
Open Research Online
The Open University’s repository of research publications
and other research outputs

Risk Containers – A Help or Hindrance to
Practitioners?
Conference or Workshop Item
How to cite:

Leigh, Andrew; Wermelinger, Michel and Zisman, Andrea (2019). Risk Containers – A Help or Hindrance to
Practitioners? In: IEEE International Conference on Software Architecture (ICSA 2019), 25-29 Mar 2019, Hamburg.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/187751156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

Risk Containers – A Help or Hindrance to Practitioners?

Andrew Leigh, Michel Wermelinger, Andrea Zisman
The Open University, United Kingdom

andrew.leigh@open.ac.uk, michel.wermelinger@open.ac.uk, andrea.zisman@open.ac.uk

Abstract—Finding problems at the design stage reduces the
cost to resolve them. Previous studies have indicated that
error-proneness risks can be isolated into risk containers
created from architectural designs, to help mitigate such risks
early on. Here we describe an ongoing experiment to establish
whether presenting designs as a collection of such containers
helps practitioners manage the isolated risks. Participants
must identify cyclic dependencies that could result in error-
proneness and assess the impact of design changes. The
emerging results suggest it takes participants longer to locate
cyclic dependencies in collections of container diagrams than it
does in a single diagram representing the whole design.
Participants who reviewed collections of container diagrams
tended to identify more cyclic dependencies correctly than
those using a single diagram. Although, the results suggest that
presenting a design as a collection of containers has no overall
bearing on a participant’s ability to correctly identify impacts
of design changes, in cases where changes span multiple
container diagrams no errors in change impact detection were
observed. Errors were observed when assessing the same
change using a single diagram representing the whole design.

Keywords-analysis; architecture; risk; software

I. INTRODUCTION

Our motivation is to improve the chances of software
development projects being more successful in terms of
quality, cost and schedule. Risk containers are defined as
architecture subsets that can be used to separate areas of low
and high risk within an overall architecture. The work in
[1][2] suggests that risk containers based on design rules
support the isolation of error-proneness risks at design time.
The ability to isolate risks does not mitigate the risk by itself.
To improve chances of project success, practitioners must be
able to work with the risk container to manage the isolated
risks. We concluded that more work is necessary to
determine whether different types of risk containers are
meaningful to practitioners [1].

We also suggested that risk containers would be
meaningful to practitioners if they are ‘understandable to
both architects and developers so that architects can elicit
risks and manage them during the implementation’ [2, p.
295]. Therefore, testing whether practitioners can
comprehend the contents of risk containers is not enough to
determine whether they are meaningful.

To satisfy their purpose, risk containers must act as a
useful device for mitigating risks and it must be possible to
create them from design artefacts used in practice. Even if it
were proven beyond all doubt that a type of risk container
can isolate instances of a risk, the containers are only

meaningful if practitioners can use them to take practical
measures to manage the risks. In summary, risk containers
are meaningful to practitioners if they can:

A. be used to isolate real project risks;
B. be formed from design artefacts used in practice;
C. help to better manage mitigations used in practice.
We investigated how well three different types of risk

container can isolate error-proneness [1]. We observed that
Design Rule (DR) Containers tend to have less sharing of
classes and were more effective at isolating error-proneness
risks than Use Case (UC) Containers. However, UC
Containers are based on features that lend themselves to
black box testing, which is a mitigation against error-
proneness. Even if DR Containers are more effective
containers of error-proneness than UC Containers, the latter
could be superior overall if they are more helpful to
practitioners for mitigating isolated risks. Clause C specifies
that for risk containers to be meaningful, practitioners must
be able to use them to better mitigate the isolated risks.

Our research [1][2] provides some evidence that DR
Containers satisfy clauses A and B. In this paper, we
investigate if containers also satisfy clause C. We present the
emerging results of an experiment1 open until September
30, 2019, to garner further participation from the community.

II. RELATED WORK

The work in [1][2] describes DR Containers derived from
the Design Rule Spaces (DRSpaces) proposed by Xiao et al.
[3]. DRSpaces are graphs based on design rules (key
interfaces) that split an architecture into independent
modules. The vertices are related classes and the edges are
the relationships between those related classes. Xiao et al.
created DRSpaces by using a formal clustering algorithm
called Design Rule Hierarchy (DRH) proposed in [4].

The efficacy of DRH for splitting implementations into
error-proneness isolating subsets based on design rules has
been previously tested [1][2][3]. DRSpaces [3] were
extracted from source code using an implementation of DRH
algorithm [4]. DR Containers [1][2] differ because they were
manually populated from upfront Unified Modelling
Language (UML) designs. In the latter case the design rule
classes and subordinate related classes were manually
identified from the UML diagrams using the same base rules.

These different approaches to applying DRH reflect
different motivations. For example, in [3] the authors were
interested in providing architectural insights into

1 https://www.callforparticipants.com/study/8GYWX/analysis-of-uml-
software-architectures

implementation source code; while in [1] and [2] we were
interested in determining whether potential implementation
risks can be identified in upfront designs.

Mo et al. [5] identified several common causes of error-
proneness in the projects they analysed using DRSpaces:
unstable interfaces, implicit cross module dependencies,
unhealthy inheritance and cyclic dependencies.

Automation is a significant benefit of the approach in [3]
because Titan can be run over any version of the
implementation source code. This requires less effort to
create the DRSpaces in the first place and allows DRSpaces
to be easily rebuilt when source code changes are made. The
ability to create DRSpaces from source code also means that
the approach in [3] is open to all software development
process models. In contrary, the approach in [1][2] requires
an upfront UML class diagram, which may preclude it from
some projects using agile methodologies [6], which favor
“working software over comprehensive documentation”.

The approach in [1][2] enables projects using upfront
design to predict and identify error-proneness risks before
they become a problem. This is advantageous because errors
found during the design stage of software development are
five to twelve times cheaper to correct when compared to
errors found at the testing stage [7]. Another advantage of
using upfront UML is programming language independence.

In [3], the authors tested one method of splitting the
architecture. This means no evidence was provided of how
effective the DRH algorithm is by comparison to other ways
of splitting an architecture. In [1], we compared UC
Containers and Resource Containers to DR Containers.

The work in [8] found that UML sequence diagrams
were commonly used by half of the 171 UML users
surveyed. In this case, UC Containers were selected because
use cases are often represented by sequence diagrams. The
UC Container is composed of each class shown on the use
case sequence diagram [1].

Resource Containers were populated with classes
dependent upon an external resource (database table, service,
file, etc.) by seeding with the resource encapsulation class
and recursively adding classes that depend upon the
encapsulation class [1]. Resource Containers were selected to
investigate the sensitivity to error-proneness in architectures
due to changes in external resources. Sensitivity is expected
due to the ripple effect [9]. If the resource changes it may
require a change to the encapsulating class which may in turn
require a change to a dependent class and so on. Omission of
one of these changes could introduce a regression error.

There is some evidence to suggest that DRSpaces and
DR containers created using the DRH algorithm can be used
to identify and isolate error-proneness risks in software
architectures [1][2][3][4][5]. However, none of the research
to date has investigated whether the presentation of subsets
of the architecture would help or hinder practitioners with
finding and mitigating problems contained within such
subsets. Addressing that gap is the purpose of this research.

III. DATA COLLECTION

We have designed an online experiment to test whether
different types of risk containers (design subsets) are

meaningful to practitioners. The experiment is based around
UML designs for a fictitious pet food e-commerce software
system. The UML design has been divided into an equal
number of DR, UC and Resource Containers using the
container population rules described in [1]. Each of these
three sets of containers represents a different experimental
test group. A ‘no containers’ control group is used in
addition to the three risk container type groups. Participants
have been recruited through the researcher’s network of
industrial and academic colleagues, as well as
callforparticipants.com.

The fictitious design is composed of 48 classes. Control
group participants are asked to reason about a single class
diagram showing all of the classes. For each risk container
group (DR, UC and Resource) participants must reason
about a set of nine diagrams (one per container). On average
each container diagram contains 8.33, 8.00 and 7.66 classes
for DR, UC and Resource containers, respectively.

The experiment has three parts. In part one participants
are asked questions about their practitioner and UML
experience. These questions are designed to provide context
to each participant’s response. Part two of the experiment
provides participants with an overview of the fictitious
system and introduces an architecture review scenario.
Participants are asked to play the role of peer reviewer in
order to identify any cyclic dependencies and the impact of
two change scenarios upon the design. Participants are
provided with a reminder of what are cyclic dependencies,
and how to identify them in class and sequence diagrams.

In part three participants browse UML diagram(s)
representing each risk container in their randomly assigned
group (or control). They are required to identify the pair of
classes involved in ‘planted’ cyclic dependencies and the
classes impacted by two change scenarios. Participants are
shown class diagrams for the Control, DR and Resource
Container groups. UC Container group participants are
shown sequence diagrams. This reflects the types of
diagrams used to create such risk containers [1].

Cyclic dependencies are used as an example of an error-
proneness inducing design flaw [5] to test whether presenting
the design as a collection of risk containers helps or hinders
practitioners to identify such potential error inducing flaws.
If the results show that participants identify more of the
planted cyclic dependencies in one of the risk container
groups than the others (or control) it would suggest that
presenting the design with (or without) such containers is
helping the participants to locate the flaws (isolated risks).
This observation would support the view that risk containers
are meaningful to practitioners using the definition provided
in section I. The time taken to complete the experiment is
also recorded to see if it varies between the different
experimental groups. Two different timings were recorded
for each participant: (i) the duration between first accessing
and exiting the experimental platform, and (ii) the duration
that each participant declared it took them to complete the
experiment.

Wolfe and Horowitz explain that attention towards a
search field of objects of interest is not random and is
modulated by five factors [10]. They assert this is necessary

because limits on visual processing make it impossible to
recognize everything at once. These adaptations imply that
the size and complexity of the search scene will influence
how quickly an individual can locate an object of interest
contained within it. We hypothesise that it should be easier
for practitioners to locate flaws that are contained within the
smaller single container diagrams than the larger control
diagram that shows all classes.

The corollary is that it ought to be harder for practitioners
to locate cyclic dependencies that are split across two
container diagrams due to them representing a larger (and
split) scene. Therefore, practitioners are asked to identify
three single-container cyclic dependencies for each of the
four groups. Participants assigned to the DR and UC
Container groups are also asked to locate three cyclic
dependencies that span multiple diagrams. It is impossible to
ask that for Resource Containers. That is because they are
populated with classes that are recursively dependent on the
resource encapsulation class, i.e. if class A depends on class
B and class B depends on the resource encapsulating class C,
all three classes would be members of the resource container
created from class C. This means that all classes with a direct
or indirect dependency on class C will be shown in the same
Resource Container diagram. It is also impossible to ask the
control group about multiple-diagram dependencies because
all classes are shown on a single diagram. This difference in
the number of review questions means we must be mindful
when comparing the time taken to complete the experiment
between the different experimental groups.

Participants are also asked to assess the impact of
potential changes. This is because if risk containers were to
be adopted by practitioners to isolate risks, possible
mitigations would include redesign. If containers are found
to aid practitioners with design refactoring, as well as during
the initial risk identification stage [1][2][3], it would provide
further evidence that risk containers are indeed meaningful
using the definition provided. Participants are asked to
identify the classes that would have to be modified for one
change that is isolated within a single container and a second
change that spans multiple container diagrams for all three
risk container groups. Control group participants are asked
about both changes on the single class diagram.

Participants know they have identified a cyclic-
dependency as soon as a pair of co-dependent classes have
been found. For change impacts, participants must continue
to search even when an impact has been found to see if there
are further impacts of the change.

By asking participants in different groups the same or
similar questions, we are testing whether the way a design is
split into containers influences the ability of practitioners to
identify error inducing flaws and change impacts. The
rationale behind our experiment is that if containers improve
the participant’s performance when performing these tasks
by comparison to those using the overall diagram, containers
would satisfy clause C of the definition.

IV. EMERGING RESULTS

At the time of writing we have received submissions
from 13 participants. Table I shows that participants have a

median twenty years of industry experience and seven years
of UML experience. Table I also shows that participants
have typically worked on three projects using class diagrams,
and two projects using sequence diagrams.

TABLE I. PARTICIPANT EXPERIENCE

N Question Min Max Median Q1 Q3

13 Years of commerical experience 0.00 30.00 20.00 10.00 23.00
13 Years of using UML 0.00 20.00 7.00 5.00 15.00
13 Projects using Class Diagrams 0.00 30.00 3.00 2.00 3.00
13 Projects using Seqn. Diagrams 0.00 30.00 2.00 2.00 5.00

Owing to random assignment to experimental groups, we

received four control, three DR, three UC and three Resource
Container submissions to date. Table II shows how long it
took participants in each group to answer review questions.
The ‘Containers’ values are obtained by treating those nine
submissions as a single group.

TABLE II. TIME TAKEN PER REVIEW QUESTION (MINUTES)

N Group Min Max Median Q1 Q3

4 Control 3.00 19.60 6.50 3.75 11.65
9 Containers 5.63 18.00 8.63 7.50 11.25
3 DR Containers 7.50 11.25 7.50 7.50 9.38
3 Resource Containers 6.00 18.00 12.00 9.00 15.00
3 UC Containers 5.63 11.25 8.63 7.13 9.94

These results suggest it took participants in the container

groups approximately 30% longer per review question than
those in the Control group. It took DR Container participants
only 15% longer. Since all types of container have
approximately the same number of classes per diagram, these
results suggest participants can answer review questions
quicker for DR Containers than they can for Resource and
UC Containers. Overall, the results suggest that presenting
the design as a collection of container diagrams increases the
time needed to complete the review.

The initial results for the accuracy with which
participants can identify cyclic dependencies are shown in
Table III. Note that there are no multiple diagram cyclic
dependency questions for Resource Containers, as explained
in section III.

TABLE III. % OF CYCLIC DPENDENCIES IDENTIFIED CORRECTLY

N Group Min Max Median Q1 Q3

4 Control 33.33 100.00 33.33 33.33 50.00
9 Containers 66.67 100.00 100.00 66.67 100.00
3 DR Containers 66.67 66.67 66.67 66.67 66.67
3 Resource Containers 100.00 100.00 100.00 100.00 100.00
3 UC Containers 66.67 100.00 100.00 83.33 100.00

3 DR Containers 33.33 100.00 66.67 50.00 83.33
3 UC Containers 0.00 100.00 33.33 16.67 66.67

Single
Diagram

Multiple
Diagrams

The results in Table III are insufficient to render a

compelling comparison between the container types.
However, the combined ‘Containers’ results drawn from
nine participants suggests that the smaller container diagrams
do help practitioners identify cyclic dependencies contained
within a single diagram. Participants in the container groups
were typically two times more successful at identifying

cyclic dependencies within single containers than
participants in the control group. This is consistent with our
hypothesis that it should be easier for participants to find
these objects of interest in the smaller container diagrams.

The picture differs for multiple-container cyclic-
dependencies because presenting the design as a collection of
containers produces approximately the same number of
correct answers as the control. This is expected because
participants must memorize diagrams as they switch between
them. Participants allocated to the DR Containers group
found it easier to identify multiple-container cyclic
dependencies than those allocated to the UC Containers
group and the control group using a single large diagram.

Table IV shows how many change impacts were
correctly identified in the different experimental groups.

TABLE IV. % OF CHANGE IMPACTS IDENTIFIED CORRECTLY

N Group Min Max Median Q1 Q3

4 Control 50.00 100.00 100.00 87.50 100.00
9 Containers 0.00 100.00 100.00 100.00 100.00
3 DR Containers 0.00 100.00 100.00 50.00 100.00
3 Resource Containers 100.00 100.00 100.00 100.00 100.00
3 UC Containers 0.00 100.00 100.00 50.00 100.00

3 DR Containers 100.00 100.00 100.00 100.00 100.00
3 UC Containers 100.00 100.00 100.00 100.00 100.00

Single
Diagram

Multiple
Diagrams

The median values indicate that containers have no

bearing on the practitioner’s ability to detect change impacts
over the control group. This is expected because participants
must continue to search the remainder of the design even
when an impact has been found to see if there are further
impacts of the change. However, not a single error was
observed in cases where participants were asked to impact
changes spanning multiple container diagrams. Errors were
observed when participants had to impact the same change
on a single diagram. Cycling through smaller diagrams may
help participants identify individual impacts more easily.

V. VALIDITY

With only 13 participants it is too early to determine
whether the trends are significant and consequential.
Participants were not timed under exam conditions and so it
is unknown whether time taken was unduly influenced by
disruptions. There is no reason to think that one group would
be more disrupted than another and so this threat would be
mitigated by more participants. We used just one error
inducing flaw (cyclic-dependency) and so the results may
not translate to other error inducing flaws such as implicit
cross module dependencies and unhealthy inheritance [5].
Further work would be necessary to determine whether the
results obtained using a relatively small toy architecture are
generalizable to larger real architectures. The popularity of
agile methods and limited use of UML in practice [11] may
suggest the technique is only beneficial to some kinds of
projects. As we have only tested the three ways of clustering
architecture elements described in [1] more effective ways of
presenting an architecture may remain to be determined.

VI. CONCLUSION

Previous studies indicate error-proneness risks can be
isolated into containers [1][2]. This paper presents
preliminary results of an ongoing experiment (see URL on
the first page) to determine whether presenting designs as
risk containers helps practitioners manage isolated risks.
Participants must identify cyclic dependencies that could
result in error-proneness risks and assess the impact of
design changes. The results so far suggest all 3 container
types are meaningful to practitioners.

In particular, analyzing a design as a collection of
containers leads to more accurate detection of cyclic
dependencies isolated within smaller container diagrams. A
general improvement was not observed for cyclic
dependencies spanning multiple container diagrams, but an
improvement for DR Containers was observed.

As for identifying the impact of design changes,
participants made no errors if changes spanned multiple
container diagrams, but some participants assessing the same
change on a single diagram made errors.

The trade-off for the accuracy improvements is that it
takes longer to analyze a design presented as a collection of
containers than one presented as a single class diagram.

REFERENCES
[1] A. Leigh, M. Wermelinger and A. Zisman, “Software Architecture

Risk Containers,” Proc. 11th European Conference on Software
Architecture, Springer, 2017, pp. 171-179.

[2] A. Leigh, M. Wermelinger and A. Zisman, “An evaluation of design
rule spaces as risk containers,” Proc. 13th Working International
Conference on Software Architecture, IEEE, 2016, pp. 295–298.

[3] L. Xiao, Y. Cai, R. Kazman, “Design Rule Spaces: A new form of
architectural insight,” Proc. 36th International Conference on
Software Engineering, ACM, 2014, pp. 967-977.

[4] S. Wong, Y. Cai, G. Valetto, G. Simeonov, K. Sethi, “Design rule
hierarchies and parallelism in software development tasks,” Proc.
24th International Conf. on Automated Software Engineering, ACM,
2009, pp. 197–208.

[5] R. Mo, Y. Cai, R. Kazman, L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” Proc. 12th
Working IEEE/IFIP Conf. on Software Architecture, IEEE, 2015, pp.
51-60.

[6] P. Hohl et al., “Back to the future: origins and directions of the ‘Agile
Manifesto’ – views of the originators,” Journal of Software
Engineering Research and Development, vol. 6(15), Springer, 2018.

[7] K. Akingbehin, "A quantitative supplement to the definition of
software quality," Proc. ACIS Int’l Conf. on Software Engineering
Research, Management and Applications, IEEE, 2005, pp. 348-352.

[8] B. Dobing and J Parsons, “How UML is used,” Communications of
the ACM, vol. 49, May 2006, pp. 109-113.

[9] M. Lindvall, R.T. Tvedt, P. Costa, “An empirically-based process for
software architecture evaluation,” Empirical Software Engineering,
vol. 8(1), Springer, 2003, pp. 83-108.

[10] J.M. Wolfe and T.S. Horowitz, “Five factors that guide attention in
visual search,” Nature Human Behaviour, vol. 1(3), March 2017.

[11] M. Petre, “UML in practice,” Proc. International Conference on
Software Engineering, IEEE, 2013, pp. 722-731.

