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“All men by nature desire to know.
An indication of this is the delight we take in our senses;
Jor even apart from their usefulness they are loved for themselves;

and above all others, the sense of sight”

Metaphysics |, I, |a; Aristotle






General introduction

SUMMARY

Non-directional photoreceptors are the evolutionary precursors of all animal eyes; they enable
the monitoring of ambient light intensity and regulate feeding, movement and reproduction.
While the first animals were most likely benthic, they evolved larval stages very early on, thus
conquering a new ecological niche: the pelagic. In this realm, the evolutionary pressure to prey
but not be preyed upon became stronger. This implied strong selection for better sensory
systems, including photoreception. How were the photoreceptor systems of the earliest primary
larvae arranged? Did this system mediate vertical migration, the largest movement of biomass
on Earth? To try to answer these questions, I chose the pluteus larva of the sea urchin as a
model. A comprehensive array of techniques was applied, covering levels of organization from
genes to behaviour. The diversity of opsins in Ambulacraria (echinoderms plus hemichordates)
has been surveyed to have the first phylogenetic context on this matter (Chapter 1). A non-
directional photoreceptor based on Go-opsins has been first described in an invertebrate larva
of the deuterostome lineage (Chapter 2). A novel custom built behavioural set up was created
to investigate the vertical migration of these pluteus larvae under different light conditions
(Chapter 3). Based on these findings, a mechanistic model for understanding simple

photodetection is proposed.

Keywords: eye evolution; non-directional photoreception; vertical migration; neuroethology;
zooplankton; marine invertebrate larvae; dipleurula; echinopluteus; Strongylocentrotus purpuratus;
Paracentrotus lividus; opsin phylogeny; Go-opsin; in situ hybridization; immunohistochemistry;

transmission electron microscopy.
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General introduction

GENERAL INTRODUCTION

Here I explain the basic concepts needed to follow this doctoral dissertation. When possible, the

organization of the epigraphs goes from the systemic to the molecular level.

The ‘Cambrian Information Revolution’

Although life had existed for several billion years, the first animals with true resolving eyes date
back to the early Cambrian (530 Ma). Twenty million years earlier, towards the end of the
Precambrian, living organisms were much simpler. What could have happened in the
intervening between the Precambrian and the Cambrian? Why animals evolved such a variety of
body plans in during that period? Whatever happened still remains a mystery, but what we can

see from the fossil record is that a rich fauna of macroscopic animals evolved, some of them with

large eyes (Budd, 2008; Budd and Jensen, 2015; Land and Nilsson, 2012).

In the Ediacaran (635-542 Ma), animals were most likely confined to an essentially two-
dimensional landscape (Peterson et al., 2008). At that time, the fauna was most likely benthic, but
larval stages arose very early on to facilitate dispersion (Jagersten 1972; Hu et al., 2007; Vannier
et al., 2007). During this process, metazoans conquered a new ecological niche: the pelagic. This
represents a completely new evolutionary scenario, the three-dimensional Cambrian word (Fig.
1). There, the tremendous selective pressures to prey but not be preyed upon became stronger
(Bengtson, 2002). This implied further selection for better motor systems, body armours,
camouflage strategies and sensory apparatus including photoreception. Such an increasement in

the available information has been referred as the ‘Cambrian Information Revolution” (Plotnick
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et al., 2010). Another event that implies such a number of changes in visual systems just

happened once more, during the conquest of land (Land and Nilsson, 2012).

Fig 1. A representation of the Cambrian (543 to 490 Ma) world. The first faunas with large mobile animals seem

to have originated at the onset of the Cambrian, during the Cambrian radiation. During a few million years,
bilaterally symmetric, macroscopic, and mobile animals evolved from ancestors with soft bodies that were much
smaller. The invention of visually-guided predation may have been one of the triggers for this unsurpassed

evolutionary event. Drawing courtesy of Kayomi Tukimoto.

The expansion from a benthic to a pelagobenthic ecosystem leads to a great sensory revolution
but, what if we go back in the past even more? An abrupt appearance of major bilaterian clades
in the fossil record during early Cambrian has puzzled the scientific world since the 1830s
(Zhang et al., 2014). Even so, the triggers that may had conducted to such diversification of life

forms can be organized in three main categories: environmental, molecular, and ecological.

Starting with the environmental changes, we can highlight the importance of the rising of oxygen
level (a process related to the ‘Snowball Earth’, 1.e. a period situated 650 million years ago in
which the Earth’s surface became almost entirely frozen), the changes in seawater composition

(circa 740 Ma onwards), and the subsequent increase of nutrient availability (Kirschvink, 1992;
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Hoffan and Schrag, 2002). On the molecular side, the appearance and duplication of certain
homeobox genes (e.g. NK, Hox and ParaHox), as well as the expression and diversification of
some key metabolic proteins (e.g. Heat Shock Protein 90 and oxygen transport enzymes) acted as
catalysts thus permitting an amazing increase of body plans (Zhang et al., 2014; Holland, 2015).
In ecological terms, new behavioural strategies such as the development of altruistic behaviours
between conspecifics or the increment of predation, may have stimulated the diversification of
multicellular organisms (Conway Morris, 2000; 2006; Zhang and Shu, 2014). Albeit the
organization of these evolutionary triggers in a timeline remains problematic, a good attempt to

set them in chronological order can be seen in Fig. 2.
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Fig 2. Timeline of environmental, molecular and ecological events that were proposed as triggers of the Cambrian
radiation. The phylogenetic tree for metazoan scaled against the molecular dates of lineage splitting (Erwin et al,,

2011). Note that each node is characterized by the addition of at least one new microRNA gene family, indicated
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in numbers (Peterson et al., 2009). Three instances of high rate of microRNA acquisition are recognized, once at
the base of protostomes and deuterostomes, once at the base of craniates, and once at the base of primates (not
indicated). Numbers | to 4 in the age column representing the first four stages of the Cambrian. Abbreviations:

HSP, heat shock protein; PDA, protostome-deuterostome ancestor. Figure modified from Zhang et al. (2014).

Palaeontologists have reviewed the distribution and morphology of complex sense organs in the
fossil record (Clarkson et al., 2006; Schoenemann, 2006). However, the poor conservation of soft
tissues 1s limiting when studying the early evolution of sense organs in the pelagic realm. This lead
us to a clear conclusion: although fossils can tell us much about the evolution of how the most
primitive eyes were in some benthic animals, for deciphering the origin of the earliest
photoreceptors in pelagic larvae we need evidence other than the fossil record. Thus, the eco-evo-

devo study of extant marine invertebrate larvae is key.

Evolution of larvae, the state of the art knowledge

The antiquity of metazoan primary larvae seems to be evident from extensive developmental,
structural, functional, and molecular characters. Further, a number of apomorphies are shared
among the extant trocophore larva of some protostomes and the extant dipleurula larva of
deuterostomes, clades that had diverged before the Cambrian (e.g., Jagersten, 1972; Strathmann,
1978a; Nielsen, 1987; Wray, 1995; Byrne et al., 2007; Marlow et al., 2014). Phylogenetic evidence of
this kind must be interpreted with caution since convergent evolution may occur (Strathmann 1978a,
b). However, direct evidences in support of this idea can be extracted from the fossil record too
(Jablonski and Lutz 1983; Miiller and Walossek, 1988; Zhang and Pratt, 1993; Dzik, 1978;
Runnegar and Bentley, 1983). Thus, there is a wide array of evidences in support of the hypothesis
that both protostomes and deuterostomes already had a larva in their life cycles by the Cambrian.
Other distinctive larvae have evolved within the metazoa, including cnidarian planulae, nemertean

pilidia, platyhelminth Miiller’s, bryozoan cyphonautes and ascidian tadpoles. The clades to which
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these larvae belong to are undoubtedly ancient, but the lower number of molecular and
paleontological data available for these clades makes it difficult to say when each distinct larval form
arose (Wray, 1995). Several authors have argued that most larvae that feed using cilia share a
common origin very deep in the metazoan radiation (Jagersten, 1972; Strathmann, 1978a; Nielsen
and Nerrevang, 1985; Nielsen 1987, 2004, 2005, 2008). If this is true, the peak moment of larval
evolution coincided with the Cambrian explosion (Valentine et al, 1991; Valentine, 2004).

Alternative explanations are possible but less well supported by the available data.

A classical topic that arises while discussing larval evolution is its relationship with the origin of
the earliest animals. Since it seems clear that (at least some of) the first primary larvae arise
before the Cambrian; was the common ancestor of extant bilaterians descent from a pelagic

larva-like animal, or from a benthic adult?

Hypotheses supporting that Urbilateria derived from a pelagic larva-like animal:
Terminal addition hypotheses

One evolutionary scenario is to derive bilaterians from adult planktonic forms, an idea
already proposed by Haeckel (‘Gastraea’ hypothesis), that has been further developed by
Jagersten (‘Bilatero-gastraea’ hyphotesis) and Nielsen (“Trochaea’ hypothesis) (Haeckel,
1874; Jagersten,1972; Nielsen 1979, 1987, 2004, 2005, 2008; Nielsen and Nerrevang,
1985). For giving some words about the most recent hypothesis in this gastraea line of
though, Nielsen proposed that the ancestral eumetazoan did not evolve directly from a
blastea, but from a sexually mature larva of a homoscleromorph like sponge with a
pelagobenthic life. The overall Trochaea hypothesis is quite attractive, however some
authors consider that there are no paleontological evidences that support that these

putative holopelagic forms ever existed as independent organisms, and that the




Photoreception in Ambulacraria

reconstruction of the Trochaea relies broadly upon assuming a recapitulatory scenario

reminiscent of Haeckel (1866) (Wolper, 1999; Valentine, 2004).

Another hypothesis that invokes larval style body plans as ancestral to complex metazoans
was presented by Davidson and co-workers (Davidson et al. 1995; see also Peterson et al.,
1997, Peterson and Davidson, 2000; Arenas-Mena et al., 1998; Erwin and Davidson, 2002).
In some metazoans, many adult organs are not derived from cells within larval organs, but
rather from pluripotent cells sequestered during larval life that are set aside. An example of
this can be seen during the development of the sea urchin rudiment studied in this work
(Chapter 2). Based on these findings, Davidson and others suggest that such a ‘set aside’
system was an adaptation to the growing complexity of adult body plans. As more complex
body plans are evolved, the cells that were used for adult body plans were not employed in
the early developmental stages but were set aside then, and their fates specified during or
after metamorphosis. In this scheme, the ancestral bilaterian would have possessed
representatives from all of the major families of transcription factors and signalling
molecules; however, it would not use these proteins for regional specialization that we see in
extant bilaterian adults yet. Even if it is very plausible that a biphasic life cycle with partial
dedifferentiation of intermediate juvenile or larval stages represent the mainstream
developmental mode of metazoans (Arenas-Mena, 2010), the set aside hypothesis has been

considered as highly recapitulatory too (Valentine, 2004).

A last terminal addition hypothesis considered that the earliest bilaterians were large animals
metamorphosing from a small, free-living larva (Rieger 1986; 1994). As Budd and Jensen
emphasize, it is strange that these large animals have ever existed since no trace fossils of them

have been found (Budd and Jensen, 2000). Thus, this hypothesis it is not overly plausible.
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A number of authors have questioned the terminal hypotheses (Knoll and Carroll, 1999;
Wolpert, 1999; Jenner, 2000; Rouse, 2000; Bishop and Brandhorst, 2003). Of the issues raised,
three kinds of objection carry the most weight. These are arguments on: (i) the distribution of
developmental character states in bilaterians phylogeny; (i) the lack of paleontological data in
support of them; and (iii) improbabilities in the selection of set aside cells before evolution of a

bilateral body plan (Sly et al., 2003; Valentine, 2004).

Hypotheses that proposed that Urbilateria derived from a benthic organism:
Intercalation theories

The main bulk of available evidence favours the hypothesis that the origin and radiation of
bilaterians body plans occurred almost entirely in the benthos, most probably in shallow waters
rich in nutrients, and that once Metazoa had appeared, evolution proceeded among individuals
rather than involving the individuation of colonies (see, for example, Sly et al., 2003; Raff, 2008;

Budd and Jensen, 2017 and bibliography therein).

Two evolutionary model based on the assumption of a first benthic animal are the
‘Parenchimella’ hypothesis (Metschnikoff, 1886) and the ‘Planuloid’ hypothesis (Graff, 1882;
Hyman, 1951; Salvini-Plawen, 1978; Willmer, 1990; Bagufa et al., 2008). On these theories,
Urbilateria (1.e. the ancestor of all extant bilaterians; de Robertis and Sasai, 1996) 1s represented
by small, compact organisms with direct development like the planula of some cnidarians. This
planuloid model is not inconsistent with some aspects of the Trochaea and Set aside hypotheses,
but contrasts sharply with other aspects. As Nielsen indicates, the main problem of this theory is
related to the feeding mechanism of such a compact free living adult ancestor (Nielsen, 2008).
However, extracellular digestion can be considered as the feeding mechanism of the small

Urbilateria proposed by these intercalation hypotheses. Even if the Parenchymella and Planuloid
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hypotheses are not perfect, a benthic Urbilateria is not only feasible, but also quite parsimonious

in the general sense.

Another intercalation hypothesis that partially resolves the feeding mechanisms problem
pinpointed by Nielsen is the ‘Plakula’ hypothesis. The Plakula proposed the existence of a
benthic Urbilateria that had two layers of cells and bilateral symmetry (Butschli, 1884;
Grell, 1971; Schierwater, 2005). In this case, the separation of these two layers of cells
would have permitted the invagination of the ventral cells arriving to the Gastraea
proposed by Haeckel (1874), thus allowing the presence of a digestive tube. This
modification of Haeckel’s original hypothesis gained more strength when the clade

Placozoa was discovered (Grell, 1971).

I am prone to consider the intercalation hypotheses as more plausible for the following reasons:
(1) the secondary emergence of larval forms in benthic adults as a dispersal agent represents a
highly adaptive advantage thus, the ‘presence of larva’ apomorphy may have been rapidly fixed
very early during animal evolution, as the fossil record indicates ; (i) the inclusion of a larval
stage can be explained by the addition of random mutations that have led to the conservation of
adult characters by the swimming gastrula during time in a heterochronic manner (it is difficult
to justify the evolution from a larval stage by metamorphosis); and (i) the intercalation
hypotheses are more parsimonious while using all current metazoan phylogenies most broadly
accepted (phylogenies in which the early diverging branches are represented by metazoans
predominantly benthic; e.g. Dunn et al., 2014) (Olive, 1985; Jablonski, 1986; Strathmann, 2000,
Sly et al., 2003). This line of reasoning is in agreement with the visions of several authors such as
Garstang (1922), Ivanov (1937), de Beer (1954), Hadzi (1955), Steinbock (1963), Conway Morris

(1998), Valentine and Collins (2000), Hadfield and Paul (2001), and Minelli (2009) among others.
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Light in the Ocean

There are two main natural sources of light in the sea: downwelling light from the sun, moon and
stars, and bioluminescence produced by aquatic organisms (Warrant and Locket, 2004). Due to
the optical properties of water, the prominence and intensity of both sources change with depth,
transforming the visual scene from an extended field of features in the ocean’s surface to a scene
dominated by point source bioluminescent flashes in the vast darkness of the deep (Sosik and
Johnsen, 2004; Warrant and Locket, 2004). In this thesis, I will summarize how these light
changes occur while going down in the water column. This information will be relevant when

discussing about the behavioural results presented in Chapter 3.

When light is incident upon a substance it can do one of four things: (1) it can be scattered (1.e. light
can change in the direction of motion because of a collision with other particles); (i) it can be
transmitted through the substance; (ii1) it can be absorbed (when the energy of an incoming photon
is absorbed by an electron, the electron is then exited to a higher energy state); or (iv) it can be
reflected, thus abruptly changing the direction of propagation when striking the boundary between
different mediums (for a further description of how light interacts with matter the reader can refer to
Born and Wolf; 2003; or Hecht, 2016). Circa 31% of the sunlight is reflected by the atmosphere or
the ocean surface, but much also is strongly absorbed by the sea (Fig. 3). Depending on how clear
the water is, the penetration rate of light changes. These differences in light penetration distance had
led to the classification of oceanic waters into two basic cases: ‘case 1°, and ‘case 2’ (Morel and
Prieur, 1977). Case 1 is that of a concentration of phytoplankton high compared to other particles
(in other words, waters highly charged of organic compounds, generally related to coastal areas),
and case 2 is the one in which the inorganic particles are dominant, as occurs in the open sea. While
Morel and Prieur (1977) recognized that these ideal cases are not encountered in nature, the

practise of most investigators in the following years assumed a discrete dichotomy. This led to the
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establishment of more complex cases of classification based on the quantity and type of dissolved

organic matter in the surface layers (Jerlov, 1976).

So, how much light reaches different depths of the water column? Which is the ‘colour’ of the
sunlight that is absorbed? Numerous studies have shown that, under average conditions, circa
50% of the sunlight incident on the sea surface consists of infrared (IR) bands (radiations
located in the band from about 700 nm to 1 mm), some 45% of visible radiation (390 to 700
nm) and only around 5% of ultraviolet (UV) (10 to 390 nm). IR radiation entering the sea is
rapidly absorbed in the very thin surface layer, and is the main cause of oceanic warming.
Later, the visible light spectrum narrows down with depth: greenish-yellow light is the most
penetrative in sea waters containing large amounts of organic substances (case 1 waters, Fig.
5A); whereas bluish-green light penetrates the farthest in optically clear oceanic waters (case 2

waters, Fig. 5B).
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Fig 3. Much sunlight is reflected by the atmosphere or the ocean surface, but the main part is strongly absorbed
by the sea. Most the solar radiation that reaches the Earth is made up of visible and infrared light. Only a small
amount of ultraviolet radiation reaches the surface. Image reproduced with permission from Nate Christopher
(Solar Radiation and Photosynethically Active Radiation, Fundamentals of Environmental Measurements; Fondriest
Environmental, 2014.).

Marine photosynthesis is confined to the tiny fraction of the ocean where visible sunlight
penetrates (at most, the upper 200 m). UV light also penetrates this region, which can cause
damage to the zooplankton in this part of the water column. To solve this problem, marine
organisms have evolved ways to protect themselves from this UV radiation including UV

absorbing pigments, the ability to repair DNA damaged by UV, and developing behaviours to

avoid UV by staying in deeper water (reviewed in Holm-Hansen et al., 1993).

In the open ocean, descending in the water column, the IR, UV, green and violet
wavelengths disappear, and the light becomes blue. At 200 m depth, the boundary
between the epipelagic (the surface realm), and the mesopelagic (twilight realm)
zones 1s found. In the mesopelagic, the energy provided by sunlight is sufficient for
photoreception but not for photosynthesis (Sosik and Johnsen, 2004). In this area, an
array of bioluminescent organisms can be found (Fig. 4). Below 850 m our eyes are
not sensitive enough to perceive the minute amounts of sunlight that haven’t been
absorbed by the upper water area. Still, some of the most light sensitive deep-sea
animals can perceive part of the sunlight at 1,000 m, in the bathypelagic zone (Sosik

and Johnsen, 2004).

The region situated below is known as the aphotic zone, an area divided into the
abyssopelagic (below 4,000 m) and hadalpelagic (below 6,000 m) areas, but this is only true

for sunlight, as bioluminescence is quite common (Robison, 2004).
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Fig 4. Light is not only coming from the water surface, but also from the oceanic chasms. Few examples on
bioluminescence can be found in: A) some ctenophores, like in Mnemiopsins leidyi (picture: Lyubomir Klissurov); B)
the hydrozoa Aeuquorea sp. (picture courtesy of Alexander Semenov); C) the siphonophore Hippopodius sp.,
(picture courtesy of Alexander Semenov); D) the polychaete Lepidonotus squamatus (picture courtesy of Alexander
Semenov); E) the glowing bacteria Vibrio fischeri present in the light organ of the hawaiian squid Euprymna scolopes
(in exchange for a home and a diet of sugars and amino acids provided by the squid, the bacterium helps protect E.
scolopes from predators by illuminating it with a blue glow) (picture: Todd Bretl), or F) the scaless black dragonfish

Melanostomias biseriatus (picture: Solvin Zankl).

A) Light penetration in coastal waters B) Light penetration in open ocean
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Fig 5. The depth that light penetrates depends on the quality of the water: A) light penetration in coastal waters;
B) light penetration in open ocean. Long wavelengths (570 to 650 nm) are absorbed faster than short wavelengths

(400 to 510 nm). Image courtesy of Kyle Carothers, NOAA OE.

Basic principles in sensory organs

Metazoan sensory organs are those that receive information (stimuli) and translate it
into a signal recognizable to the nervous system. The received signal or cue can be
very variable, with mechanical stimuli, taste, odour, sound, and light being the most
familiar to us, but many more are possible (e.g. electric fields, temperature or
pressure). In general, a ciliated sensory cell that contains receptor molecules is
present as the basic unit in the sensory structure of Opisthokonta (Mitchell, 2007).
Although the function of the first sensory cell cannot be reconstructed, probably the
earliest receivers had chemoreceptive or mechanoreceptive functions (Emde and

Warrant, 2015).

While there are several stimuli and therefore a wide range of sensory structures, the basic
principles of signal transduction are similar (Fain, 2003). The recipients for a stimulus are
membranous proteins that change their conformation in response to environmental changes.
The effective answer is the opening or closing of ion channels that change the intracellular
and extracellular ion concentration and thereby create action potentials. The sensory
receptor proteins can themselves be ion channels and therefore directly receive information
and transform it (e.g. mechanoreceptors); although in most cases signal transduction is more
complicated, with further effector molecules and second messengers being incorporated into
a signal transduction cascade. Phototransduction is an example. The exceptions to this

generalized mechanism are electroreceptors, which do not need signal translation (Schmidt-

Rhaesa, 2007).
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The origin of visual systems, a problem of homology across levels of organization

Salvini-Plawen and Mayr (1977) noted a remarkable diversity of photoreceptor cell
morphology across the animal world, thus suggested that photoreceptors evolved
independently numerous times. This idea has been wearisomely discussed and contested
(Gehring, 1996). Probably it is not possible to answer if the origin of eyes was monophyletic
or not with a simple yes or no. Nonetheless, if we distinguish between different levels of

organization, the answer would be easier to provide.

On the one hand, although the photoreceptors of different animal clades can differ in their
morphology and development, and their similarities can be ascribed as the result of
convergent evolution, they share deep homologies in the molecular components that they
are composed of. This implies that ancient molecular modules devoted to gene expression
or physiological function have been repeatedly recruited and co-opted for similar purposes

in parallel metazoan lineages (Arendt, 2003; Land and Nilsson, 2012).

On the other hand, information on the evolution of eyes can be obtained also from the
proteins that make up animal lenses, the crystallins. To make efficient and clear lenses, these
proteins must be suitable for mass expression and dense packing, but they should not
aggregate into lumps (Land and Nilsson, 2012). Different metazoans, such as cnidarians,
cephalopods and vertebrates, have used different proteins for this purpose. Interestingly, the
crystallins generally appear to have been recruited from proteins with other functions

involved in protein assembly such as chaperones (Piatigorsky, 2009).

These explanations, in addition to the phylogenetic information commented in a subsequent

chapter, suggest that an opsin based photoreception may have evolved once during early
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animal evolution. With equal certainty we could say that visual dioptric systems may have
evolve independently many times (Land and Nilsson, 2012). The key question that still awaits
a response 1s what happened in between these early and late stages of photoreceptor
evolution. Further, although some important ideas of how the evolution of photoreception
functions will be addressed in the consecutive headings, the events that placed opsin into the

first primitive photoreceptors are unknown.

Photoreceptor classes

Without an understanding of how selection guided evolution any evolutionary scenario is
incomplete (Nilsson, 2009). Gene or protein phylogenies can tell us what is likely to have happened
at the molecular level, morphological features can inform us about the putative function of a
structure, and other approaches, such as expression studies and knockout experiments, can relate
molecules to developmental trends. But to understand why features or functions have evolved we

need plausible models of how they increase the fitness of the studied animal system.

In this dissertation, I refer to the four “photoreceptor classes’ established by Nilsson (2013). These
categories correlate innovative features of the photoreceptor systems with the tasks that they
mediate. Such innovations allow animals to adapt themselves to particular ecological problems,
and its functional classification will permit a better analysis of eye evolution. Thanks to this
explanation it will be easier to realise the significance of the present study, a project in which I

aim to better understand the simplest and more ancient class of photoreception, the class I.

The first step in photoreceptor cell evolution must have been the appearance of a light-dependent

chemical reaction coupled to a signalling system. All eumetazoans employ opsins for this purpose

(Plachetzki and Oakley, 2007; Porter et al., 2011; Feuda et al., 2012; Ramirez et al., 2016). The
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photoreceptors that contain opsins but nothing else are classified as non-directional (class I)
photoreceptors (Nilsson, 2013). They are the most ancient in evolutionary terms and allow to
monitor ambient light intensity. This light information results essential for many important
behaviours such as to provide input into the circadian clocks (Bennett, 1979), to establish the
vertical position in the water column (Lythgoe, 1979), or to inform about harmful levels of UV
radiation (Paul and Gwynn-Jones, 2003; Leech et al., 2005). Examples of these photoreceptors
can be found in the adult earthworm, as well as in pluteus and auricularia larvae of echinoderms

(Rohlich et al., 1970; herein).

The second class (class II) is represented by simple directional photoreceptors. These receptors
are composed of an opsin positive cell plus a screening pigment. This screening pigment, that can
be both in the same cell or in the surroundings, project a shadow in part of the photoreceptor,
thus informing where the light is coming from. Animals that possess these photoreceptor systems
can move towards or away from light to orient their bodies, and trigger alarm responses to
predators (Nilsson, 2013; Bok et al., 2016). Examples of these photoreceptors can be found in
adult rotifers and kinorhynchs, as well as in the larva planula of some cnidarians, the pilidium of

nemertines, or the tornaria of hemichordates (Brandenburger et al., 1973; Nordstrom et al.,

2003; Mason and Cohen, 2012; Braun et al., 2015).

Although knowing from where light is coming from represents a great adaptive advantage, the
loss in sensitivity caused by the addition of screening pigments is a major obstacle in the
evolution of spatial vison. The problem is compounded by the fact that the integration time will
have to be reduced along with the receptors field of view to keep motion blur at tolerable levels.
In addition, the contrasts of interest are smaller for spatial vision than for phototaxis, which calls

for larger photon samples per integration time. A consequence of this rapidly increasing need for
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photons is that stacking of the photoreceptor membrane becomes an absolute prerequisite for the
evolution of spatial vision (Nilsson, 2013). The third class (class III), named low resolution vision,
is that in which rhabdoms and ciliary specializations occur. Even with very crude resolution,
animals provided with this visual system can mediate a large number of important tasks such as
detecting their own motion, avoid objects, and find preferred habitats. Some of the animals that
have this photoreceptor system are flatworms, adult box jellyfishes, or sea stars (Marriott, 1958;
Martin, 2004). This category introduces imaging and spatial resolution, which would require a

minimum of two resolved pixels thus, representing the first true eyes (Nilsson, 2013).

Finally, class IV (high-resolution vision) is equal to the preceding class III system plus focusing lenses for
increasing the image resolution. This increment in the spatial resolution allows to detect and pursuit
prey and predators, as well as to recognise the mate or have more complex visual communication as
happens in octopus and mants shrimp (Wolken, 1958; Bok et al., 2014). For a small number of species

this system allows them to make and use tools, as well as to read texts such as this thesis.
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Fig 6. The diversity of photoreceptors in the animal world illustrates how natural selection can transform simple
structures that respond to light (non directional photoreceptors) into camera like eyes composed of multiple
parts working in tandem (high resolution vision). Drawings by Jason Treat, Ryan Williams and Chiqui Esteban taken

from an article of Ed Young in National Geographic, 2016. Source: Dan-Eric Nilsson.

It 1s evident that these classes are organized from simpler to more complex, and that this organization
follows the different stages on visual system evolution (Fig. 6). However, once evolution has reached a
class, it 1s possible for the process to go either way, such that simpler behaviours evolved from more
complex ones. In any case, the assumption that the behavioural classes originally evolved in ascending
order is offered by the fact that the amount and rate of information fed to the nervous system increases
steeply for each higher class of behaviours (for data on the fundamental performance requirements
needed for the four classes see Nilsson, 2013). Still, complexity does not always mean better
photoreceptive performance. High resolution vision (class IV) can, in principle, need more light than non-

directional photoreception (class I), thus, this depends on the needs that each animal has (Fig. 7).
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Fig 7. Minimum intensities from the four classes of sensory tasks, plotted together with the daily variation of
natural luminance and daylight intensities at different depths in clear water. Blue indicates calculations for a 10 pm
diameter cell with no membrane stacking and no focusing optics. Calculations for membrane stacking are indicated
by green and for focusing optics by red. Figure reproduced from Nilsson (2013). The calculations of minimum

intensity for the four classes of photoreceptive tasks can be found in the same publication.

Before this classification into four different classes it was traditionally laid that the starting point of the
evolution of photoreceptors consisted of an epidermal ciliated cell with opsin molecules embedded in
the membrane (Arendt et al., 2009). Although this view is widely accepted, numerous transparent
planktonic animals lack ocelli but exhibit phototaxis. This brings us to the question ‘is the photoreaction
without associated shading pigments possible?” If so, the larvae of echinoderm clades seem to be a
suitable material to study the depth origin of this sense. The small transparent larvae of the sea urchin
(Fig. 8) have a rare example of a minimal photoreceptor system. This system 1s based on a Go opsin-
positive cells without screening pigments in the cell itself or its surroundings. Apart from the presence of
these opsin positive cells (a discovery that will be addressed in Chapter 2), these zooplanktonic larva also
have motile cilia and a nervous system that may coordinate the sensory and motor cells.

A) DEVELOPMENTAL STAGES OF ECHINOPLUTEUS

4 ARMED PLUTEUS 6 ARMED PLUTEUS 8 ARMED PLUTEUS

Fig 8. The sea urchin Strongylocentrotus purpuratus. A) The transparent pluteus larva of the sea urchin S. purpuratus,
an ideal candidate to study the evolutionary ancient class | of photoreception, represented at 4, 6 and 8 armed

stages (images not to scale). lllustrations made by Santiago Valero-Medranda.
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4 ARMED 6 ARMED ———————— 8ARMED PLUTEUS —8@™— JUVENILE
PLUTEUS PLUTEUS

Advanced rudiment Tube foot protusion ~ Metamorphosis

Fig 8. The sea urchin Strongylocentrotus purpuratus. B) Development of a sea urchin, from four armed pluteus till
juvenile stage. Photographs courtesy of Yi-Jyun Luo, Su and Yu laboratory, Research Group of Development and

Evolution, Academia Sinica (Taiwan).

The use of light for hunting and camouflage

The different uses of light by marine animals are not the main part of this study. It is,
nonetheless, relevant to briefly mention the potential uses that these have for predating and
avoiding predators in the pelagic environment. Perhaps some of these uses, most probably
camouflage, explain the transparency and apparent lack of shading pigments of many dipleurula

larvae, including the echinopluteus here studied.

Not surprisingly aquatic organisms possess visual systems that are specially adapted to the nature
and properties of light underwater. Animals living near well-lit surface regions have colour vision,
and many also develop UV photoreception, a character which advantageously extends their
sensitivity range of light (Fig. 9A). Since several animals contain compounds that protect them
against UV radiation by scattering, reflecting, or absorbing UV light, it results very useful to have
UV receptors to detect them (Robison, 2004). In deeper oceanic environments, since both
residual sunlight and bioluminescence are spectrally very restricted with most radiation being in

the 450 to 500 nm region, many animals shift their spectral sensitivity to indigo (A = 445 nm) and

blue (A = 475 nm) lights (Douglas et al., 2000; Frank et al., 2012). Further, some animals (such as
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shrimps and some cephalopods), have develop polarized visual systems by means of a special
geometrical arranged of their retinas (Warrant and Locket, 2004; How et al., 2015; Daly et al.,
2016; Feller and Cronin, 2016) (Fig. 9A). With this ability they can navigate by the skylight
polarization pattern, or detect otherwise transparent or silvery scaled preys by seeing its effect on

the polarization of light (Jordan et al., 2016).

In deeper regions with less light, such as the mesopelagic, the animals have developed amazing
adaptations to increase their photosensitivity (Fig. 9B). They perceive light in extremely low light
levels, though decreasing its resolution and lengthening their integration times. On the one hand,
very complex long, tubular, telescope eyes can be seen (e.g. in fishes or crustaceans) (Nilsson,
1996). On the other hand, very simplified photoreceptors, like the non-directional ones herein
described, maximize the light capture by reducing or eliminating their screening pigments for a
better photon catch. A relationship between depth and photoreceptor design is particularly
evident in many animals from the dysphotic areas: the deeper the habitat, the more the eye is

dedicated to upward vision (Nilsson, 1996).

Once we arrive to the aphotic region, an area in which sunlight cannot arrive, the main light
sources come from bioluminescent organisms in all directions (Fig. 4). Very striking is the ability
of some animals to produce their own light in a region of the spectra that is invisible for most
deep-sea animals to ‘see but avoid to be seen’. An example of this strategy can be found in three
groups of mesopelagic dragon fishes (Malacosteus, Pachystomias and Aristostomias) that possess,
in addition to blue emitting light organs, suborbital photophores that produce far-red light
(Douglas et al., 1995; 2000). This photophores can be used both for private, intraspecific
communication, and to cover illumination of prey at distances about ten times greater than the

range of lateral line senses (Douglas et al, 1995).
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But seeing is only part of the equation. Ocean organisms do have visual adaptations
that matched very clever strategies to avoid being seen in an open ocean where it is
difficult to hide (reviewed in Johnsen, 2014). Some organisms colour themselves in a
dynamic way to match the background water (Hanlon et al., 2009). Others have
mirrored teguments (a mirror in the ocean only reflects more of the ocean, and so is
invisible) (Fig. 9C). Still, others camouflage themselves with light, thus hiding their
silhouettes with light producing organs on their downward facing surfaces that
mimic the surrounding illumination. Many are simply transparent, as several
ctenophores, salps, or invertebrate larvae; thus match their background in all
situations (Fig. 9D). Finally, some use light and dark for disguise. They hide in the
depths during the day and rising to feed at night (the vertical movements in the
water column that depend on the day-night cycle are referred as the ‘diel vertical
migration’ phenomena, a concept that will be key in the discussion of Chapter 3).
Others stay near the surface, hiding in the glittering background of the lensing waves
(Sosik and Johnsen, 2004). All these adaptations are driven by selective pressures and
sensory organs are costly. What we can see in the natural word are systems just good

enough to do their job in the context of fitness consequences.

As commented, camouflage is the primary defence of many animals (e.g. octopus, squid,
and cuttlefish) and their body patterning system must change not only accurate, but also
fast. However, some studies demonstrate that some of these animals that can adapt
themselves to a high number of subtle background variables such as brightness,
contrast, edge, and size of objects, lack colour perception. In these cases, the vexing
question of how they achieve colour blind camouflage remains (Brown and Brown,

1958; Marshall and Messenger, 1996; Matger et al., 2006; Chiao et al., 2011).
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Fig 9. Some examples on the adaptations related to light perception exhibited in the ocean: A) the mantis shrimp

Odontodactylus scyllarus, an animal with one of the most elaborate visual systems ever discovered, possesses an
amazing number of 16 types of colour receptive cells (humans have three), picture: Marty Snyderman; B) the
hyperiid amphipod Phronima sp., an animal equipped with two pairs of eyes especially adapted to low light
conditions in which it hunts, picture: Solvin Zankl; C) a wide number of fishes, such as this Argyropelecus sp., have
opted for wearing silver scales to reflect its marine surroundings, picture: Danté Fenolio; D) probably the most
common strategy used by ocean fauna that want not to be seen is to develop transparency, an example of this is
observed in the tunicate Thalia democratica, picture: Bigelow Laboratory of Ocean Sciences, USA.

The diversity of adaptations to see but avoid being seen is incredibly rich. Nevertheless, humans
have had limited ability to explore the dimension of light in the ocean, and not many economical
efforts are devoted to solving the mysteries of the sea depths. However, today’s new technologies
are allowing us to make promising steps forward to reveal how light operates in the ocean and

how ocean life is adapted to different light conditions. An experimental set up to investigate the

relationship between animal behaviour and downwelling light is presented in Chapter 3.

Photoreceptor cells

A remarkable clue for understanding photoreceptor cell evolution is the distinction between
photoreceptor cell types (Land and Nilsson, 2012). Morphologically, most photoreceptors
contain extensions of the cell membrane in the form of cilia or microvilli to maximize the

accumulation of opsin proteins in a reduced space. Historically, this morphological feature has
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allowed to divide photoreceptor cells in two major types: ciliary (with cilia in the apical region
plus an axoneme of microtubules and a basal body, the centriole) and rhabdomeric (with
microvilli or lamellae in the upper cell membrane of the plasmalemma unassociated
developmentally with cilia) (Eakin, 1965) (Fig. 10). Apart from these two basic types, a third one
is formed by simple coiling of the membrane to form a lamellate body (Horridge, 1964), and
much more particular kinds can be found in the animal word. Moreover, there are cases in
which the photoreceptor cell does not need to accumulate such a quantity of opsin protein for
one or another reason, therefore these cell types lack of such membrane extensions.
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Fig 10. Two main photoreceptor cell types: A) rhabdomeric, and B) ciliary. The opsin and proteins of the

Time

transduction cascade are consistently paralogous between the two receptor types. In rhabdomeric photoreceptors,
the G-protein leads to a depolarization of the membrane potential. R-opsins keep both the |1-cis and the all-trans
isoforms firmly bound; they are known from the photoreceptors of invertebrate eyes and also represented by
melanopsins in vertebrates. In the r-opsins, the chromophore can be converted back to the |I-cis form by the
absorption of yet another photon, and this photoregeneration serves to replenish sensitive photo pigment. The
ciliary receptor instead contains a phosphodiesterase which finally leads to hyperpolarization of the cell. C-opsins
release the chromophore after it has been converted to the all-trans isoform; these opsins are originally known
from vertebrate rods and cones. The c-opsins cannot themselves regenerate the chromophore, and a separate
enzymatic system is required for this purpose. A functionally aberrant class of opsins acts not as receptor proteins

but as photoisomerases that use light to convert chromophore from the all-trans to the | |-cis form, which is then
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released and ready to be incorporated in a conventional opsin. Data compiled from Hamdorf (1977), Arendt and
Wittbrodt (2001), Lamb and Pugh (2004) and Nilsson (2004). Figure modified from Nilsson (2004).

Even if in the past it was thought that the rhabdomeric photoreceptors were characteristic of
invertebrates and the ciliary of vertebrates (Eakin, 1965; 1979), both kinds of photoreceptor cells
have been found in either animal lineages, sometimes even in combination in the same
photoreceptor organ (Brandenburger et al., 1973; Arendt et al., 2004; Peirson et al., 2009;
Passamaneck, 2011; Braun et al., 2015). And although the structural differences between these
two basic types are not entirely consistent throughout all animal groups, actual findings suggest
that ciliary and rhabdomeric photoreceptors can be distinguishable at the molecular level

(Arendt, 2003; Nilsson, 2004; Land and Nilsson, 2012) (Fig. 10).

With respect to opsin class and transduction cascade, there is a third type of photoreceptor
primarily known from the peculiar mantle eyes of bivalves (Gomez and Nasi, 2000). The opsins
of this class, Go, are closely related to photo-isomerase enzymes: proteins that are involved in
regeneration of visual pigments in the ‘visual cycle’ described below (Land and Nilsson, 2012). A

Go photoreceptor 1s investigated in the present work (Chapter 2).

Opsins

Taking all living organisms into consideration, there are several molecules that are
photosensitive, most of which are used in photosynthesis. Since the principal molecules involved
in animal photoreception are opsins, the characterization of that protein coupled receptors is

useful to elucidate the origin of this sense (Wald, 1968; Dartnall, 1968; Arendt, 2003).

The study of opsins began in the late nineteenth century, with their discovery by Franz Boll and first

characterization by Willy Kuhne (Marmor and Martin, 1978). Bovine rhodopsin was the first
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sequenced and crystalized (Ovchinnikov, 1982; Hargrave et al., 1983; Nathans and Hogness, 1983;
Palczewski et al., 2000). Since them, more than 2,000 opsins have been identified. The phylogenetic
origin of these proteins seems to be related to melatonin precursors (Feuda et al., 2012), and the
appearance of these receptor molecules must be very ancient, even more than planulozoans sensu
Wallberg et al. (2004), given that some opsin sequences have been found in ctenophores and

cnidarians (Suga et al., 2008; Ryan et al., 2010; Dunn et al., 2014; Feuda et al., 2014).
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Fig 1. Protein structure of an opsin (A to C) and different chromophores that can be used for detecting light
(D). A) Overall structure. Close-up views of the chromophore binding pocket around the B-ionone ring of the
all-trans retinal (ATR) in liquorice B) and van der Waals C) representations. D) The chromophore moiety is a
vitamin A-based retinaldehyde, either retinal (Al), 3,4-dehydroretinal (A2), 3-hydroxyretinal (A3) or 4-
hydroxyretinal (A4). Al retinal is the most common animal chromophore. A2 is commonly encountered in
vertebrates such as fish, amphibian and reptiles. The A2 retinal generally causes a red shift in the absorbance
maxima of the retinal/opsin complex, which is sometimes called porphylopsin (derived from purple) as
opposed to the Al retinal/opsin complex, which is generally called rhodopsin (derived from rose). Fresh water
fishes often switch from Al to A2 retinal to adapt to their light environment. A3 retinal is commonly observed
in many insects, and the A3 retinal/opsin complex is sometimes called xanthopsin (derived from yellow). A4
retinal has been observed in the firefly squid, which seems to use Al, A2 and A4 retinals to create
photoreceptor molecules of different absorbance maxima and achieve colour vision (Seidou et al., 1990).

Although there are several names for a retinal-based photoreceptor molecule based on its chromophore and
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its absorbance maxima, rhodopsin is used as a generic term to describe all the visual pigments (Shichida and

Matsuyama, 2009). Figure modified from Kato et al. (2015); and Shichida and Matsuyama (2009).

The complex rhodopsin consists of a protein called opsin plus a 11-cis retinal which prevents the
protein from signalling (Wald, 1968). The opsin protein has a molecular mass of 30-50 kDa, and
the residue K296 (in the single letter amino acid code, taking as reference the bovine rhodopsin)
in helix VII binds the retinal via a Schiff base linkage. More in detail, the nitrogen atom of the
K296 amino group forms a double bond with the terminal carbon of the retinal. The key residue
K296 is important for light absorption, and its presence or absence can be used as molecular
fingerprint to judge whether or not a newly found rhodopsin type GPCR is a bona fide opsin.
The counterion is another important residue: it is a negatively charged amino acid that helps to

stabilize the protonated Schiff base (Terakita, 2005) (Fig. 12).

Although we lack a consensus about the nomenclature and phylogeny of opsins as a whole, the
majority of the molecular phylogenetic hypotheses identify three large clusters: ciliary, rhabdomeric,
and Go/RGR opsins (Terakita, 2005; Porter et al., 2011; Feuda et al., 2012). These three opsin
clusters have been further subdivided into seven subfamilies: (i) the ‘vertebrate’ visual (transducing
coupled) and non-visual opsin subfamily; (i1) the encephalopsin/tmt-opsin subfamily; (ii1) the Gg-
coupled opsin/melanopsin subfamily; (iv) the Go-coupled opsin subfamily; (v) the peropsin subfamily;

(vi) the retinal photo isomerase subfamily; and (vi1) the neuropsin subfamily (Terakita, 2003).

Even though this classification in three main clusters is the classical one, a more recent phylogeny
on this issue reports a classification in four opsin groups: tetraopsin, xenopsin, Gq-opsin, and c-
opsin (Ramirez et al., 2016) (Fig. 12). This study has been benefited of a more comprehensive
opsin sequence dataset that includes the previously poorly sampled molluscs plus the

Ambulacraria sequences reported in the Chapter 1 of this thesis (for publication, see Appendix II).
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Fig 12. There are nine bilaterian opsin paralogs spread among four major eumetazoan opsin paralogs. The four
major eumetazoan opsin paralogs are indicated at the top with Roman numerals. The nine bilaterian opsin paralogs
are indicated with Arabic numerals and are colour coded to match the corresponding branches. Coloured
branches indicate the presence of an opsin in at least one species within the major taxonomic group. Light grey
branches indicate the absence of an opsin paralog from the taxa indicated at the tips. Ultrafast bootstrap (UFBoot)
supports from |Q-TREE are given next to the branch they support. Bootstraps with asterisks were added from the
gene tree after reconciliation analysis. Figure reproduced from Ramirez et al. (2016).

Nonetheless, the division into different subgroups in any of the classifications does not correspond
well to a functional classification, but the one presented in Terakita (2005) is partly based on the
type of G protein coupled to each of these GPCRs. In any case, members of the tetraopsin,

xenopsin, Gg-opsin, and c-opsin groups are found in both deuterostomes and protostomes, thus

suggesting that the opsin diversification occurred before the deuterostome-protostome split (Fig. 12).

Non-visual opsins and their expression domains

Even if visual systems are more studied that any other sensory system by far, we do still lack of many
details about how extra-ocular photoreceptors work due to the difficulties encountered for localizing
and identifying them. However, extra-ocular photoreception must be a quite common ability in the

animal world. One indication of that is the number of behavioural studies in which it 1s described
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how specimens without eyes can respond to light changes (Wapstra and van Soest, 1987; Taddei-

Ferretti and Musio, 2000; Musio et al., 2001; Purschke et al., 2006; Ramirez et al., 2011).

In some cases, photoreception is regulated by dermal cells that induce colour changes or that
trigger locomotory activity (Wolken and Mogus, 1979; Shand and Foster, 1999; Peirson et al.,
2009). In other instances, it 1s assumed that nerves are photosensitive, which means that such
nerve cells are likely to contain opsins in their membrane (Hankins et al., 2014). Further
modifications of these neural structures have led to the development of complex organs that
detect light in a non-directional manner. Of these systems two are especially remarkable: the
‘pineal complex’ and the ‘deep-brain photoreceptors’, both present in the vertebrate lineage

(Shand and Foster, 1999).

The pineal complex, composed by the pineal organ and third eye, is the primary source of the
neurohormone melatonin (melatonin is synthesized in the dark phase of the light/dark cycle,
and acts as a signal of darkness to regulate circadian rhythms and photoperiodic responses)
(Arendt, 1998; Korf et al., 1998). The term pineal complex can be used to refer to the
intracranial pineal proper, as well as to speak about the parapineal and the extracranial ‘third’
eyes found in tuatara (Rhynchocephalia), some lizards (Squamata), and frogs (Anura) (Vollrath,

1981; Shand and Foster, 1999; Peirson et al., 2009).

In the case of the deep-brain photoreceptors, they were first described by Karl von Frisch in
1911 on European minnows (Phoxinus phoxinus). These fishes, when blinded and
pinealectomized, still demonstrated colour changes in response to light leading to the
suggestion of ‘deep-diencephalic photoreceptors’ (von Frisch, 1911). In similar experiments

carried out with European eels (Anguilla anguilla), van Veen and co-workers demonstrated that
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deep-brain photoreceptors mediate photo-entrainment as well as negative phototaxis (van
Veen et al., 1976). The photoperiodic response in birds, whereby gonadal growth 1s regulated

by day length, is mediated by deep-brain photoreceptors too (Benoit, 1964).

Arrived at this point, the reader will have noticed that most information on non-directional
photoreceptors come from studies in vertebrates, where a complete subfamily of opsins has been
named ‘non-visual’ opsins (Terakita, 2005). These non-visual opsins possess important
characteristics of a typical opsin-based photo pigment including the lysine retinal attachment site
(Lys296), the presence of a glutamate counterion at site 113 (Glul13) or 181 (Glul81) and two
conserved cysteine residues (Cysl10 and Cysl87) that form a disulphide bridge. Despite these
commonalities, each non-directional opsin is unique at both gene and protein levels. The diversity
of non-visual opsins in the vertebrate lineage has its origins in at least two rounds of whole
genome duplications; one early in the evolution of the whole stem group, and a second around the
divergence of the teleosts (Nakatani and Morishita, 2008). Interestingly, the evolutionary retention
rate of opsin and other GPCR genes during these duplications is significantly higher than for
other genes by a factor from two to three (Semyonov et al., 2008). This highlights the evolutionary

advantage conferred by signalling proteins and opsins in particular.

The main sensu stricto non-visual opsins studied in vertebrates are: (1) the exorhodopsin, reported
for the first time in the teleost pineal gland (Vigh-Teichmann et al., 1982, 1983; Mano et al.,
1999; Philp et al., 2000); (i1) the pinopsin (also called p-opsin), first extraretinal opsin to be cloned
that was isolated from the pineal gland of the chicken also identified in amphibians and reptiles
(Max et al., 1995; Yoshikawa et al., 1998; Kawamura and Yokoyama, 1997; Taniguchi et al.,
2001; Frigato et al., 2006); (ii1) the ‘vertebrate ancient opsin’, called in this way because the first

phylogenetic analysis suggested that they diverged at the very beginning of the craniate
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evolution, an idea today in disuse (Soni and Foster, 1997); (iv) the ‘parietopsin’, found in the
parietal eye of lizards (Su et al., 2006); and (v) the “parapinopsin’, first identified in the catfish

pineal and parapineal organs (Blackshaw and Snyder, 1997; Koyanagi et al, 2004).

To this list we can add other ‘non-directional’ opsins that are both expressed in ocular and
extra-ocular photoreceptors. Examples of them are: (vi) the ‘encephalopsin’ (sometimes called
panopsin), mainly expressed in mouse brain and testis with lower levels in the heart, liver,
kidney, and retina whose function is still unknown (Blackshaw and Snyder, 1999; Halford et
al., 2001); (vii) the TMT opsin, an opsin related to the circadian oscillator of zebrafish
(Whitmore et al., 2000; Moutsaki et al., 2003); (vii1) the ‘melanopsin’, a molecule originally
isolated from the melanophores of Xenopus and mammals also related to the master circadian
pacemaker (Provencio et al., 1998; 2000); and (ix) the ‘neuropsin’, first identified by means of
bioinformatic approaches (Tarttelling et al., 2003). Further information on the molecular

fingerprints on each of these nine non-visual opsins can be found in Peirson et al. (2009).

Despite the relatively good quantity of information about non-visual opsin in craniates, non-
visual opsins have been less studied in invertebrates. Examples of these are the rhodopsin found
in the parolfactory vesicles of the squid 7odarodes pacificus (Hara and Hara, 1980); the ‘cnidarian
opsin’ and ‘Clytia opsin9’ found in the gonad ectoderm of Hydra and Clytia (Musio et al., 2001;
Artigas et al., 2017); the UV, blue, and long-wavelength sensitive opsins found in the extraretinal
photoreceptors of the hakmoths Manduca sexta, Archerontia atropos, Agrius convolvulr, and Huippotion
celerio (Lampel et al., 2003); the ¢-opsin located in the developing median brain of the annelid
Platynerers dumenilu larva (Arendt et al., 2004); the Go-opsin found in the gastrula of the brachiopod
Terebratalia transversa (Passamaneck and Martindale, 2013); or the pteropsin expressed in the

honey bee brain (Velarde et al., 2005). In a humble effort to further gain insights onto the
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evolutionary origin of these non-visual opsins, herein I report about the presence of a Go-opsin

expressed in the apical organ of the sea urchin larva (Chapter 2 and Valero-Gracia et al., 2016).

Phototransduction

Phototransduction can be defined as the conversion of a light signal into a nervous impulse. The
general process occurs in the following way: first, the activation of the photoreceptor cell pigment
rhodopsin by light occurs through the isomerization of 11-¢is retinal (Fig. 13A) to all-trans retinal
(Fig. 13B); then, active rhodopsin binds and activates the a-subunit of an intracellular G-protein
that in turn activates intracellular messengers to finally hyperpolarize or depolarize the
photoreceptor cell (Fig. 10) (Arendt and Wittbrodt, 2001; Wright et al., 2010). Opsins from
different classes coupled to distinct G-proteins are associated with different transduction cascades

(Fig. 10; Table 1) (Nilsson, 2009).

Table 1 — OPSINS AND TRASDUCTION CASCADES IN ANIMAL PHOTORECEPTORS

OPSIN G-PROTEIN  CONTROLLED ENZYME SECOND MESSENGER RESPONSE POLARITY
c-opsin G, PDE cGMP hyperpolarization

r-opsin G, PLC IP;, DAG depolarization
G,-opsin G, GC cGMP hyperpolarization/ depolarization
cnidops class G, AC cAMP depolarization

Table I. Opsins and transduction cascades in animal photoreceptors. PDE, phosphodiesterase; PLC,
phospholipase C; GC, guanylate cyclase; AC, adenylate cyclase; cGMP, cyclic guanosine phosphate; cAMP, cyclic
adenosine phosphate; IP;, inositol triphosphate; DAG, diacylglycerol. Table reproduced from Nilsson (2009).

The majority of photoreceptors use a Go protein belonging to either of two evolutionary
distinct classes: Ga-q and Ga-t (Oakley and Pankey, 2008). The G-proteins responsible for
relaying the light signal consist of three subunits: o, B and y. The o subunit binds opsin only

after the opsin chromophore has accepted a photon and induced a conformational change.

Upon binding, Ga  hydrolyses a bound GDP for GTP, and dissociates from Gp-y. At this
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point, Goa-GTP can activate specific targets such as phosphodiesterase (PDE) or

phospholipase C (PLC) (Oakley and Pankey, 2008).
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Fig 13. The retinoid cycle and photoadaptation. ||-cis-retinal and opsin are reassembled to form rhodopsin. The

absorption of light leads to an isomeric change in the retinal molecule. lllustration from Anatomy and Physiology (201 3).

Photoreceptors expressing Go-q respond to activation by Ga-q-GTP releasing calcium from the
endoplasmic reticulum. Usually, the subsequent opening of transient receptor potential (I'RP) ion
channels depolarize the cell (Hardie, 2001). In cells bearing opsins that target Ga-t, PDE becomes
activated by Go-t-GTP to hydrolyse cellular cGMP into 5° GMP. These cells rely on cyclic
nucleotide-gated (CING) ion channels, which only remain open in the presence of cGMP. Following
photo excitation and subsequent decrease in cellular cGMP, these channels close and hyperpolarise
the cell (Yau and Baylor, 1989). More details on the different components that intervene in the

phototransduction cascade can be found in Pierce et al. (2002) and Terakita (2005).

In some instances (e.g. in photoreceptors based on c-opsins), the photoreceptor systems require a
pathway of enzymatic reactions to recycle the retinoid employed during light detection. This group
of reactions is called the ‘visual cycle’. All-frans retinal is released from the rhodopsin complex and
transported to the cytoplasm by an ATP binding cassette. The molecule, after modification to all-

trans retinol, 1s sent to the photoreceptor cell were it 1s esterified to a fatty acyl group to form all-trans

37



Photoreception in Ambulacraria

retinyl ester. All-frans retinyl ester is subject to trans-isomerization to 1l-cs retinal through the
actions of two further enzymes. After transporting back to the photoreceptor cell, 11-¢s retinal binds
rhodopsin rendering it sensitive to light again (Wright et al., 2010). In some cases, a functional
aberrant class of opsins have been co-opted to act as photo-isomerases that used light to change the

retinyl conformation (Sperling and Hubbard, 1975; Gonzalez-Fernandez, 2003).

The Ambulacraria clade

Ambulacraria is a group of deuterostomes comprising the Echinodermata and Hemichordata
clades. Both groups have been placed together since Metschnikoft' (1881) emphasized the
similarities between their coelomic systems and larvae. Also, molecular studies strongly support
the monophyly of the group (Cannon et al., 2009; 2014; Dunn et al., 2014). The Ambulacraria
show archimery (i.e. a division of the body into three regions: prosome, mesosome, and
metasome) which cannot always be recognized externally, but that can be observed during
development because of the formation of three well defined coelomic compartments: protocoel,

mesocoel and metacoel (Nielsen, 2012).

Echinodermata

Echinoderms, from ancient greek ‘echinos’ (hedgehog) and ‘derma’ (skin), are a phylum that
include sea lilies and feather stars (Crinoidea), sea stars (Asteroidea), brittle stars (Ophiuroidea),
sea cucumbers (Holoturoidea) and sea urchins (Echinoidea) (Fig. 14). While the number of
species 1s not great in comparison to other clades (circa 7,000 extant nominal species) (Appeltans
et al., 2012), they are extremely numerous as individuals in unpolluted seas and deep water
(Moore, 2006). All echinoderms are marine. Morphological and molecular studies demonstrate

the existence of two clades: Pelmatozoa (Crinoidea) and Eleutherozoa (the remaining classes)

(Chia and Harrison, 1994; Janies et al., 2011; Telford et al., 2014) (Fig. 14).
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Crinoidea

The crinoids (sea lilies and feather stars; Fig. 14A) are the oldest surviving group of
echinoderms, and resemble their ancestors in being essentially sedentary suspension feeders
(Smith and Zamora, 2013; Zamora and Rahman, 2014). Comatulids (feather stars) are
secondary motile, being able to swim by waving the arms up and down. In free spawning

species the larva is called a doliolaria (Hyman, 1955).

Asteroidea

Asteroids (Fig. 14B) constitute a large clade with circa 2,000 species which are generally predators
or scavengers (Appeltans et al., 2012). Active predators not only have to move, they must displace
in a directed way from place to place. How can the radially symmetrical starfish move in one
direction and, without a single cerebral ganglion, how can it coordinate the stepping of the tube
feet in different arms? Observations show that any arm can become the leading arm with the other
four cooperating and that the site of coordination is in the radial nerve cord (Moore, 2006).
Curiously, these arms are provided with eyes at the distal end of each arm tip in many sea star
species (Garm and Nilsson, 2014). Patterns of activity in any one arm can be conducted round the
ring and direct the stepping of tube feet in the whole animal. In this way, a starfish can make a
temporary ‘brain’ without having a permanently defined brain structure. Pelagic planktotrophy,
pelagic lecithotrophy, and benthic lecithotrophy are widespread among asteroids. Bipinnaria and

brachiolaria are the main larval types present in this animal group (Young, et al., 2012).

Ophiuroidea
The ophiuroids (Fig. 14C), commonly named brittle stars, constitute another large clade
(circa 2,000 spp.) (Appeltans et al., 2012). They have harder skeleton than asteroids

and, although they are stellate in form, the arms are clearly marked off from the disc.
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Most ophiuroids resemble asteroids in being actively carnivores, but their methods of feeding and
locomotion are very different. Interestingly, some species have marked sensitivity to light intensity
enabling them to detect shadows of predators, change in colour, and escape rapidly (Moore, 2006).
Light sensitive ophiuroids species incorporate calcite crystals into the skeleton and arrange them into
microstructures acting as double lenses, each of them especially sensitive to light from a particular
direction (Aizenberg et al., 2001; Delroisse et al., 2014). This is a nice example not only for the more
elaborate photoreceptor structures required by faster moving animals, but also for a structure
combining mechanical and sensory functions. Species with planktotrophic development have
ophioplutei larvae. Ophioplutei are superficially similar to echinoplutei because they both have their
larval arms supported by skeletal rods, but the longest pair of larval arms in ophioplutei (the
posterolaterals) extend laterally from the larval anterior-posterior axis in a much significant way in

comparison with the echinopluteus (Young, et al., 2002).

Holoturoidea

Sea cucumbers (Fig. 14D) comprise about 900 species which are very unlike other echinoderms
(Appeltans et al., 2012). They are bilaterally symmetrical, lying on one side with an elongated
body axis between the mouth and the anus. The endoskeleton is very reduced, leaving a muscular
body wall with a few embedded ossicles but without spines or pedicellariae. Typically,
holothuroids are deposit feeders. When pursued by predators, holoturoids may immobilise them
by extruding a mass of sticky blind ending tubules (the cuvierian tubules), or may evert internal
organs and leave them in the part of the predator. The rest of the holothuroid escapes, and
regenerates its viscera (Moore, 2006). Two larval forms are characteristic of the clade: the
auricularia and the doliolaria. Regardless of the developmental route (indirect or direct), the end
of larval life 1s generally considered to be the pentactula, when the five primary tentacles emerge

from the doliolaria (Semon, 1888).
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Echinoidea

Unlike asteroids and ophiuroids, sea urchins (circa 950 spp.; Fig. 14F) are slow moving
animals that feed themselves by scraping seaweed from rocks (regular forms) or that bulk feed
on the sediment to extract nutrients (irregular forms). On the irregular forms, the mouth
located in anterior position collects food and the anus situated posteriorly leaves the waste
behind. The irregular forms derived from the regular ones. Echinoids have their body
covered by spines and pedicellariae. Locomotion is mainly by spines that articulate with the
main skeleton through ‘ball and socket’ joints, and are controlled partly by muscle and partly
by mutable connective tissue (Moore, 2006). The tube feet assist locomotion and keep the
urchins close to the substratum on which they are grazing or anchor them in crevices. The
feeding larva of echinoids is called echinopluteus, and like feeding larvae of other
echinoderms has clear bilateral symmetry. The larvae do not resemble like the adults into
which they metamorphose. The name pluteus was given to feeding larvae of ophiuroids and

echinoids by Miiller, who thought the larva resemble an easel (Miller, 1846).
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Fig 14. General view on echinoderm interrelationships according to the Asterozoa hypothesis. 1) Pelmatozoa; 2)

Eleutherozoa. A) Crinoidea: Hathrometra sarsii; B) Asteroidea: Astropecten irregularis; C) Ophiuroidea: Ophiopholis
aculeata; D) Holoturoidea: Thyone fusus; E) Echinoidea: Spantangus purpureus. Drawings from Nationalnyckeln till

Sveriges Flora och Fauna. lllustrator: Helena Samuelsson (201 3).
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Hemichordata

Hemichordates, the sister group of echinoderms, consist of two main groups dissimilar in
appeareance: enteropneusts and pterobranchs (Fig. 16). As adults, all hemichordates are benthic
marine animals (except, perhaps, for Planclosphaera pelagica, an organism viewed as a
hemichordate larva that has not been linked to a specific adult yet) (van der Horst, 1936) . These
worms generally live buried in soft sediments, among algal holdfasts or under rocks. Interest in
this group of animals has been largely based on their proposed morphological affinities and close
phylogenetic relationship to chordates (Bateson, 1886; Berrill, 1955; Bone, 1979; Garstang, 1894;

Gerhart et al., 2005; Lacalli, 2005; Nielsen, 2009; Rottinger and Lowe, 2012).

Enteropneusta

The enteropneusts (circa 70 species, 600 microns to 200 centimetres in length) are large solitary
animals, burrowing in the mud or sand of the shallow seas (Worsaae et al., 2012). They are divided
into four groups: Harrimaniidae, Spengelidae, Ptycoderidae, and Torquaratoridae (Cameron et al.,
2000; Cannon et al., 2009; 2014; Osborn et al., 2011) (Fig. 16). The ciliated proboscis collects food
into the mouth, which opens from the collar. The lobe, in front of the mouth, has a complex ‘heart
glomerulus’ system supported by a rod like stomochord. The nervous system is not centralised, there
is a nerve net resembling that of echinoderms, epidermal in origin and position. The main

concentration of neural tissue in the collar is hollow, and develops much as in chordates.

The larva 1s a tornaria (Fig. 15), remarkably similar to the auricularia and bipinnaria larvae of
echinoderms. In both, the tornaria and the bipinnaria, there is a short pore canal leading from
the most anterior cavity to a ‘hydropore’ functioning as an excretory outlet. The tornaria also
resembles most echinoderm larvae in having a gel-filled earliest body cavity, permitting

development of a large larva with little cellular material (Moore, 2006).
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ANATOMICAL DETAILS OF LATE TORNARIA (KROHN STAGE)

FRONTAL VIEW LATERAL VIEW

Fig 15. General view on the tornaria larva (Hemichordata) at Krohn stage, frontal and lateral views. A) Dorsal
aboral field; B) apical ciliary tuft; C) ocelli; D) postoral part of neotroch; E) hydrocoele; F) buccal cavity; G) heart-
kidney complex; H) hydropore; I) stomach; ]) opisthotroch; K) intestine; L) perianal ciliary ring; M) anus; N)
preoral part of neotroch; O) pharynx. Nomenclature in agreement with Nielsen and Hay-Schmidt, 2007.

lllustration redraw from Spengel, 1893 by Santiago Valero-Medranda.

Pterobranchia

The pterobranchs (21 species divided in two groups, Cephalodiscidae and
Rhabdopleuridae) are minute (circa one to five milimiters long), sessile and colonial
animals, covered in cilia and with lophophores bearing tentacles that collect their
food (CGannon et al., 2014). Cephalodiscus has a single pair of gill slits, Rhabdopleura has
none. The simple nervous system seems to be entirely epidermal. Pterobranchs
reproduce asexually by budding or sexually by releasing gametes. The larva, unlike
the enteropneust tornaria, is uniformly ciliated and short lived. It has a store of yolk

and does not feed itself, serving solely for dispersal (Hyman, 1959).
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A) Rhabdopleuridae

B) Cephalodiscidae

C) Harrimaniidae

D) Spengelidae 1) Pterobranchia

‘ E) Ptychoderidae 2) Enteropneusta

| F) Torquaratoridae

Fig 16. General view on hemichordate interrelationships, a clade subdivided in two: |) Perobranchia, here
represented by Rhabdopleura sp. (drawing from Erik Nasibov), that contains A) Rhabdopleuridae, and B)
Cephalodiscidae; and 2) Enteropneusta, here represented by Glossobalanus marginatus (drawing from Helena
Samuelsson), that contains C) Harrimaniidae, D) Spengelidae, E) Ptychoderidae, and F) Torquatoridae. lllustrations

from Nationalnyckeln till Sveriges Flora och Fauna (2013).
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OBJECTIVES OF THIS THESIS

This study aims to better understand the photoreceptor mechanisms of the Ambulacraria clade.

The objectives addressed are:

1) To create a comprehensive phylogeny of ambulacrarian opsins to assess orthologies and

identify gene novelties and modifications (Chapter 1).

2) To localize and characterize, both molecularly (analysing the fingerprint mRNA and
protein opsin expression) and morphologically (by means of transmission electron
microscopy), the putative photoreceptor cells of the pluteus larva of Strongylocentrotus

purpuratus (Chapter 2).

3) To utilise a novel quantitative methodology to investigate if echinopluteus larvae
equipped with non-directional photoreceptors can undergo vertical migration as well
as of comparing differences in their behaviour depending on the light conditions

provided (Chapter 3).

With the data collected I aim to contribute to the understanding of the onset and evolution of
non-directional photoreception in the echinopluteus larva, as well as to provide new insight into
the photoreception mechanisms of Ambulacraria: a group of deuterostomes exhibiting varied

photoreceptor classes between different clades and life stages.
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|. OPSIN PHYLOGENY IN THE AMBULACRARIA

1.1 Abstract

Opsins, G protein coupled receptors involved in photoreception, have been extensively surveyed
in chordates. However, little 1s known about the evolution and functions of these proteins within
the Ambulacraria, a clade form by echinoderms and hemichordates. This chapter aims to start to
fill that gap by providing insights into the opsin toolkit of this deuterostome group. Such a
phylogenetic background will help future investigations focused on the understanding of the
photoreception mechanisms of these animals, a clade adapted to a variety of ecological niches
and, therefore, light conditions. For doing so, a methodical data analysis that includes for first
time hemichordate opsin sequences plus an expanded echinoderm dataset, was carried out. This
survey, that has involved over a hundred of sequences coming from laboratories from all over the
world, has resulted in the first opsin phylogeny dedicated to this cornerstone clade. In total, 119
ambulacrarian opsin sequences were collected: 22 belonging to hemichordates and 97 to
echinoderms. This opsin repertoire was framed by using human opsins as reference. As a result,
the presence of all major opsin groups has been verified in Ambulacraria thus, supporting the
hypotheses in which ‘Urbilateria’ (i.e. the hypothetical last common ancestor to all bilaterians)
already possessed r-opsin, c-opsin, and Go-opsin in his genetic toolkit. Further, two opsin groups
have been ascribed as specific to echinoderms. All together, these data represent a promising step

for future investigation of light perception in non-chordate deuterostomes.
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1.2 Introduction

The prototypical proteins involved in animal photoreception are opsins. Opsins are GPCR that
consist of an apoprotein covalently bound to a chromophore (I1-retinal). The nitrogen atom of
the amino group of residues K296, situated in helix VII, binds to the retinal molecule through a
Schiff-base linkage, forming a double bond with the carbon atom at the end of this molecule
(Hargrave et al., 1983; Terakita, 2005). Residue K296 is, therefore, crucial for light absorption,
and its presence or absence can be potentially used as a fingerprint to judge whether a newly

found GPCR 1is a bona fide opsin.

Classical opsin classifications show three large clusters: ciliary, rhabdomeric, and Go/RGR
opsins (e.g. Terakita, 2005; Porter et al., 2011; Feuda et al., 2012). Moreover, the most
recent investigation on opsin phylogeny resolved four distinct groups: tetraopsin, xenopsin,
Gqg-opsin, and c-opsin (Ramirez et al., 2016). Within deuterostomes, genomic and
transcriptomic data derived from a number of chordates have been used to identify the
opsins of this clade (e.g. Lamb et al 2007; Holland et al., 2008). However, less attention has
been paid to Ambulacraria, the sister group to all extant chordates (Fig. 17). This study
results essential to gain insights into the opsin toolkit present in Urbilateria, as well as to

identify opsin duplications among ambulacrarian lineages.

Although photoreceptor systems have been described in some adult echinoderm species (e.g.
Blevins and Johnsen, 2004; Ullrich-Liiter et al., 2011; Garm and Nilsson, 2014; Sigl et al., 2016),
their opsin toolkit has remained largely unexplored on the whole. Further, almost nothing is
known about the photoreceptor mechanisms of hemichordates; the only available data being
provided is the ultrastructural studies on the ocelli of the tornaria larvae of Plychodera flava and

Glossobalanus marginatus (Brandenburger et al., 1973; Braun et al., 2015).
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In terms of genetic data, few opsin sequences were surveyed in ambulacrarians before this study.
The first survey was carried out in the genome of the echinoid Strongylocentrotus purpuratus (Raible
et al., 2006; Burke et al., 2006). On 1it, authors predicted six opsin genes, four of which were
reported independently by Burke et al. (2006). Subsequently, Ooka et al. (2010) cloned an
‘encephalopsin’ orthologue in the sea urchin Hemicentrotus pulcherrimus. More recently, other opsin
sequences have been found in asteroids (Asterias rubens) and ophiuroids (Ophiocomina migra, Amphiura

JSilyfornas) species (Delroisse et al., 2013; 2014).

To describe the diversity of opsins in Ambulacraria, a detailed analysis of 6 genomic and 24
transcriptomic databases was carried out. Here, opsin sequences from echinoderms (Crinoidea,
Asteroidea, Ophiuroidea, Holoturoidea, and Echinoidea), and enteropneust hemichordates
(Harrimaniidae, Spengelidae, Ptychoderidae, and Torquaratoridae) have been collected. This is

the first and, to date, more complete survey of the Ambulacraria opsin toolkit.
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Fig 17. Ambulacrarian phylogenetic relationships and their adult forms. The Ambulacraria consist of two clades:
A) Hemichordata (Cephalodiscidae, Rhabdopleuridae, Harrimaniidae, Spengelidae, Ptychoderidae, and
Torquaratoridae), and B) Echinodermata (Crinoidea, Ophiuroidea, Asteroidea, Holoturoidea, and Echinoidea).

Drawings: Santiago Valero-Medranda.

1.3 Results

1.3.1 Phylogeny and opsin distribution within Ambulacraria

All the main opsin clusters (i.e. ciliary, rhabdomeric, and Go/RGR opsins; for having an
overlook to the different opsin groups see General Introduction, Fig. 12) are well supported in
this analysis, thus confirming that Ambulacraria have a complete opsin toolkit (Fig. 19).
Interestingly, two non-canonical opsin groups were also found. Since these groups do not contain
any hemichordates or chordate sequence, they might be considered as echinoderm specific.
Therefore, we decided to name them echinopsin ‘1° and ‘2°. Still, these groupings must be taken

cautiously; such non-canonical clades could be an artefact related to a reduce data sampling.

A complete opsin profile (1.e. a toolkit that includes at least one representative of each prototypical
opsin family) was detected in the sea urchin Strongylocentrotus purpuratus, but not in other echinoid
genomes surveyed. The genomes of L. variegatus and P. lindus are not fully assembled yet, therefore
some sequences may be missing here due to an incomplete sequence coverage. The genome of the
asteroid Patina mimata have all opsins groups except for the echinopsin ‘2°. Remarkably, no
rhabdomeric or Go-opsins have been found in any of the hemichordate species here explored. Still,
various lineage-specific opsin duplications have been here detected in some Ambulacraria species:
two RGR-opsins in Amphipholis sp., A. rubens and P. miniata; two peropsins in H. glaberrima, P. flava,
and S. kowalevsku; four r-opsins in L. annulatus; and two Go-opsins in A. rubens, L. variegatus, S.
purpuratus, and Helwocidaris erythrogramma. A chart in which each studied species can be easily

associated with its opsin repertoire can be found in Fig. 18.
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ECHINODERMATA

Echinoidea
1. Strongylocentrotus purpuratus
(Stimpson, 1857)
2. Strongylocentrotus droebachiensis
(O.F. Mdiller, 1776)
3. Strongylocentrotus intermediius
(A. Agassiz, 1864)
4. Hemicentrotus pulcherrimus
(A. Agassiz, 1864)
5. Paracentrotus lividus (Lamarck, 1816)
6. Lytechinus variegatus (Lamarck, 1816)
7. Heliocidaris sp. (L. Agassiz & Desor, 1846)
8. Eucidaris tribuloides (Lamarck, 1816)

Holoturoidea

9. Parastichopus parvimensis (Clark, 1922)
10. Holothuria forskali (Delle Chiaje, 1823)
11. Holothuria glaberrima (Selenka, 1867)

12. Leptosynapta clarki (Heding, 1928)
13. Apostichopus californicus
(Stimpson, 1857)

Asteroidea

14. Asterias rubens (Linnaeus, 1758)
15. Patiria miniata (Brandt, 1835)

16. Labidiaster annulatus (Sladen, 1889)

Ophiuroidea

17. Ophiopsila aranea (Forbes, 1843)

18. Amphipholis sp. (Ljungman, 1866)
19. Amphiura filiformis (O.F. Muller, 1776)
20. Astrotomma agassizii (Lyman, 1875)

Crinoidea
21. Antedon mediterranea (Lamarck, 1816)
22. Florometra serratissima (A.H. Clark, 1907)

HEMICHORDATA

Harrimaniidae
23. Saccoglossus kowalevskii (Agassiz, 1873)
24. Saccoglossus mereschkowskii
(Wagner, 1885)
25. Harrimaniidae sp. (Iceland)
(van der Horst, 1935)

Spengelidae
26. Schizocardium sp. (Spengel, 1893)

Ptychoderidae
27. Ptychodera flava (Eschscholtz, 1825)
28. Ptychodera bahamensis (Spengel, 1893)
29. Balanoglossus sp.
(Delle Chiaje, 1829)
30. Torquaratorid sp. (Iceland) (Holland,
Clague, Gordon, Gebruk, Pawson &
Vecchione, 2005)

Fig 18. Chart representing the opsin toolkit of the surveyed Ambulacrarian species. On it, each letter

corresponds to an opsin subgroup: A) RGR opsins; B) peropsins; C) Go opsins; D) neuropsins; E) Rhabdomeric

opsins; F) echinopsins | and 2; G) ciliary opsins; while each number refers to the species studied. For reference on

the studied species, see the numbers in the faunal list situated below the chart. Stippled areas indicate duplications

on the opsin family. Further details and references of where the genetic information used for each species is

derived can be found in Table 2. Figure: Santiago Valero-Medranda.
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Fig 19. Maximum likelihood phylogenetic reconstruction of ambulacrarian opsins. 119 opsins from 31 different

Ambulacraria species cluster in eight groups. RGR-opsins in green, peropsins in blue; Go-opsins in purple, neuropsins

in pink, rhabdomeric-opsins in red, echinopsins | and 2 in orange, and ciliary opsins in yellow. Visualization generated

with Figtree. Figure reproduced from D’Aniello et al. (2015) with permission of the publisher.
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1.3.2 Opsin fingerprint
To build a consensus fingerprint for each ambulacrarian opsins group (ciliary, rhabdomeric, Go-
opsin, RGR-opsin, neuropsin, peropsin, echinopsin ‘l’, and echinopsin ‘2°) the 7%

transmembrane domain and C-terminal tail regions of the sequence dataset were aligned and a

graphical representation was generated (Fig. 20).
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Fig 20. Consensus sequences of different opsin groups. Graphical representations of opsin amino acid patterns
within the multiple alignments of the 7" transmembrane domain and the protein G linkage site. These consensus
motives show the highly-conserved regions including the opsin-specific lysine residue and the ‘NPxxY(x)6F pattern.
The lysine residue involved in the Schiff base formation (equivalent to K296 of the bovine rhodopsin) is present in
position 10. The pattern ‘NPxxY(x)6F (position 302-313 of the R. norvegicus rhodopsin sequence) is present in
position 17-28. The relative size of each amino acid letter indicates the probability to find this specific amino acid for

the considered position. Figure reproduced from D’Aniello et al. (2015) with permission of the publisher.

Observing these motives, we can draw some points. Almost all analysed opsins contained the
highly-conserved lysine residue in a location equivalent to K296 of the bovine rhodopsin. In very
few cases from the peropsin group, though, this lysine has been substituted by glutamic acid (E).

Still, due to the great similarity of the flanking sequence regions, these particular peropsin
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sequences were included in our survey. The dipeptide NP (position 302-303 of the reference
protein) is also highly conserved among all the subfamilies except in peropsins (N/HP) and
RGR-opsins. Ambulacrarian c-opsins, r-opsins and echinopsins ‘A’ displayed a highly-conserved
tyrosine (Y306). Conversely, the histidine (H310) appears distinctive of the r-opsins here
represented. In this dataset, the tripeptide SSS, positioned at residues 309-402 of the reference

protein, is a distinctive feature of ambulacrarian Go-opsins.

1.4 Discussion

This phylogenetic analysis confirms the presence of the prototypical bilaterian opsin clusters
in Ambulacraria, thus giving support to the scenario in which Urbilateria had ciliary,
rhabdomeric and Go-opsins. Further, this data suggests the presence of the two novel opsin
groups echinopsin ‘1’ and echinopsin ‘2’. Echinopsin sequences were found only in
Echinoidea, Ophiuroidea and Asteroidea. A wider taxonomic sampling is needed to better
determine if these echinopsin groups represent an echinoderm novelty or not. The graphical
representations here shown will be particularly useful in future analysis to assign novel,

unknown sequences to lineage-specific opsin groups.

The absence of rhabdomeric opsin in enteropneusts in remarkable, as the tornaria larva
(planktotrophic) possesses eyespots that bear photoreceptors with clear microvillar surface
enlargements (Brandenburger et al., 1973; Braun et al., 2015); however, this analysis does not
reveal r-opsins in any of the examined enteropneust species (Table 3). It should be noted that
genomic information is only available from S. kovalewski, a species with a lecithotrophic larva.
Moreover, as most of hemichordate transcriptomic data here considered were generated using
adult tissues, 1s therefore likely that the absence of r-opsin in this group of animals is biased due

to the limitation of the data availability from this animal clade. If the absence of r-opsin in
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enteropneusts 13 confirmed, it would be of great interest to investigate which is the opsin that

mediate the photoreception of the microvilli-based ocelli present in the tornaria.

The fragmentary information about putative duplicates in different lineages makes it difficult to
predict the exact number of functional opsin proteins. Whether or not these duplicated genes
have sub-functionalized roles should be experimentally investigated by gene expression plus
knock out or silencing experiments. In a few cases, the locus of duplication prompted a large
expansion of the gene family, as is the case of the five neuropsins found in S. kowalevskiz and the
six rhabdomeric opsins in A. filiformus. The presence of opsin in the nervous system from Asterias
rubens 1s in accordance with the electrophysiological experiments showing that the echinoid radial
nerve reacts to illumination and shading by creating action potentials (Millott, 1975). These

findings also corroborate the immunochemical observations done by Ullrich-Liiter et al. (2013).

As all living animals diversified from a common ancestor, exploring the same function in several
species can help to understand general principles. Conversely, an ancestral gene that performed
a particular function could also have diversified and co-opted over the course of evolution. Given
that, the diversity of opsins among living organisms provides a window to extract information

about the evolution of photoreception throughout geological time.

Until recently, the under representation of comparative studies in photoreceptor cell evolution
has hidden the real extent of opsin diversity (Porter et al., 2011; Feuda et al., 2014). As more
opsins have been characterized, these sequences have been classified into narrow pre-defined
groups, implying theoretical function similarities that might not always be correct (Shichida
and Matsuyama, 2009). At present, the rapidly increasing availability of entire genomes and

transcriptomes provides a great opportunity for investigating the evolution and functional
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diversity of the opsin family in a detailed way. Although currently available molecular data
have already uncovered an unexpected diversity of opsins, the cumulative addition of this sort
of information will provide a more comprehensive picture of the origin and diversification of
opsins over evolutionary time. Naturally, such a diversification and categorization must be
correlated with the necessity to conquer new ecological niches that provided a new variety of

light stimuli to be integrated.

1.5 Material and methods

1.5.1 Data mining

Strongylocentrotus purpuratus opsins were used as starting query for tBLASTx against NCBI, JGI,
Ensemble, Echinobase, Biolnformatique CNRS-UPMC, and Genoscope databases.
Additionally, the dataset was enriched using unpublished genomic and transcriptomic
sequences obtained from independent research projects (see Table 2 for details on data
source). This includes transcriptomes from adult tissues, such as cuverian tubules and
integument from Holothuria forskali, muscle of Parastichopus californicus, radial nerve from Asterias
rubens, arms from Labidiaster annulatus, Ophiopsila aranea, Astrotomma agassizii, Antedon mediterranea,
proboscis from Saccoglossus mereschkowskiu and a Torquaratorid sp., whole adult body of
Leptosynapta clark:, and anterior part of the body from Harrimaniidae sp., and Schizocardium
braziliense. Several other transcriptomes were prepared from embryos or larvae from
Paracentrotus  lindus, Helwocidaris — erythrogramma, Eucidaris  tribulodes, Parasticopus  parvimensis,
Saccoglossus kowalevski, and Ptychodera flava (Table 3). A final dataset of 119 protein sequences
coming from 31 ambulacrarian species was used for the phylogenetic reconstruction (all the
sequences can be found at the end of the chapter, pp 82-93, in FASTA format). Further, 6
human opsin sequences were used as reference of the main canonical opsin groups, and 6

melatonin receptor sequences were considered as out-group.
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1.5.2 Alignment and phylogenetic analyses

Protein alignments were performed with SeaView v4.2.12 (Galtier et al., 1996; Gouy et al., 2009)
using the MUSCLE algorithm (Edgar, 2004). To improve the phylogenetic reconstruction, the
alignment was manually corrected, and the N- and C-terminal ends were trimmed (Fig. 21). The
sequences used for this study can be consulted in page 82 and followings. Sequences shorter than

60 amino acids were removed to avoid bias.

Maximum likelihood analyses were conducted using PhyML v3.0 (Guindon and Gascuel,
2003). Nodal support was obtained following analysis with 10,000 bootstrapping replicates. A
best-fit model analysis was performed using Mega v5.2.1 following the AIC criteria (Tamura
et al. 2007, Kumar et al. 2008), and ‘Wheland and Goldman model of protein evolution’ was
found to be the best suited (Whelan and Goldman, 2001). Three melatonin receptor
sequences from S. purpuratus (Echinodermata) and three from Saccoglossus kowalevski

(Hemichordata) were chosen as out-group.

1.5.3 Consensus fingerprint of ambulacrarian opsin groups

Ambulacraria opsins were clustered according to their estimated position within opsin
subfamilies, and a multiple alignment of 35 amino acid long peptide region (including the 7t
transmembrane domain with the opsin-specific lysine K296), was performed with SeaView
v4.2.12 for each opsin group. The selected region spanned from the residues 286 to 320 of the
Rattus norvegicus rhodopsin sequence, which was used as reference (Palczewski et al., 2000). The
consensus sequence was generated on base of the alignment for each class of ambulacrarian

opsin using Genelous® 8.1.5.
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1.5.4 Sequences used for this study (FASTA format)

>Plividus_opsl.A
MNSSTPVMTSTDYAPSSWSSSLQSSTISSLMTDIVSTVNVLSGLSNETSSTVGPSSLVVPVSRTTYNYLTVYTGFLTIFGILNNGIVMVLFARFPSL

RHPINSFLFNVSLSDLIISCLASPFTFASNFAGRWLFGDIGCTLYAFLVFVAAGDR

>Plividus_opsl.B
CSVAWNSRIPGSFGYIIFIFVMVLIIPFGIIVFAYALLVYAVKKISRTQAALSSEAKADRKVTKMIFIMILGFLVAWMPYTVFSLYVAFGKDVVLTP
LAATFPPFFAKLCTIHNPIIYFLLNKQFKDALIQLFCCGENPFDRDESEHERQGTRRQPVGGRTAASGSMNPGTRGRASSLPTATSVLDIPQAVATA

SSSPGHDHEQGPSTSAPNERVFELSSKIQKFQISEKNSGSMSEKPGTSSSGTLKPPRRAMKNQ

>Plividus_ops3.1.A
MATSAGEHSVTEALSKLQPEYMTPLTRTGYLLTAIYLTIIGTIATVGNVSVICVLCRYGTFRKRSINLLLINMAASDLGVSVTGYPLTTASGYWGRW

LFGDVGCQFYAFCVYTLSCSTISTHAITIAIYRYIYIVKTDL

>Plividus_ops3.1.B
IDPIRAEEKDAGVIIFGKLRKREAKIDTHVTKMCFMMMISFIIVWAPYAVECLMAAHVERLSPLTSVLPTMFAKSSCMINPIIFLTSSSKFRKDLNK
LLSRPLSSEAQRVQEDRNKTQRSFYVRQSEIATTQGNSTAAVFYDKERIYIGEMRASSLOKEAELMORDPELFSIASSTSSDVQFVVRDRPRPEDRR

ASRPQGPRGPEMFTASGYANQGSSTTDSGAQSTSSGTTSSKQRRTGFGSRKASRHYSLKSQSEETGTSGEIFTLDGSSLEMMSLRKL

>Plividus_3.2

MASLSENSYVTEPTSQVPSEGPPSYLTPLSRTGYLFTALYLTLVGSIATIGNITVLCVLCRYGTFRRRCVNILLMNMAFSDLGVSIAGYPLTTISGY
RGKWLFADIGCQFYAFCVYTLSCSTIGSHVVISFYRFIYVVKPNFRWSSYTYEPFGTSCSINWTGKSFSDTSYMIACNVFVFILPISIMLYCYIRVG
KKIKGIDPLRAEGRDMGVVVFGKLRKHETKIDTHVTKICFMMMAGFIICWTPYAVGSIWASQVGKVSTIASVLPTMFAKSSCMINPIIFLTSSSKFR
HDLNKLFNRPGPEHTIRVEERSREERSFYVRQSALSDAMGSHSASVYYNKERIYIGEMHASNIQKESDLLERDPEAISIGSSTSSSLKFVLKDRLNR

HKKRAGKSSKKMLDVVHSPFDGAASDDSEENTTENNMTRARSISIPSENVSRIFVPSAKMPTMKRSLSQPDLPGTSADSFSKNPSEY

>Plividus_ops4

VTHHAHHMMCYTGMRVHKKRQKGSAFSISACYDRKKKISLRTDADRTEVRIPVTSFGWTKSLRTPPNMLIVNLAISDFGMVITNFPLMFASTLYNRW
LFGDLGCQIYAFCGALFGIMSIANMTAIALDRYYVICWSLEAVRSVTKRRSMIIILIVWAYAIFWSIPPFIGFGSYVLEGYGLGCTFDFMTHDTNHY
LHVSLLFVSSFIVPVAIIVACFTRIAITVRKHRHELNKMRTRLTDDKDKKHKSSIRRADKAKTEFQIAKVGFQVTIFYICSWMPYSIVAVIGQYFDP
GLLSPLGTVVPVIFAKCSAIWNPIIYCLSHEKFNAALKERIMVLCGIEVPSKHRSMGSQESSVTGRRGMHRQONSSTLSESSVSSTVEQGDMELKDRK

QGPATVRVQQEKGEAGTYRRNPGDVSFSKDVGVEIEEKSPRGDQGGRDDRVTSQGEGOMDQWSQPPPATAPAPGVNDKEYLTKM

>Plividus_ops5

MANLTSGRMTDFDEIEQMNDDDPAFRLIAGYLLMVVVIGTLGNLTVISTFLRCKKLHSPINILIVNLSASDLLVATTGTPLSMVSNFYGRWLFGTNA
CAFYGFVNYYCGCISLNSLAAISVFRYMIVVRGNVONKKLSLRSSIYAVLIIHMYTLIFSTPPLYGWNRFVLAGYRTGCDIDFYTKTPLFISYICYM
FIFLFFIPLGLISWSYFKIYQRISRHSRSMRTSLCSVTKEPHSEAWLKKVKNSQILQKPVSLLPLKTRFEPRFRNRRTVSTILITIIVFLIAWLPYC

VVSLWILIDNTNSISKLTATIPSLFAKSSVMYNPMIYVLLNTKFRRGLVQSLQPLNCFSSHRLGDSSS
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>Plividus_opsé6

VFLLSWLPYNVLLLFAITNDPEDMPSNLTVIAPLFVEITLWIHPILFLVLFKKFRGYAALMICCRTEVEAMIDVNASDSSNPRTSDVRRFADHFV

>Plividus_ops7
MSPVAAVSSFSEEWAYGSSGCQTYSFVANFFGLVSIWSLVAMVLHHYQSSRIGAKKDDINSQYSMITALIWGGALFWSATPLPFIGWGRYVVEPFGT
GCLLDFADRSPSYFLYLVGFTTLGLAFPIALLITRGLNYEKVPIESVIACWKAVLVLCFYWGCYGLVAVATALSGPGRVSVRLYAVAPLFAKTCPVI

NAFLFGDSLTTDEAVATKEQKKH

>Lvariegatus_opsl

MSNLMTEVLTTVNAFSGIGNATPSTLRPRSLVVPVSRSTYNYLTVYTGFLTIFGILNNGLVMVLFARFPSLRHPINSFLFNVSLSDLIISCLASPFT
FASNFAGRWLFGDLGCTLYAFLVFHLGTEQIVILAALSTIQRCMLVVRPFTAQKMTHNWAVFFLFALTWLYSLIICLPPLFGWNSYTYEGPGTACSIA
WNSNLPGDSSYIIFIFVMVLVIPFTIIIFSYGLLVYAVKKVISQTQAAMSSEAKADRKVTKMIFIMIIFFLITWAPYSGFSLYVAFGKNVVITPLAG
TFPPFFAKLCTIHNPIIYFLLNKQVRQFKDALIQFLCCGENPFDRDESDQGGRRHRPLGGRTGASGTIPQGGRGRASSLPTATSMLDIPQAASPSAL

SGSTONKHNLEQGGASTSTTKDDRLFEISSKIQKFEISEKMNASCSQEASGAPSSSGVMKPTRRAMKNQVGCLPPVDN

>Lvariegatus_ops3.1.A
MATTTESYHSGTEALSNLOQPEYMTPLSKTGYLLTGIYLTIVGTIATIGNITVICVLFRYGTFRKRSINLLLINMAASDLGVSVTGYPLTTLSGYWGR

WLFGDVGCKFYAFCVYTLSCSTITTHAVIAFYRYIYIVKTDLSEYHHS

>Lvariegatus_ops3.1.B
MTEIQKSWSRDEDAGRIRGIDPERTQGKDSGVNVFRKLRRREAKIDTHVTKMCFMMMISFIIVWTPYAVESLRVAHVHRISAFSAVIPTMFAKSSCM
LNPITFLSSSSKFRRDLRKMWSSPPSHESLRQEERNKTQPSLYVRHSDISSVYRNNTASVYYDKERIYIGEMRATSIQKEAELMRRDPEVLSTASST

SSDVHFVVRDSKRPKRALGPRGPEMFTASGYTNHASSTSDSAGQSTSSGTKRTGFGSRKASRQYSVKSQSEETANSGEIFTLDGSGLEMMSLRRL

>Lvariegatus_ops3.2

MLCHKVITHKSPTYLFDIISSYVPIRNLRVVASIGNITVLCVLCRYGTFRKRSVNILLMNMAISDLGVSIAGYPLTTISGYRGKWLFADIGCQFSGF
CVYTLSCSTISSHAVVAIYRYIYIVKPNLRPKLSTWNSCLCLFGIWAFSLFWTVAPFFGWSSYTYEPFGTSCSINWFGNTLGDKSYMIACTVFVFIL
PIATIMLYCYIKICFMMMASFIIVWTPYAVGSIWASQVDKVSAAASVVPTMFAKSSCMINPIIFLTSSSKFRHDLGKLWNRPSPEHTIRFEERSREQR
SFYVRQSALSDAMGSHSASVYYDKERIYIGEMHAASIQKESDLLORDPEAISIGSSTNSSLQFVLKDRQKRYKKKAGEPSKKGVDTPHFPYDDSERG

VIGKWMRPRSHSVVSDNINRDVIQSVKRPTKKRSVSQPDIHGASAELFIVSPTRSTNFQK

>Lvariegatus_ops4

TKSLRTPPNMLIVNLAISDFGMVITNFPLMFASTIYNRWLFGDIGFEFTGCQFYAFCGALFGIMSIANMTATALDRRYYVICWSLEAVRSVTHRRSM
IIILIVWAYATFWSIPPFFGVGSYVLEGYGLGCTFDFMTODLNHYLHVSFLFASSFVVPVTIIVACFTRIAVIVRKHRHELNKMRTRLTEDKDKKHK
SSTRRADKAKTEFQIAKVGFQVTIFYILSWLPYAVVAVIGQYFDPDLLTPLGTVVPVIFAKCSAIWNPIIYCLSHEKFNAALKEKLMEMCGVELPSK
HRSMGSQESSVTGRRGMHRONSSTLSESSVSSTVEQDAMELKDRKQGPGPATVRVQQEKGEAAGTYRRNPEEVTFSKDTGAETIEEKGRGDQGQRDDR

VKQHGEGQMDQWSQPPPAAPGVNDKEYLTKMEGQMDQWSQPPPAAPGVNDKEYLTKM
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>Lvariegatus_ops5

MLLTDNHTHDOMPDDQGEGEDNAFLLIGGYLLVVVVLGTMGNVTVIYTFLRVKKLHSPTNLLIVNLSASDLLVATTGTPLSMISNFYGRWIFGSHTC
AFYGFVNYYCGCISLNSLAAISVFRYIIVVRGNVONQRLTLRSSVYAIGITHLYTMIFSTPPLYGWNRFVLAGFHTGCDIDFHTKTPLFISYICYMF
FFLFFLPLGLISWSYFKIYQRVSQHSDSMRRTFPHVAKETSSDEKRIWLEQMKNTKLLHQPVKLLRLKPKFKPRFHQRRTASTILITIAVFLISWLP

YCIVSLWILIGDENSISQLSATIPSLFAKSSVMYNPLIYAVMNSRFRKALLKSLSSLKCLGRHELNQSN

>Lvariegatus_opsé6
MGSSGPSCPYLAGAVTTSKAPLQTTCFVDWORTDLSYVSYIISWFVVNFVLPLSLMVFAYVSAFLMRQEGQFADPIRNNEPLPSNVDWASQPEAHWV
GIATVVVFVLSWLPYSVVFLHATAENIGDMPPNLPITIAPLFAEITLWIHPILFLVFIKKFRSYAAMMICCRTEVEEIEINPQADNSHRTSETRRFAD

HFV

>Heliocidaris_Ops2

IQELDIFIIIALFIVFQMANLTLIFMDGTYGENSDGETWPDYAYLLSGIYLTVVFIIALIGNSLVIFLFGWDHQLRTPTNMFLLSITVSDWLITVAG
IPFVTSSIYAHRWLFAHAGCISYAFIMTFLGLNSLMSHAVIAVDRYLVITKPHFGIVVTYPKAFLMISVPWLFSFAWAVFPLAGWGEFTYEGPGAWC
SVRWDSDEPEIMAYVLGMMFLTFVTSILVMMYCYICIFLTMRSMPRWATSNSIKTHERNRRKRELKLMKTLVAIATIAYLVAWSPYAVTSMIAIFGHS
ELLSVTASTLPSLFAKGSVMINPIIYATTSTVFKKSFMKMVNSFCPRHRAWMKSGKSTPSSSKRTVPFSSDGKHKKSQDDQTSSVLVPGSTEICAAP

IPVSSPSRFFPDMKVKPGGKRLSAAIEMDRFNKLLPGKHKKGPAPHSGGRRPSDIPIPET

>Heliocidaris_ops3.1.A

GVYLVQITIMLYCYVRVAKKIRGIDPERTEEKDAGVVVFGKLRKRDAKIDTHVTKMCFMMMISFIVVWTPYAVESLRAAHVHRISAISSVLPTMFAK
SSCMINPIIYLTSSSKFRRDLSKLWSRPSSQOALRLEERNKTQRSFYVRHSEISSAHGNNTASVYYDKERIYIGEMRATSIQKEAELMQRDPELLSI
ASSTSSDVQFVVRDRPKLYAKKPAKAQGPRGPDMFIASGYTNQGSSTGDSGGQSTSSGTTGSKHRRTGFGSRKASRQYSLKSQSEETGNSGEIFTLD

GSALEMMSLRKL

>Heliocidaris_ops3.1.B

LTTVSGYWGRWLFGDVGCQFYAFCVYTLSCVTITTHAVIAIYRYIYIVKTDLRPKLSANFTSVVILLIWLYAFFWTVTPFIGWSSYIYE

>Heliocidaris_sp_ops8
INSLIFSVSYLFHAALTAFIGNISVIVISLRKREKLKPLDLLTINLAISDFLISIVSYPLPMISAFRHGWSFGRIGCIWYGFTGFLFAVGSMATLTV

IALFRYAKLCRENVDHYQSRQFVIKVIVAIWAFSIFITVPPLFGWSRFVATPLAPKLLIRVFGVVY

>Etribuloides_opsl

NSLWQISSTQAAQSSTNKADRRVTKMVALMVFAFLFAWTPYAVFSLYVAFGENVQVGPVAATLPAFFAKLCTVYNPIIYFLMNKQVRLYLSL

>Etribuloides_ops2
IHSMLRSPFIYLCRELKMLKTVMLIAFGFLVAWTPYAVTSLIAMFGGPDMLSVTAAVIPSLFAKGSVVINPIIYATTSRVFKTSFKKVCYSPRVPRP

LOKLGRTLGTI
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>Etribuloides_ops3

MCFMMMVSFIIVWTPYAVESLWASQHEVGPIAAVIPTMFAKSSCMLNPVIFLASSSKFRRDLSKLWSRPSTDQTAAAAKAQQPPTFYMRQSAVSSAVG

>Etribuloides_ops4

RYYVICWSLEAVKTVTHRRSAITIIVIVWIYAIFWSVPPFFGIGSYVLEGYGLGCTFDFMTQDMNHYIHVSFLFVSSFIVPLVVIIFCYSQIAWTVRK
HRKELNKVRARLSEDKDKKHKASIRRADRAKTEFQIAKVGIMVTVMYILSWLPYSIVAIIGQYFSPDLLTPLGTVVPVIFAKCSAIWNPLVYAISHE
KFKAALKERFLALCGIEVPQKSRSTIGSQESSITGRRGMSRQYSSTLSDTSVSSTLEHEAMEMTDKKPGPKPGAGAPSAERPPKVRVQEKSEGGTYR

REHPVEQADYDQDVEVKVDEGVEVKKKRKGSKSGRDDRVKKTPEASSHPQEEGGKQDSGGLDOQWSQPPAHLESGRNDDEYLTKM

>Etribuloides_ops8
POSLNCFYFLQTACALTIAYIVSWSPYAIVCMWATFDEVTAIPDSFRIIPVFFAKTAAIYNPITIYCIFNKNFRQEVQTLLCWCACQCYSVSINMKLN
TLAQEQLLVVETRRLKSPSSPHRAQIVWINPFQRKLGHRSSLVRHPRLRLSLRTLHAKAQLATKPGNMRVTFSPTADCVQFDERVSADALRPGICTR

GSVNSPGKPDLDWELPSGDNISIVSPSKSQVSVPDTVIRHQSMADLHAEFLDPQAASKNVRVIFVQPNVDQELSSDA

>Pparvimensis_opsl

HLGFSQSRTAMANITAAGGITSTVSTTTIPELPVILPAELSRSAYNFLAVYTGFLTVVGIFNNGLVIFLFIKFPNLRQPVNIFLLNLSISDMTVSLF
GSPLTFASNIAGYWLFGQIGCSIYAFIVMIGGTEQIVALAAVSVHRCFLVVRPFTAKKMTTSWAVFFVFLTWLYSFILSIPPAFGWNEFVREGAGTA
CAINWTDSKPGNTSYVIFLFLTVLLVPLLVIIFSYGLLIFAVKKISASEAAQSTENKAEGRVTKMVMIMIFFFLFAWTPYSAFALYVVFGRTHTVSP
IVATLPPFFAKSCTIYNPVLYFVLNRQFRDAIYELIGYEPPDPLDSSGGANQSGNANQOQOQQOGASNTRKSMORSASVATVMSELPSVRHDTFKTPG
QFLAGGRVDPTGRALSKSYKKTSGGEGSERLGIPPSLPGQSVEMTDSMRALHDSEETNLACEKDKGSSSEDKSNEGKVIRTRHLGPSTLNDTGEHAN

DGYEAGQEGDELKTVYVQRVNVKSANNDEEQTSMRHRKEPTGMPDVNM

>Pparvimensis _ops3.1

TQCPKLTAAVTRRVIIALWFHAFFWAVTPLIGWSKYDYEPFGTSCSIDWISRTVNNYSFMLLTTITNYVIPVIIMVICYTKITRRSRKVDPLRVEER
DRSMRVINKLDQLEIKIDTHVTKMCIVMTCSFIIAWTPYAVESLWMSQSSEFVGPISSTLPTMLAKSSCMMNPLIYLTSSSTFRMDVVKLLRRASRR
PILDDNIQAPPEQGDGNGPQTSGRFYLRNTKNAHGKTSCAIYFDKKQIFIGDVSPESIERDSSLAQRDPDKISVRFSSFDGPPTGKEHQLNLPANQN

LDKPEVDLPKYFEMNDNPGTSSDSKQQSRMTTSPIFN

>Pparvimensis_ops4
AMIICNCPIILLSIHYGYWHLGESFCNIYAFLGSICSFVSIGSMAATIALDRYYVICHCFHALMNVSRSRTMVIIFLVWLYACLWSLPPFVGIGAYIE
EGFGIGCTFDYITRNLTTQIHIALLYVGGFALPILTIIICYVKIVLTVRKHRKEIESYSAKPALSKDQKGSTQSKKNKHGHSKKRRYYEILATHGSL

STLSGRNHSDGHFHIIMGSIRNNSSLQSISTE

>Pparvimensis_opsé6

TLKGTETCRICFLSKPSRIFKMVTEINEATYEIERPEHVVVAVFLILCAIIGLIANGLIIAMFARFRQLNNPSNLLILSLALVDIGMIILCFPLTIW
ASLVGKWTFGSKGCNYYGFFSMLSGISVIGILTLMAIDRYVVICRKTIASNLNVKHYGAALIVVVVNASFWAIMPNLGWSRYDIEPSGISCSVDYHN
NDIYYVTYIVALFAVCFVVPLTVMVTCYWMAQSVMSKRVEVQNAITEGASAPINVEWCNQKEVTQMGAMLVFLFLLSWSLIAVVCLWAVFGEPSNVP

YPLVLIAPLAAKSSMVLNPLVVTAMIGKFRTHVAMMFKYQPEVTSLSGNASQLISDVEKEL
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>Pparvimensis_ops8

PTVQKFWQIFFKCEFPQMATTMWHVGQEGSNILSLOTNLELNGLKLNSSSYSTDEFRSQLTRTGDILAGIHLVLVCILTTVGNLLIIILSKQDWRSF
KPIDKLIVNIAVSDLLTGLFGYPLPMLSSFRHRWDFGLAGCTWYSFLAFTGGTVSMVSISFVAIFRYIKISQSTSEYQRSFNRNISFATAFSWIYAV
AWSAFPLIGWGRYTLEPFHTSCTVDWTSVLPGDRIYIVTIMIAVFGLPLGLIITCYVAIARKLYRHQLOQFROQRGNRNYSTFIQFRNENRLIVTALVV
TSCCLITWTPYATASMILIAIGDNANLSAPVSFFPAMFAKTSTIYNPITIYFILNKNFRKDAIKMLCRCGCKLFHFNVNIREEWCENHSGGIKIIISG
RRVNYRVVCGHPLCRQVRRAESSEGDAIPLRDLQKVSIKHCQVCEDNPEVSTPNSHLKRPVRTVSAHVASCSKEREPRGHEEAHASGTYSSSLISPN

DLPGQPSRTLENRTSFRRLPRSTIPRQCPV

>Hforskali_opsl

MVVVMVFFFLFAWTPYAAFALYVTFGESHTVSPLAATLPPFFAKSCTIYNPILYFVLNRQ

>Hforskali_ops4
LNVSRGRTLIIIFLVWFYAFIWSVLPFFGLGVYIEEGYGIGCTFDYVSQDMNTKVHVALLVVGGFLTPVTVIVVCYSKIVSKVRKHTREMERHSRRG
PQGTKRTSVDSANKPNRGFKIISRTMAHYRLARVGFITTVVFCLSWGPYALIALYSEYLSPKSTLKPLVQVIPAVFAKMSAIWNPFVYAVSHTRFKE

ALYHTLRTRFSCESKGIHKESNSHEINVDFSKTPPDGSKSTSSIKQSAAMQTLPDTVTTDKONGIPLLPITNKTFK

>Hglaberrima opsl

DADHASSVNIFCLNLSISDMSVSLLASPLTFASNIAGHWLFGQIGCSIYAFVVMIGGFEQIVALTAVSIHRCFLVVRPFTAKKMTMSWAVFFVSLTW
LYSFILTIPPAFGWNEFVPEGAGTACSVNWTETKPGNTSYVVFIFVMVLVVPLTVLVFSYGLLIFAVKKISASEAAQSTENKAEGRVTKMVVVMVFEF
FLFAWTPYAVFALFVVFGNTHMSPLLATLPAFFAKSCTIYNPILYFVLNRQFRDAFYDLIGYQPPEEPDNSGQQONRNVDSQLPGANQRQTMQORTAS
VATVMSELPSVRHDAFRTSGQFLAGGKVDPTGRALSKTYKKSAEEDPSRLAPPLPGQSVEMSDSLKGLNGSDEADKEKHASEPPRYSEVEKGAHVNE

GYQTGAESGKTVFVHRVKVKSANGDDDDDDSHRKDVKGMPDVEM

>Hglaberrima ops4
SMGTEKKPKGRFKKISRVMAQYQLARVGIIATVVFCLSWGPYALIALYSEFLSPKSTLNPLVQVVPVIFAKMSSIWNPFVYAVSHTRYKKALYHTLR

KGLKCLGTGLDDDTESQELNFDLSRSPRDGSGSVSSTKRSANKSTLPDTLVTDKEKHIPLPPMKKKPLNKIKSDPGISKPAEKSIPIA

>Hglaberrima opsé6.1
MMNGTSNEESRPEHTIIGVFLIICAIVALVGNGSIVAMFAKYRQLRNPSNLLIATLALIDIGMAVLCFPVSAWASIAGSWTFGDRGCHYYGFISMFS

GISVIGIL

>Hglaberrima opsé6.2
IMPNLGWSSYAIEPSLTSCAIDYQTNDMYYITYLVALFIVCFVMPLCVMVFCYWRAHSVMSKREEIQNAITEESAAPINAEWCNQKEVTQMGAVLVF

LFLLAWSTEAVVCLWAAFGEPSNIPYPLTLLGPLAAKSSIVLNPLVI

>Hglaberrima ops7
MAENNNYTRSNGALSSSEKRAFAVAFSVEGIVGMVCALYSLRCSFKYRQTNDKPLRFYTSLATIADIGIAALCPITAYGFMSTGGWPFGDGACDTYGF
VAMLFGSACIWSLLMTAFESLMVFTRKYNETLINMLLMLTWLNALFWSSAPLLGWGRYVPESYEAGCLFDMNAADRGGLTYLLGYPTAVLILPMGIL

LCALTFSGLGESFRSFSVKACSLVTLAISICWGTYCLEEIWVLVTGRKDTFPIKLAVLAPFTAKLSPILDTFIIQKIVSGLAPSNQYTVKGKKE
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>Leclarki_opsl

GIFNNSIVIYLFVKYSSLRQPINYFLLNICVCDFLISTIASPMTFASNIAGHWLFGDLACRIYAFFVTVGG

>Pcalifornicus_opsl
ITAGEGRVTKMVMVMIFFFLFAWTPYSAFALYVVFGRTHTVSPIVATLPPFFAKSCTIYNPVLYFVLNRQFRDAFYELIGYEPPDPLDTSGGANQSG

NANQQQOQOQOGASNTRQSMQRSASVATVMS

>Arubens_opsl.1l
WYAFLSSLCGCEQIASTIAATALQRYFFVVKYNLSARTNVYVIACICFTWLYSLAAVIPPAIGWSEFTVEGGGTSCSVNWESGDPSYITIFIFTLVLVI

PSSIIIYSYGSILSTVKKTEKVSTLHRCRLRRADKQVTTMAIILVLAFMITWGPYAVYSMY

>Arubens_opsl.2
SATVYNATAVYLGLLTFFGIFNNGLVLFLYARYRNLRNPINMFLVNISVGDLSVSIFGSPFTFASNVARRWLFGPGGCTWYAFIVTVCGTEQIVALA

AVSIHRCCLVVRPFTAQKMNTRW

>Arubens_Opsin3.1.B
MDPQPLIGDFYVNTTRNAEIFIAVYVSTVGFVATIGNICVLFILLRFNTFRKKSINYLLVNIAASDLGVSFSGYPMTSSSAFAGYWLFGDGGCHYYA

FCVYTCSCSAIGSHVAVAVYRYIYVCKPAHKHKLTAKLTFTVIASIWAFAL

>Arubens_Ops3.1.A
MIYCYYEVGKRSNQINPDRRDERDKGMAVFLQIQKKEKKIDIHVTKMCFLSTMSFVIAWTPYTILCIWVVSINSDVQLSLAASLLPTLFAKSSCAMN
PLVYFLSSSRYRRDFFKIFRRPRRAREFNGTDPYRQTERDANAGGPSNRADDNPLYLRRTVSPTGDISASVYFNKERIYIGDIKPAGISQEATLMQK

DAEVLSLTSSNSSVFQVVVKEPKKKFEMTTVQIETI

>Arubens_ops4

RASMETFIDLNTTEGFPTEAPIRMPPFLDYGLAFFLFIAFIFGVTGNGVTIWIFLRTKSLRTPPNMLIVNLAFSDVAMVLTNFPLMFASTLQGRWTF
GQMTCDIYAFCGALFGFMSITTMTAIALDRHYVICHSMEAMRTVTKRRSLYKIILVWIYSSIWSLLPFFGLGAYVLEGYGVNCTFDYIDQSLKNRIY
VGTIFIFGFFLPLTIIIGCYAHIATLRVHRLQLLSVQNDLRGSGNDKAQAAATRKVKNDKMEWQIAKIGIMLTVLFCASWMPYASVAFVGEFIDVKL

VTPMIQVIPVVLAKSS

>Arubens_ops6

MADDGSTDTVKILVGGFMIFQTIAGLFGNSVIIKMFWTFKQLRTPSNNLLLVLSIANIGMCLCMPFSTASTFAGHWVFDTSGCKFYGFASMFFGLSV
IGILTCLSIDRYLVVCRRSLASMLTHVHYNYMSLAAYVNALFWAIMPVFGWARYEEDPGSGCALDWNRGGASYISYLFTLFVINFLVPLIVMVTCFG
RAHAVMVKREQVHAASSDNDLTPINSDWANQKQVTMLGVALIVVFLFTWSPFAIICIWGAIGDPHNVPHWFAVIAPFAAKWSQVLNPLMFVMF IKRF

RDYTLVILCCKTHVETIELTQQTTSDQQAVERAL
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>Arubens_ops7_RadialNerve
MEVAALGPLEYYIMGLILTVEAILGTICCVRLLLVYLKNPTLHQPQSLLGITLCIGDLGIALMCPFAAFASFSETWPFGDEYCQLYAFAGMLFGTLS
ISAMACLALDKYYSSSNDAKGGSSQPYILITSIIWLNALFWSLTPLSPIGWGRYAIEPPKSTCMLDFANREPSYMMYLFLMTSTVYALPVGAILWCL

VKLRKGKDPNNGKSKVCLLVLFSLIVYWGAYGIVALWAALDDIHNVPLRLVAAAPILAKICPIGNTVMQVLTNRNIRCLMYRKETVASNKRE

>Arubens_ops7_tubefeet
FTGMLFGTLSISAMACLALDKCYSSSNDAKGGSSQPYILITSIIWLNALFWSLTPLSPIGWGRYAIEPPKSTCMLDFANREPSYMMYLFLMASTVYA
LPVGAILWCLVKLRKGKDPNNGKSKVCLLVLFSLIVYWGAYGIVALWAALDDIHNVPLRLVAAAPILAKICPIGNTVMQVLTNRNIRCLMYRKETVA

SNKRE

>Pminiata_opsl.1

SGYTGFAVYLAVVIFFSVSGNVTVILLYASNRSLHNVVNILLLNVSVADLSVAVLGTPVSFAASAAGHWLLGPIGCTWYGFICTLSGCAQIVGIAAV
SLHRYFLVVKPFVAKRLTTGGALVCVGFTWVYSLAVALPPVLGWSEFTREGAGISCSVSWHSGSRSYTFFIFTMILAIPMAIILFSYSQILFTVKKS
CPFVLFLFHLKMAKCQVSNQRSREAEKKVTIMIIVMVLTFLVAWTPYAALSLYMALGGDSVSITPLTATLPSMFAKASTTYNPVIYFLLHKKEIADK

NKWRLLHQSLSRRDRAMVVLY

>Pminiata_opsl.2
MNATLDGPTGSTPASPEGFYGRIPGAVYDVTAVYLGLLTFFGIFNNGLVLVLYARYKTLONPVNLFLINICLGDLSVSLFGSPFTFAANVARRWLFG

AGGCTWYAFIVTVCGTEQIVSLAAVSVHRCCLVVRPFTAQKMTTRLALLFIALTWAYSLMVSLPPAIGWNSYVLEGTGTGW

>Pminiata opsl.3

PYSVFSLYVAASKNNTVSPVAASIPAMFAKACTVYNPIIYFLLNQQFKDAFIDMMCCGRNPFSNDDVIDDTARTRALRQAT

>Pminiata_ops3.1

MDDTLVGDIYINMTRQAQIFVAVYVTTVGTIATVGNISVLIILLRFNTFRKKSINFLLINMAASDLGVSISGYPMTSSSAYAGHWLFGDSGCRYLAF
CVYTFSCSTIGSHVALAVYRYIYVCKPASKHKLTPKVTFIVLVVIWAKALFWTVTPFIGWSSYTYEPFGLSCSLDWTARTFSHLSYNVACVLGVFVA
PLAVMLACYYRVAKRSNQVDPTRMEERDLGVAMFLOMHRKDVKVDFHVTKMCVLMTLSFMIAWTPYTVVCVWVVFNKLELNIVASLAPTLFAKSSCM
MNPLIYFIASSRYRRDFLRMFRASGSGAPTGQSGDRTEGGRSSKPGTSAAGDGSGAVYLRRTTSPSGDISASMYFNKERIYIGDIKPSGIDKEAKLI

GKDPDVLSMSSSNTSDEYRVYVKEMKKVEEPIVQLEIDIH

>Pminiata_ops4

MENTSWNLDPLTGTTPLPAGPPPMPPFLDYGLAFFLFIAFIFGIAGNGITIWIFVRTKSLRTAPNMLIVNLAFICEIYGFLGGLFGFMSII
TMTAIALDRHAILFNRHYVICHSMEAMRTVTKRKAVYKILLVWIYSMIWALLPFFGFGAYVLEGYGVNCTFEYLDLSLKNRLYVGVIFMFG
FLIPLGVIIACYAHTIAYTLRQHRLQLMRVQONDLRSPGNDKAQASAIRKVKADNVEWQIAKVGIMLTVLFCASWMPYASIAFIGEYIDSALV
TPMGQVIPVLFAKSSASWNPLVYAISHQRFKEALRDRFFVYCCGEAESRRQHRSTTRSMSSDNRNTDSRATSVRSVISEVDKRDRTGTVMS
TVSTKTDEIEMDSGALHYKPAKSSLKGGRERANKNTNNNDQEPVSEQRRRSLPDTSTVDSGNVNLVMKSRDGAKIQGQYVAYDNPAASLSD

RDELTKL
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>Pminiata_ops5

MAAYVAIGVYLCAVIIVGFVGNVLVIVAFCKFKKLRTANNCLIMNLSVSDLAMAVVGTPMSCSSSFAGRWLYGQGGCTYYGFINYYCGCISLNTFAA
ISVYRYIVIMRHGPNRRFTGTMILKVIAAVHVITLIFTTPPLYGWNEFILEGFKTQCDINYRDKSPLFVSYIAFMFIALFFAPLGIIVNCYWRIFTF
LHRRTQEHISQSVSLQLRNSARTMEKRTTIMMLVCLSFFLLAWTPYCFVSLWSLFGDHRDITPPVSAAPALVAKSCIVFNPIIYGVMSPQYRRSFQR

GASSDRPTWYPAPAIVYNLKCKFERL

>Pminiata_opsé6

MSSQQFLOKIVHSDGIMGDGSSPSYGESLTSGSKAGLGGLMFIQFLVGIFGNSVILYMFWKFKQLQTPSNIIFIFLLIANLGMCFCIPFSAASMLAG
SWLFDSAGCKFYGFASMFFGLAVIGLLACLSIDRYIVICRPSLASSLTHSHYTYMSMAAYLNATIFWAIMPIFGWAHYDEVGTSGCSVDWTRADAPYTI
SYLFSLFMVCFVLPIVTMVFCFGRTHTVLVMRQQVONIGSRDNLSPVNSDWANQKQVTQLGVVLIVIFILTWSPFAIVCLWGALGDPQSIPLWLATL

APFAAKCSQFLNPLMFVVLIKRFRDYAVVMLCCRTHVETIELTPSAAQDDRNEGEL

>Pminiata_ops7.1
GKAYQIVASAIWLNAVFWAVTPLPFVGWGRYAIEPQKTTCMLDFAAHGAPYVSYLVAMMGVVYVLPMGAVTWCLMKLREGGGAEDTKKIAAKKEAAM

TCVLVLLSLMVYWGAYGVVALWAAADDIDNVPIQLVAAAPLLAKICPIGNAVLQGLTNQGLRSFDREESRAADKKK

>Pminiata_ops7.2

LOLFFIRNYCVAGFIVYRQPFSPSYTTRIMESESPSVENLNMPLSSYEYYIMGLVLTAEGILGILFNGMLLVVFLTKTSLRRPQSVLAISLCIGDLG
IGLMCPFAAMASFKENWLYGDQGCQLYASAGMLFGTVSITSLVSIAVDKYYSAIGNTGGGKAYPIIASAIWLNAVFWAVTPLPFVGWGRYAIEPQKT
TCMLDFAAHGAPYVSYLVAMMGVVYVLPMGVVTWCLMKLREGGGAEDTKKIAAKKEAAMTCVLVLLSLMVYWGAYGVVALWAAADDIDNVPIQLVAA

APLLAKICPIGNAVLQGLTNQGLRSFDGEESRAADKKK

>Pminiata_ops8
VSPVSEDLVSLMSTMEEDAFASELPNVAAILSGVWILMIILISCVGNGAVLVTSLRKRRNLKALDLLTINLAVSDLTVCLIGYPLPAVSGFADRWMF
GESGCIWYGFCGFFFPMNAMMTLVAIAVCRYLKLCKKNFDDTLLAKHMPKIIAAVWMYALVWTVPPLMGWSRYVPERFRTSCTVDWASRLPSDQAYI

ICIFIFCYLFPLMCLIGCYGAITKAIFAHRRMILQQHTTHFTHFWTEVRLIKSSF

>Lannulatus_ops4.1
MSYWNDPANMASNALPSTNPFGNYTVVDTVPKELLHMVDPHWYQFPPMNPLWYGLVGFFMVVMGILSVVGNFVVIWVFMNTKSLRTPANLLVVNLAF
SDFFMMLTMFPPMVVSCYWQTWTLGAFFCEIYAFLGSLFGCVSIWTMVWITLDRYNVIVKGVSGEPLTSGGAMARIGGTWATALAWCLPPFFGWNRY

VPEGNMTACGTDYLSGESFSNSYLYIYSAWVYFTPLFLNIYLYSFIIKAVANHEKQMREQAKKMG

>Lannulatus_ops4.2

MSWNSPAYAEATSLPSTNPFGNFTVVDLAPKEILHMVDPHWYQFPPLNPLWYGLLMLWMIIMGTMSLAGNFIVIWVFMNTKSLRTPANLLVVNLAVS
DFFMMFTMFPPMLVTCYWQTWTLGAFFCEMYGFLGSLFGCVSIWSMVWITLDRYNVIVKGVSGEPLTSSGAMARIGGTWATALAWCLPPFFGWNRYV
PEGNMTACGTDYLTDTQLSKSYLYIYSIWVYIFPLFLNIYLYSHITISAVASHEKQMREQAKKMGVKSLRSEESQKTSAECRLAKVALMTVSLWFIAW

TPYFVTNYAGMFAKHTVSPLYTIWGSVFAKANAVYNPIVYAISHPKYRAALEKKLPCLSCQTEGHDNISSETSATAPEKSESS
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>Lannulatus_ops4.3
AAVASQEKRRREQAKKMGVKARRSEESQKTSAECRLAKVALMTVSLWFMAWTPYFIINYTGMLNKSSVTPLFSIWGSVFAKANAVYNPIIYAISHPK

YRAALEKKLPCLACATDGRDNISNDTTQVAEKSESA

>Lannulatus_ops4.4

MVWNTPTIPRDYSLPSTNPFGNYTVVDTAPNEILHMVDSHWYQFPPMNPLWYSLVGFFVVITGLLSLIGNFVVIWVFLNTKSLRTPTNLLVVNLAFS
DFLMMFTMFPPMVFSCYWQTWTLGAFFCELYGFFGSLFGCVSIWTMVWITLDRYNVIVKGISGKPLTSGGAMARIMGTWVVCLAWCLPPFFGWNRYV
PEGNLTACGTDYLTEGLFSQSYLYIYSVWVYIFPLFLNIYLYTFITKAVANHEKQMREQAKKMGVKSLRSEENQKTSAECRLAKVALMTVSLWFVAW

TPYFIINYT

>Amphipholis_ops7

MSPARSSLAVSLALSDMRIAIMCPFAASASFTESWPFGDAGCQTYAFFGMVFGIASVTNLAAMTVDIYRESQGQPAKSNSVLIMAIWVNALFWGWHR

>Aagassizii_ops4
ATITAGGKIGCDVYAWGGAMFGVLSISTLTAIAFDRQYAICSSLDKLSNITYARAFRMIVCVWIYSLLWAILPLFGIGAYVLEGYGVSCTFEYLDQSR

ANQIFVGFLFFGDFLVPLTAIILCYTNIVNTVRKNRKNLQDISKDDSIKKDSKKKKVP

>Amediterranea_ ops4

MSITSMATIALDRYYVICNAMRATRTVTKKRSRYIILFVWLYSLTWSVPPLFGFGRYTSEGYDLSCTFDYQDQATNNMIFVGLIFVTDFFLPLIVII
CCYTKIVISVRKHRIGMKKIVDSKRDSTKSKQIAEEKKEFKIAKIGMIITALFCIAWLPYATVAFIGQFIDEEIPTPLLOQTLPVVFAKSSCVVNPIV
YAITHDKFKAALTQKYIKMCCSQYEKDSRASQHKGGRSMAKRESSIASTVNSMEFNLEDDPPKVDTKQPNVVEKGNTDVVQQPSSNTDKPVVVAAIS

GGIDNPPLQLDNTDL

>Fserratissima ops4
MVITQYPAMFFTTVSGKWLYGDIGCQVYAFFGSMFGIMSIASMSAISVDRYYAICKPMKSTRTMTKRRSRRIVLVVWLYSLAWTVPPFFGFGRYTRE

GYGLSCTFDYEDQDIINLSVVG

>Skowalevskii_ opsé6

MDDKTSTDEPSALTTFSESGNIVMGIFLLVTAVLSVIGNSVVLEMFRRYKELLSPSAILLISLALADLGLTIFGMSLSCVSSFAGRWLFGKFGCYFH
GFAGMLFGLGSIGNLTVISIDRYIITCKRSLOQWSYRHYYALLAVAWSNALFWSMMPLFGWSSYALEPEGTSCTIDWMNNDNQYISYVSCVTVTCFIL
PCAVMTYDYLAAYMKMVKAGYTLSEETEKPNNDGENIENIETGTRVKGVSIRVNSFIRPDWKQTKYATKMCIALVAAFLLSWFPSATVFLWAAFGNP
GNIPLSFTGVADAFSKIPAVFNPVIYVALNPEFRKYFGKTIGCRRKRKKPIAVRLNGKWVSKLYQLYGGVISMIGRDYINDVVGEAFGAISMVGREH

LNEGGALKRWGETISTTGWNHINDG

>Skowalevskii_ops7

MVTTDSLANSTDEPVPSILTLQQHYAASVTLLALAVIGTVLSSVNFRMLLSNPDYCSKAGNFFLSLAVTDLCVCIFETPFSAFSHHAGFWIFGDTAC
QLYAFFGIFFGLVNIFMVTFISLDRYWATCSPVEVELKSKYYTRMTALGWMVALFWAAAPVFGWSRYAMEPSMASCSIDYMTNDFSYVTYITCLTLT
CYVVPIVVMVYCYVKASKNIKYTGKVTEWAHENNATKISRLCVLQLVFCWSLYGFNCMWTVVADDVETLPKMLTVLAPILAKTTPILNSGLYFLHNK

KFRGAAVDMFKAKEE
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>Skowalevskii ops8.5

MFMISSNIIKLPPCAVSDLLSLFGNTIVLVVKVKNRKQLKTHDYLIANIATADIGAVTTGYTLTAVSALTHKLYFGAIGCSVAGFSGWFFNCVSMIT
LSVIAIVRYLIVVHNHGSYFKGKTIIVIIVIIWLYSAFWATAPLIGWNRYAPEPHMTSCTLDWTSTQPADIAYIACIYTCCFALPLISIIYCYGGII
LHVRRVQRNSNGQIRVIKKEGKTTKVFAIITICFLCSWTPYAVVSLITVVKGGSADISKTVTTLPTLFAKLSCVYNPLLYYITDKTFRKSVNQLFFS

SCSSCCVYQTTSNVQLQELSIQVNTAHTSVQON

>Skowalevskii_ops8.1

MTLNNPSGLSSTADIAVCTYLVVMCILSLFGNVTVLAVKVKNRKOQLKTHDYFIINIAVADIGAVTTGYVLAAVSARNHMWYFGSTGCSLVGFSGWFF
NCVSMITLSVIAIVRYSIVVGNQGTSIKKNTILIIIAMIWLYSAFWSVAPLVGWDRYALEPHLTSCTIDWTSTQKADIAYIVCIFVWCFAFCLVSIV
YSYGGIILTVRQIQONLFSDSRKSEMNKQRKTTKMFAITTICYLVSWTPYAVMSLISVIQGSAAGIPIALTTLPTLFAKFSCVYNPVVYYITDETFR

KSTSQMFGGIRSLFCGNRVTPDVVV

>Skowalevskii_ops8.2

MTSPETMAWNNTSGLGHIAEVGVGTYVTIMCTLSLFGNVTVLAVKIKNRKQLKSHDYFIINIATIADIGAVTTGYLLMVVSASNHMLYFVSSECTLVG
FSGWFFNCVSMTTLSVIAIMRYLIVVRSQGSFFEKKKRIIGIIVFIWLYSAFWATAPLVGWDRYVPEPYLSSCSLDWTSTQPADIAYIVCIFVWCFL
LCVIAIIFSYGSIILKVRQIQRNLNPNKSAMKKHGKITKMFAITTICFLVSWTPYAIVSFVSVIKGSSADIPLIVLTSPNLFAKFSCVYNPIVYYTT

DKMFRKSVNQLFWSICLPCCEYHITSDVQPQDLTLHADAAHTSMQGRCQDKVEQPCNRLPLPNDSEVVIVQESRFQHDNTIHAS

>Skowalevskii opsin8.3
MAIGTYLTSICLLSLFGNVIYLASKFKQRKQLKIPDYLLANIATIADIGAVTTSYMLAAISSFSTKWRFGSIGCTLTGFSGWFFNCVSMITLAVVAIVRRL
LVVNNHEYFQKKKTIFVIITSIWLYSAFWAIAPLIGWNRYAPEPHLTSCTLDWTSNLPADIIYVICIFVFCFGFTLISLIYNYYDITSKVRRIRPQIDAD

QSEPQNIAKSRNITQVFVIITTCFFVSWIPYAVLSLFSAIQGSSAGIPIIVTALPTLFAKLSCVYNPLVNYYSDRTFRNSVKNLFPIRSSDSDVCSVGGS

>Skowalevskii_ops8.4
MEYPNCKNQAQLRTGIVADYVYTMSTEETIASGLGSIADIAVCTYLVVMCIMSLFGNIIVLVVKIKNRKQLKTHDYFIANIAIADIGAVTTGYLLAA
VSACKHMWYFGSIGCSLVGFSGWFFNCVSMVTLSVIAIIRYLIVVGNHGTAITQKTTTIIIAMIWLYSAFWATAPLIGWDRYAPEPHLTSCTLDWTS

TQPADIAYIVCIFVLCFAFCLVSIIYSYGGITAKIKQTQRNLYPESQQCEMNKEGRTTKVECDNLKQVTVYATPVGVIRCLMEKDEKY

>Smereschkowskii ops7

EVPVPSLLTVEQHYAASVTLLALVVVGTVLSSVNFRMLLSNPDYCSKSGVFFLSLAVTDLCMCVCTTPFAALSHHIGFWVFGDTLCQLYAFICMFFG
INATIFMACFISLDRYWATCSLVEVELKSKYYPRMAALGWVMALFWAAAPLLGWSQYAMEPSMTSCAIDYMTNDANYVTYIAGVTVTCYVVPIVVIVY
CYVKASKNIKSTGKVTEWADETNVTMISGLCVFQLLLCWGLYGFNCMWRVVTDDVETFPKMLTVLAPILAKTSPILNSGLYFLHNKKFRGAAANMFK

AKEE

>Harrimaniidae ops7

MATTEIPPDMDNEEVFNLPDLLTREQHAAASVTLFALALVGTIVCTMNFRMLLSNSDCRNKAGPFFFVLVLTDLCICVFETPFAAFSHHIGFWFFGD
TICQTYAFGGMFLAIINVFMVTLISLDRCWTTCSPLEAEMKFKNYPWMIVIGSLIGLFWAAAPLPLFGWSRYSIEPSGVSCHIDYMTNDRSYATYMA
AMIIVCFFIPIGIMVYSYRKASANIKINSKVTGWADEFNVTQISAMCLFQVLFCWGLYVFIWTWTALAEDAETLPKMLTILAPILAKSSPLLNSWIY

FFONKQFRGAVADMFKAKEE
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>Schizocardium_spp ops7
MIGTVLGTMNILMFLSNPEYRLKGGIFYFHLVITNCCMVMFGTPFTAVSHFVGRWVFGDLFCOMYAFMGMWFGITHIFMLALISWDRYRTLSSPKEA
DGGSRIYPLLTAASWLIGLIAASAPLOQPFGWSRYTYEPSGAACAVDYMSVDADYVKYILTVFAVCFTLPIGLMAYSYAMATMDIKHTGKVCDWADET

NVAWQSALCLFQLVFCWGLYGVVCLWTVVATPSSLPKVLTVIAPVAAKASPILTSWIYIMQIKRFRGAVADLFKPKEE

>Schizocardium spp ops8

CTDLSPNMTTTTEDISIELTTASPFTEGIGDLYPSKLPSNVDRLVGIYLTITGILATVGNGLVLVLLFKKRGNLKPLDVLVLNLALSDLGLAV
LGYPFAAAASYRHKWYLGKGGCDWYGFAGSFFSYVSMYTMTILAFLRYVKICIHNKVYWINKRNVNIGITISWIFAMVWSIFPLIGWNRYQPE
PFGISCTVHWDSRKVSDIMYIVSIFLFCYILPLTVTVFSYASIMRRIRVNRRNQAARRVRRDHPLEHEITKIGVLISLFFVIAWTPYAVVSIW
GSVTESONIPLAAMTAPALFAKFASVYNPVIFYIFNKTFRTDVNKLVCRCGCKCFNVAINVSENGDLDTTRNTELSKTKVLFCVNNTRVDVLT
SAGLTQSTTRPANMAAQSIYDDTAVPSTSQLMQANAAVKHPQFSAKPEVDDYANDLTSNNTDDSVLFSPAPTAPVVSSYITRVITPKPSHTVN

GSAVTLDPCRVQSIDSCDSV

>pPflava_opsl
STTHRHRRAGTTPRTTPLRVTIFSRAGYTNVAIILGVIGLFGFLNNLLVIMAWVKNKSLRTPVNMFLINLCIGDFTVSVFGTPFAFAANVAGKWLYG

EVGCSWYAFIN

>pPflava_ops6
VISVDRYLVICRRDLLWSYRQYGGLIAVAWFNALFWALVPIFGWSSYSLDPNGTACTINWMDNDGGYISFVCCVFVVCFVLPIGVMCFDYYAVYRKM

RKAGYSHNTSGISNIAAANEDDAGDLKDGNAYPVLIGQKQNTSQGCA

>pPflava_ops7
MMATAAADEMPVSPGVLTAQQHYALSVTLFALATIGTVMGSMNIRMFLSNPEFIARGGLFYLNMVISDMCMAMLESPFTAISHFHGKWMFGDVACRL

YGFAGMFFGISNIFMLAFISLDRCWTTCSPTEVEQKAKFYPLMVAIGWFVGLVSAGAPLFGWSSYEYEPSGTS

>pPflava_ops8

MWVAVSGTDIIPTGLSAASAVLAKTSSIYNPLIYYIVNKKFREDANRLVCCCGCMVLQLRFNYGPDVMGDMVQONLPSRREVA

>Pbahamensis_ops7

MMATAAADEMPVSPGVLTAQQHYALSVTLFALATIGTVMGSMNIRMFLSNPEFIARGGLFYLNMVISDMCMAMLESPFTAISHFHGKWMFGDVACRL
YGFAGMFFGISNIFMLAFISLDRCWTTCSPTEVEQKAKFYPLMVAIGWFVGLVSAGAPLFGWSSYEYEPSGTSCALDYMKNDATYIRYIICVFVTCF
AVPILIMVYSYGKASRVVKATGKVTDWANESNVTLQSALCVMQLVFCWGMYGVNCLWTVFAPSSTLPPMLTVIAPVLAKTSPIINSWLYIYRVKKFR

GAVGDMFKPKEE

>Baurantiacus_opsl
DVNYPLALGNTSADGNSFSRTGYTNVAIILGVIGTFGFLNNLLVILVWLKNKSLRRPMNIFLINLSIGDITVSIFGTPFTFAANVVGKWPFGATGCA

WYAFITTTAGIGAIITLTVVSLERYYMLV
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>Baurantiacus_ops7
PTLLTVQQHSAISVTVFAFAIIGTVMGSLNIRLFMTNPDLISKGGIFYLNMVITDLCMAMFESPFTAISHFYGSWVFGDAACQVYSFAGMFFGIAGT
FMLTFISLDRYWTTCSPVVEQKKVRYYPYMVVVGWLSALVWAAAPLPPFGWSSYAIEPSGASCSIDYMTNDATYVRYIISVTVCCFILPIAVMLYSY

GKMISMIKSTGKVTDWADESNVTLQSCLCLFQLFFCWGLYGVNCLWTAFAHSNTLPKMFTVIAPVLAKSSPIINSYLYIYRIKNFR

>Baurantiacus_ops8
TILSILGNGLVILVYYKNRRSLNSFDLLAVNIALSDLLYPVLGHGLHIYSSFSHKWMFGTIGCQIYGFLSSFLNYVSMVTLAALSFSRYIKVCSVPY
GRYIDKRNTVFALVFIWIYSLLWALPPLIGWNRYVLEPCGVFCTLDWIDRDSHGFSYTICLFVLVFFIPLMVIVASYSAIIHTTREQRKEVGVSSKK

SSAVRLKLOQKRLTKVAIAMTAAFLLSWSPYAAVSLWAVAIGGQPPISVELLTAPSVFAKLSTLYNPILIIIFNKNFRE

>Torquaratorid_ops7
MVVPDADQMSEYPTLLTEQQHYAISVTLFAFAIIGTVMSSLNIRMFLSNPKLMSKGGIFYLNMVISDMCVCMLQTPFSAISHFYGNWLFGDDVCKLY

GFTGMLCVITNIFMLAFISLDRFWTTCSPVEAQKNVKYYPYMVAMGWLVGLVCAATPLQPFGWSSYAVEPSGASCTLPAVMA
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Photoreception in Ambulacraria

Table 3 — LIST OF SPECIMENS SURVEYED IN THIS STUDY
NAME (SPECIES & OPSIN) METHOD/TISSUE SOURCE

A) AMBULACRARIA OPSINS

ECHINODERMATA/ECHINOIDEA

Strongylocentrotus purpuratus

Sp-opsin 1 Genome NCBI
Sp-opsin 2 Genome NCBI
Sp-opsin 3.1 Genome NCBI
Sp-opsin 3.2 Genome NCBI
Sp-opsin 4 Genome NCBI
Sp-opsin 5 Genome NCBI
Sp-opsin 6 Genome NCBI
Sp-opsin 7 Genome NCBI
Sp-opsin 8 Genome NCBI

Strongylocentrotus droebachiensis

Sd-opsin 5 Isolated sequence/Tube foot NCBI, Lesser et al. 2011

Strongylocentrotus intermedius

Si-opsin 4 Isolated sequence/Tube foot NCBI, Zhao et al. 2015
Si-opsin 5 Isolated sequence/Tube foot NCBI, Zhao et al. 2015

Hemicentrotus pulcherrimus

Hp-opsin 1 (encephalopsin) RNA-seq/Embryos-Larvae NCBI, Ooka et al. 2010

Paracentrotus lividus

Pl-opsin 1.A Genome Genoscope
Pl-opsin 1.B Genome Genoscope
Pl-opsin 3.1.A Genome Genoscope
Pl-opsin 3.1.B Genome Genoscope
Pl-opsin 3.2 Genome Genoscope
Pl-opsin 4 Genome Delroisse et al. 2013,
Genoscope
Pl-opsin 5 Genome Genoscope
Pl-opsin 6 Genome Genoscope
Pl-opsin 7 Genome Genoscope

Lytechinus variegatus

Lv-opsin 1 Genome Echinobase
Lv-opsin 3.1.A Genome Echinobase
Lv-opsin 3.1.B Genome Echinobase
Lv-opsin 3.2 Genome Echinobase
Lv-opsin 4 Genome Echinobase
Lv-opsin 5 Genome Echinobase
Lv-opsin 6 Genome Echinobase

Heliocidaris erythrogramma

He-opsin 2 RNA-seqg/Larvae Cannon et al. 2014
He-opsin 3.1.A RNA-seg/Larvae Cannon et al. 2014
He-opsin 3.1.B RNA-seq/Larvae Cannon et al. 2014
He-opsin 8 RNA-seqg/Larvae Cannon et al. 2014

Eucidaris tribuloides

Et-opsin 1 RNA-seq/Embryos Echinobase
Et-opsin 2 RNA-seq/Embryos Echinobase
Et-opsin 3 RNA-seq/Embryos Echinobase
Et-opsin 4 RNA-seq/Embryos Echinobase
Et-opsin 8 RNA-seqg/Embryos Echinobase
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Table 3 — LIST OF SPECIMENS SURVEYED IN THIS STUDY

NAME (SPECIES & OPSIN)

METHOD/TISSUE

SOURCE

A) AMBULACRARIA OPSINS (Continuation)

ECHINODERMATA/HOLOTHUROIDEA

Parastichopus parvimensis

Pp-opsin 1
Pp-opsin 3.1
Pp-opsin 4
Pp-opsin 6
Pp-opsin 8

RNA-seqg/Larvae
RNA-seg/Larvae
RNA-seg/Larvae
RNA-seqg/Larvae
RNA-seg/Larvae

Unpublished data
Unpublished data
Unpublished data
Unpublished data
Unpublished data

Holothuria forskali

Hf-opsin 1
Hf-opsin 4

RNA-seq/Cuverian Tubules
RNA-seg/Integument

Unpublished data
Unpublished data

Holothuria glaberrima

Hg-opsin 1
Hg-opsin 4
Hg-opsin 6.1
Hg-opsin 6.2
Hg-opsin 7

RNA-seqg/Radial Nerve
RNA-seqg/Radial Nerve
RNA-seqg/Radial Nerve
RNA-seg/Radial Nerve
RNA-seg/Radial Nerve

Mashanov et al., 2014
Mashanov et al., 2014
Mashanov et al., 2014
Mashanov et al., 2014
Mashanov et al., 2014

Leptosynapta clarki

Lc-opsin 1

RNA-seg/Adult

Cannon et al., 2014

Parastichopus californicus

Pc-opsin 1

RNA-seg/Muscle

Cannon et al., 2014

Apostichopus japonicus

No opsin found

RNA-seg/Multiple tissues

Zhou et al., 2014;
Du et al., 2012

ECHINODERMATA/ASTEROIDEA

Asteria rubens

Ar-opsin 1.1
Ar-opsin 1.2
Ar-opsin 3.1.A
Ar-opsin 3.1.B
Ar-opsin 4

Ar-opsin 6
Ar-opsin 7

RNA-seqg/Radial Nerve
RNA-seqg/Radial Nerve
RNA-seqg/Radial Nerve
RNA-seqg/Radial Nerve

Isolated sequence - RNA-seq/Radi-
al Nerve

RNA-seqg/Radial Nerve
RNA-seq/Tube Foot-Radial Nerve

Semmens et al., 2015
Semmens et al., 2015
Semmens et al., 2015
Semmens et al., 2015

Delroisse et al., 2013;
Semmens et al., 2015

Semmens et al., 2015

Hennebert et al., 2015;
Semmens et al., 2015

Patiria miniata

Pm-opsin 1.1 Genome Echinobase
Pm-opsin 1.2.A Genome Echinobase
Pm-opsin 1.2.B Genome Echinobase
Pm-opsin 3.1 Genome Echinobase
Pm-opsin 4 Genome Echinobase
Pm-opsin 5 Genome Echinobase
Pm-opsin 6.1 Genome Echinobase
Pm-opsin 6.2 Genome Echinobase
Pm-opsin 7.1 Genome Echinobase
Pm-opsin 7.2 Genome Echinobase
Pm-opsin 8 Genome Echinobase

Labidiaster annulatus

La-opsin 4.1
La-opsin 4.2

RNA-seg/Arms
RNA-seg/Arms

Cannon et al., 2014
Cannon et al., 2014
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Table 3 — LIST OF SPECIMENS SURVEYED IN THIS STUDY
NAME (SPECIES & OPSIN) METHOD/TISSUE SOURCE

A) AMBULACRARIA OPSINS (Continuation)

ECHINODERMATA/ASTEROIDEA

Labidiaster annulatus

La-opsin 4.3 RNA-seq/Arms Cannon et al., 2014
La-opsin 4.4 RNA-seq/Arms Cannon et al., 2014

Odontaster validus

No opsin found RNA-seg/Arms Cannon et al,, 2014

ECHINODERMATA/OPHIUROIDEA

Ophiopsila aranea

Oa-opsin 4 RNA-seq/Arms Delroisse et al., 2015
Oa-opsin 6 RNA-seq/Arms Delroisse et al., 2015
Oa-opsin 7 RNA-seq/Arms Delroisse et al., 2015

Amphipholis sp

A-Opsin 7 Unpublished data

Amphiura filiformis

Af-opsin 1 Genome Delroisse et al., 2014
Af-opsin 2 Genome Delroisse et al., 2014
Af-opsin 3 Genome Delroisse et al., 2014
Af-opsin 4.1 Genome Delroisse et al., 2014
Af-opsin 4.2 Genome Delroisse et al., 2014
Af-opsin 4.3 Genome Delroisse et al., 2014
Af-opsin 4.4 Genome Delroisse et al., 2014
Af-opsin 4.5 Genome Delroisse et al., 2014
Af-opsin 4.6 Genome Delroisse et al., 2014
Af-opsin 5 Genome Delroisse et al., 2014
Af-opsin 7 Genome Delroisse et al., 2014
Af-opsin 8.1 Genome Delroisse et al., 2014
Af-opsin 8.2 Genome Delroisse et al., 2014

Astrotomma agassizii

Aa-opsin 4 RNA-seq/Arms Cannon et al., 2014

Ophionotus victoriae

No opsin found RNA-seg/Arms Burns et al. 2013; Cannon et al. 2014;
Elphick et al. 2015

Ophiocomina wendtii

No opsin found RNA-seq/Embryos Vaughn et al., 2012

ECHINODERMATA/CRINOIDEA

Antedon mediterranea

Am-opsin 4 RNA-seg/Arms Elphick et al., 2015

Florometra serratissima

Fs-opsin RNA-seg/Arms Unpublished data

Promachocrinus kerguelensis

No opsin found RNA-seg/Arms Cannon et al., 2014

Dumetocrinus sp.

No opsin found RNA-seg/Arms Cannon et al., 2014

Oxycomanthus japonicus

No opsin found RNA-seg/Embryos Unpublished data (Akihito Omori)
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Table 3 — LIST OF SPECIMENS SURVEYED IN THIS STUDY

NAME (SPECIES & OPSIN)

METHOD/TISSUE

SOURCE

A) AMBULACRARIA OPSINS (Continuation)

HEMICHORDATA/RHABDOPLEURIDAE

Rhabdopleura normani

No opsin found

RNA-seg/multiple zooids

Cannon et al., 2014

Rhabdopleura sp. (Iceland)

No opsin found

RNA-seg/multiple zooids

Cannon et al., 2014

HEMICHORDATA/CEPHALODISCIDAE

Cephalodiscus gracilis

No opsin found

RNA-seg/multiple zooids

Cannon et al., 2014

Cephalodiscus hodgsoni

No opsin found

RNA-seg/multiple zooids

Cannon et al., 2014

Cephalodiscus nigrescens

No opsin found

RNA-seg/multiple zooids

Cannon et al., 2014

HEMICHORDATA/HARRIMANIIDAE

Saccoglossus kowalevskii

Sk-opsin 6 Genome - RNA-seg/Embryos NBCI - Freeman et al., 2008
Sk-opsin 7 Genome - RNA-seq/Embryos NCBI - Freeman et al., 2008
Sk-opsin 8.1 Genome - RNA-seg/Embryos NCBI - Freeman et al., 2008
Sk-opsin 8.2 Genome NCBI

Sk-opsin 8.3 RNA-seq/Embryos Freeman et al., 2008
Sk-opsin 8.4 RNA-seg/Embryos Freeman et al., 2008
Sk-opsin 8.5 RNA-seg/Embryos Freeman et al., 2008

Saccoglossus mereschkowskii

Sm-opsin 7

RNA-seq/Proboscis

Cannon et al., 2014

Harrimaniidae sp (Iceland)

H-opsin 7

RNA-seq/Whole Anterior

Cannon et al., 2014

Harrimaniidae sp (Norway)

No opsin found

RNA-seq/Whole Anterior

Cannon et al.,, 2014

Stereobalanus canadensis

No opsin found

RNA-seq/Proboscis, gonad

Cannon et al., 2014

HEMICHORDATA/SPENGELIDAE

Schizocardium cf. brazilienze

Sb-opsin 7
Sb-opsin 8

RNA-seq/Whole Anterior
RNA-seq/Whole Anterior

Cannon et al., 2014
Cannon et al., 2014

HEMICHORDATA/PTYCHODERIDAE

Ptychodera flava

Pf-opsin 6
Pf-opsin 7
Pf-opsin 8

RNA-seq/Embryos
RNA-seq/Embryos
RNA-seq/Embryos

Cannon et al., 2014
Cannon et al., 2014
Cannon et al., 2014

Ptychodera bahamensis

Pb-opsin 7

RNA-seq/Proboscis

Cannon et al., 2014

Balanoglossus aurantiacus

Ba-opsin 1
Ba-opsin 7
Ba-opsin 8

RNA-seq/Whole Anterior
RNA-seq/Whole Anterior
RNA-seq/Whole Anterior

Cannon et al., 2014
Cannon et al.,, 2014
Cannon et al., 2014

Glossobalanus marginatus

No opsin found

RNA-seq/Proboscis

Cannon et al., 2014
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Table 3 — LIST OF SPECIMENS SURVEYED IN THIS STUDY

NAME (SPECIES & OPSIN)

METHOD/TISSUE

SOURCE

A) AMBULACRARIA OPSINS (Continuation)

HEMICHORDATA/TORQUARATORIDAE

Torquaratorid sp (Iceland)

T-opsin 7

RNA-seq/Proboscis

Cannon et al., 2014

Torquaratorid sp (Antartica)

No opsin found

RNA-seqg/Proboscis

Cannon et al., 2014

B) HOMO SAPIENS OPSINS

Homo sapiens

Encephalopsin Genome NCBI
Rhodopsin Genome NCBI
Peropsin Genome NCBI
Melanopsin Genome NCBI
RGR Genome NCBI
Neuropsin Genome NCBI
C) MELATONIN RECEPTORS (OUTGROUP)

Strongylocentrotus purpuratus

Melatonin R1TA Genome NCBI
Melatonin R1B Genome NCBI
Melatonin R1C Genome NCBI
Saccoglossus kowalevskii

Melatonin R1A Genome NCBI
Melatonin R1B Genome NCBI
Melatonin R1C Genome NCBI
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2.1 Abstract

In comparison to complex visual systems, non-directional photoreception (the most
primitive form of biological photodetection) has been poorly investigated, although it is
essential to many biological processes such as circadian and seasonal rhythms. Here we
describe the spatiotemporal expression pattern of the major molecular actors mediating
light reception, opsins, localized in the Strongylocentrotus purpuratus larva. In contrast to
other zooplanktonic larvae, the echinopluteus lacks photoreceptor cells with observable
shading pigments involved in directional visual tasks. Nonetheless, the echinopluteus
expresses two distinct classes of opsins: a Go-opsin and a rhabdomeric opsin. The Go-
opsin, Sp-opsin3.2, 1s detectable at early (three days’ post fertilization) and four armed
pluteus stages (four days’ post fertilization) in two cells that flank the apical organ. To
rule out the presence of shading pigments involved in directional photoreception, we used
electron microscopy to explore the expression domain of Go-opsin Sp-opsin3.2 positive
cells. The rhabdomeric opsin Sp-opsin4 expression is detectable in clusters of cells located
around the primary podia at the five-fold ectoderm pentagonal disc stage (day 18-21) and
thereafter, thus indicating that Sp-opsin4 may not be involved in the photoreception
mechanism of the larva, but only of the juvenile. We discuss the putative function of the
relevant cells in their neural context, and propose a model for understanding simple

photodetection in marine larvae.
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2.2 Introduction

While the vast majority of studies on animal photoreception have so far focused on directional
photoreceptors, systems comprising at least one cell with a photosensitive opsin together with
shading pigments that enable it to discriminate the directionality of light, less is known about non-
directional photoreception, the simplest and earliest evolving type of photoreception. Non-
directional photoreceptors, which can be difficult to detect due to a lack of visible screening
pigments, allow the monitoring of absolute light intensities of the environment. Consequently, they
are widely used as an input to the circadian clock system and for a wide variety of other tasks
(Turner and Mainster, 2008). For instance, non-directional photoreceptors can be used as a depth
gauge, as a warning for harmful levels of UV radiation, for shadow detection, or be involved in the
regulation of feeding, movement and reproduction rhythms (Bennett, 1979; Paul and Gwynn-

Jones, 2003; Leech et al., 2005; Nilsson, 2009; 2013).

Opsins are G-protein coupled receptors involved in light-perception. Based on their amino acid
sequence they can be divided into four groups: tetraopsin, xenopsin, Gq-opsin, and c-opsin
(Ramirez et al., 2016; for other classifications see: Palczewski et al., 2007; Arendt, 2008; Koyanagi
et al., 2008; Porter et al., 2011; Feuda et al., 2012). The presence of opsins provides a clear
landmark for localizing putative photoreceptor cells even in the absence of shading pigments and,
therefore, the localization of opsin-expressing cells is important for finding directional and non-

directional photoreceptors.

In echinoderms, efforts to describe photoreceptors have primarily focused on adult specimens. The
phototactic behaviour commonly observed in adult sea urchins, in addition to their photosensitive
ectoderm associated with an endoskeleton (which could act as shading structure, lens or filter) make

them a useful model for studying diffuse photoreception (Raup, 1966; Hendler and Byrne, 1987;
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Johnsen, 1997; Johnsen and Kier, 1999; Aizenberg et al., 2001). Before the advent of
molecular genetics, studies of photoreception in echinoids concentrated on cell morphology
and physiology, as well as understanding behavioural responses such as spine movements,
tube foot reaction, covering, colour change and, more recently, visual navigation (Holmes,
1912; Millot, 1953; 1954; 1976; Millot and Manly, 1961; Millot and Yoshida, 1958;
Thornton, 1956; Yoshida, 1966; Yoshida et al., 1984; Johnsen, 1994; Blevins and Johnsen,
2004; Yeramilli and Johnsen, 2010). Later, the publication of the sea urchin Strongylocentrotus
purpuratus genome lead to the discovery of nine opsins, a number of transcription factors
involved in photoreceptor cell differentiation (e.g. x5, wx6, dix1/dIx2, rx, ath; see Table 4 for
further details) and several orthologous genes putatively involved in the phototransduction
cascade (e.g. visual G-beta subunit, rhodopsin kinase, arrestin, retinal-binding protein, G-
alpha-s subunit, transducin G-gamma-tl, recoverin, G-alpha-q subunit; see Table 5 for
further details) in this species (Sodergren et al., 2006; D’Aniello et al., 2015). This information
has made it possible to use molecular tools to investigate photoreception in echinoids (Burke

et al., 2006; Raible et al., 2006).

The first biochemical efforts to investigate the mechanisms of photoreception in S. purpuratus have
resulted in the localization of the rhabdomeric opsin Sp-opsin4 in basal (i.e. in the stalk area proximal
to the compound plates) and disk (i.e. in the tube feet most apical part) microvillar cells of the adult
tube feet (Ullrich-Liiter et al., 2011). Furthermore, a ciliary opsin, Sp-opsinl has been immunodetected
in cells located in locomotory and buccal tube feet, as well as in the proximal stalk region of tridentate
pedicellaria (Ullrich-Liiter et al., 2013), the latter being jawed appendages used against parasites
(Coppard et al., 2012). These findings have allowed Ullrich-Liiter and co-authors to describe a unique
system of photoreception in which the entire sea urchin, using its skeleton as photoreceptor screening

device, functions as a ‘giant eye’ (Ullrich-Liiter et al., 2011). This is also in agreement with previous
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observations on the photo-behaviour of a Diadema species that lead to the suggestion that the shadow
produced by the spines on the animal body surface 1s used for inferring the visual landscape (Woodley,
1982). However, in comparison with the light detection systems of adult echinoids, the photoreception

mechanisms of their planktonic larvae have been so far poorly investigated.

While ancestral adult metazoans were likely benthic, it is probable that a pelagic larval stage evolved
very early in animal evolution (Jagersten, 1972; Nielsen, 2008). This idea has led many scientists to
investigate the directional simple eyespots of marine larvae in search of something resembling a
‘proto-eye’ (Smith, 1935; Thorson, 1964; Brandenburger et al., 1973; Marsden, 1984; Pires and
Woollacott, 1997; Leys and Degnan, 2001; Nordstrom et al., 2003; Jékely et al., 2008; Guhmann et
al., 2015). Such simple eyespots or ocelli constitute class II photoreceptors (photoreceptor cells
associated with shading pigments) in accordance with the classification of Nilsson (2013). To our
knowledge, only few cases of non-directional (class I) photoreceptors have been documented in
marine zooplanktonic larvae (Arendt et al., 2004; Passamaneck et al., 2011; Vocking et al., 2015). In
these cases, and in contrast to what we can observe in the echinopluteus, the larvae studied possess

eyespots, thus making it more difficult to study class I photoreception in an independent way.

To better elucidate the origins of animal vision, an event that most probably happened in the
Precambrian marine environment, the study of larvae with class I photoreception is essential.
In this work we identify a Go based photoreceptor system in a zooplanktonic larva of the
deuterostome lineage that potentially lacks directional photoreceptors. To localize the
putative photoreceptor cells of the larva at early and late developmental stages, we analysed
the expression of the opsins Sp-opsin3.2 (Go) and Sp-opsin4 (rhabdomeric) using whole mount
in situ hybridization and immunohistochemistry, respectively. Further, the presence of

shading pigments near the encountered Go-opsin based photoreceptor cells was ruled out by
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exploring both the apical organ as well as the basal area of the anterolateral arms by using a
transmission electron microscopy (TEM) approach. The putative role of these photoreceptor

cells in non-directional photoreception of the pluteus is discussed.

2.3 Results

2.3.1 The Go opsin Sp-opsin3.2 is detected in two cells that flank the apical organ

To characterize the presence of putative photoreceptor cells in the sea urchin larva we first consulted the
transcriptomic expression of S. purpuratus opsins. After analysing the publicly available RNAseq data coming
from a survey of ten embryonic stages (T'u et al., 2014) we concluded that, of the nine genes encoding opsins
found in the genome, the Go opsin Sp-opsin3.2 (SPU027633) and the echinopsin Sp-opsin2 (SPU003451) are
the only opsin genes expressed at significant levels. Starting from the late gastrula stage (48 hours post
fertilization), these two genes show expression levels reaching the value of about 100 transcripts per embryo
at the early pluteus stage (72 hours post fertilization), when neurons start to differentiate (for gene expression
profiling, see Fig. 22). Next, successful amplification of the Go opsin Sp-opsin3.2 was carried out, and the
corresponding antisense riboprobe was used to localize the cells of interest. Unfortunately, various attempts
in the amplification with different set of primers of the ‘echinopsin’ Sp-gpsin2 did not give any result.
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Fig 22. Gene expression profile of Sp-opsins 2 (purple) and 3.2 (magenta). During the first 72 hours of development,
two maximum peaks of Sp-opsin2 expression are found: one at 64 hours (163 transcripts per individual) and another
one at |8 hours post fertilization (58 transcripts per individual). During the same time lapse, maximum peaks of Sp-
opsin 3.2 expression are found at 72 hours (139 transcripts per individual) and at |0 hours (42 transcripts per
individual). Please, note that these numbers represent an overall estimation. Data from Tu et al. (2014)

(echinobase.org:3838/quantdev).

Here, RNA fluorescence (Fig. 23; 3 days post fertilization: dpf larvae, early four armed larvae)
whole mount 1n situ hybridization (WMISH) revealed that the Go opsin Sp-opsin3.2 is expressed in
two cells arranged bilaterally adjacent the apical organ, i.e. a portion of the epithelium that form
the oral hood that is considered to act as central nervous system of the larva (Byrne et al., 2007),
and at the base of the left and right anterolateral arms (for a schematic view of the four-armed

pluteus in which we included the terminology used in this work, see Fig. 24).

Fig 23. Expression of the Go-opsin Sp-opsin3.2 in early plutei. A couple of Sp-opsin3.2 bilateral symmetrical

cells were detected at cellular resolution between the base of the anterolateral arms and the apical organ of
echinopluteus (3dpf) by means of fluorescent in situ hybridization. A-C) Confocal-micrographs; Sp-opsin3.2 in
situ hybridization (magenta) was coupled with acetylated a-tubulin immunohistochemistry (green); nuclei were
counterstained with DAPI (blue). A) Abanal view; B) right-lateral view; C) mouth view. Arrowheads indicate

Sp-opsin3.2 positive cells.

The expression of this gene in such a small number of cells is consistent with the above
mentioned low levels of expression observed from the transcriptomic data. To identify the
position of these Sp-opsin3.2 positive cells with respect to the ciliary band (the distinct

thickening of ciliated epidermis that outlines the oral field and traces the edges of the four
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larval arms), cilia were labelled by immunohistochemistry with anti-acetylated o-tubulin

after Sp-opsin3.2 WMISH.

ANAL VIEW SEMILATERAL VIEW

Fig 24. Drawing of the four armed pluteus of S. purpuratus; the Go Sp-opsin3.2 opsin positive cells are represented
in pink. A) Post oral arms. B) Anterolateral arms. C) Apical organ. D) Mouth. E) Oesophagus. F) Anus. G) Intestine.

H) Stomach. I) Skeletal rods. lllustration made by Santiago Valero-Medranda.

As shown by fluorescence in situ hybridization (Fig. 23), the main body of these cells appear to be
located just orally to the thick epidermal band of the ciliated cells (see Fig. 24 for schematic
representation). The Sp-opsin3.2 positive cells are suggestive of the presence of a photoreception

system in the sea urchin larvae.

2.3.2 TEM analysis reveals absence of shading pigments in the larva apical region
A key difference between visual and non-visual photoreception system is the presence of

shading structures, generally in the form of pigment cells, in proximity of light perceiving
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cells. Therefore, S. purpuratus larvae were observed under the light microscope at 4, 6 and
8 armed stages to detect for the presence of observable pigments that can be organized
to act as shading for the described Sp-opsin3.2 positive cells. The only pigmented cells
found near these cells were the granulated pigment cells, a population of red coloured
cells of dendritic morphology and immune role that are distributed all over the body (Ho
et al., 2016). We therefore decided to explore the presence of screening pigments in the

vicinities of the Go Sp-opsin3.2 opsin-positive cells by means of TEM.

Shading pigments involved in directional photoreception, which can be located both in
the opsin positive cells or adjacently, are easily recognized in TEM as a group of black-
solid dots in the cytoplasm (e.g. Marshall and Hodgson, 1990; Leys and Degnan, 2001).
For our TEM analysis, three larvae were fixed, and transversal sections of 50 to 70 nm
were made in the apical region in search of shading pigments (Fig. 25A). Of them,
micrographs corresponding to different sections of the apical organ (Fig. 25D, E) and the
bases of the left (Fig. 25B, C) and right (Fig. 25F, G) anterolateral arms were selected.
Interestingly, none of the cells embedded in the apical organ nor in the area of the ciliary

band exhibited observable shading pigments.
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Fig 25. Transmission electron micrographs of a 3dpf (early 4 armed) pluteus, different sections of three specimens at the
level of the apical region. A) Collage of 324 transversal micrographs showing a panoramic view of the abanal half of the
larvae (apical region). On it, the bases of the left and right anterolateral arms (LAA and RAA, respectively), as well as the
lumen (LU) of the gut, surrounded by the blastocoel (BLA), and the apical organ (AO) are shown. The stippled line
corresponds to the ectodermal region in which the ciliary band is located. A representation of the whole 4 armed pluteus
larva and cutting area can be seen in the upper left corner. A’) Detail of the cross-sectional profile of the motile cilia
(arrows) that compose the ciliary band. The orientation of the animal is defined by the axes: anal, abanal, left and right. B)
Transversal section of the base of the anterolateral arm, right side. On it, the axon tract (at) that connects this area with
the nervous system can be distinguished. C) Transversal section of the region that connects the right anterolateral arm
(LAA) with the apical organ (AO). Pigmented cells cannot be detected in any of the cells flanking the apical organ, where
the Go-opsin Sp-opsin3.2 was detected. The black arrowed points to a blastocoelar cell (bc). D, E) Detail micrographs of
the apical organ, an area considered as the central system of the animal, rich on ciliated cells (cc) and axon tracts (at). F)
Transversal section of the region that connects the left anterolateral arm (RAA), with the apical organ (AO). G) Transversal

section of the base of the anterolateral arm, left side. lllustration made by Santiago Valero-Medranda.

The regions of the ectoderm in between the apical organ and either left or right anterolateral arms
(encircled in Fig. 25A; Fig. 25C, F) where the Sp-opsin3.2 positive cells are located (see also
schematics of Fig. 24) are void of shading pigment granules. These findings suggest that the Sp-
opsin3.2 positive cells are not involved in directional photoreception. Although it would be
interesting to have higher magnification images of the discovered opsin-positive cells, the current
state of the art ‘does not allow to distinguish between the different sensory cell types located in the
ciliary band or in the apical organ of the sea urchin larva’ (Thurston Lacalli, University of
Saskatchewan, Canada; and Robert Burke, University of Victoria, Canada, personal
communication). Thus, serial multiplex immunogold labelling experiments are needed to better

characterize the morphology of the encountered Sp-opsin3.2 positive cells.

2.3.3 Sp-opsin4, the rhabdomeric opsin, was detected in the adult rudiment at
pentagonal disc stages and thereafter
Due to limitations of WMISH efliciency on late developmental stages and the availability of a

specific antibody against the sea urchin rhabdomeric opsin Sp-opsin4, we decided to use an
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immunohistochemical approach to explore the opsin toolkit of the premetamorphic larva. During late
larval development (second week of development and thereafter), a portion of the coelom and the
overlying ectoderm gets in contact and forms the imaginal adult rudiment (Smith et al., 2008; Heyland
and Hodin, 2014; for a schematic view see drawings in Fig. 26). This rudiment represents the
developing juvenile that grows from the left side of the larva (for a schematic, see Fig. 26A). In order to
analyse the spatiotemporal expression of the rhabdomeric opsin Sp-opsin4, we tested its presence in
time series of 3, 4, 5, 6 and 7 days (four armed pluteus), 16d (six armed pluteus, contact flattened stage),
17d (six armed pluteus, five-fold mesoderm stage), 18d (eight armed pluteus, five-fold ectoderm stage),
19d (eight armed pluteus, primary podia stage), 21d (eight armed pluteus, primary podia-folded stage),
and 23d (eight armed pluteus, primary podia-touching stage) post fertilization (for staging of the
echinopluteus see also Smith et al., 2008; Heyland and Hodin, 2014). These experiments suggested the
absence of expression of the rhabdomeric opsin Sp-opsin4 prior to the tube feet formation in any part
of the larva. No protein expression was found either in sensu stricto larval structures untl the five-fold
mesoderm stages (17dpf; Figs. 26B, B’) with our method. Larvae started to exhibit Sp-opsin4 positivity
in conspicuous clusters of cells on the vestibular floor at pentagonal disc stage that would give rise to
the tube feet disc during five-fold ectoderm stage, a stage in which the ectoderm and the primordia of
the five podia begin to push through the floor of the vestibular ectoderm (day 18; Figs. 26C, C”). At this
point, the interior of the five incipient podia are spherical in shape or shorter than wide. We also
detected Sp-opsin4 positive cells later on, in the tube feet disc during advanced rudiment stage, when
the primary podia are taller than they are wide, but the podia are not yet folding in towards one another
(day 20-21; Figs. 26D and D’). At tube-foot protrusion stage (day 21-43), Sp-opsin4 positive cells were
detected both in disc (Fig. 26E) and basal (Fig. 26F) photoreceptors of the tube feet. These data indicate
that the rhabdomeric opsin Sp-opsin4 may not regulate the photoreception mechanism of the larva,
but only of the juvenile, where it appears to be involved in negative phototaxis (Ullrich-Liiter et al.,

2011). For a schematic view on the different rudimental stages, see Figs. 26B’- I”.
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Fig 26. Localisation of the rhabdomeric opsin Sp-opsin4 in the developing tube feet of the juvenile. A) Schematic
of the 8 armed pluteus stage, anal view, in which the area of growing of the rudiment (arrow) is shown. B, B’) Sp-
opsin4 was not detected in adult plate at fivefold ectoderm stage (day |17; pentagonal disc stage, PDS). C, C’)
During the five folding of the ectoderm (day 18, PDS), the rudiment of the larva starts to exhibit Sp-opsin4
positivity in clusters of conspicuous cells at the developing basal tube feet. D, D’) At primary podia stage (day 19,
PDS), the developing disc tube feet of the vestibular floor are positive for Sp-opsin4. E, E’) Sp-opsin4
photoreceptor cells are visible in the tube feet disc of the folded primary podia (day 21; transition between the
PDS and the advanced rudiment stage, ARS), both in disc and basal photoreceptor cells of the tube feet. F, F’) Sp-
opsin4 positive cells were detected at tube-foot protrusion stage (day 23-45, ARS). Stages redrawn from Heyland

and Hodin, 2014. Colouring of figures C’ to F’ was done following guidelines given by Prof. Claus Nielsen. PDS
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and ARS stages are named following the nomenclature proposed by Smith et al., 2008. Confocal micrographs
colour code: Sp-opsin4 in magenta; acetylated a-tubulin (B-E) and IEI| (F) in green; DAPI in blue. The bright
green staining in the stomach of the larvae shown in A and B is due to autofluorescence of the ingested microalgae.

lllustrations made by Santiago Valero-Medranda.

2.4 Discussion

Our findings show that, at least, two opsin classes are expressed in Strongylocentrotus purpuratus prior
to metamorphosis: first the Go opsin Sp-opsin3.2 in the apical region of the larva at 3 and 4 dpf
(four armed pluteus), and then the rhabdomeric opsin Sp-opsin4 in the tube feet of the developing
juvenile (day 29 and thereafter, eight armed pluteus). The different opsin classes in the sea urchin
may serve different needs to integrate light information depending on the life stage, where the

pelagic larva and the benthic adult face very different challenges.

Of the opsin-positive cells encountered, just the two Sp-opsin3.2 positive-cells localized in the
flanks of the apical organ can be considered part of the sensu stricto larval tissues. In our study,
no rhabdomeric opsins have been found in larval structures. Because the aim of this study is to
improve our understanding of photoreception in marine larvae, the rhabdomeric opsin Sp-
opsin4, which is expressed in juvenile tissues, will not be further discussed (for an account on the

possible role of Sp-opsin4 in adult sea urchins, see Ullrich-Liiter et al., 2011).

2.4.1 Ancientness of Go-opsins

Phylogenetic analyses indicate the presence of at least seven opsins in the last common ancestor of
Bilateria (Ramirez et al., 2016), thus suggesting that light reception had many roles very early in
animal evolution. These opsins, together with present-day animal opsins, have been classified into
four groups: (i) tetraopsins (Go-opsins, RGR/retinochrome opsins and neuropsins), (ii) xenopsins,

(111) Gg-opsins (including canonical and non-canonical r-opsins as well as ‘chaopsins’), and (iv)
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c-opsins, 1.e. canonical c-opsins and bathyopsins (Ramirez et al., 2016). While the canonical c- and
r-opsin groups have been extensively studied, little is known about the Go opsin group included in

the tetraopsin clade (Githmann et al., 2015).

In support of the ancient origin of Go opsins, cells expressing this class of opsins have been localised
in diverse animal clades, thereby suggesting the presence of this opsin group before the protostome-
deuterostome split. Examples of Go-opsins are found in the ciliary cells of the eyes of the adult
scallop Patinopecten yesooensis (Kojima et al., 1997), in the gastrula of the brachiopod 7Terebratalia
transversa (Passamaneck and Martindale, 2013), in the rhabdomeric adult eye of the polychaete
Platynerers dumenrilis (Giithmann et al., 2015) as well as in the photoreceptor system here described. In
the amphioxus Branchiostoma belcheri, a Go-opsin has been demonstrated by an in vitro analysis
(Koyanagi et al., 2002) but, to our best knowledge, this is the first report in which the spatial

expression of a Go-opsin has been described in a deuterostome larva.

2.4.2 Non-directional photoreceptors

In marine invertebrates, the expression of opsins in non-visual photoreceptors has been
documented in the apical organ of planktonic larvae of protostome and deuterostome lineages
(e.g. Arendt et al., 2004; Valero-Gracia et al., 2016; and herein). A shared feature of these
apical organs, regions specified by conserved developmental patterning mechanisms (Marlow
et al., 2014), 1s the presence of multiple sensory cells connected to the nervous system, which
regulate ciliary beating and the vertical position of the animal in the water column (Tosches et
al., 2014). In vertebrates, a population of non-directional retinal ganglion cells (the intrinsically
photosensitive photoreceptive retinal ganglion cells: ipRGGs), are critical in relaying light
information to the brain to control circadian photo-entrainment, pupillary light reflex, and

sleep (Provencio et al., 1998; Schimdt et al., 2011).
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Our discovery of non-directional photoreceptors in the pluteus of S. purpuratus suggests that these
cells may also have a role in controlling the vertical position of the larva in the water column, which
may be used for monitoring the time of day or the depth (Nilsson, 2013). This adjustment 1s likely
to be achieved by modulating the length and frequency of ciliary arrests, as proposed for this and
other marine larvae (e.g. Wada et al., 1997; Maldonado et al., 2003; Braubach et al., 2006; Jekely
et al., 2008; and herein). The use of non-directional photoreceptors in vertebrates for tasks such as
the regulation of nocturnal-diurnal behaviours (Provencio et al., 1998; Schimdt et al., 2011) could

represent the retention of such chronobiological role.

2.4.3 Bilateral disposition and lack of shading pigments

The absence of shading pigments in the region where the Sp-opsin3.2 1s expressed strongly suggests
that these opsin-positive cells lack directional sensitivity, but whether this represents a
plesiomorphic character or a secondary loss is not immediately clear. Directional photoreception
for phototaxis, with shading pigment near the site of opsin expression, is believed to have evolved
from non-directional photoreception where screening pigment is not needed (Nilsson 2009; 2013).
Directional photoreceptors are typically bilaterally paired organs (Brandenburger et al., 1973;
Arendt and Wittbrodt, 2001; Braun et al., 2015), whereas non-directional photoreceptors are often
unpaired median structures (Mano and Fukada, 2007; van Gelder, 2008). Our finding of paired

non-directional photoreceptors represents an interesting intermediate.

The bilateral arrangement of photoreceptor cells 1s typically associated with helical
swimming behaviours in the pluteus and other marine invertebrate larvae (Lacalli et al.,
1990; reviewed in Jékely, 2009). Bilaterally paired photoreceptors may seem redundant for
non-directional photoreception, and without shading pigment they do not have the

directionality required for phototaxis.
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It 1s possible that the shading pigment associated with these opsin-positive cells might have been
lost during evolution to increase transparency or to reduce energy expenditure. The lack of shading
pigments may have been favoured by selection to allow a better camouflage against predators
(Nilsson, 1996). Consequently, the bilateral arrangement of these opsin positive cells may be
primitive, and the lack of screening pigment a consequence of an adaptive transition from a
directional to a non-directional role. Alternatively, it is possible that the pluteus have retained the
non-directional photoreceptors of ‘Urbilateria’, an ancestor that may have had both directional
and non-directional photoreceptors (Arendt and Wittbrodt, 2001). The bilateral arrangement of
these non-directional photoreceptors would have been the result of developmental constrains
associated with the bilateral symmetry, or may be profitable for increasing the robustness and

sensitivity of the photoreceptor system.

To better understand when a possible switch occurred (i.e. whether Go-opsins originally mediated
a non-directional task in the dipleurula larvae of the Ambulacraria stem group, or if an association
with screening pigments was lost secondarily in the Echinodermata crown group) a further

comparison between the photoreceptor systems of different dipleurula-type larvae is required.

The fact that the bilaterally paired photoreceptors use a Go-opsin in the sea urchin larva, while
r-opsins are present in similar structures of nearly all other larvae, results remarkable. One
possible explanation to why putative homologous paired photoreceptors express distinct opsins
in different Bilateria clades could be that Urbilateria had bilaterally paired photoreceptors with
r-opsin, c-opsins and Go-opsins serving different functions (Feuda et al., 2012; Ramirez et al.,
2016). This variety of functions can be ascribed to the need of different spectral or temporal
properties, as well as to different roles in the chromophore isomerization cycle. Losses would

then account for the fact that echinoid larvae seem to have only a Go-opsin, most other

124



2. Non-directional photoreceptors in the pluteus of Strongylocentrotus purpuratus

protostomes only a r-opsin, and vertebrates c- and r-opsins. Cell duplication and subsequent

specialization must also be assumed for vertebrates.

2.4.4 Putative role of Go-opsin positive cells in sea urchin larvae

The most plausible role of the Go photoreceptors described in this study is the regulation of vertical
movement of the larva during photoperiodic transitions (Jekely et al., 2008; Mason and Cohen,
2012). Such a unimodal system could resemble the earliest photoreceptor mechanism in the first
marine larvae. If this is the case, study of this system could provide clues as how the first planktonic
animals perceived light cues (see Chapter 3 for further details). It remains possible that other opsins

are present at the same larval stage that have not been identified.

Because the main locomotory organ of the pluteus is the ciliary band, it would be informative to
know whether the Sp-opsin3.2 positive cells are connected to the ciliary band via the nervous system,
which has been described as “a network of cells that span the blastocoel and connect nearly all
parts of the larva” (Ryberg, 1977). Previous studies of the nervous system of the pluteus of
Strongylocentrotus droebrachiensis (Burke, 1978), a closely related species, report the presence of
serotonergic neurons in the area of the apical organ, located between the cells homologous to the
Go-opsin expressing cells of S. purpuratus. This serotonergic system is suggested to be involved in
the regulation of the ciliary band activity in the pluteus (Gustafson et al., 1972; Burke, 1978;
Yaguchi and Katow, 2003) and in many other marine larvae (e.g. Mackie et al., 1969; Beiras and
Widdows, 1995; Pires and Woollacott, 1997; Kuang and Goldberg, 2001). The topology of the Sp-
opsin3.2 expressing cells in the proximity of serotonergic neurons lead us to hypothesize that Go
expressing cells may be involved in locomotory control, probably in the activation or excitation of
the ciliary band to position the animal in the upper photic zone. Knock out experiments of this

opsin coupled with behavioural experiments could be used to test this hypothesis.
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2.5 Methods

2.5.1 Strongylocentrotus purpuratus, adult care and larval culture

Adult S. purpuratus were obtained from San Diego Bay at 25-30 m in depth (San Diego, CA,
USA) and housed in 12°C circulating seawater aquaria at the Stazione Zoologica Anton
Dohrn, Italy. Spawning was induced by intracoelomic injection of 0.5M KCIL
Embryos/larvae were cultured in Mediterranean filtered seawater (mesh pore size: 0.2 mm)
diluted in de-ionized water (final salinity: 32.5%o) and kept at 15°C on a 12/12h light/dark
cycle. From three days onwards, larvae were fed with a mixed diet of Isochrysis galbana [~2,000
cells mL-'] and Rhodomonas sp. [~2,000 cells mL-1]. All larval cultures were maintained at
a decreasing concentration of 5 to 1 pluteus mL-! depending on larval stage, mixed by gentle
rotary stirring and washed every other day. Larval washes were made by inverted filtration

(mesh size: 100 pM).

2.5.2 Gene cloning and RNA probe preparation

Contig sequence for Sp-opsin3.2 was identified in the genome (ref. code: SPU027633) and
transcriptome (ref. code: WHI22.338995) data sets. A 1,175 bp transcript was amplified by
PCR with the cloning primers Sp-opsin3.2-F (5-CCACTCATTTCGTGCGGATT-3") and Sp-
opsin3.2-R (5>-CTCTAGTGATGACGGGCGAT-3") from cDNA prepared with a Bio-Rad
iScript synthesis kit, ligated into pGEMT-easy vector (Promega), and transformed into Top10
chemically competent Escherichia coli (Invitrogen). Clone fragments were verified by Sanger
sequencing prior to riboprobe generation. DIG-labelled antisense and sense (negative control)
RNA probes were generated from plasmid DNA with T7- and SP6-RNA polymerases (Roche)

respectively, and purify with mini Quick Spim Columns (Roche).
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2.5.3 Fluorescent in situ hybridization coupled with immunohistochemistry

S. purpuratus larvae were collected at early pluteus stage (3dpf), fixed overnight at 4°C in 4%
paraformaldehyde/0.1M MOPS pH 7, 0.5M NaCl, washed thoroughly in MOPS buffer, and
stored in 70% ethanol until use. Whole mount fluorescent in situ hybridization (FISH) was
performed as described in Andrikou et al., (2013). Immunohistochemistry coupled to WMISH was
performed by incubating the larvae with anti-acetylated a-tubulin antibody (Sigma-Aldrich
T6793, St Louis, MO, USA) in a dilution 1:250 together with the anti-DIG antibody; the

secondary antibody was a goat anti-mouse IgG-Alexa 488 (Invitrogen, CA, USA) diluted 1: 1,000.

2.5.4 Immunohistochemistry

Larvae were fixed in 4% paraformaldehyde/0.1M PBS pH 7.4 containing 0.5M NaCl for 30
minutes at room temperature. Late six and eight armed larvae (days 14-23) were post-treated 2
minutes with pure cold MetOH to partially remove membrane lipids and facilitate antibody
penetration. After five 5 minute rinses in phosphate buffered saline (PBS), samples were washed
thoroughly in PBS/0.1% Tween-20 (PBST). Following incubations were carried out on an
orbital shaker. The first blocking step was performed with 4% heat-inactivated Normal Goat
Serum (NGS) in PBST for 1 hour, prior to incubating specimens with primary antibodies anti-
Sp-opsin4 1:50 [1.21mg mL-"] (Ullrich-Liter et al., 2011), anti-1E11 an antibody against
Synaptotagmin B considered as ‘pan-neural’ marker of Strongylocentrotus purpuratus nervous system)
1:100 [~10.00 mg mL-"] (Nakajima et al., 2004), and anti-acetylated a-tubulin (Sigma T6793)
1:250 in PBST overnight at 4°C. After five washes in PBST, a second blocking step was
performed as described above prior to incubating specimens with secondary antibodies (goat
anti-rabbit IgG-Alexa 488 and goat anti-mouse IgG-Alexa 647) diluted 1: 1,000 in blocking

buffer (4% NGS in PBST) at 4°C overnight. All specimens were washed thoroughly in PBS and

127



Photoreception in Ambulacraria

then counterstained with DAPI (1pg/mL in PBS) for nuclear labelling. For Sp-opsin4 antibodies,
controls were carried out using their respective rabbit pre-immune sera. For commercial

antibodies, control experiments were run in parallel by omitting primary antibodies.

2.5.5 Transmission Electron Microscopy

S. purpuratus plutel were first fixed in modified Karnovsky solution (2.5% glutaraldehyde, 2%
paraformaldehyde, and 3% sucrose in 0.1 M phosphate bufter pH 7.4 containing 0.5M NaCl) for
1 hour at room temperature. After several rinses in PBS, samples were post fixed in 1% osmium
tetraoxide in distilled water 1 hour at 7°C, and dehydrated in a series of ethanol
(30/750/70/96/100) and infiltrated and embedded in EPON (Agar 100). Samples were kept at
60°C for 48 hours to allow polymerization. Thin sections (50-70 nm) were cut with a diamond

knife with a Leica EM UC7 ultramicrotome and mounted on pioloform coated copper grids.

2.5.6 Imaging

Light microscopic images were taken using a Zeiss M1 Axio Imager microscope. Confocal
acquisition was performed on a Zeiss LSM 510 Meta confocal microscope. TEM acquisitions were
performed on a 120 kV JEOL 1400 plus microscope with a bottom mounted CMOS camera.
Figure plates were made with Illustrator CS6 (Adobe). Brightness, contrast, and colour balance

adjustments were always applied to the whole image and not to parts.
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3. THE EFFECT OF LIGHT ON THE VERTICAL MIGRATION

OF ECHINOPLUTEUS

3.1 Abstract

Diel vertical migration is the synchronised vertical movement of plankton in the water
column over the daily cycle. Typically, animals migrate upwards towards the surface at
dusk, and descend back to deeper water before dawn, though this may also occur in
reverse. Although this vertical movement is of great ecological importance, the cues that
drive this migration in several invertebrate clades are not clearly identified.
Furthermore, very few tools devoted to studying the potential drivers of vertical
migration in a controlled environment have been created. In Chapter 3 we investigate
this problem by applying a novel set up that mimics the different light conditions
available in the oceanic water column at different depths. This environment can be
calibrated with respect to the photic conditions and it quantifies the animals’ movements
in real time. Therefore, this device can help to demonstrate or discard the hypothesis
that a dipleurula larva only equipped with non-directional photoreceptors can control its
position in the water column depending on light cues. This research has been successful
in demonstrating that echinopluteus is clearly able to swim or sink in response to light.
Such capability to undergo a light-driven gravitaxis prone me to propose a hypothetical
photoreceptor system composed by more than one photosensible protein. This
photoreceptor apparatus must be finely coordinated with the ciliary band by means of
the nervous net, thus allowing the larva to activate or stop the ciliary beating for actively

swimming up or sinking down in the water column. The functional data here supported
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the aforementioned light-related hypotheses, therefore informing the importance of light
acting as a driving force that controls the vertical migration of this zooplankton in
absence of predators. Future efforts in which to create response/intensity curves at
different wavelengths are needed to separate the effect of spectral sensitivity and spectral

discrimination by these animals.

3.2 Introduction

Daily, zooplankton moves to deeper water in the morning and rises at dusk, or vice versa.
This process, known as diurnal or diel vertical migration, is carried out all over the world
by marine and freshwater plankton alike, thus representing the biggest biomass movement
on Earth (Brierley, 2014). The presence of vertical migration in so many organisms, in spite
of the energetic cost involved, suggests that this phenomenon must have an important
adaptive value (Lampert, 1989). Indeed, this phenomenon must be even more important in
life forms that possess planktonic larvae in their life cycles, a stage crucial for conquering
new ecological niches. However, very few tools are devoted to the study of these small
transparent organisms. Environmental cues are required to guide the vertical migration,
and which cues are involved has been the subject of research. As a result, a variety of
hypotheses attempting to identify this driving signal have been proposed. Many of those
can be grouped into two big categories: metabolic advantage hypotheses, and light

dependent hypotheses.

3.2.1. Putative driving cues I: The metabolic advantage hypotheses
The idea that zooplankton migration could provide a metabolic advantage was originally
proposed by McLaren during the 1960s (McLaren, 1963; 1974). McLaren estimated an

energetic gain for animals (in his study case, copepods), feeding at night in the warm, food-
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rich waters, and resting in colder areas during the day. However, in spite of this,
experimental data on various species both in the field and in laboratory conditions indicate
a retardation of development at low temperatures, therefore decreasing the population
growth (Lock and McLaren, 1970; Swift, 1976; Orcutt and Porter, 1983; Stich and
Lampert, 1984). These and further findings refuted the demographic advantage hypothesis
as well as related models (e.g. the starvation avoidance hypothesis; Geller, 1986) and
suggested that, at least in some species, vertical migration per se may be energetically

disadvantageous (Kerfoot, 1985).

After the MecLaren model, a second hypothesis was proposed by Enright, which
incorporates feedbacks between filter feeding zooplankton and their algal prey into a
metabolic model (Enright, 1977). His model differed from McLarens’ (1963) in two main
assumptions: (1) since photosynthesis takes place during the day, but only losses (respiration
and grazing) occur at night, algal biomass must be greater in the evening than in the
morning. Furthermore, (i1) algal quality must also differ as the cells will be filled with
reserves at dusk. Contrary to McLarens’ metabolic advantage hypothesis, Enright’s model
incorporates the timing of migration. Hence, vertical migrations may arise from the need to
accumulate rather than conserve energy. This model has been tested by a series of detailed
sampling of the marine copepod Calanus, but the predicted pattern was only found in some
experiments (Enright and Honegger, 1977). Therefore, authors conclude that other factors
may also influence the behaviour (Lampert, 1989). Moreover, this behavioural model
raised the question of how planktonic animals can establish the appropriate timing to
ascend before the sunset to feed themselves (Kremer and Kremer, 1988; Pearre, 1979). To
date, there is little evidence to support the metabolic advantage hypotheses as unique

driving cause of diel vertical migration.
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3.2.2 Putative driving cues II: The light related hypotheses

The second main group of hypotheses is based on the influence of light. On this category,
the first hypothesis is mainly based upon the assumption that animals should avoid the
the shallowest area of the epilimnion because of the deleterious effect caused by short
wavelength light (Siebeck, 1978). Protection from UV light damage would not require
deep migrations, as UV 1s absorbed in the uppermost region of the water column (for
further details, see General Introduction). Effects of blue light may be important too as it
penetrates much deeper. Nevertheless, sometimes it is difficult to separate the harmful
effects of short wave radiation from visual predation effects (the second light related

hypothesis), especially in the open ocean (Byron, 1982; Zaret and Suffern, 1976).

As just mentioned, the second light related hypothesis is focused on the interactions
between prey and predators. The concept of vertical migration as a predator evasion is the
most straightforward of the light dependent hypotheses in most of the cases. The pelagic
environment 1s relatively homogeneous, zooplankton has no shelter to hide from visual
predators and therefore they have developed strategies to become less visible and hide in
the darker regions of the water column. However, as not all animals have resolving vision,
their ability to avoid predators may be limited. An example of it is the pluteus larvae

used here.

In combination, the light related hypotheses make two main predictions: (1) zooplankton must
ascend in the evening and descend at dawn (reverse migrations can be explained as predator
avoidance; predators tend to follow their prey, and by migrating opposite to most prey, the
risk of predation can be reduced), and (i) vertical migration should predominate in more

conspicuous animals that can be better detected (Lampert, 1989).
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Some of the problems that these light dependent hypotheses encountered are related to the
relative abundance of predators in some environments. Since both groups of hypotheses
(metabolic advantage and light related) are still debated, the use of laboratory custom built
set ups like the one here presented gaves a great opportunity to better explore these ideas by
providing a controlled environment free of predators. Moreover, for our study we have
chosen the pluteus of Paracentrotus lLwidus to test if animals putatively equipped with class 1

photoreceptors are capable to control its vertical migration based on light cues.

3.2.3 Vertical distribution of plutei: Previous studies

The depth regulatory behaviour of marine invertebrate larvae has received considerable
attention (reviewed in Thorson, 1964). However, models of depth regulation are based
largely on the study of coloured larvae of fouling animals, estuarine bivalves and
crustaceans. Conversely, small transparent larvae such as echinopluteus, which do not
show obvious responses to environmental stimuli, have been neglected (Reese, 1966).
Nevertheless, some mutually-exclusive theories about the possible photobehaviour of
pluteus larvae have been proposed. In chronological order, Théel did not state if
Echinocyamus pusillus pluteil are photosensitive or not, but that they swam to the surface
(Théel, 1892). Mortensen did not study the phototaxis of the plutei of Laganum diplopora in
detail, but he reported that the larvae tend to swim towards the bottom of the culture
dishes (Mortensen, 1921). Fox (1924) reported that the blastulae, gastrulae and larvae of
Diadema setosum migrate towards the bottom of a plankton column after half an hour of
‘illumination’. Neya (1965), described the horizontal movements of plutei of Hemicentrotus
pulcherrimus in response to both horizontally and vertically oriented beams of artificial

‘white’ light; and Eastwood described horizontal and vertical movements of Lytechinus
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variegaus plutel in response to downwelling light (Eastwood, 1972). To the best of my
knowledge, prior to this study, the more recent and detailed examination of depth
regulation of an echinoderm larva is the one described by Pennington and Emlet (1986).
Pennington and Emlet examined the depth regulation of the pluteus larvae of Dendraster
excentricus both in the field (by collecting samples at different depths), in an enclosure
situated at Friday Harbour bay (Washington, USA), and in an aquarium. These
experiments established that the plutei of this species rise towards the surface at night,
and descend during daytime, as commonly occurs in many other planktonic larvae

(Pennington and Emlet, 1986).

In this work, I present my data on the vertical migration photobehaviour of echinopluteus
under seven light sources of different wavelength (340, 420, 490, 505, 535, 590, and 617 nm)
at a given radiance. Up to my knowledge, these insights represent the most systematic and
widest light-driven gravitaxis study made in a larva of the Ambulacraria clade. Thanks to it,
we demonstrated that the pluteus larva, a larva equipped with class I photoreceptors, is able
to undergo vertical migrations. The occurrence of a light-driven gravitaxis prone me to
propose a hypothetical light dependent deep-gauge mechanism for controlling the larval

position in the water column.

3.3 Results

Results section has been located after the Introduction to keep the organisation followed
all through this thesis. However, since the methodology employed for obtaining these
data involved two novel set ups designed for this project, I suggest to the reader to first
consult the heading ‘Material and methods’ of this chapter to help with an overview of

the technology and protocols used.
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3.3.1 Experimental protocol I: Pilot experiments for testing the light-driven
gravitaxis capability of P. lividus plutei

For the experiments described here and in the following section, the set up used was the
vertical migration set up I (Fig. 33). Once this set of experiments was settled following the
protocol described below (see section 3.5, Material and methods), de visu observations about
changes in vertical distribution of plutei were done and annotated at different times of the day.
Thanks to these assays I observed that pluteus larvae exhibit a light-driven gravitaxis behaviour
to 380-700 nm ‘white’ light, and that animals tend to distribute themselves homogeneously all

over the water column in absence of light.

3.3.2 Experimental protocol II: Preliminary observations of the larval sinking speed
As result of these experiments, cylinder I (10 minutes of 380-700 nm ‘white’ light exposure) did
not show almost any sign of light-driven gravitaxis behaviour in any of the experiments done
independently of the time of the day, thus the larval population was randomly distributed all over
the water column. Cylinder II (30 minutes of ‘white’ light exposure) showed a similar situation
but larvae started to form clusters and to line up themselves in the centre of the cylinder all over
its length; however, this lineal organization was not observed in all cases though. After 60
minutes of ‘white’ light exposure (cylinder III) the vertical distribution of plutei was qualitatively
noted, thus showing the main part of the animal population is located in the third section of the
cylinder which is located towards the base. Cylinder IV (90 minutes of ‘white’ light exposure)
brought an identical behavioural pattern to the one found in cylinder III; such a pattern was
more pronounced in some cases. In all experiments done, the control cylinder (cylinder V)
showed the larvae homogeneously distributed themselves independently all over the water
column of when the time had come for the results to be collected from the culture beakers: 12 am

of day 1, 12 pm of day 1, or 12 am of day 2.
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After comparing the differences in the migration movements on cylinders I to IV, it
was considered that four armed plutei have an average sinking speed of 0.6 cm per
minute. This observation is in agreement with previous experiments carried out at
the Stazione Zoologica Anton Dohrn (Dr. Giuseppe Bianco, personal
communication). Taking this into account, the duration of each stimulus for the
main data collection was set as 60 minutes. Since at this stage of the experiments
there was no clue on which light source (if any) was going to attract the animals
towards the surface, it was not possible to establish an average swimming up speed.
To compare if the average swimming speed up and speed of sinking are similar,
another set up in which it is possible to change the light source direction must be
used. An example of such a set up design is being provided in the section

‘Discussion and future directions’ (Fig. 32).

3.3.3 Experimental protocol III: First experiments with the vertical migration
(VM) set up II, calculating the effect size to inform the experimental design

From this point onwards, the experimental set up used was the VM set up II (Fig. 34)
and the experiments were performed at the Vision Group laboratories (Lund
University, Sweden). This sophisticate set up was useful not only to better control the
properties of the light used as stimulus, but also to have an unbiased graphical record

of the experiments done.

As a result of these experiments, a graphical image record that shows the vertical
migration movements of the larval population was obtained (Fig. 27). In these images
it 1s possible to see the movement of the larvae through a density profile in function of

time. This type of analysis was developed by Jochen Smolka (Lund University,

144



3. The effect of light on the vertical migration of echinopluteus

Sweden). More in detail, for each experiment a set of two images is shown, one graph
showing the average movement of the masscentre of the population in the water
column over the duration (Fig. 27A, B, C, D), and another graph in which it is shown
the density profile of the larval population in relationship with the distance from the
water surface (Fig. 27A°, B’, C’°, and D). In Fig. 27A, B, G, and D; » axis represents
the mean position of the animal population in centimetres, and x axis represents the
time in minutes. Further, a graphical representation of the stimulus provided to the

animals is shown as a bar under the horizontal axis.

The different colour that fills the horizontal bar (in the case of these experiments,
purple or black) indicates if animals are being treated with ‘light’ or ‘no light’ stimuli,
respectively. When possible, the colours chosen for filling the bar correspond to the
‘colour’ of the light stimulus used. In total, each experiment is composed by six phases
of stimuli indicated as S, I, II, III, IV, and V; and lasted a total time of 360 minutes.
The separation of such phases are being highlighted as a vertical bar when the light

stimulus changes. Animals were recorded in a time series of circa 1 second per frame.

In Fig. 27A°, B’, C’°, and D’; the x axis represents the relative quantity of animal
units (a.u.) for each phase of the experiment depending on depth, and the » axis
indicates the position of the larval population in the water column. In a similar
manner to what it was done for Fig. 27A, B, C, and D; the different phases of the
experiment are being highlighted in different colours and have been indicated by
Roman numerals. For these figures just four phases, the central ones (I, II, III, IV),

are being represented.
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On the one hand, while comparing the mean position of the larval population when
using 250 individuals (Fig. 27A, B), there is not a clear and consistent temporary
pattern of larval movement independently of the light stimulus provided. In fact,
the larval mean position is roughly maintained in the middle of the column at 20 cm
from the water surface, just in the middle of the plankton cell. Still, there is a
smoothly clearer pattern of migration in the experiment recorded with animals
collected during night time (Fig. 27B) compared to the one recorded with animals
collected during day time (Fig. 27A). Such oscillation in the animal mean position
consists of a slightly upper location of the animals during ‘no light” phases in
comparison with the 340 nm UV illuminated ones. Furthermore, when comparing
the relative distribution of the animal population in the water column (Fig. 27A’,
B’), the main part of the larvae seems to have a tendency to stay more closely
positioned towards the surface when the animals were collected in the dark half of
the day (Fig. 27A’) in respect of the condition observed in animals collected in the

light half (Fig. 27B").

On the other hand, while comparing the mean position of the larval population
when using 2,500 individuals (Figs. 27C, D), there i1s a much clearer net
pattern of movement of the mean position of larvae during time. Indeed, in
both cases, the average mean position all over the time is also at 20 cm from
the water surface, but oscillations of about 5.5 ¢cm can be seen depending on
the stimulus provided. These vertical oscillations indicate that the larvae
undergo light-driven gravitaxis while stimulated with 340 nm UV at 6,2x107

photons d-! sr-! cm-2.
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Animals collected in the middle of the light half of the day, number of individuals: 250
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Fig 27. Graphical results of the pilot experiments carried out about the effect size to inform the experimental
design of the main data collection. A) Mean position of the larval population while using 250 individuals
collected in the middle of the light half of the day. A’) Relative position of the animal population in the water
column over time while using 250 individuals collected in the middle of the light half of the day. B) Mean
position of the larval population while using 250 individuals collected in the middle of the dark half of the day.
B’) Relative position of the animal population in the water column over time while using 250 individuals

collected in the middle of the dark half of the day.
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Animals collected in the middle of the light half of the day, number of individuals: 2,500
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Fig 27. Graphical results of the pilot experiments carried out about the effect size to inform the experimental
design of the main data collection. C) Mean position of the larval population while using 2,500 individuals
collected in the middle of the light half of the day. C’) Relative position of the animal population in the water
column over time while using 2,500 individuals collected in the middle of the light half of the day. D) Mean
position of the larval population while using 2,500 individuals collected in the middle of the dark half of the day.
D’) Relative position of the animal population in the water column over time while using 2,500 individuals

collected in the middle of the dark half of the day.
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Light-driven gravitaxis behavioural data collected by using 2,500 individuals are in
agreement with the observations made in pilot experiments, and are maintained constant
independently of whether animals where collected in the light or dark half of the day.
Thus, experiments done with a higher density of larvae seem to be more stable
independently on when the animals were collected. Taking the data into account, it is
possible to conclude that an optimal quantity of 2,500 animals must be used in each assay
to observe more clear patterns of movement of the larval population. Such a
concentration is well balanced not only for avoiding an overcrowding of the plankton
column, but also for maintaining a statistically meaningful number of specimens. Since
the movement of using 250 larvae seems to be more accused while starting the
experiment with larvae collected in the dark phase, following experiments were done
collecting the animals at the end of the dark phase of the day. Even if this data set gave a
similar pattern of larval behaviour, age, nutritional stage, and circadian clock must be

carefully controlled during experimentation.

3.3.4 Experimental protocol IV: Main data collection, testing the vertical migration
of four armed plutei under illumination of seven different wavelengths

For the experiments of this section, two graphical representations are provided. The left
one is a heat map that shows the distribution of bright pixels (corresponding to a
planktonic organism) as a function of density per unit of space per time, and the right
one is a graph that shows the animal vertical distribution over the water column in

each phase.

In the heat map (left side) we can observe two bars: the horizontal one under the heat map

indicating the stimulus applied, and the vertical one at the right of the heat map informing about
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the correspondence between the animal units (a.u.) and the colours represented in the graph
(note that even if colours in the vertical bar are always the same ones, the relationship between
colours and animal units’ changes depending on how animals are grouped). Coinciding with the
lower bar, five vertical parallel lines have been drawn to facilitate the reader to identify when a

phase starts and ends, as well as when the stimulus is applied.

In the graph that shows the animal vertical distribution over the water column in each phase
(right side), the mean vertical distribution of the animal density over the water column is
represented. In this graph, there are two ‘types’ of phases represented: (i) the curves
highlighted in colours correspond to phases I and III, thus being the ones recorded under
light stimulus; and (i1) the ones highlighted in black that correspond to phases II and IV,
therefore summarizing the two central phases recorded under no-light conditions. In each of
these curves, the maximum density peak of animals has been indicated with a red dot. These
red dots are connected to the phase number to which they correspond by a dotted line.
Thanks to such levels it is easier to compare main differences in the centre of animal mass
distribution for each phase. When there is a proximity correspondence within the picks of
each kind of phase (i.e., when two light phase peaks are closer together than they would be
to a dark phase peak; or vice versa) the experimental result is considered as solid and a

photobehavioural conclusion can be made.

A) The behaviour of plutei under UV (340 nm) light

After determining an optimal quantity of animals of 2,500 specimens for each experiment, first
main data were collected by using 340 nm UV as light stimulus in an intensity of 6,2x107
photons d! sr'! ecm?. In Fig. 28A it is possible to distinguish a homogeneous distribution of

animals during the phase ‘S’. Such a distribution indicates that the rotations applied of the water
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column prior to starting the experiment were successful in distributing the larvae homogeneously
all over the water column. This step is important to ‘disorient’ the animals too. Similar starting
conditions can be seen also in the phase ‘S’ of all other main experiments (Fig. 28B, C, D, E, F,
and G), thus indicating that all experiments done started in similar conditions not just in terms of
when animals were collected (end of the dark phase of the day), but also in their distribution over
the cell. Following, in phase I the 340 nm UV stimulus was applied, and a net movement
towards the base of the water column can be observed. In phase II, when the light stimulus was
turned off, animals came back to the initial condition in which they were distributed relatively

homogeneously all over the column.

These two phases (I and II) regime were repeated. While comparing this regime with the second
round of repetition (phases III and IV), similar behavioural patterns can be observed. In phase V,
animals were distributed mainly in the second half more closely located to the bottom of the cell,

just as in phases I and III.
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Fig 28. A) Heat maps showing the relative animal density along the height of the water column during UV 340 nm

light experiment. Downwelling UV light in an intensity of 6,2x10” photons d”' sr' cm™ was applied in phases |, Il
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and IV. No light stimulus was applied in phases S, Il, and V. S represents the stabilization phase. Warmer colours
represent greater abundance of animals in the monitored area. A’) Graphical representation of the mean animal
density for each central phase (I to 1V) along the height of the water column. The maximum animal density peak
for each of these phases has been highlighted. There is a spatial coincidence of the light phases | and Il peaks, and

of the no light phases Il and IV peaks.

When observing the graph that shows the animal vertical distribution over the water
column in each phase (Fig. 28A’), a proximity correspondence within the picks of
each kind of phase occurs. Thus, thanks to these data it is possible to state that four
armed echinopluteus larvae tend to avoid 340 nm downwelling UV light in an
average radiance of 6,2x107 photons d-! sr'! cm?; and that the animal population
prefers to be at 25-32 cm from the water surface while illuminating with this

light source.

B) The behaviour of plutei under violet (420 nm) light

In this and following experiments, the light stimulus was always applied in an average
radiance of 7,7x107 photons d-! sr'! ecm2. In the heat map that results this experiment (Fig.
28B) we can observe that animals repeat the previous distribution of animals during
central no light phases (I and IV). On the contrary to no light phases, when a 420 nm
violet light stimulus is applied, animals tend to aggregate themselves. Such aggregation
can be better noticed while analysing Fig. 28B’. On this image (Fig. 28B’), the 420 nm
light phases maximum peaks cluster in the -10 to -20 cm area of the water column, while
the no light phases maximum peaks cluster in the -20/-25 region of the water column.
This insight indicates that plutei may have a subtle light-driven gravitaxis behaviour for
such a wavelength. This tendency is contrary to the one observed while applying UV light.
In this experiment the larvae clearly aggregate during light stimulation avoiding both the

top and the bottom of the column.
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Fig 28. B) Heat maps showing the relative animal density along the height of the water column during violet 420
nm light experiment. Downwelling violet light in an average radiance of 7,7x10” photons d' sr”' cm™ was applied in
phases |, lll, and V. No light stimulus was applied in phases S, Il, and IV. S represents the stabilization phase.
Warmer colours represent greater abundance of animals in the monitored area. B’) Graphical representation of
the mean animal density for each central phase (I to 1V) along the height of the water column. The maximum
animal density peak for each of these phases has been highlighted. There is a spatial coincidence of the light phases

I and Ill peaks, and of the no light phases Il and IV peaks.

C) The behaviour of plutei under blue (490 nm) light

In the heat map of this experiment (Fig. 28C) it is possible to observe that animals maintain a
homogeneous distribution all over the column when no-light stimulus 1s applied, just as in previous
cases. While observing the phases in which 490 nm blue light is applied, animals tend to aggregate
themselves in the second fourth-section more closely located to the bottom of the water column, at 20
to 30 cm from the water surface (Fig. 28C’). The localisation of the animal population in this region
while applying blue 490 nm light its similar to the one observed while applying UV 340 nm light,
thus indicating that this light stimulus induces a light-driven gravitaxis behaviour in four armed
echinoplutei. This condition, however, is less accused in this case with respect to the one observed
while applying UV (maximum average peak of animal density under blue 490 nm for phases I and

IT: 800 a.u.; maximum average peak of animal density under UV for phases I and II: 950 a.u.).
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Fig 28. C) Heat maps showing the relative animal density along the height of the water column during blue
490 nm light experiment. Downwelling blue light in an average radiance of 7,7x10” photons d' sr’' cm™ was
applied in phases I, Ill and V. No light stimulus was applied in phases S, Il and IV. S represents the
stabilization phase. Warmer colours represent greater abundance of animals in the monitored area. C’)
Graphical representation of the mean animal density along the height of the water column during the central
light (I, Ill) and no light (ll, IV) phases of the experiment. The maximum animal density peak for each of
these phases has been highlighted. There is spatial coincidence of the light phases | and Ill peaks, and of the

no light phases Il and IV peaks.

D) The behaviour of plutei under turquoise (3505 nm) light

In the heat map of this experiment (Fig. 28D) animals also have a general homogeneous
distribution when no-light stimulus is applied; still it is possible to see that the animal
population i1s way more concentrated in the last five centimetres of the plankton cell. This
animal concentration may be real or may be related to a misalignment of one of the IR LED:s.
Moreover, when 505 nm light are tuned on (phases I and III), animals tend to distribute
themselves in a similar pattern between the two phases, but in two clusters instead of one (Fig.
28D’). Such a ‘two-cluster’ disposition contrasts with the behavioural pattern found in
previous experiments, were animals clustered in a single group. This ‘division’ of the
population can be difficulty interpreted. Still, it is interesting to see that for the maximum

animal density peak of light phase I (circa 1,100 animals; depth: -26 cm),
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a second maximum animal density peak of phase III follows (circa 1,050 animals; depth: -29
cm); and that for the maximum animal density peak of light phase III (circa 1,120 animals;
depth: -12 cm), a second maximum animal density peak of phase I follows (circa 1,100
animals; depth: -14 cm). Whether the 505 nm light cue or other cofounding factors induce the
decision of this division must be further studied in future experiments. Maybe the larvae do
not have any photosensible protein related to this wavelength, thus some of the larvae

interpret this light in a different way respect to another’s.
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Fig 28. D) Heat maps showing the relative animal density along the height of the water column during turquoise
505 nm light experiment. Downwelling turquoise light in an average radiance of 7,7x10” photons d”' sr' cm? was
applied in phases |, lll, and V. No light stimulus was applied in phases S, Il, and IV. S represents the stabilization
phase. Warmer colours represent greater abundance of animals in the monitored area. D’) Graphical
representation of the mean animal density along the height of the water column during the central light (I, Ill)
and no light (ll, IV) phases of the experiment. The maximum animal density peak for each of these phases has
been highlighted. There is neither spatial coincidence of the light phases | and Il peaks, nor of the no light
phases Il and IV peaks. Animals distribute themselves in two groups located at different depths when the light

stimulus was applied.

E) The behaviour of plutei under green (535 nm) light
Bearing in mind the heat map of this experiment (Fig. 28E) we can observe that animals keep a

homogeneous distribution all over the plankton cell when no-light stimulus is applied.
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Furthermore, when 535 nm light is turned on (phases I and III) animals tend to distribute
themselves in a ‘two-cluster’ disposition that resembles the one found in the experiment done by
using turquoise 505 nm light as stimulus (Fig. 28E’). These similarities make sense considering
that both light sources have a difference of 30 nm between each other, thus being possibly quite
subtle for the larvae. During this experiment, the highest peak of animal density of phase I (circa
745 a.u.) 1s located at approximately 6.5 cm from the water surface. This peak almost overlaps
with the second peak of animal density of phase III (circa 760 a.u.; depth: -6.5 cm). The highest
peak of animal density of phase III (circa 900 a.u.; depth: -26 cm) is though not related to the
second highest peak of animal density of phase I (circa 760 a.u.; depth: -7.5 cm). Since for this
light experiment there is neither spatial coincidence of the light phases I and III peaks, nor of the

no light phases II and IV peaks, this experiment has been considered as not conclusive.

E) E')

Number of individuals: 2,500 == Light (535 nm) (I, Il

= No light (II, IV)

- 2500 0
|
54
- 2000 IV
-104
e - 1500 E 151
& 5 S I
E - [} E -20
ol o o
3 il - 1000 A
) = 25
=
<
- 500 -301
-354
-0
-40 ; r )
0 60 120 180 240 300 360 0 750 1000 1250
Time (min.) Animal density (~a.u.)

Fig 28. E) Heat maps showing the relative animal density along the height of the water column during green 535
nm light experiment. Downwelling green light in an average radiance of 7,7x10” photons d”' sr'' cm™ was applied in
phases |, lll, and V. No light stimulus was applied in phases S, Il, and IV. S represents the stabilization phase.
Warmer colours represent greater abundance of animals in the monitored area. E’) Graphical representation of
the mean animal density along the height of the water column during the central light (I, lll) and no light (ll, IV)
phases of the experiment. The maximum animal density peak for each of these phases has been highlighted. There
is neither spatial coincidence of the light phases | and Il peaks; nor of the no light phases Il and IV peaks. Animals

seems to distribute themselves in two groups located at different depths when the light stimulus was applied.

156



3. The effect of light on the vertical migration of echinopluteus

F) The behaviour of plutei under amber (590 nm) light

In the heat map of this experiment (Fig. 28F), animals show a homogeneous distribution over
the plankton cell under no-light stimulus (phases II and IV); however, when having a look at
Fig. 28F” it is possible to see that a notable part of the animals tend to be in the last 5 cm of
the water column, like in the experiment D (505 nm turquoise light). When 590 nm ‘amber’
light 1s applied, and while looking the heat map, it is difficult to see if animals react with the
same speed in comparison with previous experiments. However, from Fig. 28F it is still
possible to distinguish that while lights are on (phases I and III), animals group themselves
between the section of the column located at a distance of 27 to 34 cm from the surface. This
information suggests that when 590 nm amber light is applied in an average radiance of

7,7x107 photons d-! sr'! cm-2, echinoplutei go towards depths of -27 to -34 cm.
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Fig 28. F) Heat maps showing the relative animal density along the height of the water column during
amber 590 nm light experiment. Downwelling amber light in an average radiance of 7,7x10” photons d”' sr”'
cm® was applied in phases I, lll, and V. No light stimulus was applied in phases S, Il, and IV. S represents the
stabilization phase. Warmer colours represent greater abundance of animals in the monitored area. F)
Graphical representation of the mean animal density along the height of the water column during the central
light (I, Ill) and no light (ll, IV) phases of the experiment. The maximum animal density peak for each of
these phases has been highlighted. There is spatial coincidence of the light phases | and Ill peaks; and of the

no light phases Il and IV peaks.
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G) The behaviour of plutei under orange (617 nm) light

Taking into consideration the heat map of this experiment (Fig. 28G), animals exhibit a
homogeneous distribution over the plankton cell under no-light stimulus (phases II and IV).
Conversely, when 617 nm orange light is applied (phases I and III), animals seem to have a
quite strong pattern of distribution towards the upper half of the water column. Such a
concentration is not just observed in the heat map (bear in mind that the heat map colour
scale is adjusted depending on the average concentration of animals all over the cell), but also
from Fig. 28G’. This information suggests that when 617 nm orange light is applied in an
average radiance of 7,7x107 photons d-! sr'! cm2, plutei tend to be in the 2 to 20 cm region
from the water surface. This is a peculiar and unexpected response (larvae very suddenly
appear in the upper part of the column without decreasing in density in any other part). A
possible explanation of that is that the cameras of the set up are able to perceive some

amounts of the 617 nm stimulus light.
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Fig 28. G) Heat maps showing the relative animal density along the height of the water column during the orange

"'em? was

617 nm light experiment. Downwelling orange light in an average radiance of 7,7x10” photons d' sr’
applied in phases |, Ill, and V. No light stimulus was applied in phases S, Il, and IV. S represents the stabilization
phase. Warmer colours represent greater abundance of animals in the monitored area. G’) Graphical

representation of the mean animal density along the height of the water column during the central light (I, Ill) and
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no light (Il, IV) phases of the experiment. The maximum animal density peak for each of these phases has been

highlighted. There is spatial coincidence of the light phases | and Ill peaks; and of the no light phases Il and IV peaks.

All together, these data suggest that, while keeping temperature, salinity, oxygen, and animal
concentration in similar ranges, light is a cue factor involved in the vertical migration movements

of four armed Paracentrotus liidus larvae in absence of predators.

3.4 Discussion and future directions

Quantitative studies of plankton biology in the natural setting are fraught with difficulties. The
open ocean represents a complex environment with many changing variables such as light, salinity,
temperature, density of the populations, or diversity of animals encountered. Thus, it is useful to
combine field and controlled laboratory experiments. To facilitate current studies on the vertical
migration of small planktonic transparent larvae, a portable custom-built set up was designed and
used. This device allows not only the fine tuning of light intensity, but also the wavelength of
stimuli provided in a single assay. Other variables (e.g. salinity, temperature, oxygen level, lack of

predators, or density of the population) can be kept constant to reduce confounding factors.

Thanks to this set up and by studying the echinopluteus larvae of Paracentrotus lvidus at four
armed stage (seven days’ post fertilization), it is possible to state that small animals equipped with
non-directional photoreceptors, the simplest photoreceptors possible, are still capable of
perceiving light stimuli as well as undergoing vertical migrations. This has been demonstrated by
the behavioural pattern exhibited by these Ambulacraria larvae under different light conditions.
More in detail, out of the seven light sources provided as stimulus, five (UV 340 nm, violet 420
nm, blue 490 nm, amber 590 nm, and orange 617 nm) are the ones showing a clearer differential
behaviour in comparison with the no-light phases of their respective experiments. The light

stimuli situated in the ‘green’ range of visible light (turquoise 505 nm and green 535 nm) instead
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did not give consistent results. This may indicate that: (1) the larvae do not care much about lights
in this range of wavelengths; and (i1) since this light may not be of ecological relevance for the
larvae, there 1s a possible lack of photosensible proteins associated with this range of lights. Even
if the lack of time and resources do not allow me to compare day and night behaviours of larvae
both well fed or hungry, neither to do more rounds of experiments for each of the wavelengths at

different intensities, taking these insights as starting point, some relevant ideas can be discussed.

3.4.1 Correlations found between the genomic and transcriptomic data of this
species and its behavioural pattern

Nine opsin genes have been found in the genome of Paracentrotus lividus: one r-opsin, two c-opsin,
three Go-opsins, one echinopsin, one peropsin, and one RGR-opsin (D’Aniello et al., 2015 and herein,
Chapter 1). As it is widely known, genomic data cannot tell us if all these genes are expressed
during the life cycle of the animal or not, so more remotely can inform us about its expression
during a specific larval stage. However, the encoding of more than one opsin sequence in the
genome of P. linidus already indicates that this animal has, in principle, the capacity to express an
important number of opsin proteins and thus, the potentially to respond to a number of different
light stimuli all over its life cycle (T'able 4). Indeed, such a genomic information is consistent with
the variety of behaviours exhibited by the larvae used during our experiments. When
investigating the transcriptomic data available for such an echinoderm species (data generated by
the Genome Sequencing Consortium Génoscope, Corbel project infrastructure: www.corbel-
project.eu), we found that six opsin genes are activated at four armed larval stages (Fig. 29). Of
those, just one, the Pl-opsin3.1.2, have a higher expression with respect to other opsins found
(26.00 read counts). This number of opsin-encoding genes allows us to better estimate the
availability of photosensible proteins of this group at the developmental stage where we perform

the behavioural assays.
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Opsin expression in P, lividus during early development

25

20

Number of read counts

0
Pl-ops1.1 8 armed pluteus
Pl-ops1.2
P Pl-ops3.1.1 6 armed pluteus
Plops3.1.2 Pl.ops3.2 4 armed pluteus
Fropsd early gastrula
Pl-ops5
Pl-opsé swimming blastula

Pl-ops7

Fig 29. Gene expression profile of the opsins found in Paracentrotus lividus during early development. Of the nine
opsins found in P. lividus, the Pl-opsin3.1.2 is the highly expressed one at four armed pluteus stage. Opsin counts
were quantified by Dr. Elijah Lowe (Stazione Zoologica Anton Dohrn, Italy) by using the Salmon 8.2 quasi-mapping-
based mode (Patro et al., 2017). Data source: Genome Sequencing Consortium Génoscope, Corbel project

infrastructure (www.corbel-project.eu).

Table 4 — OPSIN EXPRESSION IN P. LIVIDUS DURING EARLY DEVELOPMENT

OPSIN GROUP GENE NAME  SWIMMING BLAS- EARLY 4 ARMED 6 ARMED 8 ARMED
TULA GASTRULA PLUTEUS PLUTEUS PLUTEUS
C-opsins Pl-opsin1.1 1.99 1.53 0.00 0.00 0.00
Pl-opsin1.2 1.13 0.00 1.00 3.00 1.00
[ | Go-opsins Pl-opsin3.1.1 1.00 0.00 3.00 1.00 0.00
Pl-opsin3.1.2 8.73 7.00 26.00 22.00 10.00
Pl-opsin3.2 7.50 1.50 4.40 8.00 8.00
M R-opsin Pl-opsin4d 3.32 0.00 1.00 1.00 1.00
Echinopsins Pl-opsin5 4.00 1.50 0.00 0.00 1.00
[ ] Peropsins Pl-opsiné 0.33 0.50 0.00 0.00 0.00
B RGR-opsins Pl-opsin7 0.01 2.92 0.01 7.16 0.00

Table 4. Gene expression profile of the opsins found in Paracentrotus lividus during early development. Of the nine
opsins found in P. lividus, the Pl-opsin3.1.2 is the highly expressed one at four armed pluteus stage. Opsin counts
were quantified by Dr. Elijah Lowe (Stazione Zoologica Anton Dohrn, Italy) by using the Salmon 8.2 quasi-mapping-
based mode (Patro et al., 2017). Data source: Genome Sequencing Consortium Génoscope, Corbel project

infrastructure (www.corbel-project.eu).
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3.4.2 An energetically trade-off: Having various opsins expressed during early
development could ‘compensate’ the lack of cell specializations founded in the class
I photoreceptor cells of the echinopluteus

While comparing the relatively high number of opsin putatively expressed in this
echinoderm larva with the morphological simplicity found in the cells that populate the
apical organ of other plutei (Valero-Gracia et al., 2016 and herein, Chapter 2), it is
interesting to observe that these larvae seem to lack of highly-modified sensory cells.
None of the cells found in our electron microscopy works seem to be neither
rhabdomeric nor ciliary, and apparently the lack of cell-specialization of this kind also
occurs in other plutei (Thurston Lacalli, University of Saskatchewan, Canada; and
Robert Burke, University of Victoria, Canada, personal communication). Maybe the
photoreceptor system of the larva is adapted to provide differential photic responses in
situations where light is not very limited. Therefore, the development of further
specializations of the cell membrane in form of cilia or rhabdoms is not needed for
packing more opsin proteins in a limited space. This lack of complex cellular
morphologies could be ascribed to a save-of-energy strategy. Indeed, the quoted energy
saved could be dedicated instead to other vital functions such as the functioning of the
ciliary band (the main purpose of the larva is to facilitate the dispersion of the animal
population), or to the development of the adult rudiment. This ‘saving-energy by
means on keeping cellular simplicity’ strategy match well when taking into the
ecological context of the animal (adult sea urchin populations of this species are usually
located at sub littoral areas to about 30 metres’ depth, thus regions where almost all
lights of the visible range arrive in good quantities). But, if there is a real lack of
membrane specializations in this photoreceptor cells, the question is: does this

morphology reflect an ancestral character, or rather a secondary loss from more
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complex cellular specialisations? Unfortunately, this is a question that most probably
will remain open for a while. For having a proper answer in this matter it will be
necessary to collect morphological data of the photoreceptor cell structure of a number
of echinoderm species outside of this echinoid clade, as well as to compare it with the

available fossil record.

3.4.3 Echinoplutei exhibit a variety of light-driven behavioural gravitaxis patterns
depending on the light stimuli provided

While the morphology of the studied cells in the vicinity of the apical organ is relatively
simple, a notable number of opsin proteins may ‘compensate’ this situation by adding
sensitivity to the photoreceptor system in a discretional way. This information results
quite interesting because, while some classical studies assessed that “there is no evidence
that there are photoreceptors in the pluteus larvae” (Hyman, 1955) or that “there is no
evidence that plutei undergo an ontogenetic vertical migration” (Thorson, 1964;
Forward, 1976), our current data (both behavioural and of gene expression) indicates the
contrary; thus, that echinoids of this clade have opsin positive cells flanking the apical
organ during larval stages (Valero-Gracia et al., 2016); and that plutei have a differential
light-driven gravitaxis that seems to depend on the light stimulus provided. In other
words, the echinopluteus photoreceptor system might be potentially able to
‘discriminate’ between different colours even if its photoreceptor system is very crude in

regards to resolution.

Perhaps this wvariety on the light-driven behaviours exhibited explains the
discrepancies of previous studies done with sea urchin larvae, investigations in which

the light stimuli provided were not as controlled as in here due to technical
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limitations that can be ascribed to such historic moment (Lyon, 1906; Runnstréom,
1918; Mortensen, 1921; Fox, 1925). If the animal has maintained or developed such a
variety of opsins during evolution, there must be an ecological advantage associated
to this condition. So, the next question to be done must be: is this animal larva able
to discriminate between different light wavelengths? For answering such a mystery,
response/intensity curves at different wavelengths have to be made. Even if the
experimental results here shown are not totally conclusive it i1s that the larval
population have a different light-driven gravitaxis behaviour that may depend on the

light stimuli provided (Fig. 30).
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Fig 30. Larval distribution over the water column while applying different light/no-light stimuli. Left side: the seven
pair of circles indicate the maximum concentration of larvae during a certain light phase of the experiments done.
Roman numerals indicate which light phase of each experiment represents such data point. The colour of the
circle is indicative of the wavelength used during such experiment. Arrows indicate the mean movement of the
animal population with respect to the centre of the water column (-20 cm). Right side: larval distribution over the
water column in phase Il (no-light) for each of the seven experiments reported above. Each grey circle represents
the maximum peak of distribution of animals during no light conditions. Letters (A to F) indicate to which of the

seven experiment each circle belong.
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While illuminating our water column with 340 nm UV light we can observe a net movement of
the larval population towards the second lower half of the water column. UV light of this
wavelength can be found roughly till depths of 15 to 20 meters depending on water clearance
(Holm-Hansen et al., 1993). Taking into account that UV light induces DNA mutations and that
the larvae carried all the genetic material necessary not only for itself, but also for the adult that
will later on develop, the selection of a photoprotein that senses this wavelength is a great

adaptive character. These data are in agreement with previous studies (Mortensen, 1921; Fox,

1924; Pennington and Elmet, 1956).

While illuminating out the plankton cell with 420 nm violet light, the situation is the contrary
one. Animals tend to go upper in the water column. Violet lights in this range are present almost
all over the first section of the water column until 130 to 150 meters in depth. Since in this
second experiment just one wavelength has been provided, it seems logic that animals behave
actively swimming towards the upper half of the water column (other lights commonly associated
with surface oceanic layers were not present, therefore in this situation we are mimicking the
photic situation available in regions below 130 meters from the water surface). In this region not
only algae are less abundant, but also such niche may be too in depth for settling (remember that

adult urchins of this species use to be at less than 50 metres in depth).

It 1s trickier to comment the situation observed while illuminating larvae with ‘blue-green’ lights.
In the first of this experiments (490 nm ‘blue’ light) animals situated themselves in the second
lower half of the water column. In the second (505 nm ‘turquoise’ light) the animal population
divides itself in two groups, one going below the centre of the water column, and another going
above. This situation is similar to the one present while applying 535 nm ‘green’ light, but in this

case the differences between both phases is even larger. Given these data into account, it seems
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that larvae move themselves freely both upper and lower in the water column while these lights
are applied to the plankton cell. This may indicate that larvae are ok under these light

conditions; thus, no particular movement of the population is observed.

While examining the behaviour found while applying 590 nm ‘amber’ light, it is interesting to see
that larvae tend to go towards the lower half of the column, just as while applying UV light. Both
of these lights (UV 340 nm and amber 590 nm) are founded in the first 10 metres from the ocean
surface. Maybe larvae prefer to stay under this shallower area of the water column to avoid DNA
damaging and predators. It is interesting to observe that larvae illuminated with 617 nm ‘orange’
light tend to go to the second upper half. While interpreting this data point was difficult at first (a
very close light source situated at 590 nm in the spectra gave us the opposite pattern of
movement), then we realize that some of the algae that these animals fed (e.g. Rhodomonas sp.)
have this colour (690-710 nm) in their chlorophyll (Kana et al., 2012). All together, these insights
indicate that larvae might have two sets of photoproteins: one set used as a depth-gauge

mechanism, and another set dedicated to perceive their algal food source in great concentrations.

3.4.4 A mechanistic model for understanding simple photodetection

The data presented in this chapter provide information about how an animal equipped with
non-directional photoreceptors is able to vertically orient itself in the water column depending on
light stimuli. To further discuss the observations done herein I propose a speculative, simple
depth-gauge model that could explain the disparities reported in previous studies done with

pluteus larvae of this and other species.

To regulate vertical position, a zooplankter must orient vertically, and move either up

or down 1n response to environmental cues indicative of depth (Creutzberg, 1975; Mileikovsky,
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1973). Orientation can be controlled by active sensory structures such as statocysts, or by passive
mechanisms such as differential drag on body regions, spiral swimming, or non-uniform body
density (Chia et al., 1984; Pennington and Emlet, 1986). In the case of the sea urchin larva, the
body mass distribution is asymmetrical, and it orients the animal apex-down (Pennington and
Emlet, 1986), as represented in Fig. 31. Given this morphology and mass distribution, in the

absence of ciliary beating, the animal tends to fall.

Taking this into account, and in conjunction with the photobehavioural data presented here, I
propose that 340 nm UV-avoidance behaviour is mediated by the ciliary-arrest of the ciliary
band that rims the aboral side of the animal. This mechanism could explain a putative non-
directional UV light sensitivity mediated by one of the opsin expressed in the transcriptome of
the larva at this stage (most probably the Go-opsin Pl-opsin3.1.1 for being the most expressed one
at the studied larval stage; the ortholog of this Go opsin Pl-opsin3.1.1 is the opsin Sp-opsin3.2, a
molecule localized in two cells that flanks the apical organ of the larva, for more details see
Chapter 2). If this pair of cells are mediating UV light responses, the light information may be
integrated by the apical organ, resulting in the arrest of motile cilia that compound the ciliary
band (Fig. 31A). Given the shape and mass-distribution of the larva, it is a logical conclusion that
the animal, in the absence of moto-ciliary movement, falls. Once the larva reaches an area with
less UV radiation a second opsin or opsins, that are yet undiscovered, could re-activate the ciliary
beating (Fig. 31B). This double-feedback loop could allow the larva to maintain its position in the
water column in a depth-gauge system. This system would allow the animal to guide itself in the
water column towards a photic area where algae can be found, but still below the region where
intense UV radiation can damage it. This behavioural model partially unites the metabolic
hypotheses (the ‘why’), with the light dependent hypotheses (the ‘how’), thus demonstrating once

more that complex biological systems are intimately coordinated.
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Another interesting observation made during our experiments that support this depth-gauge system
hypothesis is the slow sinking speed of the sea urchin larva (average mean speed of sinking of 0.6 cm
per minute). Because sea urchin larvae seem to migrate very small distances vertically, could be that
none of the standard diel vertical hypotheses can be apply to this study case. One possibility is that
sea urchin larvae stay very high up all the time. This would place them constantly in the upper layers
where their phytoplankton food stays all the time. Note that phytoplankton are also very restricted in
how far up and down they can move. Phytoplankton need to be high up to get much light for
photosynthesis, but they may also want to avoid the high UV levels just under the surface. The same
may then apply to sea urchin larvae: stay high up in the water column where the phytoplankton is,

but avoid getting very close to the surface because there is too much harmful UV-light.

A)

340 nm 490 nm 590 nm

-

420 nm 617 nm

() Photoreceptor system @ Serotonin @ Dopamine
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Fig 31. Depth-gauge system-model that explains the vertical migration movement of ciliated larvae in the water
column in response to light cues. Light information is integrated by the larval nervous system: A) In presence of
340, 490, and 590nm light stimuli, ciliary beating ceases and the animal falls to avoid UV damage. B) In presence of
420 and 617 nm light stimuli, the ciliary beating is activated and the larva may move upwards to reach the photic

area where oxygen and nutrients are found.

3.4.5 Future directions

Through these experiments we were able to establish that (i) plutei perceive light
cues; (i1) that plutei can control their vertical position in the water column; and (ii1)
that pluter may potentially discriminate between different light stimuli. However,
these experiments were a repeat of one (i.e., these experiments are a n=1). More
repetitions of each of these experiments are needed to disentangle how light affects
the behaviour of these animals are needed. Since time and resources for this research
are limited, coming up next I would like to provide some guidelines to be follow.
Further complementary directions related to this chapter and to other chapters are

also described in ‘Conclusions and future perspectives’.

As stated, the echinopluteus larva is potentially able to discriminate between several
light wavelengths. An indication of it is the behavioural data obtained during our
experiments. Still, to better understand the light-driven gravitaxis behaviour of this
larva, it is necessary to create response/intensity curves at various wavelengths. Such
experiments can be easily done by following the protocol here established for the
main data collection, and by applying a number of neutral density filters to decrease
the transmittance intensity of the light stimuli provided by different log orders of
magnitude. For better mimicking the gradient of light available at different depths of
the ocean, an IR transmitting dye absorbing in the same wavelength as the stimulus

light can be used. Furthermore, it would be interesting to compare the modulation of
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the vertical position of the animals while mixing different light wavelengths.
Moreover, a number of assays in which nutritional stage and circadian clock differs
may help to accept or confute the depth-gauge model that I have propose. All
experiments have to be done over the early development of the animal, thus starting
from swimming blastula and till eight armed pluteus stage. It would be interesting
then to compare the different behaviours observed over the development with the

available transcriptomic data of this and other close related species.

Our experiments have been done ‘assuming’ that these Paracentrotus lividus larvae
are equipped only with non-directional photoreceptors. Still, to confirm this idea,
another behavioural set up in which it is possible to change not just the light
stimulus provided, but also the direction of the light source, would be needed.
This machine will enable to rule out the possible use of any of the internal
structures of the animal as shedding pigment to undergo directional
photoreception (Fig. 32). Such a set up will follow the design and optical
principles that apply for our Dial Vertical Migration set up II, but changing the
shape of the water column and adding a number of identical modules side by side
located. Thanks to this new set up it would be possible to provide to the larvae a
bigger environment where they can move more freely too, thus decreasing the
Reynolds number created by the walls of the water column. The availability of
having five modules repeated will enable a better comparison of the same
biological replica behaviour under the same or different light regimes even while
light is coming from different angles. Overall, this study has provided a rich and

interesting experimental framework to be continued by future investigations.
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Fig 32. The ‘Plankton Cube’, a new behavioural set up to be build, do allow to direct the light source from
different sides to rule out 3D phototaxis by decreasing the possibility of distraction of the larvae by the walls of
the water cell. A) Each of the cubes is based on the same IR scattering principle of the larvae with respect to
the water to trace the movement of the larvae. B) The whole set up consists in five cubic modules that allow

the researcher to perform various experiments at the same time.
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3.5 Material and methods

3.5.1 Vertical migration (VM) set up I: A prototype for doing the pilot experiments

First pilot experiments devoted to test if echinoplutei were able to undergo light-
driven gravitaxis were done with a prototypic home-made set up prepared at the
Stazione Zoologica Anton Dohrn (Naples, Italy). Such a set up consisted of five 50 mL
laboratory cylinders (internal diameter: 2.2 cm; total height: 18 cm), a black box, a
‘white’ fluorescent light source, and a timer that turns on and off the light source (Fig.
33). Having five cylinders allowed to do five technical replicas for each round of
experiments while using the same batch of animals. The laboratory cylinders were
covered all over their walls but in two longitudinal parallel sides with black tape to
exclude lateral light penetrance. The uncovered areas were used as ‘windows’ to assess
the approximate vertical position of the animals inside the prototype plankton cell

(Fig. 33).

The movement of the larvae was assessed by comparing the position of the larval
population in the water column at different time points. For observing the position of
the larval population in the water column at a given time point, a flashlight equipped
with a red filter was used. To reduce the influence of lateral light during experiments,
windows were covered with black cardboard all over the time except when controlling
the position of the larvae. Such cylinders were located inside the quoted black box
equipped with an upper fluorescent lamp Philips Master TL-D Super 80 (approximate
range of wavelengths: 380-700 nm; luminous flux according to the manufacturer:

1,300 Im).
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Fig 33. Vertical migration set up |. This simple set up consist a box that contains five 50 mL laboratory cylinders (|
to V) covered with black tape to exclude lateral light penetrance, a fluorescent white light source, and a timer to

regulate the turning on and of of the white-light fluorescent bulb.

3.5.2 Vertical migration (VM) set up II: Hardware design and optical principles

A more sophisticated set up (VM set up II) was later created in Lund University
(Lund, Sweden) for better controlling the light stimuli provided to the animals as
well as the vertical animal migration during the experiments. This second set up
created consists of a 410 x 20 x 20 mm cell (from this point onwards, the ‘plankton
column’ or ‘cell’) that aims to mimic the first section of the oceanic water column in
a scaled way, plus a number of IR LEDs that creates a light sheet (Fig. 34A). Such
IR light source interacts with the transparent larvae, thus allowing to record the
position of single individuals of the animal population by the IR cameras in absence
of visible light (the larvae are detected by the scattering of IR light that they cause;
direct IR does not reach the cameras). As light stimuli, seven different light sources
(340, 420, 490, 505, 535, 590, and 617 nm) selected for its biological relevance and

different penetration rate in the water column were used. Such light sources can be
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fully controlled in terms of radiance thanks to an electronic LED controller. The
construction is completed with two IR cameras (1.3-megapixel mono GigE PoE
infrared cameras; Blackfly, Richmond, BC, Canada), a 50/50% broad band beam
splitter, a control panel, and some other optical components (Fig. 34A-F). The
contraption has a portable size of 440 x 520 x 300 mm. The drew up of this device
was done by Prof. Dan Eric Nilsson (Lund University, Sweden) and built by Dr. A.
Darudi (Light Guide in Lund AB, Lund, Sweden) with some help of John Kirwan

(Lund University, Sweden) and me.

The plankton column is illuminated by two parallel rows of IR LEDs from the right
side (Fig. 35A). Each row has an array of LEDs that overlaps its illumination with the
parallel one to avoid any dark area over the plankton column (Fig. 35B). On the left
side of the plankton column, a mirror reflects the IR light scattered by the animals
swimming on the cell, thus allowing to decrease the distance between the camera and
the IR arrays (Figs. 34D; 35B). The light scattered then reaches the two IR cameras
that are beside the column (Figs. 34E; 35B; 36A). Each camera faces an area of 210
mm of the plankton cell: one used for the upper half, and the other one for the bottom
half. Both cameras record an overlapping area of 10 mm that corresponds to the
middle point of the plankton column. This overlapping area is necessary to combine
the data from both cameras. Above the column, an adjustable LED provides a light
source (Figs. 34C; 36B). A second LED holder ready to be used is positioned at 90°
with respect to the LED located above the column (Figs. 34C; 36B). A 50/50% beam
splitter is positioned at 45° at the intersection of both light sources. This beam splitter
can be used to blend light from both light sources, if necessary (Fig. 36B). Different

LEDs can be mounted and interchanged by adjusting the LED chip host.
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Fig 34. Vertical migration set up Il. A) Schematic drawing of the device; illustration made by Santiago
Valero-Medranda. B) Photograph of the device, frontal view. C) Light stimuli LEDs. D) Mirror (arrow
head). E) One of the IR cameras. F) Array of square IR LEDs used as a light source for recording the
animals. Numbers indicate: |) light-stimuli LEDs; 2) beam splitter; 3) mirror; 4) plankton column; 5) IR

camera lI; 6) IR light sheet bulkhead.
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Fig 35. A) Diagram of the disposition of the IR LEDs with respect to the plankton column, lateral view. B)
Diagram indicating the ray paths of the two parallel IR LEDs arrays with respect to the plankton column, top view.
The overlapping light of each parallel couple of LEDs illuminates the whole sagittal plane of the column. As a
consequence of the mirror, the distance between the IRs LEDs is halved, making the device more portable for field

works. lllustrations made by Santiago Valero-Medranda.
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Fig 36. A) Optical drawing of the pathway followed by the IR light, side view. B) Representation of how the beam

splitter operates in order to mix two light sources. lllustrations made by Santiago Valero-Medranda.

3.5.3 VM set up II: Available light stimuli

With this VM set up II in its current configuration, small planktonic animals can
be tested against seven light stimuli: ‘UV’ (normalised intensity peak at 340 nm),
‘violet’ (420 nm), ‘blue’ (490 nm), ‘turquoise’ (505 nm), ‘green’ (535 nm),
‘amber’ (590 nm), and ‘orange’ (617 nm); both either alone or in combination of
two. These lights have different penetration properties on the ocean column,
thus potentially allowing us to test the behaviour of the studied animals in a
scenario that mimics different ocean depths (for more information, see General
Introduction). However, since most vertical migrations occur over at least 20 to
40 metres, a 40 centimetres column cannot simulate the intensity gradient over
such depth ranges. As a possible solution to this technical problem, Prof. Dan

Eric Nilsson (Lund University, Sweden) suggested to use an IR transmitting dye
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absorbing in the same wavelengths as the stimulus light to simulate a larger
depth range. This idea was not pursued in this study due to the lack of funding
and time; future investigations will follow this experimental strategy though. In
sake of precision, the illumination radiance of each of the light stimulus
available was measured with an optic fibber immersed inside the plankton cell
directly connected to a calibrated spectro-radiometer (RSP900-R, International
Light, Peabody, MA, USA). The plankton cell was filled with sea water prior to
light measurements and the water level was maintained constantly all over the
light measurements. All measurements were done in a set of different intensities
directly modulated by the LED controller software programmed for the set up
(for scripts see Appendix I). As control of these measurements, the 100% light
point of each wavelength was repeated twice: one at the beginning, and another
at the end of all other measurements for such a wavelength. A full slot of light
measurements of the first source to be measured (490 nm) was also done at the
end of all other light source calculations for controlling possible
disarrangements in the calibration of the spectro-radiometer. The resulting
average differences between these two sets of radiance measurements was less
than 4%, thus indicating that the spectro-radiometer was calibrated all over the
results. The measurements made for each wavelength at different intensities can

be found in Fig. 37.
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Fig 37. Light stimuli available in the VM set up Il. Seven LEDs, with emission peaks of 340 nm (‘UV’), 420 nm
(‘violet’), 490 nm (‘blue’), 505 nm (‘turquoise’), 535 nm (‘green’), 590 nm (‘amber’) and 617 nm (‘orange’) can be
used alone or in pairs in any possible combination. The radiance of each LED was measured at six different
intensities modulated with the program ‘LED controller’.

After light measurements, calculations were made to standardize the radiance of all
light sources when possible. All light stimuli employed in the reported experiments but
UV 340 nm have an average radiance of 7,7x107 photons d-! sr-! cm-?; this average
radiance was chosen to reach regular daylight intensities for a receptor with matching
lambda maximum. Unfortunately, it was not possible to regulate the 340 nm UV LED
at the same radiance of the other light sources due to limitations on the available LED

chips of this wavelength on the market. UV light working at 100% has a final power of

6,2x107 photons d-! sr'! cm2. A graph on the distribution of the seven available light
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sources with respect to the spectrum as well as the normalize intensities values used for

each of them can be consulted in Fig. 38.
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Fig 38. Light stimuli distribution over the spectrum. Each light stimulus has been regulated to standardise it with
other light sources in terms of radiance. The final intensities settled with ‘LED controller’ program for each light
source is presented as percentage within brackets. All light stimuli employed in the reported experiments but UV

340nm have an average radiance of 7,7x10” photons d”' sr' cm™ UV light working at 100% has a final power of

6,2x107 photons d' sr”' cm™.

3.5.4 VM set up II: Programming and data recording

All programs used for running the device VM II were created using MatLab version
R2015b (MathWorks, Natick, MA, USA) by Dr. A. Darudi (Light Guide in Lund AB,
Lund, Sweden) and Jochen Smolka (Lund University, Sweden). To control the light
stimuli and IR LEDs, a program called ‘LED controller’ was developed (Appendix I).

This program provides a user-friendly interface for setting different intensities for the

LED light sources.
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The main program (‘Graphic User Interface’, see Appendix I) is used to record the
behavioural data, and divides the plankton cell image capture by the two IR cameras in
20 bins of 20 x 20 x 20mm. Each IR camera receives the information from 10 of these
bins. The resulting image 1s then mathematically corrected to adjust geometric
aberrations by means of a script contained in the program. The 10 mm overlap between
images, from the upper and lower cameras, 1s used to reconstruct the IR image of the
whole plankton cell. The IR light that arrives to each camera corresponds to the light
scattered by the larvae. Because of this system, it 1s possible to record the larval response
in the absence of visible light. Image sequences were analysed by using a program
denominated ‘Plankton column analysis’ (Appendix I) wrote by Jochen Smolka (Lund
University, Sweden). This program identifies the presence of three bright pixels
interconnected from the IR image. With this information, the program produces a graph
that shows the distribution of bright pixels (corresponding to a planktonic organism) as a
function of density per unit of space per time. Examples of these graphs can be found all

over the section ‘Results’ of this chapter.

3.5.5 Animals

For experiments done in the Stazione Zologica Anton Dohrn (Naples, Italy), ripe
Paracentrotus lividus were collected by diving in the Gulf of Naples (Naples, Italy), and housed
in 12°C circulating aquaria. Spawning was induced by shaking the animals vigorously.
Prior to fertilisation, eggs were checked for shape and integrity and sperm were checked for
motility. The eggs of each female were fertilised by sperm from three males to increase
genetic diversity. Fertilised eggs were then rinsed several times with filtered sea water to
avoid polyspermy. For all the experiments done, embryos and larvae were cultured in 5 L

beakers filled with filtered natural sea water (mesh pore size: 0.2 mm) collected in the
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surroundings of Marechiaro (Naples, Italy). Animal cultures were stirred with Plexiglas
rotating paddles driven by electric clock motors. Larvae were maintained at a temperature
of 14°C and a salinity of 34%o at a maximum concentration of five putei per mL. Plute1

were fed as described in Chapter 2.

For experiments done in the Vision Group (Lund, Sweden), larval cultures ready to be
used were sent from Stazione Zoologica Anton Dohrn (Naples, Italy) to Lund University
(Lund, Sweden). These larvae came from adult sea urchins bred and cultivated at the
Stazione Zoologica Anton Dohrn. Embryos and larvae were cultured in 5 L Erlenmeyer
flaks filled with filtered natural sea water (mesh pore size: 0.2 mm) collected at
Gullmarfjorden (Svén Loven Centre for Marine Sciences, Kristineberg, Sweden)
following the protocol described by Cirino et al., 2017. Water salinity was corrected to
34%o0 by adding Sigma Sea Salts (S9883). Larval cultures pH, salinity, oxygen level, and
ion concentration was controlled by using a pH-meter Metler Toledo SG78 SevenGo

Duo Pro. Also in this case plutei were fed as described in Chapter 2.

For Chapter 3 we decided to use Paracentrotus lividus instead of Strongylocentrotus purpuratus
(used in Chapter 2 for molecular and morphological characterisation) larvae for three
reasons: (1) there is an easier access to this European species; (i1) the Stazione Zoologica
keeps these sea urchins in conditions allowing to get gametes at any time of the year; and
(i11) for these behavioural experiments several batches of synchronously developing
larvae are needed, and P. liwvidus grows faster and at a more convenient temperature (for
comparing the developmental timings of these two species, see Fenaux et al., 1985;
Smith et al., 2008). Still, these two species, Paracentrotus lwidus and Strongylocentrotus

purpuratus, are relatively close related (both belongs to the Echinidea) thus, they are
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suitable for comparing the basic features of their photoreceptor system. The adult sea
urchins used for the experiments here reported have been maintained at the animal
facility of the Stazione Zoologica Anton Dohrn by Paola Cirino (Stazione Zoologica

Anton Dohrn, Italy).

3.5.6 Experimental design: Generalities
In the following paragraphs I describe the general methods used prior to commencement
of all experiments done. For each set of experiments, a description on the results

obtained can be found in a heading with the same name in the Results section.

Paracentrotus lLiwvidus larvae were kept in starving conditions 48 hours prior to the
behavioural experiments. All experiments were carried out with seven days’
postfertilisation larvae (four armed pluteus stage). Plutei were concentrated immediately
prior to the experiment by inverted filtration. After filling the plankton cell with live
larvae and sea water, the column was inverted four times to ensure an initial
homogeneous distribution of animals all over the column. Temperature was maintained
constantly within the range of 14°C * 1°C. Salinity was kept at 34%o for all assays.

Oxygen level was maintained at circa 10.1 mg/L.

3.5.7 Experimental protocol I: Pilot experiments for testing the light-driven
gravitaxis capability of P. lividus plutei

First pilot experiments done were devoted to testing if echinoplutei were able to undergo
light-driven gravitaxis. Animals were exposed to downwelling ‘white’ light in a very
simple set up situated in the Stazione Zoologica Anton Dohrn (Naples, Italy). Prior to

the experiments, larvae were kept in an incubator chamber with a light regime of 12/12
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hours’ light/no light conditions for mimicking natural day/night conditions. An
approximate number of 1,000 four armed stage larvae were pippeted into each 50 mL
lab cylinder (final density of circa 20 larvae/mL). Next, laboratory cylinders were
brought to a final volume of 50 mL with filtered natural sea water. Following, all
cylinders were rotated upside down four times to ensure homogeneous distribution of
larvae all over the tubes. These experiments were repeated with larvae collected both

during day and night phases over five times.

3.5.8 Experimental protocol II: Preliminary observations of the larval
sinking speed

After ascertaining that a consistent negative gravitaxis behaviour occurred while
exposing four armed plutei to a 380-700 nm ‘white’ light, preliminary observations to
study the swimming speed of sinking were done. For so, and by using the VM set up
located in the Stazione Zoologica Anton Dohrn, the horizontal distribution of the plutei
was assessed following various periods of illumination. More in detail, plutei behaviours
were observed after 10 (cylinder I), 30 (cylinder II), 60 (cylinder III), and 90 (cylinder IV)
minutes of ‘white’ light exposition. The fifth cylinder containing water and plutei
(cylinder V) was kept in dark as control. For testing the disposition of the larvae on
cylinder V, a red-light source was used. This set of experiments were done at 12 am and
12 pm on the first day, and at 12 am on the second day of the experiment to rule out the
possible influence of circadian rhythmicity. In these experiments, cylinders were rotated
upside down four times to ensure homogeneous distribution of animals as in the previous
section before commencement, and an initial stabilisation (‘S’) phase of 60 minutes of no
light was settled prior to light exposure. Visu observations of the different experiments

then followed.
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3.5.9 Experimental protocol III: First experiments with the VM set up II,
calculating the effect size to inform the experimental design

In these and in following experiments the set up used was the VM II situated in Lund
University (Lund, Sweden). Pilot experiments for determining the quantity of animals to
set in the plankton cell were done at two different concentrations: 250 animals (Fig. 27A,
A’; B, B’) and 2,500 animals (Fig. 27C, C’; D, D’) respectively. For each of the
concentrations, measurements were done twice: one time collecting larvae in the middle
of the light half of the day (Fig. 27A, A’; C, C’), and another time collecting the animals
in the middle of the dark half of the day (Fig. 27B, B’; D, D’). When animals were
collected during the light half of the day (Fig. 27A, A’; G, (), the first condition was
always 60 minutes of ‘light stimulus off’; following, the light stimulus was turned on
during another 60 minutes. On the contrary, when the animals were collected during the
dark half of the day (Fig. 27B, B’; D, D’), the first condition was always 60 minutes of
‘light stimulus on’, and a 60 minutes ‘light off’ stimulus followed. Such a ‘two phases’
regime was repeated three times. Since various of the bibliographical sources consulted
indicated a negative phototaxis of UV light by other sea urchin larval species (e.g.,
Pennington and Emlet, 1986), all the experiments of this section were done using UV at

6,2x107 photons d-! sr'! cm? as light stimulus.

3.5.10 Experimental protocol IV: Main data collection, testing the vertical
migration of four armed plutei under illumination of seven different
wavelengths

In each of these experiments, the larval response was recorded during 360 minutes in a
time series of circa | second per frame. All experiments started with 60 minutes of no-

light. Following, a given light was provided during another 60 minutes. Such a regime
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(60 minutes’ no-light plus 60 minutes’ light) was repeated three times for having internal
experimental replicas. The first 60 minutes recorded under no-light conditions (phase
‘S’) were not considered in our analysis to allow water and animals to stabilize

themselves. Phase V was considered as an internal experimental control.
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CONCLUSIONS AND FUTURE DIRECTIONS

This study has investigated the photoreceptor mechanisms of the Ambulacraria clade. The

main conclusions obtained are:

)

A comprehensive phylogeny of Ambulacraria opsins was created to assess orthologies
and to identify gene novelties and modifications (Chapter 1). The opsin toolkit of
Ambulacraria possesses all the main classical opsin groups (c-opsins, r-opsins and Go-
opsins). This supports the proposition that Urbilateria, the last bilaterian common
ancestor, had a photoreceptor system with ciliary, Go, and rhabdomeric opsins.
Furthermore, a protein motif of each opsin group was provided to facilitate future

investigations on the photoreception of the clade.

Two Go-opsin positive cells were localized in Strongylocentrotus purpuratus larvae
(Chapter 2). These putative photoreceptors appear to be non-directional; the
presence of shading pigments on these cells and its surroundings has been ruled out
by means of transmission electron microscopy. Since the simplest class of
photoreceptors is non-directional (class I), the photoreceptor system found in the
echinoplutei could resemble the photoreceptor system present in the first larvae that

appeared early during evolution.

A novel, quantitative methodology to investigate the vertical migration of small

planktonic larvae under different light conditions has been created (Chapter 3). This
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prototypic set up allows to trace the vertical movement of small transparent larvae
even under no-visible light conditions. This set up mimics the different light conditions
present at different depths of the ocean water column. Our data suggest that the four
armed pluteus of Paracentrotus lividus 1s capable to drive its vertical migration, and that

this light-driven gravitaxis change depending on the kind of light provided.

Altogether, this study represents one of the first steps to better understand the
photoreception mechanisms of Ambulacraria. Keeping in mind that this subject is still fairly
unexplored, I have here outlined some of the key areas in which this fruitful research field

can be developed, and how this can be achieved.

In future, the availability of more genomic and transcriptomic data will allow us to better
appraise the opsin toolkit present in the Ambulacraria clade both between species and the
various life stages. For instance, in the larval visual system of the Hemichordata,
rhabdomeric photoreceptor cells are present, but accompanying r-opsins have not been
identified in the opsin toolkit of this clade. Consequently, a detailed investigation of the
opsin-type present in these larval ocelli would be intriguing. Moreover, as novel groups of
opsins have been identified in the echinoderms, it will be interesting to assay how
widespread these opsin types are and what their evolutionary history and function is. In
future, a comparative assessment of the photoreceptor apparatus of the different
Ambulacraria larvae across diverse clades could provide a powerful means of assessing the

homology between these systems in dipleurula-like larvae.

Specifically, amongst the larval stages of Strongylocentrotus purpuratus, it would be useful to

evaluate whether any other opsin expression can be identified. The presence of such opsin,
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in combination with the Sp-opsin3.2 here located, could mediate a depth-gauge photic
mechanism that will potentially allow the larva to guide itself in the water column towards
a photic area where algae can be found, but still below the region where intense UV
radiations can damage it; or be involved in other roles at later developmental stages.
Moreover, co-expression has been identified between the neuropeptide Sp7TRH and the Go
opsin Sp-opsin3.2 in four armed pluteus stage. It would be interesting to identify what the
biological meaning of this co-expression is and how these two proteins are interrelated. In
addition, knock out techniques could be applied to determine the specific role of Sp-
opsin3.2. Thanks to the behavioural protocol here described, the spectral sensitivity of the

photoreceptor system of wild type animals and knock out animals can be compared.

Supplementary co-expression studies would be helpful for identifying other contributors to
the gene regulatory network involved in the photodetection of this species. Tables 5 and 6
indicate a number of genes and proteins which may play an important role in the
photoreceptor system of this species and which expression patterns can be assessed for. A
list of primers of known components of the ciliary and rhabdomeric phototransduction

cascade found for this species are also provided to facilitate future molecular investigations.

Further experiments are required to evaluate the behavioural data here presented and
discussed. A more robust statistical framework must be applied to systematically quantify
the movement of animals and provide measurements of variance and precision. In addition,
many further experiments are possible to investigate the properties of the light detection
system 1in this species. For instance, other spectral ranges can be investigated to determine
if the animal has sensitivities in that range, as well as combinations of wavelengths and light

intensities. With this set up, animals with knock out modifications or animals to whom drug
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treatments have been applied can be used to test the theoretical depth-gauge mechanism
here proposed. Instructions for creating a new behavioural set up to gain further insights

into the photo behaviour of these larvae are also provided.
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Table 5 - S. purputatus orthologs of transcription factors playing crucial role during photoreceptor cell
development in vertebrates and their reciprocal best blast hit

Gene name (GeneBank GeneBank accession  E-value Reciprocal best BLAST query result  E-value Transcriptional
accession number of query  number of top Protein name (Species; GeneBank targets in
protein) Strongylocentrotus accession number) vertebrates
purpuratus
result/RNA-seq
evidence
Ath5 (NP_989999.1) SPU_003681/ND 3e-07 TRIADDRAFT_9478 (Trichoplax 9e-18 -
adhaerens; EDV25594.1)
Brn3a/Brn3c (AAU13951.1) SPU_025632/ 9e-75 BRN3 transcription factor 1e-125 ND
WHL22.738139 (Saccoglossus kowalevskii;
NP_001161509.1)
Brn3b (NP_997972.1) SPU_025632/ 2e-74 BRN3 transcription factor 1e-125 Brn3a(+), Brn3c(-)
WHL22.738139 (Saccoglossus kowalevskii; DIx1/DIx2 (=),
NP_001161509.1) Otx2(-), Crx(~)
Crx (AAH53672.1) SPU_010424/ 1e-23 Orthodenticle-related protein 0.0 Crx(+), Cone
WHL22.532435 (Hemicentrotus pulcherrimus; Opsin (+),
BAA28675.1) rhodopsin(+),
Nr3e(+), Otx2(-)
DIx1/DIx2 (AAC60025.1) SPU_002815/ 1e-29 Dlx (Paracentrotus lividus; 3e-154 Brn3b(+), Crx(-)
WHL22.107309 ADW95343.1) TrkB(+),
DIx56ie(+), Nrp-
2(-) (forebrain)
DIx5/DIx6 (AAC52843.1) SPU_002815/ 4e-28 Dlx (Paracentrotus lividus; 3e-154 ND
WHL22.107309 ADW95343.1)
Irx5 (NP_001165398.1) SPU_010351/ 1e-35 IrxA (Paracentrotus lividus; 0.0 CaBP5(+),
WHL22.651130 ADW95342.1) PMCA1(+),
Recoverin(+)
Irx6 (ABM92083.1) SPU_010351/ 5e-44 IrxA (Paracentrotus lividus; 0.0 Vsx1(-)
WHL22.651130 ADW95342.1)
Isl1 (EDM10395.1) SPU_023730/ e-105 Insulin gene enhancer protein ISL-1 2e-161 Brn3a(+), Brn3b(+)
WHL22.143854 isoform X2 (Callorhinchus mili;
XP_007890396.1)
Isl2 (EAW99220.1) SPU_023730/ 2e-93 Insulin gene enhancer protein ISL-1 2e-161 Zic2(-), EphB1(-)
WHL22.143854 isoform X2 (Callorhinchus mili;
XP_007890396.1)
Lhx1 (NP_005559.2) SPU_006991/ e-113 Transcription factor HpLim1 0.0 ND
WHL22.720614 (Hemicentrotus pulcherrimus;
BAB13725.1)
Lhx2 (ABO93218.1) SPU_004021/ 7e-49 Lim homeobox 2/9 protein 7e-111 Rax(+), Pax6(+),
WHL22.91758 (Saccoglossus kowalevskii; Six3(+), Sixé(+)
NP_001158443.1)
Meis1/Meis2 (NP_002389.1) SPU_011202/ e-120 Homeobox protein Meis2 isoform 2e-179 smad1(+), tbx5(+),
WHL22.2236 X7 (Saccoglossus kowalevskii; vax2(-), Cyclin
XP_006811521.1) D1(+), C-myc(+)
Oc1 (AAH24053.1) SPU_016449/ 9e-74 Onecut/Hnfé (Paracentrotus lividus; 0.0 Lhx1(+), Prox1 (+)
WHL22.288683 ADW95349.1)
Oc2 (NP_004843.2) SPU_016449/ 2e-74 Onecut/Hnfé (Paracentrotus lividus; 0.0 ND
WHL22.288683 ADW95349.1)
Otx2 (BAC53612.1) SPU_010424/ 5e-29 Orthodenticle-related protein 0.0 Crx(+), Rax(+),

WHL22.532435

(Hemicentrotus pulcherrimus;
BAA28675.1)

Blimp1(+)
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Gene name (GeneBank GeneBank accession  E-value  Reciprocal best BLAST query result  E-value Transcriptional
accession number of query number of top Protein name (Species; GeneBank targets in
protein) Strongylocentrotus accession number) vertebrates
purpuratus
result/RNA-seq
evidence
Pax2 (CAA39302.1) SPU_014539/ le-64 Paired box protein (Paracentrotus 5e-109 Pax6(-)
WHL22.619292 lividus; AAB70245.1)
Paxé (ABO70134.1) SPU_006786/ 1e-54 Pax-6 (Paracentrotus lividus; 2e-77 Pax2(-), Atoh7(+),
WHL22.585629 AAA75363.1) Ngn2(+), Crx(-)
Vax2 (CAB56166.1) SPU_002592/ be-16 Homeobox protein EMX1 isoform 7e-55 Pax6(-)
WHL22.113468 X2 (Ovis aries; XP_011978947.1)
Vsx1 (NP_001090191.1) SPU_000485/ T1e-52 Homeobox protein EMX1 isoform 7e-55 Recoverin(+),
WHL22.249523 X2 (Ovis aries; XP_011978947.1) Neto1(+), NK3R

(+), CaB5(+),
Vsx2(-), Cabp5 (-),

Irxé (=)
Prox1 (AAI64571.1) SPU_015984/ 4e-59 Prospero homeobox protein 1 6e-88 p27<P(+),
WHL22.531966 isoform X2 (Callorhinchus mili; P57 %2(+)
XP_007903216.1)
Rax (097039.1) SPU_014289/ 4e-35 Retina and anterior neural fold 4e-50 Pax6(+) Otx2(+), B-
WHL22.523971 homeobox (Saccoglossus arrestin(+),
kowalevskii; NP_001158375.1) rhodopsin(+)
Rx (NP_038463.2) SPU_014289/ 8e-37 Retina and anterior neural fold 4e-50 -
WHL22.523971 homeobox (Saccoglossus
kowalevskii; NP_001158375.1)
Six1/2 (NP_005973.1) SPU_017379/ e-103 SIX homeobox 1 (Saccoglossus 5e-137 -
WHL22.121485 kowalevskii; NP_001277017.1)
Vsx2 (NP_878314.1) SPU_000485/ Te-60 Visual system homeobox 2-like le-76 P27KIP1(=), Crx(-),
WHL22.249523 (Saccoglossus kowalevskii; Vsx1(-)

XP_002736712.1)

For each query protein, the corresponding Strongylocentrotus purpuratus protein model is listed with the E-value of the top BLAST results. The Strongylocentrotus purpuratus protein
model was then used as a query in a reciprocal best BLAST search of the non-redundant protein datababase (NCBI) and the top result is listed along with the E-value of the BLAST
result. RNA-se data supports the developmental mMRNAgene expression of each of these protein models. ND, not determined; (+) indicates positively regulated transcription targets;
(-) indicates negative regulation of transcriptional target; Pax2+* does not contain a full homeobox.
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Table 6 — A) S. purputatus orthologs of known components of the ciliary and rhabdomeric
phototransduction cascade in other animal systems and their reciprocal best blast hit

Protein name (GeneBank GeneBank accession  E-value Reciprocal best BLAST query result E-value  RNA-seq
accession number of query  number of top Protein name (Species; GeneBank evidence
protein) Strongylocentrotus accession number)
purpuratus result
Ciliary components
G-alpha-s subunit SPU_007485 e-106 Guanine nucleotide-binding protein 0.0 WHL22.735798
(BAA81697) G(s) alpha subunit (Lytechinus
variegatus; AAS38583.1)
G-alpha-i subunit SPU_013414 e-167 Guanine nucleotide-binding protein 0.0 WHL22.762062
(ACB05685.1) G(i) alpha subunit (Patiria pectinifera;
P30676.3)
Transducin G-alpha-t1 SPU_013414 3e-82 Guanine nucleotide-binding protein 0.0 WHL22.762062
(AAB01735.1) G(i)_alpha subunit (Patiria pectinifera;
P30676.3)
Transducin G-gamma-t1 SPU_030086 1e-07 Guanine nucleotide-binding protein 2e-17 WHL22.253891
(AAH25929.1) G(1)/G(S)/G(O) subunit gamma-10
(Danio rerio; NP_001191955.1)
GRK1 G protein-coupled SPU_005149 1e-86 G protein-coupled receptor kinase 5 3e-173 WHL22.421157
receptor kinase (Saccoglossus kowalevskii;
(AAH96611.1) XP_002742089.2)
GMP-PDE alpha rod SPU_017533 e-128 cGMP-specific 3',5'-cyclic 0.0 WHL22.554631
(NP_666198.1) phosphodiesterase-like (Saccoglossus
kowalevskii; XP_002733933.2)
GMP-PDE beta rod SPU_017533 e-135 cGMP-specific 3',5'-cyclic 0.0 WHL22.554631
(P23440.3) phosphodiesterase-like (Saccoglossus
kowalevskii; XP_002733933.2)
GMP-PDE delta (O55057.1)  SPU_017612 2e-47 Carbohydrate sulfotransferase 15-like 5e-57 WHL22.621157
isoform X2 (Scleropages formosus;
KKX11357.1)
Phospodiesterase SPU_028720 e-135 High affinity cGMP-specific 3',5'-cyclic 0.0 WHL22.281736
(ACB05690) phosphodiesterase 9A-like
(Saccoglossus kowalevskii;
XP_006818123.1)
Cyclid nucleotide gated ion ~ SPU_000314 e-174 Cyclic nucleotide-gated olfactory 0.0 WHL22.92304
channel (CAB42891.1) channel-like (Saccoglossus
kowalevskii; XP_006813621.1)
RGS9-1 regulator of G- SPU_002521 7e-84 Regulator of G-protein signaling 7- 0.0 WHL22.319117
protein signalling 9 isoform like (Saccoglossus kowalevskii;
1 (NP_035398_2) XP_006813719.1)
GC1 guanylyl cyclase GC-E~ SPU_024339 e-126 Guanyl cyclase (Hemicentrotus 0.0 WHL22.210138
precursor (NP_032218.2) pulcherrimus; BAAO4660.1)
Recoverin (NP_033064.1) SPU_026993 1e-42 Hippocalcin—like protein 2e-128 WHL22.599379
(Saccoglossus kowalevskii;
NP_001161566.1)
GCAP1 guanylyl cyclase- SPU_026993 4e-30 Hippocalcin-like protein 2e-128 WHL22.599379
activating protein 1 (Saccoglossus kowalevskii;
(NP_032215.2) NP_001161566.1)
GCAP2 guanylyl cyclase- SPU_026993 4e-33 Hippocalcin-like protein 2e-128 WHL22.599379

activating protein 2

(Saccoglossus kowalevskii;
NP_001161566.1)
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Protein name GeneBank E-value Reciprocal best E-value RNA-seq evidence
(GeneBank accession number BLAST query result
accession number of top Protein name
of query protein) Strongylocentrotus (Species; GeneBank
purpuratus result accession number)
Rhabdomeric components
G-alpha-q subunit SPU_003898 e-177 Guanine nucleotide-binding protein 0.0 _
(ACB05683) G(q) alpha subunit (Lytechinus
variegatus; AAS38584.1)
Phospholipase C SPU_009929 e-101 1-phosphatidylinositol 4,5- 0.0 WHL22.169178
(ACB05675) bisphosphate phosphodiesterase
classes | and Il isoform X2 (Orussus
abietinus; XP_012270478.1)
Trp-C protein SPU_017326 le-41 Short transient receptor potential 0.0 WHL22.316252
(ACB05689) channel 4-like (Saccoglossus
kowalevskii; XP_006820265.1)
Shared components
Visual G beta (ACB05681) SPU_000508 3e-99 Guanine nucleotide-binding protein 0.0 WHL22.101602
G(1)/G(S)/G(T) subunit beta-1
(Zootermopsis nevadensis;
KDR23891.1)
Rhodopsin kinase SPU_001621 0.0 Beta-adrenergic receptor kinase 2 0.0 WHL22.64904
(ACB05677) (Haliaeetus leucocephalus;
XP_010580351.1)
Arrestin (ACB05679) SPU_023889 7e-26 Beta-arrestin (Saccoglossus 0.0 WHL22.709217
kowalevskii; NP_001171767.1)
Retinal-binding protein SPU_004473 1e-52 SEC14-like protein 2 isoform X1 8e-119 WHL22.664046
(ACB05687) (Larimichthys crocea;

XP_010749651.1)

For each query protein, the corresponding Strongylocentrotus purpuratus protein model is listed with the E-value of the top BLAST results. The Strongylocentrotus purpuratus protein
model was then used as a query in a reciprocal best BLAST search of the non-redundant protein datababase (NCBI) and the top result is listed along with the E-value of the BLAST result.
RNA-se data supports the developmental mMRNAgene expression of each of these protein models. Blast: Basic Local Alignment Search Tool; PDE: phospodiesterase; TRP: transient receptor
potential.
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Table 6 — B) S. purpuratus homologs to ciliary and rhabdomeric phototransduction cascade components

Ciliary components

A) G-alpha-s subunit (SPU_007485/ WHL22.735798)

>SPU_007485.1 CDS Sequence
ATGGGTTGCTTCGGGAACGGCCTGTCAAGCGAAGAGAAAGATGAAGAAAAGAAGCGAAAGGAGGCTAACAAGAAGATTGAAAAGCAACTCCAGAAGG
ACAAGCAAATATACAGAGCAACGCATCGGCTATTATTGCTTGGTGCTGGTGAATCAGGAAAAAGTACCATCGTGAAACAAATGAGAATTCTTCATGT
AGATGGATTCTCACCAGATGAAAGAAAGAAGAAAATAGAAGATATAAGAAGGAATATTCGAGATGCAATTATTACAATAACAGGGGCCATGAGCACA
TTGTCACCGCCTATTCAACTAGCAGAACCTCAGAACCAATTTCGGTTGGATTATATTCAAGATGTCTCCAGTTCACCAGACTTCGACTACCCAGAAG
AATTCTGGGACCACACAAAACATTTATGGATAGATGCTCCGAGTTCAAGGCTGCTACGACAGGTCGCACGAATATCAACTTATAGATAGCGCACAATA
TTTTTTAGATAGAGTTGATACAATAAGAAGACCAGACTATGCTCCCGACCTACAGGACATTCTCCGGTGTCGTGTCTTGACGTCTGGAATCTTTGAA
ACAAAATTCCAAGTGGACAAAGTCAACTTTCACATGTTCGATGTAGGAGGACAGAGAGACGAAAGGAGAAAATGGATCCAATGTTTCAATGATGTGA
CGGCCATCATCTTTGTAGTAGCCTGCAGTAGTTACAACCTGGTGTTGAGAGAAGACCCAAACCAGAACAGACTGAGGGAGTCACTAGAACTGTTCAG
GAGCATCTGGAATAACAGGTGGTTGCGGACAATTTCAGTGATCCTCTTCCTCAACAAACAGGACTTACTGGCTGAGAAGGTCCAAGCAGGAAGGTCT
AAGATCGAGGACTACTTTAGCGAGTATGCAATGTACACAATCCCACCCGATGCCGCTACAGACACTGGTGAACCAGAGGATGTCTTGCGAGCCAAGT
ACTTCATCAGAGATGAATTCCTGCGAATCAGCACGGCGAGCGGCGACGGCCGACATTACTGCTACCCCCACTTCACCTGTGCCCGTGCGATACAGAGAA
CATCCGACGAGTCTTTGACGATTGTCGGGACATCATCCAAAGGATGCATCTTCGGCAATATGAGTTGCTGTGA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
Al LEFT PRIMER 420 20 59.01 50.00 0.00 0.00 0.00 AGATGCTGGAGTTCAAGGCT
A2 RIGHT PRIMER 1067 20 58.74 50.00 0.00 0.00 0.00 TTCTCTGTATCCACGGCACA

SEQUENCE SIZE: 1140

PRODUCT SIZE: 648, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

B) G-alpha-i subunit or Transducin G-alpha-t1 (SPU_013414/ WHL22.762062)

>SPU_013414.1 CDS Sequence

ATGGGGTGCGCTACGAGCGCAGAAGATAAAGCGGCCGCTGAGCGCTCGAAAATGAT TGATAGAAATCTACGGTTAGAAGGAGAAAAAGCAGCAAGAG
AAGTAAAATTATTGCTCTTAGGGGCTGGTGAATCAGGGAAAAGTACAATTGTAAAACAAATGAAGATTATACATGAAGAAGGGTACTCTGAAGAAGA
TTGTAGGCAGTATAAACCCGTGGTATACAGTAACACAATTCAATCCATGATAGCCATCATCAGAGCTATGGGTTCACTCAAGATTGACTTCGGAGAC
ACAGAAAGAGCAGATGATGCAAGGCAATTATTTGCCCTGGCTGGGCAGGCAGAAGAAGGTGAACTCAGCACTGAACTAGCAGCGGTTATGAAGCGGT
TATGGGCAGACTCAGGTGTCCAAGCATGCTTTAGCCGGTCCAGGGAGTATCAACTCAACGATTCTGCATCATATTACCTGAATGCCTTGGATCGGTT
GTCAGCGCCTGGTTACATCCCTACACAACAAGATGTTCTTAGGACAAGAGTCAAGACCACTGGTATCGTAGAGACGCATTTCACCTTCAAGGAACTT
CACTTCAAAATGTTTGATGTTGGAGGTCAGAGGTCAGAGAGAAAGAAGTGGATACACTGTTTIGAGCCTGTGACTGCAATCATCTTCTGTGTGGCTC
TCAGTGCCTATGATTTGGTTCTGGCAGAAGATGAGGAAATGGTAAGATTTGTGTTTTGTTCTTTTTGTTTCCTGTATATGTACATGCTTGTGGCCGT
GGTGTCTGTATTCCTCAATTGTTGTTTTTCTTTAAAAGTAACTATTCCCCCCCCCAAAAAAAATAAAAAATAA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
Bl LEFT PRIMER 37 20 58.99 50.00 10.17 0.00 0.00 GCTGAGCGGTCGAAAATGAT
B2 RIGHT PRIMER 664 20 59.24 50.00 13.14 0.00 0.00 TGATTGCAGTCACACCCTCA

SEQUENCE SIZE: 849

PRODUCT SIZE: 586, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

C) Transducin G-gamma-t1 (SPU_030086/ WHL22.253891)

>SPU_030086.1 CDS Sequence
ATGTCACAAGTAACGGCGCTGAAGAAGACCGTAGAGCAGCTACGATCGGAGGCAAAGATCGAACGGATCACCGTATCTCAGGCTTGTAACCAGCTCCA
GGAATACTGCTTACAACACGAGGCGGATGACTGTCTACTAAAAGGAATCGCTGCACATGCCAACCCGTTCAAGGAAAAGCAAAAGTGCACTATTTTG

D) GRK1 G protein-coupled receptor kinase (SPU_005149/ WHL22.421157)

>SPU_005149.1 CDS Sequence
GTTAGTCTTGCCTATGCCTTTGAGATGAAAGAAGCACTGTGTCTGGTCCTGACCATCATGAATGGTGGTGACCTCAAGTTCCACATACATAACATGG
GTAGTCCAGGGTTTGAGGAGGAGAGGGCTAGGTTCTACGCAGCAGAGATCCTCTGTGGTTTEGEGAGGACCTTCACCCGATTGAGGATCGTCTACCGGGA
TATGAAGCCAGAGAATATCCTCCTAGATGATCATGGTCATGTACGTATCTCTGACCTGGGTCTAGCAGTGGAGATACCTGAGAATGACACCATCAGG
GGCAGAGTAGGAACGGTGGGCTACATGGCTCCTGAGGTGGTGAAGAACGAGAGGTATACATTCAGTCCAGACTACTGGGGTCTCGGATGTCTTATCT
ATGAGATGATAGAAGGAAGGGCTCCATTCCGAGCGAGGAAGGAGAAGGTCAAGAGGGAAGAGGTCGACCGGAGAGTCAAAGAAGACGACGAGAAGTA
CAGCCAGAAGTTCAGCACCGAAGCACAGGACATCTGTAAAAAGTTGTTGCAGAAGGACCCAGCGTTAAGAATGGGGTTTGAGAACGGCACCGCACAG
ACTGTCAAGGATCATTCATTCTTCAACTCCATCAGCTTCAGCCGGCTTGAAGCTGGAAAGCTCGATCCACCCTTTGAACCTGATAAGAGGGCCGTGT
ATGCAAAAGACGTGCTGGACATAGAACAGTTCTCAACCGTCAAAGGAGTAAACTTGGACCAAAACGATGACAGATTCTACACCAAATTCAACTCGGG
GAGTGTAGCAATTCCATGGCAAATGGAGATGATTGAGACGCAAGTATTTCTTGAGCTCGAATGTGTTTGCGCGCCCAACGGCACTCTAACAGCTGACTTG
ATGCCTGATCTACCGCCACCACCCCCAAAGCAAGGTTTCTTCAGGAGGATATTTAGGATTAAGGCAGCGATGATCGACAATGACACCTTGCCAAACA
ACCCTCCTGACCAAGAGAGGGCGCTCTAA
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OLIGO start 1len tm gc% any th 3'_th hairpin seq
D1 LEFT PRIMER 159 20 59.10 55.00 0.00 0.00 0.00 GGAGGACCTTCACCGATTGA
D2 RIGHT PRIMER 847 20 59.04 50.00 0.00 0.00 0.00 GCCCAAACACATTCAGCTCA

SEQUENCE SIZE: 999

PRODUCT SIZE: 689, PAIR ANY_TH COMPL: 0.00, PAIR 3'_TH COMPL: 0.00
E) GMP-PDE alpha rod or GMP-PDE beta rod (SPU_017533/ WHL22.554631)

>SPU_017533.1 CDS Sequence
ATGGCTACTGCTCTAAATCATGTTTCAAGGGAGGAGGTTGAAAAATATCTGGAAGCTAACCATGATGTTGCAACAGACATTTTTGTAACAAAAGCCA
CTCCAGATATGATTGATCAATGGCTATCCAAGCATGCCAACTCCCTTCACAAGCATGGAGAAGGCAGTCCACAGGATGTCAGTTCCTGGCCAGATGT
ATCAATGAAATTAACTGAGAAAGGAGTGTTCCAGTCCATACGAAAATCCTTCAACATATCTGGAACCAAGAGCTTGCGGAATCTGCTCTCACCCCGT
CGCAGAAAGTCAACGCTGAAAAGGAATAAATCTGCTTTGAGGCAACTTGACGAGAAAGAACTTTTCATGGAACTCATCAGAGATATAGCTGATGAAC
TGGATCTGAATACACTTTGCCACAAAATTTTGATGAATGTCAGCATTCTTACAAATGGTGACAGATGCAGCCTCTTTCTTGCCCGAGGCACCAAGGA
TAGACGCTTTCTTGTTTCCAAGCTCTTTGATGTGAACGAGAACTCTACCGTGGAAGATTCATTGCACTCTGAAGAGGAGGAGATCCACATCCCATTT
GGGCAAGGCATTGCTGGCCATGTTGCTCAGACCAAGGAAACAGTCAACATCAAGAATGCCTATGAGGACAAGCGTTTCAACCCCGAGGTAGACAAGA
TCACTGGATACAAGACCCACAGCATCATGTGTATGCCAATCTGTAACCATGATGGTGAGGTGGTGGGCGTGGCTCAGGTCATCAACAAGATCACTGG
TTCTCATGAGTTTGCCGCCAAGGATGAAGAGGCACAGGTTGAACTGAGAAGAATAGTGTCACATGAGTTCAACCCTGCAGATGAAGAGGTGTTCAAA
AACTACTTGACCTTTTGCGGCATCGGGATAATGAATGCTCAGCTTTTCGAGATGTCCGTCAACGAGTACAAGAGGAATCAGATGCTACTTCAACTGG
CTCGAGGTATCTTTGAAGAGCAGACTTCCTTGGACAATGTGGTTCACAAGATAATGAGGCAAGCAGTTAGTCTGCTGAAGTGCCAGCGATGCATGGT
TTTCATCTTAGAGACAACAGAAGAATCGTACTTGCCCGCTCAGCTGAGAATGGCAGAAGGGAAACGACATTCAATAGCTTACCAGTCCAGTTTTGAT
GCTCCATTGAATGACGTCAAGAACATCAGCTTCCTGAAGGGTTTCGAACTTACAGATGAGGATACAGAGAAACTCAAGACAATCCCTCATGAGATGC
TGAAAAACTCAATCAATGCTACTATAGCCCGTCATGTTGCTGATTCAGGAGAGACAACCAATATCGCTGACTTCACTGTGCAGAAACAGTTCAAGGA
AATAAGTGACGTGGACCCAGAATTCAGGATTCGATCCGTCCTCTGCCAACCCATCTACAACAGTGAGCAGAAGATTATTGGTGTAGCTCAGATGATC
AACAAGGCTTGCAAACAGACCTTCACAGACCAGGATGAACATCTCTTTGAGGCTTTTGCTATCTTCTGTGGACTGGGTATCCACAACACTCAGATGT
TTGAGAATGCTATGAGGCTGATGGCCAAGCAACAGGTTGCCCTTGATGTGCTCTCGTACCACGCAACTGCACAACCAGACGAGGTTTCAAAACTCAA
GAAAAGTTGTGTGCCTTCAGCGCGGGAGTTGAAGCTGTATGAGTTCAGCTTCAGTGACTTTGACTTGACAGAAGATCAGACACTTCAAGGCACACTG
AGGATGTTCATCGAGTGTAACCTCATCGAGAAGTACCACATCCCATATGACGTACTCTGTAGATGGACGCTGAGTGTACGTAAGAACTACAGACCAG
TGATCTACCACAATTGGCGGCATGCTTTCAATGTGGCCCAAACAATGTTCTCCATTGTAATGACTGGAAAGCTGAGGAAGCTTCTGACAGACCTGGA
AATTTTTGCTCTCATCGTTGCCTGTCTCTGCCATGACCTGGATCATAGGCCGCGACCAACAACACTTTCCAAGTCAAGACTTCTTCCCCACTGTCTCTG
CTGTATGGTACCTCTACCATGGAACATCATCACTTTGATCACTGCATTATGATACTCAACAGTGAGGGAAACAACATCTTTGAGTTCATGTCTCCTG
ACGATTACCGTGAGGCTATAAGGATGTTGGAAAGTGCCATTCTGTCAACCGATTTGGCTATCTACTTCAAGAAGAGGGCTGATTTCTTCAAGCTGGT
AGAAAAAGGAGAGCACACATGGGACAATGAGGAAAAGAAGGGGCTGCTCAGGGGTATGCTGATGACAGCCTGTGATGTGTCAGCTATTGCCAAGCCA
TGGCTAGTCCAGCAGAAAGTGGCTGAGTTGGTCTTCAGTGAGTTCTTTCAGCAAGGCGATTTGGAGAGAGAAAAGCTCAAAGAAGAACCAATGGCGA
TGATGGACCGCAAGAAGAAGGATGAACTCCCTAAGATGCAAGTGGGTTTCATCGATGGCATCTGTATGCCTGTCTACAAGATGTTCGCTGAGCTGTG
GCCAGACCTAAAACCGCTCGAATCGGGAACCCAGCTCAACCGTGATAACTGGCAAGCATTGTCTGAAGGGAAAGAGCCAAATGATTGGGGATCTTCC
CCTCCCTCCCTCCAAACAAGCAAACAAATGGAGAGCACGATCCTCCAGAACGACAGGACCCAACTGGATACCCTTGATGAGAAACCTTCGTTGGAAT
GCATACAGAAGCAGGAAGGTAGTAGGAGTACTGGGGGCGGTGAACCCAAGAAACGGGGCTCACAGATGAGCCAACAATGCAAGGAAGCCCTGGCAGC
AAAGAAAAACAAGAGCTCCCTTTGTTCAGTAATT

OLIGO start 1len tm gc% any th 3'_th hairpin seq
El1 LEFT PRIMER 1461 20 58.97 50.00 0.00 0.00 0.00 GGCTTGCAAACAGACCTTCA
E2 RIGHT PRIMER 2008 20 58.96 55.00 0.00 0.00 0.00 GGAAAGTGTTGTTGGTCCCC

PRODUCT SIZE: 548, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

F) GMP-PDE delta (SPU_017612/ WHL22.621157)

>SPU_017612.1 CDS Sequence
ATGACACTGGAAGATTGGCATATCAATTGCACGGGACTCCTTCCAGAAGTATTCGATTTTCTTAATCTGGAAAAGAAGTCCGGTAAGACGATAGCGC
AATTTTGCGAGAAGAAATTGCAGAACGGTAACAAGTTCAGTGAGAAAGTGCTGCTACCTGTAGGTAACGTCGACAAGGTTGAAACGGATGCGATACA
GCATAGCAAGGCGGATGTGAAGGCGTCTGCATATTCCACCACTGGTCGGACGTACATGTATTTGAAGTACGTGGCCTGCTTGATCCGCCGTCTACAG
TGCTTGAAGTTCCGTCGCAAGCAGGCGGTCACAGAATTAGTCTTCTTGACTGATGAGCTTATGATCGATTTCAGTGAGAAAGTGCTGCTACCTGTAG
GTAACGTCGACAAGGTTGAAACGGATGCGATGCAGCATAGCAAGGCGGGTGTGAAGGCGTCTGGTGACCGATCTTCTCACAGAAACTGGATGAATCT
CAGAGATGCAGATTCAGGCAAAATCATGTGGCAAGGTCATGATGATTTATCGGCCCCGGATGGTGAGCATGAAGCCAGGGTGCCCAAGAAGATCCTC
AAATGCAAAGCCATCTCACGTGAAGTCAACTTCTCTTCCTTGGAGCCCATGCATCAATTCCGTCTTGAACAGAGGGTACTATTCAAAGGACGCTGCT
TAGAAGAATGGTTTTTTGAATTTGGCTTTGTAATACCGAACTCAACCAACACGTGGCAGTCAACGATAGAAGCAGCTGCAGAGGGACAAATGATGCC
CGCATCAGTACTCAGGTAA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
F1 LEFT PRIMER 16 20 58.97 50.00 0.00 0.00 0.00 TGGCATATCAATTGCACGGG
F2 RIGHT PRIMER 610 20 59.03 50.00 11.31 0.00 0.00 TGACTTCACGTGAGATGGCT

SEQUENCE SIZE: 795

PRODUCT SIZE: 595, PAIR ANY TH COMPL: 9.62, PAIR 3' TH COMPL: 6.18

G) Phospodiesterase (SPU_028720/ WHL22.281736)

>SPU_028720.1 CDS Sequence

ATGCCTGATGTCAAGTGTGTCTGCTGCAAGGCTCACGATGAAGTCCTTCATGGTGTTCTCACGCACGTTTCGGAGCAAATGACAAAGGCCTTCCGAA
TAAACGAGATGAAAGATGAGATGCTTAACCGGCTTAACGTCATGCAGCAAAGAATCGAAATGGAAGGCATGAAGGCGATAGAGATTGAAAAATGTAA
AATGGAGATACGAGCCATCAAGGATGAACTACTTGCGGCAAAGAGCCGCCATGCGAACTTCTGCAAGTGCACCATACCGGCAGCCCAGGGGAACGAT
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ACACGGATCGTCGCGAAGCGTGATGTCCCGAAATACCCCAAGTACACACTGTCACGCGAGACAAAGGAGTACCTCAAGAAGCCGACGTTCGACATTT
GGCATTGGGAATCGAATGAGATGCTCTGTCTTTTGGAACACATGTACCATGAGCTGGGCTTAGTAAACGAGTTTCACATGAATCCGATTGTTCTTCG
GCGATTTCTGGAGAACTACCGCAACAACCCGTTCCACAACTTTCGCCACTGCTTCTGCGTGACGCAGATGATGTACGGGATGATCTACCTGTGCGAC
CTGCAGTCTAAGGTGTGCCTCTCAGATCTGGGCATCCTACTCACGGCGGCAGTGTGCCATGATTTGGATCACCCAGGGTTCAACAACACCGCCCGGA
AAACTATCGCAATTATTCTGCAAAATTGCAAGATTTACTGTGAATTGGATCGCGACGCAAATCGCGAAGGTGTGAACGTCCCTATTGTCACAGAGCA
TTCGATAGGAATGTTACGTATTTTGTATTCTTACATTCCTTATTCTGGATACAGATATCAGATCAATGCTCGAACCGACCTGGCTATCCGATACAAC
GACATATCACCTCTAGAGAATCATCATTGTGCAGTGGCCTTCAAGATCATCAGCAACCCAGAATGCAACATCTTCAGGAACGTGCCGGAAGAACAGT
TCAAGGATATTCGGCAGGGTATCATCATGCTGATCATGGCGACCGATATGGCCCGTCATTCGGAGATCCTGGACCAGTTCAAAGCCCAGGTCGAAAG
TGGATTCGACTTCTCGAACCAGGAACATCTCAACTACCTTCGAATGGTATTGATCAAGTGCTGTGATATCTCTAACGAGGTTAGACCGTCTGATGTT
TCGGAGCCCTGGGTGGATTGCTTACTGGAGGAATATTTTATGCAGAGTGATCGGGAGAAGATAGAGGGTCTACCTGTAGCATCATTCATGGACCGTG
ACAAGGTGACAAAGCCCACAGCTCAAGTCGGATTCATCAAGTTCGTCCTCATCCCAATGTTTGAGGTGGTGGCGAAGCTCTTCACTCAGCTGAATGA
TTCAGTTGTAGAGCCGCTGCGATCCGCCCTCTACCGGTATGAAGAACAGAAGTTGAAGGAAGATCAGATCAAAGAGAAGCTGAGAGAGACGGCAAGA
ATTCGAGCGGAACAGGAGGGCGTGGACTAA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
Gl LEFT PRIMER 10 20 58.98 50.00 0.00 0.00 0.00 GTCAAGTGTGTCTGCTGCAA
G2 RIGHT PRIMER 536 20 58.98 50.00 0.00 0.00 0.00 CAGTGGCGAAAGTTGTGGAA

SEQUENCE SIZE: 1485

PRODUCT SIZE: 527, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

H) Cyclid nucleotide gated ion channel (SPU_000314/ WHL22.92304)

>SPU_000314.1 CDS Sequence
ATGTACAGAAAATTGAGTCCAGTGACCATAGTGATCAGAAACTCCCAGCGCAAGAAACCCAAGATAATCGTTTTTGATCGTTCATCGGGGACCTATT
CATCCTGGCTGTTCATCATCACTGTGGCAGTCCTATACAATTTGTACCTCATCATAGCTCGGGCATCTTTTGTTCAGCTCCAGACGAACTATCGAAA
TATTTGGTTTGCTCTGGATTACATCTGTGATTTCATTTACATCCTAGATATCTGCGTGCAGTTCAGAACAGGTTATTTGGAGCAGGGTTTGTTGGTG
GTGGATTCAACGAAACTGAGAATAAACTACATGCGAGCCCGTAAAGTGACCTTCTACCTAGATGTACTATCCATGCTCCCTCTTGATTTCCTCTACT
TCAAAATCACCACAGTCTATGCCATTGTCAGGCTACCCAGACTATTAAGGTTTCATAGAGCATTAGAGTTCTTCGAACGTACAGAGACCATCACCAA
CTACCCCAACATCGTCCEGCGTCGTCAACCTCATCATCTACATCATCGTCATCATCCATTGGAATGCTTGTATCTACTTCTCAATATCCAAAGAAATT
GGACTGGGCGAGGATGAATGGGTTTATGATAATAAATTTATGATGGAGTTACCAAACGGAACAAAGATATCTACTGATTCACTAACCAGAAGGTATA
TCTACAGTCTGTATTGGTCAACATTAACACTGACTACCATTGGAGAGACACCGAAACCAGTGACGAACGCAGAGCATCTTTTCGTTGTAATTGATTT
CCTTGTTGGGGTGCTTATCTTCGCCACCATTGTCGGTAATGTAGGCTCTATGATAAGCCACATGAATGCGAGTAAAGCAGACTTTCAGAACCGTATT
GATGGTGTGAAGCACTACATGAGCCTGCGTAAGGTCAGCAAAGAACTCGAACAAAGAATCATCAAATGGTTTGACTATATATGGTCCAATAAAAAGA
CCCTCGACGAAGAAGCAATACTCAACACTTTACCCGAGAAACTGCGGGCTGAAATTGCAATCCACGTTCACATGGACACTTTAAGACGAGTTACAAT
CTTTICTGATTGCGAACCAGGACTGCTGGTGGAACTGGTCCTGAAACTGAAACCTCAGGTGTTTAGTCCGGGAGATTTCGTTTGTCGGAAGGGTGAC
ATCGGACGAGAGATGTACATCGTGAAGCAGGGTAAACTTCAGGTGGTCGGTGAGGATGGTAAGACTGTTTATGCTACTTTAAGTGACGGCAGTTACT
TCGGTGAGATCAGCATTCTTAACGTACCTGGTAGCTTATCAGGTAACCGTCGAACTGCCAACGTACGAAGTGTTGGCTATTCGGACGTGTTCTGTCT
ATCAAAGGACGATCTTCTAGATGCCCTCAAGGAGTATCCTGAAGCGAGGGTTATTCTAGAGGAGAGAGGGCGTACTATCTTAATGAAAGATGGTTTG
ATCGATGAGGAAGCCGCTAAGCGAGGTGGACGCACCGCAGAGCAAGTCGAACAGCTTGAGAAACTGGATCGCTTGGATGGGAATTTGAACCATTTGC
AAACTCGCTTCTCACGCCTTCTGCAGGAGTATAGCAATTCTCAGATGAAACTGAAACAGAGATTGACGAGGTTGGAGAAGAAGATGAAATCAGTGAG
AAGCTCTCAGTCAAACAATGAAGCGACACCAAGGTCTGGTCTGGACACTGAAATAGACACGAACAGAGGTTACGTGTCATGA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
H1 LEFT PRIMER 503 20 59.08 55.00 0.00 0.00 0.00 GCGTCGTCAACCTCATCATC
H2 RIGHT PRIMER 1091 20 59.02 50.00 0.00 0.00 0.00 AGTCCTGGTTCGCAATCAGA

PRODUCT SIZE: 589, PAIR ANY TH COMPL: 0.00, PAIR 3'_TH COMPL: 0.00

I) RGS9-1 regulator of G-protein signalling 9 isoform 1 (SPU_002521/ WHL22.319117)

>SPU_002521.1 CDS Sequence
ATGGCACACTGGCGGCGGGTCAACGGTGCTGGTGATGAGGAATGCTCACACCCGAATCTTATCGTCTATCGAAAGATCGAAAGATTGATTCAGCGAA
TGCAAGATGAAAGGAACGGTGTACCTGTCCGGACTGTCAAAAGTTTCATGTCAAAAGTTCCTAGTGTTTTTACAGGAGCTGATCTGGTTCAATGGTT
GATGAAGACATTAGATATTGATCAAGGTAATGACACTAGATCGTCAGCGAATTCAATACATTTAGGGTCATTGCTAGCAGCACATGGCTATTTCTTC
CCCATAACGGATCACGTACTAACACTGAAGGATGACAACACATTCTATAGGTTTCAAACACCTTACTTCTGGCCCTCAAATTGTTGGGAACCGGAAA
ACACAGATTATGCGGTATACTTGTGCAAACGAACTATGCAAAACAAATCAAGGCTAGAACTGGCAGATTATGAAGCAGAAAATCTGGCCAAATTGCA
GCGGATGTTTTCTCGAAAATGGGAGTTCATCTTCATGCAAGCAGAGGCACAAGCAAAGGTGGATAAGAAGAGAGATAAGATGGAGAGGAAAGTGTTG
GATAGTCAAGAAAGAGCGTTCTGGGACGTCCATCGGCCTGTACCAGGCTGCGTCAACACTACTGAAATGGACATCAAGAAACTCAGCAGAATCAACA
GAACATTCAAGAAGAAAAAGATCAACTCACCTGAAGATGGTGATAGATGTCCGTCAGATTCAGACATACAATCAGCTTCAGAAGAAAGCAAGAGACA
GGTGGAGATGCTGAAAGCAAGATTAGAAAAGAGGCAGTACAAGACGTCTAAGGTGGCAGAACTATTAATAGCATACTGTCAGCAGTATCGAGACTAC
GACTCGTTTCTCTCGACGGAGCTGGGTCCAAATCCTTGGATAACGGACGACACAGCATTGTGGGAAGCTGCCTCAACTATGAGTTTGAAGGAGGTAC
CAGTGTACAGGGTCAAAAAATGGGGTTTCTCCTTCGATGATCTCCTGAAGGACTCCCTAGGGAGAGATCAGCTCTCAAAGTTCCTGGCTAAGGAGTT
CAGTGATGAAAACCTGAGGTTTTGGATTGCATGTCAAGACCTCAAAAAGATGACTTTCAGTCAAGTACCAGCAAAAGTGCAGCAAATATACAGTGAA
TTCTTGTCAGACAGTTCACACAGTCCCATCAACGTGGATTCAAAGATCCTGGACACTACACGCAAAAACATGAAGAACCCCAACCGCTACACCTTTG
ATGCCGCCCAGGAACATATATACACGCTAATGCGCAGCGATAGTTACCCCCEGTTTTCTCAGGTCGGAACAGTACAAGGAGCTGCTTAACCCAAAGAA
AAAGACCAAGTCTCTGATCCCTAAATTGCCCAGTCTGGCAACCAAGGCCGAAGTCTTGGATAAATGA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
I1 LEFT PRIMER 815 20 58.95 50.00 19.32 0.00 0.00 ACAAGACGTCTAAGGTGGCA
I2 RIGHT PRIMER 1330 20 58.85 55.00 1.66 1.66 0.00 GTTCCGACCTGAGAAAACGG

SEQUENCE SIZE: 1425

PRODUCT SIZE: 516, PAIR ANY TH COMPL: 5.34, PAIR 3' TH COMPL: 0.00
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J) GC1 guanylyl cyclase GC-E precursor (SPU_024339/ WHL22.210138)

>SPU_024339.1 CDS Sequence
ATGGCGCATGCACGACACCTGTTCCTATTGTTGGTCGCCTTTACGATCACGATGGTGATTGCGAGATTGGACTTCAATCCAACCATCATCAACGAAG
ATCGTGGAAGAACCAAAATTCACGTTGGATTACTGGCAGAATGGACGACCGCAGACGGAGACCAAGGAACACTGGGCTTTCCCGCTCTTGGTGCTTT
ACCATTAGCAATATCATTGGCCAACCAAGATTCTAACATTCTTAATGGATTCGACGTTCAGTTTGAATGGGTTGACACCCACTGTGATATTAACATC
GGAATGCATGCTGTAAGCGATTGGTGGAAACGAGGCTTTGTTGGTGTTATTGGACCGGGTTGTGGTTGTACCTATGAGGGTCGTCTTGCCTCTGCTC
TCAACATCCCCATGATCGACTATGTTTGTGATGAAAACCCAGTATCGGACAAATCCATCTATCCAACTTTCCTTCGTACCATTCCACCAAGCATCCA
AGTTGTCGAAGCCATGATCCTTACACTACAAAGATACGACTGGGATCAGGTGTCAGTAGTTGTTGAAAATATCACAAAGTACCGGAACATCTTTAAC
ACAATGAAGGACAAATTTGATGAGCGAGATTATGAGATTCTGCACGAGGAGTATTATGCAGGATTCGATCCATGGGACTACGAAATGGATGATCCTT
TCTCTGAAATTATCCAACGGACTAAAGAAACAACGAGAATTTATGTATTCTTTGGTGATGCTAGCGACCTTCGTCAGTTTGCTATGACAGCCTTAGA
TGAGGGAATCTTAGACTCGGGTGATTATGTGATTCTTGGAGCCGTCGTTGATTTAGAAGTCAGAGACAGTCAAGATTATCATAGTCTCGATTATATC
CTGGACACATCTGAATACTTGAATCAGATAAATCCTGATTATGCACGACTCTTTAAGAATCGAGAATATACTAGAAGTGACAATGACCGTGCGCTTG
AAGCTTTGAAGAGTGTTATCATTGTTACTGGAGCACCAGTACTAAAAACAAGAAACTGGGATCGATTTTCAACCTTTGTGATCGACAACGCACTTGA
TGCGCCTTTCAATGGTGAACTAGAATTAAGAGCTGAAATTGACTTTGCATCGGTGTATATGTTTGATGCCACGATGCAGCTTTTGGAAGCATTGGAT
CGCACACACGCGGCCGGGGGTGATATATATGATGGAGAAGAAGTGGTTTCGACCCTCTTAAACTCGACGTATCGAAGTAAGACCGACACCTTCTATC
AGTTTGATGAGAATGGAGACGGTGTAAAGCCTTATGTTCTACTGCATCTTATACCTATACCTAAAGGAGATGGAGGAGCGACTAAAGATTCACTTGG
CATGTATCCTATCGGAACATTTAATAGAGAAAACGGCCAATGGGGTTTTGAAGAGGCTTTGGATGAGGATGCAAACGTTTTGAGACCTGTTTGGCAT
AACAGAGATGAACCTCCTCTGGACATGCCTCCTTGTGGATTCCATGGCGAACTTTGCACAAATTGGGCACTTTATCTTGGAGCTTCTATACCGACCT
TCCTCATCATCTTTGGAGGACTAATTGGTTTCTTTATTTACAGGAAGCGGGCGTACGAAGCAGCACTTGATAGCTTGGTGTGGAAGGTTGACTGGAG
TGAAGTACAAACTAAAGCAACGGATACAAATTCTCAGGGATTCTCCATGAAGAACATGGTTATGAGTGCCATCTCGGTCATATCGAATGCTGAAAAA
CAACAGATATTTGCTACCATTGGTACATACAGGGGTACAGTGTGTGCTCTTCATGCAGTTCATAAGAACCACATTGATCTGACAAGGGCTGTAAGAA
CTGAGCTGAAAATAATGCGTGACATGAGACATGATAACATTTGTCCTTTCATCGGAGCTTGTATTGATCGTCCTCATATCAGTATCCTGATGCACTA
CTGCGCTAAGGGAAGCTTGCAGGATATTCTTGAGAATGATGACATCAAGCTGGACAGTATGTTCTTGTCATCACTGATTGCTGACCTGGTCAAAGGC
ATCGTCTATCTGCATAGTTCGGAGATCAAATCGCATGGGCATCTGAAATCAAGCAACTGTGTGGTCGATAACCGTTGGGTACTTCAGATCACTGATT
ATGGCCTGAATGAATTCAAGAAGGGACAGAAACAAGATGTCGACCTCGGTGACCATGCAAAACTAGCCCGTCAATTGTGGACATCACCAGAGCATCT
CCGACAAGAAGGGAGCATGCCTACAGCAGGCTCCCCTCAAGGAGATATATACTCGTTTGCTATCATCTTGACTGAACTTTACTCAAGACAAGAGCCC
TTCCATGAGAACGAAATGGATCTAGCAGATATCATTGCACGAGTGAAGATTGGTGAAGTGCCGCCCTATCGTCCGATCCTGAATGCAGTAAATGCTG
CTGCTCCAGACTGTGTACTCAGTGCGATACGTGCATGCTGGCCTGAAGATCCTGATGACCGACCCAATATCATGGCAGTACGCACCATGTTAGCTCC
ATTGCAGAAAGGATTGAAACCTAACATTCTGGACAACATGATTGCCATCATGGAACGCTATACCAATAACTTGGAAGAACTAGTAGATGAACGAACA
CAGGAACTGCAGAAGGAGAAGACTAAGACAGAACAACTACTTCATCGTATGCTTCCACCATCCATTGCATCTCAGCTGATCAAGGGTATTGCTGTCT
TACCCGAAACCTTTGAAATGGTATCCATCTTCTTCTCTGACATTGTTGGTTTTACTGCCCTCTCTGCGGCTAGTACACCAATTCAGGTCGTGAACCT
GCTGAATGATTTGTACACTCTTTTCGATGCCATTATTTCCAACTATGACGTGTACAAGGTCGAAACCATTGGAGATGCATACATGCTTGTATCCGGT
TTACCTCTCCGTAATGGAGATCGTCATGCTGGTCAGATCGCATCTACTGCTCATCATCTCTTAGAATCTGTCAAAGGATTCATTGTACCTCATAAAC
CCGAGGTCTTCCTTAAACTCCGTATTGGTATCCATTCGGGTTCATGTGTCGCTGGCGTAGTTGGTCTAACGATGCCTCGTTATTGTCTCTTTGGAGA
TACCGTCAACACAGCATCCCGTATGGAATCAAATGGACTTGCTCTGCGAATCCACGTTAGTCCATGGTGCAAACAGGTTCTGGATAAGCTTGGTGGT
TATGAACTTGAAGATCGAGGCCTTGTTCCAATGAAGGGTAAAGGAGAAATCCATACCTTCTGGTTGCTAGGACAAGATCCAAGCTACAAGATCACCA
AGGTCAAACCACCACCACAGAAGCTCACTCAAGAGGCCATAGAGATCGCTGCTAATCGTGTCATACCTGATGACGTCTAA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
J1l LEFT PRIMER 2196 20 59.02 50.00 17.47 1.62 0.00 ACTAGCCCGTCAATTGTGGA
J2 RIGHT PRIMER 2687 20 58.88 50.00 0.00 0.00 0.00 GCAATGGATGGTGGAAGCAT

PRODUCT SIZE: 492, PAIR ANY TH COMPL: 0.00, PAIR 3' _TH COMPL: 0.00

K) Recoverin or GCAP1 guanylyl cyclase-activating protein 1 or GCAP2 guanylyl cyclase-activating protein 2 (SPU_026993/
WHL22.599379)

>SPU_026993.1 CDS Sequence
ATGATCAACACCATACTTAAAGCTGGAGACTTCCACAAGACTGCGCGAGTGCTTCAGATTTTTTAATTGTTTTCACCCAGTTAAAGATGAAGTTAAGT
TATGGTCACGCGATAGCATTGTGAAAGAAACAGTGTGGAAGCGATCAGAAAAGGTTGATCATCTAGCATATTGTCCTAGTGGACACCTAACCGTGGA
AGAATTCAAGAAGATATATGGCAACTTTTTCCCTTACGGCGATGCGTCAAAGTTTGCAGAGCATGTATTCCGCACATTTGACTCCAACAGCGACGGC
ACAATCGACTTCCGTGAATTCATCTGCGCCCTGAGCGTCACGTCGCGAGGGAAGCTGGAGGAGAAACTGAAATGGGCCTTCAGTATGTACGACTTGG
ACGGCAACGGATATATATCAAGACAAGAAATGCTAGAAATTGTACAGGCGATCTACAAGATGGTCGGCACAGTGATGAAGATGCCCGAGGACGAGTC
GACGCCCGAGAAGAGGACAGACAAGATCTTCCGACAGATGGACGAGAACCTGGACGGCAAACTTTCCCTGGCTGAATTCATCAAGGGGGCGAAACAG
GACCCCTCGATAGTCAGGCTTCTCCAATGCGACCCTAGCGGGAGCGCTGTGACGAAGTGA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
K1 LEFT PRIMER 39 20 59.09 55.00 11.09 0.00 0.00 GACTGGGGAGTGCTTCAGAT
K2 RIGHT PRIMER 561 20 58.96 50.00 0.00 0.00 0.00 TTCAGCCAGGGAAAGTTTGC

SEQUENCE SIZE: 642

PRODUCT SIZE: 523, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

Rhabdomeric components

L) G-alpha-q subunit (SPU_003898/ - )

>SPU_003898.1 CDS Sequence

ATGGCTTGTTGTCTCAGCGAAGAAGCGAAAGAACAGAAGAGAATCAACCAAGAAATAGAGAAACAGCTACGAAAAGACAAACGAGATGCACGAAGGG
AGCTCAAGTTACTGTTGTTGGGCACGGGAGAGAGTGGTAAAAGTACATTCATCAAGCAGATGAGAATTATTCATGGGGCAGGTTACACGGAAGAAGA
TAGGAAGACATTCACCAAGCTTGTATACCAAAATATTTTCATGGCCATCAATGCAATGATCAGAGCCATGCGACACACTCAAGATAGCCTACGGCGAC
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CCTACAAATGAGAAAAAAGCTCAGGAGGTCAGATTAATAGACCACGAAACAGTAACGGTATTTCATGAGCCATACATAGGTTATGTAGATTGTATAT
GGAATGATTCAGGAATTCAAGAATGTTATGACAGAAGGAGAGAATACCAGCTCACAGATTCAGCAAAATACTACCTTAGTGATTTAAAGAGAATTTC
AGATTCAAACTATATACCTACGGAACAAGATGTACTCAGAGTACGAGTACCCACAACAGGAATCATTGAATATCCGTTTGATCTAGATTCAATTATT
TTCAGGATGGTCGATGTTGGAGGGCAGAGGTCAGAACGACGAAAGTGGATTCACTGTTTTGAGAATGTCACATCTATAATGTTTCTAGTCGCCTTAA
GTGAATATGACCAATTGCTTGTCGAGTCAGATAGTGAGGTGATATTAAAAGTGCGAGTGCGATTTGATCCTGACCAGTACCGACGCTACAAGTGGCG
CCTTCGACTGGCCATCATCATCCTGCCCCTGCTCTTCACTGTGATCAACCTGGTCTCAGGGATCTTGATCCGTGTGTTAGACGGCGAGCATGCCAAA
CACGACACACTCACCACTAGAGTTATCCTCAATGAAGGTCTCTTCCTCCTTGCAGCAGTCTGGCTTTCCATCTGTATCTGGAAGATAACACACATGA
CGTCAGCCAACGTGCTCCTTGAGGCAAGGGGAACCACAGTAGGTCAAGCCTGTGTTGCATGTGTAGTCATCATCCTCCTGTATGTGACC

OLIGO start 1len tm gc% any th 3'_th hairpin seq
L1 LEFT PRIMER 258 20 58.94 50.00 12.51 0.00 0.00 AGCCATGGACACACTCAAGA
L2 RIGHT PRIMER 821 20 59.38 55.00 0.00 0.00 0.00 ATCACAGTGAAGAGCAGGGG

SEQUENCE SIZE: 1059

PRODUCT SIZE: 564, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

M) Phospholipase C (SPU_009929/ WHL22.169178)

>SPU_009929.1 CDS Sequence
GATGACACAATCGACCCTAAGAAGTTCACATATGATGTTTTCTTCACATTCTACCTTCGCTTAGTCAACCAAAAAGAAGTGGACAGATTATTCCAAG
AGATGGGAGCGAGGAACAAGCCCTATTTGCAGACAGCCCAACTGGTAAAGTTCCTGAACAATGAACAGCGTGACCCTCGTCTTAATGAGATCCTTTA
TCCATTCTATGATGCCAAGACAGCTATAAGTATCCTGGAGAGGTTTGAGAAGAACAAACAGTTTGCCAAGAAAGGTAACATGTCAATAGAGGGATTG
ATTCGTTATCTAATCAGTGATGATAACCAGGTGGATGGTCTGGAGTCTTATCTTATTGCTCAAGATATGGAGCAACCATTGGCTCATTACTTCATCA
AATCATCTCACAACACATACCTCACAGGTCATCAGTTGACAGGGAAGTCGACCGTTGAGATCTATCGTCAGGTGTTACTATCAGGATGTCGCTGTGT
AGAGCTGGATTGCTGGGATGGTAAAGGTGATACAGACCCTGAACCGGATGTGATAGAAGCCATTAATGAAACAGCCTTCAAGACGTCGGAGTACCCT
GTTATCCTTTCCTTTGAGAATCACTGCAATCAAAAGCAGCAGGCCAAGATGGCTCATTATTGCAGAACAATCTTTGGAGACAAGCTTCTCATTGATC
CACTCCCAGAGTTTCCTTTGGAAGCGGGGAAGCCGCAGCCCTGTCCGGCAGCTCTCAAGAATAAGATCCTGGTGAAGAACAAGAAACGCAAGCACAC
AGATGCAAGCAAGAAACGAGCAGCCTCTCGAAGAGGTAGCAAGCGTAAAATGCTCCTACAGATCTCAGAAGTGACTTATGATGAGACTATTATCCCA
GACGACTCAGGAAAGGGAGTGAAGACAATTGAGGAGACGGCTGAGACACCAGAACAAAATGGAGAAGTCACAGTGAAAAGTGATGATGTAAAGCAGA
GAAGAAAATTATCTCGACAGGAGGCACAAGAGAAAAGTGGAGATGTTGAAATGAACGGTGAAAATGGAGATGCAGGCAATGATTCCAAACTGACTGA
TGTCCAAGAGGACGACGATGAGGAGAGTGATGAAAGCGATGATGAGGAAGCTCTCAGTAAGGAAGAAGCGCTCAAAAAGCTGCAGGAAAAGAAAGAC
AGGGGTACAGCTGGTCAAGAAGCAGAGGCCGGAGCTGAGATGTCAGCCTTGGTCAATTACGTCCAGCCGGTCCATTTCTCAACTTTTGAAGGGTCAG
ACAAGAGAAACCACAGCTATGAGATCTCATCATTTGTGGAAACTTCAGCCATGAACAGAGTCAAGGAAAATCCTGTGGAATTCGTCAACTACAACAA
GAGACAATTGTCTAGGATCTACCCTAAAGGAACCAGAGTAGACTCAAGTAACTTCATGCCTCAGATCTTTTGGAATGTTGGTTGCCAGTTGGTTGCT
CTCAACTACCAAAATCTTGATCTACCAATGCAACTGAATCTTGGTCTGTTCAATCTGAATGGTAGAACAGGATATATCCTTAAACCTGACTTCATGE
GAAGAAAGGACCGCCATTTTGATCCCTTCGCTGAATCCACCATGGATGGCATTGTAGCTGCTACCGTAGAGGTCAAGGTGCTATCTGGCCAGTTCTT
GAAGAAGGTTGGAACATACATTGAGGTGGACATGTTTGGTCTACCAGCAGACACAGTAAGGAAGAAGTATAAGACTAAGACTATCAACAATACTGGT
ATCAACCCTCAGTATGAAGATGATGGCTTCATCTTTCCCAAGGTTATCATGCCTAAACTAGCTATGTTAAGAATCACTGCATATGACGATAACAACA
AACAGATTGGACATCGTATTCTACCAGTAGAATCACTCAGACCAGGGTATCGTCACATCCCTCTGCGCAATGAGCTCTACCAGCCTCTCCTCATGCC
ATCAGTCTTTGTCCACATCAAGGTCAAAGACTACGTGCCCGTTGGTCTGGCAAACTTTGCAGATGCTCTGGTCAATCCTATCCAGCATCAGCTCAAG
ATGGATGAACAGGTCAAGATCAGGACAGAAGCTCTCTCAATTCTCTTGGAAGAAGCCAAATTGATGGAGGAATCGAAAGAAGCTGCAGTAGAGGACA
GTCCCGATGATATGGCTAACACCTCCACACCGGAGCCTCAAAAAGAAGAGACCGGTGAGGGATCAAGTTCACCTGAGCAGGAGAGTAAACCTCCAAT
AGATAATGCTGCCATAACTGAGGGGATGCCTAGTAACAAACCACTGGAACATACTAGGCTGGAAATGCTAGAGAAGAGGGACAGCGTTGATGCGTTG
CCCCCGACGATGAAGAAAGTATCCAGGCCATCCAGACAGTCAGAGGAGATAGTTGCTGCCACCATTGATGAGATTAAAGTAGAGAAGAAATATGTGA
AGGTGAAGACACGGCTGGACAATGAGCTCAATAAGCTGGTGAAGAAACAAGAGAAAAAACAGAGTAAACTCAAGAAGGGTCAGTCCAAGGACATCAC
TAAATTCAAGATGTCTCAAGAGAAAGCGAGGAGGAATAAAGAGAAGAAGCTGGTTTCCATGGAGAAGAAGATGCTCAAGAACACAACTCCTGAAGAA
GCCAAACAGCAAAGTGCCAAAACTATGGAGCAGTTAGAGCAAGAACAAGAAAAAGAGATGCTGAAGAAGCAAGTGAGCCAGGAGGATGCGTTGATAG
GTCTGTACAGACGTCACTACCTGGAGGAGAAGGAGCTGAAGGTGGAGCATGCAGAGATGCTCTTTGAGCTTCAGATGGATCTCATGGCAGCTATACA
TGAAAAACAACTCAAGAAACTAGATGGTCAGCACAAGAAGTAA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
M1 LEFT PRIMER 1075 20 59.06 60.00 0.00 0.00 0.00 GAGGACGACGATGAGGAGAG
M2 RIGHT PRIMER 1571 20 58.83 50.00 0.00 0.00 0.00 AAATGGCGGTCCTTTCTTCG

PRODUCT SIZE: 497, PAIR ANY TH COMPL: 2.80, PAIR 3' TH COMPL: 2.25

N) Trp-C protein (SPU_017326/ WHL22.316252)

>SPU_017326.1 CDS Sequence

ATGCCCAAGTTCTACCATGTCGATTCGCTCAGTGACCGCATCCCCCTCCAGATCGTCCGGAAAGAAGTGCCCCTATCACCGGCCGAGAAGCAGTACC
TGTTGGCGGTAGAGCGCGGAGACTTCGCCAGTGTCCGCCATGCACTCGAAGAGGCGGAGATCTACTTTAACATCAACATCAACTGCAGGGATCCCCT
TGGTAGAACTGCGCTCCAGATCGCCATCCAGAATGAGAATATCGAGATCATTGAGCTCCTACTTCGTTACCATGTACACGTGGGCGACGCTCTCCTT
CACGCCATCGATGAGGAGGTGGTTGAGGCCGTCGAACTCCTCCTCAACTATAAACCTCCAAAGAAGGATCTCCATGTTCGGATACTGCAAGAGACCC
AAGAATCCGACTACGATTCCGACATCTCCCCGGTTATCATGGCGGCTCATCGGAACAACTACGAGATCCTCAAAGTGCTGTTAGAACGCGGGGCATC
GATCCCTAAACCTCACGATGTCAAGTGCGGCTGCGACGACTGCAAGGCCAGCATACGTCACGATGGCTTGCGACATTCGCGGTCAAGGCTAAATATC
TACCGTGCCCTCGCTAGCTCTTCGCTGATCGCCCTGTCCAGCGATGATCCCGTACTCACTGCCTTTGAGTTGAGTTGGGAGCTGCGAAAACTCAGTC
ATAAAGAAAACGAGTTCAAAGAGGAGTACGAGAAGCTAGCTGAGAACTGTCGAGTGTTTGCGACACAGCTGTTAGACCAGACGAGGGGATCTCATGA
ACTTTCAACAATCCTTAACCGCGATGAAGATGCTCCATCGAGTGAGGAACCCCTCAGCAGATTAAGACTTGCCATCAAGTACAAGCAAAAAGCGTTT
ACGGCCCATCCGAATTGCCAGCAGCTGCTCGCAGAGGAGTGGTACCAGGGCCTACCGGGCTGGCGGAGGCAGCATTGGACCCTCAAGGTGGTCATCA
GCTTCTTTGTGGGCATGTCCTTTCCTCTGCTCTCCTTCATGTACCTCCTGGCGCCCAAGACTAAGCTTGGTCGGATACTTCGTCTTCCATTCATCCA
GTTCATTTGTCATAGTGCCTCCTATTTGATTTTTGTCGTCTTACTTCTCATGGCTTCGCTCGAATTCACCAACAAGTCAACGTCCACTCGCGTCGAC
ATGCGTGGTCCCCCGCCCACGGATGTCGAGCTCCTTATCGCCTGGTGGATCGCAGGGTTTGTGTGGGCAGAAATCAAACAACTCTGGGACGCGGGAA
TAATCGAGTATCTTCATGACTGGTGGAATTTACTCGATTTCATAACCAACTCGCTTTATATAACAGTCATAGGTCTAAGGGTCACGGCATACGTAAA
TATACACATAATCCTTAACGAGTCTTACGGCGATAAGGACCTGTTACGAGCGGAGTGGGACATGTGGGATCCGACGCTCTTAGCTGAAGCAGCCTTC
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GCCGTCGCAAATGTATTGAGCATGCTTCGTCTGGTATACCTCTTCACCGCAAACTCTCACCTGGGACCTCTCCAGATCTCCTTAGGACGCATGGTCG
AGGACATCATCAAGTTCGCTTTTCTAGCCATCCTCGTCCTCTTCTCCTTCGCAGCCGGTCTCAATCAGCTCTACTGGGTGTATAGCAGCCCCCCTCC
TGACGGTAGTGGGTGCACCGGGGTGACCTGTGAAAATCAGGACCATAATGTATTCTCAAATATGCTGACGTCGCTGGAGGCGTTGATGTGGGCCATC
TTTGGCCAGCTGCAGGTATCCCTAGTCAACCTCCCAACAAGTCATGACGTCACCGTGTTCATCGGCGCCGTCATGCTCTGCACATACAGCGTCATCA
CCATTGTCATCCTTCTCAATCTCCTCATCGCCATGATGAACACCTCGTTCCAGAAAATTCAGACCCGAGCCGACATGGAGTGGAAGTTCGCCCGAGC
CAAGCTGTGGATGAGTTACTTCGAAGAAGGCAACACCCTTCCTTCCCCCTTCAACACCATTCCAAGCCCAAAGTCATTCTACTATTTATTCCGATAT
TTATGGAAAAATATATGCTGTTGCCAATGGAAGCTAAAGAAACAAGCCAGTGTCAACAGAGTGCGAGATCAGACCCAAAAGAAGAAGGAGAAAGACG
ATGACTATCAGAGGGTCGTGAAAAACTTGGTCAAGCGTTACCTGAAGTACTCTAAGCGTCCTGAGCAAGAGAAGGGCGTCACCGAGGATGATCTCAA
CGAGATCAAACAGGACATCTCTGCATTCCGTTACGAGATGCTGGAAATCCTCAAGAACAAGGACCCAGTTATCGCTCCCAAAAGCGTCAAGTTCCAA
AACGGAACCGGTGGCAATGGCCCCGATCCTAGCCGAAAGACCACGAACTCATCCGATGACGAGAATAAGCTTCACCGAGTCCCGTCTTACCTCTTTC
GGAAGGGTAAGAAGGGTAAGAAGAGTCCGTCACATGACCAGCCCGCCATTAAGCCAATCAAGAGCGCCCCCATCCGGGATGAGGATTACGCCATGCC
CGATTTTTTAAAAGTGAAAAACGTGAAGAACGTGATGGTGGCAGTCAACGAACTCCAGAAGAAATCTATGAGGAGAAGGTTATCACAGGCCGCGGTG
ATTGAGGCGAGAGCTCAAGAGGAGAGACGGTTGTCTGCAGCGTCTCTATCACCTGATGCCATACAGGAGGTGGCTCCGCCATGGAAAAAGCCAACTT
TGAGTGATTCGGGCATATCCGAATCGGTGGAAGACCCACCCGTTCCCAGGAAGTTAGACACGGTCAACGAGTATTCGACGGAGGAGGAAGGAGTAAG
TCAGAGTGGTGGTAGTCAGGAGAGGAAAGACAGGGATGTTGATGATGTGGACGATTCATCGCGAAGATCATCGCTTACTGGGAGAGCCCCTCTGAGG
AGAGAAAAGGCTTTTGCGTCAAGAATGGAGGAAGAGGGCAATCCGCCGGTGATTCCTCCAGCAGATCCAAACGCACCCTCTCCGGACGCCAGTGCCG
ATTCGCAGAGCACCTCAGGGATAGCCTCGACAAACAATAGCTTCCAATCGCAGGACTCAAGAGAGGACGACCTTGACGATGAGAACGACGATGGTGA
CGATGACGATGACGACGACGACGACGAAGACGATGATCTACATATCACTGAGGCCAACGCTACTAACAGCAGCGAGGAGATCGACGAAGACGCCTCG
GTCGATCGAGTAAATTTATCGCCGCTGCTTGGTAGTAGTGGGGGCGTTGGAGATCAACCTTTGACAGAAATTCCGCAGCTTAATTGGCAATCCAAAA
GGCCTTCAAACCCATGGACGGACAATAATCCCCCAAAAGATGGCATCGAAATGAAGAGATATGTCTACAATGGTTTCAACAACTCATCACAATGA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
N1 LEFT PRIMER 1765 20 59.03 55.00 0.00 0.00 0.00 TCCGTAGTCAACCTCCCAAC
N2 RIGHT PRIMER 2204 20 59.03 50.00 0.00 0.00 0.00 TCTTGCTCACCACGCTTAGA

PRODUCT SIZE: 440, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

Shared components

O) Visual G beta (SPU_000508/ WHL22.101602)

>SPU_000508.1 CDS Sequence
ATGGCGACTGAATTAGAACATCTACGGCATGAAGGGGAGACCTTAAAAAACCAAATCAGGGATGCCAGGAAGGCTGTACAAGATACCACATTGATGC
AAGTCACACAGAATATGGATCCAGTTGGAAGAATTCAAATGAGAACTCGTCGCACACTTCGGGGTCATTTGGCAAAAATATACGCCATGCATTGGGG
TACAGATTCAAGCAGAAACCTAGTGAGTGCGTCACAGGATGGCAAATTGATAGTCTGGGATTCATACACAACTAATAAGGTGCATGCAATTCCATTG
CGGTCCAGCTGGGTGATGACCTGTGCCTATGCTCCTACCGGTAGTTTTGTGGCCTGTGGAGGTCTCGACAACATATGTTCAATCTATAGCCTCAAGA
CCAGAGAAGGCAATGTTCGTGTAAGCAGAGAACTCCCAGGACATACCGGTTACCTATCATGCTGCCGATTTATCGATGACAATCAAATAGTAACTAG
TTCAGGAGATATGTCATGGTAA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
01 LEFT PRIMER 20 20 58.95 55.00 0.00 0.00 0.00 ATCTACGGCATGAAGGGGAG
02 RIGHT PRIMER 432 20 59.09 55.00 0.00 0.00 0.00 ATGTCCTGGGAGTTCTCTGC

SEQUENCE SIZE: 507

PRODUCT SIZE: 413, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00

P) Rhodopsin kinase (SPU_001621/ WHL22.64904)

>SPU_001621.1 CDS Sequence
ATGGCGGATCTAGAAGCCGTTTTGGCGGATGTGAGCTACCTTATGGCGATGGAGAAGAGTAAATCTACTCCGGCTGCCAGGGCAAGCAAGAAGCTGG
TTCTTCCTGACCCGAGTGTAAGAACAGTGATGTACAAATACTTGGAGGAAAGGAAAGAAATCACATTTGAAAAGATCTTTGGACAAAAGCTTGGATA
TCTTCTGTTCAAAGACTACTGTGAGAATTGCGCAGATGTGCAAGTCCAGCAACTGCAATTCTATGAAGCGATCAAAGATTACGAAAAACTTGACACC
CTTGATGAAAGGCTAGAAGAAGCCAGAAGAATCTTTGATAACTACATCATGAAGGAAGTCTTATCATGTACACATCAATTCTCAAAGTCAGCAGTAG
AAAACGTGAGACAAAGACTGACCAACCAAGAAGCCAAACCAGACCTCTTTAGTGACTACATAACTGAAATCCTCAATTCACTGAAAGGAGAAATATT
TCAGAAATTTTTAGAAAGTGATAAGTTTACTAGGTTTTGCCAGTGGAAAAATGTAGAACTAAATATAAATGGCATGTTGTCAATGAATGACTTCAGT
GTACACAGAATAATTGGCAGGGGTGGCTTTGGAGAAGTTTACGGGTGCCGCAAGGCTGACACCGGCAAAATGTATGCAATGAAATGCCTGGATAAGA
AGCGGATAAAGATGAAGTCTGGAGAAACACTTGCCCTCAACGAAAGAATAATGCTTTCTCTAGTCAGTGAGACTGATTGTCCGTTCATCGTGTGCAT
GACGTATGCATTCCAAACACCAGATAAACTCTGTTTTATTCTAGATCTTATGAATGGTGGAGACCTCCACTACCACTTGTCACAGCACGGTGTATTC
TCAGAGGAAGAGGTTGGCTTCTACGCAGCAGAGATCATCTTGGGTCTAGAGCACATGCATGTCCGTAACGTGGTCTACCGIGACCTCAAGCCTGCTA
ACATCCTACTCGATGAGAATGGTCATGTCCGTATCTCGGATCTCGGTCTGGCCTGCGACTTCTCGTCGAAGAAACCACACGCCAGTGTAGGTACCCA
TGGTTACATGGCCCCTGAAGTACTGTCCAAAGGAACTGCCTACGACTCCAGCGCTGACTGGTTCTCATTAGGATGTATGTTGTTCAAGCTACTCCAT
GGGCACAGTCCGTTCAGGCAGCACAAGACGAAAGACAAGCATGAGATTGATCGGATGACATTGACCATGGATGTTGAGTTCCCAGACAAGATGAGTG
ATGAGATGCGAGCATTACTAGCAGGTCTACTACAGAGAGAGGTAGCAAGCAGGTTAGGCTGTGAAGGCAGAGGGGCAACAGAAGTGAGAGAGCACCC
CTTCTTCAAGACTACAGACTGGAACCAAGTATACTATCAAAAGGTACAACCTCCCCTCATACCACCCAGAGGTGAAGTCAACGCTGCGGATGCCTTC
GATATCGGATCCTTTGATGAGGACGACGTTAAGGGGATCAAGGTAAGAAACCTTCCTTTTCTCACTTTTCTGAACCTTAAAACCTAA

OLIGO start 1len tm gc% any th 3'_th hairpin seq
P1 LEFT PRIMER 414 20 59.04 55.00 0.00 0.00 0.00 CCAAGAAGCCAAACCAGACC
P2 RIGHT PRIMER 973 20 58.94 50.00 0.00 0.00 0.00 TGTTAGCAGGCTTGAGGTCA

SEQUENCE SIZE: 1542

PRODUCT SIZE: 560, PAIR ANY TH COMPL: 4.55, PAIR 3' TH COMPL: 9.24
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Q) Arrestin (SPU_023889/ WHL22.709217)

>SPU_023889.1 CDS Sequence
ATGGATGTTAGATCTGTGGTTACACTGATCCACAGACTGCTTGGGGTTGTTGCACAATCTGATTTAGGGTGTTATCAGTTTTCATCGCTGGCGCTAC
AGCTTAGAAAAGTGTTGGAGGGCTACAGGGCTGGAGCAGTATTCAAGAAATCAAGCCCTAATGGCAAGATCACAACATATCTTGGCAAAAGAGATTT
TGTCGATCATCAAACGCACATCGATCCAATTGATGGAGTTGTGTTAGTAGACCCAGACTACCTGAAGGAGAGGAAGGTCTTCGCTCATGTCCTAGCA
GCATTCCGCTATGGTCGGGAGGATCTGGATGTCCTGGGTCTGACCTTCAGGAAGGACCTGTACTTAGCTTCAGTCCAGGTCTACCCTAAGCCATCCG
ATGAGCAGAGACCACTTACCAGACTTCAAGAGAGACTCATCAAGAAGCTAGGCCCTAATGCGTATCCCTTCTACTTTGAACTGCCGATCAATTCTCC
TTCATCGGTCACGCTGCAGCCTGCACCAGGTGATACAGGCAAACCATGCGGTGTAGATTACGAACTCAAAACTTACGTTGCAGAAACGATGGATGAG
AAACCCCACAAGAGGAACTCTGTTCGGCTTGCCATCAGGAAGGTCACCTATGCCCCTGACGTCCCAGGCCCACAACCCACAGCTGAAGCACAGAAAG
ACTTTGTAGTTAGCCCAGGAGCTCTTCATCTAGAGGCAACACTTGACAAAGAGATGTACTACCATGGAGAAAGCATTGAGGTTAACGTCACCATAGC
CAACAATTCAAACCGAACGGTGAAGAAGATACGGGTGTCGGTCCGGCAGTACGCGGACATCTGCCTCTTCTCAACCGCACAGTACAAATGCCCAGTA
GCTGTAATGGAAACAGAAGATCCTGGATACGGTCTGCCTCTCAAACCTAGCCAGAAGCTGACCAAGGTATTCTGTGTCACGCCGTTACTTGACAACA
ATCGAGACAAGCGAGGGCTGGCGCTAGATGGCAAGCTTAAACATGAGGATACAAACCTGGCTTCATCCACACTGTTAAGTGCAAAAACAGAGAAGGA
ACGTGAGAGCCTGGGAATCATTGTACAGTACAAGGTCAAAGTGAAGCTAATCATCGGCTACGGAGGGGACTTATCGGTGGAGCTACCATTCACTATG
ACCCATCCTAAACCCGTTGAAGAAGAACCAGCACCTGTTCCTGCCCCTAGCCCCAACACTAACAAAGAGACAAATGAGGTTCCAGTTGACACAAATC
TTATCAATTTTGATGCAAATGGTAGTGACAACCAGCAGAAGCTTGAGGACGAGGATGATGATTTGATATTTGAGGATTTCGCCAGACTCCGACTCAA
AGGCACAGAGGGTGAAGGAACAGAGGCTTGA

OLIGO start len tm gc% any th 3'_th hairpin seq
Q1 LEFT PRIMER 688 20 59.09 55.00 4.08 0.00 0.00 GTTAGCCCAGGAGCTCTTCA
Q2 RIGHT PRIMER 1228 20 59.01 55.00 0.00 0.00 0.00 TGTTAGTGTTGGGGCTAGGG

SEQUENCE SIZE: 1389

PRODUCT SIZE: 541, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.82

R) Retinal-binding protein (SPU_004473/ WHL22.664046)

>SPU_004473.1 CDS Sequence
ATGAGTGGTTTTGTCGGAGATTTAAGTGAGAAGCAATCGAAAGCACTGAATGAGCTAAAATCTAGATTAGATGGAGTTGATCTTCCCGAACCAGATG
ATGTTAATATTGATTCCTACCTCTTAAAATGGCTCAGGGCTCGTCAATTTAATGTTGAACAAGCAGAACATATGCTAAGAAATCATTTATCATTCAG
GGAAAAGTGGAACGTGCAATCGCTGCTAGACAATTGGCATCCACCCGAGGTGCTGGACAAATACATGGTCGGAGGCTTGTGCGGGTTCGACAAAGGA
GGCTCACCTGTTTGGTACGAGCCGTTTGGTTACTTTGACCCGAGGGGTGTGGTTCTGTCGAGTACGGGAAATGACCTGACGAAAATGAAGATCCAGA
TATGTGAAGAAATCCTCTCTCAGCTCAGGTCACAGACAAAGAAGCTAGGGAAGCCGATAGACAGGATGGTCATTGTGTTTGACTTGGAGAAAGCGGG
TCTCTCTCACATCTGGAAGCCATTCATCGATCGATACAACCTCATCCTGCAAATATTCGAAGCCCACTACCCAGAAATGCTCAAAAAGTGCTTTGTG
ATTAATGCTCCAGCTTTCTTCTCGATCGGTTTCAACTTGATCAAGAAATTCCTGAGTGAGGCTACCAAGAATAAAGTCGTTGTTCTTGGAGGGAATT
ACCAGGATGTATTAAAAGAAGCGATAGGTGAAGACTTGCCTGCTCATTTTGGTGGTACAGTATGTGACCCAGATGGTGACCCCCGCTGCGTGTCAAA
GATCCGATTTGGTGGAAAGGTGCCTGAGTCATTCTACCTGAAGGATAATTTCATGCATGAAGGCAGACTGACTGAGGTCAATATAGGTCATGGGTCA
AACTTAGAGCTTACGTACGAGGTCAAGGAGGAAGGCCATGTACTCAAGTGGGAGTTTATGACAAGACATAACAACATTGGTTTTGGAGTGTTCTACC
AGCCATCCCCAGATACCAAGAGAGCACAGTGGGAGGAGGTGGTGGAGAGAACAAGATGCTCATGTCATCTGGTACCGGAGATTGGAGGATATTCTTG
TGAGAAGCTGGGAACGTACATTGTCCAGTTTGACAATAGCTTCAGCTGGATGAGAGGCTCTCTACAGGGTCCGGCTGATTCACGCAGACAATGGGTG
AACCAGTATAATATTGCTCCAATCATCCTGAAGCAATCCCCTGGTACTCTGCAAGACCACTGTCACTCAATCAGGACCGAGGCTAAACACAGTCCTG
CGGAGAAGCCTTAG

OLIGO start len tm gc% any th 3'_th hairpin seq
R1 LEFT PRIMER 215 20 58.98 50.00 11.22 0.08 0.00 CGCTGCTAGACAATTGGCAT
R2 RIGHT PRIMER 808 20 58.93 50.00 0.00 0.00 0.00 ATGACTCAGGCACCTTTCCA

SEQUENCE SIZE: 1275

PRODUCT SIZE: 594, PAIR ANY TH COMPL: 0.00, PAIR 3' TH COMPL: 0.00
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APPENDIX I: MAIN PROGRAMS DEVELOPED TO RUN THE

VERTICAL MIGRATION SET UP I

Plankton column: graphic user interface

FUNCTION VARARGOUT PLANKTON_ COLUMN (VARARGIN)
% PLANKTON_ COLUMN MATLAB CODE FOR PLANKTON COLUMN.FIG

3 PLANKTON COLUMN, BY ITSELF, CREATES A NEW PLANKTON COLUMN OR RAISES
THE EXISTING

3 SINGLETON* .

% H = PLANKTON COLUMN RETURNS THE HANDLE TO A NEW PLANKTON COLUMN OR THE
HANDLE TO

3 THE EXISTING SINGLETON*.

3 PLANKTON COLUMN ( ' CALLBACK ', HOBJECT , EVENTDATA, HANDLES, ...) CALLS THE
LOCAL

3 FUNCTION NAMED CALLBACK IN PLANKTON COLUMN.M WITH THE GIVEN INPUT
ARGUMENTS .

3 PLANKTON COLUMN ( 'PROPERTY', 'VALUE',...) CREATES A NEW PLANKTON COLUMN
OR RAISES THE

3 EXISTING SINGLETON*. STARTING FROM THE LEFT, PROPERTY VALUE PAIRS ARE
3 APPLIED TO THE GUI BEFORE PLANKTON COLUMN OPENINGFCN GETS CALLED. AN
3 UNRECOGNIZED PROPERTY NAME OR INVALID VALUE MAKES PROPERTY APPLICATION
3 STOP. ALL INPUTS ARE PASSED TO PLANKTON COLUMN OPENINGFCN VIA
VARARGIN

% *SEE GUI OPTIONS ON GUIDE'S TOOLS MENU. CHOOSE "GUI ALLOWS ONLY ONE

% INSTANCE TO RUN (SINGLETON)".

% SEE ALSO: GUIDE, GUIDATA, GUIHANDLES

oo

EDIT THE ABOVE TEXT TO MODIFY THE RESPONSE TO HELP PLANKTON_ COLUMN

% BEGIN INITIALIZATION CODE - DO NOT EDIT
GUI_SINGLETON 1;

GUI_STATE = STRUCT('GUI NAME',
'GUI_SINGLETON',
'GUI_OPENINGFCN',
'GUI_OUTPUTFCN',
'GUI_LAYOUTFCN',
'GUI_CALLBACK',
IF NARGIN && ISCHAR(VARARGIN{1})
GUI_STATE.GUI_CALLBACK
END

IF NARGOUT
[ VARARGOUT{1:NARGOUT} ]
ELSE

MFILENAME,
GUI_SINGLETON,
@PLANKTON_ COLUMN OPENINGFCN, ..
@PLANKTON_ COLUMN OUTPUTFCN, ...
(1.
[1);:

STR2FUNC (VARARGIN{1});

GUI_MAINFCN(GUI_STATE, VARARGIN{:});

GUI_ MAINFCN(GUI_STATE, VARARGIN{:});

211



Photoreception in Ambulacraria

END
% END INITIALIZATION CODE - DO NOT EDIT

)

% ——-- EXECUTES JUST BEFORE PLANKTON COLUMN IS MADE VISIBLE.
FUNCTION PLANKTON_ COLUMN_ OPENINGFCN(HOBJECT, EVENTDATA, HANDLES, VARARGIN)
THIS FUNCTION HAS NO OUTPUT ARGS, SEE OUTPUTFCN.

oo

% HOBJECT HANDLE TO FIGURE
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

VARARGIN COMMAND LINE ARGUMENTS TO PLANKTON COLUMN (SEE VARARGIN)
CHOOSE DEFAULT COMMAND LINE OUTPUT FOR PLANKTON_ COLUMN
HANDLES .OUTPUT = HOBJECT;

oo

% UPDATE HANDLES STRUCTURE
GUIDATA(HOBJECT, HANDLES);

oo

UIWAIT MAKES PLANKTON COLUMN WAIT FOR USER RESPONSE (SEE UIRESUME)
UIWAIT(HANDLES.FIGUREL);

o

oo

TR=0;
WHILE TR==
TRY
$LOAD PARAMETERES
PARAMETERES=LOAD ( ' PARAMETERES.MAT ') ;
TR=1;
CATCH
WARNDLG( 'CAN NOT LOAD PARAMETERS')
RETURN
END
END

SET (HANDLES.THRESHOLD, 'STRING', NUM2STR(PARAMETERES.THRE));
SET (HANDLES.BIAS, 'STRING', NUM2STR(PARAMETERES.BIAS));

SET (HANDLES.X1 CAM1, 'STRING', NUM2STR(PARAMETERES.X1 CAMl));
SET (HANDLES.X1 CAM2, 'STRING', NUM2STR(PARAMETERES.X1 CAM2));
SET (HANDLES.WIDTH, 'STRING', NUM2STR(PARAMETERES.WIDTH));

SET (HANDLES.H1 COLUMN, 'STRING',NUM2STR(PARAMETERES.H1));

SET (HANDLES.H2 COLUMN, 'STRING', NUM2STR(PARAMETERES.H2));
SET (HANDLES.SHOW_PROCESS, 'VALUE', 0);

SET (HANDLES.FF_CAM1, 'STRING', PARAMETERES.FF CAM1);

SET (HANDLES.FF_CAM2, 'STRING', PARAMETERES.FF CAM2);

% UPDATE HANDLES STRUCTURE
%¥GUIDATA(HOBJECT, HANDLES);

% —-—— OUTPUTS FROM THIS FUNCTION ARE RETURNED TO THE COMMAND LINE.
FUNCTION VARARGOUT = PLANKTON COLUMN OUTPUTFCN(HOBJECT, EVENTDATA, HANDLES)
VARARGOUT CELL ARRAY FOR RETURNING OUTPUT ARGS (SEE VARARGOUT) ;

o

% HOBJECT HANDLE TO FIGURE
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

% GET DEFAULT COMMAND LINE OUTPUT FROM HANDLES STRUCTURE
VARARGOUT{1} = HANDLES.OUTPUT;

FUNCTION THRESHOLD CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO THRESHOLD (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
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$ HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF THRESHOLD AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF THRESHOLD AS A

oo

DOUBLE

THRE = STR2DOUBLE (GET (HOBJECT, 'STRING'));

SET (HANDLES.THRESHOLD, 'STRING', NUM2STR(THRE));
GUIDATA(HOBJECT, HANDLES);

% ——-— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION THRESHOLD CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO THRESHOLD (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

oo

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.
IF ISPC && ISEQUAL (GET(HOBJECT, 'BACKGROUNDCOLOR'),
GET(0, ' DEFAULTUICONTROLBACKGROUNDCOLOR ') )
SET (HOBJECT, ' BACKGROUNDCOLOR ', 'WHITE');
END

o

FUNCTION BIAS CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO BIAS (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF BIAS AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF BIAS AS A

o

DOUBLE

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
BIAS = STR2DOUBLE (GET (HOBJECT, 'STRING'));
SET (HANDLES.BIAS, 'STRING', NUM2STR(BIAS));

GUIDATA(HOBJECT, HANDLES);

FUNCTION BIAS CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO BIAS (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.
IF ISPC && ISEQUAL (GET(HOBJECT, 'BACKGROUNDCOLOR'),
GET(0, ' DEFAULTUICONTROLBACKGROUNDCOLOR ') )
SET (HOBJECT, ' BACKGROUNDCOLOR ', 'WHITE');
END

o

FUNCTION X1 CAM1 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO X1 CAM1 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF X1 CAM1 AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING' ) ) RETURNS CONTENTS OF X1 CAM1 AS A

o

DOUBLE

X1 CAM1 = STR2DOUBLE (GET (HOBJECT, 'STRING'));

SET (HANDLES.X1 CAM1, 'STRING', NUM2STR(X1 CAM1l));

GUIDATA(HOBJECT, HANDLES);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION X1 CAM1 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO X1 CAM1 (SEE GCBO)
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o

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

oo

oo

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),

GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE');

o

END

FUNCTION X1 CAM2 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO X1 CAM2 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF X1 CAM2 AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF X1 CAM2 AS A

oo

DOUBLE

X1 CAM2 = STR2DOUBLE (GET (HOBJECT, 'STRING'));

SET (HANDLES.X1 CAM2, 'STRING', NUM2STR(X1 CAM2));
GUIDATA(HOBJECT, HANDLES);

)

% —-- EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION X1 CAM2 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO X1 CAM2 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

oo

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),

GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE');

o

END

FUNCTION WIDTH CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO WIDTH (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF WIDTH AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF WIDTH AS A

oo

DOUBLE

WIDTH = STR2DOUBLE (GET(HOBJECT, 'STRING'));
SET (HANDLES.WIDTH, 'STRING', NUM2STR(WIDTH));
GUIDATA(HOBJECT, HANDLES);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION WIDTH CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO WIDTH (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

oo

o

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),

GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE"');

oo

END
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FUNCTION H1 COLUMN CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO H1 COLUMN (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF H1 COLUMN AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING' ) ) RETURNS CONTENTS OF H1 COLUMN AS A

oo

DOUBLE

H1 = STR2DOUBLE (GET (HOBJECT, 'STRING'));

SET (HANDLES.H1 COLUMN, 'STRING', NUM2STR(H1));
GUIDATA(HOBJECT, HANDLES);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION H1 COLUMN CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO H1 COLUMN (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

oo

oo

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.
IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))
SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE');
END

oo

FUNCTION H2 COLUMN CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO H2Z COLUMN (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF H2 COLUMN AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING' ) ) RETURNS CONTENTS OF H2 COLUMN AS A

oo

DOUBLE

H2 = STR2DOUBLE (GET (HOBJECT, 'STRING'));

SET (HANDLES.H2 COLUMN, 'STRING', NUM2STR(H2));
GUIDATA(HOBJECT, HANDLES);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION H2 COLUMN CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO H2Z COLUMN (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

oo

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.
IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))
SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE');
END

o

FUNCTION FF_CAM1 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO FF_CAM1 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF FF_CAM1 AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING' ) ) RETURNS CONTENTS OF FF_CAM1 AS A

o

DOUBLE
HANDLES.FF_CAM1 = GET(HOBJECT, 'STRING');
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GUIDATA (HOBJECT, HANDLES);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION FF_CAM1 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)
HOBJECT HANDLE TO FF_CAM1 (SEE GCBO)
EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED
HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE"');

o0 0P o0 o°

o

END

% —--- EXECUTES ON BUTTON PRESS IN FLAT FIELD.

FUNCTION FLAT FIELD CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO FLAT FIELD (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

X1 CAM1 = STR2DOUBLE (GET (HANDLES.X1l CAM1, 'STRING'));

X1 CAM2 = STR2DOUBLE (GET (HANDLES.X1 CAM2, 'STRING'));

WIDTH = STR2DOUBLE (GET (HANDLES.WIDTH, 'STRING'));
MAKE_FLATFIELD V6 GUI %MAKE FLAT FIELD FILES

FN1 N = [FILENAME(1:END-11) ' FF CAM1.DAT'];
FN2 N = [FILENAME(1:END-11) ' FF CAM2.DAT'];
FN_BORDERS = [FILENAME(1:END-11) ' BORDERS.MAT'];

BORDERS.X1 CAM1 = Al X1;
BORDERS.X1 CAM2 = A2 X1;
BORDERS .WIDTH = WIDTH;

SAVE(FN1_N,'Al AV NORM','-ASCII');
SAVE(FN2 N, 'A2 AV NORM','-ASCII');

SAVE (FN_BORDERS, '-STRUCT', 'BORDERS')

SET (HANDLES.FF_CAM1, 'STRING', FN1 N);
SET (HANDLES.FF_CAM2, 'STRING', FN2 N);

SAVE PARAMETERES GUI

FIGURE(11); IMAGESC(Al_AV_NORM)
FIGURE(12); IMAGESC(A2_AV_NORM)

% —--- EXECUTES ON BUTTON PRESS IN SELECT_ COLUMN_ BORDERS.

FUNCTION SELECT COLUMN BORDERS CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO SELECT_ COLUMN_ BORDERS (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB

% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
[FILENAME, PATHNAME, FILTERINDEX] = UIGETFILE('*.*', 'SELECT AN IMAGE');

K1 = STRFIND(FILENAME, 'CAM1');
K2 = STRFIND(FILENAME, 'CAM2');

IF ISEMPTY (K1) ~= 1
FNS = FILENAME(1:K1-1);
WARN = [' '];
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SET (HANDLES .WARNINGS, 'STRING', WARN);

ELSEIF ISEMPTY(K2) ~= 1
FNS = FILENAME(1:K2-1);
WARN = [' '];
SET (HANDLES .WARNINGS, 'STRING', WARN);

ELSE
WARN = ['INPUT FILE NAME IS NOT VALID'];
SET (HANDLES . WARNINGS, 'STRING', WARN);

RETURN
END
JJ = 1;
FN1 = [PATHNAME FNS 'CAM1 ' NUM2STR(JJ) '.PNG'];
FN2 = [PATHNAME FNS 'CAM2 ' NUM2STR(JJ) '.PNG'];

AP1 = IMREAD(FN1);
Al S = MEAN(AP1');
FIGURE(11);PLOT (Al _S);TITLE('SELECT THE BORDERS OF COLUMN IN CAMERA #1')
[X1 Y1] = GINPUT(2);
IF X1(1)<X1(2)

X1 CAM1 = FIX(X1(1l));

DIS 1 = FIX(X1(2))-FIX(X1(1l));
ELSE

X1 CAM1 = FIX(X1(2));

DIS 1 = FIX(X1(1l))-FIX(X1(2));
END
CLOSE
AP2 = IMREAD(FN2);
A2 S = MEAN(AP2');
FIGURE(11);PLOT (A2 S);TITLE('SELECT THE BORDERS OF COLUMN IN CAMERA #2')
[X1 Y1] = GINPUT(2);
IF X1(1)<X1(2)

X1 CAM2 = FIX(X1(1l));

DIS 2 = FIX(X1(2))-FIX(X1(1l));
ELSE

X1 CAM2 = FIX(X1(2));

DIS 2 = FIX(X1(1))-FIX(X1(2));
END
CLOSE
WIDTH = FIX((DIS_1+DIS 2)/2);
X2 CAM1 = X1 CAM1 + WIDTH;
X2 CAM2 = X1 CAM2 + WIDTH;

SET (HANDLES.X1 CAM1, 'STRING', NUM2STR(X1l CAM1)
SET (HANDLES.X1 CAM2, 'STRING', NUM2STR(X1l CAM2)
SET (HANDLES.WIDTH, 'STRING', NUM2STR(WIDTH));

)i
)i

FIGURE(12);
SUBPLOT(1,8,[1 2 3 4]);IMAGESC(AP1(X1 CAM1:X2 CAM1,:)")
SUBPLOT(1,8,[5 6 7 8]);IMAGESC(AP2(X1 CAM2:X2 CAM2,:)')

% ——-— EXECUTES ON BUTTON PRESS IN ANALYSE.

FUNCTION ANALYSE CALLBACK(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO ANALYSE (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o0 oP

o
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BIAS = STR2DOUBLE (GET (HANDLES.BIAS, 'STRING'));
THRE_C = STR2DOUBLE (GET (HANDLES.THRESHOLD, 'STRING'
X1 CAM1 = STR2DOUBLE (GET (HANDLES.X1l CAM1, 'STRING')
X1 CAM2 = STR2DOUBLE (GET (HANDLES.X1l CAM2, 'STRING')
WIDTH = STR2DOUBLE (GET (HANDLES.WIDTH, 'STRING'));
H1 = STR2DOUBLE (GET (HANDLES.H1 COLUMN, 'STRING'))
H2 = STR2DOUBLE (GET (HANDLES.H2 COLUMN, 'STRING'))
FN1 N = (GET(HANDLES.FF_CAM1, 'STRING'));

FN2 N = (GET(HANDLES.FF_CAM2, 'STRING'));

.
14
.
14
.
14

H1 = 1;
H2 = 39;
SET(HANDLES.Hl_COLUMN,'STRING', NUM2STR(H1))
SET(HANDLES.HZ_COLUMN,'STRING', NUM2STR(H2))

IF EXIST(FN1 N) == 2 && EXIST(FN2 _N) == 2
WARN = [' '];
SET (HANDLES .WARNINGS, 'STRING', WARN);
ELSE
WARN = ['FLAT FIELD FILES ARE NOT VALID OR NOT EXIST'];
SET (HANDLES .WARNINGS, 'STRING', WARN);
RETURN
END

SH = GET(HANDLES.SHOW PROCESS, 'VALUE');

FN1 N = GET(HANDLES.FF_CAM1, 'STRING');
FN_BORDERS = [FN1 N(1:END-12) ' BORDERS.MAT'];

DATA=LOAD (FN_BORDERS) ;
VARIABLES=FIELDS (DATA) ;
X1 CAM1 = DATA.(VARIABLES{1}
X1 CAM2 = DATA.(VARIABLES{2}
WIDTH = DATA.(VARIABLES{3});

)i
)i

SET (HANDLES.X1 CAM1, 'STRING', NUM2STR(X1l CAM1)
SET (HANDLES.X1 CAM2, 'STRING', NUM2STR(X1l CAM2)
SET (HANDLES.WIDTH, 'STRING', NUM2STR(WIDTH));

)i
)i

PLANKTON COLUMN ANALYSIS V5 GUI $ANALYSE THE DATA
PLOT SAVE_RESULTS
TIME T = LINSPACE(O0,DT,LENGTH(A TOTAL(1l,:)));

A TOTAL T(1:39,:) = A TOTAL;
A TOTAL T(40,:) = TIME T;

FN1 = [PATHNAME FNS 'DISTR TIME-BIAS ' NUM2STR(BIAS) ' THRE ' NUM2STR(THRE_C)
' DISTR.DAT'];
FN2 = [PATHNAME FNS 'DISTR TIME-BIAS ' NUM2STR(BIAS) ' THRE ' NUM2STR(THRE_C)

' TOTALNUMBER.DAT'];
SAVE (FN1, '-ASCII' ,'A TOTAL T')
SAVE (FN2, '-ASCII' ,'A TOTAL SUM')

% —--- EXECUTES ON BUTTON PRESS IN SHOW_ PROCESS.

FUNCTION SHOW_ PROCESS CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO SHOW_PROCESS (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
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% HINT: GET(HOBJECT, 'VALUE') RETURNS TOGGLE STATE OF SHOW_PROCESS

% —--- EXECUTES ON BUTTON PRESS IN PLOT RESULTS.

FUNCTION PLOT RESULTS CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PLOT RESULTS (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

H1 = STR2DOUBLE (GET (HANDLES.H1 COLUMN, 'STRING'

)) i
H2 )i

STR2DOUBLE (GET (HANDLES.H2 COLUMN, 'STRING'

[FILENAME, PATHNAME, FILTERINDEX] = UIGETFILE('*.DAT', 'SELECT THE DATA FILE
OF DISTRIBUTION');
FN1 = [PATHNAME FILENAME];

K1 = STRFIND(FILENAME, 'DISTR');
IF ~ISEMPTY (K1)
A TOTAL T = LOAD(FN1);
PLOT_SAVE_RESULTS_GUI

END

FUNCTION FF_CAM2 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO FF_CAM2 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF FF_CAM2 AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING' ) ) RETURNS CONTENTS OF FF_CAM2 AS A

o

DOUBLE
HANDLES.FF_CAM2 = GET(HOBJECT, 'STRING');

GUIDATA(HOBJECT, HANDLES);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION FF_CAM2 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO FF_CAM2 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

o

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL (GET(HOBJECT, 'BACKGROUNDCOLOR'),

GET(0, ' DEFAULTUICONTROLBACKGROUNDCOLOR ') )

SET (HOBJECT, ' BACKGROUNDCOLOR ', 'WHITE');

o

END
% --- EXECUTES ON BUTTON PRESS IN CHANGE FF1.
FUNCTION CHANGE FF1 CALLBACK(HOBJECT, EVENTDATA, HANDLES)
% HOBJECT HANDLE TO CHANGE FF1 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
ANS = 0;
WHILE ANS == 0;
[FILENAME, PATHNAME, FILTERINDEX] = UIGETFILE('*.*', 'LOAD THE FLAT FIELD
OF CAM1');

FN1_N=[PATHNAME FILENAME];
K1 = STRFIND(FILENAME, 'CAM1');
IF ISEMPTY (K1)
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WARN = [ 'INPUT FILE NAME IS NOT A VALID FLAT FIELD OF CAM1'];
SET (HANDLES .WARNINGS, 'STRING', WARN);

SELECTION = QUESTDLG('DO YOU WANT TO STOP FILE SELECTION?',...
'CLOSE REQUEST FUNCTION',...
'YES','NO', 'YES');
SWITCH SELECTION,
CASE 'YES',
$DELETE (GCF)

%CLOSE
RETURN
CASE 'NO'
END
ELSE
ANS = 1;

SET (HANDLES.FF_CAM1, 'STRING', FILENAME);
WARN = [''];
SET (HANDLES . WARNINGS, 'STRING', WARN);

END
END
% —-— EXECUTES ON BUTTON PRESS IN CHAMGE FF2.
FUNCTION CHAMGE FF2 CALLBACK(HOBJECT, EVENTDATA, HANDLES)
% HOBJECT HANDLE TO CHAMGE FF2 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
ANS = 0;
WHILE ANS == 0;
[FILENAME, PATHNAME, FILTERINDEX] = UIGETFILE('*.*', 'LOAD THE FLAT FIELD
OF CAM1');
FN1_ N=[PATHNAME FILENAME];
K1 = STRFIND(FILENAME, 'CAM2');
IF ISEMPTY (K1)
WARN = ['INPUT FILE NAME IS NOT A VALID FLAT FIELD OF CAMl'];
SET (HANDLES .WARNINGS, 'STRING', WARN);
SELECTION = QUESTDLG('DO YOU WANT TO STOP FILE SELECTION?',...
'CLOSE REQUEST FUNCTION',...
'YES','NO','YES');
SWITCH SELECTION,
CASE 'YES',
$DELETE (GCF)
%CLOSE
RETURN
CASE 'NO'
END
ELSE
ANS = 1;
SET (HANDLES.FF_CAM2, 'STRING', FILENAME);
WARN = [''];
SET (HANDLES .WARNINGS, 'STRING', WARN);
END
END
% —-— EXECUTES ON BUTTON PRESS IN SAVE PARAMETERS.

FUNCTION SAVE PARAMETERS CALLBACK(HOBJECT, EVENTDATA, HANDLES)
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% HOBJECT HANDLE TO SAVE PARAMETERS (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

PARAMETERES.BIAS = STR2DOUBLE (GET (HANDLES.BIAS, 'STRING'));
PARAMETERES.THRE = STR2DOUBLE (GET (HANDLES.THRESHOLD, 'STRING')
PARAMETERES.X1 CAM1 = STR2DOUBLE (GET (HANDLES.X1 CAM1, 'STRING'
PARAMETERES.X1 CAM2 = STR2DOUBLE (GET (HANDLES.X1 CAM2, 'STRING'
PARAMETERES.WIDTH = STR2DOUBLE (GET (HANDLES.WIDTH, 'STRING'));
PARAMETERES.H1 = STR2DOUBLE (GET (HANDLES.H1 COLUMN, 'STRING'))
PARAMETERES.H2 = STR2DOUBLE (GET (HANDLES.H2 COLUMN, 'STRING'))
PARAMETERES.FF_CAM1 = (GET(HANDLES.FF_CAM1l, 'STRING'));
PARAMETERES.FF_CAM2 = (GET(HANDLES.FF_CAM2, 'STRING'));

):
))
))

.
14
.
14

.
14
.
14

SAVE ( ' PARAMETERES.MAT', '-STRUCT', 'PARAMETERES')

FUNCTION WARNINGS CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO WARNINGS (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF WARNINGS AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF WARNINGS AS A

oo

DOUBLE

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION WARNINGS CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO WARNINGS (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

o

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.
IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR"))
SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE');
END
% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION CUNTER CREATEFCN(HOBJECT, EVENTDATA, HANDLES)
HOBJECT HANDLE TO CUNTER (SEE GCBO)
EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

oo

o0 oo

o

oo

-——- EXECUTES ON BUTTON PRESS IN STOP.
FUNCTION STOP_CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO STOP (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
STOP = 1;

GLOBAL STOP

Plankton column: data analysis

%% LOAD FLAT FIELD
Al AV _NORM P=LOAD(FN1 N);
A2 AV _NORM P=LOAD(FN2 N);
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Al AV _NORM =

Al AV _NORM P/MAX(MAX(Al AV _NORM P)
A2_AV_NORM = A2 AV_NORM P/MAX(MAX(A2_AV_NORM P)

)i
)i

%% PARAMETERES

RGB = 1; $SELECT RIGHT COLOR FOR COLOR CAMERA
BIN = 40; %DIVISIONS OF THE CELL

STOP = 0;

Al X1 = X1 CAMI1;

Al X2 = X1 CAM1 + WIDTH;

A2 X1 = X1 CAM2;

A2 X2 = X1 CAM2 + WIDTH;

cx1=1;

CxX2=(Al_X2-Al X1)+1;

cyl=1;
CY2=(Al_X2-Al X1)+1;

UIGETFILE('*.*',

'SELECT AN IMAGE');

'".PNG'];
'".PNG'];

,RGB) )-BIAS));

%% LOAD DATA
[FILENAME, PATHNAME, FILTERINDEX] =
K1 = STRFIND(FILENAME, 'CAM1'");
K2 = STRFIND(FILENAME, 'CAM2');
IF ISEMPTY (K1) ~= 1
FNS = FILENAME(1:K1-1);
WARN = [' '];
SET (HANDLES.WARNINGS, 'STRING', WARN);
ELSEIF ISEMPTY(K2) ~= 1
FNS = FILENAME(1:K2-1);
WARN = [' '];
SET (HANDLES.WARNINGS, 'STRING', WARN);
ELSE
WARN = ['INPUT FILE NAME IS NOT VALID'];
SET (HANDLES.WARNINGS, 'STRING', WARN);
RETURN
END
JJ = 1;
FN1 = [PATHNAME FNS 'CAMl_' NUM2STR(JJ)
FN2 = [PATHNAME FNS 'CAM2_' NUM2STR(JJ)
EP1 = 0.0;
EP2 = 0.0;
AP = IMREAD(FN1);
Al S = SUM(SUM(DOUBLE(AP(Al X1:Al X2,:
AP = IMREAD(FN2);
A2 S = SUM(SUM(DOUBLE (AP (A2 X1:A2 X2,:

WHILE EXIST(FN1) == 2 && EXIST(FN2) ==
$DISP (NUM2STR(JJ))

,RGB))-BIAS));

SET (HANDLES.CUNTER, ' STRING', NUM2STR(JJ));

o

IF GET(HANDLES.STOP, 'VALUE')
RETURN
END

o

o
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DRAWNOW
$PAUSE (1)

AP = IMREAD(FN1);

AlP = DOUBLE(AP(Al X1:Al X2,:,RGB));

AP = IMREAD(FN2);
A2P = DOUBLE (AP(A2 X1:A2 X2,:,RGB));

Al = (A1lP-BIAS) ./(SUM(SUM(A1lP+BIAS)));
Al C = ((Al) ./ (A1_AV_NORM - EP1l ));

A2 = (A2P-BIAS) ./(SUM(SUM(A2P+BIAS)));
A2 C = ((A2) ./ (A2_AV_NORM - EPl));

Al C = Al C; %./ SUM(SUM(ALl C+A2 C));
A2 C = A2 C; %./ SUM(SUM(ALl C+A2 C));
IF JJ==

THRE = THRE C * (STD2(Al _C)+STD2(A2 C))/2 +
(MEAN (MEAN (Al C))+MEAN(MEAN(A2 C)))/2;
END

ID=FIND(Al C < THRE);
Al C(ID) = 0;
ID=FIND(Al C >= THRE);
Al C(ID) = 1;

ID=FIND(A2 C < THRE);
A2 C(ID) = 0;
ID=FIND(A2 C >= THRE);
A2 C(ID) = 1;

Al CUT
A2 _CUT

Al _C(CX1:CX2,
A2_C(CX1:CX2,

Al CUT M
A2 CUT M
FOR II = 1:20
Al M(II)
A2 M(II)

END

SUM(A1_CUT);
SUM(A2_CUT);

SUM(A1 _CUT M((1:64)+(II-1)%*64)

)i
SUM(A2 CUT M((1:64)+(II-1)*64));

A TOTAL(1:20,JJ) = A2 M;

A TOTAL(20,JJ) = (A2_M(20)+Al1 M(1))/2;
A TOTAL(21:39,JJ) = Al M(2:20);

A TOTAL SUM(JJ) = SUM(A_TOTAL(:,JJ));

IF SH == 1
PS GET(0, 'SCREENSIZE');
HO = FIGURE(1);
SET(HO, 'POSITION', [1,100,PS(3)/2,PS(4)/21)
SUBPLOT(3,8,[1 4]);IMAGESC(A2 CUT); AXIS OFF; COLORMAP GRAY
SUBPLOT(3,8,[5 8]);IMAGESC(Al CUT); AXIS OFF; COLORMAP GRAY
SUBPLOT(3,8,[9 16]);PLOT(A TOTAL(:,JJ));
SUBPLOT(3,8,[17 24]);PLOT(A_TOTAL SUM);
H3 =

FIGURE (3); IMAGESC(A_TOTAL) ; SET(GCA, 'YDIR', 'NORMAL');YLABEL('HIGHT (CM)")

SET(H3, 'POSITION', [PS(3)/2,100,PS(3)/2,PS(4)/2])
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DRAWNOW
END

JI=JJ+1;

FN1 = [PATHNAME FNS 'CAM1 ' NUM2STR(JJ) '.PNG'];
FN2 = [PATHNAME FNS 'CAM2 ' NUM2STR(JJ) '.PNG'];

$PAUSE (1)
END

IF SH ==
CLOSE (HO)
CLOSE (H3)

END

Calibration program

WARNING OFF
%% PARAMETERES
RGB = 1; $SELECT RIGHT COLOR FOR COLOR CAMERA

% BIAS = 2; $BIAS LEVEL OF THE CAMERS

o
=
<
[
|

_X1 = X1 _CAMI1;
Al X2 = X1 CAM1 + WIDTH;

A2 X1 = X1 CAM2;
A2 X2 = X1 CAM2 + WIDTH;

LOAD DATA

K1l = STRFIND(FILENAME, 'CAM1');

K2 = STRFIND(FILENAME, 'CAM2'");
IF ISEMPTY (K1) ~= 1
FNS = FILENAME(1:K1-1);
ELSEIF ISEMPTY(K2) ~= 1
FNS = FILENAME(1:K2-1);
ELSE
WARNDLG( 'INPUT FILE NAME IS NOT VALID')
RETURN
END
IT = 1;
FN1 = [PATHNAME FNS 'CAM1 ' NUM2STR(II) '.PNG'];
FN2 = [PATHNAME FNS 'CAM2 ' NUM2STR(II) '.PNG'];

AP = IMREAD(FN1);

AP1 = AP(Al X1:Al X2,:,RGB);

Al = ZEROS(SIZE(AP1));

A2 = ZEROS(SIZE(AP1));

WHILE EXIST(FN1) == 2 && EXIST(FN2) ==

SET (HANDLES.CUNTER, 'STRING', NUM2STR(II))
IF GET(HANDLES.STOP, 'VALUE')
RETURN

o

o

%
FILENAME, PATHNAME, FILTERINDEX] = UIGETFILE('*.*',

'"PICK AN IMAGE');
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o

END

END
DRAWNOW

AP = IMREAD(FN1);
APP1 = DOUBLE(AP(Al X1:Al X2,:,RGB));

AP = IMREAD(FN2);
APP2 = DOUBLE(AP(A2 X1:A2 X2,:,RGB));

AP1 = APP1 ./ SUM(SUM(APP1));
Al = MAX([STD(AP1l) ; Al]);

$FIGURE(11);PLOT(Al)
$DRAWNOW

AP2 = APP2 ./ SUM(SUM(APP2));
A2 = MAX([STD(AP2) ; A2]);
$FIGURE(111);PLOT(A2)
$DRAWNOW

II=II+1;
FN1 = [PATHNAME FNS 'CAM1 ' NUM2STR(II)
FN2 = [PATHNAME FNS 'CAM2 ' NUM2STR(II)

Al PV = Al;
A2 PV = A2;

FOR

END

Al AV _NORM = Al AV N2;
A2 AV _NORM

IH = 1:LENGTH(AP1(:,1))
Al AV N2(IH,:) = Al _PV;
A2 AV N2(IH,:) = A2 PV;

o

LED CONTROLLER

FUNCTION VARARGOUT = LED_CONTROLER(VARARGIN)

o

o

o0 o oe

00 of I o0 o
>
2
v}
[y
=

o

".PNG'];
'".PNG'];

./ SUM(SUM(Al AV N2));
A2 AV N2; % ./ SUM(SUM(A2 AV N2));

LED CONTROLER MATLAB CODE FOR LED CONTROLER.FIG

LED CONTROLER, BY ITSELF, CREATES A NEW LED_ CONTROLER OR RAISES THE

XISTING

SINGLETON*.

H = LED CONTROLER RETURNS THE HANDLE TO A NEW LED CONTROLER OR THE

TO
THE EXISTING SINGLETON%*.

LED_CONTROLER( 'CALLBACK',HOBJECT,EVENTDATA, HANDLES,...) CALLS THE

[
o
Q
o
[

o

o

o

FUNCTION NAMED CALLBACK IN LED CONTROLER.M WITH THE GIVEN INPUT
ARGUMENTS.

LED_CONTROLER( 'PROPERTY', 'VALUE',...) CREATES A NEW LED CONTROLER OR
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RAISES THE

EXISTING SINGLETON*. STARTING FROM THE LEFT, PROPERTY VALUE PAIRS ARE
APPLIED TO THE GUI BEFORE LED CONTROLER OPENINGFCN GETS CALLED. AN
UNRECOGNIZED PROPERTY NAME OR INVALID VALUE MAKES PROPERTY APPLICATION
STOP. ALL INPUTS ARE PASSED TO LED CONTROLER OPENINGFCN VIA VARARGIN.
*SEE GUI OPTIONS ON GUIDE'S TOOLS MENU. CHOOSE "GUI ALLOWS ONLY ONE
INSTANCE TO RUN (SINGLETON)".

o0 00 o0 0P 0P o0 o

oo

SEE ALSO: GUIDE, GUIDATA, GUIHANDLES

oo

EDIT THE ABOVE TEXT TO MODIFY THE RESPONSE TO HELP LED CONTROLER

% BEGIN INITIALIZATION CODE - DO NOT EDIT

GUI_SINGLETON = 1;

GUI_STATE = STRUCT('GUI NAME', MFILENAME, ...
'GUI_SINGLETON', GUI_SINGLETON, ...
'GUI_OPENINGFCN', @LED CONTROLER OPENINGFCN, ...
'GUI_OUTPUTFCN', @LED CONTROLER OUTPUTFCN, ...
'GUI_LAYOUTFCN', [] ,
'GUI_CALLBACK', [1);

IF NARGIN && ISCHAR(VARARGIN{1})

GUI_STATE.GUI CALLBACK = STR2FUNC(VARARGIN{1});
END

IF NARGOUT

[ VARARGOUT{1:NARGOUT}] = GUI_MAINFCN(GUI_STATE, VARARGIN{:});
ELSE

GUI_ MAINFCN(GUI_STATE, VARARGIN{:});
END

% END INITIALIZATION CODE - DO NOT EDIT

% —--- EXECUTES JUST BEFORE LED CONTROLER IS MADE VISIBLE.
FUNCTION LED_ CONTROLER OPENINGFCN(HOBJECT, EVENTDATA, HANDLES, VARARGIN)
THIS FUNCTION HAS NO OUTPUT ARGS, SEE OUTPUTFCN.

oo

% HOBJECT HANDLE TO FIGURE
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o

VARARGIN COMMAND LINE ARGUMENTS TO LED CONTROLER (SEE VARARGIN)

)

% CHOOSE DEFAULT COMMAND LINE OUTPUT FOR LED_ CONTROLER
HANDLES .OUTPUT = HOBJECT;

% UPDATE HANDLES STRUCTURE
GUIDATA(HOBJECT, HANDLES);

o

UIWAIT MAKES LED_CONTROLER WAIT FOR USER RESPONSE (SEE UIRESUME)
UIWAIT(HANDLES.FIGUREL);

o

o

—-—— OUTPUTS FROM THIS FUNCTION ARE RETURNED TO THE COMMAND LINE.
FUNCTION VARARGOUT = LED_CONTROLER OUTPUTFCN(HOBJECT, EVENTDATA, HANDLES)
VARARGOUT CELL ARRAY FOR RETURNING OUTPUT ARGS (SEE VARARGOUT) ;

oo

% HOBJECT HANDLE TO FIGURE
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

)

% GET DEFAULT COMMAND LINE OUTPUT FROM HANDLES STRUCTURE
VARARGOUT{1} = HANDLES.OUTPUT;

% ——--— EXECUTES ON SLIDER MOVEMENT.
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FUNCTION SLIDER1_ CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO SLIDER1 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

HINTS: GET(HOBJECT, 'VALUE') RETURNS POSITION OF SLIDER
GET (HOBJECT, 'MIN') AND GET(HOBJECT, 'MAX') TO DETERMINE RANGE OF

oo

SLIDER
VAL=ROUND (GET (HOBJECT, 'VALUE')*100);
SET (HANDLES.EDIT1, 'STRING',NUM2STR(VAL));

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION SLIDER1 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO SLIDER1 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

oo

% HINT: SLIDER CONTROLS USUALLY HAVE A LIGHT GRAY BACKGROUND.
IF ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR"),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR"))

SET (HOBJECT, 'BACKGROUNDCOLOR',[.9 .9 .91);

END

% ——-— EXECUTES ON BUTTON PRESS IN PUSHBUTTONI1.

FUNCTION PUSHBUTTON1 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON1 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

VAL=GET (HANDLES .SLIDER1, 'VALUE ')
LEDPORT (ST, 1,VAL*100);

% —--— EXECUTES ON SLIDER MOVEMENT.

FUNCTION SLIDER2_ CALLBACK(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO SLIDER2 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o0 oo

o

o

HINTS: GET(HOBJECT, 'VALUE') RETURNS POSITION OF SLIDER
GET (HOBJECT, 'MIN') AND GET(HOBJECT, 'MAX') TO DETERMINE RANGE OF

o

SLIDER
VAL=ROUND (GET (HOBJECT, 'VALUE')*100);
SET (HANDLES.EDIT2, 'STRING',NUM2STR(VAL));

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION SLIDER2 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO SLIDER2 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

oo

% HINT: SLIDER CONTROLS USUALLY HAVE A LIGHT GRAY BACKGROUND.
IF ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR"),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))
SET (HOBJECT, 'BACKGROUNDCOLOR',[.9 .9 .91);
END

% ——-— EXECUTES ON BUTTON PRESS IN PUSHBUTTONZ2.

FUNCTION PUSHBUTTON2 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON2 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
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% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

VAL=GET (HANDLES . SLIDER2, 'VALUE ')

LEDPORT (ST, 2,VAL*100) ;

% --- EXECUTES ON SLIDER MOVEMENT.

FUNCTION SLIDER3 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO SLIDER3 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o0 oo

oo

oo

HINTS: GET(HOBJECT, 'VALUE') RETURNS POSITION OF SLIDER
GET (HOBJECT, 'MIN') AND GET(HOBJECT, 'MAX') TO DETERMINE RANGE OF

o

SLIDER
VAL=ROUND (GET (HOBJECT, 'VALUE')*100);
SET (HANDLES.EDIT3, 'STRING',NUM2STR(VAL));

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION SLIDER3 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO SLIDER3 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

% HINT: SLIDER CONTROLS USUALLY HAVE A LIGHT GRAY BACKGROUND.
IF ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR"),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR',[.9 .9 .91);

END

% ——— EXECUTES ON BUTTON PRESS IN PUSHBUTTONS3.

FUNCTION PUSHBUTTON3 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON3 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

VAL=GET (HANDLES . SLIDER3, 'VALUE ")
LEDPORT (ST, 3,VAL*100) ;

% —-—-— EXECUTES ON SLIDER MOVEMENT.

FUNCTION SLIDER4 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO SLIDER4 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o0 oo

o

o

HINTS: GET(HOBJECT, 'VALUE') RETURNS POSITION OF SLIDER
GET (HOBJECT, 'MIN') AND GET(HOBJECT, 'MAX') TO DETERMINE RANGE OF

o

SLIDER
VAL=ROUND (GET (HOBJECT, 'VALUE')*100);
SET (HANDLES.EDIT4, 'STRING',NUM2STR(VAL));

)

% —--- EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION SLIDER4 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO SLIDER4 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

O

3 HINT: SLIDER CONTROLS USUALLY HAVE A LIGHT GRAY BACKGROUND.
IF ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR"),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))
SET (HOBJECT, 'BACKGROUNDCOLOR',[.9 .9 .91);
END
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% —-—-— EXECUTES ON BUTTON PRESS IN PUSHBUTTON4.

FUNCTION PUSHBUTTON4 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON4 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

VAL=GET (HANDLES . SLIDER4, 'VALUE ')
LEDPORT (ST, 4,VAL*100) ;

% ——— EXECUTES ON BUTTON PRESS IN PUSHBUTTONS.

FUNCTION PUSHBUTTON5 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON5 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB

% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

GLOBAL ST

FIND_ PROT;

SET (HANDLES.TEXT1, 'STRING',ST);

%LEDPORT(ST,0,50); % SET VALUE TO COM PORT 8 INSTEAD OF USING FIND PROT

$GET (HANDLES . TEXT1)

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION TEXT1 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO TEXT1 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

FUNCTION EDIT1 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO EDIT1 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

$ HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF EDIT1 AS TEXT

% STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF EDIT1 AS A
DOUBLE

$ IF SI==

% VAL=(STR2NUM(ST(1)))/100

$ ELSEIF SI==

% VAL=(STR2NUM(ST(1))*10+STR2NUM(ST(2)))/100

% ELSE

% VAL=(STR2NUM(ST(1))*100+STR2NUM(ST(2))*10+STR2NUM(ST(3)))/100

% END

VAL=STR2NUM (GET (HOBJECT, 'STRING'))/100;
SET (HANDLES.SLIDER1, 'VALUE',VAL);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION EDIT1 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO EDIT1 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

o

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.
IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),
GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR"))
SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE');
END

o

FUNCTION EDIT2 CALLBACK(HOBJECT, EVENTDATA, HANDLES)
% HOBJECT HANDLE TO EDIT2 (SEE GCBO)
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o

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

oo

oo

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF EDIT2 AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF EDIT2 AS A

o

DOUBLE
VAL=STR2NUM (GET (HOBJECT, 'STRING'))/100;
SET (HANDLES.SLIDER2, 'VALUE',VAL);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION EDIT2 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO EDIT2 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

oo

oo

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),

GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE"');

oo

END

FUNCTION EDIT3 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO EDIT3 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF EDIT3 AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF EDIT3 AS A

oo

DOUBLE
VAL=STR2NUM (GET (HOBJECT, 'STRING'))/100;
SET (HANDLES.SLIDER3, 'VALUE',VAL);

)

% —--- EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION EDIT3 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

HOBJECT HANDLE TO EDIT3 (SEE GCBO)

EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

o0 oo

o

o

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND ON WINDOWS.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),

GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE"');

o

END

FUNCTION EDIT4 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO EDIT4 (SEE GCBO)
% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)

o

HINTS: GET(HOBJECT, 'STRING') RETURNS CONTENTS OF EDIT4 AS TEXT
STR2DOUBLE (GET (HOBJECT, 'STRING')) RETURNS CONTENTS OF EDIT4 AS A

o

DOUBLE
VAL=STR2NUM (GET (HOBJECT, 'STRING'))/100;
SET (HANDLES.SLIDER4, 'VALUE',VAL);

% ——— EXECUTES DURING OBJECT CREATION, AFTER SETTING ALL PROPERTIES.
FUNCTION EDIT4 CREATEFCN(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO EDIT4 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
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o

HANDLES EMPTY - HANDLES NOT CREATED UNTIL AFTER ALL CREATEFCNS CALLED

oo

HINT: EDIT CONTROLS USUALLY HAVE A WHITE BACKGROUND.
SEE ISPC AND COMPUTER.

IF ISPC && ISEQUAL(GET(HOBJECT, 'BACKGROUNDCOLOR'),

GET (0, 'DEFAULTUICONTROLBACKGROUNDCOLOR "))

SET (HOBJECT, 'BACKGROUNDCOLOR ', 'WHITE');

oo

END

% —-—— EXECUTES ON BUTTON PRESS IN PUSHBUTTONG.

FUNCTION PUSHBUTTON6 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON6 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

LEDPORT(ST,1,0);

% ——-— EXECUTES ON BUTTON PRESS IN PUSHBUTTON7.

FUNCTION PUSHBUTTON7_ CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON7 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

LEDPORT(ST,2,0);

% --- EXECUTES ON BUTTON PRESS IN PUSHBUTTONS.

FUNCTION PUSHBUTTON8 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTONS (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

LEDPORT (ST, 3,0);

% --- EXECUTES ON BUTTON PRESS IN PUSHBUTTONY.

FUNCTION PUSHBUTTON9 CALLBACK(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON9 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
GLOBAL ST

LEDPORT(ST,4,0);

$ —-—- IF ENABLE == 'ON', EXECUTES ON MOUSE PRESS IN 5 PIXEL BORDER.
% —-—— OTHERWISE, EXECUTES ON MOUSE PRESS IN 5 PIXEL BORDER OR OVER

PUSHBUTTON2Z2 .

FUNCTION PUSHBUTTON2 BUTTONDOWNFCN(HOBJECT, EVENTDATA, HANDLES)

% HOBJECT HANDLE TO PUSHBUTTON2 (SEE GCBO)

% EVENTDATA RESERVED - TO BE DEFINED IN A FUTURE VERSION OF MATLAB
% HANDLES STRUCTURE WITH HANDLES AND USER DATA (SEE GUIDATA)
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Article history: Opsins — G-protein coupled receptors involved in photoreception — have been extensively studied in the animal
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lution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic
data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset,
led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic
resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian
opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new
sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected
reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian

Keywords:

Opsin

Photoreceptor cell evolution
Ambulacraria

Echinoderm opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclu-

Hemichordate sion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in

Phylogeny marine deuterostomes has been obtained.

Echinopsin © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and its presence or absence can be used as a molecular fingerprint to

In animals, the prototypical molecules involved in photoreception
and vision are opsin proteins (Terakita, 2005). Opsins are G-protein
coupled receptors (GPCR) that consist of an apoprotein covalently
bound to a chromophore (11-retinal) (Terakita, 2005). The nitrogen
atom of the amino group of residue K296, situated in helix VII, binds
to the retinal molecule through a Schiff-base linkage, forming a double
bond with the carbon atom at the end of this molecule (Hargrave
et al., 1983). Residue K296 is, therefore, crucial for light absorption,

* Corresponding author.
E-mail address: salvatore.daniello@szn.it (S. D'Aniello).
! These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.margen.2015.10.001

judge whether or not a GPCR is a bona fide opsin.

Recent investigations on opsin phylogeny resolved six distinct
groups present in metazoans: ciliary opsins, rhabdomeric opsins, Go-
opsins, neuropsins, peropsins, and RGR (RPE-retinal G protein-
coupled receptor) opsins (Porter et al., 2012; Feuda et al. 2012;
Terakita et al., 2012). A vast number of opsins are also expressed in
non-ocular tissues (Porter et al., 2012; Koyanagi et al., 2005; Terakita
etal,, 2012).

With regard to opsin evolution in the deuterostomes, genomic and
transcriptomic data of a number of chordates have been used to identify
and characterize their opsins (e.g. Holland et al., 2008; Kusakabe et al.,
2001). However, little attention has been paid to Ambulacraria, the sis-
ter group to all extant chordates, (i.e. cephalochordates, urochordates,

1874-7787/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and vertebrates, Edgecombe et al., 2011), a key clade to reconstruct the
opsin set of the common ancestor of extant deuterostomes.

The present study integrates opsin sequences from two ambulacrarian
sub-lineages: enteropneust Hemichordata (Harrimaniidae, Spengelidae,
Ptychoderidae and Torquaratoridae), and the pentameral Echinodermata
comprising five classes (Crinoidea, Ophiuroidea, Asteroidea, Holoturoidea
and Echinoidea).

The phylogenetic relationship of echinoderms and hemichor-
dates as sister groups within Ambulacraria, as shown in Fig. 1,
was already suggested by Metschnikoff (1881), and supported by
Nielsen (2012). The monophyly of Ambulacraria is also well sup-
ported by molecular phylogenetic analyses (Cannon et al., 2014;
Telford et al., 2014). Moreover, Cannon and colleagues showed
that the six hemichordate subgroups cluster into two monophylet-
ic taxa, Enteropneusta and Pterobranchia (Rhabdopleuridae and
Cephalodiscidae). Finally, Fig. 1 conforms to the Asterozoa hypoth-
esis separating the Echinozoa (Echinoidea + Holothuroidea) and
the Asterozoa (Asteroidea + Ophiuroidea), which is now well sup-
ported by recent molecular phylogenies (Cannon et al., 2014;
Telford et al., 2014; O'Hara et al., 2014).

Other than a few structural investigations of eye-like structures in
some asteroid species (e.g. the starfish optic cushion) and in
enteropneust larvae (Brandenburger et al., 1973; Nezlin and Yushin,
2004; Braun et al., 2015), the molecular mechanisms of echinoderm
and hemichordate photoreception remained enigmatic until recently.
Immunohistochemical studies indicated the presence of a putative rho-
dopsin in the asteroid Asterias forbesi and in the ophiuroid Ophioderma
brevispinum (Johnsen, 1997). Subsequently, Raible et al. (2006)
analyzed the ‘rhodopsin-type’ G-protein-coupled receptors family in
an echinoid genome (Strongylocentrotus purpuratus). They predict-
ed six bona fide opsin sequences, four of which were reported inde-
pendently by Burke et al. (2006). Later, Ooka et al. (2010) cloned an
“encephalopsin” orthologue in the sea urchin Hemicentrotus
pulcherrimus. Recently, more opsin sequences have been found in
sea urchins (S. purpuratus; Paracentrotus lividus), starfish (Asterias
rubens), and brittle stars (Ophiocomina nigra, Amphiura filiformis)
(Delroisse et al., 2013, 2014, 2015; Ullrich-Liiter et al., 2011,
2013). These studies highlighted the expression of ciliary and
rhabdomeric opsins in various echinoderm tissues. Also, a large

-

HEMICHORDATA

e

AMBULACRARIA

rﬂf

ECHINODERMATA

opsin gene repertoire was identified in the brittle star A. filiformis,
pinpointing notable differences with findings from the previously
published sea urchin genome (Delroisse et al., 2014). However, a
comprehensive description of opsin diversity in echinoderms is
still lacking and almost nothing is known about hemichordate
opsins.

Therefore, to characterize and describe the diversity of the opsin
family in the Ambulacraria, we conducted a detailed analysis of 6 geno-
mic and 24 transcriptomic sequence databases. This work represents
the first attempt to describe and characterize the evolution of the
opsin “toolkit” in the ambulacrarian lineage. We performed a phyloge-
netic study using the largest dataset of ambulacrarian opsin sequences
to date, including representatives of a previously neglected group,
Hemichordata.

2. Materials and methods
2.1. Data mining

Strongylocentrotus purpuratus opsins belonging to all the paralogous
classes (Supp. File 1) were used as starting query sequences for tBLASTx
against transcriptomic and genomic databases including public
databases (NCBI, JGI, Ensemble, Echinobase (www.echinobase.org/),
Biolnformatique CNRS-UPMC (http://octopus.obs-vlft.fr/) and Genoscope
(http://www.genoscope.cns.fr/spip/Generation-de-ressources.html). The
parameters used across all our tBLASTx searches were the following:
Matrix: Blosum62; gap penalties: existence: 11; extension: 1; neighbor-
ing words threshold: 13; window for multiple hits: 40. Additionally, our
dataset was further enriched using various unpublished genomic and
transcriptomic databases obtained from several independent research
projects (Suppl. Files 1 and 2). This includes transcriptomes from adult
specimens’ tissues, such as cuverian tubules and integument from
Holothuria forskali, muscle of Parastichopus californicus, radial nerve from
A. rubens, arms from Labidiaster annulatus, Ophiopsila aranea, Astrotomma
agassizii and Antedon mediterranea, proboscis from Saccoglossus
mereschkowskii and Torquaratorid sp., whole adult body of Leptosynapta
clarki and anterior part of the body from Harrimaniidae sp. and
Schizocardium braziliense. Several other transcriptomes obtained from
embryos or larvae from P. lividus, Heliocidaris erythrogramma, Eucidaris

Rhabdopleuridae
Cephalodiscidae
Harrimaniidae
Spengelidae

Ptychoderidae

Torquaratoridae

Asteroidea
Ophiuroidea
Echincidea
Holothurocidea

Crinoidea

Fig. 1. Ambulacrarian phylogenetic relationships and their adult forms. The Ambulacraria consist of two groups: Hemichordata, bilateral animals subdivided in six clades: Cephalodiscidae,
Rhabdopleuridae, Harrimaniidae, Spengelidae, Ptychoderidae and Torquaratoridae, and the pentameral Echinodermata, comprising: Crinoidea, Ophiuroidea, Asteroidea, Holoturoidea and
Echinoidea. For each class there is a representation of the adult body plan. The numbers represented on the figure correspond to the two hemichordate subgroups: 1. Pterobranchia and 2.

Enteropneusta, and the two echinoderm subgroups 3. Eleutherozoa and 4. Crinozoa.
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tribuloides, Parasticopus parvimensis, Saccoglossus kowalevskii and
Ptychodera flava (Suppl. Files 1 and 2) were also screened. The absence
of echinopsin-like sequences in other metazoans was checked using
blast search analysis. The raw predicted opsin sequences used in this
study are listed in the Suppl. File 3 in fasta format.

2.2. Alignment and phylogenetic analyses

Predicted protein alignments were performed with SeaView v4.2.12
(Galtier et al., 1996; Gouy et al., 2010) using the MUSCLE algorithm
(Edgar, 2004). To improve phylogenetic reconstruction, N-terminal
and C-terminal ends were trimmed and the alignment was manually
corrected in order to minimize gaps and eliminate ambiguous and
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misaligned regions. Sequences that were shorter than 60 amino acids
were removed to avoid bias. However, these could potentially corre-
spond to true opsins and merit further study.

Maximum likelihood analyses (ML) of our dataset were conducted
on Michigan State University's High Performance Computing Cluster
using PhyML v3.0 (Guindon and Gascuel, 2003), and nodal support
assessed with 1000 bootstrap replicates is indicated. The alignment is
shown in Suppl. File 4 (phylip format) and Suppl. File 5 (image). A
best-fit model analysis was performed using MEGAG6 (following the
AIC criteria) (Tamura et al., 2013; Kumar et al., 2008) and WAG+G+F
amino acid substitution model was found to be the best suited
(Whelan and Goldman, 2001). Three melatonin receptor sequences
from S. purpuratus (Echinodermata) and three from S. kowalevskii
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Fig. 2. Phylogenetic reconstruction of ambulacrarian opsins. 119 opsins from 31 different ambulacrarian species cluster in eight highly supported groups in this maximum likelihood (ML)
based analysis. R-opsins in blue, c-opsins in red, Go-opsins in green, neuropsins in purple, peropsins in yellow and RGR-opsin in orange. Visualization was generated with fig tree.
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(Hemichordata) were chosen as the best outgroup for the opsin phylog-
eny, as previously proposed by Plachetzki et al. (2010) and Feuda et al.
(2014).

2.3. Consensus fingerprint of ambulacrarian opsin groups

Ambulacraria opsins were clustered according to their estimat-
ed position within opsin subfamilies and a multiple alignment of a
35 amino-acid long peptide region, including the 7th transmem-
brane domain with the opsin-specific lysine (K296), was per-
formed with SeaView v4.2.12 for each opsin group supported in
our phylogenetic tree. The selected region spanned residues 286
to 320 of the Rattus norvegicus rhodopsin sequence used as a refer-
ence (Palczewski et al., 2000). The consensus sequence was gener-
ated on the basis of the alignment for each class of ambulacrarian
opsin using Geneious®8.1.5.

3. Results
3.1. Phylogeny and opsin distribution within ambulacrarian groups

Using a collection of both genomic and transcriptomic data (see
Materials and methods and Suppl. File 2 for details), a final set of 119
protein sequences, representing 31 ambulacrarian species, was generat-
ed for our phylogenetic reconstruction, which included 6 outgroup se-
quences and 6 human reference opsin sequences (Suppl. Files 1 and 3
for raw predicted protein sequences). The trimmed opsin alignment is
shown in the Suppl. File 5 (see Suppl. File 4 for the alignment phylip
file). We employed maximum likelihood using the WAG-+G-+F model

b
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e T SLFARS NPT YA

. CILIARY OPSINS

with melatonin receptors as an outgroup. Canonical opsin groups are
well supported in our analysis (Fig. 2), demonstrating the presence of
a complex opsin toolkit in Ambulacraria.

Interestingly, according to our data, two novel groups of opsins were
found, which we have named echinopsin-A and echinopsin-B groups.
Ad hoc BLAST searches against metazoan online database (NR, NCBI)
clearly indicated the absence of these two opsin types outside the echi-
noderm lineage (Suppl. Fig. 6). The previously identified Sp-opsin2 and
Sp-opsin5 belong to echinopsins-A and echinopsins-B, respectively
(Raible et al., 2006).

A complete opsin profile including at least one representative of
each prototypical opsin group (opsin 1-8) was detected in the sea
urchin S. purpuratus, but not in Lytechinus variegatus or P. lividus. The
genomes of the latter two species have not yet been comprehensively
sequenced and annotated, and therefore some opsin genes may be
missing due to incomplete sequence coverage. With the exception of
echinopsin-B, a complete opsin profile was found in the genome
sequence data of the starfish Patiria miniata. The starfish A. rubens radial
nerve transcriptome also contained several opsins, including ciliary,
Go-, RGR-opsins.

Surprisingly, rhabdomeric and Go-opsins do not seem to be present
in hemichordates in our dataset. However, this requires confirmation
through more extensive taxonomic sampling of hemichordate sequence
data because, at present, only one hemichordate genome has been fully
sequenced (S. kowalevskii). In several opsin groups we observed
lineage-specific duplications: two c-opsins in P. miniata and A. rubens;
five neuropsins in S. kowalevskii; four r-opsins in L. annulatus and six
r-opsins in A. filiformis; two Go-opsins in the echinoids L. variegatus,
S. purpuratus and H. erythrogramma. Nevertheless, some of these
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Fig. 3. Consensus sequences of different opsin groups. Graphical representations of opsin amino acid patterns within the multiple alignments of the 7th transmembrane domain and the
protein G linkage site. The 7th transmembrane domain is highlighted in green in the tridimensional representation of a typical opsin receptor. Alignment is limited to the highly conserved
regions including the opsin-specific lysine residue and the “NPxxY(x)gF” pattern. The lysine residue involved in the Schiff base formation - equivalent to K296 of the R. norvegicus rhodopsin —
is present in position 10. The pattern “NPxxY(x)sF” (position 302-313 of the R. norvegicus rhodopsin sequence) is present in position 17-28. The size of each amino acid indicates the
probability to find this specific amino acid for the considered position. Amino acid patterns of Melatonin receptors used as an outgroup in the phylogenetic analysis is also presented.



S. D'Aniello et al. / Marine Genomics 24 (2015) 177-183

molecules present a short overlapping sequence, and therefore we can-
not exclude that they could be part of unique genes. In this case, the
number of genes would have been overestimated.

3.2. Alignment of the transmembrane domain and opsin fingerprint

In order to build a consensus fingerprint to distinguish the var-
ious ambulacrarian opsin groups, the 7th transmembrane domain
and C-terminal tail region of our sequence dataset were aligned
and a graphical representation was generated (Fig. 3). All se-
quences were characterized by the general structure of G protein-
coupled receptors (GPCRs) comprising seven transmembrane
(TM) domains. Numerous residues characteristic of opsins are
present in the opsin sequences of Ambulacraria. However, as sever-
al sequences are partial, not all characteristic residues could be de-
tected in all sequences. Most of the opsin sequences also contained
the highly conserved lysine residue (equivalent to K296 of the
R. norvegicus rhodopsin) critical for Schiff base linkage formed
with retinal, except three sea-urchin peropsins (Sp-opsin 6,
Pl-opsin 6, Lv-opsin 6) in which it is substituted by a glutamate
(E). The dipeptide NP (position 302-303 of the R. norvegicus rho-
dopsin sequence) is also highly conserved among all the subfam-
ilies except in peropsins (N/HP) and RGR-opsins, which show
divergence in these residues (also rhabdomeric opsins to a lesser
extent). Amino-acid conservation for each opsin group from our

phylogenetic analysis is shown in Fig. 3. Ambulacrarian c-opsins,
r-opsins and echinopsins-A displayed a highly conserved tyrosine
(Y306). Conversely, the histidine (H310) appears distinctive
of the ambulacrarian r-opsins (Fig. 3) and r-opsins in general
(human melanopsin, octopus rhodopsin and Drosophila Rh1-
opsin). In our dataset the tripeptide SSS, positioned at residues
309-402 of the reference protein, is a distinctive feature of
ambulacrarian Go-opsins.

These representations will be particularly useful in future studies in
support of phylogenetic analysis to assign novel, unknown sequences to
lineage-specific opsin groups.

4. Discussion

Our phylogenetic analyses showed ambulacrarian opsin sequences
to be represented in all six prototypical bilaterian opsin groups: ciliary
opsins, rhabdomeric opsins, neuropsins, Go-opsins, peropsins and
RGR-opsins (Fig. 4). Even though ciliary opsins, peropsins and RGR-
opsins are in general well supported in the literature, a relatively poor
nodal support was obtained for these groups using our ambulacraria
opsin data set. In addition we confirmed the presence of two novel
echinoderm-specific opsin groups, which we have named echinopsins
(echinopsin-A and echinopsin-B). These novel groups of opsins, which
were found only in Echinoidea, Ophiuroidea and Asteroidea, respective-
ly cluster as a sister group of all other opsins and as a sister group of all

Class Species

Phylum

TOTAL
Peropsins / opsins 6

Echinoidea

Strongylocentrotus purpuratus
Strongylocentrotus droebachiensis
Strongylocentrotus intermedius
Lytechinus variegatus
Paracentrotus lividus

= | Echinopsins A / opsins 2

= =~ = 1| Echinopsins B / opsins 5

Hemicentrotus pulcherrimus
Eucidaris tribuloides
Heliocidaris erythrogramma

Holothuroidea

Parastichopus californicus
Parastichopus parvamensis
Leptosynapta clarki
Holothuria forskali
Holothuria glaberrima

Echinodermata

Ophiuroidea

Amphiura filiformis
Ophiopsila aranea
Astrotomma agassizii
Amphipholis sp

Asteroidea

Asterias rubens
Patiria miniata
Labidiaster annulatus

Crinoidea

Antedon mediterranea
Florometra serratissima

Harrimaniidae

Saccoglossus kowalevskii
Saccoglossus mereschkowskii
Harrimaniidae sp. {lceland)

ABNRPURWUOURNONERE®

Spengelidae

Schizocardium c.f. braziliense

Ptychoderidae

Hemichorda

Ptychodera flava
Ptychodera bahamensis
Balanoglossus c.f. aurantiacus

Torquaratoridae

Torquaratoid sp. (iceland)

P WRBNRRNR R

Fig. 4. Opsin distribution within the investigated ambulacraria species. For each species the number of opsin belonging to classical groups were reported. Those species for which no opsins

were found are not reported in the table (for additional informations see Suppl. File 1). Species for which the genome data are available are in bold.
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opsins except echinopsins-A and ciliary opsins (Fig. 4). A deeper analy-
sis of these groups of proteins, including more hemichordate opsin
sequences, is needed in order to determine if they represent an echino-
derm or ambulacrarian novelty. Clear orthologs of echinopsin-A and
echinopsin-B where not encountered in any metazoan genome (exept
echinoderms), as shown in Suppl. Fig. 6. Nevertheless, we cannot state
conclusively that these represent lineage-specific clades because new
genomes could reveal that echinopsin-A and echinopsin-B are indeed
not restricted to echinoderms or ambulacrarians.

Our analysis failed to reveal a rhabdomeric opsin (r-opsin) in hemi-
chordates. The absence of such an opsin type is surprising because many
enteropneust tornaria larvae possess eyespots that bear photoreceptors
with clear microvillar surface enlargement (Brandenburger et al., 1973;
Nezlin and Yushin, 2004; Braun et al.,, 2015). So far, photoreception in
microvillar photoreceptor cell types has been demonstrated to general-
ly deploy opsins of the so-called rhabdomeric type (r-opsins), although
co-expression of other opsin types in microvillar/rhabdomeric photore-
ceptors has been shown in recent studies (Randel et al,, 2013). Howev-
er, although our analysis reveals no such opsin in any of the examined
enteropneust species, it should be noted that genomic information is
only available from the direct developer S. kowalevskii, which does not
have a larval (tornarian) stage in its life cycle. Moreover, most of hemi-
chordate transcriptomes in our study were generated using adult
tissues; it is therefore possible that the absence of r-opsin in this
group of animals is due to a limitation of data availability from this
understudied group of animals.

In contrast to the lack of r-opsins in enteropneusts, our analyses
showed several cases of opsin gene duplication. Obviously in some
instances the locus of duplication prompted a large expansion of
the gene family, as is the case of the five neuropsins found in
S. kowalevskii, and the six rhabdomeric opsins in A. filiformis, with
the latter previously described by Delroisse et al. (2014). However,
the fragmentary information about these duplicates makes it diffi-
cult to predict the exact number of functional opsin proteins in
Ambulacraria. Whether or not these duplicated genes have sub-
functionalized roles should be experimentally investigated by
knock-out or silencing experiments.

Until recently, under-representation of many taxonomic groups in
comparative studies of photoreceptor evolution has hidden the real
extent of opsin diversity (Porter et al., 2012; Feuda et al., 2014). As
more opsins have been characterized, these sequences have been classi-
fied into narrow pre-defined groups (e.g. Group 4 opsins), implying
theoretical functional similarities that might not always be correct
(Shichida and Matsuyama, 2009). At present, however, the rapidly in-
creasing availability of entire genomes and transcriptomes provides a
large number of sequences for investigating the evolution and function-
al diversity of the opsin family in greater detail. Likewise, our phyloge-
netic analysis of ambulacrarian opsins provides a better understanding
of opsin evolution, nevertheless future metazoan genomes could
certainly help to draw a more definitive evolutionary scenario.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.margen.2015.10.001.
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In comparison to complex visual systems, non-directional photoreception—the most
primitive form of biological photodetection—has been poorly investigated, although it
is essential to many biological processes such as circadian and seasonal rhythms.
Here we describe the spatiotemporal expression pattern of the major molecular actors
mediating light reception—opsins —localized in the Strongylocentrotus purpuratus larva.
In contrast to other zooplanktonic larvae, the echinopluteus lacks photoreceptor cells
with observable shading pigments involved in directional visual tasks. Nonetheless, the
echinopluteus expresses two distinct classes of opsins: a Go-opsin and a rhabdomeric
opsin. The Go-opsin, Sp-opsin3.2, is detectable at early (3 days post fertilization) and four
armed pluteus stages (4 days post fertilization) in two cells that flank the apical organ.
To rule out the presence of shading pigments involved in directional photoreception, we
used electron microscopy to explore the expression domain of Go-opsin Sp-opsin3.2
positive cells. The rhabdomeric opsin Sp-Opsind expression is detectable in clusters
of cells located around the primary podia at the five-fold ectoderm pentagonal disc
stage (day 18-21) and thereafter, thus indicating that Sp-Opsind may not be involved
in the photoreception mechanism of the larva, but only of the juvenile. We discuss the
putative function of the relevant cells in their neural context, and propose a model for
understanding simple photodetection in marine larvae.

Keywords: eye evolution, Go-opsin, invertebrate larvae, r-opsin, sea urchin, zooplankton

INTRODUCTION

While the vast majority of studies on animal photoreception have so far focused on directional
photoreceptors—systems comprising at least one cell with a photosensitive opsin together with
shading pigments that enable it to discriminate the directionality of light—, less is known
about non-directional photoreception, the simplest and earliest evolving type of photoreception.
Non-directional photoreceptors, which can be difficult to detect due to a lack of visible screening
pigments, allow the monitoring of absolute light intensities of the environment. Consequently, they
are widely used as an input to the circadian clock system and also for a wide variety of other tasks.
For instance, non-directional photoreceptors can be used as a depth gauge, as a warning for harmful
levels of UV radiation, for shadow detection, or be involved in the regulation of feeding, movement
and reproduction rhythms (Bennett, 1979; Paul and Gwynn-Jones, 2003; Leech et al., 2005; Nilsson,
2009, 2013).
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Opsins are G-protein coupled receptors involved in light-
perception. Based on their amino acid sequence, they can
be divided into four groups: tetraopsin, xenopsin, Gq-opsin,
and c-opsin (Ramirez et al., 2016; for other classifications see:
Plachetzki et al., 2007; Arendt, 2008; Koyanagi et al., 2008; Porter
et al,, 2011; Feuda et al., 2012). The presence of opsins provides
a clear landmark for localizing putative photoreceptor cells even
in the absence of shading pigments and, as a consequence, the
localization of opsin-expressing cells is important for finding
directional and non-directional photoreceptors.

In echinoderms, efforts to describe photoreceptors have
primarily focussed on adult specimens. The phototactic behavior
commonly observed in adult sea urchins, in addition to their
photosensitive ectoderm associated with an endoskeleton (which
could act as shading structure, lens or filter) make them a
useful model for studying diffuse photoreception (Raup, 1966;
Hendler and Byrne, 1987; Johnsen, 1997; Johnsen and Kier, 1999;
Aizenberg et al., 2001). Before the advent of molecular genetics,
studies of photoreception in echinoids concentrated on cell
morphology and physiology, as well as understanding behavioral
responses such as spine movements, tube foot reaction, covering,
color change, and more recently visual navigation (Holmes,
1912; Millott, 1953, 1954, 1976; Thornton, 1956; Millot and
Yoshida, 1958; Millott and Manly, 1961; Yoshida, 1966; Yoshida
et al., 1984; Johnsen, 1994; Blevins and Johnsen, 2004; Yerramilli
and Johnsen, 2010). Later, the publication of the sea urchin
Strongylocentrotus purpuratus genome lead to the discovery
of nine opsins, a number of transcription factors involved
in photoreceptor cell differentiation (e.g., irx5, irx6, dix1/dlx2,
rx, ath) and several orthologous genes putatively involved
in the phototransduction cascade (e.g., visual G-beta subunit,
rhodopsin kinase, arrestin, retinal-binding protein, G-alpha-s
subunit, transducin G-gamma-t1, recoverin, G-alpha-q subunit)
in this species (Sodergren et al., 2006; D’Aniello et al., 2015).
This information has made it possible to use molecular tools
to investigate photoreception in echinoids (Burke et al., 2006;
Raible et al., 2006). The first biochemical efforts to investigate the
mechanisms of photoreception in S. purpuratus have resulted in
the localization of the rhabdomeric opsin Sp-Opsin4 in basal (i.e.,
in the stalk area proximal to the compound plates) and disk (i.e.,
in the tube feet most apical part) microvillar cells of the adult tube
feet (Ullrich-Liiter et al., 2011). Furthermore, a ciliary opsin, Sp-
Opsinl has been immunodetected in cells located in locomotory
and buccal tube feet, as well as in the proximal stalk region
of tridentate pedicellaria (Ullrich-Liiter et al., 2013), the latter
being jawed appendages used against parasites (Coppard et al,,
2010). These findings have allowed Ullrich-Liiter et al. (2011)
to describe a unique system of photoreception in which the
entire sea urchin, using its skeleton as photoreceptor screening
device, functions as a “giant eye.” This is also in agreement
with previous observations on the photobehaviour of a Diadema
species that lead to the suggestion that the shadow produced by
the spines on the animal body surface is used for inferring the
visual landscape (Woodley, 1982). However, in comparison with
the light detection systems of adult echinoids, the photoreception
mechanisms of their planktonic larvae have been so far poorly
investigated.

While ancestral adult metazoans were likely benthic, it is
probable that a pelagic larval stage evolved very early in animal
evolution (Jagersten, 1972; Nielsen, 2008). This idea has led
many scientists to investigate the directional simple eyespots
of marine larvae in search of something resembling a “proto-
eye” (Smith, 1935; Thorson, 1964; Brandenburger et al., 1973;
Marsden, 1984; Pires and Woollacott, 1997; Leys and Degnan,
2001; Nordstrom et al,, 2003; Jékely et al., 2008; Githmann
et al., 2015). Such simple eyespots or ocelli constitute class
IT photoreceptors (photoreceptor cells associated with shading
pigments) in accordance with the classification of Nilsson (2013).
To our knowledge, only few cases of non-directional (class I)
photoreceptors have been documented in marine zooplanktonic
larvae (Arendt et al., 2004; Passamaneck, 2011; Vocking et al.,
2015). In these cases, and in contrast to what we can observe
in the echinopluteus, the larvae studied possess eyespots, thus
making it more difficult to study class I photoreception in an
independent way.

To better elucidate the origins of animal vision, an event
that most probably happened in the Precambrian marine
environment, the study of larvae with class I photoreception is
essential. In this paper we identify a Go based photoreceptor
system in a zooplanktonic larva of the deuterostome lineage
that potentially lacks directional photoreceptors. To localize
the putative photoreceptor cells of the larva at early and
late developmental stages, we analyzed the expression of the
opsins Sp-opsin3.2 (Go) and Sp-Opsin4 (rhabdomeric) using
whole mount in situ hybridization and immunohistochemistry,
respectively. Further, the presence of shading pigments in the
vicinity of the encountered Go-opsin based photoreceptor cells
was ruled out by exploring both the apical organ as well as
the basal area of the anterolateral arms by using a transmission
electron microscopy (TEM) approach. The putative role of these
photoreceptor cells in non-directional photoreception of the
pluteus is discussed.

RESULTS

The Go Opsin Sp-opsin3.2 Is Detected in
Two Cells That Flank the Apical Organ of

the Larva

In order to characterize the presence of putative photoreceptor
cells in the sea urchin larva we first consulted the transcriptomic
expression of S. purpuratus opsins. After analyzing the publicly
available RNAseq data coming from a survey of 10 embryonic
stages (Tu et al,, 2014) we concluded that, of the nine genes
encoding opsins found in the genome, the Go opsin Sp-opsin3.2
(SPU027633) and the echinopsin Sp-opsin2 (SPU003451) are the
only opsin genes expressed at significant levels. Starting from the
late gastrula stage (48 h), these two genes show expression levels
reaching the value of about 100 transcripts per embryo at the
early pluteus stage (72 h), when neurons start to differentiate (for
gene expression profiling see Supplementary Figure 1). Next,
successful amplification of the Go opsin Sp-opsin3.2 was carried
out, and the corresponding antisense riboprobe was used to
localize the cells of interest. Unfortunately, various attempts in
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the amplification with different set of primers of the “echinopsin”
Sp-opsin2 did not give any result.

Here, both RNA fluorescence (Figures 1A-C; 3 days
post fertilization: dpf larvae, early four armed larvae) and
chromogenic (Figures 1D-F; 4dpf, four armed larvae) whole
mount in situ hybridization (WMISH) revealed that the Go
opsin Sp-opsin3.2 is expressed in two cells arranged bilaterally
adjacent the apical organ—i.e., a portion of the epithelium that
form the oral hood that is considered to act as central nervous
system of the larva (Byrne et al., 2007)—and at the base of the
left and right anterolateral arms (for a schematic view of the 4
armed pluteus in which we included the terminology used in
this work, see Figure 2). The expression of this gene in such a
small number of cells is consistent with the above mentioned low
levels of expression observed from the transcriptomic data. In
order to identify the position of these Sp-opsin3.2 positive cells
with respect to the ciliary band (the distinct thickening of ciliated
epidermis that outlines the oral field and traces the edges of the
four larval arms), cilia were labeled by immunohistochemistry
with anti-acetylated o-tubulin after Sp-opsin3.2 WMISH. As
shown by both in situ techniques (Figure 1), the main body

of these cells appear to be located just orally to the thick
epidermal band of the ciliated cells (see Figure 2 for schematic
representation). The Sp-opsin3.2 positive cells are suggestive of
the presence of a photoreception system in the sea urchin larvae.

TEM Analysis Reveals Absence of Shading

Pigments in the Larva Apical Region

A key difference between visual and non-visual photoreception
system is the presence of shading structures, generally in the
form of pigment cells, in proximity of light perceiving cells.
Therefore, S. purpuratus larvae were observed under the light
microscope at 4, 6, and 8 arm stages to detect for the presence
of observable pigments that can be organized to act as shading
for the described Sp-opsin3.2 positive cells. The only pigmented
cells found in the vicinity of these cells were the granulated
pigment cells, a particular population of red colored cells of
dendritic morphology and immune role that are distributed all
over the body (Ho et al., 2016). We therefore decided to explore
the presence of screening pigments in the vicinities of the Go
Sp-opsin3.2 opsin-positive cells by means of TEM.

heads indicate Sp-opsin3.2 positive cells.

FIGURE 1 | Expression of the Go-opsin Sp-opsin 3.2 in early plutei. A couple of Sp-opsin 3.2 bilateral symmetrical cells were detected at cellular resolution
between the base of the anterolateral arms and the apical organ of echinopluteus by means of fluorescent (A-C, 3dpf) and chromogenic (D-F, 4dpf) in situ
hybridizations. (A-C) Confocal-micrographs; Sp-opsin3.2 in situ hybridization (magenta) was coupled with acetylated a-tubulin immunohistochemistry (green); nuclei
were counterstained with DAPI (blue). (A) Abanal view; (B) right-lateral view; (C) mouth view. (D-F) Light-micrographs. (D,E) abanal view; (F) mouth view. Arrow
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ANALVIEW

FIGURE 2 | Drawing of the four-armed pluteus of S. purpuratus. (A) Postoral arms. (B) Anterolateral arms. (C) Apical organ. (D) Mouth. (E) Esophagus. (F)
Anus. (G) Intestine. (H) Stomach. (l) Skeletal rods. The Go Sp-opsin3.2 opsin positive cells are represented in pink.

SEMILATERALVIEW

Shading pigments involved in directional photoreception,
which can be located both in the opsin positive cells or adjacently,
are easily recognized in TEM as a group of black-solid dots
in the cytoplasm (e.g., Marshall and Hodgson, 1990; Leys and
Degnan, 2001). For our TEM analysis, three larvae were fixed,
and transversal sections of 50-70 nm were made in the apical
region in search of shading pigments (Figure 3A). Of them,
micrographs corresponding to different sections of the apical
organ (Figures 3D,E) and the bases of the left (Figures 3B,C)
and right (Figures 3FG) anterolateral arms were selected.
Interestingly, none of the cells embedded in the apical organ
nor in the area of the ciliary band exhibited observable shading
pigments. In particular, the regions of the ectoderm in between
the apical organ and either left or right anterolateral arms
(encircled in Figures 3A,C,F) where the Sp-opsin3.2 positive cells
are located (see also schematics of Figure 2) are void of shading
pigment granules. These findings suggest that the Sp-opsin3.2
positive cells are not involved in directional photoreception.
Serial multiplex immunogold labeling experiments are needed
to better characterize the morphology of the encountered Sp-
opsin3.2 positive cells.

Sp-opsin4, the Rhabdomeric Opsin, Was
Detected in the Adult Rudiment at

Pentagonal Disc Stages and Thereafter
Due to limitations of WMISH efficiency on late developmental
stages and the availability of a specific antibody against the sea

urchin rhabdomeric opsin Sp-Opsin4 (Ullrich-Liiter et al., 2011),
we decided to use an immunohistochemical approach to explore
the opsin toolkit of the premetamorphic larva. During late larval
development (second week of development and thereafter), a
portion of the coelom and the overlying ectoderm get in contact
and form the imaginal adult rudiment (Smith et al, 2008;
Heyland and Hodin, 2014; for a schematic view see drawings
in Figure 4). This rudiment represents the presumptive juvenile
that grows from the left side of the larva (for a schematic, see
Figure 4A). In order to analyze the spatiotemporal expression
of the rhabdomeric opsin Sp-Opsin4, we tested its presence in
time series of 3, 4, 5, 6, and 7 days (4 armed pluteus), 16d (6
armed pluteus, contact flattened stage), 17d (6 armed pluteus,
5-fold mesoderm stage), 18d (8 armed pluteus, 5-fold ectoderm
stage), 19d (8 armed pluteus, primary podia stage), 21d (8 armed
pluteus, primary podia-folded stage), and 23d (8 armed pluteus,
primary podia-touching stage) post fertilization (for staging of
the echinopluteus see also Smith et al., 2008; Heyland and Hodin,
2014). These experiments suggested the absence of expression of
the rhabdomeric opsin Sp-Opsin4 prior to the tube feet formation
in any part of the larva. No protein expression was found
either in sensu stricto larval structures until the 5-fold mesoderm
stages (17dpf; Figures 4B,B’) with our method. Larvae started
to exhibit Sp-Opsin4 positivity in conspicuous clusters of cells
on the vestibular floor at pentagonal disc stage that would give
rise to the tube feet disc during 5-fold ectoderm stage, a stage in
which the ectoderm and the primordia of the five podia begin
to push through the floor of the vestibular ectoderm (day 18;
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FIGURE 3 | Transmission electron micrographs of a 3dpf (early 4 armed) pluteus, different sections of three specimens at the level of the apical region.
(A) Collage of 324 transversal micrographs showing a panoramic view of the abanal half of the larvae (apical region). On it, the bases of the left and right anterolateral
arms (LAA and RAA, respectively), as well as the lumen (LU) of the gut, surrounded by the blastocoel (BLA), the ciliary band (CB, dotted line), and the apical organ
(AO) are shown. The stippled line corresponds to the ectodermal region in which the ciliary band is located. A representation of the whole 4 armed pluteus larva and
(Continued)
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FIGURE 3 | Continued

cutting area can be seen in the lower right corner. (A') Detail of the cross sectional profile of the motile cilia (arrow heads) that compose the ciliary band. The orientation
of the animal is defined by the axes: anal, abanal, left and right. (B) Transversal section of the base of the anterolateral arm, left side. On it, the axon tract (at) that
connects this area with the nervous system can be distinguished. (C) Transversal section of the region that connects the left anterolateral arm (LAA) with the apical
organ (AQ). Pigmented cells cannot be detected in any of the cells flanking the apical organ, where the Go-opsin Sp-opsin3.2 was detected. The black arrow head
points to a blastocoelar cell (bc). (D,E) Detail micrographs of the apical organ, an area considered as the central system of the animal, rich on ciliated cells (cc) and
axon tracts (at). (F) Transversal section of the region that connects the right anterolateral arm (RAA), with the apical organ (AO). (G) Transversal section of the base of
the anterolateral arm, right side. The arrow head points one of the cilia of the region.

Figures 4C,C). At this point, the interior of the 5 incipient podia
are spherical in shape or shorter than wide. We also detected
Sp-Opsin4 positive cells later on, in the tube feet disc during
advanced rudiment stage, when the primary podia are taller
than they are wide, but the podia are not yet folding in toward
one another (day 20-21; Figures 4D,D’). At tube-foot protrusion
stage (day 21-45), Sp-Opsin4 positive cells were detected both in
disc (Figure 4E) and basal (Figure 4F) photoreceptors of the tube
feet. These data indicate that the rhabdomeric opsin Sp-opsin4
may not regulate the photoreception mechanism of the larva, but
only of the juvenile, where it appears to be involved in negative
phototaxis (Ullrich-Liiter et al., 2011). For a schematic view on
the different rudimental stages, see Figures 4B'-F'.

DISCUSSION

Our findings show that, at least, two opsin classes are expressed
in Strongylocentrotus purpuratus prior to metamorphosis: first
the Go opsin Sp-opsin3.2 in the apical region of the larva at 3
and 4 dpf (4 armed pluteus), and then the rhabdomeric opsin
Sp-Opsing in the tube feet of the presumptive juvenile (day
29 and thereafter, 8 armed pluteus). The different opsin classes
in the sea urchin may serve different needs to integrate light
information depending on the life stage, where the pelagic larva
and the benthic adult face very different challenges.

Of the opsin-positive cells encountered, just the two
Sp-opsin3.2 positive-cells localized in the flanks of the apical
organ can be considered part of the sensu-stricto larval tissues.
In our study, no rhabdomeric opsins have been found in
larval structures. Because the aim of this study is to improve
our understanding of photoreception in marine larvae, the
rhabdomeric opsin Sp-opsin4, which is expressed in presumptive
juvenile tissues, will not be further discussed. For an account
on the possible role of Sp-opsin4 positive photoreceptor cells
in mediating negative phototaxis of sea urchin juveniles (see
Ullrich-Liiter et al., 2011).

Ancientness of Go-Opsins

Phylogenetic analyses indicate the presence of at least seven
opsins in the last common ancestor of Bilateria (Ramirez
et al, 2016), thus suggesting that light reception had many
roles very early in animal evolution. These opsins, together
with present-day animal opsins, have been classified into four
groups: (i) tetraopsins (Go-opsins, RGR/retinochrome opsins
and neuropsins), (ii) xenopsins, (ili) Gq-opsins (including
canonical and non-canonical r-opsins as well as “chaopsins”), and
(iv) c-opsins, i.e., canonical c-opsins and bathyopsins (Ramirez

etal., 2016). While the canonical c- and r-opsin groups have been
extensively studied, little is known about the Go opsin group
included in the tetraopsin clade (Githmann et al., 2015).

In support of the ancient origin of the Go opsins, cells
expressing this class of opsins have been localized in diverse
animal clades, thereby suggesting the presence of this opsin
group before the protostome-deuterostome split. Examples of
Go-opsins are found in the ciliary cells of the eyes of the adult
scallop Patinopecten yesooensis (Kojima et al, 1997), in the
gastrula of the brachiopod Terebratalia transversa (Passamaneck
and Martindale, 2013), in the rhabdomeric adult eye of the
polychaete Platynereis dumerilii (Githmann et al., 2015) as well
as in the photoreceptor system here described. In the amphioxus
Branchiostoma belcheri, a Go-opsin has been demonstrated
by an in vitro analysis (Koyanagi et al, 2002) but, to our
best knowledge, this is the first report in which the spatial
expression of a Go-opsin has been described in a deuterostome
larva.

Non-directional Photoreceptors

In marine invertebrates, the expression of opsins in non-visual
photoreceptors has been documented in the apical organ of
planktonic larvae of protostome and deuterostome lineages (e.g.,
Arendt et al,, 2004 and herein). A shared feature of these
apical organs—regions specified by conserved developmental
patterning mechanisms (Marlow et al., 2014)—is the presence
of multiple sensory cells connected to the nervous system,
which regulates ciliary beating and the vertical position of
the animal in the water column (Tosches et al., 2014). In
vertebrates, a population of non-directional retinal ganglion cells
(the intrinsically photosensitive photoreceptive retinal ganglion
cells: ipRGCs), are critical in relaying light information to the
brain in order to control circadian photo-entrainment, pupillary
light reflex, and sleep (Provencio et al., 1998; Schmidt et al,
2011).

Our discovery of non-directional photoreceptors in the
pluteus of S. purpuratus suggests that these cells may also have
a role in controlling the vertical position of the larva in the water
column, which may be used for monitoring the time of day or the
depth (Nilsson, 2013). This adjustment is likely to be achieved
by modulating the length and frequency of ciliary arrests, as
proposed for this and other marine larvae (e.g., Wada et al., 1997;
Maldonado et al., 2003; Braubach et al., 2006; Jékely et al., 2008).
The use of non-directional photoreceptors in vertebrates for tasks
such as the regulation of nocturnal-diurnal behaviors (Provencio
etal., 1998; Schmidt et al., 2011) could represent the retention of
such chronobiological role.
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FIGURE 4 | Localization of the rhabdomeric opsin Sp-opsin4 in the developing tube feet of the presumptive juvenile. (A) Schematic of the 8 armed
pluteus stage, anal view, in which the area of growing of the rudiment (arrow) is shown. (B,B’) Sp-opsin4 was not detected in adult plate at 5-fold ectoderm stage (day
17; pentagonal disc stage, PDS). (C,C’) During the 5-folding of the ectoderm (day 18, PDS), the rudiment of the larva starts to exhibit Sp-opsin4 positivity in clusters
of conspicuous cells at the presumptive basal tube feet. (D,D’) At primary podia stage (day 19, PDS), the presumptive disc tube feet of the vestibular floor are positive
for Sp-opsin4. (E,E’) Sp-opsind photoreceptor cells are visible in the tube feet disc of the folded primary podia (day 21; transition between the PDS and the advanced
rudiment stage, ARS), both in disc and basal photoreceptor cells of the tube feet. (FF’) Sp-opsin4 positive cells were detected at tube-foot protrusion stage (day
23-45, ARS). Stages redrawn from Heyland and Hodin (2014). PDS and ARS stages are named following the nomenclature proposed by Smith et al. (2008). The red
dots in (C’-F’) represent the Sp-opsin4 positive cells and can be used as a landmark to locate and orient rudiment in (C-F). Confocal micrographs color code:
Sp-opsin4 in magenta; acetylated a-tubulin (B-E) and 1E11 (F) in green; DAPI in blue. The bright green staining in the stomach of the larvae shown in (B,C) is due to
autofluorescence of the ingested microalgae.
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Bilateral Disposition and Lack of Shading

Pigments

The absence of shading pigments in the region where the
Sp-Opsin3.2 is expressed strongly suggests that these opsin-
positive cells lack directional sensitivity, but whether this
represents a plesiomorphic character or a secondary loss is not
immediately clear. Directional photoreception for phototaxis,
with shading pigment near the site of opsin expression, is
believed to have evolved from non-directional photoreception
where screening pigment is not needed (Nilsson, 2009, 2013).
Directional photoreceptors are typically bilaterally paired organs
(Brandenburger et al, 1973; Arendt and Wittbrodt, 2001;
Braun et al., 2015), whereas non-directional photoreceptors
are often un-paired median structures (Mano and Fukada,
2007; Van Gelder, 2008). Our finding of paired non-directional
photoreceptors represents an interesting intermediate.

The bilateral arrangement of photoreceptor cells is typically
associated with helical swimming behaviors in the pluteus and
other marine invertebrate larvae (Lacalli et al., 1990; reviewed
in Jékely, 2009). Bilaterally paired photoreceptors may seem
redundant for non-directional photoreception, and without
shading pigment they do not have the directionality required for
phototaxis.

It is possible that the shading pigment associated with these
opsin-positive cells might have been lost during evolution to
increase transparency or reduce energy expenditure. The lack
of shading pigments may have been favored by selection to
allow a better camouflage against predators (Nilsson, 1996).
Consequently, the bilateral arrangement of these opsin positive
cells may be primitive, and the lack of screening pigment a
consequence of an adaptive transition from a directional to
a non-directional role. Alternatively, it is possible that the
pluteus have retained the non-directional photoreceptors of
“Urbilateria,” an ancestor that may have had both directional
and non-directional photoreceptors (Arendt and Wittbrodt,
2001). The bilateral arrangement of these non-directional
photoreceptors would have been the result of developmental
constrains associated with the bilateral symmetry, or maybe
profitable for increasing the robustness and sensitivity of the
photoreceptor system.

To better understand when a possible switch occurred (i.e.,
whether Go-opsins originally mediated a non-directional task
in the dipleurula larvae of the Ambulacraria stem group, or
if an association with screening pigments was lost secondarily
in the Echinodermata crown group) a further comparison of
the photoreceptor systems of different dipleurula-type larvae is
required.

The fact that the two bilateral photoreceptors connected to
the apical organ of the pluteus larva use a Go-opsin, while r-
opsins are present in similar structures of nearly all other larvae,
results remarkable. One possible explanation to why putative
homologous paired photoreceptors express distinct opsins in
different Bilateria clades could be that Urbilateria had bilaterally
paired photoreceptors with r-opsin, c-opsins and Go-opsins
serving different functions (Feuda et al., 2012; Ramirez et al.,
2016). This variety of functions can be ascribed to the need of

different spectral or temporal properties, as well as to different
roles in the transducing the light signal. Losses would then
account for the fact that echinoid larvae seem to have only a Go-
opsin, most other protostomes only a r-opsin, and vertebrates
c- and r-opsins. Cell duplication and subsequent specialization
must also be assumed for vertebrates.

Putative Role of Go-Opsin Positive Cells in

Sea Urchin Larvae

The most plausible role of the Go photoreceptors described in
this study is the regulation of vertical movement of the larva
during photoperiodic transitions (Jékely et al., 2008; Mason
and Cohen, 2012). Such a unimodal system could resemble the
earliest photoreceptor mechanism in the first marine larvae. If
this is the case, study of this system could provide clues as how the
first planktonic animals perceived light cues. It remains possible
that other opsins are present at the same larval stage that have not
been identified.

Because the main locomotory organ of the pluteus is the ciliary
band, it would be informative to know whether the Sp-Opsin3.2
positive cells are connected to the ciliary band via the nervous
system, which has been described as “a network of cells that span
the blastocoel and connect nearly all parts of the larva” (Ryberg
and Lundgren, 1977). Previous studies of the nervous system of
the pluteus of Strongylocentrotus droebrachiensis (Burke, 1978),
a closely related species, report the presence of serotonergic
neurons in the area of the apical organ, located between the cells
homologous to the Go-opsin expressing cells of S. purpuratus.
This serotonergic system is suggested to be involved in the
regulation of the ciliary band activity in the pluteus (Gustafson
et al., 1972; Burke, 1978; Yaguchi and Katow, 2003) and also
in many other marine larvae (e.g., Mackie et al., 1969; Beiras
and Widdows, 1995; Pires and Woollacott, 1997; Kuang and
Goldberg, 2001). The topology of the SpOpsin3.2 expressing cells
in the proximity of serotonergic neurons lead us to hypothesize
that Go expressing cells may be involved in locomotory control,
probably in the activation or excitation of the ciliary band
to position the animal in the upper photic zone. Knockout
experiments of this opsin coupled with behavioral experiments
could be used to test this hypothesis.

METHODS

Strongylocentrotus purpuratus, Adult Care

and Larval Culture

Adult S. purpuratus were obtained from San Diego Bay at
25-30m in depth (San Diego, CA, USA) and housed in 12°C
circulating seawater aquaria at the Stazione Zoologica Anton
Dohrn, Italy. Spawning was induced by intracoelomic injection
of 0.5M KCl. Embryos/larvae were cultured in Mediterranean
filtered seawater (mesh pore size: 0.2 mm) diluted in de-ionized
water (final salinity: 32.5%0) and kept at 15°C on a 12/12 h
light/dark cycle. From 3 days onwards, larvae were fed with
a mixed diet of Isochrysis galbana [~2,000 cells mL~!] and
Rhodomonas sp. [~2,000 cells mL™!]. All larval cultures were
maintained at a decreasing with age concentration from 5 to 1
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pluteus mL~!, mixed by gentle rotary stirring and washed every
other day. Larval washes were made by inverted filtration (mesh
size: 100 wM).

Gene Cloning and RNA Probe Preparation

Contig sequence for Sp-opsin3.2 was identified in the
genome (ref. code: SPU027633) and transcriptome (ref.
code: WHL22.338995) data sets. A 1,175 bp transcript was
amplified by PCR with the cloning primers Sp-opsin3.2-F
(5"-CCACTCATTTCGTGCGGATT-3') and Sp-opsin3.2-R (5'-
CTCTAGTGATGACGGGCGAT-3') from cDNA prepared with
a Bio-Rad iScript synthesis kit, ligated into pGEMT-easy vector
(Promega), and transformed into Top10 chemically competent
E. coli (Invitrogen). Clone fragments were verified by Sanger
sequencing prior to riboprobe generation. DIG-labeled antisense
and sense (negative control) RNA probes were generated from
plasmid DNA with T7- and SP6-RNA polymerases (Roche)
respectively, and purify with mini Quick Spim Columns (Roche).

Fluorescent In situ Hybridization Coupled

with Immunohistochemistry

Strongylocentrotus — purpuratus collected at
early pluteus stage (3dpf), fixed overnight at 4°C in 4%
paraformaldehyde/0.1M MOPS pH 7, 0.5M NaCl, washed
thoroughly in MOPS buffer, and stored in 70% ethanol
until use. Whole mount fluorescent in situ hybridization
(FISH) was performed as described in Andrikou et al. (2013).
Immunohistochemistry coupled to WMISH was performed by
incubating the larvae with anti-acetylated o-tubulin antibody
(Sigma-Aldrich T6793, St Louis, MO, USA) in a dilution 1:250
together with the anti-DIG antibody; the secondary antibody
was a goat anti-mouse IgG-Alexa 488 (Invitrogen, CA, USA)
diluted 1: 1000.

larvae were

Chromogenic In situ Hybridization

Four-armed S. purpuratus larvae were fixed at 4dpf as explained
above. Single probe chromogenic in situ hybridization on whole
mount fixed embryos was performed as previously described
by Ransick (2004) with the following changes: (i) all washes
were carried out in TBST (0.2M Tris pH 7.5, 0.15M NaCl, 0.1%
Tween-20); (ii) hybridization was performed over-night at 60°C;
(iii) 1X SSC and 0.1X SSC washes were performed at 60°C;
(iv) Anti-Digoxigenin-AP, Fab fragments (Roche) were diluted 1:
2000.

Immunohistochemistry

Larvae were fixed in 4% paraformaldehyde in PBS pH 7.4
containing 0.5M NaCl for 30 min at room temperature.
Late 6 and 8 armed larvae (days 14-23) were post-treated
2 min with pure cold MetOH in order to partially remove
membrane lipids and facilitate antibody penetration. After five
5 min rinses in phosphate buffered saline (PBS), samples were
washed thoroughly in PBS/0.1% Tween-20 (PBST). Following
incubations were carried out on an orbital shaker. The first
blocking step was performed with 4% heat-inactivated Normal
Goat Serum (NGS) in PBST for 1h, prior to incubating
specimens with primary antibodies anti-Sp-opsin4 1:50 [1.21 mg

mL~!] (Ullrich-Liiter et al., 2011), anti-1E11 1:100 [~10.00 mg
mL~!] (monoclonal antibody that recognize S. purpuratus
synaptotagmin B and is used as “pan-neural” marker; Nakajima
etal., 2004), and anti-acetylated a-tubulin (Sigma T6793) 1:250—
in PBST overnight at 4°C. After five washes in PBST, a
second blocking step was performed as described above prior
to incubating specimens with secondary antibodies—goat anti-
rabbit IgG-Alexa 488 and goat anti-mouse IgG-Alexa 647—
diluted 1: 1,000 in blocking buffer (4% NGS in PBST) at 4°C
overnight. All specimens were washed thoroughly in PBS and
then counterstained with DAPI (1 pg/mL in PBS) for nuclear
labeling. For Sp-opsin4 antibodies, controls were carried out
using their respective rabbit pre-immune sera. For commercial
antibodies, control experiments were run in parallel by omitting
primary antibodies.

Transmission Electron Microscopy
Strongylocentrotus purpuratus plutei were first fixed in modified
Karnovsky solution (2.5% glutaraldehyde, 2% paraformaldehyde,
and 3% sucrose in 0.1 M phosphate buffer pH 7.4 containing
0.5M NaCl) for 1h at room temperature. After several rinses
in PBS, samples were post fixed in 1% osmium tetraoxide in
distilled water 1h at 7°C, and dehydrated in a series of ethanol
(30/50/70/96/100) and infiltrated and embedded in EPON (Agar
100). Samples were kept at 60°C for 48 h to allow polymerization.
Thin sections (50-70 nm) were cut with a diamond knife with
a Leica EM UC7 ultramicrotome and mounted on pioloform
coated copper grids.

Imaging

Light microscopic images were taken using a Zeiss M1 Axio
Imager microscope. Confocal acquisition was performed on a
Zeiss LSM 510 Meta confocal microscope. TEM acquisitions
were performed on a 120 kV JEOL 1400 plus microscope with a
bottom mounted CMOS camera. Figure plates were made with
Mlustrator CS6 (Adobe). Brightness/contrast and color balance
adjustments were always applied to the whole image and not to
parts.
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Abstract

Background: Thaliaceans is one of the understudied classes of the phylum Tunicata. In particular, their
phylogenetic relationships remain an issue of debate. The overall pattern of serotonin (5-HT) distribution is an
excellent biochemical trait to interpret internal relationships at order level. In the experiments reported here we
compared serotonin-like immunoreactivity at different life cycle stages of two salpid, one doliolid, and one
pyrosomatid species. This multi-species comparison provides new neuroanatomical data for better resolving the
phylogeny of the class Thaliacea.

Results: Adults of all four examined thaliacean species exhibited serotonin-like immunoreactivity in neuronal and

non-neuronal cell types, whose anatomical position with respect to the nervous system is consistently identifiable
due to a-tubulin immunoreactivity. The results indicate an extensive pattern that is consistent with the presence of

(Doliolida) and young zooids (Pyrosomatida).

serotonin in cell bodies of variable morphology and position, with some variation within and among orders.
Serotonin-like immunoreactivity was not found in immature forms such as blastozooids (Salpida), tadpole larvae

Conclusions: Comparative anatomy of serotonin-like immunoreactivity in all three thaliacean clades has not been
reported previously. These results are discussed with regard to studies of serotonin-like immunoreactivity in adult
ascidians. Lack of serotonin-like immunoreactivity in the endostyle of Salpida and Doliolida compared to Pyrosomella
verticillata might be the result of secondary loss of serotonin control over ciliary beating and mucus secretion. These
data, when combined with other plesiomorphic characters, support the hypothesis that Pyrosomatida is basal to these
clades within Phlebobranchiata and that Salpida and Doliolida constitute sister-groups.

Keywords: Comparative neuroanatomy, Evolution, Immunohistochemistry, Thaliaceans, Tunicata, Zooplankton

Background

Thaliacea is a class of pelagic tunicates that undergo
alternation of generations between the sexual blasto-
zooid stage and the asexual oozooid stage (reviewed in
[1]). This clade comprises three orders: Pyrosomatida,
Salpida, and Doliolida [2]. Despite a rich literature
describing the anatomical characters of thaliaceans,
the phylogenetic position within orders is still dis-
puted. Most authors proposed a nested position of
Thaliacea within the class ‘Ascidiacea; thus recognized
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as a paraphyletic group formed by the Stolidobran-
chiata, Aplousobranchiata and Phlebobranchiata clades
[3-6]. This view suggests that the thaliaceans, with
their planktonic life style, diverged from a benthic
ancestor. However, there is no consensus on the
relationships among Thaliacean orders. Some authors
proposed that Pyrosomatida and Salpida group independ-
ently from Doliolida [7-9], while more recent works
suggested that Pyrosomatida branched off first, and that
Salpida and Doliolida are sister groups [10-12]. To date,
molecular phylogenetic analyses based on ribosomal
markers have been hindered by long-branch attraction [6].
Analyses based on morphological characters have not
overcome such error, mainly because of the lack of a more

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
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comprehensive taxon sampling, particularly covering all
three thaliacean orders [11, 12].

When molecular and morphological phylogenies con-
flict, neuroarchitectural traits offer a wealth of hitherto
largely-unexploited characters which can make valuable
contributions to phylogenetic inference even among dis-
tantly related groups (e.g., tardigrades, onychophorans,
kinorhynchs and priapulids) [13-17]. However, when
adopting neural characters, extensive sampling of crown-
group representatives is required to assess the origin of
evolutionary traits. In thaliaceans, comparative anatomy is
particularly problematic due to the complexity of their life
cycles and the difficulty of comparing homologous struc-
tures. As a consequence, it is essential to sample taxa
across all orders.

To better understand thaliacean phylogenetic relation-
ships, we analysed the distribution of serotonin-like
immunoreactivity in specimens from the three orders
and at different stages of their life cycle. Monoamine
serotonin is an ancient and conserved neurotransmitter
found throughout Opisthokonta [18]. Serotonin can trig-
ger several physiological functions that range from regu-
lation of ciliary band activity [19], to feeding circadian
patterns [20], and influencing emotional state [21]. In
addition to neurotransmitter functions, serotonin has
also non-neurogenic roles. For instance, it affects cardiac
morphogenesis and neural crest cell migration during
early mammalian and chicken embryonic development
[22-24], modulates gastrulation in echinoderms and in-
sects [25—27], and plays a role in the determination of
left-right asymmetry in amphibians and birds [28, 29].
Cellular distribution of serotonin is a reliable biochem-
ical trait to infer phylogenetic hypotheses due to the
ancestral nature of this amine, its diffuse role in nervous
transmission, and its metabolic and developmental
functions [13, 17, 30, 31]. Moreover, the precise classifi-
cation and description of serotonin-like immunoreactive
cells is needed to improve taxonomic comparability [31].
Serotonin-like immunoreactivity in thaliaceans has been
described in oozooids of Doliolum nationalis (Borgert,
1893) (Doliolida) and Thalia democratica (Forsskal in
Niebuhr, 1775) (Salpida) [32-34]. Immunoreactivity to
serotonin was observed in both species in different or-
gans such as cerebral ganglion, intestine, pericoronal
bands, and in a structure termed the ‘placenta; a single
layer of flattened follicle cells that covers the embryo
during development [9, 35]. Recently, Braun and Stach
classified serotonin-like immunoreactive cells of Ascidia-
cea, Appendicularia and Thaliacea in three types: one
neuronal and two non-neuronal, spherical and elongated
respectively. Each of these cell types has a conserved tis-
sue type-specific distribution [34]. However, cell lineage
studies are needed to elucidate the origin of serotonin-
like immunoreactive cells.

Page 2 of 11

To understand the evolution of the serotonergic sys-
tem in Thaliacea, three additional species were examined
at different successive life cycle stages, including a mem-
ber of the order Pyrosomatida. Immunohistochemistry
against acetylated and tyrosinated a-tubulins was com-
bined with nuclear staining in order to provide overall
anatomical landmarks of the nervous system and an
antibody against 5HT serotonin was used to describe the
distribution of serotonin-like immunoreactive cells. Our
study provides a more complete description of thalia-
cean serotonergic nervous system, with the aim of better
understanding the course of neurotransmitter system
evolution in this group of invertebrate chordates.

Results

Organization of the serotonergic nervous system in the
pyrosomatid Pyrosomella verticillata (Péron, 1804)
Pyrosomes form tubular colonies consisting of barrel-
shaped individual animals (0oozooid) that bud off near
the posterior closed end of the colony [36]. The nervous
system of the pyrosomatid oozooid is an ovoid mass
which comprises two regions with contrasting develop-
ment and function, the neural gland connected to the
ciliated funnel, and a voluminous cerebral ganglion [37].
Mature zooids of the tetrazooid colony showed serotonin-
like immunoreactivity in neuronal cells of the cerebral
ganglion and in the visceral nerve (medial posterior nerve,
mpn) running antero-posteriorly and encircling the
cerebral ganglion (Fig. la—e). The peribranchial tube ex-
hibits two lateral tufts of a-tubulin-positive cilia crossed
by the serotonin-like immunoreactive mpn fibres (Fig. 1f).
Serotonin-like immunoreactivity was also detected in
spherical cell bodies on the pericoronal bands around the
oral siphon (Fig. 1c), in two bilaterally symmetrical
antero-posterior rows within the endostyle (Fig. 1g), and
in a single row in a structure identified as the pyloric
gland (Fig. 1h). Early forming and young primary blasto-
zooids growing in the P. verticillata tetrazooid colony
exhibited axons labelled with the anti-a-tubulin antibody,
but no serotonin-like immunosignals were observed (data
not shown).

Organization of serotonergic nervous system in the
salpids Thalia democratica and Ihlea punctata (Forsskal in
Niebuhr, 1775)

Thalia democratica

A thorough description of the structure of 7. democra-
tica cerebral ganglion has been provided by Lacalli and
Holland [38]. Serotonin-like immunoreactive neurons
were found in the posterior half of the cerebral ganglion
(Fig. 2a, b, ¢). A central cluster of serotonin-like immu-
nopositive perikarya was localized near the posterior
margin of the neuropil (Fig. 2b). In addition, the cere-
bral ganglion of T. democratica exhibited two paired
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Fig. 1 Localization of serotonin-like immunoreactivity, acetylated a-tubulin, and DAPI in Pyrosomella verticillata tetrazooid colony. a Adult
blastozooids (b1 and b2), overview. Oral siphons (0s) and cerebral ganglia (cg) highlighted. b Mature blastozooid highlighting oral siphon (0s),
pericoronal bands (pb), ciliated funnel (cf), gills (g), peribranchial tube (pt) and with motor nerves (anterior (an), lateral (In), posterior (pn) and
medial posterior (mpn) nerves) extending from the cerebral ganglion (cg). ¢ Detail of the ciliated funnel (cf) and cerebral ganglion (cg) in dorsal
view. d, e Light (d) and confocal (e) magnification of the cerebral ganglion (cg) (lateral view) in connection with the ciliated funnel (cf). f Detail of
mpn crossing a peribranchial tube (pt). g Detail of the endostyle (serotonin-like immunopositive cells marked with arrowheads), with grayscale
invert editing to highlight serotonin-like immunoreactive cell shape (inset). h Detail of the posterior part of one adult zooid, highlighting the
pyloric gland (pg), with grayscale invert editing to highlight serotonin-like immunoreactive cell shape (inset)

clusters of serotonin-like immunoreactive neurons lat-
erally (Fig. 2b). Depth color-code analysis of serotonin-like
immunoreactivity suggests that a loose bundle of nervous
fibres extends ventrally through the neuropil from the
central core (Additional file 1). Nervous fibres projecting
from the ventral margin of the cerebral ganglion were
found to adjoin anteriorly to the optic bundles of the eye
(Fig. 2c). Double labelling for serotonin and acetylated a-
tubulin suggested that some of the lateral serotonin-
like immunoreactive neurons extend fibres as would
be expected in case of motor neurons (Fig. 2c). As
reported by Pennati et al. [33], serotonin-like immu-
noreactivity was detected on the pericoronal bands
(Fig. 3a), in the digestive system (oesophagus and in-
testine) (Fig. 2d, e) and on the posterior end of the
branchial septum (Fig. 2d). In the first organ, immu-
noreactive cell bodies have an elongated morphology

and are organized in a single row (Fig. 2a), in the
second one they are both spherical and elongated and
are organized in single and multiple rows (Fig. 2d, e),
while in the third one serotonin-like immunoreactive
cells are both spherical and elongated, and form two
bilateral rows (Fig. 2d). Serotonin-like immunopositive
cells were not seen in ciliated funnel (data not
shown) and endostyle (Fig. 2f).

Although the anatomy of oozooids and blasto-
zooids of T. democratica is similar in many respects,
serotonin-like immunoreactivity was not detected in
the early aggregate blastozooids derived by stro-
bilation from a posterior stolon of the oozooid
(Fig. 2g—i). In blastozooids at developmental stage II
sensu Brien [39], labelling of «-tubulins highlighted
neural fibres running along the pericoronal bands
and in a visceral longitudinal nerve extending to the
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DAPI

Fig. 2 Localization of serotonin-like immunoreactivity, acetylated a-tubulin, and DAPI in Thalia democratica. a—f Adult oozooids. g-i Aggregate
blastozooids. a General view of the anterior region that contains the ciliated funnel (cf), endostyle (en), cerebral ganglion (cg), and pericoronal
bands (pb), with grayscale invert editing to highlight serotonin-like immunoreactive cell shape in the pericoronal bands (inset). b Detail of the
cerebral ganglion highlighting peripheral (arrowheads) and central (encircled) serotonin-like immunoreactive cells, and fibres projecting ventrally
through the neuropil (arrowhead in the inset). ¢ Detail of the cerebral ganglion highlighting eye (e), neuropil (np) (arrow indicates a-tubulin and

serotonin co-labelled neuron), and motor nerves (mn) extending from peripheral serotonergic neurons (arrowhead indicates a-tubulin immunoreactive
nerve). d Detail of mouth (mo), oesophagus (oe) and branchial septum (bs). @ Magnification of intestine (in) and branchial barrier (bb), with grayscale

invert editing to highlight serotonin-like immunoreactive cell shape (inset). f Detail of the endostyle. g General view of early aggregate blastozooids at
developmental stage | sensu Brien [39]. h, i Details of aggregate blastozooids at developmental stage Il sensu Brien [39] highlighting ciliated funnel (cf),

cerebral ganglion (cg), pericoronal bands (pb), visceral nerve (vn), and eleoblast (el)

eleoblast (i.e., a specialized epithelial organ of some
thaliaceans) [38] (Fig. 2g—i).

Ihlea punctata

In the I punctata oozooids, serotonin-like immunopo-
sitive neurons were scattered at the ventral posterior
margin of the cerebral ganglion, near the exit of axonal
projections extending from it (Fig. 3a). Serotonin-like
immunoreactivity was also encountered in spherical cell
bodies along the pericoronal bands (Fig. 3b) and in
regularly arranged rows in the oesophagus (Fig. 3c). No
endostyle was observed in any of the I punctata
oozooids examined.

Organization of the serotonergic nervous system in the
doliolid Doliolina muelleri (Krohn, 1852)

In comparison with salps and pyrosomes, doliolids have
a long generation time and their life cycle encompasses
different zooids [40]. Their typical body plan is barrel-
shaped with two wide siphons and 8-9 circular muscle
bands. The neural complex of Doliolida groups the cere-
bral ganglion (the central nervous system, composed by
neurons and the neuropil), the neural gland (an ectoder-
mal structure of unclear function), and the ciliated
funnel, sometimes called “vibratile organ” [36]. The cere-
bral ganglion of D. muelleri phorozooids is localized
dorsally in the middle of the body, and long nerves
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(0e), serotonin-like immunopositive cells marked with arrowheads

Fig. 3 Localization of serotonin-like immunoreactivity and tyrosinated a-tubulin in lhlea punctata oozooids. a Cerebral ganglion (cg) with eye (e)
and motor nerves (mn) extending from it. b Pericoronal bands (pb), serotonin-like immunopositive cells marked with arrowheads. ¢ Oesophagus

emerge from it elongating anteriorly and posteriorly
(Fig. 4a). Two clusters of 3—4 serotonin-like immunore-
active neurons are seen laterally in the cerebral ganglion
(Fig. 4b), in close proximity to neurons projecting motor
nerves (Fig. 4c). A continuous row of serotonin-like
immunoreactive spherical cells was seen at the junction
of the pericoronal bands (Fig. 4d, e). This region has
been previously described as the ciliated funnel in Dolio-
lida [32, 41] but it is probably not homologous to the
funnel that links the neural complex (neural gland) to
the branchial chamber [42]. Few and sparse spherical
and elongated serotonin-like immunoreactive cells were
found in the initial tract of the digestive system (mouth
and oesophagus) (Fig. 4f). Serotonin-like immunoreac-
tivity was not detected in pericoronal bands and endo-
style (Fig. 4g, h).

The barrel-shaped zooid growing in one side of the
head of D. muelleri tadpole larvae gradually takes on the
adult form while the larval tail degenerates (Fig. 5a—c).
No serotonin-like immunoreactivity was overall detected
in cell bodies or nerves from larvae and young zooids. In
young zooids, a-tubulin marked major nerves that
appeared to connect a fibre plexus within the neural
ganglion to the entire body (Fig. 5a; b) and a bundle of
fibres running through the ciliated funnel (Fig. 5c). No
a-tubulin immunoreactivity was observed in tadpole
larvae attached to the young zooids (Fig. 5d, d)).

Discussion

Serotonin-like immunoreactivity in the nervous system,
implications for brain evolution

Based on the localization of serotonin-like immunoreac-
tive neuronal cells with descending projections through
the neuropil, Hay-Schmidt [13, 43—47] suggested that an
orthogonal organisation of the nervous system was likely
present in the last common ancestor of chordates, an
idea previously proposed by Garstang [48]. This ances-
tral condition should be observed also in thaliaceans due

to the phylogenetic placement of this clade within ‘ascid-
ians’. We found that serotonin-like immunopositive
neurons are symmetrically distributed in the cerebral
ganglion of the examined Doliolida and Salpida species
and that, at least in T. democratica, serotonin-like im-
munoreactive tracts project transversally through the
neuropil (Additional file 1) [34]. Recent works based on
the gene expression study of orthologous transcription
factors during development suggests that the ascidian
CNS holds molecular evidence of brain compartment
homology with vertebrate fore-, mid-and hindbrain [3, 49].
In thaliaceans, it will be of great interest to compare gene
expression pattern of transcription factors involved in the
differentiation of the three organizing centres in the verte-
brate brain: the anterior neural ridge, the zona limitans
intrathalamica and the isthmic organizer (e.g. Fgf8, Fgf17,
Fgf18, Sfrpl1/5, Hh, Wntl) [50]. This would help in under-
standing to which degree the homologous neuroectodermal
signalling centers that pattern deuterostome bodies were
conserved or diverged in Thaliacea. However, evidence of
chordate features in ascidians does appear before metamor-
phosis, while thaliaceans examined in the present study are
all post-metamorphic stages. This suggests that caution is
needed when interpreting gene or protein expression pat-
terns in mature forms of thaliaceans.

Based on the expression of several pituitary markers
(e.g., Pitx, Pax2/5/8, Six1/2), the ciliated funnel of ascid-
ians has been suggested to be homologous to the adeno-
hypophysis, a major organ of the vertebrate endocrine
system that regulates various physiological processes
such as stress, growth, and reproduction (reviewed in
[51]). In thaliaceans, the ciliated funnel could be respon-
sive to the detection of olfactory information from the
environment thus eliciting specific behavioural responses
[33]. The evidence presented here concerning the ab-
sence of serotonin-like immunoreactive cells in the cili-
ated funnel of the examined specimens is in agreement
with similar reports in appendicularians, ‘ascidians’ and
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Serotonin

Fig. 4 Localization of serotonin-like immunoreactivity, acetylated a-tubulin, and DAPI in Doliolina muelleri phorozooid. a Dorsal view of the
whole mount phorozooid, highlighting oral siphon (0s), pericoronal bands (pb), endostyle (en), motor nerves (mn), cerebral ganglion (cg),
gills (g), oesophagus (oe), and atrial siphon (as). b, ¢ Cerebral ganglion with lateral clusters of serotonergic neurons (arrowheads), and
motor nerves protruding from it (mn 1-7) at different magnifications. d, e Pericoronal bands (pb), with grayscale invert editing to
highlight serotonin-like immunoreactive cell shape (inset). f Initial tract of the digestive system highlighting stomach (st) and serotonergic
cells in the mouth (mo). g Anterior part of the specimen highlighting pericoronal bands (pb), endostyle (en), and gills (g). h Lateral view
of the endostyle highlighting the long cilia protruding from it (encircled)

salpids [32, 34, 52-55]. While discounting the use of the
serotonergic system in the ciliated funnel of tunicates,
this finding suggests that the prominent role played by
the local production of serotonin in the pituitary gland
is an acquired feature of vertebrates.

Serotonin-like immunoreactivity in non-neural tissues

The tunicate endostyle, a structure homologous of the
vertebrate thyroid, is a ventral U-shaped organ made by
folds of the pharyngeal epithelium that secretes mucus
for filter feeding [56]. Each mirror-image side of the tu-
nicate endostyle displays between five and nine zones of
distinctive cells, including supporting and glandular
zones as well as zones with iodinating capacity [57, 58].
In stolidobranch, aplousobranch and phlebobranch as-
cidians, serotonergic cells were exclusively found in the

lateral portion of the endostyle, between zone seven
(known to have iodinating capacity), and eight (which
consists of ciliated cells) [34, 54, 55, 59-61]. Based on
our analysis, serotonin-like immunoreactivity in the en-
dostyle of thaliaceans was detected only in P. verticillata,
in a lateral zone near a band of ciliated cells, just as in
ascidians. The observation that salpids and doliolids lack
serotonin-like immunoreactivity in the endostyle pro-
vides support for an evolutionary scenario in which Pyr-
osomatida is the first group branching from the class
Thaliacea [11]. However, the absence of serotonin-like
immunoreactivity in the endostyle of salpids and dolio-
lids could be a character associated with independent
changes in the control of thyroid hormone production
rather than an ancestral state; however, this has not yet
been verified.
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@ c-tubulin DAPI

Fig. 5 Localization of acetylated a-tubulin and DAPI in tadpole larvae and young zooids of Doliolina muelleri. a-d' Light (a, d) and confocal

(@', b, ¢, d) images of a single tadpole larva (d, d’) connected with a young zooid (a, @', b, c) highlighting cerebral ganglion (cg), ciliated funnel
(cf), dorsal appendix (da), endostyle (en), mesoblast (me), major nerves (mn) and notochord (nt); area of contact between zooid and tadpole
larvae marked with asterisk (*). b, ¢ Dorsal view of the young zooid. d, d’ Detail of the tadpole larva

The peripharyngeal (pericoronal) bands of pyrosoma-
tids, salpids and doliolids are rich in ciliated cells and
could have a role in mechanoreception [62]. The pres-
ence of serotonin-like immunoreactive spherical cells in
the pericoronal bands, of ascidians as are in thaliaceans
suggests a phylogenetic link between these two tunicate
classes [34, 54, 55, 59-61].

The post-pharyngeal digestive tract of tunicates con-
sists of mouth, oesophagus, stomach, intestine, and
anus [63, 64]. Digestive functions are also ascribed to
the pyloric gland, an organ that begins at the globular
gland that encrusts and opens to the intestine. The
tunicate pyloric gland is composed of tubules and
ampullae that grow from the outer wall of the stomach
and is considered to be one of the major synapo-
morphies of the group [65, 66]. In ascidians, the
occurrence of spherical and elongated cell bodies that
are serotonin-like immunoreactive is reported in
distinct tracts of the digestive system, including
oesophagus, stomach and intestine [32, 34, 52, 54, 55].
In our work, serotonin-like immunoreactive cell bodies
in the oesophagus of Salpida and Doliolida species, as
seen in ascidians, likely reflect a plesiomorphic condi-
tion. Conversely, serotonin-like immunoreactivity in
the pyloric gland of P. verticillata seems to be an inde-
pendently derived character.

The serotonergic system is not required in immature
forms

We did not detect serotonin-like immunoreactivity in
Thalia democratica juveniles (blastozooids), in larvae
and young asexual zooids of doliolid or in sexual herm-
aphrodite blastozooid stages of the pyrosomatid ex-
amined. The lack of expression of 5HT suggests that
serotonin acquires its functionality only in mature thalia-
cean zooids, thus not having a role in early development.
However, serotonin expression may be still present but
not detectable with our methods due to low levels or
poor permeabilization, prompting for transcriptional
activity studies of genes belonging to the serotonin bio-
synthetic pathway.

Phylogenetic relationships within Thaliacea

Due to their classification as chordates, the subphylum
Tunicata has been central to discussions on the evolu-
tion of deuterostomes and craniates [66—76]. None-
theless, the internal phylogenetic relationships of the
tunicate class Thaliacea remain uncertain. Thaliacea is
recovered as monophyletic regardless of the number of
taxa analysed, the molecular data type used, or the
phylogenetic method applied, with the exception of one
study which used partial 28S rDNA sequences [10].
Almost all studies agree in grouping Thaliacea as sister
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group of Phlebobranchiata, one of the classical ‘Ascidiacea’
groups (where ‘Ascidiacea’ = Phlebobranchiata + Stolido-
branchiata + Aplousobranchiata). We assume Phlebobran-
chiata as out-group for our phylogenetic comparison,
due to the placement of this clade as adelphotaxon of
Thaliacea in many studies [4, 7, 66, 77].

A scheme summarizing the differential spatial distribu-
tion of serotonin-like immunoreactivity among organs in
Thaliacea is shown in Fig. 6.

Character comparisons suggesting that pyrosomatids
originated early in the evolutionary history of thaliaceans
include the presence of serotonergic cells in the endo-
style and pyloric gland as in the phlebobranch Phallusia
mammiillata [54]. This condition is not present in the
Salpida or Doliolida species examined, as discussed
above. Since the presence of serotonin-like immunoreac-
tivity alone cannot be considered as an uncontroverted
character of phylogenetic value, we supplemented our
molecular data with ten morphological and life cycle
characters extracted from the literature [32]. Apomor-
phies such as the existence of inner longitudinal vessels
in branchial basket and the presence of ontogenetic
rudiment of atrial opening are common features shared
just between Pyrosomatida and Phlebobranchiata [66].
The ciliated funnel is a very variable organ both with
respect to its anatomy and its topology. It is associated
with the cerebral ganglion in appendicularians, pyroso-
matids and ‘ascidians, but not in salpids nor in doliolids
[37, 78-80]. Otherwise, the topology of the ciliated
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funnel in salpids is distinct from that of pyrosomatids
and ‘ascidians’ in that it is not continuous to the pericor-
onal bands [37, 42]. Further, the presence of dorsal
lamina, branchial tentacles and distinct muscle bands
used in jet propulsion in Salpida and Doliolida [66]
supports a sister group relationship between these two
thaliacean orders. By applying a principle of parsimony,
these characters (Fig. 7) seem to favour the phylogenetic
hypothesis in which Pyrosomatida, an order often classi-
fied within the ‘ascidians’ [11, 80, 81], and not Doliolida
[6], is the first branching group from Thaliacea.

Conclusion

Here we present a study of serotonergic immunoreactivity
in the three thaliacean orders, and provide a first descrip-
tion of the pyrosomatid serotonergic system. The analysis
of the distribution of serotonin-like immunopositive cells
in adult thaliacean oozooids appear to depict shared char-
acters with ascidians. Remarkably, serotonin-like immuno-
reactivity is not present in immature thaliacean zooids,
suggesting that this amine is not crucial for the morpho-
genesis of the species examined. Differences in serotonin-
like immunoreactive arrangement in endostyle, initial tract
of the digestive system and pyloric gland, plus a review of
life cycle and morphological data, prompt us to support
the phylogenetic hypothesis in which Pyrosomatida is the
first Thaliacean order that diverged from the Ascidiacea
clade, thus positioning Salpida and Doliolida as sister
groups. Data from more species and the support of
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Fig. 6 The serotonin-like immunoreactive nervous system in Thaliacea. serotonin-like immunopositive cells in adult Pyrosomella verticillata, Thalia demo-
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Thalia
democratica

5HT in the ciliated funnel

5HT in the endostyle

5HT in the pericoronal bands

5HT in the oesophagus

5HT in the pyloric gland

Ciliated funnel associated
with cerebral ganglion

Inner longitudinal vessels or
papillae in branchial basket

Dorsal lamina

Orientation of the larval tail

Branchial tentacles

Excretory organs

Pyloric caecum

Distinct muscle bands used
in jet propulsion
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Fig. 7 Phylogenetic characters. Comparison of serotonin-like immunoreactivity distribution and selected plesiomorphies in thaliacean orders
and in the phlebobranch species, Phallusia mammillata. Non-neural data from [35, 52, 61, 76, 77]
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molecular based phylogenetic and/or phylogenomic ana-
lyses will be crucial to make more robust the relationships
among different clade of Thaliaceans.

Methods

Animal collection and identification

Samples were collected in the Western Mediterranean
using vertical plankton tows-200 pm mesh size-in the
localities of Rade de Villefranche-sur-Mer (France) (43°
42°'18"N 7°18'45"E) (Pyrosomella verticillata and Ihlea
punctata) and Gulf of Naples (Italy) (40°48°5"N 14°15’
E) (Thalia democratica and Doliolina muelleri). Speci-
mens were identified under stereomicroscope following
taxonomic keys in [82] and [83].

Whole mount immunocytochemistry and imaging

Specimens were fixed in 4 % paraformaldehyde/0.1 M
MOPS pH 7.4 containing 0.5 M NaCl, overnight at 4 °C.
After several washes in phosphate buffered saline (PBS),

samples were treated with 0.5 mg/ml cellulase (Sigma
C1184) in PBS pH 5.5 for 10 min at 37 °C in order to
partially digest the tunic and facilitate antibody pene-
tration. Following this, incubations were carried out on
a rotating shaker. Specimens were permeabilized for
20 min in PBS/0.25 % Triton X-100 (PBTr). A blocking
step was performed with 30 % heat-inactivated Normal
Goat Serum (NGS) in PBTr for 2 h, prior to incubating
specimens with primary antibodies-anti-5HT (serotonin)
(Immunostar 20080), anti-tyrosinated a-tubulin (Sigma
T9028), and anti-acetylated a-tubulin (Sigma T6793)-di-
luted 1:300 in PBS containing 0.1 % Tween-20 (PBST)
and 30 % NGS, for 60 h at 4 °C. After extensive washes
in PBST, samples were incubated at 4 °C overnight with
secondary antibodies-goat anti-rabbit IgG-Alexa 488 and
goat anti-mouse IgG-Alexa 647-diluted 1:400 in blocking
buffer (1 % BSA in PBST). All samples were washed
thoroughly in PBS. All specimens except Ihlea punctata
were counterstained with DAPI (1 pg/ml in PBS) for
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nuclear labelling. Control experiments were run in paral-
lel by omitting primary antibodies.

Image acquisition was performed on Zeiss LSM 510
Meta and Leica SP5 confocal microscopes. Z-stack im-
ages were analyzed and processed with Fiji and Photo-
shop CS6 (Adobe). Figure plates were made with
Hlustrator CS6 (Adobe). Brightness/contrast, inversion
and colour balance adjustments where applied, were ap-
plied to the entirety of the image and not to parts
thereof.

Additional file

Additional file 1: Visual assessment of serotonin-like immunoreactivity
in Thalia democratica cerebral ganglion. (A-E) Five consecutive frontal
sections ranging dorsal to ventral from Z =14 to Z=18 every 4.54 um,
showing elongating serotonin-like immunoreactive bundle (squared line).
(F) Color-coded 2D image from hyperstacks Z = 14-18, showing different
depth distribution of lateral clusters of serotonin-like immunoreactive
neurons (arrows), central cluster of serotonin-like immunoreactive
neurons (dashed line) and serotonin-like immunoreactive nervous fibre
bundle (squared line). JPG 1000 kb)
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