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Abstract

It is known that classical linear discriminant analysis (LDA) performs classifica-

tion well when the number of observations is much larger than the number of

variables. However, when the number of variables is larger than the number of

observations, classical LDA cannot be performed because the within-group co-

variance matrix is singular. Recently proposed LDA methods that can handle

singular within-group covariance matrix were reviewed. Most of these methods

focus on regularizing the within-class covariance matrix. However, they give

less attention to sparsity ( selecting variables), interpretation and computational

cost, which are important in high-dimensional problems. The fact that most of

the original variables may be irrelevant or redundant suggests looking for sparse

solutions that involve only a small portion of the variables. In the present work,

new sparse LDA methods are proposed that are suited to high-dimensional data.

The first two methods assume groups share a common within-group covariance

matrix and approximate this matrix by a diagonal matrix. One of these meth-

ods is a variant of the other that sacrifices some accuracy for greater computa-

tional speed. Both methods obtain sparsity by minimizing an `1-norm and max-

imizing discrimination power under a common loss function with a tuning pa-
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rameter. The third method assumes that groups share common eigenvector in

eigenvector-eigenvalue decomposition of their within-group covariance matri-

ces, while their eigenvalues my differ. The fourth method assumes the within-

group covariance matrices are proportional to each other. The fifth method is

derived from the Dantzig selector and uses optimal scoring to construct discrim-

inant function. The third and fourth methods achieve sparsity by imposing a

cardinality constraint with the cardinality level determined by cross-validation.

All the new methods reduce their computation time by sequentially determining

individual discriminant functions. The methods are applied to six real data sets

and perform well when compared with two existing methods.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

With the recent development of new technologies, high-dimensionality has

become a common problem in various disciplines such as medicine and epidemi-

ology, genetics, biology, metrology, astronomy, and economics. High-dimensionality

is a situation where the number of variables (the dimension of the data vec-

tors) is much larger than the number of observations (sample size) (Qiao et al.,

2009). Some sources of high-dimensional data are digital images, documents,

next-gen sequencing, mass spectrometry, metabolomics, microarray (gene ex-

pression), proteomics, videos and web pages (Pang and Tong, 2012). The high-

dimensionality problem, in general, occurs in many applications including infor-

mation retrieval, character recognition, classification and microarray data analy-

sis (Ye, 2005).

To analyse high-dimensional data, many methods have been proposed for

fast query response, such as K-D tree and R-tree (Cai et al., 2008). However, the
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performance and efficiency of these types of methods decrease as the dimension-

ality increases because the methods are designed to operate with small dimen-

sionality. Consequently, dimension reduction, or variable selection, has become

an important approach to deal with high-dimensional problems so as to obtain

meaningful results. Once the high-dimensional data are transformed into a lower

dimensional space, conventional data analysis methods can be employed (Cai

et al., 2008). One of the most commonly used dimension reduction methods for

data with grouped observations is Discriminant Analysis (DA). Principal Com-

ponent Analysis (PCA) is another popular method used for dimension reduc-

tion. It helps to find a few directions on which to project the data such that the

projected data explain most of the variability in the original data. This method

finds a low dimensional representation of the data without losing much informa-

tion. Although PCA can be used for dimension reduction, it is not appropriate

for classification problems because it mainly works for unsupervised problems

(Qiao et al., 2009).

Discriminant Analysis (DA) is generally defined as the study of the relation-

ship between a categorical variable and a set of interrelated variables (McLach-

lan, 2004). A method that is commonly used together with DA is classification,

which is a supervised method that deals with the problem of the optimal alloca-

tion of a given set of objects into a predefined mutually exclusive and exhaustive

classes. Fisher (1936) proposed a special type of DA called linear discriminant

analysis (LDA). It is a method used in statistics, pattern recognition and machine

learning to find a linear combination of variables, linear discriminant functions
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(LDF), which characterize or separate two or more groups of objects or events.

The resulting linear combination of variables may be used as a classifier, or, more

commonly, for dimensionality reduction before classification. The main objective

of LDA is to describe, either graphically (in few directions) or algebraically, the

difference between two or more groups of objects as well as to perform dimen-

sionality reduction while preserving as much of the class discriminatory infor-

mation as possible (Johnson and Wichern, 2002).

The classical Fisher’s LDA approach uses the class information to find infor-

mative projections of the data for a classification problem. Fisher (1936) consid-

ered the problem of finding a linear combination of variables that best discrim-

inates groups by maximizing the ratio of between-class variance to within-class

variance. In the case of two classes, the derived linear combination of variables is

called a linear discriminant function (LDF), or canonical variate (Trendafilov and

Vines, 2009). In the same manner, additional LDF’s with decreasing importance

in discrimination can be obtained sequentially (Qiao et al., 2009). This method of

discrimination is further generalized by Rao (1952) to the multiple class problem.

In general, when the number of variables is greater than the number of groups,

the total number of discriminant functions that can be defined is one less than

the number of groups. For example, when there are three groups, we could esti-

mate two discriminant functions, one function for discriminating between group

1 and groups 2 and 3 combined, and another function for discriminating between

group 2 and group 3.

Another way of deriving LDA originates from the assumption that each class
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follows a multivariate normal distribution with significantly different group means

but a common covariance matrix (Merchante et al., 2012; Trendafilov and Jolliffe,

2007; Johnson and Wichern, 2002). Together with the minimization of the prob-

abilities of misclassification, this basic normality assumption leads to a Bayes

discrimination method that coincides with Fisher’s LDA. Alternatively, Fisher’s

LDA can also be formulated as a linear regression model through the concept

of optimal scoring of the classes (Mai et al., 2012; Clemmensen et al., 2011; Mer-

chante et al., 2012; Hastie et al., 1995).

It is well known that classical LDA is one of the dimension reduction methods

that performs well when the number of observations to be classified is much

larger than the number of variables used for discrimination and classification.

However, in the high dimensional setting, that is, when the number of variables

is much larger than the number of observations, classical LDA fails to perform

classification effectively due to the following well known problems (Clemmensen

et al., 2011; Fan et al., 2012; Witten and Tibshirani, 2011; Ng et al., 2011; Hastie

et al., 1995).

1. The estimate of the within-group covariance matrix is singular.

2. The resulting discriminant functions are very difficult to interpret, because

each discriminant function includes a linear combination of all of the origi-

nal variables.

3. Computational cost in terms of both running time and storage is very ex-

pensive.
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Furthermore, many more problems of high-dimensional data have been identi-

fied by various studies. For instance, Bickel and Levina (2004) pointed out that

Fisher’s LDA performs poorly in a minimax sense due to the diverging spectra

frequently encountered in high-dimensional covariance matrices. Fan and Fan

(2008) also demonstrated that the difficulty in high-dimensional classification is

due to the presence of redundant variables (noise accumulation) that do not signif-

icantly contribute to the minimization of classification error or to the maximiza-

tion of discrimination between groups. Similarly, Qiao et al. (2009) stated that in

high-dimensional discriminant analysis, most of the time data are projected onto

various directions, many of the projections are exactly the same. That is, the data

overlap on top of each other. They referred to this phenomenon as data pilling or

over fitting.

In general, many effective statistical techniques such as LDA cannot even be

computed directly in high-dimensional data due to the aforementioned prob-

lems. If LDA is directly applied to such data settings, it may provide meaningless

results. Therefore, appropriate methods of transformation or dimension reduc-

tion are required to apply LDA in such circumstances.

There exist several references that have proposed various methods to extend

classical LDA to overcome the problems that arise in the high-dimensional set-

ting. Recently proposed extensions of LDA focus mainly on dimension reduction

through variable selection and on the estimation of the inverse of the within-class

covariance matrix by applying different regularization techniques (Clemmensen

et al., 2011; Witten and Tibshirani, 2011; Qiao et al., 2009; Fan et al., 2012; Fan and
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Fan, 2008; Ng et al., 2011).

Variable selection is an approach by which high-dimensional data is reex-

pressed in terms of fewer variables while minimizing the loss of necessary infor-

mation for discrimination (Merchante et al., 2012; Hastie et al., 1995). The vari-

ables obtained after the final dimension reduction process are commonly called

discriminant variables (Hastie et al., 1995). The main purpose of variable selec-

tion is to achieve sparsity. Sparsity is a situation where the discriminant vectors

have only a small number of nonzero components (Qiao et al., 2009). In other

words, sparse LDA produces linear discriminant functions with only a small

number of variables, retaining those variables that are important in discrimi-

nating between groups and in identifying group membership of observations.

In high-dimensional data analysis, such as most genetic analyses, sparse meth-

ods of discrimination ensure better interpretability, robustness of the model, or

less computational cost for prediction (Clemmensen et al., 2011; Merchante et al.,

2012).

Variable selection is an essential procedure in the derivation of sparse LDA.

In high-dimensional data, often a large number of variables on which measure-

ments are observed are available for analysis, while few of these variables contain

useful information for the purpose of classification (Rencher, 2002). Qiao et al.

(2009) pointed out that we do not necessarily ensure an increase in the discrimi-

natory power by increasing the number of variables in the application of Fisher’s

LDA. Instead it leads to formation of overfitting. Since the 1990’s, a number

of techniques have been proposed for variable selection with high-dimensional
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data. The prominent methods are variable selection via the Lasso (Tibshirani,

1996), variable selection via the elastic net (Zou and Hastie, 2005), the Dantzig

selector (Candès and Tao, 2007), and the group Lasso (Merchante et al., 2012).

The traditional approach to sparse LDA is performing variable selection in a sep-

arated step before classification. However, this approach leads to a dramatic loss

of information for the purpose of the overall classification problem (Filzmoser

et al., 2012). Therefore, there is a need to develop a sparse LDA method that

performs variable selection and classification simultaneously.

1.2 Thesis outline

Each of the chapters in this thesis can be read as a self-contained article. In

general, the thesis is organized as follows. Chapter 2 briefly introduces the gen-

eral discriminant analysis framework. Various techniques of classical discrim-

inant analysis are presented to give a general background about discriminant

analysis. The principles of classification and discrimination are presented here.

Moreover, three approaches to discriminant analysis are presented in this chap-

ter. These are discrimination via multivariate normal models, Fisher’s LDA, and

the regression approach to LDA.

Chapter 3 reviews some of the existing discriminant approaches in high di-

mensional settings. This chapter, in general, reviews the approaches that focus

on dimension reduction, regularization of the within-groups sample covariance

matrix, minimization of classification error, and other direct methods. With these

approaches, ordinary LDA is used after dimension reduction. Other methods
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that are reviewed in Chapter 3 are methods that assume the variables in a high-

dimensional data are independent.

Chapter 4 proposes a method called function-constrained sparse LDA (FC-

SLDA) and its simplified version, FC-SLDA2, that are alternative methods for

high-dimensional discriminant analysis. The constrained `1-minimization penalty

is imposed on the discrimination problem to achieve sparsity, and FC-SLDA im-

poses a diagonal within-group covariance matrix to circumvent the singularity

problem. The second method proposed in this chapter, FC-SLDA2, is derived

without using eigenvalues. Both methods are illustrated using real data sets.

They are also compared with other exiting methods.

Chapter 5 starts by introducing a new method of discrimination called sparse

LDA using Common principal components (CPC) and then continues with the

theoretical development of the method. Sparse discriminant method using CPC

(SDCPC) assumes that group covariance matrices have the same eigenvectors but

different eigenvalues. It is an effective method for high-dimensional classifica-

tion problems. This method is illustrated by using real data sets. Finally, Chap-

ter 5 proposes another alternative sparse discrimination method called sparse

LDA using proportional CPC (SD-PCPC) for high-dimensional discrimination

problems. This method is appropriate when group covariance matrices are pro-

portional to each other.

Chapter 6 proposes a new formulation to sparse LDA method based on op-

timal scoring named as SLDA-OS. This discrimination method is derived by re-

casting discriminant analysis as regression analysis. The Danzig selector is incor-
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porated within this method to achieve sparsity of the discriminant functions.

The thesis ends with summary and conclusions in Chapter 7, where each

chapter is briefly summarized, results are discussed, and conclusions are pre-

sented. Some future research directions are also indicated in this chapter. We

used MATLAB2015b to implement the algorithms of our methods.



Chapter 2

The discriminant analysis framework

In this chapter, we outline the general framework (formulation) of the discrimina-

tion problem and present the main approaches of classical discriminant analysis.

2.1 Discrimination and classification problems

Discriminant analysis and classification are multivariate techniques concerned

with separating distinct sets of objects and with allocating new objects to previ-

ously defined groups. Discriminant analysis is a dimension reduction method

that is useful in determining whether a set of variables is effective in predicting

group membership. For example, linear discriminant analysis (LDA) is used to

identify a linear combination of variables, called the linear discriminant func-

tion, that produces the greatest distance between groups. A restriction on using

standard LDA is that it requires group covariances to be equal. Some other non-

linear discriminant analysis, such as quadratic discriminant analysis (QDA), may

be used when the group covariances are not equal.

10
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The goal of discrimination, in general, is to describe the differential features

of objects that can be used to separate the objects into groups as well as to pre-

dict group membership of further objects (Fisher, 1936). The latter task overlaps

classification analysis which is concerned with the development of rules for allo-

cating or assigning observations into one or more already existing groups.

Because linear discriminant functions are often used to develop classification

rules, some authors use the term classification analysis instead of discriminant

analysis. Because of the close association between the two processes we treat

them together in this subsection.

2.2 Basic notation and data organization

Multivariate data for discriminant analysis arise when measurements made

on p variables are recorded for a total of n observations (individuals). Because

we are now dealing with classical LDA, we assume that n > p. Suppose that

the n observations are divided into g predefined groups and that the ith group is

denoted by πi, i = 1, 2, . . . , g. If ni is the number of observations in the ith group,

then n1 +n2 + · · ·+ng = n. Let the (p×1) vector xij = (xij1, xij2, . . . , xijp)
T denote

the measurement made on the jth individual belonging to the ith group, and let

the (n× p) data matrix X represent the measurements of all observations. Values

will be available for p variablesX1, X2, ..., Xp for each observation. Thus, the data

for discriminant analysis takes the form shown in Table 2.1.

Therefore, the matrix X contains the data consisting of all of the n obser-

vations on all of the p variables in g groups. It can also be given as XT =
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Table 2.1: Multivariate data for discriminant analysis

Observation X1 X2 . . . Xp Group

1 x111 x112 . . . x11p 1

2 x211 x212 . . . x21p 1

...
...

...
...

...
...

n1 xn111 xn112 . . . xn11p 1

1 x121 x122 . . . x12p 2

2 x221 x222 . . . x22p 2

...
...

...
...

...
...

n2 xn221 xn222 . . . xn22p 2

...
...

...
...

...
...

1 x1g1 x1g2 . . . x1gp g

2 x2g1 x2g2 . . . x2gp g

...
...

...
...

...
...

ng xngg1 xngg2 . . . xnggp g

[X1, X2, ..., Xp].

2.3 Principles of classification and discrimination

2.3.1 Classification into two groups

Suppose the overall set of measurements on n observations is divided into

two groups. The first group is π1 and contains n1 observations; the second group

π2 contains n2 observations. Let these two populations be described by probabil-
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ity density functions f1(x) and f2(x), respectively, where the observed values of

x differ to some extent from one group to the other (Johnson and Wichern, 2002).

An observation with associated measurements x, must be assigned to either

π1 or π2. Let Ω be the sample space; that is, the collection of all possible observa-

tions x. The space is divided into two regions, say, R1 and R2 = Ω − R1. If an

observation falls in R1, we classify it as belonging to π1, and if the observation

falls in R2, we classify it as belonging to π2. Since every observation must be

assigned to one and only one of the two populations, the regions R1 and R2 are

mutually exclusive and exhaustive (Johnson and Wichern, 2002).

In using any classification procedure, two types of errors can be committed:

an observation may be incorrectly classified as coming from π2 when, in fact, it

is from π1, and viceversa (Anderson, 1984). The principle of optimal allocation is

to create a rule (R1 and R2) that minimizes the chances of making these errors. In

general, a large number of observations tend to be classified into their respective

groups.

With good classification method, the chances or probabilities of misclassifica-

tion should be small. The conditional probability of classifying an object as π2

when , in fact, it is from π1 is given as :

p(2|1) = p(X ∈ R2|π1) =

∫
R2

f1(x)dx (2.1)

Similarly, the conditional probability of classifying an object as π1 when it is really

from π2 is

p(1|2) = p(X ∈ R1|π2) =

∫
R1

f2(x)dx (2.2)

Let pi be a prior probability of πi (i = 1, 2), where p1 + p2 = 1. Therefore, the
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overall probabilities of correctly or incorrectly classifying objects can be derived

as the product of the prior and conditional classification probabilities.i.e.,

p(correctly classified as π1) = p(X ∈ R1|π1).p(π1) = p(1|1).p1 (2.3)

and

p(misclassified as π1) = p(X ∈ R1|π2).p(π2) = p(1|2).p2 (2.4)

In the same manner, the probabilities of correctly and incorrectly classifying ob-

servations as π2 are given as , respectively:

p(X ∈ R2|π2).p(π2) = p(2|2).p2 (2.5)

and

p(X ∈ R2|π1).p(π1) = p(2|1).p1. (2.6)

Classification methods are often evaluated based on their probabilities of mis-

classification (PoM). A classification procedure with smaller PoM is said to be

better than another method of classification with larger PoM. Consequently, in

the case of two groups classification process, the idea of classification is to de-

velop a method that minimizes the PoM’s in equations 2.4 and 2.6.

Another criteria for classification is cost. Suppose that classifying a π1 obser-

vation wrongly to π2 represents a more severe error than classifying a π2 obser-

vation wrongly to π1. Then one should be cautious about committing the former

error. Let the cost of an observation from π1 is misclassified as π2 be c(2|1), and

the cost of an observation from π2 is misclassified as π1 be c(1|2). Then the aver-

age or expected cost of misclassification (ACM) is given as:

ACM = c(2|1).p(2|1).p1 + c(1|2).p(1|2).p2. (2.7)
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It is noted in Johnson and Wichern (2002) that the cost for correct classification is

zero. A reasonable classification rule aims to have an ACM as small as possible.

2.3.2 Optimal allocation criteria

Many different optimal allocation criteria have been proposed to determine a

classification rule. One criterion is to obtain a classification rule by minimizing

the ACM. A procedure that minimizes (2.7) for given p1 and p2 is called a Bayes

rule (Anderson, 1984). The regionsR1 andR2 that minimize the ACM are defined

by the values x for which the following inequalities hold

R1 :
f1(x)

f2(x)
≥
(
c(1|2)

c(2|1)

)(
p2

p1

)
, (2.8)

and

R2 :
f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
p2

p1

)
. (2.9)

If the misclassification cost ratio is unknown, it is commonly taken to be unity

and the population density ratio is compared with the ratio of the prior probabil-

ities. Suppose for a moment that c(1|2) = c(2|1) = 1. Then the expected cost of

misclassification (the ACM) given in (2.7) becomes solely a function of the prob-

abilities. As a result, we call it the total probability of misclassification (TPM),

given as :

TPM = p1.p(2|1) + p2.p(1|2)

= p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx

= p1

[
1−

∫
R1

f1(x)dx

]
+ p2

∫
R1

f2(x)dx

= p1 +

∫
R1

[p2f2(x)− p1f1(x)] dx. (2.10)
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This quantity is minimized if R1 is chosen so that p2f2(x) − p1f1(x) < 0 for

all points in R1. Minimizing (2.10) is mathematically equivalent to minimizing

the expected cost of misclassification when the costs of misclassification are equal

(Johnson and Wichern, 2002). The classification rule that minimizes TPM is given

as follows:

Assign an observation x to π1 if

f1(x)

f2(x)
≥ p2

p1

; (2.11)

otherwise assign it to π2. Moreover, when the prior probabilities are unknown,

they are taken to be equal, i.e., p1 = p2 = 1/2. Under both conditions, the opti-

mal classification regions are determined simply by comparing the values of the

density functions. Hence, with the assumption of equal cost of misclassification

and equal prior probabilities, we assign an observation x to π1 if f1(x)/f2(x) ≥ 1,

otherwise we assign it to π2.

Another optimality criterion that leads to the assignment rule in (2.11) is

based on posterior probability. Using this approach an observation x is allocated

to the group with the largest posterior probability p(πi|x). By Bayes rule, the

posterior probability of πi is given as:

p(πi|x) =
p(x|πi)p(πi)∑2
k=1 p(x|πk)p(πk)

=
pifi(x)

p1f1(x) + p2f2(x)
, i = 1, 2. (2.12)

An observation x is assigned to π1 when p(π1|x) > p(π2|x), this is equivalent to

the rule that minimizes the total probability of misclassification.

An alternative criterion specifies that the maximum probability of misclassi-
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fication should be minimized. This criterion is commonly known as the minimax

rule. Thus, the minimax rule allocates an observation x so as to minimize the

greater of p(1|2) and p(2|1) (Lachenbruch, 1975; Seber, 2004). For instance, for

0 ≤ α ≤ 1,

max{p(1|2), p(2|1)} ≥ (1− α)p(2|1) + αp(1|2) (2.13)

By (2.11) the right hand side of (2.13) is minimized whenR1 = R01 = {f1(x)/f2(x) ≥

α/(1− α) = c}. If we choose c, say α = α0, so that the misclassification probabil-

ities for R01 are equal, that is, p0(2|1) = p0(1|2), then

(1− α0)p(2|1) + α0p(1|2) ≥ (1− α0)p0(2|1) + α0p0(1|2)

= (1− α0 + α0)p0(2|1)

= p0(2|1)

Therefore, (2.13) can be given as,

max{p(1|2), p(2|1)} ≥ p0(2|1) = max{p0(1|2), p0(2|1)}.

Thus, the minimax rule is: Assign x to π1 if f1(x)/f2(x) ≥ c, where c satisfies

p0(1|2) = p0(2|1).

If the two groups are normal with common covariance matrix, then the mini-

max rule is given as: Assign an observation x to π1 if

D(x) ≥ ln c,

where D(x) is given by (2.21). The minimax rule is the same as the maximum

likelihood ratio method when ln c = 0 or c = 1. Both allocation methods do not

require knowledge of p1.
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2.3.3 Classification into several groups

Here the principles of classification presented in the previous sections will be

extended to the case where there are more than two groups. Let the observations

be divided into g groups, where the ith group is denoted by πi with associated

density functions fi(x), i = 1, 2, . . . , g. The space of observations is assumed

to be divided into g mutually exclusive and exhaustive regions R1, R2, . . . , Rg.

Let pi be the prior probability of πi, and let c(k|i) be the cost of assigning an

observation wrongly to πk when, in fact, it belongs to πi for i 6= k = 1, 2, . . . , g.

For k = i, c(i|i) = 0. Similarly, let p(k|i) be the probability of misclassifying an

observation to πk when, in fact, it comes from πi, which is given as:

p(k|i) =

∫
Rk

fi(x)dx for i, k = 1, 2, . . . , g. (2.14)

with

p(i|i) = 1−
g∑

k=1
k 6=i

p(k|i)

The conditional expected cost of misclassifying an observation x from π1 to π2 or

π3, . . . , or πg is:

ACM(1) = p(2|1)c(2|1) + p(3|1)c(3|1) + · · ·+ p(g|1)c(g|1)

=

g∑
k=2

p(k|1)c(k|1). (2.15)

The conditional expected costs of misclassification for the other groups can also

be obtained from equivalent formula. Multiplying each conditional expectation
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by its prior probability and summing the results gives the overall ACM:

ACM =

g∑
i=1

pi

(
g∑

k=1,k 6=i

p(k|i)c(k|i)

)
. (2.16)

Determining an optimal classification procedure means choosingRK , k = 1, 2, . . . , g

so that (2.16) is minimized. The allocation rule is: Assign x to πk, k = 1, 2, . . . , g

for which (2.16) is smallest (Johnson and Wichern, 2002). If all the misclassifi-

cation costs are equal, the minimum ACM and the minimum TPM are the same

and, without loss of generality, we can set all the misclassification costs equal to

1. This assumption leads to the allocation rule that we would allocate x to group

πk, k = 1, 2, . . . , g, for which
g∑

i=1,i 6=k

pifi(x) (2.17)

is smallest. Note that equation (2.17) will be smallest when the omitted term,

pkfk(x), is largest. As a result, when all the misclassification costs are the same,

the allocation rule is that we assign x to πk if pkfk(x) > pifi(x) for all i 6= k. It is

important to note that this classification rule is identical to the one that maximizes

the posterior probability p(πk|x), where

p(πk|x) =
pkfk(x)∑g
i=1 pifi(x)

for k = 1, 2, . . . , g. (2.18)

Equation (2.18) is the generalization of equation (2.12) for g groups.

2.4 Approaches to linear discriminant analysis

There are many approaches to LDA. In this section, we will present three ap-

proaches, namely, multivariate normal discrimination, Fisher’s discrimination,

and discrimination using regression approach.
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2.4.1 Discrimination via multivariate normal models

2.4.1.1 Discrimination with two multivariate normal populations

Here we assume that f1(x) and f2(x) are multivariate normal densities; the

first with mean vector µ1 and covariance matrix Σ, and the second with mean

vector µ2 and the same covariance matrix, Σ. We also assume that all of the

population parameters are known. The multivariate normal density of xT =

[x1, x2, ..., xp] for the ith group is:

fi(x) =
1

(2π)p/2|Σ|1/2
exp[−1

2
(x− µi)

TΣ−1(x− µi)], i = 1, 2. (2.19)

Thus, the ratio of the densities is:

f1(x)

f2(x)
=

exp[−1
2
(x− µ1)TΣ−1(x− µ1)]

exp[−1
2
(x− µ2)TΣ−1(x− µ2)]

= exp[(µ1 − µ2)TΣ−1x− 1

2
(µ1 − µ2)TΣ−1(µ1 + µ2)] (2.20)

Taking logarithm the optimal rule becomes: Assign x to π1 if

D(x) = (µ1 − µ2)TΣ−1(x− 1

2
(µ1 + µ2)) > ln

p2

p1

; (2.21)

otherwise assign x to π2. Note that the inequality in (2.21) is found when the costs

of misclassification are assumed to be equal. Moreover, when p1 = p2 = 1/2, x

will be assigned to π1 if D(x) > 0.

D(x) can be rewritten as:

D(x) = wT (x− 1

2
(µ1 + µ2)) (2.22)

where w = Σ−1(µ1 − µ2). It is important to see that D(x) is a linear function of

the observation vector x and hence it is known as the linear discriminant func-
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tion (LDF). In fact, wT in (2.22) is a row vector which can be given as, wT =

(w1, w2, . . . , wp). For example, if an observation x0 consists of (x01, x02, . . . , x0p),

then the discriminant score, D(x), is computed as:

D(x0) = w0 + w1x01 + w2x02 + · · ·+ wpx0p

where w0 is a constant given by w0 = 1
2
(µ1 − µ2)TΣ−1(µ1 + µ2) (Rencher, 2002;

Johnson and Wichern, 2002).

When p1 = p2 = 1/2, we assign x to π1 if

wTx ≥ 1

2
(µ1 − µ2)TΣ−1(µ1 + µ2) =

1

2
(wTµ1 + wTµ2) (2.23)

This means that we assign x to π1 if wTx is closer to wTµ1 than to wTµ2.

To find the probabilities of misclassification, it is useful to know the distribu-

tion of D(x). First, let us define the squared Mahalanobis distance between µ1

and µ2 as

∆2 = (µ1 − µ2)TΣ−1(µ1 − µ2) = wT (µ1 − µ2). (2.24)

The distribution of D(x) is derived as follows. Since x is multivariate normal,

D(x) is also normal. This is because D(x) is a linear combination of x. If x comes

from πi(i = 1, 2), the mean of D(x) is

E[D(x)|πi] = E[(µ1 − µ2)TΣ−1(xi −
1

2
(µ1 + µ2))]

= (µ1 − µ2)TΣ−1(µi −
1

2
(µ1 + µ2))

=
1

2
(−1)i+1∆2. (2.25)

In either population the variance (var) is

var(D(x)) = var(wT (x− 1

2
(µ1 + µ2)))

= var(wTx) = wTΣw = ∆2. (2.26)
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Thus the probability of misclassification if the observation is from π1 is p(2|1) =

Φ({ln p2
p1
− ∆2

2
}/∆), where Φ(.) denotes the standard normal distribution function.

Similarly, p(1|2) = Φ(−{ln p1
p2

+ ∆2

2
}/∆). If we assume that p1 = p2 = 1/2, then

p(2|1) = p(1|2) = Φ

(
−∆

2

)
; (2.27)

and the total probability of misclassification is given as

TPM =
1

2
p(D(x) < 0|π1) +

1

2
p(D(x) > 0|π2)

=
1

2
Φ

(
−∆

2

)
+

1

2
Φ

(
−∆

2

)
= Φ

(
−∆

2

)
= 1− Φ

(
∆

2

)
. (2.28)

The allocation principle is to find a classifier D(x) that minimizes the total prob-

ability of misclassification in (2.28).

If the assumption of equal population variances was violated, the function

would be a quadratic discriminant function (details are given in Anderson (1984)).

In such circumstances, quadratic discriminant analysis controls the variability in

each group and provides reliable results.

2.4.1.2 Discrimination with several multivariate normal populations

Let fi(x) be a multivariate normal density function of x for population πi with

mean vector µi and covariance matrix Σi, i = 1, 2, · · · , g. Let Σ be the common

covariance matrix of the g populations under the assumption of homoscedastic-

ity. The multivariate normal density of x for the ith population is

fi(x) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(x− µi)

TΣ−1(x− µi)

]
, i = 1, 2, · · · , g (2.29)

Multiplying by pi and taking logarithm gives

Di(x) = ln pifi(x) = ln pi −
p

2
ln(2π)− 1

2
ln |Σ| − 1

2
(x− µi)

TΣ−1(x− µi) (2.30)
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Thus we assign x to πk if Dk(x) = max ln pifi(x), i = 1, 2, . . . , g. The constant

term (p
2
) ln(2π) in (2.30) is the same for all groups. Hence, it can be ignored for

allocation purposes. Similarly, we can ignore other terms that are the same for

each Di(x). Consequently, the final linear discriminant score for the ith group can

be defined as

Di(x) = ln pi + µT
i Σ−1x− 1

2
µT
i Σ−1µi

= ln pi + µT
i Σ−1(x− 1

2
µi) (2.31)

We assign x to the group with the largest value of Di(x).

It is important to note that the linear discriminant scores in g groups can also

be expressed as:

Dik(x) = (µi−µk)
TΣ−1(x−1

2
(µi+µk)) for i, k = 1, 2, . . . , g, and i 6= k. (2.32)

where Dik(x) is the discriminant function related to the ith and kth groups, and

Dik(x) = −Dki(x). The regionRi is bounded by a (g−1) dimensional hyperplane.

The mean and variance of Dik(x) are, respectively, 1
2
∆2
ik and ∆2

ik, where ∆2
ik is

given as

∆2
ik = (µi − µk)

TΣ−1(µi − µk) = wT
ik(µi − µk), (2.33)

where wik = Σ−1(µi − µk).

When the population parameters are unknown, they can be replaced by their

sample counterpart plug-in estimates. The sample mean vector and covariance
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matrix for the ith (i = 1, 2, ..., g) group are given by

µ̂i = x̄i =
1

ni

ni∑
j=1

xij

Σ̂i = Si =
1

ni − 1

ni∑
j=1

(xij − x̄i)(xij − x̄i)
T (2.34)

Similarly, Σ may be estimated by the pooled sample covariance which is given

by

Σ̂ = S =

∑g
i=1(ni − 1)Si
n− g

(2.35)

And the overall mean vector µ is estimated as:

µ̂ = x̄ =
1

n

g∑
i=1

ni∑
j=1

xij (2.36)

2.4.2 Fisher’s linear discriminant analysis

Fisher’s approach does not assume normality, but it assumes that the popula-

tions have equal covariance matrices. A pooled estimate of the covariance matrix

will be used in this section. Similarly, sample estimates of the mean vectors will

be used here.

It is convenient to start with two groups. Fisher (1936) determined the linear

combination of p variables

y = aTx = a1x1 + a2x2 + ...+ apxp (2.37)

that maximizes the distance between the two group mean vectors. This linear

combination transforms the multivariate observations x to univariate observa-

tions (scalar) y such that the y′s derived from populations π1 and π2 are sepa-

rated as much as possible. The objective is to find the vector a that maximizes the
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standardized distance between the two group means, which is given as

[aT (x̄1 − x̄2)]2

aTSa
= (x̄1 − x̄2)TS−1(x̄1 − x̄2) = ∆̂2. (2.38)

The maximum of (2.38) is obtained when a = S−1(x̄1 − x̄2), or when it is any

multiple of S−1(x̄1 − x̄2) (Rencher, 2002). Consequently, the linear combination

in (2.37) can be rewritten as y = (x̄1 − x̄2)TS−1x. This function is called Fisher’s

linear discriminant function. It is identical to the standard LDA function (wTx)

with w = Σ−1(µ1 − µ2)) given in Section 2.4.1.1, but with unknown population

means replaced by sample means. It can be shown that the maximizing vector

a is not unique because any multiple of a = S−1(x̄1 − x̄2) will maximize (2.38).

However, its direction is unique. (Rencher, 2002, p.271).

To extend Fisher’s approach of LDA to g groups, we first need to define the

between-group and within-group covariance matrices. Let B be the between-

groups covariance matrix and W be the within-groups covariance matrix of X,

which are given by

B = Σ̂b =
1

g − 1

g∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T

and

W = Σ̂w =
1

n− g

g∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)
T . (2.39)

We seek a linear combination of the original variables that transforms the p-

dimensional vector x to s-dimensional vector y, with s < p. The linear com-

bination may be given as y = ATx, where A is a p × s transformation matrix

that gives the greatest discrimination between groups by maximizing the ratio of

the between-groups covariance matrix to the within-groups covariance matrix of
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the data (Trendafilov and Vines, 2009). Suppose a1, a2, . . . , as be respectively the

s column vectors of the transformation matrix A. The vectors a1, a2, . . . , as are

obtained from B and W sequentially as follows. Let a = a1, then it can be shown

that (Trendafilov and Vines, 2009; Rencher, 2002; Johnson and Wichern, 2002) a

maximizes the following ratio:

aTBa
aTWa

(2.40)

This maximization problem (2.40) is equivalent to the generalized eigenvalue

problem given by

(B− λW)a = 0 ⇒ (W−1B− λIp)a = 0. (2.41)

The solution to this equation is the eigenvalue of W−1B. Consequently, the

largest eigenvalue, λ1, of W−1B, associated with the eigenvector a = a1, is the

maximum value of (2.40). The linear combination aT1 x is called the first linear dis-

criminant function. This discriminant function is the most powerful discriminant

function. The second powerful discriminant function is given by the linear com-

bination a>2 x, where a2 maximizes the ratio (2.40) subject to Cov(a>1 x, a>2 x) = 0.

In general, the kth linear discriminant function is given by the kth linear combi-

nation a>k x whose coefficient is associated with the kth eigenvector of W−1B. ak

maximizes the ratio (2.40) subject to Cov(a>k x, a>i x) = 0, i < k, and Var(a>i x) =

1, i = 1, . . . , s. The power of discrimination of the linear combinations is deter-

mined by their eigenvalues associated with their respective vector of coefficients.

We consider the eigenvalues to be ranked as λ1 > λ2 > · · · > λs. The number

of (nonzero) eigenvalues s is the rank of B which is the minimum of (g − 1, p).

Hence the discriminant function that best separates the group means is y1 = aT1 x.
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Subsequently, the remaining discriminant functions ordered in decreasing their

power of discrimination are: y2 = aT2 x, . . . , ys = aTs x. From the s eigenvectors, we

obtain s discriminant functions (Rencher, 1992, section 8.4). These discriminant

functions are uncorrelated, but they are not orthogonal. This is because W−1B is

not symmetric matrix.

The main objective of Fisher’s discriminant analysis is to separate groups.

However, it can also be used to classify observations into their respective groups.

The assumption of multivariate normality of the g-groups is not necessary to

use Fisher’s discriminant method. But, the assumption that group covariance

matrices are equal and full rank must be fulfilled. That is, Σ1 = Σ2 · · · = Σg = Σ.

Let λ1 ≥ λ2 ≥ · · · ≥ λs > 0 denote the s ≤ min(g − 1, p) nonzero eigenval-

ues of W−1B and let e1, e2, . . . , es be the corresponding eigenvectors that satisfy

e>We = 1. Fisher’s LDA is obtained by finding a vector of coefficients a that

maximizes (2.40).

The vector that maximizes (2.40) is given by a1 = e1. The linear combina-

tion aT1 X is called the first linear discriminant function. This discriminant func-

tion is the most powerful discriminant function. The second discriminant func-

tion is given by the linear combination a>2 X, where a2 = e2 maximizes the ratio

(2.40) subject to Cov(a>1 X, a>2 X) = 0. In general, the kth linear discriminant func-

tion is given by the kth linear combination a>k X whose coefficient is associated

with the kth eigenvector of W−1B. ak = ek maximizes the ratio (2.40) subject to

Cov(a>k X, a>i X) = 0, i < k, and Var(a>i X) = 1, i = 1, . . . , s. The power of discrimi-

nation of the linear combinations is determined by the eigenvalues and eigenvec-
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tors. Hence, a1, a2, . . . as give discriminant functions, respectively ranked from

highest to lowest degree of discrimination.

Proof. We first convert the maximization problem to one already solved. By the

spectral decomposition, W can be given as W = P>ΛP where P is a matrix whose

columns are the normalized eigenvectors e1, e2, . . . , ek, and Λ is a diagonal ma-

trix given as

Λ =



λ1 0 · · · 0

0 λ2 · · · 0

...
... . . . ...

0 0 · · · λk


with λi > 0.

Let Λ1/2 denote the diagonal matrix with elements
√
λi. Thus the symmetric

square-root matrix W1/2 = P>Λ1/2P and its inverse W−1/2 = P>Λ−1/2P satisfy

W1/2W1/2 = W, W1/2W−1/2 = I = W−1/2W1/2 and W−1/2W−1/2 = W−1. Now, let

us set

b = W1/2a

so b>b = a>W1/2W1/2a = a>Wa and b>W−1/2BW−1/2b = a>W1/2W−1/2BW−1/2W1/2a =

a>Ba. Consequently, the maximization problem (2.40) can be reformulated as

max
b

b>W−1/2BW−1/2b
b>b

. (2.42)

The maximum of this ratio is the largest eigenvalue of W−1/2BW−1/2, which is λ1.

This maximization occurs when b = e1, the normalized eigenvector associated

with λ1. Because e1 = b = W1/2a1, or a1 = W−1/2e1, Var(a>1 X) = a>1 Wa1 =
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e>1 W−1/2WW−1/2e1 = e>1 W−1/2W1/2W1/2W−1/2e1 = e>1 e1 = 1. b ⊥ e1 maximizes

the preceding ratio when b = e2, the normalized eigenvector corresponding to

λ2. For this choice, a2 = W−1/2e2, and Cov(a>1 X, a>2 X) = a>2 Wa1 = e>2 e1 = 0, since

e2 ⊥ e1. Similarly, Var(a>2 X) = a>2 Wa2 = e>2 e2 = 1. We continue in this fashion

to determine the remaining discriminant functions. For example, to determine

the kth discriminant, we find b ⊥ ei that maximizes the ratio (2.42), subject to

orthogonality constraint, and this is the normalized eigenvector corresponding

to λk. That is, b = ek, i < k. For this choice, the discriminant vector is given as

ak = W−1/2ek, and

a>k Wai =


1, i = k, for i, k = 1, 2, . . . s

0, i < k.

Note that if λ is the eigenvalue of W−1/2BW−1/2 and e is its associated eigen-

vector , then W−1/2BW−1/2e = λe and multiplying on the left hand side by W−1/2

gives

W−1/2W−1/2BW−1/2e = λW−1/2e or W−1/2B(W−1/2e) = λ(W−1/2e).

Consequently, W−1/2B has the same eigenvalues as W−1/2BW−1/2, but the corre-

sponding eigenvector is proportional to W−1/2e = a, as shown above.
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Let the kth linear discriminant function (LDF) be given by Yk = a>k X, where

ak = W−1/2bk =



ak1

ak2

...

akp


, and X =



X1

X2

...

Xp


, k = 1, 2, . . . s. (2.43)

Then the resulting s linear discriminants Y1, Y2, . . . , Ys are given as:

Y1 = a>1 X = a11X1 + a12X2 + · · · a1pXp (2.44)

Y2 = a>2 X = a21X1 + a22X2 + · · · a2pXp

... =
...

Ys = a>s X = as1X1 + as2X2 + · · · aspXp.

We can put these functions in matrix form as

Y =



Y1

Y2

...

Ys


=



a>1 X

a>2 X

...

a>s X


= A>X, (2.45)

where A is a transformation matrix whose kth row is a>k such that AWA> = Is.

This implies that the components of Y have unit variances and zero covariances.

The aim of deriving these discriminant functions is to obtain a low-dimensional

representation of the data that separates the groups as much as possible. In addi-

tion to group separation, the discriminants also give the basis for a classification

rule. A reasonable classification rule is one that assigns y to group k if the square

of the distance from y to µk is smaller than the square of the distance from y to

µi for i 6= k.
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It is well known that W is singular when p >> n. Consequently, in the high-

dimensional scenario, it is impossible to find the eigenvalues and their associated

eigenvectors of W−1B.

2.4.3 Regression approach to LDA for two groups

Fisher (1936) also used a linear regression approach as an alternative way

to derive the linear discriminant function for two groups. The discrimination

problem can be viewed as a special case of regression. The components of x are

taken as regressor variables and a dummy variable indicating group membership

is taken as a dependent variable. Denote the dependent variable for the ith group

on the jth observation by yij, j = 1, 2, . . . , ni, i = 1, 2. Then the linear regression

between the dependent and the regressor variables is given as

yij = bTxij + εij (2.46)

where εij are error terms. The two values taken by the dependent variable in

(2.46) are irrelevant. Fisher, actually, took the values y1j = n2

n1+n2
if xij ∈ π1 and

y2j = −n1

n1+n2
if xij ∈ π2. The objective is to estimate the parameter b that best fits

the model (2.46). It is estimated by minimizing

2∑
i=1

ni∑
j=1

(yij − bT (xij − x̄))2

where

x̄ =
n1x̄1 + n2x̄2

n1 + n2

(2.47)

The normal equations are

2∑
i=1

ni∑
j=1

(xij − x̄)(xij − x̄)Tb =
2∑
i=1

ni∑
j=1

yij(xij − x̄) (2.48)
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Solving (2.48) for b gives

b = S−1(x̄1 − x̄2)

[
n1n2(1− c)

(n1 + n2)(n1 + n2 − 2)

]
(2.49)

where c is a constat. Hence, b is proportional to S−1(x̄1 − x̄2), the discriminant

coefficient (w) obtained earlier in (2.22). It is identical with the vector a that max-

imizes (2.38).



Chapter 3

Review of discriminant analysis in

high-dimensions

Classical linear discriminant analysis (LDA) does not perform classification ef-

fectively when the number of variables, p, is much larger than the number of

observations, n, commonly written as p >> n. There are two major reasons

that classical LDA is not directly applicable in high dimensional settings. First,

the sample covariance matrix estimate is singular or nearly singular and cannot

be inverted (Guo et al., 2007). This reflects the presence of redundant variables

(noise accumulation) that do not significantly contribute to the separation be-

tween groups (Qiao et al., 2009). Although we may use the generalized inverse

of the covariance matrix, the estimate is highly biased and unstable and will lead

to a classifier with poor performance due to the lack of observations. Second,

high-dimensionality makes direct matrix operation very difficult if not impossi-

ble, hence hindering the applicability of the traditional LDA method.

33
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Several techniques have been developed recently to circumvent the aforemen-

tioned problems of LDA in high dimensions. These vary in their assumptions

and techniques and their characteristics give four classes as below.

1. Dimension reduction methods: these methods involve dimension reduc-

tion by setting many parameters to zero. As a result the contribution of the

variables associated with those parameters are assumed to be insignificant

to the discrimination between classes;

2. Regularization methods: these methods regularize the within-class covari-

ance matrix to obtain an invertible covariance matrix. Then, the discrimi-

nant vector can be estimated using the classical discrimination methods.

3. Ratio optimization methods: these methods focus on the ratio of the between-

groups variance to the within-group variance and aim maximize this ratio,

perhaps with added constraints to impose sparsity.

4. Optimal scoring methods: these methods recast the discriminant analysis

problem as a regression problem.

In this chapter, we will briefly review these four classes and then briefly review

some miscellaneous methods that do not fit into the classes.

3.1 Dimension reduction Methods

Various discrimination methods use global dimension reduction techniques

to circumvent the problems that arise from high dimensionality (Bouveyron et al.,

2007). A commonly used method is to first reduce the dimensionality of the data
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and then using a classical DA on the dimension-reduced data. This method is

called two-stage DA. The process of dimension reduction can be done using dif-

ferent variable selection techniques (Bouveyron et al., 2007) or principal compo-

nent analysis (PCA) (Jolliffe, 2002). The motivation to use two-stage DA often

comes from the context of the application at hand. Fisher LDA can also be used

to reduce the dimension for classification purposes. Fisher LDA projects the data

on the (g−1) discriminant axes and then classifies the projected data (Bouveyron

et al., 2007).

Another perspective on the curse of dimensionality in discriminant analysis

is to consider it as an over-parameterized modeling problem. Bouveyron and

Brunet-Saumard (2014) argue that a Gaussian model is highly parameterized and

that this causes inference problems in high dimensional spaces. It follows that the

use of constrained or parsimonious models is a way of avoiding the problem of

high-dimensionality in model-based discriminant analysis.

A commonly used way to reduce the number of parameters in a Guassian

model is to impose constraints based on assumptions on the parameters of the

model. This method can be illustrated by considering an example similar to the

constrained Gaussian model given by Bouveyron and Brunet-Saumard (2014).

Suppose an unconstrained Gaussian model (the full model) that highly parame-

terized and contains 20603 parameters when there are g = 4 groups and p = 100

variables. One possible constraint for reducing the number of parameters is to

assume that all groups have the same covariance matrix, i.e. Σi = Σ,∀i, i =

1, 2, ..., g. Note that this model yields Fisher’s famous LDA. It is also possible to
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assume that the variables are conditionally independent. This assumption im-

plies that each covariance matrix is diagonal, i.e. Σi = diag(σ2
i1, ..., σ

2
ip), where σ2

il

is variance of the lth variable in the ith group. In this case, where groups have the

same covariance matrix in addition to the independence assumption, the com-

mon covariance matrix will be estimated as, Σ = diag(σ2
1, ..., σ

2
p), where σ2

l is

variance of the lth variable in each group. Two other constraints are based on the

assumption that the covariance matrices are proportional to an identity matrix.

They are: when the covariance matrix is spherical in each group Σi = σ2
i Ip, and

when it is assumed that the covariance matrices are equal and spherical such that

Σi = Σ = σ2Ip, for i = 1, 2..., g and σ2 ∈ R.

For comparison, Table 3.1 lists the most commonly used model assumptions

that can be obtained from a Gaussian mixture model with g groups and p vari-

ables. The number of parameters can be decomposed into the number of param-

eters for the proportions (g−1), for the means gp, and for the covariance matrices

(last term).

We can see that the full-model is a highly parameterized model. In contrast, the

5th and the 6th models are very parsimonious models (Bouveyron and Brunet-

Saumard, 2014). These models, however, work under the strong assumption

of independence of variables which may be unrealistic in many discrimination

problems. The second model requires estimation of an intermediate number

of parameters, in this case 5453. This model is known to be an efficient model

in practical classification problems. Furthermore, this model is commonly used

when the normality assumption does not hold.
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Table 3.1: Number of parameters to estimate for constrained Gaussian models

Model Assumption No. of parameters g = 4 and p = 100

1 Full-Model (g − 1) + gp+ gp(p+ 1)/2 20603

2 Σi = Σ (g − 1) + gp+ p(p+ 1)/2 5453

3 Σi = diag(σ2
i1, ..., σ

2
ip) (g − 1) + gp+ gp 803

4 Σi = Σ = diag(σ2
1, ..., σ

2
p) (g − 1) + gp+ p 503

5 Σi = σ2
i Ip (g − 1) + gp+ g 407

6 Σi = Σ = σ2Ip (g − 1) + gp+ 1 404

3.2 Regularization methods

In this section methods that mainly focus on estimating the within-class co-

variance matrix using various regularization methods will be briefly reviewed.

In general, methods of regularizing the within-class covariance matrix can be cat-

egorized into two main groups. The first group of methods make an independent

assumption that force the within-class covariance matrix to be diagonal. The sec-

ond group of methods allow dependence and use various techniques to estimate

the full covariance matrix (Clemmensen, 2013).

3.2.1 Independence assumption

Because of the high dimension p and small sample size n, which are often re-

ferred to as large p small n, estimators of the sample mean and covariance matrix

are usually unstable (Wang et al., 2013). Bickel and Levina (2004) have shown

that Fisher’s LDA is no better than random guessing when p/n −→ ∞. From
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the existing literature it is possible to classify the independence rules into two

classes (Wang et al., 2013). The first and natural method is to ignore the depen-

dence among the variables, which leads to the so called Naive Bayes Classifier.

Some methods that assume independence are given in Tibshirani et al. (2003),

Tibshirani et al. (2002), and Dudoit et al. (2002). These methods will be reviewed

here briefly, together with a method that involves individual analysis (Fan and

Fan, 2008).

3.2.1.1 Nearest shrunken centroids (NSC)

Tibshirani et al. (2003) proposed a method for class prediction in high dimen-

sional microarray studies based on an enhancement of the nearest prototype clas-

sifier. This method uses ’shrunken’ centroids as prototypes for each class where

class centroids are shrunk toward the overall centroid.

In this approach, the covariance matrix is estimated as the diagonal of the full

covariance estimate Σ̂NSC = diag(Σ̂) = diag(s2
1, s

2
2, ..., s

2
p), where s2

l (l = 1, 2, ..., p)

is variance of the lth variable. Consequently, the group means are shrunk using

soft thresholding shrinkage. The absolute value of each Σ̂−1
NSC µ̂i is reduced by an

amount ∆ and is set to zero if the result is less than zero. That is:

Σ̂−1
NSC µ̂i

∗ = sign(Σ̂−1
NSC µ̂i)(|Σ̂

−1
NSC µ̂i| −∆)+ (3.1)

where the subscript ’plus’ means the positive part (t+ = t if t > 0). If the shrink-

age parameter is very large, many of the components (genes) will be eliminated.

Hence, ∆ tunes the degree of sparsity. In particular, if ∆ causes Σ̂−1
NSC µ̂i to shrink

to zero for all groups i, then the mean for variable l ,i.e.,X̄l, is the same for all

groups. Thus, variable l will not have a contribution to the nearest mean com-
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putation. ∆ is chosen by cross-validation. Similar methods can also be seen in

Dudoit et al. (2002) and Tibshirani et al. (2002).

3.2.1.2 Independence rule (IR)

Bickel and Levina (2004) proposed an independence rule where the covari-

ance matrix is estimated by the diagonal of the covariance matrix. They ex-

plained that the ’Naive Bayes’ classifier which assumes independence among

variables greatly outperforms the Fisher LDA rule under certain conditions of

the number of variables grows faster than the number of observations. They con-

sidered the problem of discriminating between two groups with p-variate normal

distributions Np(µ1,Σ) and Np(µ2,Σ). A new observation x is to be assigned to

one of these two groups. If µ1, µ2, and Σ are known, then the optimal classifier is

the Bayes Rule, expressed through the group indicator function 1 as:

δ(x) = 1{log

(
f1(x)

f2(x)

)
> 0} = 1(µTdΣ−1(x− µ) > 0) (3.2)

where the prior probabilities are assumed to be equal and µd = µ1 − µ2 and

µ = µ1+µ2
2

. Plugging all the parameter estimates directly into the Bayes Rule (2.4)

leads to the Fisher rule (FR):

δF (x) = 1(µ̂Td Σ̂−1(x− µ̂) > 0). (3.3)

Bickel and Levina (2004) assumed that variables are independent, and hence they

replaced the off-diagonal elements of Σ̂ with zeros. Thus, under this assumption,

the covariance matrix is estimated as: D̂ = diag(Σ̂). The resulting discrimination

rule is called the independence rule (IR) and is given as

δI(x) = 1(µ̂Td D̂−1(x− µ̂) > 0). (3.4)
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They compared the performance of Fisher’s rule and the independence rule un-

der the worse-case scenario, where p −→∞, n −→∞, and p/n −→∞.

Bickel and Levina (2004) considered two conditions on the properties of Σ

and ∆2. The first condition is given as

λmax(Σ)

λmin(Σ)
<∞.

This ratio is called the condition number of Σ, where λmin(Σ) and λmax(Σ) are the

minimum and maximum eigenvalues of Σ, respectively. This condition guaran-

tees that both Σ and Σ−1 are not ill conditioned. The second condition is ∆2 ≥ C2,

where C is a positive constant and ∆ the Mahalanobis distance. This condition

ensures that the Mahalanobis distance between the two classes is at least C. Thus

C is a measure of the difficulty of the classification. The larger the value of C, the

easier the classification is.

For fixed p, the worst-case misclassification rate of δF (x), denoted byW (δF (x)),

converges asymptotically to the optimal Bayes risk (1−φ(C/2)). That is,W (δF (x))

−→ (1−φ(C/2)), while the misclassification rate of δI(x) converges to something

strictly greater than the Bayes risk. Hence, δF (x) is asymptotically optimal for

low dimensional problems. However, in high a dimensional setting, i.e., when

p > n, δF (x) is not asymptotically optimal because Σ̂−1 is ill-conditioned. Tak-

ing the Moore-Penrose generalized inverse (Σ̂−) in place of Σ̂−1 in ( 3.3), and

assuming n1 = n2, Bickel and Levina (2004) have shown that under some regu-

larity conditions, if p/n −→ ∞, then δF (x) −→ 1/2. This suggests that Fisher’s

LDA performs asymptotically no better than random guessing when p >> n.

This poor performance of Fisher’s LDA is due to the diverging spectra charac-
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teristic of high-dimensional covariance matrices. This is the difficulty of high

dimensional classification using the classical methods. Consequently, Bickel and

Levina (2004) took the diagonal estimate of the covariance matrix for classifica-

tion purposes. They derived the relative efficiency of IR to the FR theoretically

and they concluded that the IR performs much better than the Fisher rule when

p >> n.

3.2.1.3 Features annealed independence rules (FAIR)

Fan and Fan (2008) studied the impact of high dimensionality on classifica-

tion. They identified that the difficulty of high dimensional classification is es-

sentially caused by the existence of many noise features that do not contribute to

the reduction of classification error. For example, if we need to estimate the class

mean vectors and covariance matrix for the Fisher’s discriminant rule, each pa-

rameter can be estimated correctly. However, aggregated estimation error over

many variables can be very large and this significantly causes to increase the mis-

classification rate.

Fan and Fan (2008) explained that when there are only few variables that ac-

count for most of the variation in the data, taking all variables will increase the

misclassification error. They demonstrated that even for the independence clas-

sification rule, classification using all the features (variables) can be as poor as

random guessing due to noise accumulation in estimating population means in

high dimensional setting. Furthermore, they demonstrated that almost all lin-

ear discriminants can perform as poorly as random guessing in such situations.

As a result, they proposed a method that selects a subset of the variables before
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the main classification is performed. This method selects the statistically signif-

icant variables using two-sample t-statistics , and then the Independence rule is

applied to this set of variables. Fan and Fan (2008) called the resulting method

as Feature Annealed Independence Rule (FAIR). They used the upper bound of

classification error to select the optimal number of variables.

Fan and Fan (2008) compared the performance of their classifier (i.e., FAIR)

with the independence rule without variable selection and with a version of FAIR

called oracle assisted FAIR. Oracle assisted FAIR addresses an ideal situation in

which the important variables are located at the first m coordinates and the vari-

able selection task is to merely select m to minimize the misclassification error.

This assumes there is perfect information about the relative importance of the

different variables.

Another group of methods uses projection for dimension reduction. Most of

the the commonly used projection methods have been widely applied to clas-

sification problems involving gene expression data (Fan and Fan, 2008). These

projection methods find directions by giving much more weight to variables that

have large classification power. However, Fan and Fan (2008) explained that lin-

ear projection methods are likely to perform poorly unless the projection vector

is sparse, i.e., when the effective number of variables is small. This is because of

the noise accumulation that is seen in high dimensional problems.

There is a huge literature on classification. In high dimensional classification

minimizing classification error is given much more concern than the accuracy

of the estimated parameters. Hence, estimating all covariance matrix and the
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class mean vectors will result in very high accumulation errors and thus high

classification error.

3.2.1.4 Penalized linear discriminant analysis (PLDA)

Witten and Tibshirani (2011) have proposed a penalized LDA method to achieve

interpretability in high dimensional setting. This method penalizes the discrimi-

nant vectors in Fisher’s discriminant problem. The resulting discriminant prob-

lem is not convex, so they use a minorization-maximization method to optimize

it efficiently under convex penalties that are applied to the discriminant vectors.

In particular, this method uses L1 and fused lasso penalties. The method is equiv-

alent to recasting Fisher’s discriminant problem as a biconvex problem.

It is known that Fisher’s discriminant problem finds a low dimensional pro-

jection of the observations such that the between-class variance is large relative

to the within-class variance, i.e. it sequentially solves

max
ak

(aTk Σ̂bak) subject to aT
kΣ̂wak ≤ 1, aTk Σ̂wai = 0, ∀i < k (3.5)

where Σ̂b and Σ̂w are the sample estimates of the between-classes and within-

class covariance matrices, respectively, and variables have been centered to have

mean 0. The solution to problem (3.5) gives ak as the kth discriminant vector

(k = 1, 2, ..., g − 1). This discrimination problem is generally written with the

inequality constraint. An equality constraint is taken if Σ̂w has full rank.

In this discrimination framework, a classification rule is obtained by comput-

ing Xâ1, ...,Xâg−1 and assigning each observation to its nearest centroid in the

transformed space. Alternatively, it is possible to transform the observations by

using only the first s < g − 1 discriminant vectors to perform reduced rank clas-
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sification (Witten and Tibshirani, 2011). Problem (3.5) can be solved by substitut-

ing ãk = Σ̂
1/2
w ak, where Σ̂

1/2
w is the symmetric matrix square root of Σ̂w. Hence,

Fisher’s discrimination problem is reduced to standard eigen problem.

Various methods have been proposed to modify problem (3.5) to tackle the

singularity problem. For example Krzanowski et al. (1995) modified problem

(3.5) to find a unit vector a that maximizes the objective function subject to aTk Σ̂wak

= 0; others have used a positive definite estimate of Σw.

Witten and Tibshirani (2011) took the diagonal estimate of the within-class co-

variance matrix to solve problem (3.5). Hence, they rewrite problem ( 3.5) as

max
ak

(aTk Σ̂bak) subject to aT
kD̂ak ≤ 1, aTk D̂ai = 0, ∀i < k (3.6)

where D̂ = diag(Σ̂w). Hence, they used a minorization-maximization algorithm

to solve (3.6).

Witten and Tibshirani (2011) further modified problem (3.6) by including a

convex penalty function Pk on ak. The maximization problem becomes

max
ak

(aTk Σ̂bak − Pk(ak)) subject to aTk D̂ak ≤ 1, and aTk D̂ai = 0, ∀i < k. (3.7)

When k = 1, the first penalized discriminant vector a1 will be the solution to the

problem

max
a1

(aT1 Σ̂ba1 − P1(a1)) subject to aT1 D̂a1 ≤ 1. (3.8)

Problem (3.8) is closely related to penalized PCA, as described for example in

Jolliffe et al. (2003). In fact, (3.8) would be exactly penalized PCA if D̂ = I, where I

is an identity matrix. Witten and Tibshirani (2011) considered two specific forms

for Pk, the L1-penalty and the fused lasso penalty to solve problem (3.7). The
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fused lasso penalty (Tibshirani et al., 2005) requires ordering of the variables is

known apriori. It achieves sparsity by solving

max
ak

(
aTk Σ̂bak − λ

p∑
l=1

|σ̂lakl|
)

subject to aTk D̂ak ≤ 1, and aTk D̂ai = 0, ∀i < k

(3.9)

where σ̂l is the within-class standard deviation for the lth variable. λ controls the

degree of sparsity. When the tuning parameter λ is large, some elements of the

solution a will be exactly equal to 0. Hence, the resulting discriminant vectors

will be sparse.

A visible drawback the penalized LDA is that it only uses the diagonal ele-

ments of the covariance matrix. The correlated variables could have any effect on

the discrimination. Furthermore, a criticism of this method is that little is known

about the theoretical properties of the estimator in (3.9) (Mai et al., 2012).

In general, most of the independence rules of classification assume that all

groups have equal covariance matrices and variables are independent. As a re-

sult, they use the diagonal covariance matrix of the common covariance matrix.

The assumption of equal covariance matrices and independence is explained by

Model 4 in Table 3.1. We can see from Table 3.1 that the 4th model is very parsimo-

nious model that has only 503 parameters to be estimated whereas the full-model

has 20603 parameters to be estimated when g = 4 and p = 100. If we consider

high-dimensionality in discriminant analysis as an over-parameterized model-

ing problem, the independence rules are effective in dimension reduction. In this

perspective, the discrimination methods that assume independence are typical

examples of dimension reduction methods.
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3.2.2 Dependence assumption

The independence rule assumes that there is no correlation between variables

in the high dimensional setting, and hence Σ is diagonal. However, in most

microarray studies, correlation between different genes is an inevitable charac-

teristic of the data. For example, Wu et al. (2009) pointed out that there is often a

group of correlated genes in gene expression studies in which correlations cannot

be ignored and the covariance information can help to minimize misclassification

rate. Fan et al. (2012) and Mai et al. (2012) found that the independence rule leads

to inefficient variable selection and inferior classification. They also showed that

optimal classification error by using the independence rule increases as correla-

tion between variables increases, when ρ ∈ [0, 1). Where ρ is the coefficient of

correlation between variables. However, Fan et al. (2012) have not explained the

effect of correlation on classification when ρ /∈ [0, 1). Mardia et al. (1979) examine

the general effect of correlation between variables on classification.

For illustration, consider two bivariate normal populations. Suppose the co-

variance matrix between the two variables is given as

Σ =

 1 ρ

ρ 1

 ,
and let µd be the difference between the means of the two normal populations,

so µd = µ1 − µ2. As the population distributions are bivariate, we can put µd =

(µd1, µd2)T . Then, the Mahalanobis distance between the two groups is

∆2 = µT
dΣ−1µd =

1

1− ρ2
(µ2

d1 + µ2
d2 − 2ρµd1µd2),



CHAPTER 3. REVIEW OF DISCRIMINANT ANALYSIS IN HIGH-DIMENSIONS 47

and, if the variables are uncorrelated,

∆2
0 = µ2

d1 + µ2
d2,

where ∆2
0 denotes the Mahalanobis distance with uncorrelated variables. Thus

the correlation will reduce the misclassification rate (i.e. improve discrimination)

if and only if ∆2 > ∆2
0. This occurs when

ρ[(1 + h2)ρ− 2h] > 0 ,where h = µd2/µd1.

This simple example shows that the misclassification rate will be reduced if ρ

does not lie between 0 and 2h/(1 + h2), while a very small value of ρ can actually

cause poor classification. Note that any positive correlation between variables

can increase the misclassification rate if µd1 = µd2 (Mardia et al., 1979, Section

11.8). Therefore, the independence rule, in general, is not an efficient method for

classification when ρ ∈ [0, 1).

The other approach to regularization of the estimate of the within-class co-

variance matrix is to take into account the dependence between variables.

When p > n, the sample covariance matrix is singular. Although the inverse

of the within-class covariance matrix may be estimated by the generalized in-

verse, the estimate will be very unstable due to lack of observations (Ramey and

Young, 2013; Guo et al., 2007). This instability can be examined through the spec-

tral decomposition of Σ̂−, where

Σ̂− =

p∑
l=1

vlv
T
l

el
,

el is the lth largest eigenvalue of Σ̂ and vl is the associated eigenvector. It is

known that the estimated eigenvalues of Σ̂ are biased, with smaller eigenvalues
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being underestimated (Seber, 2004), and the bias increases as the total number

of observations decreases relative to the number of variables. As pointed out

in Ramey and Young (2013), the smallest eigenvalues and the directions asso-

ciated with their corresponding eigenvectors highly influence the estimator of

Σ−1, causing classical LDA to produce an unstable and unreliable classification

rule when p >> n.

Various regularization techniques have been proposed to correct for the in-

stability of Σ̂−w . Some these focus on regularizing the covariance matrix using

a shrinkage estimation method. The shrinkage estimation shrinks the extreme

eigenvalues of Σ̂w toward more moderate values and, thus, more stable val-

ues. That is, the shrinkage method simultaneously decreases larger eigenvalues

and increases smaller eigenvalues, reducing bias (Ramey and Young, 2013; Clem-

mensen, 2013). One approach to regularizing a covariance matrix is to augment

it with a matrix that is proportional to identity matrix. In this section, we review

four methods that adopt this approach: regularized discriminant analysis (RDA),

penalized discriminant analysis (PDA), regularized linear discriminant analysis

(RLDA), sparse linear discriminant analysis methods (sLDA).

3.2.2.1 Regularized discriminant analysis (RDA)

Friedman (1989) has proposed a regularized discriminant analysis in small

sample high dimensional classification problems with g groups, where the co-

variance matrices are not assumed to be equal. Friedman (1989) has estimated

the kth class covariance matrix using the following regularization:

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ
[ trace(Σ̂k(λ))

p

]
Ip, (3.10)
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where

Σ̂k(λ) =
(1− λ)(nk − 1)Σ̂k + λ(n− g)Σ̂

(1− λ)(nk − 1) + λ(n− g)
,

and the parameters, 0 ≤ λ ≤ 1 and 0 ≤ γ ≤ 1 are chosen to minimize the

misclassification risk. λ controls the contribution of Σ̂k towards Σ̂, and the regu-

larization parameter γ controls the shrinkage (ridge) of Σ̂k(λ) toward a multiple

of the identity matrix. As noted above, this shrinkage has the effect of decreasing

the larger eigenvalues and increasing the smaller ones.

The discrimination rule for g-groups with unequal covariance matrices is to

assign x to group k if dQk (x) = max
1≤i≤g

dQi (x), where dQi (x) is the quadratic discrimi-

nant score for the ith group (i = 1, 2, ..., g) given by

dQi (x) = −
1

2
ln |Σ̂i| −

1

2
(x− µ̂i)T Σ̂−1

i (x− µ̂i) + ln pi. (3.11)

Johnson and Wichern (2002) and Friedman (1989) used Σ̂−1
i (λ, γ) in place of Σ̂−1

i

in (3.11) when the number of variables is very large relative to the number of

observations.

It can be observed from (3.10) that for λ = 1, Σ̂k(λ) reduces to Σ̂. This param-

eter controls the shift between linear discriminant analysis (LDA) and quadratic

discriminant analysis (QDA). In LDA the decision surface is linear, while the de-

cision boundary in QDA is nonlinear. Regularized discriminant analysis shrinks

the separate covariances of QDA toward a common covariance as in LDA. As a

result, RDA is an intermediate between LDA and QDA (Friedman, 1989).

An Attractive feature of this regularization approach is that it identifies and

uses LDA and QDA at different settings. However, although this regularization

method requires the variance of the parameter estimates, it is associated with
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increased bias. That is, there is a trade-off between bias and variance. Moreover,

this approach does not incorporate the idea of sparsity.

3.2.2.2 Penalized discriminant analysis (PDA)

Hastie et al. (1995) developed a penalized discriminant analysis based on the

optimal scoring approach. In this case, the regularization of the within-class co-

variance matrix is given by

Σ̃w = Σ̂w + γIp, (3.12)

where the parameter γ ≥ 0, controls the degree of diagonalization of the within-

class covariance matrix. That is, taking γ = 0 leads to the estimation of the full co-

variance matrix, and taking γ −→∞ results in an identity matrix as the estimate

of the covariance matrix (Clemmensen, 2013; Hastie et al., 1995). Furthermore,

Hastie et al. (1995) have proposed a more general regularization:

Σ̃w = Σ̂w + γΩ, (3.13)

where Ω is a p × p regularization matrix. This penalization differs from the pre-

vious one in (3.12) by the fact that it also penalizes the correlations between the

predictors.

A limitation of this method is that it does not include any sparsity technique

to select a small number of variables. Hence, this method cannot provide us

results that will will be easily interpretable in high-dimensional settings.

3.2.2.3 Regularized linear discriminant analysis (RLDA)

Guo et al. (2007) introduced a covariance regularization technique that is closely

related to the method used in PDA. In this case, the within-class covariance ma-
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trix is estimated as

Σ̃w = αΣ̂w + (1− α)Ip, (3.14)

where α ∈ [0, 1]. Taking α = 0 gives a diagonal estimate of the within-class co-

variance matrix, and taking α = 1 gives a full estimate of Σ̂w. It is known that

Σ̂w is an estimate of the correlation matrix if the data is normalized. In this situa-

tion the RDA is equivalent to the correlation matrix estimate in PDA. Hence, Guo

et al. (2007) used the inverse of Σ̃w instead of Σ̂−1 to predict group-membership

of observations when the class prior probabilities are assumed equal.

This method introduces sparsity by shrinking the class means, putting

Σ̃−1
w µ̂i

∗ = sign(Σ̃−1
w µ̂i)(|Σ̃−1

w µ̂i| −∆)+. (3.15)

This is similar to NSC, but with a different Σ̃, where ∆ is a positive constant that

controls the degree of sparsity. Variable selection using this form of shrunken

centroid is, in general, considered conservative because it includes a large num-

ber of variables (Clemmensen, 2013). Hence, this type of variable selection does

not achieve the required sparsity in high-dimensional discriminant analysis. In

deed, even though variable selection and dimension reduction are almost essen-

tial in high dimensional discriminant analysis, most of the methods mentioned

above focus solely on regularizing the covariance matrix, with the aim of tack-

ling the singularity problem. Hence, their most obvious limitation is that they

give less attention to sparsity.

3.2.2.4 Sparse LDA (sLDA) for testing gene pathway

Wu et al. (2009) developed a unified framework to jointly test the significance

of a pathway and to select a subset of genes that drive the significant pathway
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effect. They decompose each gene pathway into a single score by using a regular-

ized form of LDA to achieve dimension reduction and gene selection (sparsity).

They considered two-group sparse LDA in high-dimensions. LDA estimates the

discriminant direction a by maximizing the ratio of between-class variance to the

within-class variance, i.e the generalized Rayleigh quotient:

â = max
a

aTBa

aTWa
. (3.16)

This finds a by solving (3.16) subject to an additional L1 constraint on a. Apply-

ing an L1 constraint ensures that some al will be estimated as exactly zero and

the corresponding variables will not contribute to the discrimination direction.

Moreover, Wu et al. (2009) noted that in the two-class setting, the rank of B is 1.

Hence, (3.16) can be reformulated as

â = min
a

aTWa subject to µ̂Td a = 1 ,

p∑
l=1

|al| ≤ τ. (3.17)

The value of τ controls the degree of sparsity. When τ is small, some of the al will

be exactly zero. In general, τ may be selected by maximizing the cross-validated

(CV) quotient in (3.16) (Wu et al., 2009).

Zou and Hastie (2005) showed that, in the linear regression setting, addition

of an L2 (penalty) improves prediction and variable selection in cases where pre-

dictors are highly correlated. In the same manner, Wu et al. (2009) used the L2

penalty to regularize the within-class covariance matrix. As a result, they used

the regularized within-class covariance matrix, W in (3.17) , which is similar to

the regularization applied by Hastie et al. (1995). That is, W is replaced by W̃
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where

W̃ = W + γIp,

Ip is the p × p identity matrix, and γ is a shrinkage parameter used to stabilize

the covariance matrix. Wu et al. (2009) took γ = 2 log(p)/n when they applied

the sparse LDA to pathway testing. If a large value of γ is applied, then the

regularized within-class covariance matrix essentially mimics the identity matrix

and the procedure approaches the shrunken centroid method (Wu et al., 2009;

Guo et al., 2007).

Even though this method has performed well for tasks including gene path-

way identification and gene selection, it is not clear whether it works effectively

in general problems of discrimination. Furthermore, as pointed out by Mai et al.

(2012), the theoretical properties of discrimination are not clearly addressed. It is

also limited to discrimination between only two groups.

3.3 Ratio optimization methods

In classical LDA, the linear combination Y = XA is a linear transformation of

the original data X into a lower dimensional vector space Y. The goal of Fisher’s

LDA is to find a p × s (s < p) transformation matrix A that produces maximum

separation between groups by maximizing the ratio of the between groups co-

variance matrix (B) relative to the within-groups covariance matrix (W). Note

that the transformation matrix (orientation) A is a p× s rectangular matrix given

as A = (a1, a2, ..., as), where ai, i = 1, 2, ..., s is a column vector of the orientation

A. The optimal A maximizes the Fisher’s criterion function (f(A)) (Sharma and
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Paliwal, 2008), which is given as

f(A) =
|ATBA|
|ATWA|

(3.18)

where |.| is the determinant. Suppose a is the first column of A, then the standard

discrimination problem is given as,

max
a

aTBa
aTWa

. (3.19)

Simplifying (3.19) gives that a is the solution of the conventional eigenvalue prob-

lem,

W−1Ba = λa. (3.20)

That is, a is an eigenvector that corresponds to the largest eigenvalue (λ). It can

be observed from (3.19) that the explicit solution of the orientation can be found

when W is non-singular. However, it is not possible to find the orientation A

by using (3.19) when W is singular. To overcome this problem, many methods

have been proposed including application of intermediate techniques like PCA

prior to the application of LDA. The PCA technique is used in such a way that

the projected vectors on s-dimensional space give a full rank W. Thereby the

computation of the inverse of W is feasible and thus A can then be found by the

basic LDA. However, the application of intermediate techniques sacrifices some

classification performance (Sharma and Paliwal, 2008). Here we review methods

that aim to choose A to maximize (3.18) or a to maximize (3.19).

3.3.1 A gradient LDA

Sharma and Paliwal (2008) addressed the task of finding the orientation A

that maximizes the function f(A) in (3.18). They proposed a direct computation
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of A by applying a gradient descent method on Fisher’s criterion function.

The reciprocal of Fisher’s criterion can be denoted as Ĵ(A) = 1/f(A), and then

the maximization problem becomes a minimization problem, where the goal is

now to find the orientation A that minimizes Ĵ(A). They derived the gradient

LDA method by finding the derivative of Ĵ(A). Then A is updated using gradient

descent method while normalizing the column vectors of A in each iteration.

They have shown that the derivative of Ĵ(A) is:

∂Ĵ(A)

∂A
= 2Ĵ(A)

[
WA(ATWA)−1 − BA(ATBA)−1

]
. (3.21)

We observed from (3.20) that the p × p within-groups covariance matrix W is

not invertible when p > n. However, (ATWA) and (ATBA) are full rank s × s

matrices, so their inverse can be computed to find the derivative of Ĵ(A) in (3.21).

Therefore, the gradient descent algorithm can be used to solve for the values of

A by normalizing each of the column vectors of A separately with Ĵ(A) updated

iteratively. The iterative process of the algorithm can be terminated when J(A)

becomes stable.

The good side of gradient LDA proposed by Sharma and Paliwal (2008) is

that it is based on a direct approach to LDA and preserves the basic information

for classification. However, the method does not incorporate any sparsity proce-

dure. Consequently, interpretation of the discriminant function is difficult if this

method is directly employed in high dimensional discriminant analysis.

3.3.2 Variable selection in discriminant analysis via the Lasso

Trendafilov and Jolliffe (2007) proposed a procedure for variable selection us-

ing the lasso in discriminant analysis. The lasso approach is applied to improve
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the interpretability of the canonical variables. They modified the LDA in a PCA

fashion to get orthogonal projections of the original data space that maximize the

discrimination between groups. To achieve this, they formulate the LDA prob-

lem in (3.19) as

max
ai

aTi Bai
aTi Wai

subject to aTi Wai = 1, and aTi Waj = 0, for i 6= j. (3.22)

Then they reformulate the LDA objective function in (3.22) subject to PCA con-

straints:

max
ai

aTi Bai
aTi Wai

subject to aTi ai = 1, and aTi Ai = 0Ti−1, (3.23)

where Ai−1 is a p× (i− 1) matrix defined as Ai−1 = (a1, a2, ..., ai−1). The solutions

A = (a1, a2, ..., as) are called orthogonal canonical variates.

Trendafilov and Jolliffe (2007) assumed that the within-group covariance ma-

trix is non-singular. Consequently, to find the standard canonical variates, they

were able to use the Cholesky factorization of W, i.e. W = UTU in (3.22), where

U is the positive-definite upper-triangular matrix. Furthermore, to achieve more

easily interpretable canonical variates, they included additional lasso constraints.

Specifically, they defined the PCA-like LDA problems as:

max
a

aTU−TBU−1a

and

max
a

aTBa
aTWa

,

both subject to ||a||1 ≤ t, ||a||22 = 1 and aTi Ai = 0Ti−1. Trendafilov and Jolliffe (2007)

introduced an external penalty function P so as to eliminate the Lasso inequality

constraint. The idea is to penalize a unit vector a which does not satisfy the
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LASSO constraint by reducing the value of the new objective function. Thus, the

LDA problems are modified as follows:

max
a

[
aTU−TBU−1a− µP (||a||1 − t)

]
(3.24)

and

max
a

[
aTBa
aTWa

− µP (||a||1 − t)
]
, (3.25)

both subject to ||a||22 = 1 and aTi Ai = 0Ti−1.

The penalty function P is zero if the Lasso constraint is fulfilled. It switches on

the penalty µ (a large positive number) if the Lasso constraint is violated. More-

over the more severe violations are penalized more heavily. A typical example

of an exterior penalty function for inequality constraints is the Zangwill penalty

function P (x) = max(0, x), which was used in this method.

Finally, they employed a gradient method to solve the PCA-like problems in

(3.24) and (3.25). However, the penalty function P and the Lasso constraint are

not differentiable and thus the gradient cannot be computed directly. To over-

come this problem the following smoothing (Trendafilov and Jolliffe, 2007)) is

used:

||a||1 = aT sign(a) ≈ aT tanh(γa) and P (x) = max(0, x) ≈ x(1+tanh(γx)
2

, for some

large γ, e.g. γ = 1000. Let, the functions in (3.24) and (3.25) be denoted by Fµ(a):

Fµ(a) = aTU−TBU−1a− µP (aT tanh(γa)− t) (3.26)

and

Fµ(a) =
aTBa
aTWa

− µP (aT tanh(γa)− t). (3.27)
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The loadings of the canonical variates a1, a2, ..., as can be computed as solutions

of s initial value problems for the following ordinary differential equations:

dai
dt

= Πi5Fµ(ai) (ai), (3.28)

starting with an initial value ai,in with ||ai,in||22 = 1 for i = 1, 2, ..., s.

The good point of this method is that it makes interpretation simple in lin-

ear discriminant analysis. However, since it assumes that the within-covariance

matrix is not ill-conditioned, this method is limited to the low dimensional LDA.

But, as concluded by Trendafilov and Jolliffe (2007), the method can be easily ap-

plied to high-dimensional problems using some data pre-processing procedure.

3.3.3 A sparse LDA algorithm based on subspaces

Ng et al. (2011) presented a sparse LDA algorithm for high-dimensional ob-

jects in subspaces. They noted that, in high dimensional data, groups of observa-

tions often exist in subspaces rather than in the entire space. That is, each group

is a set of observations identified by a subset of dimensions and different groups

are represented in different subsets of dimensions. For this setup, Ng et al. (2011)

proposed an algorithm called the gradient flow method on the orthogonal con-

straint. This method helps to find an explicit solution, but it does not correspond

to classical LDA.

The gradient flow algorithm considers that different dimensions make differ-

ent contributions (i.e. weights) to the identification of objects in a group. Con-

sequently, this method tries to find a sparse LDA by simultaneously maximizing

the ratio of the between groups covariance matrix to the within-groups covari-

ance matrix while minimizing the weight sparsity of discriminant vectors. As a
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result, Ng et al. (2011) formulate the following optimization problem when W is

nonsingular,

max
ATA=Is

[
trace((ATWA)−1(ATBA))− α

p∑
l=1

s∑
i=1

|Ali|
]
, α ≥ 0 (3.29)

where α is the degree of sparsity. This problem targets a well-conditioned weight

A with orthogonal columns, using the orthogonal constraint ATA = Is.

Since W is singular in the case of high-dimensional data, Ng et al. (2011) ap-

plied a simple perturbation strategy so that W is replaced by W + µIp. Conse-

quently, (3.29) is modified for high-dimensional LDA as

max
ATA=Is

[
trace((ATWA + µIs)−1(ATBA))− α

p∑
l=1

s∑
i=1

|Ali|
]
, α ≥ 0 (3.30)

Finally, to solve problem (3.30), Ng et al. (2011) proposed a gradient flow method

with the orthogonal constraint. Suppose a smooth function F is defined on the

constraint set St(s, p). Then the gradient grad(F (A)) of F at A ∈ St(s, p) is given

by

grad(F (A)) = ΠT

(
∂F (A)

∂A

)
∀A ∈ St(s, p) (3.31)

where

ΠT (Z) = A
(

ATZ − ZTA
2

)
+ (Ip −AAT )Z ∈ TASt(s, p) ∀Z ∈ Rp×s (3.32)

is the orthogonal projection of Z ∈ Rp×s onto the tangent space TASt(s, p) at A.

It can be observed that the objective function in (3.30) is not smooth because

of the additional term α
∑p

l=1

∑s
i=1 |Ali|. Consequently, Ng et al. (2011) used the

following method to approximate the term globally

Ali ≈ Ali(ε) =
√
A2
li + ε2,
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where ε > 0 is a very small number. Hence, the derivative of the approximated

objective function at A is given as

∂F (A)

∂A
= 2[BA−WA(ATWA+µIs)−1(ATBA)]

(
(ATWA+µIs)−1−α

(
∂
∑p

l=1

∑s
i=1Ali

∂A

))
(3.33)

and the gradient gradF (A) can be easily found by substituting (3.33) into (3.31).

Finally, the gradient flow related to the objective function F (A) is generated

by the dynamical systems (Ng et al., 2011) given below

dA(t)

dt
= grad(F (A)) = ΠT

(
∂F (A)

∂A

)
. (3.34)

It is noted that St(s, p) → R is a critical point of any local maximum (or local

minimum) of the function F (A). In addition, the gradient flow A(t) exists for

all t ≥ 0, and converges to a connected component of the set of critical points of

F (A) as t→∞. They furthermore noted that for any value A(0) = A0 ∈ St(s, p),

there is a unique trajectory A(t) starting from A0 for t > 0.

The importance of sparse LDA using the gradient flow algorithm is because

it directly approaches the high-dimensional LDA by assuming objects are found

in subspaces. Furthermore, it incorporates a sparsity constraint to identify an

important set of variables for classification. However, this method used a pertur-

bation strategy when W is singular. This strategy is the same as the method of

covariance regularization. Hence, it becomes closer to the independence rule as

the perturbing parameter µ in (3.30) gets larger. Moreover, this method used an

approximation method so as to make the objective function smooth. The effect of

this approximation on classification results is not clear.
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3.4 Optimal scoring methods

Another equivalent formulation of discriminant analysis is using the regres-

sion approach framework. Fisher (1936) has shown that, in binary classifica-

tion, linear discriminant analysis can be recast as linear regression by treating

the p x-variables as independent variables and the group indicator vector y as

a dependent variable. This method was extended to more than two classes by

Breiman and Ihaka (1984) for a non-linear discriminant analysis using additive

models. This method optimizes the scaling of indicators of classes together with

the discriminant functions, and hence it is called optimal scoring (OS) approach

(Merchante et al., 2012). The idea of optimal scoring is to recast the discrimi-

nation problem as a regression problem in which the categorical variables are

turned into quantitative variables by assigning scores to classes (Clemmensen

et al., 2011).

Various methods extended the OS approach to high dimensional discriminant

analysis. These methods will be briefly reviewed in this section. As preliminary,

we redefine some notations as follows. We recall that the multivariate data X con-

sists of n observations, with each observation xj ∈ Rp comprises of p-variables.

Let Y denote an n×g group indicator matrix, with columns that correspond to the

dummy-variable codings of the g-groups. That is, yij ∈ {0, 1} indicates whether

the jth observation belongs to the ith group. We assume that the columns of X are

centered (i.e., orthogonal to the constant vector 1) so that the mean will be zero

and the total sample covariance matrix will be S = n−1XTX.



CHAPTER 3. REVIEW OF DISCRIMINANT ANALYSIS IN HIGH-DIMENSIONS 62

3.4.1 Penalized discriminant analysis

Hastie et al. (1995) proposed a penalized version of LDA based on OS in a sit-

uation where there are many highly correlated variables. They applied smooth-

ness penalty on the discriminant vectors in the OS problem by incorporating a

positive-definite penalty matrix Ω. Hastie et al. (1995) defined the optimal scor-

ing problem in compact form as

min
θ,β
||Yθ − Xβ||2 + λ(βTΩβ)

subject to θTYTYθ = Is (3.35)

where θ is a g×smatrix of scores, and β is a p×smatrix of regression coefficients.

The optimal scoring problem (3.35) is equivalent to a penalized LDA when YTY

and XTX+λΩ are of full rank. This condition is fulfilled when there are no empty

classes and Ω is positive-definite. To handle situations where this condition is not

met, Hastie et al. (1995) replaced the sample within-class covariance matrix (W)

by a regularized version W + Ω; then the LDA proceeds as usual.

The regression coefficient vectors of the OS can be mapped to the correspond-

ing discriminant vectors of the penalized LDA showing the equivalence of OS

to the penalized LDA (Hastie et al., 1995). The parameters of this mapping are

computed by solving the OS problem (3.35).

The OS optimization problem (3.35) is non-convex. However, it can readily

be solved by a decomposition in θ and β. An algorithm for finding the opti-

mal regression coefficients β∗ (Hastie et al., 1995; Merchante et al., 2012) has the
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following steps:

1. initialize θ to θ0 such that θ0TYTYθ0 = Is;

2. compute β = (XTX + λΩ)−1XTYθ0;

3. set θ∗ to be the s leading eigenvectors of YTX(XTX + λΩ)−1XTY;

4. compute the optimal regression coefficients β∗ = (XTX + λΩ)−1XTYθ∗.

This approach removes the computational burden of finding eigenvalues, and

avoids a costly matrix inversion. It is noted that (θ∗,β∗) are uniquely defined and

all critical points are global optima.

The limitation of the OS approach developed by Hastie et al. (1995) is that

it does not incorporate sparsity. That is, it does not try to select few discrimi-

nant variables among the huge number of variables found in high dimensional

discriminant analysis. Hence, the problem of interpretation remains a challenge.

Moreover, Hastie et al. (1995) have shown the equivalence of OS to penalized

LDA only for binary classification. The connection fails in the general multi-class

classification problem.

An alternative OS method using group-lasso was developed by Merchante

et al. (2012) shows the equivalence of OS to penalized LDA in a multi-group

classification problem. The group-Lasso OS problem is given as

βOS = min
θ,β

1

2
||Yθ − Xβ||2 + λ

p∑
l=1

||βl||2

subject to θTYTYθ = Is. (3.36)
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This is equivalent to the penalized LDA problem

βLDA = max
β

βTBβ

subject to βT (W + λΩ)β = Is. (3.37)

Both solutions have the form: βLDA = βOSdiag
(
(α−1

k (1 − α2
k)
−1/2)

)
, where α ∈

(0, 1) is the kth leading eigenvalue of YTX(XTX + λΩ)−1XTY. However, the the-

oretical properties of the solution of the group-lasso OS problem are not well

known.

3.4.2 Sparse discriminant analysis

Clemmensen et al. (2011) proposed a sparse discriminant analysis based on

the optimal scoring interpretation of linear discriminant analysis. They defined

the sparse discriminant analysis (SDA) sequentially. The kth SDA solution pair

(θk,βk) solves the problem

min
θk,βk

(
||Yθk − Xβk||2 + γ(βTkΩβk) + λ||βk||1

)
subject to

1

n
θTk YTYθk = 1, θTk YTYθj = 0 for all j < k (3.38)

where λ and γ are nonnegative tuning parameters. λ controls the degree of spar-

sity, i.e., when λ is large, βk becomes more spares.

In general, this method incorporates sparsity which makes interpretation sim-

pler. However, there is no information regarding the effectiveness of the method

for classification purposes.

3.4.3 A direct approach to LDA in ultra-high dimensions

Mai et al. (2012) proposed a direct sparse discriminant analysis based on the
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least squares formulation of LDA for binary classification. We recall from the

classical LDA that when p < n, linear discriminant analysis for two-groups clas-

sification can be connected to least squares (Fisher, 1936; Mai et al., 2012). How-

ever, this connection collapses in high dimensional problems because the sample

covariance matrix is singular and the linear discriminant direction is not well de-

fined. As an alternative method for high dimensional problem, Mai et al. (2012)

developed a penalized least squares formulation of LDA using the lasso penalty

(Tibshirani, 1996).

They used a method for coding the class labels that is the same as the coding

method used by Fisher (1936). That is, the two groups are coded as: y1 = −n/n1

and y2 = n/n2, where n = n1+n2. Then the solution to the penalized least squares

sparse problem is

β = arg min
β

( n∑
i=1

(yi − β0 − xiβ)2 + λ||β||1
)
. (3.39)

Mai et al. (2012) show that the least squares classifier and the LDA rule produce

an identical classification. That is, the least squares always estimates the Bayes

classification direction, even when the dimension grows faster than any polyno-

mial order of the sample size. This problem can be solved using the least an-

gle regression algorithm (Efron et al., 2004) or the coordinate descent algorithm

(Friedman et al., 2007).

The method Mai et al. (2012) focuses on showing the connection between least

squares and linear discrimination in high-dimensional problem. This connection

exists when least squares is penalized using the lasso. This penalty can also help

to achieve sparsity. But, it works only for binary classification.
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3.5 Miscellaneous methods

There are techniques that directly estimate discriminant projection directions

by minimizing misclassification rate, such as, proposed by Fan et al. (2012) and

Cai and Liu (2011). There is also a thresholding method that assumes the popu-

lation covariance matrix and the mean difference vector are sparse. For example,

Shao et al. (2011) considered a sparse LDA by using a thresholding method to

estimate the parameters such that the estimated parameter are asymptotically

optimal under some conditions. In this section we review these methods.

3.5.1 Regularized optimal affine discriminant (ROAD)

Fan et al. (2012) proposed a method that finds the data projection direction

aT = µTdΣ−1 by directly minimizing the classification error subject to a capacity

constraint on a. They assumed that the correlation between variables has consid-

erable effect on classification and showed that the independence rule performs

poor when the variables are positively correlated. They also compared theoreti-

cally the Naive Bayes (NB) (i.e., independence rule) and the Fisher discriminant

at the population level, and they come to the conclusion that the Fisher discrim-

inant rule performs better than the NB discriminant as ρ deviates away from 0.

The objective of their work was to estimate the Fisher discriminant vector a with

reasonable accuracy.

To circumvent the problems in high dimensional discriminant analysis, they

proposed a regularized method that selects only the s(s << p) most important

variables for classification. In classification, the best s variables are those with the
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largest ∆s, where ∆s is the counterpart of ∆p.

By using aT = µTdΣ−1, they defined the optimal classifier as: assign x to π1 if

δ(x) = aT (x− µ) > 0. (3.40)

The corresponding associated classification error is

W (δF (x)) = 1− Φ
( aTµd

(aTΣa)1/2

)
. (3.41)

They assumed that minimizing the misclassification error W (δF (x)) is the same

as maximizing aTµd/(aTΣa)1/2, which is equivalent to minimizing aTΣa subject

to aTµd = 1. Adding an L1 constraint for regularization, the problem is written

as

ac = min
||a||1≤c, aTµd=1

aTΣa (3.42)

where c controls the degree of sparsity. When it is small, only a few variables will

be selected, giving sparsity. There are many ways of regularization in the liter-

ature on penalized methods that help to achieve sparsity. The commonly used

methods are the Lasso (Tibshirani, 1996), the elastic net (Zou and Hastie, 2005)

and other related methods. Fan et al. (2012) called the resulting classifier the reg-

ularized optimal affine discriminant (ROAD). They also considered the diagonal

ROAD (DROAD) by replacing D = diag(Σ) in (3.42) so as to give comparison

with the independence rule.

Using the Lagrangian argument, the problem in (3.42) is reformulated as

āλ = min
aTµd=1

(1

2
aTΣa + λ||a||1

)
. (3.43)

This optimization problem is a constrained quadratic problem and can be solved

by existing methods. However, such methods are slow. Fan et al. (2012) pointed
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out that, in the compressed sensing literature, it is common to replace an affine

constraint by a quadratic penalty. Based on this idea, problem (3.43) can be ap-

proximated as

ãλ,γ = min
(1

2
aTΣa + λ||a||1 +

1

2
γ(aTµd − 1)2

)
. (3.44)

For practical purposes, the parameters Σ and µd are replaced by their corre-

sponding sample estimates Σ̂ and µ̂d, respectively. Fan et al. (2012) also pointed

out that ãλ,γ −→ āλ when γ −→ ∞. Moreover, when λ = 0, the solution ã0,γ is

always in the direction of Σ−1µd, the Fisher discriminant direction, regardless of

the value of γ.

The minimization problem (3.44) can be solved using a constrained co-ordinate

descent algorithm. With this algorithm, the p search directions are just unit vec-

tors e1, ..., ep, where ei denotes the ith element in the standard basis of Rp. These

unit vectors are used as search directions in each search cycle until some conver-

gence criterion has been met. The procedure for this algorithm is described in

detail in Fan et al. (2012).

Finally, Fan et al. (2012) have shown that the sample misclassification error

W (δ̂(x)) is asymptotically equivalent to the oracle misclassification rate W (δ(x)).

They also showed that the Fisher discriminant projection direction converges to

the oracle projection direction.

ROAD was developed under the assumption that variables are correlated and

it performs well when the variables are really correlated. However, the effective-

ness of ROAD is not clear in terms of getting sparser discriminant functions.

Moreover, ROAD was developed for two-groups classification and further work
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is needed to extend ROAD so that it can be used for classification problems with

more than two groups.

3.5.2 A direct estimation approach

In high-dimensional setting, the most commonly used structural assumptions

are that Σ (or Σ−1) and the differences of mean vectors µd are sparse (Cai and

Liu, 2011). Under these assumptions, Σ−1 and µd are estimated separately and

are then plugged into Fisher’s rule. However, Fisher’s discriminant rule depends

on the product of Σ−1 and µd, i.e. Σ−1µd. Cai and Liu (2011) criticize methods

that estimate Σ−1 and µd separately, and argued that the product Σ−1µd can be

estimated directly and efficiently, even when Σ−1 and/or µd cannot be well esti-

mated separately.

They estimated this product using an l1 minimization constraint for sparse

LDA as

â = min
a
||a||1 subject to ||Σ̂a− µ̂d||∞ ≤ λ (3.45)

where a := Σ−1µd, and λ is a tuning parameter. The linear programming (3.45) is

closely related to the Dantzig selector (Candès and Tao, 2007). They implemented

the estimator â using linear programming and named the resulting classifier as

”the linear programming discriminant (LPD) rule”. LPD rule has computational

advantages because it only requires the estimation of a p-dimensional vector via

linear programming instead of the estimation of the inverse of a p× p covariance

matrix. The rule performs well when Σ−1µd is approximately sparse. This as-

sumption is weaker and more flexible assumption than the assumption that both

Σ−1 and µd are sparse Cai and Liu (2011).
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The sample misclassification rate of the LPD rule is given as

W (δ̂LPD(x)) = 1− 1

2
Φ

(
− (µ̂− µ1)T â

(âTΣâ)1/2

)
− 1

2
Φ

(
(µ̂− µ2)T â
(âTΣâ)1/2

)
, (3.46)

where φ is the normal cumulative distribution function (cdf). Cai and Liu (2011)

have shown that the misclassification rate of LPD (3.46) is asymptotically com-

parable with the oracle misclassification rate under certain conditions. Some of

these conditions are that the two samples are of comparable size (i.e. n1 � n2),

the eigenvalues of the covariance matrix Σ are bounded from below and above,

and ∆p is bounded away from zero.

Consequently, they specified the regularity conditions as: n1 � n2, log p ≤ n,

c−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0 for some constant c0 > 0 and ∆p ≥ c1 for some

c1 ≥ 0. Suppose these conditions hold and further let λ = C
√

∆p log p/n with

C > 0 a sufficiently large constant, and

|Σ−1µd|0 = o

(√
n

log p

)
.

Cai and Liu (2011) showed that W (δ̂LPD(x)) − W (δF (x)) → 0 in probability as

n→∞ and p→∞ which shows the consistency of the LPD rule when Σ−1µd is

sparse. However, in practice the value of the tuning parameter λ is selected by

using cross-validation. Moreover, if the above conditions hold and

|Σ−1µd|0∆p = o

(√
n

log p

)
,

then

W (δ̂LPD(x))

W (δF (x))
− 1 = O

(
|Σ−1µd|0∆p

√
log p

n

)
(3.47)
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with probability greater than 1 − O(p−1). This shows that a larger ∆p implies a

worse convergence rate for the relative classification error.

Finally, Cai and Liu (2011) noted that when ∆p is very large, the classification

problem is easy and the Bayes misclassification rate can be very small. Thus

under this condition, it becomes hard for any data-based classification rule to

mimic the performance of the oracle rule.

The direct method proposed by Cai and Liu (2011) is computationally effi-

cient method but the method has good properties only under many assumptions

and conditions. In fact, some of the assumptions, such as ∆p ≥ c1, are quite

commonly used in high-dimensional discriminant analysis but the first condi-

tion, n1 � n2, makes this method more limited. Furthermore, the assumption

that log p ≤ n is also restrictive. Hence, the method cannot be taken as a general

method for discriminant analysis because little is known about its performance

when one or more of the conditions are not held.

A similar approach has been proposed by Wang et al. (2013). Their method

uses a two-stage LDA for high-dimensional discrimination. It uses l1 minimiza-

tion which is linear programming for selecting important variables. This min-

imization problem has the same formulation as (3.45). Then, the LDA is to be

applied on the selected variables. Both methods are similar except the later is a

two-stage LDA.

3.5.3 Sparse LDA by thresholding (SLDAT)

Shao et al. (2011) proposed a sparse LDA based on a thresholding method-

ology for classifying two groups that are normally distributed as Np(µi,Σ) for
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i = 1, 2, in high dimensional setting. They constructed an LDA that is asymptoti-

cally optimal under some sparsity conditions on unknown parameters and some

conditions on the divergence rate of p (e.g., n−1 log p→ 0 as n→∞).

The approach uses thresholding estimators of the mean effects (µd) and the

covariance matrix (Σ). Hence, the thresholding procedure to induce sparsity into

the estimate of the covariance matrix is given as below

Σ̃jl = ŝjlI(|ŝjl| > t1), with, t1 = M1

√
log p/

√
n,

where M1 is a positive constant, ŝjl is the (j, l)th element of Σ̂, and I(A) is the in-

dicator function of the setA. LettingM1 →∞ gives a diagonal estimate of Σ, and

letting M1 = 0 gives a full estimate of Σ. However, Shao et al. (2011) considered

the case when only the off-diagonal elements of Σ̂ are thresholded. A generalized

inverse is used when Σ̃ is not invertible in the thresholding procedure.

Additionally, sparsity is introduced on the mean difference vector by thresh-

olding parameter estimates at a level t2, where t2 = M2(log p/n)0.3, and M2 is a

positive constant. The difference between the means of class i and k is then given

as δ̃l,ik = δ̂l,ikI(|δ̂l,ik| > t2), where δ̂ik = µ̂i − µ̂k and δ̂l,ik is the lth element of δ̂ik.

Therefore, M1 and M2 control the degree of diagonalization and the degree of

sparsity.

Shao et al. (2011) denoted the misclassification rate of the optimal rule as:

ROPT = φ(−∆p/2), where 0 < ROPT < 1/2. It can be observed that ROPT → 0

when ∆p → ∞ as p → ∞ and ROPT → 1/2 when ∆p → 0. The objective of the

LDA by thresholding is to find a classification rule (T ) such that its associated

misclassification rate RT converges in probability to the same limit as ROPT . It
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has been shown that if ∆p is bounded, then T is asymptotically optimal. Note

that the misclassification rate is the same as that given in (3.46).

The sparse LDA by thresholding is a good approach for high dimensional

LDA, because it focuses on finding a classification rule by minimizing the mis-

classification error. Furthermore, it has been shown that the sample misclassifi-

cation rate associated with the LDA by thresholding is asymptotically the same

as the optimal misclassification rate. However, the approach requires several

assumptions and conditions. Moreover, they used a shrinkage type of regular-

ization on the covariance matrix and mean difference to achieve sparsity, which

neglects the dependence between variables.

There also exist other methods that tackle high dimensional discriminant anal-

ysis by minimizing misclassification error. For example, copula discriminant

analysis (Han et al., 2013) has been proposed for high dimensional discriminant

analysis by incorporating the covariance estimator to classification in a copula

model.

3.5.4 Classification using discriminative algorithms

There are other class of classification models such as discriminative models

which are used as alternative classification method for high-dimensional data.

Discriminative models include machine learning algorithms such as support vec-

tor machine (SVM) and kernel regression. The purpose of Machine learning is to

represent data as feature vectors and then proceed with training algorithms that

seek to optimally partition the feature space into regions.

There are situations where SVM is preferably applied for performing dimen-
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sion reduction and classification of high-dimensional data. For instance, Bi et al.

(2003) proposed a SVM for dimension reduction using `1-norm regularization.

But the method simply focuses on dimension reduction and gives less attention

to the classification accuracy. Haber et al. (2015) proposed a classification by dis-

criminative interpolation framework wherein functional data in the same class

are adaptively reconstructed to be more similar to each other. Another discrim-

inative method proposed by Godbole and Sarawagi (2004) classifies text docu-

ments into a predefined set of classes.

We can consider the discriminative algorithms as alternative class of methods

for dimension reduction in classification. The generative models are typically

more flexible than discriminative models in classifying high-dimensional classi-

fication problems. Therefore, in this thesis, our focus is to develop generative

models, such as sparse discriminant analysis, that effectively deal with discrimi-

nation problems when p >> n.

3.6 Limitations of the existing high-dimensional dis-

crimination methods

It is important to stress that reducing dimension without taking into account

the goal of classification may loose information that could have been useful for

discriminating the groups. For instance, while PCA reducing the dimensionality

of data, it keeps only the variables associated with the largest eigenvalues. Bou-

veyron and Brunet-Saumard (2014) explained that the first eigenvectors do not

necessarily contain more discriminative information than the other eigenvectors.
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Due to the singularity of the within-class covariance matrix in high dimen-

sional discriminant analysis, Fisher’s LDA is not directly applicable with high

dimensional data. One widely used solution is to assume independence among

variables, regardless of the effect of the correlations on classification. This fault is

found in sparse discriminant methods that are based on the independence rule,

such as the nearest shrunken centroids classifier (Tibshirani et al., 2002), the in-

dependence Rule (Bickel and Levina, 2004) and features annealed independence

rules (Fan and Fan, 2008). These methods all ignore correlations among variables

and thus could lead to irrelevant variable selection and poor classification.

The solution based on regularization may ease computational difficulty, but

it gives less attention to variable selection ( i.e. sparsity), making results hard to

interpret in high-dimensional discriminant analysis. Moreover, all regularization

methods require tuning of a parameter and this may not be easy unless cross-

validation is used appropriately. Hence, high-dimensional classification requires

a method that selects important variables and minimizes classification error si-

multaneously. Some recent approaches to high-dimensional discriminant anal-

ysis are based on the idea of minimizing classification error, as is also types of

the methods described in Section 3.5. However, we have seen that almost all

such methods work on problems that involve only two groups, and the methods

require strong conditions for useful asymptotic to hold.

Having these limitations in mind, there is a need to develop a new sparse

LDA as an alternative method to discrimination in high dimensions. In this the-

sis, we propose some alternative methods of sparse LDA for high dimensional
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discriminant analysis. We present the alternative methods in the following chap-

ters.



Chapter 4

Function constrained sparse LDA

4.1 Introduction

In the previous chapter, we reviewed various methods of discriminant anal-

ysis for high-dimensional data, noted their various approaches to overcome the

singularity problem, and ways in which some of the methods introduce sparse-

ness so that results are interpretable. In this chapter, we assume that the p × p

group covariance matrices are equal. That is, Σ1 = Σ2 = . . . = Σg = Σ. We again

let W be the estimate of the common covariance matrix, Σ. For this situation, we

propose a new method of discriminant analysis that we call function constrained

sparse LDA, which selects very few important variables. In this method, a con-

strained `1-minimization penalty is applied to the discrimination problem so as

to achieve sparsity. The `1-minimization is a popular technique to select vari-

ables in regression analysis and compressed sensing when p >> n. For example,

Candès and Tao (2007) used the `1-minimization penalty with the Dantzig selec-

tor to select variables in regression analysis with p >> n.

77
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Because of the fact that the within-group covariance matrix is a singular ma-

trix when p >> n, W−1 does not exist. To circumvent the singularity problem,

we use the diagonal within-group covariance matrix Wd = diag(W) in our new

sparse LDA method. This is because an estimate of W−1 does not necessarily

provide a better classifier. As noted in Section 3.2.1, Fan et al. (2008) showed

that LDA cannot be better than random guessing when the number of variables

is larger than the sample size due to noise accumulation in estimating the co-

variance matrix. Their method, Feature Annealed Independence Rules (FAIRs),

selects a subset of important features for high-dimensional classification. An-

other method, developed by Witten and Tibshirani (2011), uses Wd to select a

small number of variables using the Lasso penalty. However, this method fails

when p is much larger than n. Hence, the main objective of our method is to find

easily interpretable sparse discriminant directions that has better performance in

terms of speed and accuracy when compared with other competitive methods in

the literature. Because our method selects very few variables, the objective of ac-

curacy sparsity is achieved and the method has good accuracy in examples that

we examine.

The chapter is organized as follows. In Section 4.2, some of the motivation

for sparse LDA methods are briefly reviewed. In Section 4.3 we propose one

new sparse LDA method which we call function constrained sparse LDA (FC-

SLDA). We also propose a simplified version of the method called FC-SLDA2 in

Section 4.4. The newly proposed methods are illustrated using high-dimensional

real data sets and are compared with other exiting methods in Section 4.5. The
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results and discussion are presented in Section 4.6. Finally, a short summary of

the chapter is given in Section 4.7.

4.2 Sparse Linear Discriminant analysis

Sparse LDA produces linear discriminant functions with only a small number

of variables, keeping variables that are useful for discriminating between groups

and for identifying group membership of observations. In high-dimensional data

analysis, such as most genetic analyses, sparse methods of discrimination ensure

better interpretability, greater robustness in the model, and lower computational

cost for prediction (Clemmensen et al., 2011; Merchante et al., 2012).

An important procedure in the derivation of sparse LDA is variable selection.

In high dimensional data, there are a large number of variables on which mea-

surements have been observed and which are available for analysis. However,

only some of these variables may contain information that is useful for the pur-

pose of classification (Rencher, 2002). Consequently, it is necessary to select a set

of variables that help discriminate the groups while omitting the other variables

that cannot make a significant contribution to the discrimination of the groups,

and which may be considered as superfluous/redundent variables. Qiao et al.

(2009) pointed out that we do not necessarily increase discriminatory power by

increasing the number of variables in the application of Fisher’s LDA; instead

it leads to overfitting. Some important references for variable selection in high

dimensional data are variable selection via the lasso (Tibshirani, 1996), variable

selection via the elastic net (Zou and Hastie, 2005), the Dantzig selector (Candès
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and Tao, 2007), and the group lasso (Merchante et al., 2012). The traditional ap-

proach to sparse LDA is to perform variable selection in a separate step before

classification. However, this approach leads to a dramatic loss of information for

the purpose of the overall classification problem (Filzmoser et al., 2012). There-

fore, there is a need to develop a sparse LDA which performs variable selection

and classification simultaneously.

When the number of variables is huge (perhaps tens of thousands), it makes

sense to look for methods that produce sparse discriminant functions, i.e. meth-

ods that involve only a few of the original variables. Broadly speaking, a vec-

tor/matrix is called sparse when it has very few non-zero entries. The number

of nonzero entries is called the cardinality of the vector/matrix. There are two

main ways to impose sparseness on a vector/matrix solution: by specifying cer-

tain cardinality constraints on the solution, or by finding the solution subject to

a sparseness inducing penalty. The most popular sparseness inducing penalty

is the LASSO (Least Absolute Shrinkage and Selection Operator), introduced

by Tibshirani (1996) for multiple regression problems. For a unit length vector

a (‖a‖2 = 1), the LASSO has the form ‖a‖1 =
∑

i |ai| < τ , where τ is called a

tuning parameter. By reducing τ , one forces the smaller entries of a to become

exact zeros. The sparsest a has only one non-zero entry equal to 1.

It is also possible to obtain a sparse solution by prescribing in advance a pat-

tern of sparseness (Vichi and Saporta, 2009). For example, one can require a

sparse matrix A to have just a single nonzero entry in each row.

Another possible option is to employ vector/matrix majorization (Marshall
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and Olkin, 1979). An illustration of the effect of majorization is the following

example for unit length vectors from R3
+ = [0,∞)× [0,∞)× [0,∞):

(
1

3
,
1

3
,
1

3

)
≺
(

0,
1

2
,
1

2

)
≺ (0, 0, 1) ,

i.e. the ”smallest” vector has equal entries. All of the three components in the first

vector are nonzero, the second vector has two nonzero components, and the third

vector has only one nonzero component. Note that for any two vectors v1 and v2,

v1 ≺ v2 means that v1 is Karp reducible to v2. One can use some procedure for

generation of majorization (Marshall and Olkin, 1979, p.128) in order to achieve

sparseness. A benefit of such an approach is that sparseness can be achieved

without any tuning parameters. For example, the procedure to obtain sparse

patterns that was proposed by Trendafilov (1994) is equivalent to what is known

now as soft-thresholding. Moreover, the threshold can be found easily by the

majorization construction, rather than by tuning different parameters. This form

of pattern construction can be further related to the fit, the classification error,

and/or other desired features of the solution.

4.3 Function constrained sparse LDA (FC-SLDA)

In modern applications, data often has more variables than observations. Such

data are also commonly referred to as small-sample data. Then, the within-

scatter matrix is singular and the classical LDA is not defined. Although there

exist some proposals to circumvent the problem of high-dimensionality, each of

the proposed methods has its own limitation as explained in Section 3.6. Here,

we propose an alternative method called function constrained method for sparse
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LDA (FC-SLDA).

We use the same notation as in earlier chapters. Thus there are n obser-

vations with p variables, and each observation belongs to one of the g groups

(π1, π2, . . . , πg). Also ni is the number of objects in group πi, so
∑g

i=1 ni = n. The

between-groups covariance matrix is

B =
1

g − 1

g∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T

and the within-groups covariance matrix is given by

W =
1

n− g

g∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)
T , (4.1)

where xij is the value of the jth-observation in the ith-group, x̄i is the sample

mean of the ith-group, and x̄ is the estimate of the overall mean vector µ, j =

1, . . . , ni, i = 1, . . . , g.

The straightforward idea of replacing the non-existant inverse of W by some

kind of generalized inverse has many drawbacks, and thus is not completely

satisfactory. For this reason, Witten and Tibshirani (2011) adopted the idea pro-

posed by Bickel and Levina (2004), which circumvents this difficulty by replac-

ing W with a diagonal matrix Wd containing its diagonal, i.e. Wd := Ip � W,

where � is an element-wise multiplication. This method penalizes the discrim-

inant vectors in Fisher’s discriminant problem and projects the data onto a low

dimensional subspace that includes only a subset of the original variables. Note,

that Dhillon et al. (2002) were even more extreme and proposed doing LDA for

high-dimensional data by simply taking W = Ip, i.e. PCA of B. Trendafilov and

Vines (2009) experimented with this option so as to obtain sparse discriminant

functions when W is singular.
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4.3.1 General approach to FC-SLDA

Consider the linear transformation Y = A>X. The goal of Fisher’s LDA is to

find a p× s (s < p) transformation matrix A that produces maximum separation

between groups by maximizing the between groups covariance matrix (B) rela-

tive to the within-groups covariance matrix (W). The transformation matrix is

given as A = (a1, a2, ..., as), where ak, k = 1, 2, ..., s is the kth column vector of A.

We take A as the matrix that maximizes the Fisher’s criterion function f(A):

f(A) =
|ATBA|
|ATWA|

(4.2)

where |.| is the determinant.

The maximization problem (4.2) can be rewritten as

max |ATBA| subject to |ATWA| = 1. (4.3)

Assume that ATWA is a diagonalizable matrix such that ATWA = Is. Then,

|ATWA| = 1 in (4.3).

The matrix A that maximizes (4.2) is found by solving the generalized eigen-

value problem (4.4)

BA = WAΛ, (4.4)

where Λ is the (s × s) diagonal matrix of the s largest eigenvalues of W−1B or-

dered in decreasing order. When n > p, the matrix ATWA is diagonal and it is

usual to normalize A such that ATWA = Is.

However, our objective is to find sparse discriminant directions. There are

different ways of sparsifying a matrix in high-dimensional cases. In our method,

we choose the constrained `1-minimization penalty to get a sparse matrix A.
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So, to find the function constrained sparse LDA, we impose an `1-minimization

on the Fisher’s general maximization problem (4.2) as

min ||A||1 subject to ATBA = Λs×s, ATWA = Is. (4.5)

By re-arranging the minimum optimization problem (4.5), the general function

constrained sparse LDA (FC-SLDA) problem can be given as:

min
ATWA=Is

||A||1 + τ(ATBA−Λs×s)
2, (4.6)

where Λ is the (s×s) diagonal matrix of the s largest eigenvalues of W−1
d B where

Wd = diag(W), and τ is a tunning parameter. The `1 minimization produces

sparse linear discriminant functions.

To solve problem 4.6, we have to first transform the problem into an optimiza-

tion problem with an orthogonal constraint. To find A that satisfies the orthog-

onal constraint in problem 4.6, ATWA has to be transformed using appropriate

techniques. Some of the techniques are explained below.

When n > p, we can find the square-root matrix of W using different matrix

decomposition methods, such as Cholesky decomposition or QR-decomposition

(Seber, 2004). Using the Cholesky decomposition, if we assume that W is at least

a positive semidefinite matrix, it can be decomposed as

W = L>L

where L is a lower triangular matrix. Then, the constraint ATWA can be trans-

formed as

ATWA = ATL>LA = (LA)>(LA). (4.7)
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By letting U = LA, problem (4.6) can be redefined as

min
UTU=Is

||U||1 + τ(UTL−TBL−1U−Λs×s)
2. (4.8)

Now it is possible to solve problem (4.7) by using algorithms for constrained `1-

minimization problems with the orthogonal constraint, UTU = Is. However, our

interest in this work is to find a sparse matrix A in high-dimensions.

Typically the mutual correlations of variables in high-dimensions is of limited

important for classification, so we can give less weight to the off-diagonal entries

of W. We assume that the interrelationships between variables are less important

for classification in high-dimensional small sample size scenarios. As a result, we

substitute W by the diagonal matrix, Wd = diag(W).

W−1 does not exist when p >> n, but Wd does have an inverse. Let U =

W1/2
d A. By applying an approach analogous to the method used with Cholesky

decomposition for n > p, we use W1/2
d as the symmetric square-root matrix of Wd

for p >> n, because W1/2
d W1/2

d = Wd. Now the FC-SLDA problem (4.6) can be

reformulated as:

min
UTU=Is

||U||1 + τ(UTW−1/2
d BW−1/2

d U−Λs×s)
2. (4.9)

This is a PCA-like optimization problem with orthogonal constraint UTU = Is.

Therefore, problem (4.9) can be solved using a method related to the optimiza-

tion method with orthogonality constraints (Wen and Yin, 2013) or the gradient

method (Trendafilov and Jolliffe, 2007) after smoothing the `1-norm.

But, trying to solve problem (4.9) to find the whole of A in a single step is

not an easy task in high-dimensional discrimination problems as it is computa-

tionally expensive. Hence, it is a good idea to find a better way of solving the



CHAPTER 4. FUNCTION CONSTRAINED SPARSE LDA 86

problem. One efficient solution sequentially estimates the columns of A, one col-

umn at a time.

4.3.2 Sequential method of FC-SLDA

We noted in Section 4.3.1 that estimation of the transformation matrix A using

the general constrained `1-minimization problem (4.9) is computationally expen-

sive. Hence, we have proposed an efficient method of estimation which sequen-

tially estimates the column vectors of A one after the other. These columns of

A are the discriminant vectors (a1, . . . , as). Let ak be the kth discriminant vector.

Then replacing W by Wd, the maximization problem (2.40) is the same as

max
ak

aTk Bak
aTk Wdak

subject to a>k Wdai =


1, i = k, for i, k = 1, 2, . . . s

0, i 6= k.

(4.10)

To find sparse discriminant vectors, various penalty functions can be imposed

on problem (4.10). For example, Trendafilov and Jolliffe (2007) used the Lasso

penalty for variable section when n > p. We now propose the constrained `1

penalty for variable selection. Let a be the 1st column vector of A, then the maxi-

mization problem (4.10) is equivalent to

min
a
||a||1 subject to aTBa = λ, aTWda = 1, (4.11)

where λ is an eigenvalue of W−1
d B that corresponds to the eigenvector a.

By rearranging (4.11), the sequential function-constrained reformulation of

our sparse LDA is given as:

min

a>Wda = 1

a⊥Wi−1

‖a‖1 + τ(a>Ba− λ)2, (4.12)
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where W0 = 0p×1 and Wi−1 = Wd[a1, a2, ..., ai−1], and λ is found as a solution of

the standard Fisher’s LDA problem with W = Wd.

Problem (4.12) can be solved using a sequential procedure in which only one

discriminant vector is determined at each iteration. However, we can further

simplify the minimization problem by putting b = W1/2
d a. Then the constraints

of the minimization problem (4.12) can be simplified as:

aTBa = b>W−1/2
d BW−1/2

d b,

and

aTWda = bTb.

As Wd is diagonal, a and b have the same sparseness. In general, there is no need

to recalculate a from b, as a are the raw coefficients and b are the standardized

coefficients of the discriminant functions, which are typically reported in LDA.

The standardized coefficients are useful for determining the relative contribution

of variables in the separation of groups as explained in Section 4.3.4. Let b be the

ith discriminant vector and λ be the ith eigenvalue of W−1
d B associated with ai,

i = 1, 2, . . . s. Then, the modified constrained LDA problem (4.12) for producing

sparse discriminant functions is defined as:

min

b>b = 1

b>Bi−1 = 0>i−1

‖b‖1 + τ(b>W−1/2
d BW−1/2

d b− λi)2, (4.13)

where τ is a non-negative tuning parameter that controls the sparseness of b, and

the matrix Bi−1 is composed of all preceding vectors b1,b2, . . .bi−1, that is, Bi−1

is the p × (i − 1) matrix defined as Bi−1 = (b1,b2, . . .bi−1). The columns in the
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solution B = (b1,b2, . . .bs) are called orthogonal discriminant vectors.

The problem in (4.13) is in fact a function-constraint PCA problem (Trendafilov,

2013). For small data, we can apply a dynamical system approach (Trendafilov

and Jolliffe, 2006) to solve (4.13). However, standard algorithms based on the dy-

namical systems are not directly applicable to (4.13) because the objective func-

tion has discontinuous first derivatives due to the inclusion of the `1-norm. Thus,

we should use a smooth approximation of `1 in the objective function. There are

various approximation methods that smooth the `1-norm.

For example, one method of smoothing the `1 vector norm is given as:

‖b‖1 = b>sign(b) ≈ b> tanh(γb) , (4.14)

with some large γ > 0.

Another type of smoothing method uses the epsL approximation (Wu et al.,

2009). It gives:

‖b‖1 =

p∑
j=1

|bj| ≈
√

b>b + ε, (4.15)

where ε > 0 is a very small number. Consequently, the epsL approximation for

each of the terms |bj| is given as |bj| ≈
√
b2
j + ε. Other smoothing options are

considered elsewhere (Hage and Kleinsteuber, 2014).

Let f denote the objective function from (4.13), i.e.

f(b) = ‖b‖1 + τ(b>W−1/2
d BW−1/2

d b− λi)2. (4.16)

This function is differentiable at b and its solution can be found as an initial value

problem for:

dbi
dt

= Πi∇f (bi) , bi(0) = b0
i , (4.17)
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where∇f denotes the gradient of f with respect to the standard (Frobenius) ma-

trix inner product. That is, the gradient flow related to the objective function

f(bi) is generated by the dynamical systems (Ng et al., 2011) given below:

dbi
dt

= grad(f(b)) = Πi

(
∂f(b)

∂b

)
(4.18)

and

Πi = Ip − BiBT
i with Bi = [b1,b2, ...,bi] . (4.19)

The current ODE solvers (MATLAB, 2011) are not efficient for solving large

optimization problems. They track the whole trajectory defined by the ODE,

which is time-consuming and undesirable when only the asymptotic state is of

interest (Ng et al., 2011; Trendafilov and Jolliffe, 2007). Therefore, we have de-

veloped an algorithm that is appropriate for our minimization problem with or-

thogonality constraints. Specifically, we have developed an efficient algorithm

by improving the gradient method (Trendafilov and Jolliffe, 2007, 2006) and by

employing a method for optimization with orthogonality constraints (Wen and

Yin, 2013). The main steps of our algorithm are summarized in Section 4.3.3.

The method of (Wen and Yin, 2013) is only appropriate for problems involv-

ing the decomposition of full rank matrices. Hence, it cannot be directly applied

to our method. A benefit of our algorithm is that it can be applied for any mini-

mization problem with orthogonal constraints.

4.3.3 Algorithm 1: FC-sparse LDA

The steps in the algorithm that implements FC-SLDA are as follows.

1. Let X be an n× p grouped multivariate data matrix.
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2. Randomly split the data into two sets to form training and test datasets.

3. Find the within-group covariance matrix (W) and between group covari-

ance matrix (B) of the training dataset defined in (2.39).

4. Form the diagonal matrix Wd from Wd = diag(W).

5. Determine the ordered eigenvalues λ1, λ2, . . . λs of W−1
d B.

6. Set the tuning parameter τ to a positive number , say 0 < τ ≤ 2.

7. For k = 1, 2, . . . s, find the p × 1 vector bk by sequentially solving the prob-

lem.

min
bk

(
‖bk‖1 + τ(b>k W−1/2

d BW−1/2
d bk − λk)2

)

subject to b>k bi =


1, i = k, for i, k = 1, 2, . . . s

0, i 6= k.

(4.20)

8. Let the solutions of (4.20) in step 7 be b∗1,b∗2, . . . b∗s.

9. Classify the observations in the training data using Xb∗1,Xb∗2, . . .Xb∗s and

compute the average misclassification error (MCE). Let MCE(τ ) is an MCE

for a given τ .

10. Change τ and repeat steps 7 and 9 until a value of τ is found that minimizes

MCE based on the training data. The final choice of τ ’s is τ̂ = min MCE(τ).

If the minimum is attained at several τ ’s, the minimum value of these τ ’s is

selected.

11. Denote the final solutions as b1,b2, . . . bs. Then the discriminant functions

are y1 = Xb1,y2 = Xb2, . . .ys = Xbs.
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4.3.3.1 Notes on the Algorithm

1. Classification is performed using the usual classification rule of standard

LDA. That is, we compute the discriminant scores y1,y2, . . .ys and assign

each observation to its nearest centroid in this transformed space. Specifi-

cally,

assign the jth observation xj to the ith group πi if

[(xj − µ̂i)
>bk(τ)]2 ≤ [(xj − µ̂l)

>bk(τ)]2 for i 6= l = 1, 2, . . . g, j = 1, 2, . . . ni.

(4.21)

otherwise assign it to another group, where µ̂i is the sample mean vector

of the ith group, µ̂l is the sample mean vector of the lth group, and bk(τ) is

the kth discriminant vector which is found by solving problem (4.20) for a

given τ .

Let Ikij = 1 if

[(xj − µ̂i)
>bk(τ)]2 − [(xj − µ̂l)

>bk(τ)]2 ≤ 0,

else Ikij = 0. Then the total number of correctly classified observations (n∗)

in the training dataset is given as: n∗ =
∑g

i=1

∑ni
j=1 I

k
ij . Hence the average

proportion of misclassified observations, which is equal to the misclassifi-

cation rate (MCE) for a given τ , is

MCE(τ) =
n− n∗

n
. (4.22)

The final choice of τ is τ̂ = minMCE(τ ). If the minimum is attained at

several τ ’s, the minimum of these τ ’s is selected.
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2. Although τ is a continuous parameter, it is very difficult to consider all

values of τ . For simplicity we choose τ in the interval τ = 0 to τ = 2.

When τ = 0, the solution vector bk(τ) has only one non-zero entry equal

to ±1. Here the classification is not better than random guessing because

the second term in 4.13 switches off, and the solution does not depend on

the data. Hence, we choose τ > 0 in the interval τ ∈ [0.1, 0.2, . . . 1.9, 2.0].

The algorithm starts at τ = 0.1 and the solution is computed iteratively

until we find MCE(τ̂) such that MCE(τ̂ − ∆τ) > MCE(τ̂) and MCE(τ̂) <

MCE(τ̂ + ∆τ), where ∆τ = 0.1. Then we choose τ that has the smallest

MCE on the training set.

3. The performance of the resulting discriminant functions is evaluated on the

test datasets.

4.3.4 Interpretation and sparseness

Interpretation of a discriminant function is based on the relative importance

of the variables in discriminating the groups. Note that, if the original data matrix

X is not standardized, the coefficients of the linear discriminant function (LDF)

are called raw coefficients. The constraint a>Wda in problem (4.12) is diagonal

and it is usual to normalize a such that (a∗)>Wda∗ = 1, when the raw coefficients

are given as a∗ = a(a>Wda)−1/2. This is accomplished by dividing each element

of a by (a>Wda)1/2, where a is the eigenvector of W−1
d B.

Let the kth LDF be given by Yk = a∗>k X, where a∗k = (a∗k1, a
∗
k2, . . . a

∗
kp)
>, k =

1, 2, . . . s, and X = (X1, X2, . . . Xp)
>. The contribution of the X ′s to separation of

the groups can be assessed by comparing the raw coefficients a∗kj , j = 1, . . . , p.
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However, the use of a discriminant function to assess the relative contribution of

the X ′s to separation of the groups gives meaningful interpretation only if the

variables are commeasured, that is, measured on the same scale and with com-

parable variances. If the variables are not commeasured, we need coefficients

bkj, j = 1, . . . , p that are applicable to standardized variables. Hence, the stan-

dardized coefficients must be of the form bkj = sja
∗
kj, j = 1, . . . , p, where sj is

the within-group sample standard deviation of the jth variable obtained as the

square-root of the jth element of Wd. In vector form, the standardized coefficients

are given as: bk = W1/2
d a∗k, k = 1, 2, . . . s.

As Wd is diagonal, the sparseness of b depends on the sparseness of a∗. For

example, consider a sparse vector a∗ with only two nonzero values out of 10 com-

ponents. Let a∗ = (0.5, 0.5, 0, . . . , 0)>, and W1/2
d = diag(s1, s2, s3, . . . s10). Then, the

standardized coefficient (b) is calculated as

b = W1/2
d a∗ =



s1 0 0 · · · 0

0 s2 0 · · · 0

0 0 s3 · · · 0

...
...

... . . . ...

0 · · · · · · · · · s10





0.5

0.5

0

...

0


=



0.5s1

0.5s2

0

...

0


(4.23)

We can see that b has only two nonzero components which implies that a and

b have some equivalence in terms of sparseness. Therefore, we do not need to

recalculate a∗ because we use b for interpretation and the sparseness of a∗ is in-

herited in b.
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4.4 FC-SLDA without eigenvalues (FC-SLDA2)

To further make our method faster, we have also developed a version of

sequential FC-SLDA that does not require determination of the eigenvalues of

W−1
d B. We simply call this method ”FC-SLDA without λ”, and denote it as FC-

SLDA2. It can be directly derived from (4.13) as follows.

We know that λ is the maximum value of (a>Ba)/(a>Wda) where λ is the

largest eigenvalue of W−1
d B. Hence, any eigenvector of W−1

d B, say d 6= a, gives

a value smaller than λ. This implies that λ − λd ≥ 0 where λd is the eigenvalue

associated with the eigenvector d. So, by substituting λd in (4.13) in place of λ,

FC-SLDA2 can be formulated as

min

b>b = 1

b>Bi−1 = 0>i−1

‖b‖1 + τ(b>W−1/2
d BW−1/2

d b− λd)2 . (4.24)

We know that some of the eigenvalues of a singular matrix are zero. So, by letting

λd = 0, the simplified form of the second version of function-constrained sparse

LDA (FC-SLDA2) is given as:

min

b>b = 1

b>Bi−1 = 0>i−1

‖b‖1 + τ(b>W−1/2
d BW−1/2

d b)2 . (4.25)

To solve (4.25), we employ a modified form of the algorithm of FC-SLDA that

avoids finding eigenvalues. The advantage of FC-SLDA2 is that it is very fast

because it saves the time to calculate the eigenvalues of W−1
d B. Though it pro-

vides less accurate results than FC-SLDA does, FC-SLDA2 is an ideal method for
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selecting a small number of variables from an extremely large number of vari-

ables. In such a case most of the methods in the literature fail to provide results.

For example, the PLDA (Witten et al., 2009) fails to give results when p is very

large. Therefore, when we deal with discrimination and classification problems

involving, say, tens of thousands of variables or more, the FC-SLDA2 has a prac-

tical advantage over most of the commonly used sparse LDA methods available

in the literature. The main steps of the algorithm for FC-SLDA2 are given in

Algorithm 2 below.

4.4.1 Algorithm 2: FC-SLDA2

The main steps in the algorithm that implements FC-SLDA2 are summarized

as follows.

1. Let X be an n× p grouped multivariate data matrix.

2. Randomly split the data into two sets to form training and test datasets.

3. Find the within-group covariance matrix (W) and between group covari-

ance matrix (B) of the training data defined in (2.39).

4. Form the diagonal matrix Wd as Wd = diag(W).

5. Set the tuning parameter τ to a positive number , say 0 < τ ≤ 2.

6. For k = 1, 2, . . . s, find the p × 1 vector bk by sequentially solving the prob-
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lem.

min
bk

(
‖bk‖1 + τ(b>k W−1/2

d BW−1/2
d bk)2

)

subject to b>k bi =


1, i = k, for i, k = 1, 2, . . . s

0, i 6= k.

(4.26)

7. Let the solutions of (4.26) in step 7 be b∗1,b∗2, . . . b∗s.

8. Classify the observations in the training data using Xb∗1,Xb∗2, . . .Xb∗s and

compute the average misclassification error (MCE). Let MCE(τ ) be the MCE

for a given τ .

9. Change τ and repeat steps 6 and 8 until a value of τ is found that minimizes

MCE. The final choice of τ ’s is τ̂ = min MCE(τ). If the minimum is attained

at several τ ’s, the minimum value of these τ ’s is selected.

10. Denote the final solutions as b1,b2, . . . bs. Then the discriminant functions

are y1 = Xb1,y2 = Xb2, . . .ys = Xbs.

The tuning parameter (τ ) is obtained using the procedures given in Section 4.3.3.1.

In the next section, the newly proposed methods and two other existing promi-

nent methods are each applied to several real datasets and their results com-

pared.

4.5 Numerical applications

We evaluate our method using both small data sets and high-dimensional

data sets. We begin with two small data sets in Section 4.5.1 and apply FC-SLDA

to high-dimensional data sets in Section 4.5.2.
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4.5.1 Applications using small data sets

In this section we evaluate our FC-SLDA methods using two real data sets.

The numerical illustrations are given below.

4.5.1.1 Iris data, n > p

Iris data (Fisher, 1936) have four variables and three groups with 50 obser-

vations in each group. First we applied the original Fisher’s LDA (2.40). The

effective number of discriminant functions for this problem is min(4, 3 − 1) = 2.

The first two eigenvalues are 32.1919 and 0.2854 (32.4773 in total), and the raw

coefficients are depicted in the first two columns of Table 4.1. The projection of

the data onto the space spanned by the first two discriminant functions is given

in the (1,1) panel of Figure 4.1. It can be seen that there are three misclassified

points (52, 103 and 104) for this solution, i.e. 2% misclassification. Then, we

solved the original Fisher’s LDA with W = Wd. The first two eigenvalues are

31.0969 and 0.3125 (31.4094 in total), and the raw coefficients are depicted in the

second two columns of Table 4.1. There are six misclassified points (9, 31, 50, 52,

103 and 119) for this solution, i.e. 4% misclassification. The discriminant plot

of the data is given in the (1,2) panel of Figure 4.1. Next, we solve (4.13) with

τ = 1.2. The minimum of the objective function in (4.13) is 1.0680. The first

two eigenvalues 31.0969 and 0.3125 are approximated by 30.7763 and 0.4407 re-

spectively. The sparse raw coefficients are given in the third pair of columns in

Table 4.1. There are five misclassified points (9, 31, 50, 52, 103) for this solution,

i.e. 3.3% misclassification. The discriminant plot of the data is given in the (2,1)

panel of Figure 4.1. Finally, we solve (4.13) with τ = 0.5. The minimum of the
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objective function in (4.13) is 1.0579. The first two eigenvalues 31.0969 and 0.3125

are approximated by 30.502 and 0.616 respectively. The sparse raw coefficients

are depicted in the last pair of columns in Table 4.1. The same five points are

misclassified in this solution. The discriminant plot of the data is given in the

(2,2) panel of Figure 4.1. It seems that the LDA with W = Wd gives the worst

solution, while the sparse LDA with τ = 0.5 is most satisfying both in terms of fit

and interpretability.

Table 4.1: Different raw coefficients for Fisher’s Iris Data

Vars W Wd Sparse1.2 Sparse.5

x1 -.22 -.31 -.23 -.17 -.17 0 -.15 0

x2 .28 -.82 .12 -.89 .04 -1.0 0 -1.0

x3 -.81 .07 -.72 .23 -.74 -.05 -.74 0

x4 -.46 -.47 -.65 -.35 -.65 0 -.66 0

4.5.1.2 Rice data, p > n

Rice data (Krzanowski, 1999; Osborne et al., 1993) have 100 variables (wave-

lengths) and four groups of rice with 7, 19, 9 and 27 observations in them. The

effective number of discriminant functions for this problem is min(100, 4−1) = 3.

The first three eigenvalues are 25.3009, 1.6737 and 0.0077, which indicates that the

discrimination power of the second and the third discriminant functions are not

high. There are 37 misclassified points for this solution, i.e. 37% misclassifica-

tion. This solution is worse than the results obtained by Krzanowski (1999), who

employed PCA as a preprocessing step to reduce the number of variables. The
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Figure 4.1: Iris data plotted against two CVs. 1=Iris setosa, 2=Iris versicolor, 3=Iris

virginica. Squares denote group means. The (1, 1) panel uses the original CVs (with W).

The (1, 2) panel uses the CVs with Wd. The panels (2, 1) and (2, 2) use sparse CVs with

τ = 1.2 and τ = 0.5 respectively.

projection of the data onto the space spanned by the first two discriminant func-

tions is given in the (1,1) panel of Figure 4.2. The panel (1,2) contains the raw

coefficients of these discriminant functions. Next, we solve (4.13) with τ = 0.5.

The minimum of the objective function in (4.13) is 1.1896. The first three eigenval-

ues are approximately 23.6843, 0.0874 and 0.0803, respectively. The discriminant

plot of the data is given in the (2,1) panel of Figure 4.2. There are 40 misclassified

points for this solution, i.e. 40% misclassification. The panel (2,2) contains the

raw coefficients of these discriminant functions, and the first ones are not sparse

at all. Finally, we solve (4.13) with τ = 0.01. The minimum of the objective func-
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tion in (4.13) is 1.0000. The first three eigenvalues are approximately 20.4260,

0.1437 and 0.2418 respectively. The discriminant plot of the data is given in the

(3,1) panel of Figure 4.2. There are again 37 misclassified points for this solution,

i.e. 37% misclassification. The panel (3,2) contains the sparse raw coefficients of

these discriminant functions. It is really surprising to achieve such discrimina-

tion using only two variables! The solution is probably too sparse and one might

look for a better τ .
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Figure 4.2: Rice data plotted against two CVs. The groups are 1=France, 2=Italy, 3=In-

dia, 4=USA. Squares denote group means. The (1, 1) panel uses the CVs with Wd. The

panels (2, 1) and (2, 2), and (3, 1) and (3, 2) use sparse CVs with τ = .5 and τ = .01

respectively.

4.5.2 Applications with high-dimensional data

In modern applications the data format often has more variables than ob-

servations. Four high-dimensional datasets with p >> n were used to further

evaluate the performance of our methods. All of the data are high-dimensional
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datasets with p >> n. These four datasets are described below.

4.5.2.1 Ramaswamy data

Ramaswamy data is a data set consisting of 16,063 gene expression measure-

ments and 198 samples belonging to 14 distinct cancer subtypes (Ramaswamy

et al., 2001). The data set has been studied in several references (see for example

Witten and Tibshirani (2011); Witten et al. (2009)) and is available at http://www-

stat.stanford.edu/hastie/glmnet/glmnetData/); They were split into a training

set containing 75% of the samples and a test set containing 25% of the samples.

4.5.2.2 Leukemia microarray data

Leukemia data were used by Clemmensen et al. (2011) and are available at

http://sdmc.i2r.a-star.edu.sg/rp/. The study aimed to classify subtypes of pe-

diatric acute lymphoblastic leukemia. The data consist of 12,558 gene expression

measurements for 163 training samples and 85 test samples belonging to 6 can-

cer classes. The data were analyzed in two steps: a feature selection step was

followed by a classification step, using a decision tree structure such that one

group was separated using a support vector machine at each tree node.

4.5.2.3 IBD dataset

We further demonstrate the application of our method on the IBD data set

examined by Mai et al. (2015). This data set contains 22,283 gene expression

levels from 127 people. The people are either normal people, people with Crohns

disease or people with ulcerative colitis. The data set can be downloaded from

Gene Expression Omnibus with accession number GDS1615. The data sets were

randomly split with a 2:1 ratio in a balanced manner to form the training set and
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the testing set.

4.5.2.4 Ovarian cancer data

The ovarian cancer data (Conrads et al., 2003) were collected from women

who had a high risk of ovarian cancer due to a family or personal history of can-

cer. The objective is to distinguish ovarian cancer from non-cancer observations.

The data contain 216 samples; 121 cancer samples and 95 normal samples. The

number of recorded variables were 373,401, but only 4000 variables are consid-

ered in this study.

The four data sets are summarized in Table 4.2.

Table 4.2: Summary of four high-dimensional datasets

Data p n g Training sample Testing Sample

Ramaswamy 16063 198 14 148 50

Leukemia 12558 248 6 163 85

IBD 22283 127 3 85 42

Ovarian Cancer 4000 216 2 144 72

The main difficulty with the data sets in Table 4.2 is that the within-groups co-

variance matrix is singular and the Fisher’s LDA 2.40 is not defined. In addition,

the number of variables is huge, and hence we need to use the new methods that

can handle singular W and produce sparse discriminant functions.
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4.6 Results and discussion

We conducted an experiment on each of the four data sets. Each experiment

involves evaluating the performance of our two newly proposed methods (FC-

SLDA and FC-SLDA2) and two other methods exiting in the literature (PLDA

and SDA). Each data set was split into training and test samples. The evaluation

of the methods was performed by determining their classification errors on the

test samples. The computer time to select the same number of nonzero compo-

nents in each of the discriminant vectors was also recorded. The classification

error ( in %) and time (in seconds) of the four methods are summarized in Ta-

ble 4.3. Note that the classification error and time of each method were found by

selecting approximately equal number of variables, except the PLDA which does

not select the required number of variables.

4.6.1 Comparison with exiting methods

As noted above, we consider four sparse discriminant analysis methods for

comparison using the four data sets presented in Table 4.2. The four methods are:

• Function Constrained Sparse Linear Discriminant Analysis (FC-SLDA), which

is introduced in Section 4.3.2;

• Function Constrained Sparse Linear Discriminant Analysis without eigen-

values (FC-SLDA2), which is proposed in Section 4.4;

• Sparse Discriminant Analysis (SDA) which is proposed by Clemmensen

et al. (2011). It was reviewed in Chapter 3;
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• Penalized Classification using Fisher’s Linear Discriminant Analysis (PLDA)

which was also reviewed in Chapter 3. This method was proposed by Wit-

ten and Tibshirani (2011) for penalizing the discriminant vectors in Fisher’s

discriminant problem.

In Table 4.3 we summarize the results from numerical experiments with the

four methods listed above. For completeness, we also include corresponding

results for Fisher’s iris data and the rice data.

Table 4.3: Misclassification rate (in %) and time ( in seconds) of four sparse LDA meth-

ods. The results were found using the testing data sets.

Data FC-SLDA2 FC-SLDA SDA PLDA

Error Time Error Time Error Time Error Time

Iris 3.80 0.0012 3.30 0.0013 3.0 0.0013 4.00 0.0120

Rice 37.67 0.0050 37.00 0.0070 37.15 0.0070 38.00 0.0760

IBD 34.63 97.5023 33.50 120.65 30.65 112.2230 34.50 131.0600

Leukemia 31.42 18.2745 22.09 35.3201 27.65 19.9700 27.33 35.2000

Ovarian Cancer 21.05 55.0350 19.03 59.1958 19.31 58.3452 20.65 60.1024

Ramaswamy 18.00 109.3400 13.13 115.1903 16.16 116.5012 – –

Error denotes misclassification rates as percentages, and Time is the running

time of each method in seconds.

The solutions produced by FC-SLDA, FC-SLDA2 and SDA have about 5%

non-zero entries for all datasets except the iris data in which two, i.e. 50% vari-
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ables were selected to achieve the results. PLDA gives a slightly greater number

of nonzero components as compared to the other methods. In addition, PLDA

(Witten and Tibshirani, 2011) does not give results for the Ramaswamy data.

This may be due to the fact that the Ramaswamy data has a large number of

groups, i.e. g=14. So it cannot be compared with the other methods using the

Ramaswamy data. We can see that, on each dataset, the proposed FC-SLDA and

FC-SLDA2 have reasonably competitive performance in terms of classification

errors while selecting few variables. Overall, FC-SLDA performs better than the

three other methods in terms of misclassification rates. Though FC-SLDA2 was

slightly less accurate than the other methods, it was the fastest method. Hence,

in the case of FC-SLDA2, there may be a trade off between accuracy and speed.

4.6.2 Choice of tuning parameter (τ )

The tuning parameter,τ , in the FC-SLDA and FC-SLDA2 methods controls the

constraint function. We chose our tuning parameter (τ ) for each of the real data

sets using the procedures given in Section 4.3.3.1. Therefore, we have chosen the

tuning parameter, τ , that gives the lowest classification error. For example, the

tuning parameter plotted against classification error of the training dataset of the

ovarian cancer data is presented in Figure 4.3.

We can see from Figure 4.3 that the misclassification rate decreases steadily

when τ increases from 0 to 0.6. The misclassification rate stabilizes and attains

its minimum in the interval 0.6 to 0.9 values of τ . Then the misclassification rate

increases again for τ ≥ 1. Therefore, we set τ = 0.7 for the ovarian cancer data.

We employed similar procedures on the other data sets to choose optimal tuning
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Figure 4.3: Tuning parameter (τ) plotted against misclassification rate for the training

data set of the ovarian cancer data. The misclassification rate decreases steadily when

τ increases from 0 to 0.6. The misclassification rate stabilizes and attains its minimum

when τ is between 0.6 and 0.9. Then the misclassification rate increases again for τ ≥ 1.

parameters.

4.6.3 Variable selection and sparseness

Our sparse LDA methods select very few non-zero elements gaining good

sparseness. We performed the variable selection using cross-validation. The FC-

SLDA and FC-SLDA2 select a small number of variables that minimize classifica-

tion error. Cross validation was performed under the assumption that there is no
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interaction between variables. For example, the effective method of sequential

variable selection (Fan and Fan, 2008) assumed variables are independent when

p >> n. Because we have used the diagonal within covariance matrix in develop-

ing our method, we employed a similar cross-validation technique used by Fan

and Fan (2008).

For illustration, let us again consider the ovarian cancer data. The results

of the cross-validation that includes classification error and number of variables

used for ovarian cancer data are given in Figure 4.4, which plots the misclassi-

fication rate against the number of variables. The cross-validation classification
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Figure 4.4: Classification error is plotted against the number of selected variables.
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error reaches minimum when 10 variables are used. The error stays stable over

the range from 10 variables to 35 variables. The error goes up when more than

35 variables are used. Therefore, for any number of variables between 10 and

35, the classification error in the non-validation data is minimized. We have also

employed the same procedure to select variables for the other data sets. The vari-

able selection technique used achieves the desired spareness. For example, only

10 variables are found useful for efficient classification of the ovarian cancer data.

Hence, interpretation is now simpler as we have very few variables.
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4.7 Chapter summary

In this chapter a new function constrained sparse LDA (FC-SLDA) and its

simplified version (FC-SLDA2) were proposed for high-dimensional discrimina-

tion problems. A general method of FC-SLDA was developed to simultaneously

find all the column vectors of the discriminant transformation matrix A. How-

ever, the general method is computationally expensive. Hence, an efficient se-

quential method was proposed to iteratively find each discriminant vectors in

turn.

An `1 penalty is employed to find sparse discriminant vectors. This acts as

a sparsity penalty in order to select a few variables from a large number of

variables. Different high-dimensional real data sets were used to illustrate the

methods, and they were compared with two other competitive existing methods.

Based on classification error and speed, the results show that FC-SLDA performs

well when compared to the other methods. The FC-SLDA2 was found to be the

fastest method of discrimination though it has a relatively high classification er-

ror.



Chapter 5

Sparse LDA using common principal

components

5.1 Introduction

In the previous chapter, we proposed function constrained sparse LDA, and it

performs well on high-dimensional real data sets. However, sparse LDA makes

the assumption that the different groups share a common within-group covari-

ance matrix. In this chapter we relax these assumptions and allow the within-

group covariance matrix to differ between groups but assume some common

structure across groups. The first new method proposed in this chapter is called

SDCPC-Sparse discriminant analysis with common principal components. This

assumes that the principal components do not vary across groups. The other

new method proposed in this chapter assumes that the within-groups covari-

ance matrices are proportional to each other. This is equivalent to assuming that

they have proportional eigenvalues and common principal components (as well

111
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as sparsity) and we refer to the method as SD-PCPC. The methods are applied

to the data sets that were used in Chapter 4 for comparing sparse discriminant

methods.

The main assumption in high dimensional discriminant analysis is that the

number of variables is too large and, hence, the data at hand actually live in a

space of lower dimension, let us say d < p. The process of dimension reduction

can be done using different variable selection methods (Bouveyron et al., 2007)

or PCA (Jolliffe, 2002). A commonly used method is to reduce the dimensionality

of the data and then apply classical LDA to the reduced dimension space (Bou-

veyron et al., 2007; Srivastava and Kubokawa, 2007). That is, once the data are

projected into a low-dimensional space, it is possible to apply classical LDA on

the projected observations to obtain a partition of the original data. This method

is called a two-stage DA. The most common approach is to compute principal

components (PCs) of the original variables, and to use them for discrimination.

Hotelling (1933) defined PCA as a method that reduces the dimension of the data

while keeping as much variation of the data as possible. In other words, PCA

aims to find an orthogonal projection of the data set in a low-dimensional linear

subspace, such that the variance of the projected data is maximum (Bouveyron

and Brunet-Saumard, 2014). This leads to the classical result where the principal

axes (a1, a2, ..., ar) are the eigenvectors associated with the largest eigenvalues of

the sample covariance matrix Σ̂ of the data.

PCA searches for orthogonal directions a, for which the variance of the pro-

jected data a>x is maximum. Let the sample covariance matrix of X be Σ̂, then
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the covariance matrix of the projected data a>x will be aT Σ̂a. The criterion for

the kth PC direction is given by

max
a

aT Σ̂a subject to a ⊥ aj, for j = 1, . . . , r − 1. (5.1)

Therefore, the discriminant analysis can be done on the first r score vectors â>j x,

j = 1, . . . , r. The number of PCs (r) has to be chosen individually according to

a prediction quality criterion, and usually r is much smaller than p (Filzmoser

et al., 2012).

An l1 penalty can be imposed on the objective function (5.1) to find sparse

PCA directions. For example, the penalized PCA using the SCoTLASS criterion

(Trendafilov and Jolliffe, 2006) is given as:

max aT Σ̂a− λ||a||1 subject to a ⊥ aj, for j = 1, . . . , r − 1, (5.2)

where λ controls the degree of sparsity. Now we can obtain score vectors Xâk for

discriminant analysis. However, these methods assume that the within-group

covariance matrix is the same for each group. The aim in this chapter is to relax

this assumption.

The chapter is organized as follows: it begins by introducing discrimination

using common principal components in Section 5.2. The derivation of the general

discriminant analysis for CPC is presented in Section 5.3, and sparse LDA using

CPC is given in Section 5.4. The numerical illustrations using real data sets are

presented in Section 5.5. Finally, sparse LDA using proportional CPC is proposed

in Section 5.6.
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5.2 Discrimination using common principal compo-

nents

We aim to develop a technique that allows us to analyze group elements that

have common PCs. The estimation of PCs simultaneously in different groups

will enable joint dimension reduction. This multi-group PCA is called common

principal components (CPC) analysis. Flury et al. (1997) proposed a discrimi-

nation method which uses dimension reduction for the purpose of classification

by assuming that all differences between two classes occur in a low-dimensional

subspace. The additional assumption of CPC is that the spaces spanned by the

eigenvectors is identical across the different groups, whereas variances associ-

ated with the components are allowed to vary (Flury, 1988). CPC was first intro-

duced to study discriminant problems with different group covariance matrices,

but having common principal axes (Flury, 1988; Zou, 2006; Trendafilov, 2010).

Suppose there are g normal groups with mean vector µi and with different

covariance matrices Σi, i = 1, 2, . . . , g. The covariance matrix for the ith group

can be decomposed as (Flury, 1988; Trendafilov, 2010):

Σi = AΛiAT , i = 1, . . . , g, (5.3)

where Σi is a positive definite p×p population covariance matrix for every i, Λi =

diag(λi1, ..., λip) is the matrix of eigenvalues and A = (a1, . . . , ap) is an orthogonal

p× p transformation matrix of eigenvectors.

The important assumption of the CPC model is that all covariances matrices

Σi’s have the same eigenvectors for each group; the eigenvectors are the columns



CHAPTER 5. SPARSE LDA USING COMMON PRINCIPAL COMPONENTS 115

of A. We also assume that all λi’s are distinct. Flury (1988) gives details on how

to obtain maximum likelihood estimate of these quantities. The CPC estimation

problem (Trendafilov, 2010) is to find the common eigenvectors and correspond-

ing eigenvalues of a given sample covariance matrix Si, such that equation (5.3)

can be redefined as:

Si ≈ AΛiA>, i = 1, . . . , g, (5.4)

where the approximations are as close as possible in some sense.

The common principal axes in g groups (A) and the diagonal matrix Λi =

diag(A>SiA) can be estimated using maximum likelihood. Flury (1988) has shown

that the solutions of the CPC model is given by the generalized system of char-

acteristic equations:

a>j

( g∑
i=1

(
ni − 1

)λij − λim
λijλim

Si

)
am = 0, j,m = 1, . . . , p, j 6= m. (5.5)

Problem (5.5) can be solved using

λij = a>j Siaj, i = 1, . . . , g, j = 1, . . . , p

subject to a>j am =


1, j = m

0, j 6= m.

(5.6)

Flury (1988) developed an FG-algorithm to estimate A = (a1, a2, . . . , ap) and Λi =

(λi1, λi2, . . . , λip). Many applications of the CPC model, including the estimation

of A for the three group Iris species data, were reported in Flury (1988).

Although the CPC model by Flury (1988) is efficient in estimating A, it fails

when p > ni. We know that Si is singular when p > ni, and we have rank(Si) =

r < p.
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Let Λ
(r)
i be the p × p diagonal matrix of the first r ranked eigenvalues λi1 ≥

λi2 ≥ · · · ≥ λir > λi,r+1 = · · · = λip = 0. We can write

Si =

(
A1 A2

) Λ
(r)
i 0

0 0


 A>1

A>2

 , (5.7)

where A1 contains the first r columns of A corresponding to the non-zero eigen-

values. As a result, we will be using Λ
(r)
i and A1 in place of Λi and A, respectively,

when p > ni.

When the dimension p is relatively large, information useful for distinguish-

ing the classes is often contained in a few directions a1, a2, ..., ar, where r < p.

These directions are called the discriminant directions. To find these directions,

Zou (2006) proposed a method that is more general than Fisher’s linear dis-

criminant analysis but less general than quadratic discriminant analysis. Zou

(2006) applied a general likelihood-ratio criterion for measuring the discrimina-

tory power for a given direction a. We will see the derivation of discrimination

based on CPC in Section 5.3 below.

5.3 General method for discriminant analysis

We recall from Chapter 2 that Fisher’s linear discriminant analysis (LDA) is

given as:

max
a

a>Ba
a>Wa

(5.8)

where B is the between-class covariance matrix and W is the within-class covari-

ance matrix. In fact, given the first (k−1) discriminant directions, the kth direction
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is simply given as

max
a

a>Ba
a>Wa

subject to a>Waj = 0 ∀j<k. (5.9)

The primary purpose of discriminant analysis is to find linear combinations aTx

that have good discriminatory power between classes.

5.3.1 Likelihood approach to discriminant analysis

Fisher’s discrimination rule can also be derived using the likelihood method.

This alternative way of deriving Fisher’s discrimination rule has been proposed

by many authors. For example, Zou (2006) considered viewing the discrimina-

tion problem from a likelihood framework.

Let us now consider the likelihood approach to develop a general method for

discriminant analysis. Suppose x ∼ fi(x), where fi(x) is the density function for

group i. To examine the separation of groups, hypotheses are defined as:

H0: The groups are the same

H1: The groups are not the same.

In this case, the appropriate test statistics for measuring the relative class sepa-

ration along a fixed direction a is the (marginal) generalized log-likelihood ratio

(LR):

LR(a) = log

{
max

∏g
i=1

∏ni
j=1 f

(a)
i (a>xij)

max
∏g

i=1

∏ni
j= f

(a)(a>xij)

}
, (5.10)

where f (a)
i (.) is the marginal density along the projection defined by a for class

i; f (a)(.) is the corresponding density function under the null hypothesis that the

classes have the same density function; and xij is the jth observation in group i.

As noted in Chapter 2, Fisher’s criterion is a special case of LR(a) when fi(a)
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is assumed to be normally distributed with mean vector µi and covariance matrix

Σ. However, let us first see the derivation of the general discrimination method

based on the maximum log-likelihood ratio given in (5.10).

If fi(x) ∼ N(µi,Σi), the general discriminant method (5.10) can be simplified

as below. Under H0, let µ̂ be the pooled MLE for µ = µi, i = 1, 2, . , g, and we

know that S, the sample total covariance matrix, is the MLE for Σ. Under H1, let

µ̂i be the MLE for µi, and let Si, be the sample covariance matrix, the MLE for

Σi. Then

LR(a) = log


max

∏g
i=1

∏ni
j=1

(
1√

2πa>Sia
exp

{
−(a>xij−a>µ̂i)2

2a>Sia

})
max

∏g
i=1

∏ni
j=1

(
1√

2πa>Sa
exp

{
−(a>xij−a>µ̂)2

2a>Sa

})


= log


(a>S1a)−n1/2 · (a>S2a)−n2/2 · ... · (a>Sga)−ng/2

(a>Sa)−n/2
×

exp

{
−

∑g
i=1

∑ni
j=1(a>xij−a>µ̂i)2

a>Sia

}
exp

{
−

∑g
i=1

∑ni
j=1(a>xij−a>µ̂)2

a>Sa

}


(5.11)

Let f(a) =
(a>S1a)−n1/2 · (a>S2a)−n2/2 · ... · (a>Sga)−ng/2

(a>Sa)−n/2
. (5.12)

Taking natural logarithm on f(a) gives

log f(a) = log
{(

(a>S1a)−n1/2 · (a>S2a)−n2/2 · ... · (a>Sga)−ng/2
)}
− log(a>Sa)−n/2

=
n

2
log(a>Sa)− 1

2

g∑
i=1

ni log(a>Sia)

=
1

2

g∑
i=1

ni(log a>Sa− log a>Sia), where n =

g∑
i=1

ni

(5.13)
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and

f(C) =
exp

{
−

∑g
i=1

∑ni
j=1(a>xij−a>µ̂i)2

a>Sia

}
exp

{
−

∑g
i=1

∑ni
j=1(a>xij−a>µ̂)2

a>Sa

}
= exp

{
g∑
i=1

ni∑
j=1

(a>xij − a>µ̂)2

a>Sa
−

g∑
i=1

ni∑
j=1

(a>xij − a>µ̂i)
2

a>Sia

}
.

(5.14)

Taking natural logarithm on f(C) gives

log f(C) =

g∑
i=1

ni∑
j=1

(a>xij − a>µ̂)2

a>Sa
−

g∑
i=1

ni∑
j=1

(a>xij − a>µ̂i)
2

a>Sia

=
a>
∑g

i=1

∑ni
j=1(xij − µ̂)(xij − µ̂)>a

a>Sa
−

a>
∑g

i=1

∑ni
j=1(xij − µ̂i)(xij − µ̂i)

>a
a>Sia

(5.15)

But, the total sample covariance matrix (S) is given as:

S =

∑g
i=1

∑ni
j=1(xij − µ̂)(xij − µ̂)>

n− 1
(5.16)

and the sample within-group covariance matrix is give as:

Si =

∑g
i=1

∑ni
j=1(xij − µ̂i)(xij − µ̂i)

>

n− g
, i = 1, 2, . . . , g. (5.17)

Substituting 5.16 and 5.17 into 5.15, log f(C) is simplified as:

log f(C) =
a>(n− 1)Sa

a>Sa
− a>(n− g)Sia

a>Sia

= (n− 1)− (n− g) = g − 1.

(5.18)

We know that

LR(a) = log(f(a) · f(C))

= log f(a) + log f(C)

(5.19)

Replacing 5.13 and 5.18 into 5.19, we get:

LR(a) =
1

2

g∑
i=1

ni(log a>Sa− log a>Sia) + g − 1. (5.20)
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From this, we can see that apart from a constant not depending on a

LR(a) ∝ 1

2

g∑
i=1

ni(log a>Sa− log a>Sia). (5.21)

We exploit this result to obtain the CPC estimation method for estimating the

discriminant vector a when data is sparse.

5.4 Sparse LDA based on common principal compo-

nents

The simplified form of the likelihood-ratio (5.21) is proportional to the follow-

ing CPC model:
g∑
i=1

(ni
n

)
(log a>Sa− log a>Sia), (5.22)

where S is the total sample covariance matrix.

The objective is to estimate a by maximizing (5.22) iteratively. We aim the

variability of observations within the same group to be small. Then, groups are

more likely to be separated and observations are more likely to be classified cor-

rectly. Therefore, we focus on the within-group covariance matrix (Si) to find the

discriminant vector ak for k = 1, 2, . , r.

Under the CPC model, we recall that Λi = diag(A>SiA) where Λi = diag(Λi1,

λi2, . . . , λir) and A = a1, a2, . . . , ar. Similarly, we can easily show that λik =

a>k Siak. Zou (2006) has shown that under the CPC model, if the estimated com-

mon eigenvectors ak and aj are uniformly dissimilar for all k 6= j, then the quan-

tity in (5.22) is maximized by the common eigenvector ak for which
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g∑
i=1

(ni
n

)(− log λik) (5.23)

is the largest.

However, the CPC based discrimination method proposed by Zou (2006) does

not show how to estimate each PCs for the purpose of discrimination. Moreover,

no similar work exists that incorporates sparsity in such an approach.

We therefore propose a new stepwise estimation method to find the CPCs for

discrimination by modifying the CPC estimation method proposed by Trendafilov

(2010). This stepwise estimation method imitates standard PCA by finding the

CPCs one after another rather than finding all CPCs simultaneously. To find the

kth CPC ak, we solve the following maximization problem:

max
a

g∑
i=1

(ni
n

)(− log aTk Siak) Subject to ||ak||22 = 1 and aTAk−1 = 0Tk−1. (5.24)

This approach is equivalent to Zou (2006)’s approach for maximizing the CPC

model in (5.22). Hence, the orthogonal matrix A = (a1, ..., ar), which contains the

CPCs, is found by solving the maximization problem (5.24) step by step for the

kth CPC, k = 1, 2, ..., r.

This estimation approach is a very efficient general approach for finding A.

However, the method still does not include sparsity. Therefore, we propose to

include a lasso-like cardinality constraint on the maximization problem in (5.24)

to find sparse results. It is given in Section 5.4.1 below.
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5.4.1 Sparsity using a cardinality constraint

By imposing a Lasso penalty (Tibshirani, 1996) on the maximization problem

(5.24), we could formulate the sparse LDA using CPC as:

max
a

g∑
i=1

(ni
n

)(− log aTk Siak)− λ||ak||1 subject to ||ak||22 = 1 and aTAk−1 = 0Tk−1

(5.25)

where λ determines the degree of sparsity. The Lasso is more efficient in select-

ing variables in regression analysis. We assume that the cardinality penalty also

performs as efficient as the Lasso. Hence, for simplicity we use the cardinality

constraint to select a small number of important variables that are useful for dis-

crimination.

In our method, we impose a cardinality constraint on the maximization prob-

lem (5.24), and the resulting sparse LDA using CPC is given as follows.

Let Card(ak) be the cardinality (number of non-zero elements) of a vector ak

and t be an integer with 1 ≤ t ≤ p, then the sparse LDA based on CPC is given

as:

max
a

g∑
i=1

(ni
n

)(− log aTk Siak)

s.t. ||ak||22 = 1, , aTAk−1 = 0Tk−1, Card(ak) ≤ t.

(5.26)

The discriminant vector ak is estimated using a stepwise estimation proce-

dure. The first vector to be found is a1, which gives the maximum of (5.26) on the

unit sphere in <r. The next vector to be found is a2, which gives the maximum of

(5.26) on the unit sphere <r being orthogonal to a1. Each vector is found this way

until we find ar.
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To select a small number of variables, the cardinality constraint is imposed

on the maximization problem to achieve sparsity. Finally, we have developed

the SD-CPC algorithm to find sparse discriminant vectors for efficient discrimi-

nation. The main steps of the SD-CPC algorithm are given in Section 5.4.2.

5.4.2 Algorithm 3: SDCPC

1. Consider an n× p grouped multivariate data matrix.

2. Randomly split the data into two sets to form training and testing datasets.

Let X denotes the training data set.

3. For cross-validation, randomly divide the training data into 10 subsets such

that each subset contains one tenth of each group.

4. Take nine of the ten subsets and let X/m denote the data set when the mth

subset is omitted and let Xc denote the omitted data.

5. Put m = 1.

6. For the data set X/m, find the covariance matrix for each group (Si), i =

1, 2, . . . g.

7. Start the cardinality with t = 1, where t < p.

8. For k = 1, 2, . . . , r ≤ min(p, g − 1), find the p × 1 vector ak by solving the

problem.

max
a

g∑
i=1

(ni
n

)(− log aTk Siak)

s.t. a>k ak = 1, aTk Ak−1 = 0Tk−1, Card(ak) ≤ t.

(5.27)



CHAPTER 5. SPARSE LDA USING COMMON PRINCIPAL COMPONENTS 124

9. Let the solutions of (5.27) be a∗1,a∗2, . . . a∗r .

10. Classify the observations in the omitted data set, Xc, using the classifiers

Xca∗1,Xca∗2, . . .Xca∗r . Record the number of misclassification, calling it Err(m,t).

11. Update t in the interval (1,20] if p > 20 and repeat steps 8-10.

12. If m ≤ 10, increase m by 1 and repeat steps 6-11.

13. Find the value of t that minimizes
∑10

m=1Err(m, t). Using all the training

data, repeat step 6 for that value of t and let a1,a2, . . . , ar be the solution to

(5.27). The discriminant functions for are y1 = Xa1,y2 = Xa2, . . . ,yr = Xar.

5.4.2.1 Notes on the Algorithm

1. Classification is performed using the usual classification rule of standard

LDA. That is, we compute the discriminant scores y1,y2, . . .yr and assign

each observation to its nearest centroid in this transformed space. Specifi-

cally,

assign an observation x to the ith group πi if

[(x− µ̂i)
>ak(t)]2 ≤ [(x− µ̂l)

>ak(t)]2 for i 6= l = 1, 2, . . . g, (5.28)

otherwise assign it to another group, where µ̂i is the sample mean vector of

the ith group, µ̂l is the sample mean vector of the lth group, and ak(t) is the

kth discriminant vector which is found by solving (5.26) for a given t.

Let n∗ denote the total number of correctly classified observations in the

training data set. The proportion of misclassified observations (the misclas-
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sification rate) for a given t is

MCE(t) =
n− n∗

n
. (5.29)

2. In order to evaluate the algorithm with real data, the tuning parameter (t)

is chosen using the cross-validation from the training data. Then the dis-

criminant vectors a1, a2, . . . , ar are determined using just the training data.

The discriminant functions are then applied to the test data and the number

of misclassifications is recorded and used as a measure for evaluating the

algorithm.

5.5 Numerical illustrations

The performance of our new SDCPC algorithm is evaluated based on the 6

real data sets given in Section 4.5, and the results of the analysis are presented

in Section 5.5.1. We further compare our method with other existing methods in

Section 5.5.2.

5.5.1 Numerical Results of SDCPC on real data sets

We applied our new SDCPC algorithm to the six well known real data sets

that were used in Section 4.5. These data sets are:

1. Fisher’s Iris data ( n > p)

2. Rice data ( p > n)

3. Ovarian Cancer data ( p >> n)

4. Leukemia data ( p >> n)
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5. Ramaswamy data ( p >> n)

6. IBD data ( p >> n)

We analysed the data sets using the new SDCPC algorithm. The summarized

numerical results are presented in Table 5.5.1.

Table 5.1: Numerical results of SDCPC on low and high-dimensional real datasets

Data n p g r t Error (%) Time

Iris 150 4 3 2 [2,2] 3.00 0.0019

Rice 62 100 4 3 [3,3,3] 35.48 0.0068

Ovarian Cancer 216 4,000 2 1 [10] 19.33 18.2347

Leukemia 248 12,558 6 3 [15,15,15] 13.17 53.1992

Ramaswamy 198 16,063 14 3 [13,13,13] 32.50 118.4381

IBD 127 22,283 3 2 [13,13] 23.50 105.3508

In the table, Error denotes the proportion of misclassified observations in

%, Time is the average system time in seconds, r is the number of discrim-

inant functions, and t is the number of non-zero components in each vector,

ak, k = 1, 2, . . . , r. We can see from Table 5.5.1 that the SDCPC performs better

with the Iris, Ovarian Cancer, and Leukemia data sets. The Rice and Ramaswamy

data sets have relatively higher misclassification rates. This may be due to the

fact that the groups in the Rice data are very close to each other, making sep-

aration of observations a difficult task (Krzanowski et al., 1995). The relatively

weak performance of SDCPC on the Ramaswamy data set may be due to the fact

that the Ramaswamy data set has 14 groups, much larger than in the other data
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sets. In general, SDCPC was found to be an efficient classification method for

high-dimensional multivariate data with p >> n and it selected a small number

of variables, which is a plus for interpretation.

Cross-validation (CV) was employed to select the number of variables (i.e.,

t) using the training data set. With each data set, a 10 fold CV was applied to

find t that minimizes misclassification error in the training set. The results for the

Leukemia data are presented in Figure 5.1. The figure shows the plot of num-

ber of variables against misclassification rates. The misclassification rate (MCE)

reaches almost 0.10 when 20 variables are used for classification based on the

training data. Therefore, we took the number of variables that minimizes MCE

of the training set, which is approximately 20, in Figure 5.1. The MCE attains its

minimum when about 15 variables are selected from the test data. Similarly, we

employed the same approach to select the number of variables for the other data

sets.

To further illustrate the performance of our method a 2-dimensional scatter

plot for the IBD data is presented in Figure 5.2. We can see from the plot that

the groups are well separated. This suggests that the sparse LDA based on CPC

performs efficiently in classification of high-dimensional data.

5.5.2 Comparison with other methods

In this section, we compare our SDCPC method with other exiting methods.

The two methods used for comparison are briefly described below.
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Figure 5.1: Classification error of training and testing samples is plotted against the

number of variables for the Leukemia data.

5.5.2.1 Penalized linear discriminant analysis (PLDA)

Penalized LDA (Witten and Tibshirani, 2011) penalizes the discriminant vec-

tors in Fisher’s discriminant problem. Fisher’s discriminant problem finds a low

dimensional projection by solving the following problem sequentially

max
ak

aTk Bak subject to aT
kWak ≤ 1, aTk Wai = 0, ∀i < k.

The solution ak is the kth discriminant vector (k = 1, 2, ..., g − 1). The diagonal

estimate of the within-class covariance matrix is used to solve the problem.
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Figure 5.2: Scatter plot of the three groups of IBD data (i.e. Normal, Crohns, and Ulcer-

ative) using two discriminant directions

5.5.2.2 Sparse Discriminant Analysis(SDA)

Clemmensen et al. (2011) proposed SDA based on the optimal scoring inter-

pretation of LDA. They defined the sparse discriminant analysis (SDA) method

sequentially. Let Y denote an n× g group indicator matrix. The kth SDA solution

pair (θk,βk) solves the problem

min
θk,βk
{||Yθk − Xβk||2 + γ(βTΩβ) + λ||βk||1}

subject to
1

n
θTk YTYθk = 1, θTk YTYθj = 0 for j < k,
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where λ and γ are nonnegative tuning parameters, and Ω is a positive-definite

penalty matrix.

5.5.2.3 Results of the three methods based on real data

We compare our method (SDCPC) with the two methodes that are briefly

reviewed above, SDA and PLDA. For simplicity, we have taken only two data

sets which are randomly selected from the Ovarian Cancer data and IBD data

sets for comparison purpose. The two modified data sets are:

1. OC2 data (n = 216, p = 400, g = 2): We took only 400 variables from the

total 4000 variables of the Ovarian cancer data.

2. IBD2 data set (n = 127, p = 5000, g = 3): We took only 5000 variables from

the 12,283 variables of the IBD data set.

Table 5.2: Classification error, time and sparsity of three methods

Data Criteria SDCPC SDA PLDA

OC2 Errors 18.03 17.31 20.65

Sparsity (%) 5.0 5.0 5.0

Time 7.1958 7.0452 10.1024

IBD2 Errors 21.32 21.50 23.50

Sparsity (%) 2.0 2.0 2.0

Time 45.1903 40.5012 48.6912

Results of the comparison of the three methods are presented in Table 5.2.

Errors denote misclassification rates in percentages, sparsity represents the pro-

portion of non-zero components to the total components, and Time is the running
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time of each method in seconds. Based on the modified data sets and their results

in Table 5.2, the SDCPC performs better than PLDA in terms of classification and

speed with the same sparsity. Our method also provides comparable results with

SDA.

Therefore, sparse LDA based on CPC performs effectively in both scenarios

( i.e., when n > p and when p >> n). The method works with good speed for

any size of p. Therefore, sparse LDA based on CPC performs well in classifying

observations into their respective groups. Moreover, it gives only a few nonzero

components, which helps in identifying the important variables for discrimina-

tion.

5.6 Sparse LDA using proportional CPC

The main assumption of classical linear discriminant analysis is that all co-

variance matrices Σi(for i = 1, 2, ..., g) are identical. However, when the Σi

are different, quadratic discrimination is an appropriate method. We have also

developed two other methods of discrimination based on the structure of the

group covariance matrices. These methods are CPC discrimination, which was

introduced in Section 5.4 and proportional discrimination. In this section we in-

troduce the discrimination based on proportional CPC. This method is based on

the assumption that all Σi are proportional (with unknown proportional factors).

Replacing the Σi in the discrimination rule by their maximum likelihood (ML)

estimates or least squares (LS) estimates under proportionality, we find propor-

tional discrimination.
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Flury (1988) demonstrated in a simulation study that even a simpler model

than CPC with proportional covariance matrices can provide quite competitive

discrimination compared to other more complicated methods. For short, we call

such PCs proportional PCs (PPC). They are also interesting because they admit

very simple and fast implementation that is suitable for large data sets.

As before, we consider g normal populations with mean vector µi and assume

that the p× p covariance matrices, Σi, may be different but are proportional. The

hypothesis of proportionality of covariance matrices is given as

HProp : Σi = ciΣ1, i = 2, ..., g, (5.30)

where ci are unknown positive constants specific to each population.

We know that under the CPC model, the eigenvalue decomposition (EVD) of

Σi is

Σi = AΛiA>, i = 2, ..., g, (5.31)

where Λi = diag(λi1, λi2, . . . , λip), and A is the matrix of common eigenvectors

corresponding with Λi. Similarly, let the EVD of Σ1 be

Σ1 = AΛ1A>. (5.32)

By substituting (5.31) and (5.32) into (5.30), it follows that

Λi = ciΛ1.

As a result, the proportional model can be viewed as an offspring of the CPC

Model (Flury, 1988), obtained by imposing the constraints

λij = ciλ1j, i = 1, . . . , g, j = 1, . . . , p. (5.33)
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For simplicity we omit the first index of the diagonal elements of Λ1, that is, we

put

Λ = Λ1 = diag(λ1, . . . , λp), (5.34)

and the constraints (5.33) are then λij = ciλj .

However, when Σ1 is singular, it is replaced by

Σ1 ≈ AΛrA>,

where Λr = diag(λ1, λ2, . . . , λr), and A is the matrix of common eigenvectors cor-

responding to the r-nonzero eigenvalues in Λr. It can be given as A = (a1, a2, . . . ,

ar), where r < p.

In the remainder of this chapter we will use the notation Λr and A as the ma-

trices of eigenvalues and their associated eigenvectors, respectively,when dealing

with singular covariance matrices.

Therefore, the ML and LS methods are solved under the constraints A>A = Ir

and c1 = 1. The ML and LS estimation methods of the proportional principal

components (PCs) are given in the following sections.

5.6.1 Maximum Likelihood estimation of proportional PCs

Flury (1988) has derived an ML estimation method for proportional PCs. By

considering (5.30), the ML estimation of Σi, i.e. of Σ1 and ci, is formulated as the

following optimization problem:

min
Σ1,c

g∑
i=1

ni{log[det(ciΣ1)] + trace[(ciΣ1)−1Si]}, (5.35)

where Si are given sample covariance matrices and c = (c1, c2, ..., cg) ∈ Rg assum-

ing c1 = 1.
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Then, after substitution of Σ1, (5.35) becomes:

min

g∑
i=1

ni{log[det(ciAΛrA>)] + trace[(ciAΛrA>)−1Si]}, (5.36)

which further simplifies to:

min
A,λ,c

g∑
i=1

ni

{
r∑
j=1

[
((ciλj) +

a>j Siaj
ciλj

)

]}
, (5.37)

where aj and λj are respectively the jth eigenvector and eigenvalue of Σ1.

The ML estimates of aj , λj and ci, are derived from the first order optimality

conditions of (5.37). That is, (5.37) can be solved using patrial derivatives with re-

spect to aj , λj and ci. The detailed procedures of the ML estimation of aj , λj and ci

are given in Flury (1988) for positive definite covariance matrices Σi, i = 1, . . . , p.

They are further used to construct an algorithm for their estimation. However,

for high-dimensional multivariate data, the estimation of PPC using the ML al-

gorithm was found to be very slow. Hence, we propose a new least square (LS)

estimation method of aj , λj and ci for high-dimensional discrimination problem.

The LS estimation method is presented in Section 5.6.2.

5.6.2 Least square estimation of proportional CPC

We assume that under proportional CPC model, the parameters ci, A, and Λr

in (5.32) can be estimated by minimizing the sum of the square of the deviations

between Si and ciAΛrA>. Therefore, we define the least square (LS) setting of

the proportional CPC problem as:

min
A,λ,c

g∑
i=1

ni||Si − ciAΛrA>||2F . (5.38)
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To find LS estimations of A, Λr and c2, ..., cg assuming c1 = 1, consider the

objective function of (5.38) by letting Yi = Si − ciAΛrA>

f =
1

2

g∑
i=1

ni||Yi||2F =
1

2

g∑
i=1

nitrace(Y >i Yi), (5.39)

and its total derivative:

df =
1

2
d

g∑
i=1

nitrace(Y >i Yi) = −
g∑
i=1

nitrace[Yid(ciAΛrA>)]

= −
g∑
i=1

nitrace{Yi[(dci)AΛrA> + ciA(dΛr) + 2ciAΛr(dA)>]}.

Then the partial gradients with respect to A, Λr and ci, i = 2, ..., g, are:

∇cif = −nitrace(YiAΛrA>) = nicitrace(Λ2
r)− nitrace(A>SiAΛr) (5.40)

∇Λrf = −
g∑
i=1

niciA>YiA =

g∑
i=1

nic
2
iΛr −

g∑
i=1

nicidiag(A>SiA). (5.41)

∇Af = −2

g∑
i=1

niciYiAΛr = 2

g∑
i=1

nic
2
iAΛ2

r − 2

g∑
i=1

niciSiAΛr. (5.42)

At the minimum of (5.39), the partial gradients (5.40) and (5.41) must be zero,

which leads to the following LS estimations:

ci =
trace(A>SiAΛr)

trace(Λ2
r)

=

∑r
j=1 a>j Siajλj∑r

j=1 λ
2
j

, i = 2, 3, ...g, (5.43)

Λr =

∑g
i=1 nicidiag(A>SiA)∑g

i=1 nic
2
i

or λj = a>j

(∑g
i=1 niciSi∑g
i=1 nic

2
i

)
aj. (5.44)
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The gradient (5.42) together with the constraint A>A = Ir imply that at the mini-

mum of (5.39) the matrix:

A>j

(∑g
i=1 niciSi∑g
i=1 nic

2
i

)
Aj (5.45)

should be diagonal. This also indicates that PPCs and A can be found by consec-

utive EVD of
∑g
i=1 niciSi∑g
i=1 nic

2
i

, where updated values for ci and λj are found by (5.43)

and (5.44). This is a very important feature which will be utilized in variable

selection for dimension reduction.

Note that, as in the ML case, the equation for the proportionality constraints

(5.43) holds also for i = 1, because
∑r

j=1 a>j S1ajλj =
∑r

j=1 λ
2
j . Hence c1 = 1.

The steps of the algorithm for solving the least square equation is outlined

in Section 5.6.4, but we see from (5.43) to (5.45) that the LS estimates correspond

much to what one would intuitively expect. For instance, the constants of pro-

portionality (c′is) are estimated as ratio of total squared variances (5.43). Alterna-

tively, ci can be estimated as the ratio of the total variations of two matrices. That

is

ci =
trace(Si)
trace(S1)

, i = 2, . . . , g, (5.46)

where trace(Si) is the total variation of the ith group, which is given as

trace(Si) =
r∑
j=1

λij. (5.47)

5.6.2.1 Numerical Illustration

For Illustration we solve the PPC-LS problem for the Fisher’s Iris data. The

estimators are obtained by solving (5.38), making use of an alternative iterative
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algorithm similar to the ML case.

A =



.7307 −.2061 .5981 −.2566

.2583 .8568 .1586 .4171

.6127 −.2209 −.6816 .3336

.1547 .4178 −.3906 −.8056


and respectively:

λ2
1 =



48.4509

6.2894

6.3261

1.4160


, λ2

2 =



69.2709

10.5674

5.2504

3.7482


, λ2

3 =



14.7542

7.9960

6.3983

1.7719


.

The proportionality constants are estimated as 1.0000, 1.4284 and .3343. For

comparison with the ML solution obtained, we predict the estimated population

covariance matrices for the Fisher’s Iris Data:

Σ̂1 =



28.0939 8.0037 19.7198 4.1039

8.0037 9.3609 5.9809 3.5642

19.7198 5.9809 21.1279 4.5960

4.1039 3.5642 4.5960 4.7767
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Σ̂2 =



40.1290 11.4325 28.1679 5.8621

11.4325 13.3711 8.5431 5.0911

28.1679 8.5431 30.1793 6.5650

5.8621 5.0911 6.5650 6.8231



Σ̂3 =



9.3914 2.6755 6.5921 1.3719

2.6755 3.1292 1.9993 1.1915

6.5921 1.9993 7.0629 1.5364

1.3719 1.1915 1.5364 1.5968


.

The value of the PPC-LS objective function is 129.1579. The fit achieved by the LS-

CPC solution produced is 93.3166. In both examples we consider ni := ni�
∑g

i=1 ni.

5.6.3 Sparse discrimination using proportional CPC (SD-PCPC)

We have seen in Section 5.6.2 that we can estimate the parameters ci, A, and Λr

by minimizing (5.38). However, we need to identify a small number of variables

that are important for classification. The cardinality penalty was found to be ef-

fective in finding sparse common principal components. Therefore, as in SDCPC,

we here also propose to impose the cardinality constraint on (5.38) to select a set

of variables which have better classification performance as compared with other

possible sets of variables. Thus the modified constrained minimization problem

can be given as

min
a

( g∑
i=1

ni||Si − ciAΛrA>||2F
)

s.t. A>A = Ir, Card(ak) ≤ t,

(5.48)
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where the constraint Card(ak) ≤ t means that the cardinality selects only t vari-

ables out of the original p variable from the kth column of A.

By letting, A = (a1, a2, . . . , ar), the kth vector ak, k = 1, 2, . . . , r, can be sequen-

tially found by solving the constrained minimization problem

min
a

( g∑
i=1

ni||Si − ciakΛra>k ||2F
)

s.t. a>k ak = 1, aTAk−1 = 0Tk−1, Card(ak) ≤ t.

(5.49)

We have developed an algorithm that solves problem (5.49). The main steps

of the SD-PCPC algorithm are summarized in Section 5.6.4 below.

5.6.4 Algorithm 4: SD-PCPC

1. Consider an n× p grouped multivariate data matrix.

2. Randomly split the data into two sets to form training and testing datasets.

Let X denotes the training data set.

3. For cross-validation, randomly divide the training data into 10 subsets such

that each subset contains one tenth of each group.

4. Take nine of the ten subsets and let X/m denote the data set when the mth

subset is omitted and let Xc denote the omitted data.

5. Put m = 1.

6. For the data set X/m, find the covariance matrix for each group (Si), i =

1, 2, . . . g.

7. For i = 1, 2, . . . , g, put

ci =
trace(Si)
trace(S1)

. (5.50)



CHAPTER 5. SPARSE LDA USING COMMON PRINCIPAL COMPONENTS 140

8. Start the cardinality with t = 1, where t < p.

9. For k = 1, 2, . . . r ≤ min(p, g − 1), find the p × 1 vector ak by sequentially

solving the problem.

min
a

( g∑
i=1

ni||Si − ciakΛra>k ||2F
)

s.t. a>k ak = 1, aTk Ak−1 = 0Tk−1, Card(ak) ≤ t.

(5.51)

10. Let the solutions of (5.51) be a∗1, a∗2, . . . a∗r . Form a matrix A∗ = (a∗1, a∗2, . . . a∗r).

11. Classify the observations in the omitted data set, Xc, using the classifiers

Xca∗1,Xca∗2, . . .Xca∗r . Record the number of misclassification, calling it Err(m,t).

12. Update t in the interval (1,20] if p > 20 and repeat steps 8-10.

13. If m ≤ 10, increase m by 1 and repeat steps 5-10.

14. Find the value of t that minimizes
∑10

m=1Err(m, t). Using all the training

data, repeat steps 6-9 for that value of t and let a1,a2, . . . ar be the solution to

(5.51). The discriminant functions are y1 = Xa1,y2 = Xa2, . . .yr = Xar.

5.6.4.1 Notes on the algorithm

1. When we say, for example, that the first three principal components explain

more than 80% of the total variation, the total variation is defined as the sum

of the eigenvalues of the covariance matrix, which equals the trace of that

matrix. In step 7 of the algorithm we use that definition of total variation to

determine the ci.

2. The procedure for evaluating the algorithm with real data is the same as for
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algorithm 3. Thus, the performance of the resulting discriminant functions

is evaluated on the test set.

5.6.5 Numerical illustration of SD-PCPC

To evaluate the performance of the SD-PCPC, we applied it to the six real data

sets used earlier.

1. Fisher’s iris data ( n > p)

2. Rice data ( p > n)

3. Ovarian Cancer data ( p >> n)

4. Leukemia data ( p >> n)

5. Ramaswamy data ( p >> n)

6. IBD data ( p >> n).

Table 5.3: Constants of proportionality of sample covariance matrices of real data sets

Data g c1 c2 c3 c4 c5 c6 · · · c14

Iris 3 1.00 1.4284 0.3343 - - - · · · -

Rice 4 1.00 0.8493 0.7695 0.6042 - - · · · -

Ovarian Cancer 2 1.00 0.4900 - - - - · · · -

Leukemia 6 1.00 0.7600 0.9900 1.1200 1.2700 0.8500 · · · -

IBD 3 1.00 0.4320 1.1567 - - - · · · -

Ramaswamy 14 1.00 0.1300 0.03200 0.6300 0.0310 0.0112 · · · 0.0333
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It it assumed that c1 = 1. The remaining ci’s, i = 2, . . . , g are given in Table 5.3.

We can see that the group covariances matrices of the Iris, Rice, Leukemia, and

IBD data sets vary comparatively little across groups appreciably in their total

variance, and the group covariance matrices of Ramaswamy vary far more.

Using these ci’s , we further analysis the data sets using SD-PCPC and the

summarized results are presented in Table 5.4.

Table 5.4: Numerical results of SD-PCPC on low and high-dimensional real datasets

Data n p g r t Error Time

Iris 150 4 3 2 [2,2] 4% 0.0013

Rice 62 100 4 3 [3,3,3] 37.21% 0.0059

Ovarian Cancer 216 4,000 2 1 [10] 18.21% 21.0011

Leukemia 248 12,558 6 3 [14,14,14] 17.17% 68.01289

IBD 127 22,283 3 2 [13,13] 23.10% 155.3122

Ramaswamy 198 16,063 14 3 [13,13,13] 48.15% 139.1301

From Table 5.4, we can see that our new SD-PCPC performs well on the data

sets Iris, Ovarian cancer, Leukemia, and IBD with misclassification rates 4%,

18.21%, 23.17%, and 23.10%, respectively. However, it performs weakly on the

Rice and Ramaswamy data sets with misclassification rates 37.21% and 48.15%,

respectively. The weak performance of the SD-PCPC on the rice data may be

because of the tightness of the groups to each other (Krzanowski et al., 1995).

Similarly, the weak performance of SD-PCPC on the Ramaswamy data set may

be due to the fact that the Ramaswamy data set has many groups ( i.e., g=14).

Therefore, the SD-PCPC method does not seem to give better results than ran-
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dom guessing when the number of groups is very large. However, in general, we

conclude that the SD-PCPC performs well when the number of groups is fairly

small.
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5.7 Chapter summary

In this chapter, a sparse LDA based on CPC has been proposed for high di-

mensional classification problems. The sparse LDA with CPC (DSCPC) makes

a weaker assumption than the assumption of equal group covariance matrices.

This method is developed using the likelihood approach (Zou, 2006). The es-

timated CPCs are used as classification vectors. A cardinality penalty is used

to achieve sparsity. This penalty helps to select a small variables from possibly a

huge number of variables. From the numerical results using real data sets, sparse

LDA based on CPC performs well. Furthermore, our newly proposed method is

compared with two other existing methods using real data sets. Finally, we pro-

posed that high-dimensional discrimination can also be performed using pro-

portional CPCs when the group covariance matrices have some proportionality.

We called the resulting sparse discrimination method SD-PCPC. SD-PCPC gives

good results when group covariance matrices are approximately proportional to

each other.



Chapter 6

Sparse LDA using optimal scoring

6.1 Introduction

As an alternative method for high-dimensional LDA, we propose a new method

that uses optimal scoring (OS), called sparse LDA. The method is developed by

using an l1 minimization method and is commonly called the Dantzig selector

(Candès and Tao, 2007) in statistical estimation when p is much larger than n.

It assumes that in high dimensional discriminant analysis, most of the variables

correspond to noise and only a few variables are important for classifying obser-

vations into their respective groups. Clemmensen et al. (2011) developed a sparse

discriminant analysis based on OS but the algorithm has some convergence prob-

lems. Here, we aim to develop an effective sparse discriminant analysis using OS

and the Dantzig selector.

Let us first define some notation for formulating the optimal scoring of dis-

criminant analysis using the Dantzig selector. We recall that the multivariate data

X consists of n observations, where each observation xj comprises p-variables.

145
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Let Y denote an n×g group indicator matrix, with columns that correspond to the

dummy-variable codings of the g-groups. That is, yij ∈ {0, 1} indicates whether

the jth observation belongs to the ith group. We assume that the columns of X are

centered (i.e., orthogonal to the constant vector 1) so that the columns of X will

have mean zero and the total sample covariance matrix will be S = n−1XTX.

Our new method is called sparse linear discriminant analysis based on opti-

mal scoring (SLDA-OS) that is developed based on the fact that discrimination

problem can be recast as a regression problem. Using the same formulation as

Dantzig selector, our discrimination method can be given as

min ||βk||1 subject to ||XT r||∞ ≤ λ, θTk YTYθk = 1,θTk YTYθl = 0 for all l < k,

(6.1)

where ||.||1 and ||.||∞ represent the l1-norm and l∞-norm, respectively, λ is a tun-

ing parameter, and r is the vector of residuals given as:

r = Yθk − Xβk, (6.2)

where θk is a g × s matrix of scores, and βk is a p × s matrix of regression coef-

ficients. The theoretical and practical results of our method, SLDA-OS, will be

given in the succeeding sections.

The chapter is organized as follows: It reviews the connection between multi-

variate regression analysis and discriminant analysis via optimal scoring in Sec-

tion 6.2, and then the formulation of discrimination problem as regression prob-

lem is given in Section 6.3. We have proposed a new sparse LDA based on opti-

mal scoring, SLDA-OS, in Section 6.4. This section shows the theoretical formu-
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lation of discrimination problem as regression problem via optimal scoring, and

the use of `1-minimization to select a small number of variables. The algorithm

for SLDA-OS is given in Section 6.4.1. Section 6.5 presents numerical illustration

of our method. The results of high-dimensional simulated and real data sets are

given in this section. Finally, the summary of the chapter is given in Section 6.6.

6.2 Connection of multivariate regression analysis and

discriminant analysis via optimal scoring

Without loss of generality, we assume that the columns of X have mean zero.

Hastie et al. (1994) developed a multivariate regression procedure as a simpler

way to perform classification. The regression procedure is applied to an indica-

tor response Y that represents the classes, and a new observation is assigned to

the class with the largest fitted value. This procedure was referred to as softmax

(Hastie et al., 1994).

In the two-group case, with equal sample sizes, softmax is essentially equiv-

alent to LDA. They may not be equivalent in general, but Hastie et al. (1994)

showed that the space of LDA fits in the same space as the space in which mul-

tivariate linear regression fits. This means that the LDA solution can be obtained

from a linear discriminant analysis of the fitted values from a multivariate re-

gression. This equivalence was further proved and discussed in detail by Hastie

et al. (1995). Using LDA in this fashion as a postprocessor for multivariate linear

regression generally improves its classification performance.

Hastie et al. (1995) noted that discriminant variates are the same as the canon-
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ical variates that result from a canonical correlation analysis (CCA), and they

used the latter interchangeably with discriminant variates. It is less well known

that an asymmetric version of canonical correlation analysis, called optimal scor-

ing (OS), also yields a set of dimensions that coincide up to scalars with those of

LDA and CCA.

Hastie et al. (1995) noted that OS, CCA and LDA are equivalent and showed

the equivalence of the three methods when a penalization is imposed on each

method for dimension reduction. Dimension reduction means reexpressing the

data in fewer variables while minimizing the loss of essential information for

the problem at hand. In discriminant analysis, such reduction can actually be

beneficial when the ”lost dimensions” show only spurious or weak structure.

LDA based on OS is equivalent to CCA; the linear predictors define the one set of

variables, and a set of dummy variables representing class membership defines

the other set. CCA in this context gives the solution to a scoring problem that is

described below.

Let Y be the n × g indicator matrix corresponding to the dummy-variable

coding for the classes, with yij = 1 if the jth observation belongs to the ith group,

and yij = 0 otherwise.

Let Θ be a g × s matrix of scores, and B be a p× s matrix of regression coeffi-

cients, which are respectively given as:

Θ = (θ1,θ2, . . . ,θs) (6.3)

where θk is a g × 1 vector, and

B = (β1,β2, . . . ,βs) (6.4)
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where βk is a p× 1 vector, for k = 1, 2, . . . , s ≤ min(g − 1, p).

Then the scores θk and the coefficients βk are chosen to minimize the problem:

min{||Yθk − Xβk||2}. (6.5)

The scores are assumed to be mutually orthogonal and normalized with respect

to an appropriate inner product to prevent trivial zero solutions.

If we let Θ∗ be the n× s matrix of transformed values of the classes, then it is

clear that if the scores were fixed, we could minimize problem (6.5) by regressing

Θ∗ on x. Let PX project onto the column space of the predictors. Then the scores

are obtained by minimizing

min trace{Θ∗T (I− PX)Θ∗}/n (6.6)

= min trace{ΘTY>(I− PX)YΘ}/n. (6.7)

Hastie et al. (1995) developed an algorithm to solve problem (6.6). The steps

of the algorithm are summarized as:

1. Initialize. Form Y, the n×g indicator matrix corresponding to the dummy-

variable coding for the classes.

2. Multivariate regression. Set Ŷ = PXY and denote the p × g coefficient

matrix by B: Ŷ = XB.

3. Optimal scores. Obtain the eigenvector matrix Θ of Y>Ŷ = Y>PXY with

normalization Θ>DΘ = I, where D = Y>Y/n.

4. Update. Update the coefficient matrix in step 2 to reflect the optimal scores

by setting B = BΘ. The final optimally scaled regression fit is the s vector

function B>x.
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There is an alternative algorithm for computing the usual canonical variates. The

final coefficient matrix B is, up to a diagonal scale matrix, the same as the dis-

criminant analysis coefficient matrix.

6.3 Linear discriminant analysis via optimal scoring

We recall from Chapters 2 and 3 that LDA can be considered as arising from

Fisher’s discriminant problem. Fisher’s discriminant problem involves seeking

discriminant vectors β1,β2, . . . ,βs that successively solve the problem

max{β>k Σbβk} subject to β>k Σwβl =


1, k = l,

0, k 6= l.

(6.8)

These solutions are directions found by maximizing the between-group variance

relative to their within-group variance. However, for discrimination problem

with p > n, the within-group covariance matrix has to be regularized to solve

problem (6.8). For example, under the assumption that variables are indepen-

dent, the within-group covariance matrix (Σw) can be replaced by its diagonal

matrix. With this simplification we can solve problem (6.8) and find the discrim-

inant vectors β1,β2, . . . ,βs.

We can alternatively find βk’s using the formulation of discrimination prob-

lem via optimal scoring. Here, we assume that the discriminant analysis prob-

lem can be recast as a regression problem by changing categorical variables into

quantitative variables via optimal scoring.

Let Y be the n × g indicator matrix corresponding to the dummy-variable
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coding for the classes; that is, yij = 1 if the jth observation belongs to the ith

group, and yij = 0 otherwise. Then the discrimination problem using optimal

scoring has the form

min{||Yθk − Xβk||2} subject to
1

n
θ>k Y>Yθl =


1, k = l,

0, k 6= l,

(6.9)

where θk is a g × 1 vector of scores, and βk is a p × 1 vector of coefficients, for

k = 1, 2, . . . , s ≤ min(g − 1, p), and ||.|| denotes the vector `2-norm defined by√
y2

1 + y2
2 + · · ·+ y2

n for all y ∈ <n. If we let D = 1
n

Y>Y be a diagonal matrix of

group proportions, the constrains in (6.9) can be redefined as θ>k Dθk = 1 and

θ>k Dθl = 0 for k 6= l. The vector βk that solves (6.9) is proportional to the so-

lution to (6.8) (Clemmensen et al., 2011). We will refer to the vector that solves

(6.9) as the kth discriminant vector. Performing LDA on X yields the s classifiers

Xβ1, . . . ,Xβs.

For classification problem with p >> n data, Clemmensen et al. (2011) pro-

posed a variant method of sparse discriminant analysis based on the optimal

scoring problem that employs regularization via the elastic net penalty function.

Suppose we have identified the first k − 1 discriminant vectors β1, . . . ,βk−1 and

scoring vectors θ1, . . . ,θk−1. Then the kth sparse discriminant vector βk and scor-

ing vector θk are found as the optimal solutions to the optimal scoring criterion
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problem

min{||Yθk − Xβk||2 + γβ>Ωβ + λ||β||1} subject to
1

n
θ>k Y>Yθl =


1, k = l,

0, l < k,

(6.10)

where γ and λ are nonnegative tuning parameters and Ω is a p×p positive definite

matrix. The optimization problem (6.10) is nonconvex, due to the presence of

nonconvex spherical constraints. Consequently, it may not converge to a globally

optimal solution using iterative procedures. Moreover, it is computationally very

expensive, especially when both p and m are very large, where m is the number

of nonzero coefficients.

Our primary objective is to develop an alternative sparse discrimination prob-

lem via optimal scoring. But we still keep the assumption that a discrimination

problem can be recast as a regression problem. We formulate our new sparse

LDA with optimal scoring in a similar fashion used with the Danztig selector in

regression analysis for p > n.

6.4 Sparse LDA using optimal scoring

Our aim is to develop an efficient method of discrimination based on optimal

scoring. We have reviewed various methods of discriminant analysis for high

dimensional classification problem in Chapter 3. We have also briefly reviewed

two relevant methods in Section 6.3 above. We observe that there is still a need to

develop an alternative method of discrimination based on optimal scoring that

improves the weakness of the exiting methods. We are now propose that sparse
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discrimination can be achieved by adapting the Dantzig selector to the discrim-

ination problem. The Dantzig selector was found to be an efficient method in

regression analysis when p >> n. Hence, we propose in this chapter that high-

dimensional discriminant analysis can be alternatively solved using the Dantzig

selector. First, let us briefly review the Dantzig selector in regression analysis.

The Dantzig selector (Candès and Tao, 2007) has already received a consider-

able amount of attention. It was defined for linear regression model where p > n

and the set of coefficients is sparse, i.e, most of the β’s are 0. The kth Dantzig

estimate β̂k is defined as the solution to

min ||β̂k||1 subject to ||X>(Y− Xβk)||∞ ≤ λ, (6.11)

where ||.||1 and ||.||∞ represent the `1- and `∞-norms,respectively and λ is a tun-

ing parameter. Candès and Tao (2007) gave detailed theoretical and practical

results to substantiate that regression coefficient vector β̂k that solves (6.11) is a

very effective estimate in regression problems with p >> n.

By adopting the formulation of Danzig selector (6.11) and by using notation

from Section 6.3, and imposing appropriate constraint, we define our sparse LDA

using the optimal scoring (SLDA-OS) problem as:

min ||β̂k||1 subject to ||X>(Yθk − Xβk)||∞ ≤ λ, (6.12)

and
1

n
θ>k Y>Yθl =


1, k = l,

0, k 6= l.

As before, θk is a g × 1 vector of scores. By letting D = 1
n

Y>Y, the constrains in
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(6.12) can be rewritten as θ>k Dθk = 1 and θ>k Dθl = 0 for k 6= l. We refer to the βk

that solves (6.12) as the kth discriminant vector.

We use an iterative algorithm to solve (6.12) and adapt a similar procedure to

that used by Clemmensen et al. (2011) to solve problem (6.10). That is, the algo-

rithm involves holding θk fixed and optimizing with respect to βk, then holding

βk fixed and optimizing with respect to θk, repeating this until convergence. For

fixed θk, we obtain

min ||β̂k||1 subject to ||X>(Yθk − Xβk)||∞ ≤ λ. (6.13)

Problem (6.13) is exactly the same as the Dantzig selector except we use Yθk as

a response variable instead of just Y. Therefore, problem (6.13) can be solved

using the Danzig selector algorithm. For fixed βk, the optimal scores θk solve the

problem

min ||β̂k||1 subject to ||X>(Yθk − Xβk)||∞ ≤ λ, (6.14)

and θ>k Dθk = 1, θ>k Dθl = 0 for k 6= l.

Problem (6.14) can be solved by modifying the SDA algorithm (Clemmensen

et al., 2011). Let Qk be the g × k matrix consisting of the previous k − 1 solutions

of θk, as well as the trivial solution vector of all 1s. We can show that the solution

to (6.14) is given by θk = c(I −QkQ>k D)D−1Y>Xβk, where c is a proportionality

constant such that θ>k Dθk = 1. D−1Y>Xβk is the unconstrained estimate for θk,

and the term (I − QkQ>k D) is the orthogonal projector (in D) onto the subspace

of Rk orthogonal to Qk.

Let r = Yθk − Xβk. There are two reasons why the size of the correlated

residual vector XT r is constrained rather than the residual vector r. The first
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reason is that because of the invariance property, i.e, the estimation procedure

(6.14) is invariant with respect to orthogonal transformation applied to the data

vector since the feasible region is invariant. The other reason is that the optimal

program (6.14) is convex and it can easily be recast as a linear program (LP),

min
∑
i

ui subject to − u ≤ β ≤ u, and

− λ1 ≤ XT (Yθk − Xβk) ≤ λ1 (6.15)

where u and βk are the optimization variables, and 1 is a p-dimensional vector of

ones. Therefore, the estimation procedure is computationally feasible.

However, the constraint ||X>(Yθk − Xβk)||∞ ≤ λ in problems (6.10) to (6.14)

needs to be redefined. We note that the lower bound of ||X>(Yθk − Xβk)||∞ can-

not, in general, be exactly zero. Since Yθk 6= Xβk, there may be a situation where

we cannot find a solution under the constraint ||X>(Yθk − Xβk)||∞ ≤ λ. There-

fore, we must improve the constraint so as to get a solution all the time. One

possible way of avoiding the nonexistence of a solution is to use the constraint

{
||X>(Yθk − Xβk)||∞ − ||X>(Yθk − Xβ̂k)||∞

}
≤ λ, (6.16)

where β̂k minimizes ||X>(Yθk − Xβ̂k)||∞.

By using the constraint (6.16) in problem (6.14), our SLDA-OS problem be-

comes

min ||β̂k||1 subject to
{
||X>(Yθk − Xβk)||∞ − ||X>(Yθk − Xβ̂k)||∞

}
≤ λ,

(6.17)

and θ>k Dθk = 1, θ>k Dθl = 0 for k 6= l.
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where β̂k minimizes ||X>(Yθk−Xβ̂k)||∞. Now we can find a solution for problem

(6.17) using a small nonnegative value of the tuning parameter λ. The value of λ

is found using a 10-fold cross validation given in the algorithm in Section 6.4.1.

Moreover, problem (6.17) gives sparse discriminant vectors βk, because the `1-

norm of ||βk)||1 defined as min(||βk)||1) = min(|β1|+ |β2|+ · · ·+ |βp|) makes some

of the β’s exactly zero.

The l1-minimization produces coefficient estimates that are exactly 0 in a sim-

ilar fashion to the Lasso and hence can be used as a variable selection method

(James et al., 2009).

This minimization method leads to the sparsest solution over all feasible solu-

tions (Candès and Tao, 2007). In other words, the objective is to find an estimator

βk with minimum number of nonzero components (as measured by the l1-norm)

among all objects that are consistent with the data. As the constraint on the resid-

ual vector is relaxed, the solution becomes more sparse.

(Candès and Tao, 2007) suggested using λ =
√

2 log p, which is equal to
√

2 log n

in the orthogonal design setting. Under this setting, the oracle properties of the

Dantzig selector are in line with shrinkage results that are assumed to be opti-

mal in the minimax sense. Furthermore, it will be interesting to find an optimal

regularization factor using different methods such as cross-validation.

The goal in developing this method is to find the sparsest solution for (6.17).

(Candès and Tao, 2007) have shown that the Dantzig selector produces the spars-

est solution under the UUP condition. The UUP condition roughly states that

for any small set of predictors, the s-vectors are nearly orthogonal to each other.
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Moreover, due to the nature of linear programming, the problem in (6.17) can

be solved quickly and efficiently. Consequently, the Dantzig selector is usually

faster to implement than other existing methods, such as the Lasso (Candès and

Tao, 2007). Another study by James et al. (2009) has shown that the Lasso and

the Dantzig selector have connections. However, when the corresponding solu-

tions are not identical, the Dantzig selector seems to give sparser solution than

the lasso.

In general, we hope that the sparse LDA by optimal scoring based on the

Dantzig selector will achieve the following objectives:

• to produce sparse and interpretable discriminant vectors in high-dimensional

settings;

• to minimize computational cost.

We have developed an iterative algorithm to solve problem (6.17). The main

steps of the algorithm are given in Section (6.4.1) below.

6.4.1 Algorithm 5: SLDA-OS

The main steps of the SLDA-OS algorithm are the following.

1. Let X be an n × p grouped multivariate data matrix and assume that X has

been centered so that the columns of X have mean zero.

2. Form Y, an n × g indicator matrix corresponding to the dummy-variable

coding for the groups, defined by yij = 1 if the jth observation belongs to

the ith group, and yij = 0 otherwise.
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3. Form a full matrix, T = (X,Y). Randomly split T into two sets to form

training and testing datasets. Let T1 = (X1,Y1) and T2 = (X2,Y2) denote

the training and testing data sets, respectively.

4. For cross-validation, divide randomly T1 into 10 subsets such that each sub-

set contains one tenth of each group. Take nine of the ten subsets T1. Let

X/m and Y/m denote the data sets of T1 when the mth subset is omitted and

let Xc and Yc denote the omitted data of T1.

5. Put m=1.

6. Let D = 1
n∗

Y>/mY/m, where n∗ is the number of observations in (X/m,Y/m).

7. Let Qk be a g × k matrix consisting of the previous k − 1 solutions θk. Start

with Q1 as a matrix of 1’s.

8. Start the tuning parameter, λ, with a small positive number.

9. For k = 1, 2, . . . , s ≤ min(g − 1, p), compute the kth discriminant solution

pair (θk,βk) as follows:

(a) Initialize θk = (I−QkQ>k D)θ∗, where θ∗ is a random g-vector, and then

normalize θk so that θ>k Dθk = 1.

(b) For t = 0, 1, 2 . . . T until convergence or until a maximum iteration is

reached, let βk be the solution of the ι1- minimization problem

min
θk,βk
||βk||1 s.t.

{
||X>/m(Y/mθk − X/mβk)||∞ − ||X>/m(Y/mθk − X/mβ̂k)||∞

}
≤ λ,

(6.18)

where β̂k minimizes ||X>/m(Yθk − X/mβ̂k)||∞.
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(c) For fixed βk, update θk as

θk = w√
w>DW

, where w = (I−QkQ>k D)D−1Y>/mX/mβk.

10. If k < s, set Qk+1 = (Qk : θk).

11. Classify the observations in the omitted data set (Xc,Yc) using Xcβk as the

classifier. Record the number of misclassifications, calling it Err(m,λ).

12. Change λ and repeat steps 9-11 until the full range of values of λ of interest

has been considered.

13. If m ≤ 10, increase m by one and repeat steps 6-12.

14. Find the value of λ that minimizes
∑10

m=1 Err(m,λ). Using all the data, re-

peat steps 6-10 for that value of λ to obtain the optimal discriminant vectors

β1,β2, . . . ,βs.

15. Classification is performed using the usual classification rule of standard

LDA. That is, we compute Xβ1,Xβ2, . . . ,Xβs and assign each observation

to its nearest centroid in this transformed space.

16. The performance of the resulting discriminant functions is evaluated on the

test data set (T2).

6.5 Numerical illustration

We applied the new SLDA-OS algorithm to both simulated and real data sets.
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6.5.1 Application to simulated data

We generated three data sets with different settings. The three simulated data

sets were generated as follows:

Model 1: There are two groups of multivariate normal distributions, N(µ1,Σ)

and N(µ2,Σ), each of dimension p = 10, 000. The components of µ1 are assumed

to be 0 and for µ2, µ2j = 0.6 if j ≤ 200 and 0 otherwise. The covariance matrix

Σ is the block diagonal matrix with ten blocks of dimension 1000 × 1000 whose

element (j,j’) is 0.6|j−j
′|. For each class 100 training samples and 50 testing samples

were generated. (i.e., n=300, p=10,000, g=2).

Model 2: There are three groups each assumed to have a multivariate normal

distribution N(µi,Σ), i = 1, 2, 3 with dimension p = 10, 000. The first 35 compo-

nents of µ1 are 0.7, µ2j = 0.6 if 36 ≤ j ≤ 70 and µ3j = 0.7 if 71 ≤ j ≤ 105 and

0 otherwise. All elements on the main diagonal of the covariance matrix Σ are

equal to 1 and all other are equal to 0.6. For each class, we generated 100 training

samples and 50 testing samples. ( i.e., n= 450, p=10,000, g=3).

Model 3: There are three groups that were generated as: for l ∈ πi then

Xlj ∼ N((i − 1)/2, 1) if j ≤ 100 , i = 1, 2, 3 and Xlj ∼ N(0, 1) otherwise with

dimension p = 10, 000 . A total of 200 training samples and 100 testing samples

are generated. (i.e., n=300, p=10,000, g=3).

We employed cross-validation to choose the tuning parameter λ. We applied

our method to the three simulated data sets, and compared it with another ex-

isting method, SDA. The results of the analysis are summarized in Table 6.1.

Sparsity in Table 6.1 denotes the percentage of nonzero components.
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Table 6.1: Misclassification rate (in %), time ( in seconds), and sparsity (in %) of two

methods on the testing sets of three simulated data sets.

Model SLDA-OS SDA

Error Time Sparsity Error Time Sparsity

Model 1 4.50 12.50 11.33 13.0 12.50 21

Model 2 13.22 14.03 15 13.21 14.00 25.65

Model 3 12.11 13.67 14.5 14.80 12.50 31.60

The results in table show that our method (SLDA-OS) performed better than

SDA for the first and third models. That is, SLDA-OS gave lower misclassifica-

tion errors than SDA in models 1 and 3. The performance of both methods is

almost the same for the second model. Moreover, the two methods were also

compared based on their speed, and it was found that there is no significant dif-

ference between the speeds of the two methods. But, the SLDA-OS gave sparser

discriminant vectors than SDA, as shown by the percentage of nonzero compo-

nents in Table 6.1.

6.5.2 Application to real data sets

To further evaluate the performance of SLDA-OS, we applied it to the six real

data sets that were used in Chapters 4 and 5. The six real data sets are

1. Fisher’s iris data ( n > p)

2. Rice data ( p > n)

3. Ovarian Cancer data ( p >> n)
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4. Leukemia data ( p >> n)

5. Ramaswamy data ( p >> n)

6. IBD data ( p >> n).

We analysed the data sets using SLDA-OS and the summarized results are

presented in Table 6.2. We also included the results of two existing methods,

SDA (Clemmensen et al., 2011) and PLDA (Witten and Tibshirani, 2011) for com-

parison.

Table 6.2: Misclassification rate (in %) and time ( in seconds) of three sparse LDA

methods on the testing sets of six real data sets.

Data SLDA-OS SDA PLDA

Error Time Error Time Error Time

Iris 3.00 0.0013 3.0 0.0013 4.00 0.0120

Rice 36.20 0.0068 37.15 0.0070 38.00 0.0760

IBD 30.00 121.0200 30.65 112.2230 34.50 131.0600

Leukemia 21.50 19.6289 27.65 19.9700 27.33 35.2000

Ovarian Cancer 5.10 55.31280 19.31 58.3452 20.65 60.1024

Ramaswamy 16.33 113.1340 16.16 116.5012 – –

We can see from Table 6.2 that our new method SLDA-OS performs better

than the other existing methods on data sets Rice, IBD, Leukemia, and Ovarian

cancer, with misclassification rates (in %) 36.20, 30.00, 21.50, and 5.10 respectively.

It also performs as well as SDA on the Iris Fisher’s data set with a misclassifica-
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tion rate of 3%, which is lower than the misclassification rate of PLDA. Further,

for the Ramaswamy data, our method performs with a misclassification rate of

16.33%, which is very close to the performance of SDA. A noticeable features of

the results for our method is that it performs classification of the Ovarian can-

cer data with only a 5.10% misclassification rate, far lower than with the other

competing methods. We know that the ovarian cancer data set is a two-group

data set. Hence, it seems that our new method can be very effective in classifying

observations in a binary-group classification problem.

Regarding sparsity, on average for all data sets the SLDA-OS selected 20.18%

of the variables while the SDA and PLDA selected 21.35% and 40.65% of the vari-

ables, respectively, to achieve the classification rates given in Table 6.2. Hence, the

discriminant vector obtained by SLDA-OS has only about 20% nonzero compo-

nents, which is similar to the most sparse of the other methods. Interpretation

is much improved as only a small number of variables were selected from the

original large number.

The tuning parameter λ was selected using a 10-fold cross validation. For il-

lustration, we report the results from cross validation as λ varies for the Ovarian

Cancer and Ramaswamy data sets. The cross validation results are presented in

Figure 6.1 for Ovarian cancer data set, and in Figure 6.2 for Ramaswamy data set.

We can see Figure 6.1 that the misclassification rate (MCE) decreases steadily un-

til it reaches its minimum and stabilizes in the interval λ ∈ (0.0015, 0.0027) before

it starts rising again. So we can choose any value of λ in that interval, we selected

λ̂ = 0.002. This gave the smallest misclassification rate of 5.1% for classification of
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Figure 6.1: The misclassification rate of the training set of the ovarian cancer data for

different values of the tuning parameter (λ) resulting from cross-validation of SLDA-OS

method.

the Ovarian cancer data. Similarly, Figure 6.2 illustrates that the MCE decreased

until it attained its minimum in the same interval of λ as for classification of the

Ramaswamy data. Thus, in this case also, we again selected λ̂ = 0.002 though

this gave a comparatively poor MCE of 16.23%.
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Figure 6.2: The misclassification rate of the training set of the Ramaswamy data for

different values of the tuning parameter λ resulted from cross-validation of SLDA-OS

method.

6.6 Chapter summary

The traditional LDA fails classifying observations in to their groups if the

number of variables is very large relative to the number of observations. In this

chapter, we propose an alternative sparse LDA for high-dimensional discrimina-

tion problem. Our proposal is based on the fact that discrimination problem can

be recast as a regression problem via optimal scoring. Thus we call our method

sparse LDA based on optimal scoring (SLDA-OS). Our approach extended the
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LDA to the high-dimensional setting in such a way that the resulting discrimi-

nant vectors involve only a small number of the variables. The formulation of

our method has a similar form with the Danzig selector and we employed the

`1-minimization penalty to achieve the required sparsity.

We applied our method, SLDA-OS, to both simulated and real data sets with

p >> n. It gives better results than other existing methods in terms of classi-

fication accuracy and speed. Most notably, our algorithm was found superior

in binary classification to the two existing methods PLDA (Witten and Tibshi-

rani, 2011) and SDA Clemmensen et al. (2011). In general, our sparse discrimi-

nant analysis method based on the Dantzig selector gives interpretable discrim-

inant functions with relatively lower classification error and smaller number of

nonzero variables. Hence, this method can be considered as a better alternative

discrimination method when p >> n.



Chapter 7

General conclusions and future

research

linear discriminant analysis is a method of identifying linear combinations of

variables, called linear discriminant functions, that separates two or more groups

and is useful for classifying items into groups. However, the traditional discrim-

inant analysis is not applicable when the number of variables is greater than the

number of observations. This thesis deals with LDA methods that can be applied

to high-dimensional classification problems, where the number of variables is

greater than the number of observations, and focuses on methods that give sparse

discriminant functions, as this gives more interpretable classifiers.

7.1 Summary and conclusions

Chapter 2 briefly introduced the general discriminant analysis framework

and presented various techniques of classical discriminant analysis to give a gen-

167
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eral background. Three different approaches to discriminant analysis were pre-

sented and it was seen that most of the existing high-dimensional discriminant

analysis methods use the classical methods as a basis for their development. That

is, the high dimensional discriminant methods are the extension of classical dis-

crimination methods obtained by modifying or improving the original formula-

tions.

When the number of variables (p) is much larger than the number of obser-

vations (n), commonly written as p >> n, the classical linear discriminant anal-

ysis (LDA) does not perform classification effectively for three major reasons.

First, the sample covariance matrix is singular and cannot be inverted. Second,

high-dimensionality makes direct matrix operation very difficult if not impossi-

ble, hence hindering the applicability of the traditional LDA method. Although

we may use the generalized inverse of the covariance matrix, the estimate is

highly biased and unstable and will generally lead to a classifier with poor per-

formance due to lack of observations. Also, computing eigenvalues of a large

matrix can be challenging. Third, in the p >> n scenarios when p is extremely

very large, it is not only computationally difficult to find the discriminant func-

tions but also interpretation is a serious problem. That is, we cannot identify

which set of variables are accountable for classifying an observation into its right

group. However, some methods have been proposed to tackle these difficulties

as we reviewed in Chapter 3.

In Chapter 3, we reviewed some of the existing discriminant approaches that

have been developed for in the high-dimensional setting. The chapter reviewed
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approaches that emphasise dimension reduction in Section 3.1 and regularization

in Section 3.2. Many of them used dimension reduction methods such as PCA

or variable selection methods in a separated step before classification. Different

models for dimension reduction that were given in Table 3.1.

Other methods that were reviewed in Section 3.2.1 that assume the variables

in high-dimensions are independent. These methods use the independence as-

sumption merely to overcome the problem of singularity, regardless of the ac-

curacy of classification. The independence methods were developed based on

the models 3-5 that are given in Table 3.1. Though these methods are compu-

tationally attractive, they do not involve the idea of sparsity or aim to produce

interpretable results. Moreover, other groups of methods reviewed in Chapter 3

use regularized W. The solution based on regularization may ease computational

difficulty, but it gives less attention to variable selection ( i.e. sparsity) which is a

basic requirement in dealing with high dimensional discriminant analysis. In ad-

dition, all regularization methods require tuning a parameter which may not be

easy unless cross-validation is used appropriately. Another drawback of several

of the reviewed methods is that they deal with classification problems involving

only two groups.

Therefore, we have proposed 5 alternative sparse discrimination methods that

are given in Chapters 4-6 to fill the gap that still exists in high-dimensional classi-

fication problems. The 5 methods were developed based on various assumptions

of group covariance matrices. We give the various assumptions that we used to

develop our methods in Table 7.1. These 5 methods were applied to 6 selected
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real data sets and the summarized results of all our methods and two other ex-

iting methods are given in Table 7.2. We summarize and discuss the theoretical

backgrounds and practical results of our methods below.

Table 7.1: Assumptions about covariance matrices made by the five methods proposed in

this thesis.

Method Assumptions

FC-SCLDA Σi = Σ=diag(σ2
1, . . . , σ

2
2)

FC-SLDA2 Σi = Σ=diag(σ2
1, . . . , σ

2
2) with λd = 0

SDCPC Σi = AΛiA>

SD-PCPC Σi = ciΣ1

SLDA-OS Σi = Σ

In Chapter 4, we have proposed an alternative method called Function-constrained

sparse LDA (FC-SLDA) and its simplified version (FC-SLDA2) for high-dimensional

discriminant analysis. The constrained `1-minimization penalty is imposed on

the discrimination problem to achieve sparsity. The `1-minimization is a popular

technique in regression analysis to select variables when p >> n. For example,

Candès and Tao (2007) used the Dantzig selector for selecting variables in regres-

sion analysis with p >> n using the `1-minimization penalty.

FC-SLDA is developed based on Model-4 in Table 3.1. That is, it assumes

that all group covariance matrices are equal and the common within-group co-

variance matrix is diagonal. Consequently, we used the diagonal within-group

covariance Wd to circumvent the singularity problem. This is because an esti-
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mate of W−1 does not necessarily provide a better classifier. For example, Fan

et al. (2008) showed that the LDA can not be better than random guessing when

the number of variables is larger than the sample size due to noise accumulation

in estimating the covariance matrix. Another method developed by Witten and

Tibshirani (2011) uses Wd and selects a few variables using the Lasso penalty.

However, this method fails when p is extremely larger than n.

Hence, the main objective of FC-SLDA is to find easily interpretable sparse

discriminant direction with better performance in terms of speed and accuracy

as compared with other competitive methods in the literature. This method is

different from other methods that use Wd, because it performs variable selection

and classification simultaneously. The variables which are important for classi-

fication are retained. As a result, it provides more accurate results as compared

with its competitive methods.

A general method of FC-SLDA was developed to find the column vectors of

the discriminant transformation matrix A simultaneously. However, the general

method can be computationally expensive, so we proposed an efficient sequen-

tial method to find each discriminant vector iteratively.

Different high-dimensional real data sets were used for illustrating perfor-

mance of the methods, and they are compared with other competitive existing

methods based on classification error and speed. The results show that FC-SLDA

performs well when compared with other methods under fixed level of sparsity.

It estimates the discriminant vectors sequentially, i.e., it uses a stepwise estima-

tion method and it is faster than other methods that use Wd. More interestingly,
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the simplified version of our function constrained sparse LDA without the eigen-

value (FC-SLDA2) was the fastest method of discrimination though it performs

with relatively higher classification error. Because this method selects very few

variables but selects the important variables, the objectives of accuracy, sparsity

and interpretability for high dimensional LDA are achieved.

In Chapter 5, we have proposed another interesting alternative method called

sparse LDA using CPC (SDCPC) for high-dimensional classification problems.

As we can see from Table 7.1, SDCPC assumes that the group covariance ma-

trices have the same eigenvectors but different eigenvalues. These are weaker

assumptions than those made by FC-SLDA and FC-SLDA2. This method per-

forms effective classification for both n > p and p >> n data. SDCPC uses a

modified stepwise estimation method and we imposed the cardinality constraint

to find sparse discriminant vectors. It is an efficient estimation method for select-

ing common components iteratively. Moreover, it is computationally efficient,

and it produces interpretable discriminant functions. As we can see in Table 7.2,

SDCPC performs favorably compared to existing methods.

We know that, the traditional LDA works when n > p and when all group co-

variance matrices are equal. However, in real world problem, group covariance

matrices are, in general, not equal unless the groups come from the same popula-

tion. SDCPC fills the gap that exits in classification problems involving unequal

group-covariance matrices. A cardinality penalty is used to achieve sparsity. This

penalty can help to select a few variables from a huge number of variables. From

the numerical results using real data sets, sparse LDA based on CPC performs



CHAPTER 7. GENERAL CONCLUSIONS AND FUTURE RESEARCH 173

well. Furthermore, our newly proposed method is compared with two other ex-

isting methods using real data sets. In general, SDCPC enjoys advantages in sev-

eral aspects, including computational efficiency, interpretability, and an ability in

identifying important variables for classification.

In Chapter 5, we also proposed another alternative discrimination method

called sparse LDA using proportional cpc (SD-PCPC) for high-dimensional dis-

crimination. This method assumes that group covariance matrices are propor-

tional to each other. This method can be considered as an extension of SD-

CPC and it is an ideal method when group covariances are proportional to each

other. The proportional CPCs can be estimated using maximum liklihood or least

squares method. We used the least squares method to estimate the CPCs in this

particular method. We applied SD-PCPC on high-dimensional real data sets and

we found that it performed better than other existing methods, especially when

number of groups was not large.

In Chapter 6, we have proposed a new formulation of sparse LDA that is

based on optimal scoring (OS). We refer to this method as SLDA-OS. We recall

from Chapter 2 that binary discriminant analysis can be recast as regression anal-

ysis. Moreover, Clemmensen et al. (2011) proposed sparse discriminant anal-

ysis based on optimal scoring for classification problems with multiple groups.

SLDA-OS assumes that all group covariance matrices are equal and it can be used

for multi-group or binary classification problems. The method is similar to the

Dantzig selector formulation for regression analysis. It is derived by considering

the group indicators as dummy response variables. Because the Dantzig selec-
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tor gives sparser results than the Lasso penalty and other sparsity penalties, it is

an ideal method for a classification problem with an extremely large number of

variables. That is, it selects a few useful variables from a huge number of vari-

ables. We applied SLDA-OS to both simulated and real data sets. We can see

from the results in Table 7.2 that SLDA-OS performs better than the other meth-

ods in high-dimensional classification. In particular this method was found to be

the most effective method for binary classification.

Results from the work with the six real data sets are presented in Table 7.2.

We can see from the table that SDCPC, SLDA-OS, and SDA perform equally in

classifying the Iris data with an MCE of 3%. They are followed by FC-SLDA and

FC-SLDA2 with an MCE of 3.3% and 3.80%, respectively. The PLDA performed

worst with an MCE of 4%. Therefore, we conclude that SDCPC, SLDA-OS, and

SDA seem effective in classifying observations when the number of variables is

less than the number of observations. At the same time, Fisher’s LDA is a little

better at classifying the Iris data, with an MCE of 2%. Similarly, when we com-

pare the performances of the 7 methods in classifying the Rice data, SDCPC was

found the best classifier with an MCE of 35.48%. Though an MCE of 35.48% is a

poor classification performance, SDCPC performs better than the other 6 meth-

ods. The groups in the Rice data are very tight, which is why the 7 methods per-

form poorly in classifying the observations. Further, we can see from Table 7.2

that SD-PCPC was also found the best method in classifying the IBD data, with

an MCE of 23.10%. It is followed by SDCPC with an MCE of 23.50%. The rel-

atively better classification accuracy of SD-PCPC in classifying the IBD data set
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is due to the fact that the group covariance matrices of IBD data are approxi-

mately proportional to each other. However, this method is the poorest method

in classifying the Ramaswamy data, with an MCE of 48.15%. Therefore, we con-

clude that SD-PCPC performs better than other methods when group covariance

matrices are proportional, but the number of groups should not be very large.

SDCPC was found to be the best method in classifying the Leukemia data with

an MCE of 13.17%. This method is effective in classifying observations when the

group covariance matrices have the same eigenvectors but different eigenvalues.

When we compare the performance of the 7 methods in classifying the Ovarian

cancer data, SLDA-OS showed an extraordinary classification performance with

just an MSE of 5.10% which is far better than the other methods. The Ovarian

cancer data has only two groups and it may be that SLDA-OS is especially good

at classifying a dataset that has just two groups. This should be examined in

further work. Finally, when we see the performance of the 7 methods in clas-

sifying the Ramaswamy data, FC-SLDA was found to be the best method with

an MCE of 13.13%. We know that the number of groups in Ramaswamy data is

14. Hence, we conclude that FC-SLDA seem to be the best method in classify-

ing high-dimensional data with a large number of groups. FC-SLDA2 also per-

formed well in classifying high-dimensional data sets and had the notable good

quality of speed. This method was found to be the fastest method for classifying

high-dimensional data sets. Therefore, FC-SLDA2 is recommended in classifying

high-dimensional data sets if it is appropriate to compromise accuracy for speed.
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7.2 Future research

Research is a continuous process where one idea brings forth another. Hence,

every conclusion can be the beginning of new research. Therefore, our research

could lead to further research on high-dimensional data. Many of the methods

reviewed in Chapter 3 can be extended. For example, a ROAD to classifica-

tion in high-dimensional space (Fan et al., 2012) can be extended to classifica-

tion problems with multiple groups. Similarly other methods can further be im-

proved. When we come to our contributions on sparse discrimination for high-

dimensional problem, there are some nice ideas introduced in Chapters 4, 5, and

6 that can be further extended. For example, the fastest sparse LDA (FC-SLDA2)

which was proposed in Chapters 4 can be extended by regularizing the within-

groups matrix so as to find more accurate results. We know that most of the ex-

isting sparse discrimination methods are very slow, and they do not even work

when p gets very large. Therefore, FC-SLDA2 is superior to the exiting methods

in terms of speed. But it could be further extended to get more accurate results

while it stays faster.

The SDCPC method which was proposed in Chapter 5 has the attractive fea-

tures that it does not need equal group covariance matrices, although it does

assume that group covariance matrices have common eigenvectors. Under this

assumption, we have seen that SDCPC performs well in high-dimensional clas-

sification problems. If all of the group covariance matrices are proportional to

each other, we have sparse discrimination with proportional CPC, called SD-
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PCPC. This method might be further extended to the discrimination problem

where some of the group covariance matrices are proportional while the remain-

ing covariance matrices are not proportional.

We believe that our contributions of sparse LDA methods are possible alter-

natives for high-dimensional classification problems. They perform classification

effectively and produce interpretable discriminant functions. But, they can also

be used as a basis for further improvements and extensions of sparse discrimi-

nant analysis methods for high-dimensional data.
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