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Abstract—Finding problems at the design stage reduces the 
cost to resolve them. Previous studies have indicated that 
error-proneness risks can be isolated into risk containers 
created from architectural designs, to help mitigate such risks 
early on. Here we describe an ongoing experiment to establish 
whether presenting designs as a collection of such containers 
helps practitioners manage the isolated risks. Participants 
must identify cyclic dependencies that could result in error-
proneness and assess the impact of design changes. The 
emerging results suggest it takes participants longer to locate 
cyclic dependencies in collections of container diagrams than it 
does in a single diagram representing the whole design. 
Participants who reviewed collections of container diagrams 
tended to identify more cyclic dependencies correctly than 
those using a single diagram. Although, the results suggest that 
presenting a design as a collection of containers has no overall 
bearing on a participant’s ability to correctly identify impacts 
of design changes, in cases where changes span multiple 
container diagrams no errors in change impact detection were 
observed. Errors were observed when assessing the same 
change using a single diagram representing the whole design. 
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I.  INTRODUCTION 

Our motivation is to improve the chances of software 
development projects being more successful in terms of 
quality, cost and schedule. Risk containers are defined as 
architecture subsets that can be used to separate areas of low 
and high risk within an overall architecture. The work in 
[1][2] suggests that risk containers based on design rules 
support the isolation of error-proneness risks at design time. 
The ability to isolate risks does not mitigate the risk by itself. 
To improve chances of project success, practitioners must be 
able to work with the risk container to manage the isolated 
risks. We concluded that more work is necessary to 
determine whether different types of risk containers are 
meaningful to practitioners [1]. 

We also suggested that risk containers would be 
meaningful to practitioners if they are ‘understandable to 
both architects and developers so that architects can elicit 
risks and manage them during the implementation’ [2, p. 
295]. Therefore, testing whether practitioners can 
comprehend the contents of risk containers is not enough to 
determine whether they are meaningful.  

To satisfy their purpose, risk containers must act as a 
useful device for mitigating risks and it must be possible to 
create them from design artefacts used in practice. Even if it 
were proven beyond all doubt that a type of risk container 
can isolate instances of a risk, the containers are only 

meaningful if practitioners can use them to take practical 
measures to manage the risks. In summary, risk containers 
are meaningful to practitioners if they can: 

A. be used to isolate real project risks; 
B. be formed from design artefacts used in practice; 
C. help to better manage mitigations used in practice. 
We investigated how well three different types of risk 

container can isolate error-proneness [1]. We observed that 
Design Rule (DR) Containers tend to have less sharing of 
classes and were more effective at isolating error-proneness 
risks than Use Case (UC) Containers. However, UC 
Containers are based on features that lend themselves to 
black box testing, which is a mitigation against error-
proneness. Even if DR Containers are more effective 
containers of error-proneness than UC Containers, the latter 
could be superior overall if they are more helpful to 
practitioners for mitigating isolated risks. Clause C specifies 
that for risk containers to be meaningful, practitioners must 
be able to use them to better mitigate the isolated risks.  

Our research [1][2] provides some evidence that DR 
Containers satisfy clauses A and B. In this paper, we 
investigate if containers also satisfy clause C. We present the 
emerging results of an experiment1 open until September 
30, 2019, to garner further participation from the community. 

II. RELATED WORK 

The work in [1][2] describes DR Containers derived from 
the Design Rule Spaces (DRSpaces) proposed by Xiao et al. 
[3]. DRSpaces are graphs based on design rules (key 
interfaces) that split an architecture into independent 
modules. The vertices are related classes and the edges are 
the relationships between those related classes. Xiao et al. 
created DRSpaces by using a formal clustering algorithm 
called Design Rule Hierarchy (DRH) proposed in [4].  

The efficacy of DRH for splitting implementations into 
error-proneness isolating subsets based on design rules has 
been previously tested [1][2][3]. DRSpaces [3] were 
extracted from source code using an implementation of DRH 
algorithm [4]. DR Containers [1][2] differ because they were 
manually populated from upfront Unified Modelling 
Language (UML) designs. In the latter case the design rule 
classes and subordinate related classes were manually 
identified from the UML diagrams using the same base rules.  

These different approaches to applying DRH reflect 
different motivations. For example, in [3] the authors were 
interested in providing architectural insights into 

                                                           
1 https://www.callforparticipants.com/study/8GYWX/analysis-of-uml-
software-architectures 



implementation source code; while in [1] and [2] we were 
interested in determining whether potential implementation 
risks can be identified in upfront designs.  

Mo et al. [5] identified several common causes of error-
proneness in the projects they analysed using DRSpaces: 
unstable interfaces, implicit cross module dependencies, 
unhealthy inheritance and cyclic dependencies.  

Automation is a significant benefit of the approach in [3] 
because Titan can be run over any version of the 
implementation source code. This requires less effort to 
create the DRSpaces in the first place and allows DRSpaces 
to be easily rebuilt when source code changes are made. The 
ability to create DRSpaces from source code also means that 
the approach in [3] is open to all software development 
process models. In contrary, the approach in [1][2] requires 
an upfront UML class diagram, which may preclude it from 
some projects using agile methodologies [6], which favor 
“working software over comprehensive documentation”.  

The approach in [1][2] enables projects using upfront 
design to predict and identify error-proneness risks before 
they become a problem. This is advantageous because errors 
found during the design stage of software development are 
five to twelve times cheaper to correct when compared to 
errors found at the testing stage [7]. Another advantage of 
using upfront UML is programming language independence. 

In [3], the authors tested one method of splitting the 
architecture. This means no evidence was provided of how 
effective the DRH algorithm is by comparison to other ways 
of splitting an architecture. In [1], we compared UC 
Containers and Resource Containers to DR Containers.  

The work in [8] found that UML sequence diagrams 
were commonly used by half of the 171 UML users 
surveyed. In this case, UC Containers were selected because 
use cases are often represented by sequence diagrams. The 
UC Container is composed of each class shown on the use 
case sequence diagram [1].  

Resource Containers were populated with classes 
dependent upon an external resource (database table, service, 
file, etc.) by seeding with the resource encapsulation class 
and recursively adding classes that depend upon the 
encapsulation class [1]. Resource Containers were selected to 
investigate the sensitivity to error-proneness in architectures 
due to changes in external resources. Sensitivity is expected 
due to the ripple effect [9]. If the resource changes it may 
require a change to the encapsulating class which may in turn 
require a change to a dependent class and so on. Omission of 
one of these changes could introduce a regression error. 

There is some evidence to suggest that DRSpaces and 
DR containers created using the DRH algorithm can be used 
to identify and isolate error-proneness risks in software 
architectures [1][2][3][4][5]. However, none of the research 
to date has investigated whether the presentation of subsets 
of the architecture would help or hinder practitioners with 
finding and mitigating problems contained within such 
subsets. Addressing that gap is the purpose of this research. 

III. DATA COLLECTION 

We have designed an online experiment to test whether 
different types of risk containers (design subsets) are 

meaningful to practitioners. The experiment is based around 
UML designs for a fictitious pet food e-commerce software 
system. The UML design has been divided into an equal 
number of DR, UC and Resource Containers using the 
container population rules described in [1]. Each of these 
three sets of containers represents a different experimental 
test group. A ‘no containers’ control group is used in 
addition to the three risk container type groups. Participants 
have been recruited through the researcher’s network of 
industrial and academic colleagues, as well as 
callforparticipants.com. 

The fictitious design is composed of 48 classes. Control 
group participants are asked to reason about a single class 
diagram showing all of the classes. For each risk container 
group (DR, UC and Resource) participants must reason 
about a set of nine diagrams (one per container). On average 
each container diagram contains 8.33, 8.00 and 7.66 classes 
for DR, UC and Resource containers, respectively. 

The experiment has three parts. In part one participants 
are asked questions about their practitioner and UML 
experience. These questions are designed to provide context 
to each participant’s response. Part two of the experiment 
provides participants with an overview of the fictitious 
system and introduces an architecture review scenario. 
Participants are asked to play the role of peer reviewer in 
order to identify any cyclic dependencies and the impact of 
two change scenarios upon the design. Participants are 
provided with a reminder of what are cyclic dependencies, 
and how to identify them in class and sequence diagrams. 

In part three participants browse UML diagram(s) 
representing each risk container in their randomly assigned 
group (or control). They are required to identify the pair of 
classes involved in ‘planted’ cyclic dependencies and the 
classes impacted by two change scenarios. Participants are 
shown class diagrams for the Control, DR and Resource 
Container groups. UC Container group participants are 
shown sequence diagrams. This reflects the types of 
diagrams used to create such risk containers [1].  

Cyclic dependencies are used as an example of an error-
proneness inducing design flaw [5] to test whether presenting 
the design as a collection of risk containers helps or hinders 
practitioners to identify such potential error inducing flaws. 
If the results show that participants identify more of the 
planted cyclic dependencies in one of the risk container 
groups than the others (or control) it would suggest that 
presenting the design with (or without) such containers is 
helping the participants to locate the flaws (isolated risks). 
This observation would support the view that risk containers 
are meaningful to practitioners using the definition provided 
in section I. The time taken to complete the experiment is 
also recorded to see if it varies between the different 
experimental groups. Two different timings were recorded 
for each participant: (i) the duration between first accessing 
and exiting the experimental platform, and (ii) the duration 
that each participant declared it took them to complete the 
experiment. 

Wolfe and Horowitz explain that attention towards a 
search field of objects of interest is not random and is 
modulated by five factors [10]. They assert this is necessary 



because limits on visual processing make it impossible to 
recognize everything at once. These adaptations imply that 
the size and complexity of the search scene will influence 
how quickly an individual can locate an object of interest 
contained within it. We hypothesise that it should be easier 
for practitioners to locate flaws that are contained within the 
smaller single container diagrams than the larger control 
diagram that shows all classes.  

The corollary is that it ought to be harder for practitioners 
to locate cyclic dependencies that are split across two 
container diagrams due to them representing a larger (and 
split) scene. Therefore, practitioners are asked to identify 
three single-container cyclic dependencies for each of the 
four groups. Participants assigned to the DR and UC 
Container groups are also asked to locate three cyclic 
dependencies that span multiple diagrams. It is impossible to 
ask that for Resource Containers. That is because they are 
populated with classes that are recursively dependent on the 
resource encapsulation class, i.e. if class A depends on class 
B and class B depends on the resource encapsulating class C, 
all three classes would be members of the resource container 
created from class C. This means that all classes with a direct 
or indirect dependency on class C will be shown in the same 
Resource Container diagram. It is also impossible to ask the 
control group about multiple-diagram dependencies because 
all classes are shown on a single diagram. This difference in 
the number of review questions means we must be mindful 
when comparing the time taken to complete the experiment 
between the different experimental groups. 

Participants are also asked to assess the impact of 
potential changes. This is because if risk containers were to 
be adopted by practitioners to isolate risks, possible 
mitigations would include redesign. If containers are found 
to aid practitioners with design refactoring, as well as during 
the initial risk identification stage [1][2][3], it would provide 
further evidence that risk containers are indeed meaningful 
using the definition provided. Participants are asked to 
identify the classes that would have to be modified for one 
change that is isolated within a single container and a second 
change that spans multiple container diagrams for all three 
risk container groups. Control group participants are asked 
about both changes on the single class diagram. 

Participants know they have identified a cyclic-
dependency as soon as a pair of co-dependent classes have 
been found. For change impacts, participants must continue 
to search even when an impact has been found to see if there 
are further impacts of the change. 

By asking participants in different groups the same or 
similar questions, we are testing whether the way a design is 
split into containers influences the ability of practitioners to 
identify error inducing flaws and change impacts. The 
rationale behind our experiment is that if containers improve 
the participant’s performance when performing these tasks 
by comparison to those using the overall diagram, containers 
would satisfy clause C of the definition.  

IV. EMERGING RESULTS 

At the time of writing we have received submissions 
from 13 participants. Table I shows that participants have a 

median twenty years of industry experience and seven years 
of UML experience. Table I also shows that participants 
have typically worked on three projects using class diagrams, 
and two projects using sequence diagrams. 

TABLE I.  PARTICIPANT EXPERIENCE 

N Question Min Max Median Q1 Q3

13 Years of commerical experience 0.00 30.00 20.00 10.00 23.00
13 Years of using UML 0.00 20.00 7.00 5.00 15.00
13 Projects using Class Diagrams 0.00 30.00 3.00 2.00 3.00
13 Projects using Seqn. Diagrams 0.00 30.00 2.00 2.00 5.00  

 
Owing to random assignment to experimental groups, we 

received four control, three DR, three UC and three Resource 
Container submissions to date. Table II shows how long it 
took participants in each group to answer review questions. 
The ‘Containers’ values are obtained by treating those nine 
submissions as a single group. 

TABLE II.  TIME TAKEN PER REVIEW QUESTION (MINUTES)  

N Group Min Max Median Q1 Q3

4 Control 3.00 19.60 6.50 3.75 11.65
9 Containers 5.63 18.00 8.63 7.50 11.25
3 DR Containers 7.50 11.25 7.50 7.50 9.38
3 Resource Containers 6.00 18.00 12.00 9.00 15.00
3 UC Containers 5.63 11.25 8.63 7.13 9.94  

 
These results suggest it took participants in the container 

groups approximately 30% longer per review question than 
those in the Control group. It took DR Container participants 
only 15% longer. Since all types of container have 
approximately the same number of classes per diagram, these 
results suggest participants can answer review questions 
quicker for DR Containers than they can for Resource and 
UC Containers. Overall, the results suggest that presenting 
the design as a collection of container diagrams increases the 
time needed to complete the review. 

The initial results for the accuracy with which 
participants can identify cyclic dependencies are shown in 
Table III. Note that there are no multiple diagram cyclic 
dependency questions for Resource Containers, as explained 
in section III.  

TABLE III.  % OF CYCLIC DPENDENCIES IDENTIFIED CORRECTLY 

N Group Min Max Median Q1 Q3

4 Control 33.33 100.00 33.33 33.33 50.00
9 Containers 66.67 100.00 100.00 66.67 100.00
3 DR Containers 66.67 66.67 66.67 66.67 66.67
3 Resource Containers 100.00 100.00 100.00 100.00 100.00
3 UC Containers 66.67 100.00 100.00 83.33 100.00

3 DR Containers 33.33 100.00 66.67 50.00 83.33
3 UC Containers 0.00 100.00 33.33 16.67 66.67

Single 
Diagram

Multiple 
Diagrams  
 
The results in Table III are insufficient to render a 

compelling comparison between the container types. 
However, the combined ‘Containers’ results drawn from 
nine participants suggests that the smaller container diagrams 
do help practitioners identify cyclic dependencies contained 
within a single diagram. Participants in the container groups 
were typically two times more successful at identifying 



cyclic dependencies within single containers than 
participants in the control group.  This is consistent with our 
hypothesis that it should be easier for participants to find 
these objects of interest in the smaller container diagrams. 

The picture differs for multiple-container cyclic- 
dependencies because presenting the design as a collection of 
containers produces approximately the same number of 
correct answers as the control. This is expected because 
participants must memorize diagrams as they switch between 
them. Participants allocated to the DR Containers group 
found it easier to identify multiple-container cyclic 
dependencies than those allocated to the UC Containers 
group and the control group using a single large diagram.  

Table IV shows how many change impacts were 
correctly identified in the different experimental groups. 

TABLE IV.  % OF CHANGE IMPACTS IDENTIFIED CORRECTLY 

N Group Min Max Median Q1 Q3

4 Control 50.00 100.00 100.00 87.50 100.00
9 Containers 0.00 100.00 100.00 100.00 100.00
3 DR Containers 0.00 100.00 100.00 50.00 100.00
3 Resource Containers 100.00 100.00 100.00 100.00 100.00
3 UC Containers 0.00 100.00 100.00 50.00 100.00

3 DR Containers 100.00 100.00 100.00 100.00 100.00
3 UC Containers 100.00 100.00 100.00 100.00 100.00

Single 
Diagram

Multiple 
Diagrams  

 
The median values indicate that containers have no 

bearing on the practitioner’s ability to detect change impacts 
over the control group. This is expected because participants 
must continue to search the remainder of the design even 
when an impact has been found to see if there are further 
impacts of the change. However, not a single error was 
observed in cases where participants were asked to impact 
changes spanning multiple container diagrams. Errors were 
observed when participants had to impact the same change 
on a single diagram. Cycling through smaller diagrams may 
help participants identify individual impacts more easily. 

V. VALIDITY 

With only 13 participants it is too early to determine 
whether the trends are significant and consequential. 
Participants were not timed under exam conditions and so it 
is unknown whether time taken was unduly influenced by 
disruptions. There is no reason to think that one group would 
be more disrupted than another and so this threat would be 
mitigated by more participants. We used just one error 
inducing flaw (cyclic-dependency) and so the results may 
not translate to other error inducing flaws such as implicit 
cross module dependencies and unhealthy inheritance [5]. 
Further work would be necessary to determine whether the 
results obtained using a relatively small toy architecture are 
generalizable to larger real architectures. The popularity of 
agile methods and limited use of UML in practice [11] may 
suggest the technique is only beneficial to some kinds of 
projects. As we have only tested the three ways of clustering 
architecture elements described in [1] more effective ways of 
presenting an architecture may remain to be determined. 

VI. CONCLUSION 

Previous studies indicate error-proneness risks can be 
isolated into containers [1][2]. This paper presents 
preliminary results of an ongoing experiment (see URL on 
the first page) to determine whether presenting designs as 
risk containers helps practitioners manage isolated risks. 
Participants must identify cyclic dependencies that could 
result in error-proneness risks and assess the impact of 
design changes. The results so far suggest all 3 container 
types are meaningful to practitioners.  

In particular, analyzing a design as a collection of 
containers leads to more accurate detection of cyclic 
dependencies isolated within smaller container diagrams. A 
general improvement was not observed for cyclic 
dependencies spanning multiple container diagrams, but an 
improvement for DR Containers was observed.  

As for identifying the impact of design changes, 
participants made no errors if changes spanned multiple 
container diagrams, but some participants assessing the same 
change on a single diagram made errors.  

The trade-off for the accuracy improvements is that it 
takes longer to analyze a design presented as a collection of 
containers than one presented as a single class diagram.  
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