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Abstract: Electroacoustic music on analog magnetic tape is characterized by several carrier-related specificities that
must be considered when creating a copy for digital preservation. The tape recorder needs to be set to the correct speed
and equalization, and the magnetic tape could have some intentional or unintentional alterations. During both the
creation and the musicological analysis of a digital preservation copy, the quality of the work may be affected by human
inattention. This article presents a methodology based on neural networks to recognize and classify the alterations
of a magnetic tape from the video of the tape as it passes in front of the tape recorder’s playback head. Furthermore,
some machine-learning techniques have been tested to recognize a tape’s equalization from its background noise.
The encouraging results open the way to innovative tools able to unburden audio technicians and musicologists from
repetitive tasks and to improve the quality of their work.

In the last 20 years, the preservation of historical
audio documents has been one of the main research
topics at Centro di Sonologia Computazionale
(CSC), the Sound and Music Computing laboratory
of the Department of Information Engineering at the
University of Padova (cf. Zattra, De Poli, and Vidolin
2001; Canazza and Vidolin 2001a). The problems
concerning audio preservation are multifaceted, and
a multidisciplinary approach is necessary to exploit
the huge potential of this documentary heritage. The
methodological framework perfected in these years
involves both the active preservation of historical
audio documents (Bressan and Canazza 2013) and
access to them (Canazza, Fantozzi, and Pretto 2015;
Fantozzi et al. 2017), with a focus on analog magnetic
tapes. In our laboratory, the consistency of this
framework was tested using historical recordings of
electroacoustic music during several international
projects related to the preservation and restoration
of collections of sound recordings carried out with
important European audio archives (including the
Paul-Sacher-Stiftung, Basel; the Fondazione Arena di
Verona; the Historical Archive of the Teatro Regio,
Parma; and the Luigi Nono Archive, Venice).
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Contrary to passive preservation concerning the
safeguarding of the material structure of documents,
active preservation consists of preserving their
content in digital form. This is to ensure, after the
initial digitization, a safe transfer of identical copies
from one digital carrier to another. There are, nev-
ertheless, many aspects that need to be considered
during the digitization of a tape. First, there is the
object’s material structure–that is, the set of its
physical-chemical components, the technology, the
production system (acoustic, electroacoustic, mag-
netic), and the audio and playback format (such as
speed and equalization). Next, there is the primary
information (i.e., the audio signal recorded). Then
there is the secondary (or ancillary) information
(Brock-Nannestad 1997; Bressan and Canazza 2013),
such as notes on the box, noise signals characteriz-
ing the recording system, alterations of the carrier
(corruptions, splices, signs, etc.). There may also be
other metadata that need to be perserved. Finally,
there is the history of the document transmission
(storage, duplication, etc.). All of these metadata
need to be stored with the preservation copies
alongside the digital audio. In this sense, we define
a preservation copy of an analog audio document as
an organized data set that groups all the information
(data and metadata) represented by the source docu-
ment, stored and maintained in several directories
of the archive data center.
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The methodology aims to go a step further,
making the digital preservation copies more reliable
and suitable from a scholarly point of view. The
software tools we have developed emphasize the
“textual” aspects of a sound document, considering
the A/D transfer as a philological operation of
restitutio textus. The use of philological tools is
particularly important in the field of electroacoustic
music on analog magnetic tapes (cf. Zattra 2007;
Verde et al. 2018). Here, A/D transfer of an audio
document might not only be affected by digitization
errors (related to speed, equalization, track numbers,
etc.), but also cause the loss of useful ancillary
information, and therefore generate a proliferation
of document “witnesses” with poor value (from
a philological point of view). These document
witnesses are nonidentical digital audio documents,
with “variants”—or differences in comparison to the
original analog tape. But they are “poor” readings
because they may be imperfect approximations of
the original, generating “noise” in the textual critic’s
task.

There are different definitions of the term electro-
acoustic music: We use here the term in a technical
sense, that is, to refer to any music for which the au-
dio realization inherently requires analog magnetic
tape used as a “creative” instrument. In this sense,
this music is the most important and innovative
music genre of the second half of the 20th century,
representing a paradigmatic case of recorded sound
art with great implications for preservation as well
as for musicological analysis. This “music on tape,”
or tape music, evolved along with technologies for
music postproduction, embracing most genres and
aesthetic trends of recorded sound arts. The birth of
tape music revolutionized the production system of
music itself: The composer became both “luthier”
and performer of the music product, recording it
on analog magnetic tape, which became a unicum,
rather like the products of other art forms (paint-
ing, sculpture, etc.). The music changed its artistic
category: An allographic art (i.e., an art performed
with the contribution of multiple actors; in the
case of music, composer, and performer) became an
autographic art, where there is a complete product
in se at the end of the creation process. As an
example, Nelson Goodman (1968), by means of the

distinction between autographic and allographic,
not only distinguishes replicas from reproductions
introducing falsifiability in music, but faces the
problem of the identity–difference relation between
work and object, and between work and text.

In the first period of tape music several real
masterpieces were created without written score;
the analog magnetic tapes were the only available
documentation. The interpretation of these works
was no longer the traditional one, in which one
or more musicians performed a score. Instead, it
moved towards the projection in a hall by a sound
engineer (or by a live-electronics musician), using (or
ignoring) the characteristics of the acoustic space; a
sort of parallel to the exposure of a painting in an
exhibition, where the perception changes according
to the conditions of lighting and the layout of the
hall.

In this sense, in the field of tape music, a unique
feature of the preservation process developed at CSC
is the video recording of the tape as it passes the
head of the tape recorder, which is important to
preserve important ancillary information.

Both the creation and the study of a digital
preservation copy share a common problem: hu-
man attention. Inattention during several hours of
listening to the audio documents and observing
kilometers of running tape can lead laboratory tech-
nicians and musicologists to overlook some details,
such as corruption of the tapes or markings on them.
Work becomes messy and could be done without
the necessary care. Some of the disorder patterns are
similar to the well-known ones affecting transcripts
made by the servus a manu scribes (i.e., slaves, or
Benedictine monks, or professional copyists); others
have not yet been studied. Furthermore, in the
absence of information related to the audio format
of a tape, an audio technician has to make some de-
cisions aurally (Bradley 2009), such as the choice of
the correct equalization standard. The probability of
an incorrect choice is high and an incorrect decision
causes the creation of document witnesses of poor
value.

We advocate the use of automatic techniques to
extract the aforementioned types of information
from audio and video of the tapes to relieve techni-
cians and musicologists of repetitive, tiresome, or
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otherwise error-prone tasks that are better performed
by a machine. This could leave the technicians and
musicologists with the last word on issues that
require expertise and intelligence. The automatic
analysis can also be considered as a preprocessing
step that filters relevant data for a high-level inter-
pretation by a professional. The aim of the present
article is to: (1) investigate and list possible sources
of information, (2) discuss the relevance of each,
(3) quantitatively summarize the features of the
source that make automatic analysis possible, and
(4) propose algorithmic techniques that exploit such
information to perform the analysis. Considering
the focus of the article, the implementation details
of the algorithmic techniques are not described.
Rather, a preliminary software implementation and
an evaluation of its performance are presented.

The next section of this article introduces the
concept of tape discontinuity and the equalization
standards related to analog magnetic tape. We then
tackle the problem of recognizing tape discontinu-
ities, by using audio and video of the preservation
copies, and we propose a methodology based on
neural networks to automatically analyze a video
recording of an audio tape’s playback in the tape
recorder. The subsequent section introduces the
problem related to equalization and presents a
methodology based on machine-learning techniques
to detect the correct equalization standard. Finally,
we conclude, proposing several awares for future
work.

Preserving the Documentary Unit

For historically faithful, active preservation of
an original audio document (i.e., to preserve its
documentary unit), all information regarding the
document must be stored and maintained in the
digital domain. Just what information this entails
is discussed in the following paragraphs. Usually
only the audio content of a recording is analyzed
by scholars, however. This section highlights the
importance of the analysis of the carrier both
for preservation and for musicological studies.
Furthermore, the concept of discontinuity will be
introduced along with the equalization problem.

Filming Audio

To preserve the documentary unit of a historical
audio document, it is necessary to store all informa-
tion (both intentional and unintentional) stemming
from the carrier and from its transmission. The
methodology described by Bressan and Canazza
(2013) emphasizes the importance of preserving as
static images (1) the information reported on edition
containers, labels, and attachments, and (2) any
clearly visible alterations on the carrier. To pre-
serve all the ancillary information concerning the
carrier (physical condition, presence of intentional
alterations, corruption, and graphical signs), a video
recording of the tape as it passes the playback head
during playback should be stored with the preserva-
tion copy. This video must also contain the audio,
although not necessarily in high quality, to allow
synchronization of the video to the high-quality
audio signal of the digital preservation copy. The
video recording offers:

1. Information on the operations of the mag-
netic tape assembly, such as the splices
used to join different pieces of tape and
possible corruptions of the carrier, which
are indispensable to distinguish intentional
from unintentional alterations during the
analysis of the audio document (AES22 1997;
Canazza 2007; Canazza and Vidolin 2001b).

2. Instructions for the performance of the piece:
From the video analysis, some markings on
the tape can be detected; typically, they
either represent points to be synchronized
with a musical score, or they may indicate
particular sound events.

3. A description of the irregularities in the
playback speed of analog recordings that
cause changes in frequency, such as wow and
flutter.

In the CSC methodology (Bressan and Canazza
2013; Fantozzi et al. 2017), only the back of the
tape (i.e., the nonmagnetic side) is recorded, to
reduce the technical complexity and to facilitate
the adaptation to different tape recorders. This
means that some details related to the magnetic
side will be lost, but usually alterations involve
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Figure 1. Creases on a tape
and localized magnetic
coating damage. (Color
version available at
www.mitpressjournals.org
/doi/suppl/COMJ a 00487
-Pretto.)

both the sides. The expression “video of the tape”
will be used henceforth to indicate the video of
the back side of the tape. The videos are the input
data of the original software tool presented in the
following section. They are able to automatically
locate discontinuities that occurred during the
A/D transfer and to classify them, thus increasing
information about the signal that may be useful for
philological analysis. The videos used in this work
derive from several years of preservation projects
and were captured by a professional camera with a
720 × 576-pixel resolution.

Tape Discontinuities

According to cataloguing rules set by the Inter-
national Association of Sound and Audiovisual
Archives (IASA, cf. Miliano 1999), an initial visual
inspection of the fully wound tape pack by the tech-
nician may show the presence of several alterations
such as blocking, leafing, windowing, spoking, or
embossing. This first stage is essential to determine
whether or not the carrier has to be restored prior
to digitization. Nonetheless, some degradation and
other conditions can only be detected during tape
playback, after visual inspection. Consequently,
both of these two stages—visual inspection and

monitoring playback—become particularly impor-
tant to evaluate the preservation condition of the
tape.

According to the IASA cataloguing rules (Miliano
1999, Appendix C), the main alterations recognizable
during tape playback are:

Cupping: an abnormal flexure of the tape surface
across or along its width, due to different rates
of shrinkage along the substrate and recording
layers.

Damage to tape edges: occurring when the edges
do not appear flat or straight.

Riffles: formally known in the cataloguing rules
as “kink” or “wrinkle,” these may be a single
crease on a layer of tape or multiple creases in
the tape (see Figure 1).

Tape contamination and dirt: presence of mold,
powder, crystals, other biological contamina-
tions, or similar sullying.

Interlayer adhesion: stickiness of the surface of
one layer to the back of the succeeding layer,
which could cause wow and flutter.

Gummy deposit: presence on the tape of gluey
substances that can gather on the heads and
guides of the playback machine during the tape
playback.

Backcoat and magnetic shedding: the first of these
involves backcoat particles coming away from
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the substrate and accumulating on surfaces
in contact with the back of the tape. The
loss of debris can impair playback quality,
leaving deposits on the playing surface of the
adjacent layer. The second phenomenon, due
to a loss of cohesion, entails magnetic coating
particles coming away from the tape substrate,
accumulating on the heads and guides of the
playback machine.

Brittleness: frequently seen with cupping, results
in easy tape breakage.

Marks: signs or words written on the back of
the tape (i.e., the nonmagnetic side) or on the
adhesive tape of splices. Similarly, the presence
of ink or dye on the surface of the tape, or
writings on the back seeping through the tape
to the front, comprise the phenomenon of
“bleeding.”

These alterations can be detected only after an
attentive monitoring of the entire length of tape
during the playback process. The responsibility for
both kinds of visual inspections is laid on the tape
operator, as the first person involved in the digital-
ization process, and the director of the collection,
who has to manage the preservation intervention.
In this regard, appropriate auxiliary evaluation
methods have been developed over the years (Casey
2008; Sueiro 2008), but a subjective judgment may
undermine the evaluation process because of the
great amount of material to check. Therefore an
objective and automated intervention is needed.
This article moves in this direction, attempting to
extract information about tape alterations through
automatic computer analysis of the two files,
one storing high-quality audio and the other the
video.

Another important kind of alteration of the
carrier is the splice. In the IASA cataloguing rules, a
splice is defined as a small piece of special adhesive
tape used to join two pieces of recorded material
to form a single piece (Miliano 1999, Appendix
C). Splices can join also two pieces of magnetic
tape rather than a piece of magnetic tape to a
leader tape. According to Delos Eilers (1968), an
ideal splice is one that will remain intact for an
indefinite period of time and not cause an audible

disturbance upon playback. The corruption of the
output audio signal mainly depends on the splice’s
angle, that is, the angle measured between the cut
and the tape edge. The most desirable method is
to cut the tape at a 45◦ angle. According to the
tape manufacturer Scotch (Eilers 1968), as the angle
raises towards a perpendicular cut, the amount
of electrical disturbance is increased because the
playback head sees the discontinuity at the junction
as an abrupt change. On the other hand, an angle
smaller than 45◦ entails a lesser amount of electrical
disturbance, but a the tape is then more vulnerable
to bending and breakage.

The term discontinuity will be used henceforth
to indicate all the alterations of the carrier from
its original manufacture state that are detectable
while the tape is running. Although not strictly
an alteration, manufacturers may print their brand
name or logo on the back of the tape itself. As neces-
sary and useful information for the identification of
tapes, tapes brand markings will also be considered
a discontinuity of the tape.

This section has presented the motivations for
why, during the digitization process, it is important
to be aware of the tape’s condition and the possible
presence of splices. Discontinuities also have an
important role in musicological studies, however.
In electroacoustic music on analog magnetic tape,
composers manipulated the tapes. Sometimes,
even “incorrect” manipulation became part of
the artistic act. Therefore, the examination of
splices and, in general, discontinuities becomes
relevant to studying the genesis of a work of art.
Unfortunately, this assessment can be pursued only
during playback, while monitoring up to several
hours of tape. To avoid human errors, an automatic
approach is essential for both the creation of the
preservation copies and for musicological analysis
of the document. A possible approach is detailed in
the section on “Analysis of Tape Discontinuities.”

Equalization

As with most analog audio formats, the signal
representation on tape is deliberately nonlinear in
terms of frequency response. Consequently, correct
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playback requires appropriate equalization (Bradley
2009). The use of pre- and postemphasis techniques
is a method that modifies the spectrum of the
audio signal of the source as read by the recording
head and then performs the inverse modification
during playback (Fielder 1985). Therefore, the
postequalizer makes the overall transfer function
nearly flat (Mallinson 1976). This technique found
wide application in the past because of the limited
dynamic range of the audio systems and the fact that
the music source generally produces more energy
in the low-frequency region, where the ear is less
sensitive to noise. The advantages are extension
of dynamic-range capabilities (Fielder 1985; MRL
2016) and improvement of the signal-to-noise ratio
(Camras 1987).

Different equalization standards exist, and they
are commonly identified by the initials of the
organization that wrote the tape recording standard
(MRL 2016). The most common standard in Europe
is the International Radio Consultative Committee
(Comité consultatif international pour la radio,
CCIR), also referred to as IEC1 (from International
Electrotechnical Commission). The standard used
most commonly in America is by the National
Association of Broadcasters (NAB), alternatively
called IEC2. According to standard definitions (NAB
1965; IEC 1994), the equalizations are the results of
the combination of two curves:

N(DB) = 10log(1 + 1
4π2 f 2t2

2

) − 10log(1 + 4π2 f 2t2
1 ),

(1)

where f is the frequency in Hz and t1 and t2 are
time constants in seconds. For CCIR, the curve
shape depends only on the constant t1, and t2 is
set to infinity (IEC 1994). Furthermore, the time
constants change in relation to the tape speed. The
equalization, as well as the tape speed, needs to
be correctly configured to obtain a flat frequency
response. According to Kevin Bradley (2009), some-
times any lack of documentation may require the
operator to make playback equalization decisions
aurally and, as will be presented in the section
on “Equalization Errors during Digitization,” this
lack often leads to errors due to subjectivity of
choice.

Analysis of Tape Discontinuities

The audio signal is not sufficient for the detection
of discontinuities. The first part of this section will
show an unsuccessful attempt concerning splice
detection by using audio features. Following that,
an innovative approach for discontinuity detection
and classification, based on neural networks, will
be described and tested. Frames extracted from the
video of the back of the tape are the input of this
automatic tool.

Use of Audio to Recognize Splices

There is a rich bibliography regarding alterations of
audio cues and audio restoration (Godsill, Rayner,
and Cappé 2002; Canazza, Poli, and Mian 2010;
Canazza 2012). In the specific case of magnetic tapes,
some alterations are connected to the discontinuities
of the carriers. The first part of the study analyzes
relevant features to discover the most significant
ones for discerning discontinuities of the carrier.
As noted previously, one of the most common
discontinuities is the splice. When a splice joins
a magnetic tape with a leader tape (which is
nonmagnetic), its presence can be inferred by
the beginning or end of the empty spectrogram
that characterizes nonmagnetic tape. Even if a
magnetic portion has no recorded input, it has a
distinguishable noise. On the other hand, when a
splice joins two pieces of magnetic tape, recognition
of the discontinuity is more difficult, as discussed
by Verde et al. (2018), whose automatic tools were
not able to recognize this kind of splice. For this last
reason, the following experiment based on visual
inspection was necessary.

As introduced in the section on “Tape Discon-
tinuities,” the quality of splices is strictly related
to the angle at which the magnetic tape is cut. To
identify the features characterizing audio cues of
splices that join two pieces of magnetic tape, we
created a set of 40 splices as an initial test: half
with a cut at 45◦, the others with a cut at 90◦.
In each of these two sets, half of the splices were
created on new, pristine tape (i.e., never used for
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Table 1. Maximum Frequency Values of 90◦

Splices in Test 1

Sample Channel 1 Channel 2
Number (kHz) (kHz)

Unused Tape 1 7 0
2 0 47
3 43 44
4 0 19
5 10 24
6 9 10
7 34 44
8 6 34
9 13 23

10 3 19

Recorded Silence 1 17 19
2 15 22
3 22 20
4 16 22
5 16 17
6 14 20
7 13 12
8 13 22
9 13 23

10 26 19

recording), whereas the other half on a tape recorded
with silence. The tapes were recorded and read at
30 in./sec (ips) using a Studer A810 tape recorder.
This speed represents the worst case, because the
splices run over the heads in the shortest possible
time. The samples of the test were digitized at a
sample rate of 96 kHz with 24-bit resolution to
allow analysis of frequencies over the entire audible
range.

The result of the test was unambiguous: All
the 90◦ splices were clearly recognizable in the
spectrogram, whereas the 45◦ splices were not rec-
ognizable, except for only one where the splice was
weakly distinguishable. Magnetic tape recordings
are generally free of clicks (Godsill and Rayner
1998), but, as can be seen in Table 1, for 90◦ splices
there are visible spikes at least in one channel
of the digitized samples. Figure 2 shows a clear
example of this spike. The peaks are not uniform
in all the samples but involve all frequencies from

zero to a variable maximum value. Some of them
greatly exceed the audible range, nearly reaching the
maximum frequency of 48 kHz. Nevertheless, only
a few are recognizable solely from listening to the
sample.

A second test was based on another 80 samples of
splices that were each created by simply cutting a
tape recording and then attaching the two resulting
loose ends together again in the same place. This
aspect may seem trivial but is worth noting, because
often in tape music tapes from completely different
recordings are joined together to obtain some desired
effect. In that case, the recognition is simpler
because the two strips of tape are not homogeneous.
In this test, we aim to reconstruct a worst case, a
splice between two homogeneous strips (or rather,
a continuous sound), as could happen in the case
of broken tapes. There are four categories of sounds
recorded before the cuts were made: instrumental
acoustic music, speech, music made with an electric
bass, and electroacoustic music.

As can be seen in Table 2, which presents the
results of the two tests, the number of detected
spectral peaks drastically decreases in the second
case. The performance for the 45◦ splices of the
second test is similar to the ones of the first
test. Regarding the 90◦ splices, the number of
distinguishable peaks in the spectogram dropped
from 100 percent to 42.5 percent. This behavior
could be explained by the fact that the peaks have
either lower power with respect to the surrounding
frequencies, or the discontinuities are described
by too few samples for reliable recognition. In the
90◦ samples of the first test, only 60 percent of
the peaks exceed a frequency of 20 kHz, so the
result is plausible. In conclusion, the test proves
that these kinds of peaks in the spectrogram are
not a good feature for recognizing 45◦ splices. With
62 percent of the 90◦ splices being distinguishable,
the result is better but insufficient to recognize a
splice with certainty. This unsuccessful attempt
prematurely ended after the analysis of these two
tests. The feature identified in some of the samples
is not robust enough to be exploited in a reliable
automatic tool for detecting splices. An alternative
approach was required, which is presented in the
following section.
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Figure 2. Waveform (a) and
spectrogram (b) of the
samples: a splice on new,
pristine magnetic tape (i.e.,
never used for recording).

Table 2. Results of the Two Tests

45◦ Splices 90◦ Splices

Test Types Recognized Unrecognized Recognized Unrecognized

1 Pristine tape 0 10 10 0
Silence 2 8 10 0

2 Acoustic music 7 3 9 1
Electric bass 0 10 3 7
Electronic music 0 10 3 7
Speech 0 10 2 8

Use of Video to Recognize and Classify
Discontinuities

Through a video recording of the back of the tape
during playback (with framing as in Figure 1), it
is possible to extract additional information with
respect to the audio signal.

1. It is possible to ascertain whether an alter-
ation is due to a physical problem with the
tape or to a specific choice by the composer.

2. Irregularities in playback speed, creating
audio artifacts, can be documented.

3. Markings or written notes on the tape,
which indicate relevant moments in the
composition process, are apparent.

Our automatic analysis of tapes using video record-
ing involves two steps that are applied in sequence.
During preprocessing, the first step, the video is
examined frame by frame, and each image showing
a potentially significant discontinuity is saved. The
exact content of the images is not determined.
That task is the aim of the second step, classifi-
cation, in which a classifier is used to determine
the content of each image saved during preprocess-
ing. The extraction of frames in the preprocessing
step can be performed automatically, as detailed
by Fantozzi et al. (2017). For the second step, a
possible classifier is described for the first time
in the present article. As we will explain in more
detail later, it is based on convolutional neural
networks.
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Before training a classifier for video analysis, the
classes of interest must be defined precisely. In our
experiments, we considered the following classes:

L–M splices: Splices of leader tape to magnetic
tape

M–M splices: Splices of magnetic tape to magnetic
tape

Brands on tape
Ends of tape
Ripples
Damaged tape
Markings
Dirt
Shadows

A brand may be the full name of the tape manu-
facturer, or just a logo. The brand changes in size,
shape, and color, depending on the tape used, thus
complicating the classification task. We separate
brands from other marks (e.g., manual annotations),
using two different classes, because they have sig-
nificantly different meanings for musicologists. The
Ends-of-tape class refers to what happens when the
tape reaches its end of playback, at which point it
is neither under tension nor in contact with the
capstan and pinch roller. The distinguishing visual
characteristic of this class is the tape coming free—
or completely detached—from the capstan. The
Ripples class groups all the alterations in the shape
of the tape, such as cuppings and damages on tape
edges, as described in the “Tape Discontinuities”
section. In the Damaged tape class, we group all
kinds of damages on the surface of the tape that are
not alterations of the shape of the tape: contamina-
tion, creases, etc. Markings can be words or symbols
written on the magnetic tape, on the adhesive tape,
or on both. Again, video frames in this class can be
significantly different from each other. If the tape
exhibits irregularities that are not physical damages,
ripples, or marks, their frames are put into the Dirt
class. The Shadows class contains frames in which
shadows or reflections are temporarily cast on the
tape by external objects in motion. The availability
of this class helps the classifier in discriminating
frames that actually contain nothing interesting: A
shadow, if present, may be continuously changing,
depending on the movements of the external ob-

ject, hence the preprocessing phase repeatedly finds
something new and saves several frames that are
actually uninteresting.

Data Set

A good data set for supervised training must be
large enough to cover the different circumstances
that may occur. In addition, class imbalance should
be minimal: The number of elements in each
class must be similar. Our data set was built from
videos of a number of tapes available at CSC and
recorded at both 7.5 ips and 15 ips. An artificial tape,
containing several different splices, was deliberately
prepared and added to the set with the aim of
better training for cases that are underrepresented
in real tapes. Tens of thousands of images were
extracted during the preprocessing step. The first
40,000 potentially significant images were manually
analyzed and labeled, or discarded in the event of
false positives. After this work, a large number of
images still remained to be processed, so we sought
a strategy to speed up the work. We noted that, in
the videos being preprocessed, the majority of the
frames were saved because of the presence of brands
on the tape. Because brands appear periodically,
they are repeatedly detected as something special
that needs to be notified; as a matter of fact,
they are not interesting. We searched for a way to
discriminate such images automatically; in the end,
we created neural networks by fine-tuning modified
versions of GoogLeNet, proposed by Szegedy et al.
(2015), on a training set of 5,000 brands plus other
discontinuities of different types, and a validation
set of 3,244 brands. We trained two separate neural
networks for videos of tapes running at 7.5 ips
and 15 ips. It was decided to manually check the
frames classified by the network if the classification
confidence was below 90 percent.

We also noticed that some splices between leader
tape and magnetic tape were barely visible. It was
decided to keep a frame in the data set, and assign
it to the L–M splices class, only if the splice was
completely visible. The discarded frames were
moved to a separate folder and used as a validation
set in a dedicated test (more details will be provided
at the end of this section). We further had to
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deal with other extreme situations, such as the
simultaneous presence of multiple discontinuities
in the same frame. In this case, it was necessary to
decide how to classify the frame considering which
discontinuity was most important. The criteria we
followed are:

1. If a frame contained both marks and other
discontinuities (e.g., a splice), then it was
assigned to the Marks class.

2. If a frame of damaged tape exhibited a splice,
then it was assigned to one of the splice
classes (L–M splices or M–M splices, as
appropriate).

3. If a frame with shadows exhibited a splice,
then it was assigned to the appropriate splice
class.

4. If a frame did not exhibit a splice but
exhibited adhesive tape applied onto the
magnetic tape, then it was assigned to the
Marks class because adhesive tape that does
not join a cut in the magnetic tape indicates
an annotation.

5. Frames were assigned to the Ends-of-tape
class only if the capstan was completely
detached from the tape.

The final data set, after the application of neural
networks and the subsequent manual selection,
contains 20,333 images, as summarized in Table 3.
It should be noted that, despite our best efforts, the
nine classes are not equally represented, because
instances of some classes, such as Dirt or Ripples,
are rarely found in real tapes.

It is also important to observe that all the dis-
continuities appear distorted in the videos and,
consequently, in any video frame we extracted
from them. The discontinuities are elongated and
blurred because of the camera’s low frame rate (25
frames/sec) and slow shutter speed (order of magni-
tude: one hundredth of a second). A third observation
is that our videos, recorded in the PAL standard, are
affected by the interlacing phenomenon. Interlacing
is a technique implemented in several video stan-
dards that mandates the acquisition of the odd and
even lines of a frame at slightly different times to re-
duce the bandwidth required for video transmission;
the technique produces jagged contours in moving

Table 3. Classification from Video: Numbers of
Elements in Data Set

Class Elements (7.5 ips) Elements (15 ips)

L–M splices 1,041 1,459
M–M splices 435 715
Ends of tape 2,484 84
Brands on tape 5,834 5,709
Damaged tape 456 183
Ripples 6 0
Shadows 1,347 55
Marks 145 363
Dirt 8 9
ALL CLASSES 11,756 8,577

areas. We tested various de-interlacing approaches
with the aim of improving the quality of the frames
in the data set. In the end, we decided to simply
discard the even lines for each frame, even if this
choice actually eliminates half of the information.
As a consequence, the resolution of frames in the
final data set is the one of digitized PAL fields, that
is, 720 × 288 pixels.

Training and Experiments

The convolutional neural networks for the clas-
sification of tape discontinuities have the same
structure as those previously used to build the data
set: They are derived from GoogLeNet, proposed by
Szegedy et al. (2015), by preserving the intermediate
layers for feature extraction. Preserving layers also
has the benefit of making a full, costly retraining
unnecessary: A fine-tuning can be adopted instead.
The networks were implemented in the Caffe frame-
work (Jia et al. 2014). In all the experiments, distinct
classifiers were trained for videos of tapes running at
7.5 ips and 15 ips. Classification time per frame was
the same for all classifiers: about 0.4 seconds on a
Windows machine with an 8-core Intel Core i7 CPU
running at 4 GHz, along with a GeForce GTX960
board for GPU-accelerated computing. This is a
consequence of the fact that all the classifiers have
the same internal structure.

In a first experiment, classifiers were trained only
for the classes where a high number of examples
were available in the data set. Moreover, given the
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Figure 3. Confusion
matrices for classifiers
trained in the first
experiment: the classifier
for 7.5-ips tapes (a) and the
classifier for 15-ips
tapes (b).

imbalance between the M–M and the L–M splices,
we decided to merge the two classes. Such choices
left us with four classes (Splices, Ends of tape,
Brands on tape, Shadows) for the 7.5-ips case, and
two classes (Splices, Brands on tape) for the 15-ips
case. In each of the two cases, 50 images per class
were left out of the training set and used to assess
the performance of the classifiers after training. The
results of the assessment are summarized by the
confusion matrices in Figure 3. The classifiers were
able to correctly label from 66 percent to 100 percent
of the frames, depending on the class.

In a second experiment, we trained neural net-
works for all the classes featured in the data set. The
results of this experiment must be examined with
the knowledge of the class imbalance that affects
the data set as a consequence of the class imbalance
in real tapes. Nevertheless, we believe that our
results may provide useful indications, including
the raw learning power in the fine-tuning process.
Class imbalance, which is a common phenomenon
(Wang and Yao 2012) in machine-learning tasks,
can be tackled with a wide array of techniques
at both the data set level (e.g., undersampling of
the overrepresented classes or augmentation of the
underrepresented classes with synthetic data) and
the classifier level (e.g., adoption of a classifier

ensemble [Nanni, Fantozzi, and Lazzarini 2015] or
ad hoc classifiers for some classes). An appraisal of
the appropriate techniques for the domain of tape
videos mandates a dedicated study, however. In the
second experiment, frames from the artificial tape
were excluded from the data set and set aside for a
test that will be described shortly. This choice left
us with a data set containing 11,475 frames from
tapes running at 7.5 ips, and 8,387 frames from tapes
running at 15 ips. The accuracy of the networks was
first assessed by k-fold cross-validation with k equal
to 5. In this validation technique, it is established
that elements from different sources must be used
for different folds (e.g., all frames from video v1
reserved for validation in fold 1, frames from video
v2 for the second fold, and so on). In our case, given
the uneven number of frames contributed to the
data set by the different videos, we decided to divide
the former into five folds with the same number of
images, regardless of the video source. Had we ap-
plied the standard strategy, some classes would have
contained very few elements, or even none at all.
The 7.5-ips network was fine-tuned by splitting the
data set into 9,180 items (80 percent) for training and
2,295 (20 percent) for validation. For the creation of
the 15-ips network, the fine-tuning was performed
using 6,709 elements for training and 1,678 for
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validation; again, this represents an 80 percent–20
percent split of the data set. In the validation phase,
accuracy turned out to be slightly lower for 15-ips
tapes than for 7.5-ips tapes, but it was consistently
high: The lowest accuracy measured over all the
folds was 98.9 percent. In a second, more significant
test, the classifiers were evaluated on frames ex-
tracted by the preprocessor on videos not previously
employed to train the classifiers themselves: two
videos of the artificial tape, run at both 15 and 7.5
ips. For this test, considering how the contributions
of different videos to the data set and the size of
the data set itself influence the possibilities for
validation, we put ourselves in a worst-case sce-
nario and used the classifiers with lowest accuracy
emerging from the k-fold cross-validation. By using
the aforementioned 8-core personal computer, the
preprocessing step on the 15-ips and 7.5-ips videos
was completed in 4:46 and 9:27 min, respectively.
(The correlation between the two figures is easy to
establish given the fact that, in the latter case, the
number of frames to preprocess is doubled.) The step
selected 207 frames at 15 ips, and 281 frames at 7.5
ips. At both speeds, the preprocessing step exhibited
almost perfect recall, i.e., it was able to correctly
detect all frames where a discontinuity was present,
with only two exceptions: two annotations with
the words “Ancora stacco musica + voce” and
“Continuo musica e voce” were not detected.

Classification performance turned out to be
heavily dependent on the class. It was low for the
Damaged tape, Shadows, and Marks classes, and fair
for the L–M and M–M splice classes; the remaining
four classes did not appear in the tape. We note that
the classifiers may confuse one kind of splice with
another, but if both kinds of splices are grouped into
a single class then precision and recall are high (0.9
or better). As a final test, frames in the splice class
excluded from the data set because the splice is not
entirely visible were used to verify how many splices
could be correctly classified by the neural networks
(i.e., the recall for splices) in such extreme cases.
In the same spirit of the previous experiments, the
7.5 and 15-ips classifiers with worst accuracy were
used. Results are listed in Table 4: They emphasize
the ability of the networks to identify a significant
fraction of the splices even in borderline cases.

Table 4. Classification of Frames Discarded
from Videos

Frame content P TP Recall (TP/P)

15 ips: L–M Splice 147 97 0.66
15 ips: M–M Splice 135 97 0.72
7.5 ips: L–M Splice 236 177 0.75
7.5 ips: M–M Splice 71 49 0.69

Frames were discarded when the splice was not
entirely visible. P is the number of discontinuities in
the frames; TP (true positives) is the number of such
discontinuities that were correctly classified.

Analysis of Equalization

As presented in the section “Preserving the Doc-
umentary Unit,” equalization is an important
parameter that requires precise configuration on the
tape recorder to obtain a faithful digital preservation
copy. In this section, the problem of equalization
recognition will be discussed, along with an auto-
matic approach to the detection of this important
parameter.

Equalization Errors during Digitization

To obtain a correct digitization of an analog tape,
all recording parameters should be known. The
equalization curve as well as the playback speed
are the most important parameters, but frequently
they are not known. As noted in the section on
Equalization, in the case of a lack of documentation,
IASA guidelines allow the operator to make the
decision aurally. We carried out an experiment
to study the capabilities of skilled and unskilled
testers to discriminate digitized audio samples with
different equalization (Burini, Altieri, and Canazza
2017). The experiment consisted of a multistimulus
test with hidden reference and anchors (MUSHRA,
cf. ITU 2003) that used different audio samples of
spoken parts, instrumental music, and vocal music.
Reference samples had been previously recorded
twice, alternating CCIR and NAB equalization
curves. Each recording was also read twice, using
both equalization curves. As a result, there were
both CCIR and NAB samples, each digitized using
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both correct and incorrect equalization. They could
be compared to each other and to the original
reference recording, as well. Each test provided the
original reference recording, but nevertheless both
skilled and unskilled testers sometimes committed
errors in recognizing the uncorrected equalization.

Given that the operators usually do not have
a reference during the digitization process, there
is evidently a high probability of encountering
an incorrect decision. Furthermore, no scientific
method is provided in literature to aurally detect
the correct equalization. For all these reasons, a new
method, going beyond the status quo of digitization
processes accomplished by subjective decisions,
could be useful to create philologically faithful
preservation copies.

Equalization Analysis

As with the video analysis, machine learning
techniques were tested to automatically detect
the correctness of the equalization applied during
the digitization process. In light of the results
obtained by the preliminary test described by
Micheloni, Pretto, and Canazza (2017), which was
based on audio samples generated in the laboratory,
a further step in analyzing a real data set has
been taken. The preliminary test highlighted the
capability to discern between the different chains
of pre- and postemphasis filters (both correct and
wrong juxtaposition) using cluster analysis and
classification algorithms. The features used were the
first 13 Mel-frequency cepstral coefficients (MFCCs).
The results were so promising—classification with
indexes of accuracy, recall, specificity, and precision
very close to, or exactly, 1—that these features were
used for the new data set. In this experiment, we
focused only on recordings at 7.5 ips, since the
previous test shows that the results obtained with
a specific speed are very close to the ones obtained
with a different recording and playback speed. The
samples were extracted from six recordings with
a CCIR (C) preemphasis curve and four recordings
with an NAB (N) preemphasis curve. These files
were taken from audio tapes whose pre-emphasis
curves were known. From these we created the

Table 5. Distribution of Samples in Each
Data Set

Pre-emphasis CCIR NAB

Post-emphasis CCIR NAB CCIR NAB
Data set A 74 73 67 69
Data set B 221 221 263 263
Data set C 0 0 40 40

samples for the data set, with both the correct and
the incorrect filter chains. To collect material that
could match the behavior of the white noise tracks
of the previous test (Micheloni, Pretto, and Canazza
2017), segments of tracks with only background
noise were selected.

From the samples extracted, three different
profiles of noise could be recognized: (1) type A
is for loudness between −50 and −63 dB (noise
in the middle of a recording, i.e., silence between
spoken words); (2) type B for loudness between
−63 and −69 dB (noise due to the recording head
without any specific input signal); and (3) type C for
loudness between −69 and −72 dB (noise coming
from sections of pristine tape). In a first step, the
audio material collected was then manually divided
into small, 0.5-sec segments to extract features
for the clustering analysis and the classification
algorithm. The resulting data set is shown in Table
5. Some further steps were performed with segments
in lengths of 0.6, 0.8, and 1 sec, but they did not
enrich the results of the algorithms, so the data
presented in the table are related to the first step.
We tried to recognize the equalization using the
same tools as the previous test, i.e., clustering
analysis with hierarchical and k-means algorithms,
changing different distance metrics, and different
classification algorithms like decision tree (DT),
k-nearest neighbors, and support vector machine
(SVM).

The results obtained from the cluster analysis
on noise types A and B are as follows. For type A,
the samples could be divided into two clusters that
differ in their preemphasis equalization. The best
result is obtained with the hierarchical algorithm
using Euclidean distance and the complete linkage
method. In a first cluster it allocates 89 percent of
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the samples having CCIR preequalization, and in
a second cluster 76 percent of the samples having
NAB preequalization. Similarly, for type B, the
samples able to be divided into two clusters that
differ in their preemphasis equalization. The best
outcome is obtained with k-means algorithm us-
ing the cosine distance metric. In a first cluster it
allocates 84 percent of the samples having CCIR
preequalization, and in a second cluster 79 percent
of the samples having NAB preequalization. The
difference between these two results is that in the
first, many more metrics of the algorithms obtain
good clustering results, while in the second fewer
metrics can be considered. This can be explained
by the fact that the type A noise profile is more
characterized by the writing head than is noise of
type B, where the loudness of the signal is less than
with type A. The results obtained by the classifi-
cation algorithms on noise types A and B confirm
the results obtained from the cluster analysis. With
type A, samples that differ in their preemphasis
equalization can be discriminated. The best results
are obtained with DT and SVM. They highlight the
capability of guaranteeing that nearly 95 percent
of the samples selected are in the correct class but
with a precision of 77 percent. This means that there
is a 23 percent probability of taking an incorrect
sample from a specific class. This work is not meant
to implement a tool that allows modification of
the original digitization of the audio tape, but only
to test whether it was digitized with the correct
equalization. So we want to be sure to have the
highest probability of selecting the correct class for
a sample and that we generate as few false positives
as possible. The results obtained from the classi-
fication go in this direction. With type B noises,
there is some difficulty in discriminating samples
that differ in their preemphasis equalization. As for
the cluster analysis, the results are less promising
than the those obtained by type A samples but
still highlight the trend of good performance for
pre-equalization classification. Unfortunately, type
C noise samples were found only on tapes with
NAB pre-equalization. This simplifies the model of
detection both for the clustering analysis and the
classification algorithm, and it allows a very im-
portant result to be highlighted. In this experiment,

this type of noise allows detection of the postem-
phasis curve with a probability near 100 percent.
This result was expected, since pristine tape is not
recorded, so the recording head does not introduce
other noise in addition to that of the playback head.
Obviously, this statement needs to be tested by a
further experiment with a larger number of samples.
If confirmed, it would allow extracting the poste-
qualization on recordings already digitized by third
parties who did not provide any information about
the equalization used.

Conclusions

This article has tackled several problems affecting
the process of preserving and analyzing electro-
acoustic music on magnetic tape. After the defini-
tion of the philological problems, the concept of
discontinuities, and the motivations of this work,
two main computational methodologies were pre-
sented, concerning discontinuity and equalization
detection, respectively. A set of methodologies and
software for the automatic analysis of the digitized
audio documents has been developed to tackle these
problems. These tools aim to help the operators
involved in the digitization process by providing
specific software able to assist in technical decisions
related to the playback device configuration and to
validate the results of the process. From the scholar’s
point of view, automatic tools that detect disconti-
nuities in audio documents will be a powerful aid
for a correct and complete analysis.

For the problem of detecting discontinuities, an
unsuccessful attempt excluded the possibility of
using audio features to recognize splices. Therefore,
an alternative approach using the video of the
back of the tape was proposed. The developed
tool extracts frames of discontinuities from the
video and classifies them with a convolutional
neural network. It is the first approach of this
kind in the open literature, and the positive results
prove its potential. To obtain a more reliable tool,
however, a larger and more balanced data set
of frames is required to train the convolutional
networks. Moreover, further research can improve
the detection rate and the classification quality by
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analyzing the impact of more recent video recording
technologies and standards. The training and the
validation of this tool were performed by using
the digital preservation copies of magnetic tapes
collected during the digitization projects of the
CSC laboratory. Most of the tapes are from the
personal collections of two of highly significant
composers of electroacoustic music: Luciano Berio
and Luigi Nono. Only a small selection of the
hundreds of tapes available were used to extract the
approximately 20,000 frames of the data set. The
use of the entire collections for the creation of the
huge ground truth required for the convolutional
network approach could improve the classification
performance. During the creation of the data
set, several annotations by the composers were
discovered and collected in the marks class of the
data set. But these projects are currently active and
the agreements with the foundations prevent us
from giving information about the content of these
recordings.

Concerning automatic detection of the equal-
ization used, the methodology provides excellent
results, laying the foundation for the development
of a robust tool. The experiments proposed in this
article confirm the preliminary work described by
Micheloni, Pretto, and Canazza (2017). To obtain
more reliable results it will be necessary to enlarge
the data sets used for training the machine-learning
algorithms, adding samples from different tape
recorders.

Once these algorithms are perfected, natural
further developments taking advantage of these
algorithms would be software for automatic quality
control, validation kits to aid digitization operators,
and analysis tools for scholars. All of these would
detect and manage discontinuities as well as points
of interest synchronized with audio and video.
Currently, these kinds of tools are being developed
by the authors.

Finally, the philological issue and the use of these
kinds of tools can also be extended to other music
genres. Since the 1960s, the same working methods,
using physical cuts, editing, and synthesized and
“concrete” sounds, have been used in rock, in jazz,
and for movie sound tracks, as well as in musical
works such as Prometeo by Luigi Nono and the

musical part of multimedia theatrical works such as
Medea by Adriano Guarnieri.
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