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Abstract

Driven by several real-life case studies and in-lab de-
velopments, synthetic memory reference generation has a
long tradition in computer science research. The goal is
that of reproducing the running of an arbitrary program,
whose generated traces can later be used for simulations
and experiments. In this paper we investigate this re-
search context and provide principles and algorithms of a
Markov-Model-based framework for supporting real-time
generation of synthetic memory references effectively and
efficiently. Specifically, our approach is based on a novel
Machine Learning algorithm we called Hierarchical Hid-
den/non Hidden Markov Model (HHnHMM). Experimental
results conclude this paper..

1 Introduction

One of the problems with trace driven simulation is that
trace collection and storage are time and space consuming
procedures. To collect a trace, hardware or software mon-
itors are used. The amount of data to be saved is of the
order of hundreds or thousands of megabytes for some min-
utes the program executions. This is necessary to produce
reliable results [21]. Due to the large amount of data to
be processed the computer time is also very long. Several
techniques have been proposed to reduce the cache simu-
lation time: trace stripping, trace sampling, simulation of
several cache configurations in one pass of the trace [35]
and parallel simulation [19, 31]. Synthetic traces have been
proposed as an alternative to secondary-storage based traces

since they are faster and do not demand disk space. They
are also attractive since and they could be controlled by a re-
duced set of parameters which regulate the workload behav-
ior. The problem of Synthetic traces is that it is difficult to
exactly mimic the real behavior of the addressed program,
thus limiting the use of the traces to early evaluation stages.
Many studies, for example [14, 36], have highlighted the
difficulty to exactly describe original characteristics of the
memory references, such as locality, with analytic models.

On the other hand, driven by several real-life case studies
and in-lab developments, synthetic memory reference gen-
eration has a long tradition in computer science research,
as confirmed by several recent research initiatives (e.g.,
[6, 5, 24]).

In this paper we use a machine learning approach for de-
scribing collected traces. In particular, a specific type of
Markov Model (MM), the Hierarchical Hidden/non Hidden
HHnMM, where each state of MM is linked to an HMM for
producing sequences of labels, not just labels as in standard
HMM, has been worked out. This approach is attractive be-
cause on one side the behavior of the execution is learned by
the model to ensure by machine learning that the artificial
sequence will mimic the behavior of the original execution
and on the other side, making use of the generation charac-
teristic of the Ergodic Hidden Markov Models, sequences of
any lengths can be generated. The machine learning frame-
work requires that a suitable feature representation of the
executions is provided, as we will describe shortly. Our ap-
proach consists of a learning phase, where a real trace is
analyzed with the aim to derive the features for training the
HHnMM, and a generation phase, where a synthetic trace
is generated from HHnMM. A preliminary version of this
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paper appears in the workshop paper [13].

2 Methodology Overview

For performance analysis of the memory subsystem of
a new computer system, we may generate a long sequence
of memory references from some given testing application.
Generally this require to store the long sequences on a disk,
which may occupy many gigabytes of disk space. This may
lead to disk space unavailability or data transfer delay prob-
lems. The alternative approach is to artificially generate a
sequence of memory references similar to that required by
the same given software application. In Figure 1, we sum-
marize the trace analysis algorithm described in this paper.

Memory Reference
acquisition

Division in frames
and classification in 
execution classes

Estimation of 
values associated to
the execution class

Estimation of 
execution classes
Markov Model

Estimation of 
values HMM

Trace Analysis

execution

Figure 1. Trace analysis algorithm

First of all we must reduce the memory references pro-
duced by an application to a simpler representation. Thus,
we divide the memory references sequence in frames, and
each frame is classified as belonging to some execution
classes, for example Sequential or Periodic. The execution
classes are easily estimated from the reference traces. The
sequence of memory references is thus transformed into a
sequence of execution classes, which is a sequence with
very few labels. This sequence is modeled with an Ergodic
Markov Model, which is the Non Hidden part of the model.
To each state of this MM, an Ergodic Hidden Markov Model
is linked, for modeling the sequence of values associated
with each execution class. For example the Periodic exe-
cution class is associated to the value of Period, or Loop
width, which may change for each periodic frame. Once
the non Hidden and the Hidden Markov Models are trained,
artificial memory reference sequences can be generated by
using the generation characteristic of the Markov Models.
Namely, starting from an initial node of the MM which de-
scribe the execution classes, we generate a sequence of val-
ues associated to the execution class by visiting the associ-
ated HMM. The generation of synthetic memory references
is summarized in Figure 2.

For example one may want to generate the memory ref-
erences generated by the C compiler, gcc. The key of our
algorithm is that the compiler produces somehow differ-
ent memory references when used to compile different C
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Figure 2. Synthetic trace generation algorithm

sources. The different memory references sequence any-
way should contain a common structure because the same
compiler gcc is used.

3 Describing Executions from Memory Ref-
erences

In this Section, we deal with the identification of the
type of execution starting from the sequence of the mem-
ory reference patterns captured from the running programs.
Memory reference patterns have been studied in the past by
many authors with the goal to improve program execution
on high performance computers or to improve memory per-
formance. Tools to understand memory access patterns of
memory operations performed by running programs are de-
scribed also by Choudhury et al. in [8]. Such studies are di-
rected towards the optimization of data intensive programs
such as those found in scientific computing.

Other works, for example [16, 23, 27, 32], have the goal
to improve memory performance, since memory systems
are still the major performance and power bottleneck in
computing systems. In particular, Harrison et al. describe in
[16] the application of a simple classification of memory ac-
cess patterns they developed earlier to data prefetch mecha-
nism for pointer intensive and numerical applications. Lee
et al. exploit the regular access patterns of multimedia ap-
plications to build hardware prefetching technique that is
assisted by static analysis of data access pattern with stream
caches.

Several papers by Choi et al., namely [26, 7] , analyze
streams of disk block requests. Choi et al. describe algo-
rithms for detecting block reference patterns of applications
and applies different replacement policies to different ap-
plications depending on the detected reference pattern. The
block reference patterns are classified as Sequential, Loop-
ing, Temporally clustered and Probabilistic.

We remark that while the works reported above in this
Section studied the way data is read or written into memory,
in this paper we are interested to know how the instructions
are fetched in memory during execution. Data memory ref-
erence patterns are important for memory or computation
performance reasons. For us, instruction memory reference
patterns are important for the generation of synthetic mem-



ory reference traces.

3.1 Instruction Memory Reference Pat-
terns

Memory reference patterns generated by instructions
have been studied in the past by several researcher, for ex-
ample by Abraham and Rau [1], who studied the profiling of
load instructions using the Spec89 benchmarks. Their goal
was to construct more effective instruction scheduling al-
gorithms, and to improve compile-time cache management.
Austin et al. [2] profiled load instructions while developing
software support for their fast address calculation mecha-
nism. They reported aggregate results from their experi-
ments, not individual instruction profiles.

We recall that our approach for generating artificial
traces of memory reference consists in the analysis of the
real memory reference patterns generated by an application,
and in building a stochastic model of the memory reference
patterns. For this purpose the memory reference sequence
must be described appropriately. Therefore we divide the
original sequence in short frames, and we detect the type
of the underlying execution. It is worth observing that the
detection of loops, and the measure of the related period,
highly depends on the frame size, because if the frame size
is shorter than the period, it is impossible to detect that the
address stream is periodic. However, in this case we still
can capture the locality of the original memory reference
sequence during the generation of synthetic memory refer-
ences phase, as we will describe shortly.

Clearly, the first type of execution one can think about is
Sequential. Thus we first use a sequentiality test, described
shortly. If the frame is not sequential, we apply a period-
icity test to see if the sequence is Periodic, which means
that the instructions which generate the memory addresses
is of type looping. For example, consider the following ma-
trix multiplication code, which is of course made of nested
loops.

// Multiplying matrices a (4x3) by b (3x4)
// storing result in ’result’ matrix

for(i=0; i<4; ++i)
for(j=0; j<4; ++j)

for(k=0; k<3; ++k)
result[i][j]+=a[i][k]*b[k][j];

Figure 3. Matrix multiplication example

The instructions of this example make memory accesses
that we capture with the PIN binary instrumentation frame-
work [30]. To this purpose we use the itrace Pintool, that
prints the address of every instruction that is executed. In
Figure 4 we show a part of the memory reference pattern
generated by the matrix multiplication code.
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Figure 4. Memory references generated by the
matrix multiplication example

We see a first burst of periodic addresses, from virtual
time 100 to virtual time 350 approximately. This is the code
which resets the (4x4) result matrix. The actual matrix mul-
tiplication starts from virtual time 375 approximately.

The second example we discuss in this paper is related
to indirect addressing used to access numeric vector. In the
code included below, c[] is a sparse array and d[] is its index
array. This example is taken from [16].

//access to sparse array
//c[]=sparse array. d[]=index array

i=head;
x=c[i];
while(i){

x += c[d[i]];
i = d[i];

}

Figure 5. Indirect address access example

In Figure 6 we show a part of the memory reference pat-
tern generated by the numeric vector accessed with indirect
addressing code. The pattern shows a periodic behavior, due
to the while instruction. The access parts are only variable
accesses.

Another aspect of this example we want to highlight is
the following. We performed the generation of the index
array in two ways, a deterministic and a random one. The
deterministic generation code produces the memory refer-
ences shown in Figure 6 while the memory references pro-
duced by random generation are shown in Figure 7.



Figure 6. Memory references of the indirect ac-
cess example via deterministic generation
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Figure 7. Memory references of the indirect ac-
cess example via random generation

The difference among the two patterns is that in the ran-
dom case we note that the addresses change abrutly at sev-
eral virtual time instants. This is due to the calls to the sub-
routine rnd, which is a routine running at the user level. The
amount of address change would have been much greater if
a system call like an I/O routine had been made. Therefore,
the third type of instruction is Jump. It is detected when the
value of the addresses change greatly during a frame, which
can be detected using a threshold. A Jump can be due to a
branch in the code, or to a subroutine call or return.

The fourth type of instruction sequence is Random. It
can be detected using a test for randomness. If no test gives
a reliable output, then the frame is established to come from
a sequence of instructions called Other, which is the fifth
execution type.

3.2 Automatic Classification of Memory
Reference Patterns

In this Section we describe the algorithms we used for
the four tests.

1. Sequential Pattern. We classify the frame execution as
Sequential as explained in the following. The values xi

of the memory reference addresses in a frame of length
N are represented by the array Frame reported in (1).

Frame =
[
xi, xi+1, xi+2, . . . , xi+N−1, xi+N

]
(1)

The differences between adjacent memory address ref-
erence values are represented by the array ∆ reported
in (2).

∆ =
[
(xi+1 − xi), (xi+2 − xi+1), . . . , (xi+N − xi+N−1)

]
(2)

If all the values contained in the array ∆ are positive,
then Frame is monotonic ascendent and it is classi-
fied as Sequential. Note that in this way a sequential
frame can contain also ascending jumps. We assume
that the monotonic test is performed by a software rou-
tine whose input argument is Frame. Our routine is
called Sequential(Frame), and has a boolean out-
put, namely true if the frame is sequential, false oth-
erwise. The Slope value of sequential frames is easily
found as the inclination angle of sequential patterns.
Slope sequences are then used to incrementally train
the Hidden Markov Model HmmS using a routine
HmmS = Inc Train(HmmS,Slope).

2. Periodic Pattern. The frame periodicity, and hence
its period, is determined with standard spectral tech-
niques used in signal processing for looking for sig-
nal harmonicity [28]. More precisely, given a frame
of memory reference addresses as reported in (1), we
weight its values with an Hamming Window [34], and
we compute a Fast Fourier Transform [9] on it. The pe-
riodicity is detected by finding the relevant peaks in the
spectrum amplitude and by looking for an harmonic
structure of the peaks. For example, in Figure 8 we
show a frame of size equal to 100 virtual ticks, taken
from a memory reference sequence, with a clear peri-
odic pattern. In the right pattern of Figure 8 we show
the spectral amplitude of the windowed frame. In this
case, the harmonicity can be easily detected. The first
harmonic is the fundamental frequency of the frame is
called f0.
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Figure 8. Spectral analysys of a periodic frame.

Since the harmonic structure shows a fundamental fre-
quency equal to f0 = 0.03 Hz, the period of the peri-
odic pattern is evaluated as 1/f0 = 33, 3. In our case
the frame periodicity is computed by a software rou-
tine we call Bounce(Frame). Also this routine has a
Boolean output, namely true if the frame is periodic
and false otherwise. The value of the period is es-
timated by the routine called FindPeriod(Frame).
The values of periods are used to incrementally
train the Hidden Markov Model HmmP as follows
HmmP = Inc Train(HmmP,Period) .

3. Random Pattern. Many tests have been devised to ver-
ify the hypothesis of randomness of a series of obser-
vations, i.e. the hypothesis that N independent random
variables have the same continuous distribution func-
tion [25].

Our randomness test belongs the class of quick tests of
the randomness of a time-series based on the sign test
and variants [3]. This class of tests considers a series
of N memory reference observations as that reported
in (1) and the difference array reported in (2). If the ob-
servations are in random order, the expected number of
plus or minus signs in (2) is (N − 1)/2. The variance
of (2) is (N + 1)/12 and the distribution rapidly ap-
proaches normality as N increases. We then compute
mean and variance of the sequence shown in (2) and
we infer the frame randomness based on the similarity
of the computed mean and variance with the expected
ones. More precisely, we estimate the frame random-
ness with the routine called Random(Frame).

Once the randomness of a frame is established, its sta-
tistical distribution should be estimated for synthetic
generation purposes. The discrete statistical distribu-
tions of the random variables xiof the i-th frame are
estimated by computing the Histograms of the frame
itself. In a first step the original trace is analyzed until
enough random frames are collected. For each ran-
dom frame, its Histogram is computed. These His-
tograms divide the minimum – maximum range of the

frame values in sixteen Bins, whose size is clearly
(max − min)/16. Each Bin contains the number of
values occurring in each interval divided by the frame
size, say N , in order that the cumulative sum of His-
togram is one. Complete information about the i-th
random frame is contained in the Stat(i) array re-
ported in (3), which concatenates the Histogram val-
ues with the max and min values of the frame. In (3),
hk(i) is the k-th Histogram value out of sixteen, i is
the random frame index and max(i),min(i) are the
maximum and minimum of the i-th random frame.

Stat(i) =
[
h1(i), h2(i), . . . , h16(i),max(i),min(i)

]
(3)

All the obtained Stat(i) arrays are combined in a
Codebook structure using standard clustering tech-
niques [15]. In this way, all the random frames in
the trace can be represented. We use a routine called
CodeBook = CB(H,max,min) for that purpose.
Vector quantization of Stat(i) means that each ran-
dom frame is represented by an the index that cor-
responds to a minimum Euclidean distance between
Stat(i) in the trace and the Codeword corresponding
to the index. We code Random frames by the routine
Code = V Q(CodeBook,H,max,min). The code
sequence is used to incrementally train the Hidden
Markov Model HmmR with the routine HmmR =
Inc Train(HmmR,Code).

4. Jump Pattern. The determination of Jump patterns is
straightforward. The difference between the values of
the last and the beginning memory reference addresses
of the frame is computed. If the difference is greater
than a pre-established threshold the frame is classified
as Jump. The Jump values are used to incrementally
train the Hidden Markov Model HmmJ . We decide
if the frame contains a jump or not with the routine
Bounce(Frame). The jump value is used to incre-
mentally train the Hidden Markov Model HmmJ with
a routine HmmJ = Inc Train(HmmJ,Code).

4 Experimental Results

We want to study if the algorithm is able to capture
enough locality from the original traces. The simplest way
to do that is to compare cache miss rate curves. We per-
formed such experiments using a cache simulator, in partic-
ular the Dinero IV [22] and the benchmark suite SPEC2000
[20, 33]. Even if this benchmark suite has been officially
discontinued by SPEC, still it is well suited to our purposes,
as it is less demanding than more recent benchmarks, like
SPEC2006. In Figure 9, Figure 10, Figure 11, and Figure



12, we report the miss-rate results for the crafty, gzip,
twolf, vortex SPE2000 benchmarks.

� original trace
�  synthetic trace

Figure 9. Original vs. synthetic instruction
cache miss-rates for crafty benchmark

� original trace
�  synthetic trace

Figure 10. Original vs. synthetic instruction
cache miss-rates for gzip benchmark

� original trace
�  synthetic trace

Figure 11. Original vs. synthetic instruction
cache miss-rates for twolf benchmark

� original trace
�  synthetic trace

Figure 12. Original vs. synthetic instruction
cache miss-rates for vortex benchmark

5 Final Remarks and Future Work

In this paper we describe an approach for workload char-
acterization using ergodic hidden Markov models. The page
references sequences produced by a running application are
divided into short virtual time segments and used to train an
HMM which models the sequence and is then used for run-



time classification of the application type and for synthetic
traces generation. The main contribution of our approach
are on one hand that a run-time classification of the running
application type can be performed and on the other hand
that the applications behavior are modeled in such a way
that synthetic benchmarks can be generated.

As an extension, one can substitute HnHMM with stream
classification methods, e.g. [29], or streaming sequential
pattern mining approaches, e.g. [18], to allow for a batch-
free adaptation to the sequences produced by programs dur-
ing the execution, by also considering Cloud infrastructures
(e.g., [11]) and big data performance issues (e.g., [12, 10]),
for instance. A promising further direction that we want
to additionally investigate is to improve the synthetic trace
generation by considering the end-to-end context of the pro-
cess that generates sequences out of program execution. In
this case, application of online stream process mining will
help in discovering the underlying process and adapt to it
in real time [17], also following conventional approaches as
regards the main adaptive model (e.g., [4]).
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