently using a space varying contact angle [59]. We consider chemical heterogeneities on the substrate of the form
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Table 1
CPU times (hh:mm:ss) using an Intel i7-3770 processor for the simulations 
presented in Section 4.3 (two droplets on a substrate), with or without 
time-step adaptation. The method OD2-W was used for the simulations 
with an adaptive time step, and the method OD1-W was used for the sim-
ulations with a fixed time step. In both cases, an adaptive mesh was used, 
with the parameter hmin equal to ε/10 = 0.001.

Contact angle Adaptive time step Fixed time step

π/4 44:15:17 130:16:16
π/2 21:38:38 128:35:20
3π/4 31:12:18 122:33:28

Fig. 9. Evolution of the contact line (top) and the isosurface φ = 0 (bottom) of the phase field, on a chemically heterogeneous substrate with a contact angle 
defined by (32). The balance of the wall component and the mixing component of the free energy determines the motion of the drop. The field represented 
in the top figures is the value of the contact angle at the triple line. In the bottom figures, the field represented on the plane representing the substrate is 
the imposed contact angle. Interestingly, the heterogeneities of the substrate cause the length of the contact line to increase.

θ(x, y) = θ0 + a cos( fxπx) cos( f yπ y), (32)

with θ0 = π
2 the mean contact angle, a = π

6 the amplitude, and fx = f y = 4 the frequencies in x and y directions, respec-
tively. As initial condition we take a droplet of base radius r0 = 0.24 centred at x0 = (0.5, 0.5, 0). The initial values of the 
phase field are given as

φ0(x) = − tanh

(‖x − x0‖ − r0√
2ε

)
. (33)

Results are displayed in Fig. 9. The droplet, initially spherical, spreads on the hydrophilic regions of the substrate, and 
retracts from the hydrophobic patches. While we do not present any quantitative analysis of the error in this case, we note 
that the wetting behaviour agrees qualitatively with what one might expect intuitively from our understanding of wetting 
phenomena. While it progresses towards equilibrium, the droplet adopts a diamond-like shape.

For this test case, we used the method OD2-W with adaptation in space and time. The parameters used were the 
following: b = 104, ε = 0.02, hmax = 10 hmin = 0.1, �t0 = 0.0016, �tmin = 0, �tmax = 16 �t0, f = √

2, �Emax = 10 �Emin =
0.0001. With these parameters, the time step was refined only at the beginning of the simulation, which is consistent 
with the absence of coalescence events in this case. There were 24 recalculations at the first time step, corresponding to a 
refinement of the time step by a factor f 24 = 4096.



14 B. Aymard et al. / Journal of Computational Physics: X 2 (2019) 100010

Fig. 10. Evolution of the isosurface φ = 0 of the phase field when a constant flux is imposed at the bottom boundary; The pictures correspond to iterations 
0, 200, 400, 800 and 1000. Note that, because of the neutral boundary condition imposed at the spheres, the isosurface tends to stay normal to them as 
long as they are not completely covered.

Fig. 11. Evolution of M(φ) and Em(φ) as a function of time in the case of a 3D flow through a porous medium (Fig. 10). In this case, the mass increases 
linearly because we impose a constant mass inflow at the pore. The free energy increases as well, because the size of the interface grows, in agreement 
with both the mass and energy laws (8) and (10).

4.4.2. Diffusion in a 3D porous medium
Here we consider a binary fluid in a model porous medium consisting of a cube filled with spheres. The cube has edges 

of length 1, and the spheres have radius 0.1 and are located at positions (1.5, 1.5, 1.5) + 2�(i, j, k) with � = 1/7 and 
i, j, k ∈ {0, 1, 2}. We take all the substrates to be neutral, i.e. θ = π

2 , and the initial condition is the same as used before, 
defined by Eq. (33). In addition, we include an inflow boundary condition at the bottom of the cube to represent a pore 
where liquid can be pumped in. The radius of this pore is 0.1 and is located at (0.5, 0.5, 0). This boundary condition can be 
incorporated by imposing
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Fig. 12. Evolution of the phase field and chemical potential for the nucleation in a domain with complex boundaries, when starting from a random 
distribution. As before, blue corresponds to φ = 1 and green to φ = −1. The contact angle imposed at the boundaries is θ = π

4 .

∇μ · n = −10, φ = 1, (34)

which models the situation when the component φ = 1 is pumped into the domain. Under these conditions, we study how 
the flow is affected by the geometry of the domain. Our results are depicted in Figs. 10 and 11.

The imposed contact angle at the spheres is π/2, forcing the isosurface to stay normal to the spheres as long as these are 
not completely covered. Because of the boundary condition (34), the mass increases linearly, and the free energy increases, 
in agreement with Eqs. (8) and (10). This case study demonstrates the ability of our method to easily tackle complex 
geometries. The parameters used for this test case are the same as in Section 4.4.1, except that we employed the fixed time 
step �t = 0.001.

4.4.3. Nucleation processes with complex boundaries
The last problem we study is the process of phase separation in a domain with complex boundary characterised by 

different length scales. Specifically, we consider a domain defined by the coastline of the two islands that form the United 
Kingdom and Ireland. Starting from a satellite black and white picture, we extracted the isolines that define the contour of 
the different islands, which we passed to the FreeFem++ mesh generator to obtain a triangular mesh (for this, we based our 
code on a FreeFem++ example for the Leman lake). At the boundary we consider the contact angles θ = π/4, π/2, 3π/4, 
and we assume that the phase field is initially set to a random value at each grid point, drawn from a random normal 
distribution with variance 0.1. A fixed mesh was used for this simulation, and the parameters used were b = 1000, ε = 0.02, 
�Emin = 0.02, �Emax = 0.04, f = √

2, �tmin = 0, �tmax = 1.
The evolution of the phase field and of the chemical potential in the case θ = π/4, obtained with the adaptive time-

stepping scheme (Algorithm 1), is presented in Fig. 12. For each of the contact angles considered, we also ran a simulation 
with the fixed time step �t = 0.01, using the method OD1-W instead of OD2-W to benefit from the stabilising effect 
introduced by the philic numerical dissipation of OD1-W. We note in particular that OD2-W is unstable for the selected 
value of �t , with oscillations appearing in the energy curves from the first iterations, and that the time step would have to 
be reduced significantly to ensure stability. The final configurations (time 500) are presented in Fig. 13 for the three contact 
angles considered. We observe that the final configurations are different depending on whether or not an adaptive time 
step is used, which can be attributed to the high sensitivity of the solution to perturbations of the initial condition chosen 
for this test case; the areas where separation of the phases first occurs is influenced by numerical errors in the early stages 
of the simulation.

Simulation data are presented in Fig. 14. With an adaptive time-stepping scheme, it appears from Fig. 14(a) that, overall, 
the time step increases steadily as the frequency of coalescence events decreases. At specific times, the time step decreases 
slightly in order to accurately capture the evolution. As expected, the total free energy has a roughly constant negative slope 
when plotted against the iteration number. Here too, we observe a small discrepancy between the fixed and adaptive cases, 
which is consistent with differences observed at the final time in Fig. 13.
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Fig. 13. Comparison of the solutions at the final time, with (left) and without (right) time-step adaptation. At the initial time, the phase field is set to a 
random value at each grid point, drawn from a random normal distribution with variance 0.1. Although one could expect the solutions for θ = π/4 and 
θ = 3π/4 to differ only by a sign, this is not the case. There is also a significant difference between the solutions obtained with and without time-step 
adaptation. These differences can be explained by the sensitivity of the evolution to perturbations of the initial condition and to numerical errors in the 
early stage of the simulation.

Table 2
CPU times (hh:mm:ss) using an Intel i7-3770 processor for the simulations 
presented in Section 4.4.3 (nucleation in a domain with complex boundaries), 
with or without time-step adaptation. The method OD2-W was used for the 
simulations with an adaptive time step, and the method OD1-W was used for 
the simulations with a fixed time step. In all cases, we used a fixed mesh 
with mesh size h = 0.01 (the size of the domain is roughly 5 by 5) and P 1
elements, leading to 181587 unknowns. The parameter ε was set to 0.02.

Contact angle Adaptive time step Fixed time step

π/4 36:13:15 65:48:44
π/2 32:58:01 65:24:10
3π/4 36:43:13 67:00:50

The CPU times corresponding to the simulations presented in this section are displayed in Table 2. For the parameters 
selected, the adaptive time-stepping scheme leads to a lower computational cost. This test demonstrates the advantage of 
using a finite-element approach, as it would have been very complicated to solve the CH equation in the geometries we 
consider here with e.g. a spectral method or finite differences.

5. Conclusions

We have proposed a new, fast and reliable numerical method to solve the CH equation with a wetting boundary con-
dition. Our method is a generalisation of the OD2 scheme introduced in [46], which considered only the homogeneous 
condition ∇φ · n = 0. In addition, we have designed a new time-step adaptation algorithm, leading to a scheme that is 
adaptive both in space and time, and we have shown that this scheme is mass-conservative and satisfies a consistent 
discrete energy law.

We checked the validity of the proposed numerical scheme with several examples. First we considered the relaxation 
towards equilibrium of a sessile droplet and the coalescence of two sessile droplets on flat, chemically homogeneous sub-
strates; then we considered several multiphase systems in complex geometries or surrounded by chemically heterogeneous 
substrates.

Compared to finite differences or spectral approaches, the method introduced here has the advantage that it can be 
used without modification with complex geometries. Furthermore, the numerical scheme we have proposed can easily be 
extended to include at least two additional features. First, a linear, energy-stable, second-order scheme could be developed 
for the three-component CH model with wetting boundary conditions, building on the work of [61,62]. Second, we remark 
that in our work, we considered a regime in which contact line motion is controlled by diffusive interfacial fluxes, or 
in other words, we considered a large diffusivity limit, where any possible advection effects are neglected. To account 
for such effects the model must be appropriately modified to include an advection term coupled to the Navier-Stokes 
equations [63,29,32,64,65,22]. Such generalisations are indeed possible within the proposed numerical scheme and we hope 
to address these and related issues in future studies.
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Fig. 14. Simulation data for the numerical experiments presented in Section 4.4.3 (nucleation in a geometry with complex boundaries). Overall, the time 
step increases steadily when the adaptive time-stepping scheme is used, which is consistent with the decreasing frequency of coalescence events. The time 
step is refined at times to ensure that the incremental decrease of free energy at each iteration is approximately constant.
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Appendix A. Proof of Theorem 2.1

Before presenting the proof, we recall a particular Sobolev embedding for smooth bounded domains; see e.g. [66, 
Chap. 5]. Let d ≥ 2, ∅ �= � ⊂ Rd be open with C1 boundary, and assume that q < ∞ if d = 2 or q < p∗ := 2d/(d − 2) if 
d > 2. Then the following embedding is compact

H1(�) ↪→ Lq(�). (A.1)

We also recall two other well-known compactness results; see e.g. [67]. Let X, Y , Z be Banach spaces with a compact 
embedding X ⊂ Y and a continuous embedding Y ⊂ Z . Then the following embeddings are compact:

{u ∈ L2(0, T ; X)| ∂u

∂t
∈ L2(0, T ; Z)} ↪→ L2(0, T ; Y ), (A.2a)

{u ∈ L∞(0, T ; X)| ∂u

∂t
∈ L2(0, T ; Z)} ↪→ C([0, T ], Y ). (A.2b)

Proof. Without loss of generality, we assume that the mobility, b, is equal to 1. In the spirit of [48, Theorem 2], we apply a 
Faedo-Galerkin approximation. Let {ϕn}n∈N and {λn}n∈N denote the eigenfunctions and eigenvalues of the Laplace operator 
with a homogeneous Neumann boundary condition, i.e.{− �ϕn = λn ϕn in �,

∇ϕn · n = 0 in ∂�,
(A.3)

normalised such that∫
�

ϕn ϕm d� = δmn. (A.4)

We assume without loss of generality that λ1 = 0. To build an approximation of the solution to Eqs. (15a) and (15b) in the 
finite-dimensional space SN := span{ϕ1, . . . , ϕN}, we consider the following ansatz,

φN(t) =
N∑

n=1

aN
n (t)ϕn, μN(t) =

N∑
n=1

bN
n (t)ϕn, (A.5)

and the variational formulation(
∂tφ

N , φ̄
)

+
(
∇μN ,∇φ̄

)
= (ṁ, φ̄

)
∂�

∀φ̄ ∈ SN , (A.6a)(
μN , μ̄

)
= ε

(
∇φN ,∇μ̄

)
+ 1

ε

(
fm(φN), μ̄

)
+
(

f w(φN), μ̄
)

∂�
∀μ̄ ∈ SN , (A.6b)(

φN(0), φ̄
)

= (φ0, φ̄
) ∀φ̄ ∈ SN . (A.6c)

For this formulation we have the following system of ordinary differential equations, with unknown functions 
{

aN
n

}N
n=1 and {

bN
n

}N
n=1:

daN
n

dt
= λn bN

n + (ṁ,ϕn)∂� , (A.7a)

bN
n = ε λn aN

n + 1

ε

(
fm

(∑N
i=1 aN

i ϕi

)
,ϕn

)
+
(

f w

(∑N
i=1 aN

i ϕi

)
,ϕn

)
∂�

, (A.7b)

aN
n (0) = (φ0,ϕn) , (A.7c)

for n = 1, . . . , N . Local existence and uniqueness of a solution to this system of equations is guaranteed by the fact that the 
right-hand side of (A.7a) depends continuously on the coefficients 

{
aN

n

}N
n=1. To show the existence of a global solution, we 

will use the a priori estimate presented in the following lemma.
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Lemma A.1. Assume that |F w(φ)| ≤ C(1 + |φ|2). Then the solution (φN , μN ) to Eqs. (A.6a) to (A.6c) satisfies

1

2

∫
�

(
1

2
ε
∣∣∣∇φN

∣∣∣2 + 1

ε
Fm(φN)

)
d� + 1

2

∫
�T

∣∣∣∇μN
∣∣∣2 ≤ C, (A.8)

where C is independent of N and �T := � × (0, T ).

Proof. Setting φ̄ = μN , μ̄ = ∂tφ
N in Eqs. (A.6a) and (A.6b) and subtracting leads to the equation

d

dt

[
Em(φN) + E w(φN)

]
:= d

dt

⎡
⎣∫

�

1

2
ε
∣∣∣∇φN

∣∣∣2 + 1

ε
Fm(φN)d� +

∫
∂�

F w(φN)dσ

⎤
⎦

= −
∫
�

∣∣∣∇μN
∣∣∣2 d� +

∫
∂�

ṁ μN dσ .

(A.9)

Using a trace inequality, Hölder’s inequality, and Young’s inequality with a parameter, we have, for all u ∈ H1(�),

‖F w(u)‖L1(∂�) ≤ C
∥∥∥1 + |u|2

∥∥∥
L1(∂�)

(A.10a)

≤ C

(
1 +

∥∥∥u2
∥∥∥

L1(�)
+
∥∥∥∇(u2)

∥∥∥
L1(�)

)
(A.10b)

= C

(
1 +

∥∥∥u2
∥∥∥

L1(�)
+ 2‖u ∇u‖L1(�)

)
(A.10c)

≤ C

(
1 +

∥∥∥u2
∥∥∥

L1(�)
+ 1

α

∥∥∥u2
∥∥∥

L1(�)
+ α ‖∇u‖2

L2(�)

)
∀α > 0. (A.10d)

Now we use the simple fact that, for any β > 0 and 0 ≤ s ≤ t , the inequality |x|s ≤ βs + βs−t |x|t holds true for all x ∈R, to 
obtain

‖F w(u)‖L1(∂�) ≤ C + 1

2
Em(u) (A.11)

for a constant C independent of u.
In addition, using a trace inequality, Poincaré inequality, and (A.6b) with μ̄ = 1,∣∣∣∣∣∣

∫
∂�

ṁ μN dσ

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∫
∂�

ṁ

⎛
⎝μN − 1

|�|
∫
�

μN d�

⎞
⎠ dσ

∣∣∣∣∣∣+
∣∣∣∣∣∣

1

|�|
∫
∂�

ṁ dσ

∫
�

μN d�

∣∣∣∣∣∣
≤ C ‖ṁ‖L2(∂�)

∥∥∥∇μN
∥∥∥

L2(�)
+ 1

|�|
∫
∂�

|ṁ| dσ

∣∣∣∣1ε
(

fm(φN),1
)

+
(

f w(φN),1
)

∂�

∣∣∣∣
≤ C ‖ṁ‖2

L2(∂�)
+ 1

2

∥∥∥∇μN
∥∥∥2

L2(�)
+ C ‖ṁ‖L2(∂�) (Em(φN) + 1).

(A.12)

Integrating (A.9) in time, and rearranging using Eqs. (A.11) and (A.12),

1

2
Em(φN(t)) + 1

2

∫
�t

∣∣∣∇μN
∣∣∣2 ≤ C + 3

2
Em(φN(0)) + C

∫
∂�T

|ṁ|2 + C

t∫
0

‖ṁ‖L2(∂�) Em(φN)ds, (A.13)

≤ C + C

t∫
0

‖ṁ‖L2(∂�) Em(φN(s))ds (A.14)

where we used the notations �t and ∂�t , t > 0, to denote � × (0, t) and ∂� × (0, t), respectively. The last inequality holds 
by the assumptions that φ0 ∈ H1(�) and ṁ ∈ C([0, T ]; L2(∂�)). Using a Grönwall inequality, we have Eq. (A.8). �

By integration by parts of the first term in Eq. (A.8), we obtain 
∑N

n=1 λn(aN
n )2 < C . This result, together with the inequal-

ity
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aN
1 (t) = aN

1 (0) +
∫

∂�T

ṁ ≤ aN
1 (0) + C ‖ṁ‖C([0,T ],L2(∂�)) (A.15)

implied by Equation (A.7a) and the fact that λ1 = 0, show that the coefficients 
{

aN
n

}N
n=1 do not blow up, and by Eq. (A.7b)

neither do the coefficients 
{

bN
n

}N
n=1, implying global existence.

In addition to (A.8), we have the usual estimate on ∂tφ
N : denoting by �N the L2(�) projection on SN , for all ψ ∈

L2(0, T ; H1(�)) the following holds:∣∣∣∣∣∣∣
∫

�T

∂φN

∂t
ψ

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫

�T

∂φN

∂t
(�Nψ)

∣∣∣∣∣∣∣ (A.16a)

=

∣∣∣∣∣∣∣
∫

�T

∇μN · ∇(�Nψ)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

∂�T

ṁ (�Nψ)

∣∣∣∣∣∣∣ (A.16b)

≤
⎛
⎜⎝∫

�T

∣∣∣∇μN
∣∣∣2
⎞
⎟⎠

1
2
⎛
⎜⎝∫

�T

∣∣∣∇(�Nψ)

∣∣∣2
⎞
⎟⎠

1
2

+
⎛
⎜⎝ ∫

∂�T

|ṁ|2
⎞
⎟⎠

1
2
⎛
⎜⎝ ∫

∂�T

∣∣∣�Nψ

∣∣∣2
⎞
⎟⎠

1
2

(A.16c)

≤ C ‖ψ‖L2(0,T ;H1(�)) . (A.16d)

This shows that 
∥∥∂tφ

N
∥∥

L2(0,T ;(H1(�))′) ≤ C .

Let p be such that the embedding H1(�) ⊂ Lp(�) is compact, i.e., by the Rellich-Kondrachov theorem, p < ∞ if d = 1 or 
d = 2, and p < 2d

d−2 if d > 2. Using Eqs. (A.8) and (A.16), we can apply results (A.2a) and (A.2b) to our case, with X = H1(�), 
Y = Lp(�) and Z = (H1(�))′ , to conclude that there exists a subsequence such that

φN → φ weak-* in L∞(0, T ; H1(�)), (A.17a)

∂φN

∂t
→ ∂φ

∂t
weakly in L2(0, T ; (H1(�))′), (A.17b)

φN → φ strongly in C([0, T ], Lp(�)), (A.17c)

φN → φ strongly in L2(0, T ; Lp(�)), (A.17d)

when N → ∞. In addition, note that since φN is bounded in L∞(0, T ; L2(∂�)), there is a subsequence such that φN → v
weak-* in L∞(0, T ; L2(∂�)) for some function v in that space, and thus also φN → v weakly in the coarser L2(0, T ; L2(∂�)). 
But also φN → φ weakly in L2(0, T ; L2(∂�)), because φN → φ weakly in L2(0, T ; H1(�)) and by continuity of the trace 
operator (indeed, an operator between Hilbert spaces that is continuous in the strong topologies, is continuous in the 
weak ones too), so that v = φ. The same reasoning can be applied to f w(φN), taking into account that f w : u → f w(u) is 
continuous on L2(0, T ; L2(∂�)), to conclude

φN → φ weak-* in L∞(0, T ; L2(∂�)), (A.18a)

f w(φN) → f w(φ) weak-* in L∞(0, T ; L2(∂�)). (A.18b)

Regarding the chemical potential, testing (A.6b) with μ̄ = 1 implies that:∫
�

μd� =
∫
�

1

ε
fm(φN)d� +

∫
∂�

f w(φN)dσ , (A.19)

which, together with the energy estimate (A.8), implies that μN is bounded in L2(0, T ; H1(�)), leading to the existence of 
a further subsequence such that

μN → μ weakly in L2(0, T ; H1(�)). (A.20)

Proceeding in a standard fashion, we consider an integer M and arbitrary functions φM , μM ∈ C([0, T ], H1(�)) such that

φM =
M∑

n=1

ān(t)ϕn, μM =
M∑

n=1

b̄n(t)ϕn, (A.21)
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with {ān}M
n=1, {b̄n}M

n=1 smooth functions. Using φM and μM as test functions in Eqs. (A.6a) and (A.6b), integrating in time, 
taking the limit N → ∞, and using the convergence results given in Eqs. (A.17a) to (A.17d), (A.18b) and (A.20) we obtain

T∫
0

〈
∂tφ,φM

〉
dt +

T∫
0

(
∇μ,∇φM

)
dt =

T∫
0

(
ṁ, φM

)
∂�

dt, (A.22a)

T∫
0

(
μ,μM

)
dt =

T∫
0

ε
(
∇φ,∇μM

)
dt +

T∫
0

1

ε

(
fm(φ),μM

)
dt +

T∫
0

(
f w(φ),μM

)
∂�

dt, (A.22b)

from which we conclude using a standard density argument. �
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