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ABSTRACT 

 

Molecular self-assembly is a topic attracting intense scientific interest. Various strategies 

have been developed for construction of molecular aggregates with rationally designed 

properties, geometries, and dimensions which are able to provide solutions to both 

theoretical and practical problems in areas such as drug delivery, medical diagnostics, and 

biosensors, to name but a few. In this respect, gold nanoparticles (AuNPs) with core 

diameters in the rage 1−10 nm have emerged as a powerful class of materials for a variety 

of biomedical applications. The utility of AuNPs is enhanced by our ability in tuning their 

surface properties by grafting multiple ligand species able to self-assemble in mixed-

monolayers. Thus, identification of molecular designing rules is essential to achieve a 

precise control of specifically patterned monolayer protected nanoparticles for an intended 

biological outcome. In this thesis are described the evidences of our investigation of the self-

organization of different mixtures of immiscible ligands on a spherical gold surface. The 

evaluation of the role of some critical parameter such as core dimension, different chemistry 

and relative ligand length and ratio as well as solvent was the starting point to develop a 

standard procedure to tune the self-assembled monolayer (SAM) morphology. Studies of the 

morphology of these mixed monolayers were carried out using an in-silico approach based 

on multiscale molecular simulations. Then, combining theory and experiments, we 

investigated the role of ligand arrangement and composition on the interaction with model 

lipid bilayer (either simple and complex) and with cells of these monolayer protected NPs. 

In-silico models were then employed to study the binding of patterned AuNps with human 

serum albumin (HSA), uncovering the impact of the monolayer morphologies on protein-

NP interfaces. Laslty, a third kind of biointerface was taken into account and the 

supramolecular binding of small molecules, toward mixed/homoligand shells was disclosed. 
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SOMMARIO 

L’autoassemblaggio a livello molecolare è un argomento che negli ultimi anni sta attraendo 

un alto interesse scientifico. Sono state sviluppate diverse strategie per costruire aggregati 

molecolari con proprietà, geometrie e dimensioni predefinite, che sono in grado di fornire 

soluzioni sia a problemi teorici che pratici in aree quali il trasporto di farmaci, diagnostica 

medica e biosensori, solo per citarne alcuni. In questo panorama le nanoparticelle d’oro 

(AuNPs), con diametro compreso tra 1 e 10 nm, sono emerse come un potente strumento per 

varie applicazioni biomediche. L’utilità di queste AuNPs è ulteriormente potenziata dalla 

nostra capacità di metterne a punto le proprietà superficiali utilizzando diversi tipi ligandi 

che sono in grado di auto assemblarsi in monostrati misti. Per questo motivo identificare 

regole di design molecolare è essenziale per ottenere un preciso controllo della morfologia 

del monostrato che ricopre il nocciolo d’oro, nell’ottica di uno specifico interesse biologico. 

In questa tesi sono descritti i risultati dello studio sull’autoassemblaggio di ligandi 

immiscibili su una superfice d’oro sferica. Valutando il ruolo di alcuni parametri critici (es: 

dimensione del nocciolo, lunghezza dei ligandi, diversa chimica e solvente) è stato possibile 

sviluppare una procedura standard per regolare la morfologia del monostrato auto 

assemblante (SAM). Studi sulla morfologia di strati auto assemblanti sono stati eseguiti per 

mezzo di un approccio in-silico basato su simulazioni multi scala. Combinando teoria con 

esperimenti, è stato possibile investigare che ruolo gioca l’arrangiamento e la composizione 

dei ligandi sull’interazione con membrane lipidiche (mono e multi componente) e con cellule 

di queste nanoparticelle. Modelli in-silico sono stati utilizzati per valutare l’interazione di 

AuNPs protette da SAM con l’albumina, proteina del siero umano, per comprendere come 

la presenza di diverse morfologie possa influire sull’interazioni di queste nanoparticelle 

all’interfaccia con le proteine. Infine, è stata analizzata la capacità di AuNPs protette da strati 

auto assemblanti di interagire con piccole molecole e come diverse morfologie possano 

influire sulla capacità di carico e di interazione di queste nanoparticelle. 
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Chapter 1. Nano-bio interface 

The promise of nano-biomaterials for diagnostic and therapeutic biomedical applications has 

been widely reported throughout the recent years. (1-6) And yet, the translation of 

nanomaterial-based therapeutics to clinical applications remains an elusive target. Toxicity, 

immunogenicity, and decreased efficacy have been some of the main challenges in using 

nanomaterials in biomedicine. To overcome some of these problems, many studies have 

been undertaken to understand the interactions between nanomaterials and the biological 

environment. Identifying ways in which the nanomaterial interface can be controlled 

enhancing the possibility to tune the interactions with biomolecules for beneficial biomedical 

applications.  

Under the correct lens, almost anything may be considered a material. Biological molecules 

add an extra level of complexity due to their unique structure e.g. proteins, enzymes, DNA, 

and lipids. Currently, many biomedical applications of nanomaterials rely on the 

functionality of attached biomolecules to target, deliver, image or mediate interactions with 

the biological environment. (7-19) 

The attachment of a biomolecule on the nanomaterial surface resulted in changing the 

structure of the biological molecule itself. This could lead to an alteration of the biological 

function giving birth to a completely new nanomaterial that could interact with the biological 

environment in an unpredictable way. (20-24) 

At the same time, engineered nanoparticles are the most promising platform for nanoscale 

diagnostic/therapeutic strategies. (25-27) 

The nano-bio interface comprised physicochemical interactions, kinetics and 

thermodynamic exchanges at the interfaces between NP and biological surfaces. (28) 

The surfaces of nanoparticles will progressively and selectively adsorb biomolecules, unless 

they have been designed to do otherwise. This ‘corona’ of biomolecules lowers the surface 

energy of the nanoparticle and promotes its dispersion. (29-35) 

There is no way to fully describe all the bio-physicochemical interactions that occurred at 

the NBI; yet, there is the necessity to develop a rational approach for understanding how the 

properties of engineered NPs relate to biological behavior and how the design of those 
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properties could be exploited in optimizing the efficacy of NPs for safe 

diagnostic/therapeutic use. The current methodology is mainly based on in vitro and in vivo 

studies. However, experiments are demanding in terms of time, costs, and resources. In this 

context, computational models are a powerful tool for analyzing biological information that 

are not accessible to other modeling and experimental techniques. (36) 

 

1.1 Gold nanoparticles protected with self-assembled monolayers 

Gold NPs (AuNPs) are one of the most promising engineered nanoparticle types, having 

high potential for biomedical applications. (37, 38) Bulk gold is chemically inert and it is 

possible to easily synthesize gold nanoparticles with controlled size, shape, and surface 

chemistry. Moreover, AuNPs possess excellent optical properties at the nanoscale, enabling 

a wide variety of analytical techniques for tracking and imaging gold in biological samples, 

including cells and tissues (39). 

In the recent years a lot of different functionalized AuNPs where used in bio-nanotechnology 

applications (sensing, targeting, imaging). We report here only few examples to give an 

overall idea on how broad could be the field of applications of these nanomaterials. AuNPs 

could be conjugated with antibodies or oligonucleotides for the detection of target 

biomolecules,43 to be used for in vitro detection and diagnosis of cancer. (40) In another 

interesting study, they were used in the “bio-barcode assay” (41). AuNPs were conjugated 

with both barcode oligonucleotides and target-specific antibodies, and magnetic 

microparticles functionalized with monoclonal antibodies for the target moiety. These 

complexes produced a sandwich that released a large amount of barcode oligonucleotides, 

providing both identification and quantification of the target. (42) Mirkin et al. demonstrated 

the detection of prostate specific antigen (PSA) using Au-NP PSA probe design, PSA-

specific antibodies covalently attached to the gold surface, applying the bio-barcode 

methodology with a limit of detection of 330 fg/mL. (43), while Zeng et al. reported an 

aptamer-nanoparticle strip biosensor (ANSB) system for the detection of Ramos 

(lymphoma) cells (44). Using non-covalent conjugates of AuNPs and fluorophore molecules 

Rotello and co-workers obtained high sensitivity sensing of biomolecular targets (45). This 

method was able to differentiate 12 different species/strains of bacteria with 95% accuracy. 

Moreover, this strategy was used to differentiate normal, cancerous and metastatic cells in a 

rapid and accurate assay. 
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AuNPs could also be used also to transport therapeutic agents into cells and several research 

groups have investigated how functionalized AuNPs interact with cell membranes to 

improve the efficiency of the delivery process (46). Mirkin et al. used RNA-AuNP 

conjugates to knockdown luciferase expression showing the conjugates have a half-life six 

times longer than that of free dsRNA and demonstrating a high gene knockdown capability 

(47). Rotello et al. also demonstrated that cationic AuNPs, featuring cationic amino acid-

based side chains, can be used for DNA transfection. (48) 

The optical and electronical properties of gold nanoparticles allowed to use them for cell 

imaging exploiting a variety of techniques. AuNPs could be used as a contrast agent for CT 

imaging based on the higher atomic number and electron density of gold as compared to the 

currently used iodine. Hainfeld et al. showed that AuNPs enhance the in vivo vascular 

contrast in CT imaging, (49), and Kopelman et al. further designed immuno-targeted AuNPs 

to selectively target tumor specific antigens. (50) Jon et al. used a prostate specific membrane 

antigen (PSMA) aptamer-conjugated AuNPs (PSMA-AuNPs) to establish a molecular CT 

image for the specific imaging of prostate cancer cells. (51) 

 

1.1.1 Homoligand self-assembled monolayer-protected gold nanoparticles 

Surface modification with tailored chemistry is a commonly used route to control AuNPs 

physicochemical and surface-related properties. The most widely used approach, both in 

experimental and theoretical studies, consist of a gold core protected with a self-assembled 

monolayer (SAM) of thiolate ligands. Generally speaking, SAMs of organic molecules are 

molecular assemblies formed spontaneously on a substrate (either flat or curved) by 

adsorption and organized into large ordered domains. (52) 

The available library of thiolate ligands for NP functionalization is extensive and includes 

functional moieties such as alcohols, alkyl halides, amines, amino acids, amphiphilic 

polymers, azides, carbohydrates, carboxyl acids, nucleic acids, peptides, phenols and 

proteins. Other electroactive ligands such as sulfonates and nitriles offer alternative routes 

to enhance the activity of SAM-protected AuNPs in biological environments. Apart from 

being complex, self-organized, multivalent systems, SAM-protected AuNPs also exhibit 

structural features comparable to many biological systems including proteins, nucleic acids 

and many cellular substructures. The success in synthesizing sub-10 nm SAM-protected 

https://en.wikipedia.org/wiki/Adsorption


28 

 

AuNPs has provided a unique opportunity to model interfacial phenomena at natural 

surfaces, which are dominant in biological activities.  

A number of experimental and theoretical studies have been carried out to elucidate the 

molecular features and organization of SAMs on flat and curved gold surfaces. (53, 54) An 

established property of SAMs constituted by alkyl thiolates on flat substrates is that the 

adsorbed molecules arrange themselves with a tilt angle relative to the surface normal to 

maximize packing (i.e., van der Waals interactions between chains). Assuming that the 

ligand packing on flat surfaces and on nanoparticle is the same that would mean that 

molecules would generate a large number of defects at the facet edges. (55) 

In their work, Glotzer and coworkers revealed how stripe-like domains, present on the 

curved surface of AuNPs, formed by atomistic and mesoscale simulations. (56-59) The 

formation of striped domains may derive from the ligands length mismatch, or from their 

different bulkiness. Another crucial parameter that determined the formation of ordered 

domains in a SAM is the NP core size. On small NPs, a binary mixture tended to separate 

into two distinct phases (i.e., Janus arrangement), as all chains gained free volume due to the 

high surface curvature and there was no entropic gain on formation of new interfaces. 

Decreasing the surface curvature, the available free volume decreased and the entropic gain 

associated with the formation of new interfaces increased. When the NP radius is further 

increased, disordered stripes and patchy domains are expected to dominate. (60) 

Due to the curvature of the gold core the SAM used to coat it presented enough space 

between different ligand chains to trap small molecules through host-guest interactions 

which facilitate selective binding events between ligands and target analytes based on 

molecular recognition, as shown in Figure 1.  

 

 

Figure 1: Simplified representation of ligand packing for homoligand nanoparticles. Ligands may be organized 

on a faceted core essentially in two configurations: they can assume their optimal tilt angle with regard to each 

facet (left), or they can assume a global tilt angle (middle). The first configuration leads to high-energy defects 

at the crystal edges, while the second does not take advantage of the particle curvature. The real configuration 
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is likely a compromise between the two, with the ligands roughly conforming to a global tilt angle, but relaxing, 

and splaying outward (right). (61) 

 

The monolayers are so expected to exhibit a selective host-guest chemistry taking advantage 

of specific design of the monolayer itself. Increasing the complexity of the system using a 

mixture of incompatible ligands to form the monolayer offers a further degree of freedom. 

 

1.1.2 Mixed SAM protected nanoparticles  

When mixed SAMs of dislike molecules are employed to coat AuNPs, nanoscale domains 

may spontaneously form in the particle shell, thus leading to the generation of anisotropy 

with regards to surface functionalization via ligand arrangement. The spontaneous formation 

of 3D patterns (e.g. patched, striped or Janus domains see Figure 2), within the surface shell 

of immiscible ligands employed to coat gold nanoparticles, depended on the sum of two 

different effects: (56) 

• Minimization of enthalpy 

• Maximization of conformational entropy. 

 

The first one reduces the contact between immiscible ligands, while the gain of the second 

depended on the formation of interfaces between immiscible thiolates with different 

properties in terms of length and steric hindrance. Glotzer and coworkers demonstrated that 

the formation of stripes, made of two immiscible ligands of enough difference in length was 

universal and did not depend on the chemistry of the surfactants. Stripes form only when 

sufficient conformational entropy is gained during their formation. For surfactants with two 

different lengths, the gain of entropy for the longer surfactant is larger due to the availability 

of free volume around the surfactant tail group overcoming the loss of entropy due to stripe 

formation. Moreover, stripe thickness depended on various factors, such as the solvent, the 

length of the alkanethiol tail, charge on the headgroup. (60) 

While few different morphologies are admissible dealing with a binary mixture of ligands, 

if we consider combinations of a higher number of thiols the number of possible 

morphologies increases. (61). Starting from these theoretical evidences it seemed possible 

to tune the morphological characteristics of the mixture of immiscible ligands, used to coat 

the NP surface, based on easy-to-control parameters (e.g. ligand length, NP gold core 
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dimensions) as well as on some less controllable parameters (e.g. ligand degree of 

immiscibility and stoichiometry). (62; 63; 56), (64-73). Presence of discrete domains at the 

nanometer level provide surface properties (such as interfacial energy, solubility, or 

wettability) to engineered AuNPs that cannot be explained simply based on the bulk 

composition alone and allows tailoring of nanosurfaces with a wide variety of specific 

features. 

 

Figure 2: Typical 3D organization of two immiscible ligands (dark- and light-blue sticks) on a curved surface: 

Janus (a), mixed random (b), and regularly striped (c). Schematic representation of the free volume (grey 
area) that the ligand tails are allowed to sample on an NP surface, when surrounded by other types of 

surfactant chains of the same (d) or different length (e) on curved surfaces. Ligand length mismatch endows 

longer tails with more available free volume, which results in an interface entropy gain and favors striped 

pattern formation over complete phase segregation. 

 

The preparation of patterned NPs may follow two general process: spontaneous self-

assembly of subunits or step-by-step synthesis using an external template (71; 75-78). 

Regarding gold NPs, subunits used are typically thiols, given the strength of the gold–sulfur 

bond (~40 kcal/mol) (79). Spontaneous self-assembling is driven by the fact that mixtures 

of immiscible ligands can spontaneously form a patterned monolayer due to structural 

mismatches, ligand immiscibility and the resulting morphologies represents thermodynamic 

minima for each system. The step-by-step synthesis technique represent the traditional 

approach, in which monolayer patches were obtained directly on the NPs with external tools 

or by ad hoc synthetic procedures. For example, NPs were deposited onto solid supports and 

then, generating air–liquid or liquid–liquid interfaces two large portions of the NP surface 
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can be selectively functionalized. This procedure was particularly useful for preparation of 

Janus nanoparticles so the alternative, self-assembly approach is more suitable for obtaining 

other morphologies. (60) 

Moreover, as in the biological environment other biological structures (e.g. proteins, cell 

membranes) presented patterns of hydrophilic/hydrophobic areas, these morphological 

characteristics of the SAM were expected to influence the interaction of SAM-protected NPs 

with proteins and membranes or other surface-related biological processes. (80-86).  

 

1.2 Mixed SAM protected nanoparticles at the bio-interface 

To determine the capacity of MPNPs to be internalized into cells and which kind of 

biological response they promote, it is necessary to understand their behavior once in contact 

with the biological environment. Two are the main nano-bio interfaces SAM protected 

nanoparticles came in contact with: 

• Membranes 

• Proteins 

• Cells 

 

1.2.1 Nanoparticle interactions with membranes 

Membrane models (MMs) are currently used to study the influence of the chemical 

properties of SAM protected NPs on their interactions with lipid bilayers. Membrane 

attachment is mainly characterized by the use of supported lipid bilayers (SLBs), associated 

with methods such as surface plasmon resonance (SPR) (87; 88), quartz crystal microbalance 

measurements with dissipation monitoring (QCM-D), and atomic force microscopy (AFM). 

Several theoretical studies have recently been performed to evaluate the molecular aspects 

of NP–membrane interactions. Classical methods such as molecular dynamic (MD) were the 

most used. However, most biological phenomena occur on time and length scales which 

were not accessible to MD calculations, and less-detailed techniques, such as Coarse Grain 

(CG) (89-91) become necessary. Moreover, membrane composition varies with respect of 

different cell types and influencing the global properties of the membrane (92-94), 

determining different type of interactions with NPs.  
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Some computational studies investigate how different surface patterns can affect membrane 

interactions often correlated to experimental studies while others consider only Janus-type 

systems. (95-98) 

Stellacci’s group first showed that striped NPs entered cells via spontaneous diffusion, while 

NPs with the same ligand composition but random morphology were internalized through 

the endocytic pathway (99-101). Li et al. (102) tried to give an explanation to these different 

behaviors. They compared the free energy change associated to translocation through a lipid 

bilayer for four different types of hydrophilic/hydrophobic patterned NPs. They found that 

striped NPs lowered the energy barrier to cross the membrane, justifying the diffusion of 

these systems through lipid bilayers. 

 

Thanks to Van Lehn and Alexander-Katz that provided an accurate description of the 

interaction mechanism for anionic MUS/OT patterned NPs and a model 1,2-dioleolyl-

snglycero-3-phosphocholine (DOPC)-composed membrane, the first critical step is the 

contact between a hydrophobic patch on the NP and a membrane lipid tail bending up and 

protruding into the aqueous medium. (103; 104) Once this initial contact has been 

established, the SAM deform to maximize the contact chances (Figure 3).  

 

Figure 3: Stages of NP insertion into a membrane following protrusion contact. The first protruding membrane 

lipid (left panel), the NP ligands [MUS:OT (1:1) on a 2-nm NP] and other membrane lipids successively 

(center and right panels) recruited are highlighted in each image. Lipid tails are represented as white spheres, 

phosphate groups are in yellow, and choline groups in blue. MUS molecules contacting the bilayer in green 
(corresponding to CH2 groups), yellow (sulfur atoms), and red (oxygen atoms) spheres, while OT molecules 

are presented as pink chains. Lipids and ligands not presently involved in the insertion process appear dark. 

[Adapted with permission from (Van Lehn and Alexander-Katz 2015). Copyright (2015) Royal Society of 

Chemistry] 
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The membrane progressively increased its curvature relieved only when the NP core is 

deeply inserted into the bilayer (103). An important consideration emerged from these 

studies, that there is a little influence of the nanopatterned SAM morphology due to the fact 

that striped, mixed, random or patchy morphologies are virtually indistinguishable from each 

other for 1:1 and 2:1 MUS/OT compositions, the only exception being the Janus 

morphology. (197; 105) The monolayer composition seems to play the dominant role in 

determining the likelihood of insertion.  

From these evidences, it is not surprising that most of the computational investigations used 

a simplified membrane representation with the bilayer composed of one or a few different 

lipid molecules (106, 107). 

 

1.2.2  Nanoparticle interactions with proteins 

Nowadays, nanoparticles had been widely applied for numerous biomedical applications, 

such as bioimaging, biosensing, drug delivery, diagnostics, and therapy.  When NPs came in 

contact with biofluids such as blood, plasma and serum, the adsorption of proteins was just 

around the corner forming the so-called protein corona (108, 109). The protein corona could 

dramatically alter the interfacial properties of nanomaterials, giving them a new biological 

identity that is for sure different from the native synthetic one (110). Moreover, this 

biological identity was able to elicit some physiological responses (e.g. agglomeration, 

cellular uptake, circulation lifetime, signaling, kinetics, accumulation, and toxicity) 

mediating the interaction of the nanomaterial with the biological environment (111). The 

precise mechanism(s) of formation of the protein corona is still far from being understood, 

since it depended on numerous factors as well as on the nanomaterial (size, shape, charge, 

hydrophobicity, composition, surface functionalization), the proteins (size, shape, charge, 

isoelectric point, and conformational flexibility), and the physiological environment 

(polarity, ionic strength, pH, and temperature), side (112, 113).  

Furthermore, the formation of a protein layer around NPs hampered their specific delivery 

and targeting capabilities. The use of targeted NPs in bio-nanotechnology could be improved 

by tuning their surface making them able to bind proteins selectively, modulating their 

capabilities of signaling, uptake, transport. Conversely, NP could alter the structure of the 

adsorbed proteins becoming potentially a hazard. (112-118) 
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Several number of studies were carried out to uncover the physiological responses to 

nanomaterial–protein complexes (119-122) but, due to the complexity of physiological 

systems (123) and the experimental difficulty of evaluating the characteristics of the corona 

a comprehensive description of these phenomena is missing. Moreover, most of the present 

studies involved homoligand coated NPs while only a few have evaluated the influence of a 

nanostructured surface (size range comparable to proteins). Studies on patterned NPs have 

shown that composition and morphology of the SAM affect the binding of proteins, such as 

bovine serum albumin (BSA) bind. Fluorescence quenching, dynamic light scattering 

(DLS), circular dichroism (CD), and isothermal titration calorimetry (ITC) performed on 

NPs with either striped or randomly morphology suggested different “side-on” or “end-on” 

bovin serum albumin conformations on the NP, depending on its shell organization. (124) 

In another combined experimental/computational study, interactions of cytochrome c (cyt c) 

with nanopatterned surfaces (mixtures of 6-mercapto- 1-hexanol (MH) and OT ligands) were 

evaluated using protein assays and computational MD simulations. The combined approach 

highlighted that the cyt c exhibited increased its adsorption increasing the MH proportion, 

suggesting that the interactions were largely hydrophilic. (125) The same key role of the 

surface structural and chemical heterogeneity of nanoscale patterned NPs was also 

confirmed by a further computational study involving lysozyme and specifically patterned 

planar surfaces of self-organized 6-mercapto-1-hexanol (MH) and octanethiol (OT) thiols 

(126). These evaluations suggested that nanoparticle surfaces needed to be tuned to combine 

with different/specific proteins, and proteins needed to be engineered to specifically interact 

with nanomaterials. (60) 

 

1.2.3  Nanopatterned nanoparticles interaction with cells 

The retention of NPs in human body can lead to toxic effects, even though NPs are often 

described as “safe”. These toxic effects are particularly relevant if the retention persist for 

long periods at high concentrations. (127; 128) Fratoddi et al. (129) reviewed and 

summarized the commonly used assays to determine the effects of NP exposure on cell 

viability (membrane damage assays, viability tests). Unfortunately, results measured by 

these assays were not straightforward (130), and a standardization of the 

procedure/methodology is required to assess the overall toxicity of NPs. Experiments with a 

wide range of cells have been performed to test the toxicity of NPs. Cells should be in the 

logarithmic growth phase rather than in the stationary phase to be more sensitive to toxic 
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effects. (131) This being said, tuning the coating of NPs can affect both internalization (132-

135; 105; 101) and decrease the toxicity. (136; 137) 

Interestingly, NPs that present similar surface chemistry but different surface morphologies 

(e.g., striped versus random ligand arrangements) can have similar internalization ability, 

different internalization pathways, and correspondingly different cell toxicities. It has been 

reported that NPs with random morphologies are more toxic than striped ones. (128). Drug 

delivery is one of the main fields of bioapplication for patterned NPs (138). Striped MUS/OT 

NPs were able to transport single- and double-strand DNA into B16-F0 melanoma cells. 

Amphiphilic ligand-coated AuNPs exhibited remarkable lymph node tissue accumulation. 

When tested for vaccine delivery after conjugation with a peptide antigen (SIINFEKL), they 

drastically improved the peptide vaccine response compared with free antigen or linker-

antigen administration. (139)  

Amphiphilic stripe-like MUS/OT AuNPs were loaded into multilamellar lipid vesicles and 

delivered to tumor cells, where they increased the cell killing ability. (140).  
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Chapter 2. Computational techniques 

 

This chapter describes the main computational techniques applied in the thesis to model 

homo/hetero self-assembled monolayer protected gold nanoparticles, to evaluate the 

molecular features and structural properties of the different monolayers that coat the gold 

surface and their interaction with the biological environment (membranes and proteins). 

 

2.1 Molecular dynamics 

Molecular dynamics is a computational technique that allow one to predict the time evolution 

of a system of interacting particles (atoms, molecules) and estimate relevant physical 

properties. It generates information as atomic positions, velocities, and forces from which 

the macroscopic properties (e.g., energy, pressure, …) can be derived by means of statistical 

mechanics. MD simulation usually consists of three main constituents: (i) a set of initial 

conditions (initial positions and velocities of all particles in the systems); (ii) the interaction 

potentials to represent the forces among all particles; (iii) the evolution of the system in time 

by solving a set of classical Newtonian equations of motion for all particles in the system: 

 

−
𝑑𝐸(𝑅)

𝑑𝑅
= 𝑚

𝑑2𝑅

𝑑𝑡2      

where E(R) described the potential energy of the system which depended from the initial 

conditions employed, R represented the coordinates and m the molecular mass of the atoms.  

A force field (FF) represented the analytic expression that described the potential energy 

E(R) of the considered molecular model. It generally sums up singles energetic contributions 

such as: 

• Bonded energies: due to interactions between connected atoms, depending on angles 

and bond types 

• Non-bonded energies: due to not-bonded atoms, depending on Van der Waals and 

electrostatic interactions and hydrogen bonds 
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Different types of FF existed and were dedicated to different aspects of molecular 

simulations; sometimes happened that some parameters were not present in the selected FF, 

but they might be really necessary for the parametrization of a molecule that holds specific 

atoms. These missing parameters could also be calculated with ab initio methodologies or 

substitutes with experimental values, if available. (137) 

Contributions of the bonded and non-bonded energies can be summed up as: 

 

𝐸(𝑅) = 𝐸𝑣𝑎𝑙𝑒𝑛𝑧𝑎 + 𝐸𝑛𝑜−𝑏𝑜𝑛𝑑 + 𝐸𝑐𝑟𝑜𝑠𝑠 

 

in which 𝐸𝑣𝑎𝑙𝑒𝑛𝑧𝑎 represented chemical bonds, 𝐸𝑛𝑜−𝑏𝑜𝑛𝑑 the electrostatic interactions and 

𝐸𝑐𝑟𝑜𝑠𝑠 bonds and angles distortions. 

Going deeper in detail: 

 

𝐸𝑣𝑎𝑙𝑒𝑛𝑧𝑎 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑡𝑜𝑠𝑖𝑜𝑛 

 

• 𝑬𝒃𝒐𝒏𝒅: energy term proportional to the distance between two atoms chemically 

bonded 

• 𝑬𝒂𝒏𝒈𝒍𝒆: energy term related to the bending of angles formed by to bonds  

• 𝑬𝒕𝒐𝒓𝒔𝒊𝒐𝒏: energy term related to the torsional motion of dihedral angles formed by 3 

consecutive bonds 

 

𝐸𝑛𝑜−𝑏𝑜𝑛𝑑 = 𝐸𝑉𝑎𝑛 𝑑𝑒 𝑊𝑎𝑎𝑟𝑙𝑠 + 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝐸ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑏𝑜𝑛𝑑𝑠 

 

• 𝑬𝑽𝒂𝒏 𝒅𝒆 𝑾𝒂𝒂𝒓𝒍𝒔: energy term related to the Van Der Waals interactions between atoms 

• 𝑬𝑪𝒐𝒖𝒍𝒐𝒎𝒃: energy term arising from the Coulombic interactions between charged 

moieties 

• 𝑬𝒉𝒚𝒅𝒓𝒐𝒈𝒆𝒏 𝒃𝒐𝒏𝒅𝒔: energy term referred to the presence or formation of hydrogen 

bonds 
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Usually, equations of motions are integrated applying one of the many algorithms using 

difference methods. MD simulation can be performed in many different statistical 

ensembles, such as grand canonical (µVT), microcanonical (NVE), canonical (NVT) and 

isothermal-isobaric (NPT). The constant pressure and temperature can be controlled by 

adding an appropriate barostat and thermostat. (141) 

 

2.2 Coarse graining techniques  

Molecular dynamics simulations on very large systems may require such large computer 

resources that they cannot easily be studied by traditional all-atom methods. Simulations of 

processes on timescales longer than 1 microsecond are prohibitively expensive, because they 

require so many time steps. In these cases, the problem could be avoided by using reduced 

representations, which are also called coarse-grained models (CG). 

Martini force field is a coarse-grained force field suited for molecular dynamics simulations 

of biomolecular systems. (143) The force field has been parameterized in a systematic way, 

based on the reproduction of partitioning free energies between polar and apolar phases of a 

large number of chemical compounds. (143) The Martini model is based on a four-to-one 

mapping, i.e., on average four heavy atoms plus associated hydrogens are represented by a 

single interaction center. The four-to-one mapping was chosen as an optimum between 

computational efficiency on the one hand and chemical representability on the other hand. 

Mapping of water is consistent with this choice, as four real water molecules are mapped to 

a CG water bead. Ions are represented by a single CG bead, which represents both the ion 

and its first hydration shell. To represent the geometry of small ring-like fragments or 

molecules (e.g., benzene, cholesterol, and several of the amino acids), the general four-to-

one mapping approach is too coarse. Ring-like molecules are therefore mapped with a higher 

resolution of up to two non-hydrogen atoms to one Martini particle.  

Based on the chemical nature of the underlying structure, the CG beads are assigned a 

specific particle type with more or less polar character. The Martini model has four main 

types of particles: polar (P), non-polar (N), apolar (C), and charged (Q). Within each type, 

subtypes are distinguished either by a letter denoting the hydrogen-bonding capabilities (d = 

donor, a = acceptor, da = both, 0 = none) or by a number indicating the degree of polarity 
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(from 1 = low polarity to 5 = high polarity), giving a total of 18 particle types or ‘building 

blocks’.  

Martini, as any other model, has a number of limitations. It is obviously important to know 

these limitations, both to make sure the model is used appropriately and to further improve 

the model. With its 4-1 mapping and its particular range of interactions, Martini can 

reproduce the thermodynamics of a large number of different organic compounds. In many 

cases it is comparable in accuracy to atomistic models, particularly in thermodynamics, but 

it also amplifies a number of limitations in atomistic models, where lack of electronic 

polarizability in the standard force field is one of the main limitations. 

However, the wide use of Martini and extensive testing in the original papers and subsequent 

studies clearly shows the degree of agreement with experiments and atomistic simulations 

and allows an assessment of whether Martini is accurate enough for a particular application. 

Recent progress in linking Martini more closely to atomistic simulations through back 

mapping and through hybrid simulations appears promising in terms of extending the use of 

Martini simulations to problems that may be outside the current resolution. 

 

2.3 Umbrella sampling 

Umbrella sampling is a computational technique used to improve sampling of a system (or 

different systems) where ergodicity is hindered by the form of the system's energy 

landscape. Systems in which an energy barrier separates two regions of configuration space 

may suffer from poor sampling. In Metropolis Monte Carlo runs, the low probability of 

overcoming the potential barrier can leave inaccessible configurations poorly sampled – or 

even entirely unsampled – by the simulation. Molecular dynamics simulations are useful to 

perform dynamic and equilibrium processes of large molecules with atomic detail, but 

processes which involve large free energy barriers or timescales longer than a microsecond 

are not feasible to be simulated directly. The potential of mean force (PMF) can be used to 

represent the equilibrium distribution of one or few relevant conformational variables, 

angles, distances, etc. with an increased accuracy thanks to a longer sampling and improved 

force fields. Therefore, if the chosen coordinate is a good reaction coordinate a dynamical 

propagation on the PMF can simulate the kinetics of the reaction of interest. The most used 

method for generating a PMF efficiently from molecular dynamics simulations is the 

umbrella sampling technique. In this method, a reaction coordinate is chosen and by applying 
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restraining potentials, the system is encouraged to sample regions of conformational space 

(windows) that would not otherwise be accessible during the direct sampling. The result is a 

series of histograms which contain the biased distribution of the reaction coordinate from 

each window. These histograms are then unbiased and combined usually with the aid of the 

weighted histogram analysis method (WHAM). Remarkably, using a known experimental 

PMF allowed to choose the optimal restraining potentials eliminating an eventually trial-

and-error process. (143) 

 

2.4 Dissipative particles dynamics 

Dissipative particle dynamics (DPD) is such a coarse-grained molecular dynamics model, in 

which the particles represent clusters of molecules that interact via conservative, dissipative 

and fluctuating forces. (144) 

DPD as a particle-based mesoscopic simulation technique, was successfully used to model 

block copolymers, (145) mesophases, (146) surfactants (147) and polymer phase 

separations, (148) as well as the assembly of patchy and striped patterns on monolayer 

protected nanoparticles (149). 

The DPD particles (or beads), each representing a group of small molecules or extensive 

molecular fragments, interact by conservative, dissipative, and random forces, which are 

pairwise additive. The net force acting on a bead i can be expressed as 

 

Fi = ∑j≠i (Fij
C+Fij

D+Fij
R) 

 

and is calculated by summation over all other particles within a certain cutoff radius, rc, 

which gives the extent of the interaction range. Let rc, m, and kBT be the unit distance, the 

particle mass, and the thermal energy, respectively.  

The conservative force represents the excluded volume interactions between particles i and 

j in the dimensionless form  

 

Fij
C = aij (1 − rij ) ȓij, 
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where rij = ri − rj, rij = |rij|, ȓij = rij/rij and aij is the maximum chemical repulsion between 

particles i and j. The intermolecular interaction parameter aij is related to the more common 

Flory-Huggins interaction parameter through the expression (144) 

aij = aii + 3.27Xij 

 

The dissipative,  

 

Fij
D = − γ ω(rij)

2 (ȓij·vij) ȓij, 

 

and random forces,  

 

Fij
R = σ ω(rij) ȓij ζ/(δt)-1/2, 

 

act as heat sink and source, respectively, and the combined effect of the two forces performs 

as a thermostat (150), where γ is a friction coefficient related to the thermal noise amplitude 

σ via the fluctuation−dissipation theorem,  

 

σ2 = 2γkBT, ω(r) 

 

ω is a weight function, ζ is a normally distributed random variable with zero mean and unit 

variance that is uncorrelated for different particle pairs, δt is the time step of an integration 

scheme, and vij = vi − vj is the relative velocity of the ith and the jth particles. The equations 

of particle motion, dri/dt = vi and dvi/dt = Fi, are typically solved using as integration scheme 

the velocity-Verlet algorithm. (151)  

Finally, when modelling chains two additional forces are acting between bonded beads: a 

harmonic spring connecting two adjacent particles i and j  

 

Fij
B = kb(rij – r0) ȓij, 

 

where kb is a spring constant and r0 the equilibrium distance between the particles, and  

 

Fijz
A = 1/2 kθ sin(θ0-θ0), 
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where kθ is a spring constant and θ0 the equilibrium angle between adjacent beads triples ijz 

in a row. 
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Chapter 3. Understanding the organization of 

mixed self-assembled monolayer-protected 

nanoparticles 

As explained in Chapter 1, when mixed self-assembled monolayers (SAMs) of immiscible 

ligands are employed to coat gold nanoparticles (AuNPs), nanoscale domains tend to form 

spontaneously within the surface ligand shell. This peculiarity provided access to a variety 

of possible patterns and allowed to tune their morphological characteristics varying a series 

of easy-to-control parameters such as surfactant length, NP radius, as well as less governable 

parameters such as the degree of immiscibility and stoichiometry of the SAM components 

(152). For these reasons, being able to understand the properties responsible for this auto-

organization is essential for designing new systems with controlled morphologies and 

properties.  

In this thesis, we focused our attention on investigating the phase segregation in SAM-

AuNPs covered by different mixtures of fluorinated (F-) and hydrogenated (H-) thiolates, 

exploiting the well-known immiscibility of hydrocarbons and fluorocarbons. In fact, the 

spontaneous phase separation in supramolecular aggregates of hydrogenated/fluorinated 

amphiphiles is well documented for several of such systems (e.g. micelles, Langmuir and 

Langmuir Blodgett films) including two-dimensional self-assembled monolayers on gold 

surfaces (2D SAMs). (153) Furthermore, fluorinated amphiphiles are receiving increasing 

interest for biological/biomedical applications as they confer useful properties to the 

materials they are linked to, such as inertness, facilitated cellular uptake, avoidance of 

protein denaturation and reduced toxicity. (154-156) Additionally, being NMR active, 

fluorine nuclei assist in probing biological interactions and may lead to novel supramolecular 

contrast agents for bioimaging (157). 19F held great promise as alternative nuclide for in 

vivo and ex vivo MRI for its high sensitivity (83% relative to 1H) and 100% natural 

abundance. Importantly, in animal bodies essentially no endogenous 19F is detectable by 

MRI, thus eliminating interference from background signals. NP-based 19F MRI will also 

enable image quantification, a feature not available in any current routine diagnostic 

imaging. (60) 
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This calls for a more in-depth investigation on the role of fluorinated ligands in monolayer-

protected-nanoparticles especially when dealing with biological applications. Having this in 

mind, we developed computational procedures, both at atomistic and coarse-grained level, 

to study the structure of SAM-protected AuNPs. Concomitantly, using these results we 

offered the basis to develop our understanding of the design rules required to control the 

formation of specifically patterned monolayer-protected NPs.  

 

 

3.1 Fluorinated and hydrogenated alkanethiolates coated gold nanoparticles 

A large set (see Appendix A) of gold NPs with an average diameter of 2-4 nm were prepared 

and functionalized with F- and H-thiolate ligands of (Figure 4): 

 

• different length: NP-C16/F6, protected by hexadecanethiol (HC16) and 

1H,1H,2H,2H-perfluorooctanethiol (HF6), and NP-C12/F6, coated by mixtures of 

dodecanethiol (HC12) and HF6; 

• equal length: NP-C12/F10, coated by HC12 and 1H,1H,2H,2H-

perfluorododecanethiol (HF10), and NP-C8/F6, protected by mixtures of octanethiol 

(HC8) and HF6; 

• increased steric hindrance NP-brC12/F6, featuring mixtures of 3-methyldodecane-

1-thiol (HbrC12) and HF6.  
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Figure 4: 2-4 nm core diameter AuNPs decorated by F- and H-thiols. 

 

 

Gold nanoparticles NP-C16/F6, NP-C8/F6, and NP-brC12/F6 were prepared by direct 

synthesis, whereas NP-C12/F6 and NP-C12/F10 were obtained by place exchange reaction 

from narrowly dispersed NP-C12, in turn prepared following the method of Miyake. (158) 

All samples were fully characterized using UV-VIS, TEM, TGA, and standard NMR 

experiments. Preparation and characterization of all systems was carried out by the group of 

Prof. Lucia Pasquato (Department of Chemical and Pharmaceutical Sciences, University of 

Trieste).  

 

The evaluation of the morphology of these mixed monolayer-protected gold NPs may be 

difficult because of a large number of limitations such as their low solubility in common 

organic solvents, presence of impurities, or the slippery nature of the NP surface, limits the 

number of experimental techniques suitable to study their morphology. To overcome these 

issues, in this work, we adopted an integrated and complementary 

experimental/computational approach for the characterization of these systems. Specifically, 

our experiments relied on 1D and 2D 19F NMR (159). The theoretical investigation was 

based on a predictive multiscale molecular simulation protocol that combines atomistic and 

coarse-grained calculations. 
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Overall, this study clarified how the variation of some specific parameters (as the type and 

ligand ratio) might influence the morphology of a SAM and the results obtained permit to 

design some rules to achieve a precise control of inorganic nanoparticles protected by 

specifically patterned monolayers.  

Full details of the experimental work can be found in M. Sologan, D. Marson, S. Polizzi, P. 

Pengo, S. Boccardo, S. Pricl, P. Posocco, L. Pasquato, “Patchy and Janus nanoparticles by 

self-organization of binary mixtures of fluorinated and hydrogenated alkanethiolates on the 

surface of a gold core”. ACS Nano, 2016, 10 (10), pp 9316–9325. 

 

3.1.1 Computational details 

The initial structure of the nanoparticle core was constructed by arranging DPD beads (Au) 

on a fcc lattice into the desired geometry shape and diameter using OPENMD software (v. 

2.3) (160). The icosahedral shape was adopted as one of the most thermodynamically stable 

crystalline form for gold below 10 nm. (161)  

Solvents (i.e., chloroform (CHL) and hexafluorobenzene (HFB)) were modelled as a single 

bead. Each ligand was represented by a flexible chain model of beads connected by harmonic 

springs. The coarse-grained scheme for the ligands (Figure 5: An example of the coarse-

grained scheme showing the DPD mapping employed.) is based on four different types of 

beads: bead S, representing the sulfur head group, beads C and M denoting the linear and 

branched parts of hydrocarbon ligands, respectively, bead F mimicking the perfluorocarbon 

component of the chain.  

 

 

Figure 5: An example of the coarse-grained scheme showing the DPD mapping employed. Solvents were 

modelled as a single bead. 
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Accordingly, the structure pertaining to each ligand is reported in Table 1. 

 

Table 1: Coarse-grained model of each H-chain and F-chain 

 

The mesoscale topology was assessed by matching the atomistic (calculated by molecular 

dynamics (MD) simulations) and mesoscale pair-correlation functions for each ligand chain. 

MD and DPD pair correlation functions were computed from equilibrated MD/DPD models 

obtained applying the same procedure proposed by our group (162) for hydrocarbon or 

perfluorocarbon ligands terminating with a short poly(oxoethylene) moiety (as well as 

mercaptoundecanesulfonate/octanethiol ligands) and reported briefly below. First, a 1 µs 

MD simulation at 300 K was performed on each ligand molecule in vacuum starting from 

the optimized molecular model. Nose-Hoover (Q = 1) was used to thermostat the 

temperature and the velocity Verlet algorithm to integrate the equations of motion with a 

time step of 0.5 fs. Atomic interactions were described by PCFF force field (FF). (163) Then, 

DPD simulations were performed on single molecules in vacuum having set equal all the 

bead-bead interactions. A time step of 0.04 was adopted in each DPD run. This also led to 

obtain chain beads with volumes reasonably close to each other (~ 55 Å3). 

Once the topology, i.e. number, type and connectivity of beads, has been retrieved, 

mesoscale pair-pair interaction parameters aij were derived employing the same recipe 

reported in our previous works (164) for modified gold NPs, starting from the relative 

atomistic energies, as summarized in the next paragraph.  

According to this approach, a suitable atomistic model of gold/ligands/solvent interface was 

built, optimized, and subject to 10 ns of NVT simulation at 300 K. In order to obtain a 

reasonable sampling of the H- and F chain conformational space, five different 

configurations of the H- and F chains were constructed, using the Amorphous Builder 

module of Materials Studio, which employs a version of the Rotational Isomeric State (RIS) 

method (165) for generating chain configurations. Each structure was then relaxed and 

subjected to a combined molecular mechanics/molecular dynamic simulated annealing 

Ligand type Model 

F6 SC(F)3 

F10 SC(F)5 

C8 S(C)4 

brC12 SCM(C)4 

C12 S(C)6 

C16 S(C)8 
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protocol (166) and then employed to build the interface in a pseudo-2D periodic system. The 

ligand chains were initially placed perpendicular to the gold surface plane with their sulfur 

head group randomly distributed on the surface. The distance between the gold surface and 

the sulfur atom was fixed at an average value of 2.38 Å (167), and the velocity of each sulfur 

atom was set to zero along the direction perpendicular to the surface plane. 

The modified PCFF FF, optimized by Heinz and co-workers (168) for hybrid organic and 

metal interfaces, including gold (INTERFACE FF), was adopted in the atomistic 

calculations. NVT MD simulations of the ligand/gold/solvent interfaces were run at 300 K 

for 10 ns, applying the Ewald summation method (169) for treating Coulomb interactions 

and a cut-off of 7Å for van der Waals forces; an integration step of 2 fs, and a Nose-Hoover 

thermostat (Q ratio = 1) were also adopted. All MD simulations were carried out using 

Materials Studio (v. 5.0, Accelrys, San Diego, CA) molecular simulation package. The 

energetic analysis was conducted on the equilibrated portion of the MD trajectory, and all 

energy values were averaged over 100 configurations. 

According to the theory (see Chapter 2), the intra- and intermolecular interactions between 

DPD particles are expressed by the conservative parameter aij, which inherits the chemical 

information of the system. Here, we employed a consolidated procedure that correlated the 

interaction energies estimated from atomistic MD simulations to the mesoscale aij parameter 

values, rescaled onto the corresponding mesoscale segments. (170)  

Thus, we set the adimensional bead-bead interaction parameter for chloroform-chloroform 

interaction equal to aCHL-CHL = 30.1, based on the direct relationship with their isothermal 

compressibility at room temperature. (171) The gold-gold interaction parameter was set to a 

lower value (i.e. aAu-Au = 49.6), based on our previous calculations. (170) Once these two 

parameters were set, and their values associate with the corresponding values of the rescaled 

DPD energies, all the remaining bead-bead interaction parameter for the DPD simulation 

could be easily obtained, starting from the atomistic binding energies following the same 

procedure described in detail in previous papers of our group. (170) Therefore, we employed 

the following values for aij: aS-S = 48.3, aC-C = 50.1, aM-M = 53.2, aF-F = 56.8, aHFB-HFB = 46.9, 

aS-C = 69.5, aS-M = 70.3, aM-C = 65.7, aF-S = 73.8, aF-C = 66.0, aF-M = 76.2, aAu-S = 1.90, aAu-C = 

55.4, aAu-M = 56.4, aCHL-C = 51.2, aCHL-M = 48.7, aCHL-F = 57.3, aHFB-C = 61.3, aHFB-M = 49.1, 

aHFB-F = 50.2, aHFB-CHCL = 54.2 rC/kbT. 

Each ligand was placed close to the NP surface and oriented outward with the head-tail 

vector along the radial direction, ensuring that the corresponding position on the surface did 
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not have clash with any previously positioned ligand using Packmol package. (172) The 

appropriate number of H- and F- chains was inserted in order to reproduce the experimental 

grafting density (i.e., the number of ligands for nm2 of surface). A random configuration was 

imposed to arrange the chains on the gold surface. Then, the modified NP was solvated again 

by Packmol. Each system was tested on three independently generated starting 

configurations. 

A 25rc x 25rc x 25rc simulation box was adopted, placing the monolayer protected NP in the 

middle of the periodic cell. To avoid finite size effect, the distribution of the solvent from 

the centre of mass of the NP was checked in preliminary simulation runs. All Au beads were 

forced to move as a rigid body during the calculation. At the same time, the sulfur heads can 

diffuse laterally on the NP surface during the entire simulation time. Optimized adimensional 

values for bond and angle parameters, obtained from the matching of the pari-pair correlation 

functions described above, , were employed for both alkane and perfluorocarbon thiols: 

kb(C-C) = 10, r0(C-C) = 0.60, kθ(C-C-C) = 10, θ0 (C-C-C) = 110, kb(C-F) = 10, r0 (C-F) = 

0.65, kb(F-F) = 20, r0 (F-F) = 0.69, kθ(C-F-F) = 0, θ0 (C-F-F) = 180, kθ(F-F-F) = 10, θ0 (F-F-

F) = 110. 

Each initial configuration was first relaxed for 1x104 steps and a time step of t = 0.01.  

Then, at least additional 6x106 time steps (t = 0.02) were performed increasing the 

interaction parameters till their actual value. System equilibration was assessed monitoring 

temperature, pressure, density, and potential energy behaviour. We did not observed chain 

penetration into the gold core during the simulation time. 

In systems dissolved in hexafluorobenzene, NPs were first equilibrated in chloroform and 

then a proper amount of CHL beads was replaced by HFB beads, and the resulting systems 

were then equilibrated. 

The cut-off radius rc, the particle mass mi, and kBT are taken as units of length, mass and 

energy. Preliminary run tests were performed by means of Culgi (v.9.0, Culgi B.V., Leiden, 

The Netherlands). All mesoscale production runs and analysis were performed using 

LAMMPS (173) running on GPUs and VMD. (174) 
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3.1.2 Nanoparticles coated by branched ligands 

The initial hypothesis that a branched structure of the hydrogenated ligand reduced the 

formation of phase-segregated domains was confirmed by the equilibrium morphologies 

collected from the corresponding DPD calculations (Figure 6). These simulation structures 

clearly prove that the two ligands do not tend to form compact domains and they prefer to 

remain isolated, resulting in a random organization of the monolayer regardless of the 

monolayer composition and dimension of the gold core. These evidences agree well with 

previous literature data on the organization of monolayers comprising branched thiolates. 

(101) The chemical shift of the CF3 groups of ligand F6 as a function of the percentage of 

the fluorinated ligand into the monolayer for the NP-brC12/F6 system is shown in Figure 6. 

The linear decay suggested that the average composition of the first nearest neighbor shell 

for one ligand coincided with the overall composition of the monolayer in agreement with 

the 3D organization predicted by the theoretical calculations. 

 

Figure 6: Equilibrium morphologies of NP-brC12/F6 (color code: grey, brC12; green, F6) NPs as obtained 

by the mesoscale simulations. Solvent is omitted for clarity. 
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Figure 7: Chemical shift () variation of CF3 groups increasing the percentage of the F-ligand in the 

monolayer of NP-brC12/F6. Solid line serves as eye guide only. 

 

3.1.3 Nanoparticles coated by ligands of equal length 

The equilibrium morphologies obtained from the mesoscale simulation of the NP-C12/F10 

systems (Figure 8) revealed that the ligands are phase-separated (Janus morphology) in line 

with a previously reported theoretical prediction on nanoparticles protected by ligands of 

equal length. (65) To our knowledge, this is also the first example of a 3D monolayer with 

Janus morphology obtained by place-exchange in the absence of external forces. 

Moreover, a steep decay in the chemical shift was observed when F10 was less than 40%, 

followed by a smooth decrease of the chemical shift up to the 100% of F10. This indicated 

a strong evolution of the surface area at the H-/F interface in the first region of the curve, 

which determined a significant upfield shift of the signals of the fluorinated ligands. When 

the loading increases over 60%, no significant changes at the interface were observed; 

accordingly, the chemical shift remains nearly constant (Figure 9). This behavior is well 

supported by the structures obtained by simulation. 
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Figure 8: Equilibrium morphologies of NP-C12/F10 (color code: grey, C12; green, F10) obtained by the 

mesoscale simulations. Solvent is omitted for clarity. 

 

 

Figure 9: Chemical shift () variation of CF3 groups increasing the percentage of the F-ligand in the 

monolayer of NP-C12/F10. Solid line serves as eye guide only 

 

NP-C8/F6, an alternative system featuring ligands of comparable lengths (Figure 10), was 

found to be characterized by a different SAM morphology and chemical shift behavior 

(Figure 11). This was somewhat unexpected since, intuitively, the monolayers of NP-C8/F6 
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and the previously discussed NP-C12/F10 should both presented a similar Janus-like 

organization. 

 

Figure 10: Equilibrium morphologies of NP-C8/F6 (color code: grey, C8; green, F6) NPS as obtained by the 

mesoscale simulations. Solvent is omitted for clarity. 

 

 

Figure 11: Chemical shift () variation of left) CF3 groups and right) 7-CF2 nuclei increasing the percentage 

of the F-ligand in the monolayer of NP-C8/F6. Solid line serves as eye guide only. 

 

The corresponding mesoscopic simulations, predicted that the C8 and F6 thiolates do not 

phase-separate in two distinct domains. On the contrary, below 20%, DPD showed that the 
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F- thiolates preferred to remain isolated, and an essentially random organization was 

observed. By increasing the loading, the fluorinated ligands did not form extended domains; 

rather, they tended to remain confined in small patches or formed irregular clusters when the 

stoichiometric ratio was further increased. Overall, the morphology of NP-C8/F6 

nanoparticles remained ill defined. We hypothesize that the shorter chain length of F6 with 

respect to F10 reduces the overall strength of the fluorophilic interactions, making the 

formation of fluorinated domains less favourable. In addition, the difference in steric 

hindrance between H- and F- thiolates may represent a bias in the organization of the 

thiolates when this geometrical mismatch is not counterbalanced by the occurrence of strong 

fluorophilic interactions. 

 

3.1.4 Nanoparticles coated by ligands of different length 

Mesoscale simulations on selected samples of NP-C16/F6 (Figure 12) revealed that the SAM 

morphology organized in striped domains, even when 20% of the F6 thiolate is present. For 

these NPs, the gain in entropy due to the difference in length and the immiscibility of H- and 

F-ligands is sufficient to overcome the loss of enthalpy, in line with previously reported data 

about the organization of mixed monolayers composed of thiols having different length. 

Furthermore, the striped organization can explain why some samples of NP-C16/F6 are 

soluble in chloroform even at percentages of the fluorinated ligands into the monolayer up to 

73%. We thought that the sufficiently long hydrogenated chain might mask the short-

fluorinated ones, screening out the inter-nanoparticles interactions between fluorinated 

domains if the width of the stripes is small enough, 0.75 nm on average. At values of F6 lower 

than 40%, increasing the number of fluorinated ligands resulted in striped-domains of F-chains 

different in size. Once the stripes are completely formed (approximately at F6 > 40%), the 

further addition of fluorinated ligands did not influence the morphology, as the incoming thiols 

located inside a previously formed stripe. At percentages of the fluorinated thiolate higher than 

80%, F6 chains prevail, reducing the size of the H-domains. The chemical shift (Figure 13) 

versus composition curve is composed of three regions: an initial, almost linear decay is 

obtained in the composition range of 0−40%, suggesting that by increasing the percentage of 

F6, even over 80%, the presence of fluorinated thiolates did not influence the previously 

formed F-/H- stripe due to their favorable location inside the preexisted domains. These results 

were in great agreement with the computational founding. 
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Figure 12: Equilibrium morphologies of selected of NP-C16/F6 (color code: grey, C16; green, F6) NPs as 

obtained by mesoscale simulations. Solvent is omitted for clarity. 

 

 

Figure 13: Chemical shift () variation of CF3 groups increasing the percentage of the F-ligand in the 

monolayer of NP-C16/F6. Solid line serves as eye guide only. 

 

Mesoscale simulations of NP-C12/F6 systems did not show a well-defined, ordered 

organization as a function of the F6 content. As clearly shown in Figure 14, sometimes 

stripe-like domains are formed, while, at the same time, irregular patches could be also 
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observed. Specifically, when 10-15% of the fluorinated ligands were introduced into the 

monolayer, they form small patches of a few fluorinated chains. When the loading of F6 

exceeds 30%, elongated patches or stripe-like domains appear, and the dimensions of the 

relevant domains increase to 0.75-0.80 nm, on average. 

At percentages higher than 60% of F- thiolates, the shape of the domains is again 

predominantly patchy. The predicted morphologies are also consistent with the solubility 

properties of NP-C12/F6. Up to 40% of F6 in the monolayer, these systems are soluble in 

chloroform indicating that the surfaces of the fluorinated domains are small enough to be 

efficiently shielded by the hydrogenated chains. Increasing the F6 content leads to an 

enlargement of the fluorinated domains, and the H- ligands do not reduce inter-particles 

interactions leading to a change of the solubility properties.  

Looking at the chemical shift of CF3 groups (Figure 15), a plateau region was found until 

the 25% of F6s were introduced in the monolayer; this trend was followed by a decrease of 

the chemical shift for small additions of F6 into the monolayer. A plateau region was 

observed up to the 100% F6, indicating that at lower and higher loadings of F6 there is no 

marked difference in the surroundings of the fluorinated ligands at the interface. 

 

Figure 14: Equilibrium morphologies of selected NP-C12/F6 (color code: grey, C12; green, F6) NPs as 

obtained by mesoscale simulations. Solvent is omitted for clarity. 
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Figure 15: Chemical shift () variation of CF3 groups increasing the percentage of the F-ligand in the 

monolayer of NP-C12/F6. Solid line serves as eye guide only. 

 

Overall, the results pointed out that, besides the higher immiscibility between H- and F-

ligands, other key parameters, such as the high steric hindrance and rigidity of the fluorinated 

chains, influenced the morphology of the monolayer. Therefore, only when the mismatch of 

ligands length was equal to eight carbon atoms, stripe-like domains were formed (NP-

C16/F6 system), driven by entropy gain. Conversely, when a difference in length of four-

carbon atoms was present domains appeared as patches or elongated patches (NP-C12/F6 

system). Ligands of the same length self-organized in Janus domains (NP-C12/F10), as 

expected. However, if both ligands were shorter as in NP-C8/F6 case, the experimental and 

theoretical results suggested the formation of a SAM with no specific morphology. Finally, 

the presence of a branched ligand in the monolayer (NP-brC12/F6 system) promoted a 

random organization.  

 

3.2 Water-soluble NPs 

Decorating NPs with hydrophilic and uncharged polymers such as poly-ethylene glycol 

(PEG), a process known as “PEGylation”, as well as functionalizing nanoparticles with 

stealth polymers (e.g., charged or zwitterionic polymers) has become a common strategy to 

impart water solubility and resistance to nonspecific protein adsorption, promoting their 
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usage for numerous biomedical applications, such as bioimaging, biosensing, drug delivery, 

diagnostics, and therapy. (190) 

 

3.2.1 Polyethylene Glycol Coated Nanoparticles 

Starting from the design principles obtained from the previous analysis and aiming to 

investigate the behavior of mixed SAM-protected AuNPs once in contact with a biological 

environment, F- and H- ligands were modified adding polyethylene glycol (PEG) chains of 

different length on the top (Figure 16). 

 

Figure 16: chemical structure of the PEGylated F- and H- ligand 

 

We considered two mixed-monolayer C8TEG/F8PEG AuNPs (namely M1-C8T/F8P and 

M2-C8T/F8P), as well as the reference homoligand AuNPs for comparison, with only 

F8PEG (indicated as F8P) or C8TEG (C8T), as well as those formed with C8PEG ligands 

(C8P). Some of the relevant characteristics of these SAM-AuNPs are summarized in Table 

2. 

 

Table 2: Main features of SAM-AuNPs used in this investigation. a) From TEM measurements. b) Calculated 

from TGA and TEM analysis. c) Calculated from TGA analysis and for mixed-monolayers using the ligand ratio 

determined by 1H NMR on decomposed NPs. d) From atomistic simulations, considering both core and ligand 

shell. 
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Figure 17: Structure of thiolated ligands used in this study to pattern the surface of AuNPs. 

 

While C8P were very hydrophilic, due to the thick polar PEG surface layer (see Figure 17), 

C8T, with the thin TEG surface layer, were significantly more hydrophobic. The other NPs 

had an intermediate hydrophilicity, due to the presence of the amphiphilic F8PEG chains.  

The extensive length of ligand chains (more than 14 atoms) and the presence of an outer 

layer of disordered PEG chains prevented the use of common experimental techniques as 

STM, AFM, X-ray to assess the morphology of the monolayer. Thus, the only way to have 

a detailed picture of the molecular organization of the thiolates was to resort to a theoretical 

approach.  

3.2.2 Computational details 

3.2.2.1 Dissipative Particle Dynamics 

The spontaneous assembling process of the ligands on the gold surface was investigated by 

means of Dissipative Particle Dynamics (DPD). The set of nanoparticles considered for this 

study was simulated following the procedure described in Section 3.1.1. Accordingly, we 

will report here only the parameters pertaining to these specific systems. The initial structure 

of the NP core was constructed by arranging DPD beads (Au) on a fcc lattice into the desired 

icosahedral shape and diameter. Each ligand was represented by a flexible chain model of 

beads connected by harmonic springs of composition reported in Table 3. Solvent (water) 

and ions were modelled as a single bead. 
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Table 3: Coarse-grained model of each ligand considered in the study. 

 

As described above, DPD pair-pair interaction parameters and ligand topology may be 

derived using a multiscale simulation protocol, combining atomistic and coarse-grained 

simulation. (191-195) Accordingly, we derived the following values for aij: aC-C = 51.6, aC-

F = 66.0, aC-P = 60.1, aC-S = 72.0, aC-W = 86.6, aF-F = 58.8, aF-P = 65.1, aF-S = 80.0, aF-W = 96.6, 

aP-P = 51.6, aP-S = 75.0, aP-W = 51.6, aS-S = 51.6, aS-W = 80.0, aW-W = 51.6 rC/kBT. 

A 25rc X 25rc X 5rc simulation box was adopted, placing the monolayer protected NP in the 

middle of the periodic cell. Optimized adimensional values for bond and angle parameters 

were employed for both alkane and perfluorocarbon thiols: kb(F-S) = 10, r0(F-S) = 0.60, 

kθ(F-F-S) = 0, θ0 (F-F-S) = 180, kb(F-F) = 10, r0(F-F) = 0.69, kθ(F-F-F) = 10, θ0 (F-F-F) = 

110, kb(F-P) = 10, r0(F-P) = 0.69, kθ(F-F-P) = 10, θ0 (F-F-P) = 109, kb(P-P) = 10, r0(P-P) = 

0.62, kθ(F-P-P) = 10, θ0 (F-P-P) = 109, kθ(P-P-P) = 10, θ0 (P-P-P) = 108, kb(C-S) = 10, r0(C-

S) = 0.50, kθ(C-C-S) = 0, θ0 (C-C-S) = 180, kb(C-C) = 10, r0(C-C) = 0.60, kθ(C-C-C) = 10, 

θ0 (C-C-C) = 110, kb(C-P) = 10, r0(C-P) = 0.61, kθ(C-C-P) = 5, θ0 (C-C-P) = 109, kb(P-P) = 

10, r0(P-P) = 0.62, kθ(C-P-P) = 5, θ0 (C-P-P) = 109. 

Each initial configuration was first equilibrated for 1x104 steps and a time step of Δt=0.01τ. 

Then, additional 8x106 time steps (Δt=0.02 τ) were performed increasing the interaction 

parameters till their actual value. 

 

3.2.2.2 Atomistic simulation 

Once equilibrated, the CG-NP structures were mapped back to all-atom (AA) configurations 

to gain insights into molecular-level details of ligand and shell properties. The monolayers 

were equilibrated in explicit water and ions (Na+ and Cl-) at room temperature. All systems 

were minimized by 1000 steps of Steeped Descent followed by 3000 steps of Conjugated 

Gradient algorithms. The temperature was then raised to 300 K in 20 ps of NVT molecular 

dynamics (MD) simulation (Langevin thermostat, time step of 1 fs, collision frequency 1.0), 

Ligand type Model 

C8P S(C)3(F)3 

C8T S(C)3(P)2 

F8T S(F)4(P)2 

F8P S(F)4(P)10 

 



61 

 

followed by the equilibration of the density for 10 ns with a Berendsen barostat (pressure 

relaxation time of 2 ps, time step of 2 fs). At the end, we switched to a Monte Carlo barostat 

and performed data collection for a total of 20 ns. AA simulations were performed by means 

of AMBER 14 suite of software (196), employing gaff2 (197, 198) forcefield.  

 

3.2.2.3 Results 

CG calculations showed that the H- and F- ligands self-organize in well-separated Janus type 

domains for M1-C8T/F8P, while regular stripes of alternating C8TEG and F8PEG thiols 

characterize the shell of M2-C8T/F8P system (Figure 18). This is in line with a previously 

described conceptual framework on how parameters such as core size, ligand ratio and length 

mismatch concur to determine C8TEG/F8PEG domains shape. (199) In that context, we 

proposed that for small Au radius (~ 1.6 nm) the thiols tend to organize in two distinct 

domains, as predicted for M1-C8T/F8P. Slightly larger Au cores instead result in self-sorting 

of ligands into alternating ribbons, as this maximizes entropy and minimize enthalpy 

contribution (as is the case for M2-C8T/F8P). The final structures can be compared to those 

of the homoligand Au-NPs in Figure 18. 

 

Figure 18: Self-assembled mixed monolayer organization of SAM-AuNP. M1-C8T/F8P (A), M2-C8T/F8P 

(B), F8P (C), C8T (D), and C8P (E) as obtained from coarse-grained calculations in solvent. Color code: red, 

F8PEG-thiolates; cyan, C8TEG/C8PEG-thiolates; yellow, gold core. Water and ions are not shown for clarity. 
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A detailed molecular-level picture of ligand conformation and monolayer properties was 

obtained from atomistic MD simulations, starting from the corresponding solvated CG 

structures. (see Figure 19).  

 

Figure 19: Examples of simulation snapshots obtained from AA-MD. The simulations, run in solvent, 

illustrate ligand organization on the gold surface for (A) M1-C8T/F8P, (B) M2-C8T/F8P, (C) F8P, (D) C8T, 

and (E) C8P. F8PEG and C8TEG/C8PEG carbon atoms are in grey and cyan, respectively, while oxygen 

atoms are in red. Water and inorganic ions are not shown for the sake of clarity. 

 

The snapshots showed the fluid nature of the outer shell of the monolayers when the 

PEGylated portion of the thiolates is longer (as in F8P or C8P, see Figure 19 A-C and Figure 

19E). When the PEGylated portion is shorter (as in C8T), there is a local chain compaction 

that affects either the external and the internal part of the shell (Figure 19 D). 

With respect to the inner part of the monolayer, while longer PEGylated fragments lead to 

disordered external surfaces, a degree of ordering is observed in the inner part of the 

monolayer, with evidence of bundling involving both the F- and H- portion of the ligands 

(see Figure 17 and Figure 20).  
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Figure 20: Examples of AA-MD simulation snapshots illustrating ligand organization on the gold surface. 

Only the hydrophobic portion of each thiolate (i.e., C8 part of C8TEG or C8PEG, and F8 part of F8PEG, see 

Scheme 1) is depicted as red and cyan molecular surface, respectively, to emphasize ligand bundling and 

arrangement in the inner part of the monolayer. (A) M1-C8T/F8P, (B) M1-C8T/F8P, (C) F8P, (D) C8T, and 

(E) C8P. 

 

Due to the small core size (~ 2 nm) the degree of compaction is less than the one observed 

for larger core diameters, coated with ligands of similar length. This happens because the 

reduced core dimension, with respect to the ligand length, gave a high conformational 

freedom to the chains, which reduced inter-ligand interactions and prevented their 

compaction.  

In the mixed ligand cases the presence of immiscible ligands organized in nanoscale domains 

made the hydrophobic distribution less “regular” with respect to homoligand systems, 

resulting in a morphology dependent behavior. This visual inspection was also supported by 

comparison of the radial distribution functions for F8PEG, C8TEG, and C8PEG ligands in 

each NP system (Figure 21).  
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Figure 21: Radial distribution functions g(r) of all NPs in solution calculated from AA-MD trajectories. 

Distances are measured relative to the surface of the gold core. Panels (A) and (B) refer to the alkyl portion 

of the hydrogenated (C8TEG and C8PEG) and fluorinated (F8PEG) ligands, respectively, whilst panels (C) 

and (D) report the distribution of the TEG/PEGylated moieties, respectively. 

 

We then characterized the five different types of monolayer in terms of global structural 

properties: 

• NP radius of gyration (Rg), 

• molecular asphericity (δ), 

• solvent accessible surface area (SASA), 

which, when considered together, provided information regarding the water-NP interface.  

Table 4 lists these values for each system and Figure 22illustrates SASA contributions. 

SAM-AuNP Rg (nm) δ SASA (nm2) 

M1-C8T/F8P 1.98 (0.01) 0.35 (0.13) 111.5 (7.0) 

M2-C8T/F8P 2.04 (0.02) 0.32 (0.14) 116.8 (6.3) 

F8P 2.40 (0.01) 0.31 (0.08) 122.2 (10.1) 

C8T 1.81 (0.02) 0.24 (0.07) 146.7 (6.6) 

C8P 2.24 (0.02) 0.34 (0.05) 125.7 (15.7) 

  

Table 4: Comparison of radius of gyration (Rg), asphericity (δ) and solvent accessible surface area (SASA) 

for the SAM-AuNPs considered in this work. Simulation uncertainties are given in parenthesis. 
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Figure 22: SASA contributions in SAM-AuNPs, stemming from PEG/TEGylated (blue), fluorinated (red), 

and hydrogentaed (cyan) moieties of M1-C8T/F8P (A), M2-C8T/F8P (B), F8P (C), C8T (D), C8P (E). 

 

Analyzing the global properties, all systems exhibited similar shape and SASA, except for 

the C8T system. The AuNPs coated with mixed ligand monolayers showed the same values 

indicating that it is not possible to distinguish the nanoscale morphology, at this scale level, 

when these NPs are in solution. Similarities in measurable structural characteristics of NPs 

with differently organized monolayers have been observed also for other types of gold core 

NPs covered with mixtures of immiscible ligands in aqueous solutions. (200-204; 65; 86) 

 

3.2.3 Anionic H-/F- mixed monolayer nanoparticle 

The exploration of the ligand structure highlighted that the difference in length between 

hydrogenated and fluorinated ligands is a critical parameter to be taken into account for 

obtaining NPs with acceptable solubility properties. The fluorinated thiol must be short 

enough, compared to the hydrogenated ligand, to form fluorinated domains sufficiently small 

to be masked from the solvent. At the same time, this parameter has a great impact on the 

overall monolayer organization. (208) In what follows, we explore this aspect from the 
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computational point of view, studying a series of H-/F-mixed monolayer AuNPs with 

different surface charges by using a mixture of ligands as reported in  

Figure 23. The sodium salts of the 11-mercaptoundecansulfonic acid (HMUS), 12-

mercaptododecanesulfonic acid (HMDDS) and 16-mercaptohxadecanesuflonic acid 

(HMHDS) were used to provide NPs with permanent negative charges. These thiols were 

used in combination with 1H,1H,2H,2H-perfluoro-1-octanethiol (HF6) as the fluorinated 

components. 

For all systems we considered different ligand (H/F) ratios (1:1 and 2:1). The influence of 

the size of the core on the monolayer morphology was also assessed by increasing the 

diameter from 1.6 nm to 3 till 4.2 nm. This study allowed to identify how the shell 

morphology changes due to the different ligand ratio, different relative length between 

ligands and core dimensions in the presence of anionic a fluorinate ligands. 

 

Figure 23: NP-MUS/F6 (left), NP-MDDS/F6 (right) and NP-MHDS/F6 (bottom) 

 

3.2.4 Computational details 

3.2.4.1 Dissipative Particle Dynamics 

The spontaneous assembling process of the ligands on the gold surface was investigated by 

means of Dissipative Particle Dynamics (DPD). The set of nanoparticles considered for this 

study was simulated following the procedure described in Section 3.1.1. Accordingly, we 

will report here only the parameters pertaining to these specific systems. The initial structure 

of the NP core was constructed by arranging DPD beads (Au) on a fcc lattice into the desired 

icosahedral shape and diameter. Each ligand was represented by a flexible chain model of 
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beads connected by harmonic springs of composition reported in Table 5. Solvent (water) 

and ions were modelled as a single bead. 

 

 

Table 5: Coarse-grained model of each ligand. 

 

As described above, DPD pair-pair interaction parameters and ligand topology may be 

derived using a multiscale simulation protocol, combining atomistic and coarse-grained 

simulation. (191-195) 

Accordingly, we derived the following values for aij: aC-C = 51.6, aC-E = 60.5, aC-F = 66.0, aC-

Q = 68.9, aC-S = 72.0, aC-W = 63.8, aF-F = 58.8, aF-E = 64.3, aF-Q = 55.1, aF-S = 80.0, aF-W = 

62.3, aQ-Q = 72.6, aQ-E = 71.2, aQ-S = 80.0, aQ-W = 26.0, aS-S = 51.6, aS-W = 80.0, aS-E = 72.0, 

aW-W = 51.6, aW-E = 61.0, aE-E = 51.6 kBT. 

A 24rc X 24rc X 24rc simulation box was adopted, placing the monolayer protected NP in 

the middle of the periodic cell. Optimized adimensional values for bond and angle 

parameters were employed for both alkane and perfluorocarbon thiols: kb(C-S) = 10, r0(C-

S) = 0.50, kθ(C-C-S) = 0, θ0 (C-C-S) = 180, kb(C-C) = 10, r0(C-C) = 0.60, kθ(C-C-C) = 10, 

θ0 (C-C-C) = 110, kb(C-Q) = 10, r0(C-Q) = 0.45, kθ(C-C-Q) = 10, θ0 (C-C-Q) = 110. 

Each initial configuration was first equilibrated for 1𝑥104 steps and a time step of Δt=0.01τ. 

Then, additional 8𝑥106 time steps (Δt=0.02) were performed increasing the interaction 

parameters till their actual value. 

Ligand type Model 

HMUS S(C)5Q 

HMDDS S(C)6Q 

HMHDS S(C)8Q 

F6 SC(F)3 
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Figure 24: NP-MUS/F6 AuNPs. MUS ligand (deep blue), F6 ligand (light grey), AuNP (yellow). Water and 

inorganic ions are not shown for the sake of clarity. 

 

Considering the NP-MUS/F6 set (Figure 24), when the core diameter is small (2 nm), the 

two ligands phase-separated resulting in the presence of a F-belt that involves all the NP 

surface for 1:1 ratio and only a part of the core for 2:1 proportions. Increasing the diameter 

to 3 nm, the monolayer organization evolved. When the ligands are present in an equal 

proportion, calculations revealed the presence of stripe-like domains, while a belt and 

patches constituted by MUS chains were formed. Increasing the diameter to 4.2 nm lead to 

an organization more ordered and to the presence of regular stripe domains for 1:1 MUS/F6 

ligand ratio and stripe-like domains for 2:1 MUS/F. Typically, domain dimensions was in a 

range of 0.9 and 1 nm. 
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Figure 25: NP-MDDS/F6 AuNPs. MDDS ligand (deep blue), F6 ligand (light grey), AuNP (yellow). Water and 

inorganic ions are not shown for the sake of clarity. 

 

Analyzing the NP-MDDS/F6 structures, (Figure 1), when the diameter is small (2nm), the 

two ligands phase-separated resulting in the presence of a F-belt that in both cases involved 

only partially the surface of the NP. Increasing the diameter to 3 nm, the monolayer 

organization evolved and lead to the presence of stripes for the 1:1 ratio, while for the second 

ratio considered, elongated patches of F- thiolates were present. Increasing the diameter to 

4.2 nm the 3D organizations persisted. Typically, domain dimension found in a range of 0.78 

and 1 nm. 
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Figure 26: NP-MHDS/F6 AuNPs. MHDS ligand (deep blue), F6 ligand (light grey), AuNP (yellow). Water and 

inorganic ions are not shown for the sake of clarity 

 

Moreover, in the case of longest chains (NP-MHDS/F6) (Figure 26) when the diameter is 

1.6 nm, both cases present a Janus morphology. Increasing the diameter from 3 till 4.2 nm, 

it could be appreciated how in the 1:1 case the organization presented stripe domains, while 

in the other case the organization evolved in elongated patches (average domain dimensions 

around 1 nm). 

Increasing the diameter, for all systems and for each ratio considered, lead to a different 

morphology. For really small diameter was present an F- belt was present, or a defined 

phase-separated morphology as expected, while for smaller curvature radius an overall 

striped or elongated patched morphology was found. The well-defined nanostructured 

morphology can be appreciated better as soon as the charged ligand was longer. This can be 

explained by a bigger free volume available for the MHDS chains rather than the MDDS or 

the MUS thiolates that promote the formation of interfaces between immiscible ligands. 

Due to the well-established ability of fluorinated thiolates to self-sort on the surface of 

AuNPs we are confident that these systems will significantly widen the span of NP systems 

with anisotropic monolayers to probe the interactions of nanosized matter with the biological 

environment. (208) 
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3.2.5 Zwitterionic Nanoparticles 

In recent years, to enhance the selective accumulation of NPs at tumor tissues, some types 

of pH-responsive zwitterionic polymers have been designed, which possess high 

biocompatibility and pH sensitivity. These polymers are nearly electroneutral at normal 

tissue pH and become positively charged at tumor tissue pH, which can dramatically enhance 

the electrostatic interaction between polymer-coated NPs and negatively charged 

membranes, thus the cellular uptake efficiency of NPs could be greatly improved. (209) 

It is urgent and of great significance to deeply explore the characteristics of the pH-

responsive zwitterionic polymer-coated NPs to promote their use in biomedical applications. 

As indicated by some recent reviews, keeping the balance between the delivery efficiency 

and toxicity of NPs should be carefully considered. (210) 

For these reasons, a new type of water soluble nanoparticles, named zwitterionic 

nanoparticles (ZW AuNPs), were investigated by computational techniques. In these 

systems, the alkylic chains were replaced by two zwitterionic ligands, each of them 

considered again in mixture with perfluoresane thiols ( 

Figure 27).  

 

 

Figure 27: ZW1/F6 (left) and ZW2/F6 (right) AuNPs 

 

3.2.6 Computational details 

3.2.6.1 Dissipative Particle Dynamics 

The spontaneous assembling process of the ligands on the gold surface was investigated by 

means of Dissipative Particle Dynamics (DPD). The set of nanoparticles considered for this 

study was simulated following the procedure described in Section 3.1.1. Accordingly, we 

will report here only the parameters pertaining to these specific systems. The initial structure 

of the NP core was constructed by arranging DPD beads (Au) on a fcc lattice into the desired 
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icosahedral shape and diameter. Each ligand was represented by a flexible chain model of 

beads connected by harmonic springs of composition reported in Table 6. Solvent (water) 

and ions were modelled as a single bead. 

 

 

Table 6: Coarse-grained model of each ligand considered in the study 

 

As described above, DPD pair-pair interaction parameters and ligand topology were derived 

using a multiscale simulation protocol, combining atomistic and coarse-grained simulation. 

(191-195) 

Accordingly, we derived the following values for aij: aCL-CL = 51.6, aCL-NA = 51.6, aCL-P = 

51.6, aCL-Au = 51.6, aCL-b = 51.6, aCL-C = 57.6, aCL-E = 57.6, aCL-F = 58.3, aCL-Q = 78.3, aCL-S = 

-10.0, aCL-W = 75.7, aNA-NA = 51.6, aNA-P = 51.6, aNA-Au = 51.6, aNA-b = 51.6, aNA-C = 57.6, 

aNA-E = 57.6, aNA-F = 58.3, aNA-Q = 78.3, aNA-S = -10.0, aNA-W = 75.7, aP-P = 51.6, aP-Au = 51.6, 

aP-b = 51.6, aP-C = 57.6, aP-E = 57.6, aP-F = 58.3, aP-Q = 78.3, aP-S = -10.0, aP-W = 75.7, aAu-Au 

= 51.6, aAu-b = 51.6, aAu-C = 57.6, aAu-E = 57.6, aAu-F = 58.3, aAu-Q = 78.3, aAu-S = -10.0, aAu-W 

= 75.7, ab-b = 51.6, ab-C = 51.6, ab-E = 60.5, ab-F = 66.0, ab-Q = 68.9, ab-S = 72.0, ab-W = 63.8, 

aC-C = 51.6, aC-E = 60.5, aC-F = 66.0, aC-Q = 68.9, aC-S = 72.0, aC-W = 63.8, aF-F = 58.8, aF-E = 

64.3, aF-Q = 55.1, aF-S = 80.0, aF-W = 62.3, aQ-Q = 72.6, aQ-E = 71.2, aQ-S = 80.0, aQ-W = 26.0, 

aS-S = 51.6, aS-W = 80.0, aS-E = 72.0, aW-W = 51.6, aW-E = 61.0, aE-E = 51.6 rC/kBT. 

A 25rc X 25rc X 5rc simulation box was adopted, placing the monolayer protected NP in 

the middle of the periodic cell. Optimized adimensional values for bond and angle 

parameters were employed for both alkane and perfluorocarbon thiols: kb(C-S) = 10, r0(C-

S) = 0.50, kθ(C-C-S) = 0, θ0 (C-C-S) = 180, kb(C-C) = 10, r0 (C-C) = 0.60, kb(C-C-C) = 30, 

θ0 (C-C-C) = 130, kb(C-b) = 10, r0(C-b) = 0.80, kθ(C-C-b) = 30, θ0 (C-C-b) = 130, kb(E-b) = 

10, r0(E-b) = 0.50, kθ(C-E-b) = 30, θ0 (C-E-b) = 130, kb(E-Q) = 10, r0(E-Q) = 0.80, kθ(E-b-

Q) = 30, θ0 (E-b-Q) = 130. 

Each initial configuration was first equilibrated for 1𝑥104 steps and a time step of Δt=0.01τ. 

Then, additional 8𝑥106 time steps (Δt=0.02) were performed increasing the interaction 

parameters till their actual value. 

Ligand type ZW1 Model 

ZW1 S(C)5PEb 

ZW2 S(C)5bEQ 
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Figure 28: ZW1/F6 AuNPs. ZW1 ligand (deep blue), F6 ligand (light grey). Solvent and ions were omitted for 

clarity. 

 

The overall results (Figure 28, Figure 29) show that, regardless the chemical different 

structure of ZW1 and ZW2 ligand, when the core dimension is about 2 nm, the shell presents 

a phase-separated organization for 1:1 ligand ratio and a perfluorinated belt for 2:1 ligand 

ratio; while, increasing the core dimensions up to 3 nm, the structure evolved in 

striped/stripe-like domains which persisted also when the diameter is 4 nm in size. 

 

 

Figure 29: ZW2/F6 AuNPs. ZW1 ligand (deep blue), F6 ligand (light grey). Solvent and ions were omitted for 

clarity 
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An overall comparison between the employment of different charged ligands mixed with 

perfluorinated thiols, in order to obtain water soluble NPs to be used as an alternative to 

PEGylated systems, can be gained discussing the results obtained from the computational 

evaluation of the anionic and the zwitterionic nanoparticles. Regarding the anionic NPs we 

consider for the comparison the MHDS thiols which have a comparable length with respect 

to the zwitterionic ligands. 

Comparing these systems at the smallest diameter while for the anionic system there is a 

complete phase-separation, for the zwitterionic systems an F-belt is formed as a consequence 

of the electrostatic repulsion which prevents the thiolates to stay closely packed as in a Janus 

morphology. The same effect is present also in the other morphology, when the diameter 

increased, where the presence of positive and negative charges on the same chain (ZW1 and 

ZW2) seems to lead to an increased number of interfaces between domains favoring the 

striped-like SAM organization. 

 

3.2.7 Influence of synthesis condition on the morphology of the self-assembled monolayer 

The synthesis of gold nanoparticles protected by mixtures of mercaptoalkylsulfonate and 

perfluorinated thiols with a dispersion of the core diameter lower than 10% may be fulfilled 

using a modification of a procedure previously reported by Stucky (211). Briefly, a solution 

of the two thiols in deoxygenated ethanol is added to an ethanol solution of HAuCl4 and the 

reaction is let to stir at room temperature. Then, a solution of NaBH4 in ethanol is added in 

15 minutes and the color change to violet. The mixture is stirred for 3 h, and then the 

dispersion is centrifuged obtaining a black precipitate. The solid is then washed with a hot 

solution of ethanol and purified by size exclusion chromatography on Sephadex G-75 in 

water. NMR experiments on decomposed NPs showed that a small quantity of 

triphenylphosphine (TFP), from the gold precursor used for the synthesis, is incorporated 

into the monolayer and is not released after the purification. Thus, we were wondering if and 

how this could affect the way in which ligands self-organize on the gold surface. 

We considered gold nanoparticles of 4 nm in diameter and protected by a mixture of a 2:1 

ratio of MUS and F6 ligands (Figure 30) suspended in a 1:1 ethanol:toluene solution at 86 

°C (synthesis conditions) and in a solution of water and 10% ethanol at 25°C (working 

conditions). We created the computational models of each system without 

triphenylphosphine and in presence of 8 (2.5%) and 16 (5%) molecules of TFP. 
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Figure 30: MUS/F6 AuNP (left) and TFP (right) 

 

3.2.8 Computational details  

3.2.8.1 Dissipative Particle Dynamics 

The spontaneous assembling process of the ligands on the gold surface was investigated by 

means of Dissipative Particle Dynamics (DPD). The set of nanoparticles considered for this 

study was simulated following the procedure described in Section 3.1.1. Accordingly, we 

will report here only the parameters pertaining to these specific systems. The initial structure 

of the NP core was constructed by arranging DPD beads (Au) on a fcc lattice into the desired 

icosahedral shape and diameter. Each ligand was represented by a flexible chain model of 

beads connected by harmonic springs of composition reported in Table 7. To reproduce the 

peculiar structure and hinderance of the triphenylphosphine molecule we decided to adopt 

the CG model reported in Table 7. Solvents were modelled as a single bead. 

 

 

Table 7: Coarse-grained model of each Anionic NPs ligand and triphenylphosphine 

 

As described above, DPD pair-pair interaction parameters and ligand topology were derived 

using a multiscale simulation protocol, combining atomistic and coarse-grained simulation. 

(191-195) 

Therefore, we employed the following values for aij: aC-C = 51.6, aC-E = 60.5, aC-F = 66.0, aC-

Q = 68.9, aC-S = 72.0, aC-W = 63.8, aF-F = 58.8, aF-E = 64.3, aF-Q = 55.1, aF-S = 80.0, aF-W = 

62.3, aQ-Q = 72.6, aQ-E = 71.2, aQ-S = 80.0, aQ-W = 26.0, aS-S = 51.6, aS-W = 80.0, aS-E = 72.0, 

Ligand type Model 

HMUS S(C)5Q 

F6 SC(F)3 

TFP P(B)9 
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aW-W = 51.6, aW-E = 61.0, aE-E = 51.6, aP-P = 51.6, aP-b = 51.6, aP-C = 57.6, aP-E = 57.6, aP-F = 

58.3, aP-Q = 78.3, aP-S = -10.0, aP-W = 75.7, aB-P = 51.6, aB-b = 51.6, aB-C = 57.6, aB-E = 57.6, 

aB-F = 58.3, aB-Q = 78.3, aB-S = -10.0, aB-W = 75.7 rC/kBT. 

A 28rC X 28 rC X 28 rC simulation box was adopted, placing the monolayer protected NP in 

the middle of the periodic cell. Optimized adimensional values for bond and angle 

parameters were employed for both alkane and perfluorocarbon thiols: kb(C-S) = 10, r0(C-

S) = 0.50, kθ(C-C-S) = 0, θ0 (C-C-S) = 180, kb(C-C) = 10, r0(C-C) = 0.60, kθ(C-C-C) = 10, 

θ0 (C-C-C) = 110, kb(C-Q) = 10, r0(C-Q) = 0.45, kθ(C-C-Q) = 10, θ0 (C-C-Q) = 110, kb(B-P) 

= 10, r0(B-P) = 0.50, kθ(B-B-B) = 10, θ0 (B-B-B) = 60, kb(B-B) = 10, r0(B-B) = 0.60, kθ(B-

B-P) = 10, θ0 (B-B-P) = 150, kθ(B-P-B) = 10, θ0 (B-P-B) = 109. 

Each initial configuration was first equilibrated for 10000 steps and a time step of Δt = 0.02τ. 

Then, additional 2000000 steps with the same time step (Δt = 0.02) were performed 

increasing the interaction parameters till their actual value. 

 

3.2.8.2 Results 

At the beginning, we simulated the system in absence of TFP at both 86 and 25 °C and using 

the two different solvents to be able to evaluate the effect of each single parameter more 

easily. Decreasing the temperature from 86°C in an ethanol/toluene solution to 25°C same 

solution (1  3), we can observe a stripe-like nanostructure of the SAM which became more 

defined decreasing the temperature. This effect was somewhat expected due to the lower 

kinetic energy provided to the ligands and the higher chemical repulsion between the chains 

and from this evidence it was possible to assess that temperature increased domains 

formation. For this reason, changing only the solvent (3  4), from ethanol/toluene to 

ethanol/water, or changing both solvent and temperature (1  2), the SAM morphology 

evolved from stripe-like to elongated patches. From these evidences, it was possible to assess 

that there are two effects playing a role: the one of the temperature, which increases domains 

definition, and the one of the solvent that modifies domains morphology (gFigure 31). 
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gFigure 31: No triphenylphosphine systems 

 

To understand if and how the presence and distribution of triphenylphosphine molecules on 

NP surface might influence the monolayer nanostructure, we placed 8 and 16 TFP molecules 

displaced both randomly and in two ordered domains on the gold surface.  

At the lower TFP percentage, either for the random and ordered case, the SAM morphology 

changed from a stripe-like, in synthesis conditions, to elongated patches involving the 

triphenylphosphine molecules (Figure 32).  
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Figure 32: 8 TFP systems 

 

Increasing the concentration, under synthesis conditions, the morphology was found to be 

stripe-like for the ordered system and random in the random case. In both cases the 

morphology changed, under working condition, showing patches, smaller for the random 

system than in the ordered one, either involving the triphenylphosphine molecules (Figure 

33).  

 

 

Figure 33: 16 TFP systems 
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The presence of TFP in the systems showed how triphenylphosphine tends to interact within 

the F6 domains increasing their definition and compaction even at very small concentrations.  
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Chapter 4. Interaction of coated gold 

nanoparticles with membranes 

 

Cell membrane is evidently one of the principal physical barrier to cellular internalization of 

nanoparticles (NPs). Membrane models are currently employed to understand the influence 

of the physicochemical properties of NPs on their interactions with bilayers under controlled 

experimental conditions. Thanks to the availability of ever-increasing computing power, 

several theoretical studies have recently been performed to probe molecular aspects of NP–

membrane interactions. The most widely applied computational techniques are classical 

methods such as MD, which enable exploration of structural evolution and structure–activity 

relationships in biological systems with atomic-level resolution. (212) However, most 

biological phenomena occur on time and length scales not yet accessible to MD calculations, 

and more simplistic techniques such as CG (213, 214) or (almost) purely thermodynamic 

methods (215) become necessary. (92)  

We selected binary mixtures of hydrogenated or fluorinated thiols (C8TEG and F8PEG, see 

Scheme 1, chapter 3) to prepare water-soluble SAM-protected AuNPs. (216) These ligands 

were amphiphilic, with the thiol-substitute segment (C8 and F8 in Scheme 1) being the 

immiscible part, while the external segments were either TEG or PEG, making the surface 

water-soluble. (216-219)  

All the in-silico results were complemented by Surface Plasmon Resonance (SPR) and in 

vitro experiments performed by the group of prof. Sabrina Pacor and prof. Alessandro Tossi 

(Department of Life Sciences, University of Trieste), of which a synthesis is reported in the 

App). 

4.1 Computational details 

4.1.1 Coarse-grained simulations 

Coarse-grain molecular dynamics simulation (CG-MD) is a powerful tool for studying NP–

biomembrane interactions allowing to model larger systems and longer times than traditional 

all-atom (AA) simulations.(220-222) As a typical CG force field, the Martini force field can 

simulate biological systems, including lipid membranes, proteins, and genes and in recent 
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times has been employed widely to investigate nanomaterial behavior in bio-

environments.(223)  

To describe our ligands within the MARTINI framework, we resolved to a blend of 4-to-1 

and 3-to-1 mapping schemes, as represented in Figure 34.  

 

Figure 34: Model of C8TEG (left) and F8PEG (right) ligands in the framework of the MARTINI forcefield 

 

To model the PEG/TEG units, the SP0 bead as introduced by the group of Rossi was chosen, 

(224) while the SC4 representation was given to the gold atoms. The remaining bead types 

were assigned based on the relative water/octanol partition coefficients. Bonded interactions 

were described with harmonic (bonds), cosine-harmonics (non-PEG/TEG angles), restricted 

bending potential (PEG/TEG angles) and Ryckaert−Bellemans (PEG/TEG dihedrals) 

functions. (225) As standard procedure for modelling new molecules, we reproduced the 

distributions of bonds and angles from AA simulations, tuning accordingly the parameters 

for the bonded interactions (Figure 35).  

 

Figure 35: Exemplificative distribution of bonds and angles obtained for M1-C8T/F8P. The data from AA 

simulation are reported in grey, while the corresponding data from MARTINI calculation are in orange. 
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. 

 

The tuning of the bonded interactions for the alkyl portion of the two ligands was made in a 

nanoparticle-specific way, to better reflect the effects of the interactions between ligands in 

the self-assembled monolayer. 

The two membranes considered in this thesis were described as a single-component bilayer 

(pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) or a three-component bilayer 

using the MARTINI model for DOPC, sphingomyelin (SPHI) and cholesterol (CHOL). All 

membrane models were built using the insane.py (226) script, and the same tool was used to 

solvate the model and place the NPs above the membranes. The ternary mixture of DOPC, 

SPHI, and CHOL was selected as a representative system with an average CHOL level 

resembling biological membrane (~25% mol). We built the molecular DOPC: SPHI: CHOL 

= 1: 2: 1 structure such as to resemble a zoomed portion of the mixture as it appeared in 

AFM images but in 2D periodic conditions. (227) DOPC- and SPHI-rich domains were 

constructed to have a content of ~15 % and ~37 % CHOL, respectively. (228)  

NPs were placed in water phase approx. 8-9 nm away from the bilayer. Different initial 

orientations (relative to the C8/F8 interface) were explored for M1- and M2-C8T/F8P. All 

MARTINI systems were minimized by 50000 steps of minimization, followed by 100 ns of 

equilibration. The v-rescale algorithm was used for temperature control (coupling time of 1 

ps, temperature 300 K), and the pressure was kept at 1 atm by a Berendsen algorithm 

(coupling time of 5 ps, semi-isotropic in simulations with membranes). We then switched to 

a Parrinello-Rahman algorithm for pressure control (coupling time of 12 ps) and performed 

the data collection. Electrostatic and Van der Waals interactions were treated as the standard 

for MARTINI simulations performed with GROMACS on GPU. (230)  

 

4.1.2 Umbrella sampling calculations 

Umbrella sampling (231, 232) calculations were employed to retrieve the potential of mean 

force (PMF) along a reaction coordinate. We chose as reaction coordinate the distance, in 

the z direction, from the center of mass (COM) of the NP and the COM of the membrane. 

The latter was not computed over all lipids but were considered only lipids within a cylinder 

of radius 2.5 nm centered at the solute and aligned along the z axis (GROMACS option 

“pull-coord1-geometry = cylinder”). A steered MD simulation was performed to obtain the 
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starting configurations along the reaction coordinate, with a pulling velocity of 0.1 m/s and 

a force constant of 5000 kJ mol-1 nm-2. From the trajectory, we extracted main windows 

separated by 1 nm from each other along the reaction coordinate, and these were equilibrated 

for 400 ns with their reaction coordinate kept fixed with a force of 2500 kJ mol-1 nm-1. From 

each one of these equilibrated windows, 4 windows were spawned (at -0.4, -0.2, +0.2, +0.4 

nm from the original reaction coordinate of the main window). All windows obtained were 

equilibrated for another 50 ns with their reaction coordinate kept fixed, and then data 

collection was performed for 100 ns with a force constant of 1250 kJ mol-1 nm-1. 

 

4.2 Results 

To understand how self-assembled monolayer protected NPs interact with such a complex 

system we firstly developed a computational model to evaluate the interaction of NPs with 

a nanostructured monolayer (Stripe and Janus) and a simple model membrane made of 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid; currently employed both in 

experimental and simulation studies involving model membranes and NPs.  

Previous analysis of the fluid nature of the outer shell, in terms of global structural properties 

(radius of gyration, molecular asphericity and solvent accessible surface area) of the 

monolayers indicated that is not possible to distinguish them in the presence of solvent. 

However, we were interested in understanding if the presence of a different monolayer 

organization could lead to a different interacting behavior in the presence of membranes.  

We performed the analysis of the interaction with DOPC model membrane evaluating in 

silico the adhesion trend for different AuNP-PEG systems characterized by both mixed and 

homoligand self-assembled monolayers. NPs were placed in bulk solution and let approach 

freely the membrane. NPs reached and then maintained an equilibrium distance value, 

suggesting that binding is stable over time (Figure 36). 
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Figure 36: Time sequence of the distance and number of contacts between SAM-AuNP and DOPC 

membrane. The sequence measures the distance from the center of mass of the NP and membrane surface over 

the first 3 µs (left) or the number of contacts NC between ligand and membrane over the first 2 µs (right) for 

the different NPs. A contact was counted when the distance between one bead of NP and one bead of DOPC 

was smaller than 0.6 nm. Color code: M1-C8T/F8P, brown; M2-C8T/F8P, light grey; F8P, yellow; C8T, 

green; C8P, dark grey. 

 

Regardless of the monolayer composition, once the NP has established its first contact with 

the upper leaflet, it was rapidly stabilized in the proximity of the membrane and quickly 

reached a fully adsorbed state (Figure 37).  

 

Figure 37: Equilibrated simulation snapshots of SAM-AuNP interacting with DOPC membranes. M1-

C8T/F8PEG (A), M2-C8T/F8P (B), F8P (C), C8T (D), C8P (E) adopt a position close to DOPC-water 

interface. The hydrophilic poly(ethylene oxide) component of the ligands is colored in blue, while the 

hydrophobic F8-/C8-chains are highlighted in red and cyan, respectively. The gold core is shown in yellow. 

DOPC headgroups and tails are portrayed as grey spheres and sticks, respectively. Water molecules and 

inorganic ions are not shown for clarity. 

 



85 

 

The values of free energy of binding were calculated through the umbrella sampling 

technique. The umbrella sampling allows to calculate the free energy difference between the 

bind and unbind NP state through virtual unbinding experiments. Potential of mean force 

(PMF) profiles, see Figure 38, were calculated for all the systems and showed how the free 

energy changed due to the particle adhesion as a function of the distance from the center of 

the membrane.  

 

Figure 38: Free energy profiles (PMF) related to the transfer of SAM-AuNP from the DOPC-water interface 

to solvent solution.  M1-C8T/F8P (A), M2-C8T/F8P (B), F8P (C), C8T (D), C8P (E). Standard deviations are 

reported as a grey shaded area. 

 

The difference in force value between the bulk water and the lipid-interface state calculated 

from the PMF profiles is directly related to the energy required to detach the NP from the 

membrane surface (ΔGadh) and this represents a measure of the binding strength of the given 

SAM-AuNP. ΔGadh values for the five systems investigated are reported in Table 3.  

Starting from the homoligand systems we considered three different NP types. The first and 

the second present ligands with the same PEG length (8 monomers) but differ in the 

hydrophobic part. The second and the third present the same hydrophobic part but differ in 

the length of PEG (8 monomers and 3 monomers). From the values of ΔG (Table 1, Table 

8: Computational analysis of adhesion energy and contacts at the interface between SAM-

AuNPs and a DOPC membrane. SAM-AuNP/DOPC interaction assessed in terms of: a) 

Adhesion energy (kcal mol-1); b) Total number of NP ligands in contact with the lipid bilayer 

(distance < 0.6 nm between ligand and lipid beads in CG simulations); c) Contribution to the 

total number of contacts NC pertaining to C8TEG and F8PEG chains, respectively; d) 

Relative number of NP-DOPC contacts involving hydrophilic ligand moieties (PEG, TEG); 
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e) Relative number of NP-DOPC contacts involving hydrophobic ligand moieties (C8, F8).) 

we could appreciate that NPs with the same PEG length, that present the perfluorurate 

hydrophobic part, have a higher affinity with the respect of NP with the hydrogenate 

hydrophobic part. Moreover, the presence of the longest PEG chain seems to favor the 

interaction with the external part of the bilayer. This supports the hypothesis that ligand 

flexibility in SAM-AuNPs enables them to expose the inner hydrophobic portion of the shell 

when they face the membrane, indicating a highly adaptive behavior. 

 

 

Table 8: Computational analysis of adhesion energy and contacts at the interface between SAM-AuNPs and a 

DOPC membrane. SAM-AuNP/DOPC interaction assessed in terms of: a) Adhesion energy (kcal mol-1); b) Total 

number of NP ligands in contact with the lipid bilayer (distance < 0.6 nm between ligand and lipid beads in 

CG simulations); c) Contribution to the total number of contacts NC pertaining to C8TEG and F8PEG chains, 

respectively; d) Relative number of NP-DOPC contacts involving hydrophilic ligand moieties (PEG, TEG); e) 

Relative number of NP-DOPC contacts involving hydrophobic ligand moieties (C8, F8). 

 

Therefore, we investigated if the presence of nanostructured morphologies influenced the 

adhesion and we found out that Stripe morphology promoted more favorable interactions. 

To have a deeper insight of this different behavior, we characterized the nano-bio interface 

calculating the number of contacts and the normalized number of contacts, of the PEGylated 

and non-PEGylated part, with respect to the overall contacts number.  Homoligand NPs had 

the higher number of contacts and the PEGylated part mediated the interaction while the 

presence of a nanostructured organization decreased the number of total contacts increasing 

contacts of the hydrophobic part (almost all were F8PEG). 

It is possible that, when patterned NPs approached the lipid bilayer, the greater internal 

constraint due to increased chain association is reflected in a decreased capacity of ligands 

to adapt in a responsive manner. Consequently, the average number of chains involved in 

the binding event is lower than in the case of homoligand NPs. This distinct, morphology-

SAM-AuNP ∆Gadh a) NC b) Contacts 

   Hydrophilic 

(%) d) 

Hydrophobic 

(%) e) 

M1-C8T/F8P -28.6 ± 1.5 21 ± 2 (0/21) c) 59 41 

M2-C8T/F8P -38.9 ± 1.0 25 ± 1 (3/22) c) 63 37 

F8P  -51.0 ± 1.2 32 ± 2 73 27 

C8T  -20.7 ± 0.7 28 ± 2 53 47 

C8P  -44.1 ± 0.8 31 ± 2 72 28 
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dependent behavior was surprising given the relatively limited difference in F8PEG and 

C8TEG domain dimension due to the small core size of the nanoparticles. 

The different affinity towards the membrane have been complemented and confirmed by the 

SPR experimental results performed by Dr. Filomena Guida of the group of prof. Sabrina 

Pacor and prof. Alessandro Tossi, Department of Life Sciences, University of Trieste). 

(Figure 1) 

The sensorgrams, obtained through the SPR analysis (Fig.39) confirmed that both Janus and 

Striped NPs are able to bind the DOPC liposomes. In both cases the sensorgrams showed a 

rapid binding kinetics, supporting the MD prediction, and a concentration-dependent 

increasing in RU that suggested a good adhesion capacity to the membrane surface. 

Interestingly, the affinity constant (KD) estimated from the binding curves was significantly 

lower (KD = 80 uM) for the Striped system than for the Janus one (KD = 330 uM). 

 

Figure 39: Binding sensorgrams (A-C) and binding curves (B-D) for M1- (A-B) and M2-C8T/F8P (C-D) 

AuNPs. Sensorgrams were obtained flowing SAM-AuNPs at increasing concentrations (as shown) over DOPC 

LUVs immobilized on an L1 sensor chip. Binding curves were fitted using the “Affinity-Steady State” 

mathematical model. Shown is one experiment out of five different evaluations with very similar results. 

 

To complete the comparison, the affinity of the homoligand nanoparticles was tested using 

the same SPR setup. Both of the PEGylated homoligand NPs exhibited a good binding 

capacity to the DOPC LUV surface. F8P showed a marginally higher affinity than C8P (KD 
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= 60 ± 10 and 118 ± 22 µM, respectively), experimentally confirming MD results indicating 

the higher affinity of fluorinated ligands toward DOPC.  

 

4.3 Interaction of self-assembled monolayer protected nanoparticles with complex 

model membranes 

In order to reduce the gap between single component synthetic bilayers and real 

multicomponent cell membranes, we built a multi-component membrane model. A ternary 

mixture of DOPC, sphingomyelin (SM) and cholesterol (CH) was chosen as a representative 

system, with cholesterol levels (~25%). Atomic Force Microscopy (AFM) images of a 

supported DOPC/SM/CH bilayer were obtained and used to develop a multicomponent 

molecular model able to reproduce the experimental domain organization (Figure 40). 

 

 

Figure 40: AFM image of supported DOPC/SPHI/CHOL bilayer and equilibrated simulation snapshot of M1-

C8T/F8P interacting with the same ternary mixture. (Left panel) AFM images (scan size 5x5 nm2) in non-

contact mode of a supported membrane prepared from a DOPC/SPHI/CHOL mixture with scale bar 1 μm. 

Lateral view (middle panel) and top view (right panel) of a M1-C8T/F8P adhered to the DOPC/SPHI/CHOL 

bilayer. The hydrophilic PEG component of the ligands is colored in blue, while the hydrophobic F8 and C8 

moieties are highlighted in red and cyan, respectively. The gold core is shown in yellow. DOPC headgroups 

and tails appear as light grey spheres and sticks, respectively, while for SPHI they are in dark grey. CHOL 

molecules are highlighted as orange spheres. Water and inorganic ions are not shown for clarity. 
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Figure 41: Equilibrated simulation snapshots of SAM-AuNP interacting with DOPC/SPHI/CHOL 

membranes: M1-C8T/F8P (A), F8P (B), C8T (C), C8P (D). The hydrophilic poly(ethylene oxide) component 

of the ligands is colored in blue, while the hydrophobic F8 and C8 chains are highlighted in red and cyan, 

respectively. The gold core is shown in yellow. DOPC headgroups and tails appear as light grey spheres and 

sticks, respectively, while for SPHI they are in dark grey. CHOL molecules are highlighted as orange spheres. 

Water and inorganic ions are not shown for clarity. 

 

Also in this case, we performed simulations for both mixed and homoligand NPs and we 

were interested in understanding if the presence of a multicomponent membrane 

composition would lead to a different behavior once the NPs come in contact with the 

bilayer. 

We found out that, regardless the SAM organization, all the NPs preferred to contact the 

membrane within the DOPC-rich domain. As previously, both the striped and Janus system 

expose most the fluorinated ligands. (Figure 40 and Figure 41). 

The main features of the NP/multi-component-membrane interface was preserved with 

respect to a simple DOPC membrane; in terms of the relative number of the 

hydrophilic/hydrophobic contacts for each system and the increased Nc in homoligand SAMs 

with respect to the nanostructured monolayers (Table 9). However, the absolute NC values 

decreased by 2-3 contacts as compared with DOPC membrane. It is well established that the 

presence of cholesterol can greatly influence the physical properties of the membrane (such 

as fluidity),  so the reduction in the number of contacting ligands may be an effect linked 

with the amount of CH present in the system.  
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Table 9: Computational analysis of adhesion energy and contacts at the interface between SAM-AuNPs and a 

DOPC/SPHI/CHOL membrane.   

 

This new set of simulations confirmed that the molecular information associated with the 

nanoscale organization of the NP remains as relevant to multi-component synthetic 

membranes as for the mono-component ones. 

Taken together, results suggest that even small changes in the molecular features of the 

monolayer may significantly affect the interaction of SAM-AuNPs with model membranes 

demonstrating the key role of nanoparticles’ interfacial properties in their functional activity. 

Moreover, these small changes in the molecular structure of the monolayer lead to a 

substantial difference in cells that can be appreciate by confocal microscope analysis and 

flux cytometry with absence of citotossicity appreciated. (Appendix C) 

 

4.4 Interaction of coated gold nanoparticles with proteins 

The interaction of proteins with nanomaterials needed to be distinct from the interaction of 

proteins with bulk materials of the same composition. The highly curved surfaces of 

nanomaterials influenced protein–protein interactions. (254) For example, there is 

substantial cooperativity during the adsorption of human serum albumin to 100 nm, but not 

5 nm gold nanoparticles. (255) For example, the density of albumin adsorbed to gold 

nanoparticles increases significantly as the size decreases below 30 nm. (256) Increasing 

surface curvature tends to lower the affinity of a protein to the nanomaterial, presumably by 

decreasing the area of interaction. On the other hand, proteins adsorbed to highly curved 

nanoparticles tended to undergo fewer changes in conformation than those adsorbed to less 

curved surfaces. However, the tendency of smaller nanoparticles to preserve protein 

conformation seems to be protein-dependent. Fibrinogen, for example, undergoes larger 

structural changes on smaller rather than larger SiO2 nanoparticles. 
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Most studies carried out so far involved NPs with homogeneous surfaces while only a few 

have considered the influence of surface heterogeneity at the nanoscale, especially in a 

comparable size range to proteins. Some studies on patterned NPs have shown that the 

surface ligand composition and morphology affect how proteins bind. Fluorescence 

quenching, dynamic light scattering (DLS), circular dichroism (CD), and isothermal titration 

calorimetry (ITC) have been performed with striped and randomly monolayer protected NPs 

suggesting different “side-on” or “end-on” bovine serum albumin (BSA) conformations on 

gold NP, depending on its monolayer organization. If the shell presented randomly 

distributed ligands, the binding was mainly mediated by electrostatic interactions, while for 

a striped surface, there was a combination of different interactions due to the presence of 

both polar and apolar groups in in the shell. (124). In another combined 

experimental/computational investigation, interactions of cytochrome c with nanostructured 

surfaces formed by mixtures of 6-mercapto-1-hexanol (MH) and octanethiol ligands were 

explored using both protein assays and computational MD simulations (125). The key role 

of the surface structural and chemical heterogeneity of nanoscale patterned NPs was 

confirmed by both experimental and computational results. It was shown that the interaction 

between proteins and NPs is determined by the surface heterogeneity of the NPs, but also 

depended both on the scale of protein heterogeneity and its size (126; 242). 

The interaction of proteins with nanomaterials needed to be distinct from the interaction of 

proteins with bulk materials of the same composition. The highly curved surfaces of 

nanomaterials influenced protein–protein interactions. (254) For example, there is 

substantial cooperativity during the adsorption of human serum albumin to 100 nm, but not 

5 nm gold nanoparticles. (255) For example, the density of albumin adsorbed to gold 

nanoparticles increases significantly as the size decreases below 30 nm. (256) 

Rational design of NPs remained a challenge due to the lack of a deep knowledge of the 

molecular mechanisms underlying the formation of the protein corona on different NPs 

surfaces. Having this in mind, we considered a second biointerface for our M1- and M2-

C8TEG/F8P NPs (see Chapter 3.1). These nanoparticles feature a Janus and striped surface, 

respectively, and our calculations, supported by experimental evidences, demonstrated that 

their behavior in contact with simple and complex lipid membranes is different. Thus, we 

wondered if this is the case also in presence of proteins. We choose the Human Serum 

Albumin (HSA) upon all proteins because it is the most abundant serum protein and it is the 

first protein that typically binds the surface of nanomaterials.  



92 

 

4.4.1 Human Serum Albumin computational results 

4.4.2 Computational methods 

4.4.2.1 Coarse-grained simulations  

The coarse-grained (CG) models of M1- and M2-C8TEG/F8P NPs were built as previously 

descripted in Chapter 3.2.1.2, while the CG model for the HSA was obtained thought the 

standard procedure for Gromacs. Using the martinize.py script the atomistic structure of the 

HSA was converted into a CG model and a suitable Martini topology was generate, then the 

CG protein was minimized and solvated with water and counter ions (267). Then each initial 

configuration was first equilibrated in NVT for 16 ns and then in NPT for other 100 ns. Then, 

we performed simulations of 2 µs for each system. 

 

4.4.2.2 Atomistic simulations 

The atomistic file for the M1- and M2-C8TEG/F8P NPs were the same used in Chapter 

3.2.1, while the pdb file of the HSA has been downloaded from the Protein Data Bank. Each 

initial configuration, constructed starting from the correspondent CG model, was first 

equilibrated for 5 ns, temperature was then raised to 300 K in molecular dynamics (MD) 

simulation (Langevin thermostat, time step of 1 fs, collision frequency 1.0), followed by the 

equilibration of the density for 10 ns with a Berendsen barostat (pressure relaxation time of 

2 ps, time step of 2 fs). At the end, we switched to a Monte Carlo barostat and performed 

data collection for a total of 2 µs. AA simulations were performed by means of AMBER 14 

suite of software (196), employing gaff2 (197, 198) forcefield.  

 

4.4.3 Results 

We started considering the interaction of HAS with M1- and M2-C8T/F8P NPs at coarse-

grain level. This was necessary to simulate a system in which the relative size of protein and 

nanoparticle is comparable. The NP surface cannot be thus represented as a flat surface and 

both protein and ligands possessed great flexibility and need time to reach the final 

equilibrium state.   

 
  
Consequently, we developed a computational CG procedure which considered a 2:1 protein-

nanoparticle binding for each NPs. We placed the two HSA far from the NP surface at a 
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distance which was a compromise that let both the nanoparticle and the protein time and 

space to find their respective energetically favorable position (Figure 43). The two HSA 

were placed in solution in the up position due to preliminary calculations, performed on a 

1:1 NP:HSA system (Figure 42), that pointed out that this was the preferential binding 

position for the HSA. 

 

Figure 42: HSA starting position. Up (left), back-on (right). 

 

 

 

Figure 43: equilibrated snapshot of a M1-C8T/F8P-AuNPs interacting with the two HSA. F8P ligand (green), 

C8T ligand (blue). Solvent not shown for clarity. 
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From the computational evidences the two HSA were able to bind the nanoparticle and both 

NP and proteins had time and space to adjust its relative binding position. Therefore, we 

investigated which kind of amino acids were involved in the interactions. It turned out that 

the amphiphilic amino acids were the ones that contact more the nanoparticle shell, 

consistently with the amphiphilic character of our ligands. In particular, Lysine (Lys), 

Glutamic acid (Glu) and Aspartic Acid (Asp) (Figure 44) were the ones that made more 

contacts with the surface of the nanoparticle. This is probably due to the chemical nature of 

their side chains. We hypothesized that the longer is the alkyl part of the chain the higher is 

the total number of contacts and that also the difference in bulkiness of the side chains may 

play a role in the interaction. In particular, Lys, which presents the longest alkyl chain and 

thinner side chain, is the one that made the highest number of contacts with respect to Glu 

and Asp, which present a gradually shorter alkyl chain and bulkier side chain, respectively. 

 

 

Figure 44: Histogram showing the number of the amino acid involved in binding the human serum albumin. 

Blue column represented the number of amino acid that contacted the C8T ligand, orange column the number 

of amino acid contacting the F8P ligand. On the right the chemical representation of the three most contacting 

amino acids. 

 

Further useful insights (free energy of binding Gb, number of contacts with HSA involving 

the PEGylated and the non-PEGylated part of the ligands, number of amino acids contacting 

the F8P and C8T chains) were also collected and are reported in Table 10. No major 

differences appear in the value of the free energy of binding, suggesting that the different 
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nanostructure organization does not play a role in it, in contrast to what happened with 

membranes. Albumin preferred to interact with the F8P ligands rather than with the C8T, 

contacting in greater extent both the PEGylated and the non-PEGylated part of the chain. 

This is probably due to the great flexibility of both protein and ligands, which allowed thiols 

to follow exactly the conformation of the protein surface. As a consequence, also the amino 

acid involved in binding came in contact mostly with the fluorinated thiols. 

 

 

Table 10: comparison of the interaction of HSA with M1- and M2- NPs. In the table are reported the values of 

free energy of binding ΔGb, number of contacts involving the PEGylated components (% PEG C8T/F8P), 

number of contacts involving the non-PEGylated parts (% non-PEG C8T/F8P), number of amino acid 

contacting F8P (contacts res-F8P) and the C8T (contacts res-C8T) ligands. 

 

The CG model employed due to the great complexity of the system did not provide a 

rationale to determine if different morphologies influenced the binding affinity towards the 

human serum albumin as they did with the membranes. Probably this is related, again, with 

the comparable size of the two actors or it could be that little differences cannot be 

appreciated at this level of coarse graining. For this reason, we set up an atomistic model of 

the systems and from the preliminary results, at a visual inspection of the trajectories (Figure 

45), seems that the binding of the striped NPs involved a higher number of ligands which 

would probably result in a higher affinity with respect to the Janus NPs. Further evaluations 

are, to date, in progress. 
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Figure 45: 2 HSA binding Striped-AuNP (up), Janus-AuNP (bottom). HSA in orange, C8TEG in blue, F8PEG 

in green and gold in yellow. 
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Chapter 5. Supramolecular binding of small 

molecules in coated gold nanoparticles 

 

5.1 Molecular investigation of crystal violet binding to coated gold nanoparticles 

Monodisperse AuNPs functionalized in polymer encapsulations doped with photosensitized 

dyes have demonstrated remarkable antimicrobial properties. For example, crystal violet 

(CV) and methylene blue (MB) were incorporated into medical grade polymers before 

encapsulating sub-10nm AuNPs. Significant antimicrobial enhancement was achieved both 

in dark and light conditions with the presence of AuNPs, especially the AuNPs of 2 nm size. 

(257-259) However, the detailed physical/chemical mechanism of this intriguing interplay 

has not been revealed thoroughly. Considering AuNPs have no bactericidal effects 

intrinsically, it is of great importance to investigate the mechanism of this synergistic effect 

comprehensively. In this study, we aim to attach CV directly to the AuNPs with thiol capping 

by inducing both electrostatic and intermolecular interactions. Adjusting the experimental 

conditions enables the optimization of the association constant. To this aim, we investigated 

by means of molecular dynamics calculation the interaction of CV covered with a self-

assembled monolayer of 11-mercaptosulfonic acid (MUS). As a dye, the Crystal Violet 

changes its color depending on the pH and at different pH presents different protonation 

states. Accordingly, three different conditions were taken into account for calculation, acid, 

neutral and basic pH. 

This work was conducted during my stay abroad as a part of collaboration with the group of 

prof. Stefan Guldin (UCL, London, UK). 



98 

 

 

Figure 46: Crystal Violet protonation states carrying a different charge and changing its color depending on 

the pH 

 

 5.1.1 Computational details 

These homoligand MUS modified Au NPs were simulated at the atomistic level employing 

Amber software, gaff2 Force Field and the TIP3P water model. Atomistic simulations were 

performed in explicit solvent (water) and ions (Na+ and Cl-) at room temperature. All 

systems were minimized by 1000 steps of Steeped Descent followed by 3000 steps of 

Conjugated Gradient algorithms. The temperature was then raised to 300 K in 20 ps of NVT 

molecular dynamics (MD) simulation (Langevin thermostat, time step of 1 fs, collision 

frequency 1.0), followed by the equilibration of the density for 10 ns with a Berendsen 

barostat (pressure relaxation time of 2 ps, time step of 2 fs). At the end, we switched to a 

Monte Carlo barostat and performed data collection for a total of 2 us. AA simulations were 

performed by means of AMBER 14 suite of software (196), employing gaff2 (197, 198) 

forcefield. Regarding the structure of the CV molecule, to characterize the different charges 

present at different pH (Figure 46), we used the Resp Esp charge Derived (R.E.D) tool to 

parametrize it. R.E.D minimizes molecular structures and allows to automatically derive 

RESP and ESP charge values to build force field libraries for new molecules/molecular 

fragments. 

Then we performed the energetical analysis (using the MMPBSA procedure) for each 

system. For the entropy evaluation the &nmode calculation was used, which is unique to the 

normal mode calculations used to approximate vibrational entropies, while to evaluate the 

enthalpic components the &pb calculation was used. The &pb is unique to Poisson 

Boltzmann calculation.  
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 5.1.2 Results 

To begin, we developed a model of a 1:1 AuNP:CV system for each pH to determine whether 

the starting position of the CV might affect its final binding position on the NP surface. In 

particular, we placed the CV molecule in standing-up (Figure 47a on the left) and in a laying-

down position (Figure 47a on the right). From the atomistic simulation results, it was clear 

that the Crystal Violet molecule presented a preferential binding position independently from 

the initial position and the pH. From a visual inspection of the trajectories, the CV molecules 

preferred to stay bound in the free space through the MUS bundles close to the alkyl chain 

of the thiols (Figure 47b).  

 

 

Figure 47: Snapshots of the molecular dynamics trajectory showing: a) different starting positions, b) final 

binding state for 1:1 MUS-AuNP at pH < 2.0. Simulations were carried in water and in presence of ionic 

strength (100 mM NaCl). Solvent is not shown for clarity. 

 

To distinguish which kind of interactions drive the binding of CV to the functionalized 

surface at the different pH, we resorted to MMPBSA analysis. The graphs clearly show the 

affinity of the CV is higher at acid pH and decrease at basic pH (Figure 48). 
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Figure 48: Averaged MM/PBSA binding energies (kcal/mol) for AuNP:CV 1:1 systems. Free energy of binding 

(G), and enthalpic (H) and entropic (-TS) terms (left panel). Electrostatic and hydrophobic contribution 

to the enthalpy binding component (right) panel). Data are reported for two different CV starting positions. 

 

From the thermodynamics, it is known that the free energy of binding (∆𝐺) depends on a 

balance of entropic (∆𝑆) and enthalpic (∆𝐻) components (∆𝐺 = ∆𝐻 − 𝑇∆𝑆). The values 

revealed that, while the ∆𝐺 decreased within the pH, the variation in entropy ∆𝑆 was always 

unfavorable to the binding regardless the pH and almost constant in the three different 

conditions. At the same time, the enthalpic contribution was favorable to the binding and 

decreased with the pH (Figure 48 left panel). It is clear that the interaction is essentially 

enthalpy driven. Therefore, to evaluate which enthalpic component mainly contribute to the 

binding of the CV, the ∆𝐻 term was analyzed in term of its electrostatic (∆𝐻𝑒𝑙𝑒) and 

dispersive (∆𝐻𝑑𝑖𝑠𝑝) components. Plotting the data (Figure 48 right panel), the electrostatic 

component decreases within the pH for all systems, while the dispersive one remains 

constant over the pH and drives the molecular binding. Due to the chemical structure of the 

molecules involved in the interaction, it was expected that the driving force had to be 

electrostatic. However, the computational results clearly show that the main contribution 

comes from the hydrophobic forces. 

Furthermore, to mimic an environment as close as possible to the experimental conditions 

and to figure out which is the maximum payload for these NPs at the three-different pH, 

atomistic simulations were then performed with an increased number of CV molecules (5, 

10, 20).  

The results showed that, regardless the pH, not all the 20 CV molecules were bound 

demonstrating that the maximum payload for these nanoparticles had been reached. At basic 

pH, about 17 molecules stay bound, while 12 and 13 CV are able to stably bind the gold 

nanoparticle at acid and neutral pH, respectively (Figure 49). In all cases, the dye bound in 

the free space through the bundles, when possible, as seen in the case with only one CV. 
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When possible, the dye occupied the same preferential binding position found in the 

simulations with one CV molecule.  

The energy analysis performed on all systems at the three-different pH reveals that the trend 

emerged for 1:1 systems is maintained also at higher CV loadings. 

 

Figure 49: Equilibrated snapshot of the molecular dynamic trajectories showing: a) 5 CV:1 AuNP, b) 10 CV:1 

AuNP and c) 20 CV:1 AuNP. Simulations were carried in water and in presence of ionic strength. Solvent is 

not shown for clarity. 

 

 

Figure 50: CV-averaged MM/PBSA binding energies (kcal/mol) for the highest payload systems. Free energy 

of binding (G), and enthalpic (H) and entropic (-TS) terms (left panel). Electrostatic and hydrophobic 

contribution to the enthalpy binding component (right) panel). Data are averaged on the number of CV 

molecules bound at the highest payload for each pH value (acid pH in blue, neutral pH in yellow and basic pH 

in green). 

 

As seen before, the affinity is higher in acid conditions than in neutral and basic ones (Figure 

48 left panel). While the binding energy decreases as a function of pH, the entropic term ∆𝑆 

remaines always unfavorable to the binding and almost constant regardless the pH. Overall, 

the binding is driven by enthalpy and becomes less favorable at basic pH. The enthalpic 

contribution H was split into its electrostatic (∆𝐻𝑒𝑙𝑒) and dispersive (∆𝐻𝑑𝑖𝑠𝑝) components 
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(Figure 50 right panel). Analyzing the data, the electrostatic component decreases with the 

pH, while the dispersive one remains constant regardless the pH. Taking all the evidences 

together, it is clear that the binding of CV to a MUS-modified NPs is not driven by 

electrostatic forces but by the dispersive ones. 

So far, we have looked at the binding event as a whole. Due to the presence of multiple 

binding sites, we were also interested in investigating if the binding of a CV molecule 

influences the affinity of the other CV units, namely if there is a sort of cooperative effect. 

We analyzed the energetical values of ∆𝐺, ∆𝐻 and ∆𝑆 for each CV molecule bounded to the 

AuNP together with the corresponding average values and the ones of the relative 1:1 system 

(Figure 51).  

 

 

Figure 51: Main components (∆𝐺, ∆𝐻, ∆𝑆) of the free energy of binding for the systems at different pH (acid 

in blue, neutral in yellow and basic in green). The values relative to ach CV bound (full bars) together with the 

average values (white shaded bars) and the relative 1:1 systems. 

 

Based on these evidences (Figure 51), it seems that the binding may be not cooperative as 

the main energetic parameters almost lay in the same range and we could take the average 

values as representative for all the systems. The same behavior could be observed when 

isolating the enthalpic term (Figure 52). 

 

Figure 52: 20CV systems MM/PBSA binding energies (kcal/mol) of each bounded CV molecule together with 

the average values and the relative 1:1 values. The values relative to each CV bound (full bars) together with 

the average values (white shaded bars) and the relative 1:1 systems 
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Further analysis has been conducted to gain more details on the molecular properties of the 

interaction involving MUS-AuNPs and CV. In particular, the number of MUS ligands 

contacting each CV molecule (with a contact distance of 5Å) and the contact solvent 

Accessible Surface Area (SASA) of CV, averaged over all the molecules in stable binding 

(Table 11). 

 

 

Table 11: Total and averaged number of contacts (contact distance 5Å) between CV and MUS ligands and 

contact Solvent Accessible Surface Area (SASA) of single CV bound to the monolayer. 

.  

The data indicate that on average each CV molecule is able to interact with six MUS ligands 

and this number is not much influenced by the pH of the solution. Clearly, the total number 

of contacts increases at higher pH, since the number of CV molecules bound is higher than 

that at lower pH. At the same time, each CV binds the monolayer exposing a surface area, 

which is slightly lower at lower pH with respect to neutral and acid pH. It is possible that, at 

acid pH, when CV brings three charges, the electrostatic repulsion between adjacent positive 

charged molecules is not fully screened by negative flexible ligands. As a consequence, the 

molecular conformation of the binding site may be slightly different and this reflects in a 

different value of the contact SASA parameter. This speculation also agrees with the fact 

that the monolayer is able to accommodate the lowest number of CV molecules when the 

pH is acid. 

 

5.2 Molecular sensors for doxorubicin binding 

One major need of oncologists is to know in real-time the drug concentration in blood when 

treating patients with chemotherapy. Especially for anticancer drugs the therapeutic window, 

i.e. the drug range between a concentration too low to reach the therapeutic goal and a 

concentration causing severe adverse toxic effects in the patient, is quite small. (260) 
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Conventional standard methods for therapeutic drug monitoring (261) are rather slow and 

costly off-line procedures. For example, gold nanoparticles developed so far were able to 

bind a target molecule such as the commonly used chemotherapy drug doxorubicin (DOXO) 

in molecular receptors formed by the ligand shell on their surface but they were not sufficient 

to perform phase transfer from hydrophilic to hydrophobic environment. (262-265) These 

receptor sites were created by the molecular arrangement of a mono or binary mixture of 

functional ligands. One ligand, normally, was responsible for AuNPs solubility in various 

media (solvent, plasma, blood) and the second one, normally in minority, conducted the 

binding event. This strategy will lead to a robust and reliable point-of-care sensing platform 

with real time precision for sensing of chemotherapeutic drugs in small samples of blood 

samples at very low drugs concentrations (Figure 53). Therefore, innovative drug capturing 

nanoparticles capable to bind DOXO from human blood and selectively phase transfer upon 

binding are pivotal.  

The discrimination between drug and its metabolite would be carried out on the atomic level 

and only the right molecule will undergo transfer into a different phase (e.g. liquid crystal), 

where their concentration will be measured. The receptor sites can be created by the 

molecular arrangement of a binary mixture of bifunctional ligands. Thiol group anchored the 

ligands to the gold NPs and the second functional groups forming the receptor site could be 

designed in order to perfectly match the desired system with calculated affinity. The perfect 

DOXO receptor would be chosen accordingly with different NP parameters (ligand 

composition, size, etc.) to improve the binding properties to DOXO.  
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Figure 53: (a) DOXO selective gold NPs; (b) separation of DOXO in MeOH (top) and LC phase (bottom); (c) 

selectivity for DOXO loaded NPs in LC; (d) NP-DOXO absorbance after extraction from MeOH and from 

serum in UV-Vis spectroscopy. [Courtesy of Prof. Stefan Guldin of University College London]   

 

Having this in mind and as a part of a collaboration with the group of prof. Stefan Guldin 

(Department of Chemical Engineering, University College London, London), we studied by 

means of molecular calculations different gold nanoparticles (4 nm in diameter) covered by 

a mixture of 1-hexadecane thiols (hereafter named as C16) and pyridine/4-ethylpyridine 

thiols (named Py/EPy, respectively) (Figure 54) in a ratio of C16: Py/EPy 1:1 to be used as 

a carrier for DOXO. 

 

Figure 54: chemical structure of Py and EPy thiols. 
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The aim of this investigation was twofold. First, we would like to predict if and how the two 

mixtures (C16/Py and C16/EPy) of ligands phase-separate on the gold surface and which 

was the molecular 3D organization of the chains in the monolayer. This could be achieved 

by simulating the spontaneous self-assembly of the ligands via Dissipative Particle 

Dynamics as done before for other blends of functional thiols. Second, once the mesoscale 

structures were obtained, we were interested in studying their ability to bind DOXO (and its 

analog for comparison) through molecular recognition mechanisms. This was done by 

converting the corresponding coarse-grained structures into atomistic models and studying 

the interaction event via molecular dynamics calculations. 

 

5.2.1 Computational details  

5.2.1.1 Dissipative Particle Dynamics details 

The spontaneous assembling process of the ligands on the gold surface was investigated by 

means of Dissipative Particle Dynamics (DPD). The set of nanoparticles considered for this 

study was simulated following the procedure described in Section 3.1.1. Accordingly, we 

will report here only the parameters pertaining to these specific systems. The initial structure 

of the NP core was constructed by arranging DPD beads (Au) on a fcc lattice into the desired 

icosahedral shape and diameter. Each ligand was represented by a flexible chain model of 

beads connected by harmonic springs of composition reported in Table 12. Solvent 

(methanol) was modelled as a single bead. 

 

Table 12: Coarse-grained model of each ligand considered in the study 

 

As described above, DPD pair-pair interaction parameters and ligand topology were derived 

using a multiscale simulation protocol, combining atomistic and coarse-grained simulation. 

(191-195) 
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Therefore, we employed the following values for aij: aB-B = 60.0, aB-S = 72.0, aB-M = 52.8, aC-

B = 58.3, aC-C = 55.5, aC-S = 72.0, aC-M = 60.1, aM-M = 51.6, aS-S = 51.6, aS-M = 80.0, aB-B = 

60.0, aB-S = 72.0, aB-M = 52.8, aC-B = 58.3, aC-C = 55.5, aC-CP = 53.3, aC-S = 72.0, aC-M = 60.1, 

aCP-B = 55.2, aCP-CP = 54.6, aCP-S = 72.0, aCP-M = 56.4, aM-M = 51.6, aS-S = 51.6, aS-M = 80.0 

rC/kBT. 

A 19rC X 19rC  X 19rC simulation box was adopted, placing the monolayer protected NP in 

the middle of the periodic cell. Optimized adimensional values for bond and angle 

parameters were employed for both alkane and perfluorocarbon thiols: kb(B-S) = 40, r0(B-

S) = 0.39, kθ(B-B-S) = 40, θ0 (B-B-S) = 110, kb(B-B) = 40, r0 (B-B) = 0.49, kθ(B-B-B) = 40, 

θ0 (B-B-B) = 60, kb(CP-S) = 40, r0(CP-S) = 0.39, kθ(B-CP-S) = 40, θ0 (B-CP-S) = 110, kb(B-

B) = 40, r0 (B-B) = 0.49, kθ(B-B-B) = 40, θ0 (B-B-B) = 60, kb(B-CP) = 40, r0 (B-CP) = 0.39, 

kθ(B-B-CP) = 40, θ0 (B-B-CP) = 150. 

Each initial configuration was first equilibrated for 1x104 steps and a time step of Δt=0.01τ. 

Then, additional 8x106 time steps (Δt = 0.02) were performed increasing the interaction 

parameters till their actual value. 

 

5.2.1.2 Atomistic molecular dynamics details 

Once equilibrated, the CG-NP structures were mapped back to all-atom (AA) configurations 

to gain insights into molecular-level details of ligand and shell properties. The monolayers 

were equilibrated in explicit Methanol at room temperature. All systems were minimized by 

1000 steps of Steeped Descent followed by 3000 steps of Conjugated Gradient algorithms. 

The temperature was then raised to 300 K in 20 ps of NVT molecular dynamics (MD) 

simulation (Langevin thermostat, time step of 1 fs, collision frequency 1.0), followed by the 

equilibration of the density for 10 ns with a Berendsen barostat (pressure relaxation time of 

2 ps, time step of 2 fs). At the end, we switched to a Monte Carlo barostat and performed 

data collection for a total of 20 ns. AA simulations were performed by means of AMBER 

14 suite of software (196), employing gaff2 (197, 198) forcefield. The molecule of 

doxorubicin was modelled, as previously done for the crystal violet, with the R.E.D tool.  

We loaded the C16/EPy AuNPs with 40 molecules of doxorubicin to evaluate which was the 

maximum payload for these nanoparticles (as done before in the CV case). The 

computational results pointed out that at the value of 40 these NPs are able to carry on their 

surface 40 molecules as max. 
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Then we performed the energetical analysis (using the MMPBSA procedure) for each 

system. For the entropy evaluation the &nmode calculation was used, which is unique to the 

normal mode calculations used to approximate vibrational entropies, while to evaluate the 

enthalpic components the &pb calculation was used. The &pb is unique to Poisson 

Boltzmann calculation.  

 

5.2.1.3 Results 

Simulations pointed out a stripe-like organization either in presence of Py and EPy, more 

defined in the EPy-case then in the Py-case as shown in Figure 55. This also proves the 

sensibility of the CG model adopted since the two ligands (Py and EPy) are different only 

for one chain bead. Since the patterning appeared more defined and the domains more 

separated in the C16/EPy mixture we chose it for further investigations. 

 

Figure 55: Equilibrated snapshots of 1:1 C16-EPy (top) and C16/Py (bottom) AuNPs. Simulations were 

performed in methanol, which is not shown for clarity. For each system a front and side view are shown. EPy 

is shown as surface to enhance the visibility of the domains. C16 ligand (grey) and EPy (red). 

 

In principle, a random organization of the ligand is suitable for binding DOXO due to the 

ability of creating a larger number of binding site than a stripe-like morphology. To address 

if different nanostructures of the SAM could influence the interaction of DOXO with 

AuNPs, we converted the DPD structure of the C16/EPy into an atomistic model and 

compared its binding ability to a AuNP covered with a random 1:1 mixture of the same 

ligands. 
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To set up an environment closest to the experimental conditions the AA models were created 

using a 1:40 AuNP:DOXO ratio (Figure 56). Moreover, to evaluate the molecular 

recognition ability of these AuNPs, the binding of these nanoparticles with Dunorubicinone, 

an analogous of the Doxorubicin, (hereafter named as DOXI) was analyzed. 

 

Figure 56: 1:40 AuNP:DOXO Striped (left panel) and Random (right panel) systems. Solvent was not shown 

for clarity. 

 

The table below reports the number of DOXO and DOXI molecules able to bind the AuNP. 

 

Table 13: number of DOXO and DOXI molecules able to bind the AuNP. 

 

From the data, it appears that the SAM morphology may influence the binding of small 

molecules on mixed monolayers. If we consider the DOXO molecule for instance, we see 

that a striped morphology can accommodate up to 9 DOXO molecules and the interaction 

involves mainly the EPy ligands (Figure 57). At the same time, the same ligands but with a 

random organization are less effective in capturing the drug molecules from solution and the 

number of DOXO bound decreases to 3. This also holds considering the second analyte, but 

with a lower difference between the two nanostructures. The major difference between the 

analytes considered is the absence of the sugar ring in the lateral chain of DOXI. This makes 

the molecules much less bulky. It is clear that the recognition process depends both on the 

nanoscale morphology and the chemical nature of the analyte, with the combination of the 

two.  
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Figure 57: example of the binding of DOXI to the striped NP. 

 

As previously done for the AuNPs carrying the crystal violet dye, we performed an 

energetical analysis (Figure 48, Figure 50) of the binding event to understand if the presence 

of a nanostructured morphology affects the affinity of DOXO and its analogues towards the 

monolayer. The averaged data are reported in Figure 58. 

 

 

Figure 58: DOXO/DOXI-averaged MM/PBSA binding energies (kcal/mol) for the highest payload systems. 

Free energy of binding (ΔG), and enthalpic (ΔH) and entropic (-TΔS) terms (left panel). Electrostatic and 

hydrophobic contribution to the enthalpy binding component (right) panel). Data are averaged on the number 

of DOXO/DOXI molecules. Color legend: striped-AuNP in complex with DOXI (blue) and DOXO (yellow), 

Random-AuNP in complex with DOXI (green) and DOXO (violet). 
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Figure 59: Main components (∆𝐺, ∆𝐻, ∆𝑆) of the free energy of binding for the systems. The values relative 

to each DOXO/DOXI bound (full bars) together with the average values (light grey shaded bars). Color legend: 

striped-AuNP in complex with DOXI (blue) and DOXO (yellow), Random-AuNP in complex with DOXI (green) 

and DOXO (violet). 

 

Based on these evidences (Figure 59, Figure 58), it seems that the binding may be not 

cooperative as the main energetic parameters almost lay in the same range and we could take 

the average values as representative for all the systems. The same behavior could be 

observed when isolating the enthalpic term (Figure 60). 

 

 

Figure 60: 40 DOXO/DOXI systems MM/PBSA binding energies (kcal/mol) of each bounded DOXO/DOXI 

molecule together with the average values. The values relative to each CV bounded (full bars) together with 

the average values (white shaded bars). Striped-AuNP bonded with DOXI (blue), with DOXO (yellow), 

Random-AuNP bonded with DOXI (green), with DOXO (violet). 
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As done before for the CV systems, we also evaluated the binding of DOXO and DOXI in 

terms of total and averaged number of contacts for each bound molecules) (Table 14).  

 

 

Table 14: Total and averaged number of contacts (contact distance 5Å) between DOXO/DOXI and C16/PEy 

ligands. 

 

Molecules are considered bonded if they are able to stay attached to the NP surface (5 Å cut 

off distance) for at least 20 ns. From this analysis turns out that the Random-DOXO complex 

made the highest number of contact per molecule, 7, with respect to the other systems which 

made 3 contacts per molecule. This is probably due to the different steric hindrance of the 

molecule that allows the contact with an increased number of ligand. These data should not 

be misleading. The energetical analysis show that both systems loading the Dunorubicinone 

present the higher affinity (ΔG = -7.9 and Δ = -6.7 for Striped and Random in complex with 

DOXI respectively) for the binding, notwithstanding the low averaged number of contacts 

per molecule. 

The binding analysis of small molecules demonstrate again how important are both the SAM 

nanostructure, present on the nanoparticle surface, and the chemical properties of the 

loading. Remembering that we can tune the SAM in order to improve the molecular 

recognition of specific biomolecules, we think that this is only one of the steps in the right 

direction to understand more and more details regarding how engineered nanoparticles can 

be used in such field like drug delivery and nanomedicine in general. 
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Chapter 6. Secondary projects 

 

6.1 9-Aminoacridine-based agents impair the bovine viral diarrhea virus 

 

The Bovine Viral Diarrhea is a highly contagious infectious disease that affects cattle. The 

causative agent is a single-stranded RNA virus (bovine viral diarrhea virus or BVDV) which 

belongs to the Pestivirus genus. This virus is responsible for a range of clinical 

manifestations including abortion, teratogenesis, respiratory problems. Despite the 

accessibility to vaccines against BVDV and the implementation of massive eradication or 

control programs, this virus still constitute a serious, agronomical burden.  

With the aim of improving the activity of anti-Pestivirus agents, in the present work three 

prototypes – namely compounds AVR15, AVR17 and AVR26 have been selected to explore 

some chemical additional features based on the 9-aminoacridine scaffold (Figure 61). 

Together with this three lead compounds 18 novel derivatives were synthesized and tested 

for anti-BVDV activity in cell-based assays. (266) 

 

 

Figure 61: of the novel 9-aminoacridine-based derivatives investigated in the present work. 
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All the compounds were evaluated for antiviral activity and sixteen out of twenty-one 

compounds (76%) proved to selectively inhibit BVDV replication. 

 

 

Figure 62: Compounds that reached (green) and surpass (red) the safety profile of Ribavirin (blue). 

 

The most active compounds exhibited against BVDV an EC50 range from 0.8 to 11.5 µM 

and interestingly, the most promising compounds reached (in green) or surpassed (in red) 

the potency and the safety profile of Ribavirin (in blue), see Figure 62; especially compound 

2 and 14 show the best EC50 values (Figure 63). 
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Figure 63: Antiviral activity against BVDV and cytotoxicity of the three prototypes (AVR) and of new 9-

aminocridine derivatives 1–18. b)  Compound concentration (lM) required to achieve 50% protection of MDBK 

cells from the BVDV-induced cytopathogenicity, as determined by the MTT method. c) Compound 

concentration (lM) required to reduce the viability of mock-infected MDBK cells by 50%, as determined by the 

MTT method. d)  SI= selectivity index. 

 

Since the RNA-dependent RNA-polymerase plays a critical role in viral replication we 

decided to investigate whether our newly synthesized 9-aminoacridine derivatives were able 

to act as inhibitor of this viral enzyme. A set of 6 compounds (i.e., AVR15, 2, 6, AVR17, 

14, and AVR26) was selected and four out of six demonstrated potent inhibition of the 

BVDV RdRp. These data (Figure 64) support the hypothesis that this new series of 9-

aminoacridine derivatives target the BVDV replication. 
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Figure 64: In vitro BVDV RdRp inhibition by selected new 9-aminoacridine derivatives. All experiments were 

run in triplicate. Errors on IC50 are within 15%. 

 

To investigate the binding mode of all compounds against the viral BVDV RdRp, 

thermodynamic studies were performed using isothermal titration calorimetry (ITC). The 

dissociation constant (Kd) and the enthalpy (ΔHb) were calculated directly from the ITC 

measurement, while the binding free energy (ΔGb) and the entropy (-TΔSb) were calculated 

indirectly knowing enthalpy and the dissociation constant.  ITC measurements on each 

compound are listed in Figure 65, while Figure 66 showed some representative ITC results, 

for the same 6 compounds previously selected. (266) 
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Figure 65: ITC determined thermodynamic data of all synthesized 9-aminoacridine derivatives binding to the 

BVDV RdRp. DGb = DHb _TDSb. DGb = RT ln Kd. n = number of binding site. All experiments were run in 

triplicate. Errors on DHb are within 5%. 

 

 

Figure 66: Representative ITC binding isotherms for AVR15 (A), 2 (B), 6 (C), AVR17 (D), 14 (E), and AVR26 
(F) titrations into BVDV RdRp solutions. Inserts: ITC raw data. 

 

The binding affinity of all compounds in complex with the BVDV RdRp could also be 

measured by molecular modeling. ΔGb,comp values could be correlated with their 

experimental counterpart and they were in excellent agreement with the corresponding ITC-

data, see Figure 67 (left panel). (266) 

Cpd Kd (M) ΔGb (kcal/mol) ΔHb (kcal/mol) -TΔSb (kcal/mol) n (-) 

AVR15 0.91 -8.24 -11.26 3.02 0.92 

1 9.1 -6.88 -13.84 6.96 1.10 

2 0.57 -8.52 -14.07 5.55 1.03 

3 4.8 -7.26 -12.46 5.20 0.98 

4 38 -6.03 -10.43 4.40 1.00 

5 41 -5.99 -10.37 4.38 1.04 

6 0.95 -8.22 -13.52 5.30 0.95 

7 23 -6.33 -11.96 5.63 0.99 

8 8.6 -6.91 -13.15 6.24 0.93 

AVR17 0.98 -8.20 -11.94 3.74 1.03 

9 15 -6.58 -10.21 3.63 1.01 

10 21 -6.38 -10.15 3.77 0.98 

11 18 -6.48 -10.09 3.61 0.96 

12 44 -5.45 -8.87 3.42 0.90 

13 1.8 -7.84 -11.53 3.69 0.92 

14 0.72 -8.38 -12.39 4.01 1.05 

15 31 -6.15 -9.87 3.72 0.89 

AVR26 28 -6.21 -11.42 5.21 1.08 

16 22 -6.36 -11.76 5.40 1.11 

17 39 -6.02 -11.00 4.98 0.99 

18 48 -5.89 -10.78 4.89 0.91 
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In Figure 67 (right panel) an example of computational protein-ligand binding in a box of 

water and ions. 

 

Figure 67: Correlation between computational and ITC-derived free energy of binding for all new 9-

aminoacridine derivatives in complex with the BVDV RdRp (left panel). Example of one of the compound 

bonded to the BVDV (right panel). Ions (violet balls), water (light blue).  

 

In order to understand how these novel compounds bind to BVDV RdRp, binding affinities 

have been evaluated by studying the corresponding molecular dynamics trajectories.  

We have reported in this work the evaluation of the three compounds exhibiting the highest 

affinity, but the same evaluation has been carried out on all the most promising compounds.  

Starting with the most potent compound 2, the inspection of the trajectory revealed that this 

molecule is able to bind the BVDV RdRp through the engagement of a bifurcated hydrogen 

bond (HB) between the –NH group and the side chains of E265 and R285, as shown in Figure 

68. Another permanent HB is also detected between the methoxy substituent on the acridine 

scaffold and the ammonium group of K26. Lastly, a third HB between the hydroxyethyl 

group of 2 and the positively charged side chain of K525 further stabilize the protein/ligand 

complex. (266) 
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Figure 68: Equilibrated snapshots of compounds 2 in complex with the BVDV RdRp. The protein is portrayed 

as a transparent orange ribbon, together with its van der Waals surface. Compounds are shown as atom-

colored sticks-and-balls (C, gray; N, blue; O, red; Cl, green). Hydrogen atoms, water molecules, ions and 

counterions are omitted for clarity. 

 

The inspection of the trajectory of compound 3 showed that besides the same two stabilizing 

HBs, was engaged in a favorable π-cation interaction was detected between the ortho-

chlorine and the positively charged side chain of R529 (Figure 69). In summary, the position 

of the Cl atom contributed in orienting the molecule within the binding pocket. (266) 

 

 

Figure 69: Equilibrated snapshots of compounds 3 in complex with the BVDV RdRp. The protein is portrayed 

as a transparent orange ribbon, together with its van der Waals surface. Compounds are shown as atom-

colored sticks-and-balls (C, gray; N, blue; O, red; Cl, green). Hydrogen atoms, water molecules, ions and 

counterions are omitted for clarity. 
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Compound 8, with a metoxy group at the para position, not able to perform the π -cation 

interaction described for 3, is involved in a further HB interaction between its metoxy 

substituent and the same residue R529 (Figure 70). 

 

 

Figure 70: Equilibrated snapshots of compounds 8 in complex with the BVDV RdRp. The protein is portrayed 

as a transparent orange ribbon, together with its van der Waals surface. Compounds are shown as atom-

colored sticks-and-balls (C, gray; N, blue; O, red; Cl, green). Hydrogen atoms, water molecules, ions and 

counterions are omitted for clarity. 
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Conclusion 

 

The analysis of different sets of mixed-monolayer NPs obtained by using mixtures of 

immiscible hydrogenated and fluorinated ligands, PEGylated ligands, mixtures of anionic 

and fluorinated ligands and zwitterionic and fluorinated thiols offered a unique background 

for understanding the formation of specific patterns once ligands self-assemble but also for 

developing some rules to tune the monolayer nanostructure. From these evaluations, we 

assessed that if our fluorinated thiols have the same chain length, the NP presents a phase-

separated morphology; when there is a mismatch of ligands length, the overall SAM 

organization exhibited stripe-like domains or patches and if branched ligands are employed 

the phase-segregation is disfavored and a random organization is promoted. Although we 

obtained these design principles from simple models, they present a general validity and are 

currently employed by our group to synthesize and characterize more complex nanoparticles. 

Then, investigating the role of different nanostructured SAM protected NPs in the interaction 

with lipid bilayers, cells and proteins, we discovered a dissimilar behavior due to the ligand 

composition and structure of the SAM, in particular stripe-like domains acted differently 

from the homoligand and Janus systems, when interacting with lipids and cells. From our 

computational simulations we assessed that the different affinities depend both on the 

molecular characteristic and organization of the shell that allow a different number and type 

of ligands to be involved in the interaction with the membrane. At cellular level the dissimilar 

behavior of differently patterned nanoparticles, found during the in-silico evaluation, was 

observed also in terms of a different time/concentration dependent internalization capacity. 

These results demonstrate how a smart choice of the mixture of ligands employed, together 

with a precise pattern of the SAM, is a potential strategy to tune the interaction of 

nanoparticles with membranes.  

Moreover, nanomaterials with precise surface organization can be tailored to selectively 

interact with other objects in a specific manner. During a three months collaboration in the 

group of Prof. Stefan Guldin (University College of London), we investigated at the 

molecular level how the crystal violet (CV), a powerful antimicrobial and antibacterial dye 

swell-encapsulated in polyurethane employed in some British pilot-hospital to coat surfaces, 

interact with homoligand MUS-SAM protected gold nanoparticles. The evaluation took into 

account three different pH and the relative protonation states of the CV elucidating the role 
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of the energy components in driving the binding. Another example of supramolecular 

binding of small molecules have been evaluated. In this case the binding of Doxorubicin and 

its analogues to mixed SAM protected gold NPs have been considered with the aim of using 

these NPs as a carrier for the chemotherapeutical drug. Different SAM morphologies were 

considered to understand how different nanostructures can influence the ability of NPs to 

target specific molecules. 
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APPENDIX A 

 

Fluorinated and Hydrogenated Alkanethiolates coated gold nanoparticles systems 

 

Nanoparticles Diameter, nma Compositionb %F6c CF3, ppm 7-CF2, ppm C6F6%d 

NP-brC12/F6-a 3.7 ± 0.6 Au2230(brC12)305(F6)22 6.8 -80.84 -126.10 0 

NP-brC12/F6-b 3.6 ± 0.7 Au1830(brC12)250(F6)43 14.7 -80.98 -126.30 0 

NP-brC12/F6-c 3.4 ± 0.8 Au1340(brC12)202(F6)47 19.2 -81.16 -126.50 0 

NP-brC12/F6-d 2.1 ± 0.6 Au270(brC12)68(F6)17 19.8 -81.23 -126.50 0 

NP-brC12/F6-e 3.1 ± 0.9 Au976(brC12)148(F6)62 29.4 -81.12 -126.40 0 

NP-brC12/F6-f 1.6 ± 0.5 Au208(brC12)30(F6)24 44.6 -81.22 -126.50 0 

NP-brC12/F6-g 2.8 ± 0.6 Au807(brC12)76(F6)92 54.5 -81.60 -126.90 40.0 

NP-brC12/F6-h 2.7 ± 0.9 Au500(brC12)28(F6)139 83.3 -81.60 -126.95 60.0 

NP-brC12/F6-i 1.9 ± 0.9 Au201(brC12)11(F6)63 85.1 -81.63 -127.00 46.7 

Table 15: Characterization data for nanoparticles NP-brC12/F6, 19F chemical shifts of CF3 and 7-CF2 groups 

and percentage of C6F6 added. a Average diameters and standard deviation of a population of at least 300 

particles. b Calculated on the basis of the TGA and TEM and 1H NMR analyses of decomposed nanoparticles. 
c Percentage of the fluorinated ligand in the monolayer of nanoparticles NP-brC12/F6 determined by 1H NMR 

analysis of decomposed nanoparticles. d Percentage of C6F6 in the mixture CDCl3/C6F6 added to solubilize the 

nanoparticles for NMR experiments. 

 

 

Nanoparticles Diameter, nma Compositionb %F10c CF3, ppm 9-CF2, ppm C6F6,%d 

NP-C12/F10-a 3.2 ± 0.3 Au1289(C12)194(F10)31 13.9 -81.05 -126.45 0 

NP-C12/F10-b 3.2 ± 0.3 Au1089(C12)187(F10)35 15.7 -81.19 -126.50 0 

NP-C12/F10-c 3.6 ± 0.6 Au1830(C12)176(F10)43 20.0 -81.05 -126.44 0 

NP-C12/F10-d 3.6 ± 0.6 Au1830(C12)211(F10)73 25.8 -81.35 -126.67 0 

NP-C12/F10-e 3.2 ± 0.3 Au1289(C12)161(F10)60 27.2 -81.53 -126.80 20.0 

NP-C12/F10-f 3.2 ± 0.3 Au1289(C12)136(F10)78 36.6 -81.62 -126.90 20.0 

NP-C12/F10-g 3.6 ± 0.6 Au1830(C12)170(F10)112 40.0 -81.62 -127.01 33.0 

NP-C12/F10-h 4.0 ± 0.6 Au2406(C12)126(F10)200 61.5 -81.51 -127.05 71.0 

NP-C12/F10-i 3.2 ± 0.5 Au1289(C12)27(F10)186 87.3 -81.62 -127.12 82.8 

Table 16: Characterization data for nanoparticles NP-C12/F10, 19F chemical shifts of CF3 and 9-CF2 groups 

and percentage of C6F6 added. a Average diameters and standard deviation obtained by analysis of a 

population of at least 300 particles.
 b Calculated on the basis of the TGA and TEM and 1H NMR analyses of 

decomposed nanoparticles. c Percentage of the fluorinated ligand in the monolayer of nanoparticles NP-

C12/F10 determined by 1H NMR analysis of decomposed nanoparticles. d Percentage of C6F6 in the mixture 

CDCl3/C6F6 added to solubilize the nanoparticles for NMR experiments. 
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Nanoparticles Diameter, nma Compositionb %F6c CF3, ppm 7-CF2, ppm C6F6% d 

NP-C8/F6-a 3.0 ± 0.6 Au976(C8)229(F6)11 4.5 -80.83 -126.30 0 

NP-C8/F6-b 3.3 ± 0.8 Au1340(C8)246(F6)18 6.8 -80.89 -126.22 0 

NP-C8/F6-c 3.8 ± 0.7 Au1634(C8)283(F6)29 9.3 -81.01 -126.37 0 

NP-C8/F6-d 2.7 ± 0.5 Au527(C8)139(F6)38 21.3 -81.19 -126.55 0 

NP-C8/F6-e 3.0 ± 0.6 Au976(C8)166(F6)46 21.7 -81.22 -126.50 0 

NP-C8/F6-f 2.8 ± 0.6 Au780(C8)114(F6)67 37.0 -81.41 -126.73 0 

NP-C8/F6-g 2.6 ± 0.5 Au475(C8)75(F6)53 41.7 -81.45 -126.76 0 

NP-C8/F6-h 3.1 ± 0.6 Au976(C8)126(F6)90 41.7 -81.45 -126.76 0 

NP-C8/F6-i 1.9 ± 0.4 Au225(C8)42(F6)38 47.5 -81.40 -126.78 20.0 

NP-C8/F6-j 2.4 ± 0.5 Au465(C8)57(F6)57 50.0 -81.36 -126.80 40.0 

NP-C8/F6-k 2.3 ± 0.5 Au459(C8)57(F6)57 50.0 -81.45 -126.80 0 

NP-C8/F6-l 2.4 ± 0.5 Au459(C8)53(F6)59 52.2 -81.47 -126.85 40.0 

NP-C8/F6-m 2.9 ± 0.5 Au807(C8)86(F6)98 53.3 -81.42 -126.78 40.0 

NP-C8/F6-n 2.5 ± 0.5 Au465(C8)42(F8)76 63.8 -81.51 -126.88 40.0 

NP-C8/F6-o 2.4 ± 0.4 Au459(C8)32(F6)80 71.7 -81.58 -126.96 40.0 

NP-C8/F6-p 2.2 ± 0.6 Au309(C8)25(F6)70 73.7 -81.53 -126.96 60.0 

NP-C8/F6-q 2.5 ± 0.4 Au460(C8)16(F6)78 83.0 -81.55 -126.96 40.0 

Table 17: Characterization data for nanoparticles NP-C8/F6, 19F chemical shifts of CF3 and 7-CF2 groups 

and percentage of C6F6 added. a Average diameters and standard deviation of a population of at least 300 

particles. b Calculated on the basis of the TGA and TEM and 1H NMR analyses of decomposed nanoparticles. 
c Percentage of the fluorinated ligand in the monolayer of nanoparticles NP-C8/F6 determined by 1H NMR 

analysis of decomposed nanoparticles. d Percentage of C6F6 in the mixture CDCl3/C6F6 added to solubilize the 

nanoparticles for NMR experiments. 

 

 

Nanoparticles Diameter,a nm Compositionb %F6c CF3, ppm 7-CF2, ppm C6F6%d 

NP-C16/F6-a 2.9 ± 0.5 Au976(C16)177(F6)6 2.6 -80.84 -126.10 0 

NP-C16/F6-b 3.2 ± 0.6 Au1289(C16)213(F6)8 3.6 -81.00 -126.30 0 

NP-C16/F6-c 2.6 ± 0.5 Au460(C16)105(F6)5 4.5 -81.12 -126.43 0 

NP-C16/F6-d 3.0 ± 0.5 Au976(C16)178(F6)11 5.5 -81.00 -126.33 0 

NP-C16/F6-e 3.2 ± 0.6 Au976(C16)147(F6)42 21.7 -81.19 -126.43 0 

NP-C16/F6-f 2.9 ± 0.5 Au800(C16)142(F6)79 35.7 -81.40 -126.70 0 

NP-C16/F6-g 2.1 ± 0.4 Au309(C16)42(F6)35 45.5 -81.58 -126.91 0 

NP-C16/F6-h 2.1 ± 0.4 Au309(C16)40(F6)44 52.4 -81.51 -126.83 0 

NP-C16/F6-i 2.6 ± 0.4 Au475(C16)70(F6)80 53.3 -81.51 -126.85 0 

NP-C16/F6-j 2.5 ± 0.3 Au475(C16)71(F6)96 57.3 -81.45 -126.78 0 

NP-C16/F6-k 2.7 ± 0.6 Au527(C16)55(F6)74 57.4 -81.60 -126.91 12.5 

NP-C16/F6-l 2.0 ± 0.4 Au309(C16)31(F6)44 58.6 -81.55 -126.88 12.5 

NP-C16/F6-m 2.1 ± 0.5 Au309(C16)26(F6)52 66.6 -81.71 -127.06 37.5 

NP-C16/F6-n 2.3 ± 0.4 Au314(C16)23(F6)63 73.0 -81.47 -126.86 0 

NP-C16/F6-o 2.2 ± 0.4 Au314(C16)19(F6)61 76.2 -81.58 -126.86 37.5 

NP-C16/F6-p 2.1 ± 0.3 Au309(C16)19(F6)62 76.4 -81.71 -127.01 37.5 

NP-C16/F6-q 2.2 ± 0.5 Au314(C16)18(F6)72 80.4 -81.67 -127.08 25.0 

Table 18: Characterization data for nanoparticles NP-C16/F6, 19F chemical shifts of CF3 and 7-CF2 groups 

and percentage of C6F6 added. a Average diameters and standard deviation of a population of at least 300 

particles. b Calculated on the basis of the TGA and TEM and 1H NMR analyses of decomposed nanoparticles. 
c Percentage of the fluorinated ligand in the monolayer of nanoparticles NP-C16/F6 determined by 1H NMR 
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analysis of decomposed nanoparticles. d Percentage of C6F6 in the mixture CDCl3/C6F6 added to solubilize the 

nanoparticles for NMR experiments. 

 
 

Nanoparticles Diameter, nma Compositionb %F6c 
CF3, 
ppm 

7-CF2, ppm C6F6%d 

NP-C12/F6-a 3.4 ± 0.4 Au1340(C12)213(F6)26 10.6 -80.95 -126.26 0 

NP-C12/F6-b 3.3 ± 0.3 Au1310(C12)210(F6)30 12.5 -81.13 -126.45 0 

NP-C12/F6-c 3.4 ± 0.6 Au1340(C12)208(F6)30 12.6 -81.00 -126.27 0 

NP-C12/F6-d 3.2 ± 0.4 Au1289(C12)194(F6)35 15.4 -80.95 -126.27 0 

NP-C12/F6-e 3.2 ± 0.3 Au1289(C12)190(F6)35 15.6 -81.04 -126.35 0 

NP-C12/F6-f 3.3 ± 0.6 Au1340(C12)174(F6)40 18.8 -81.11 -126.41 0 

NP-C12/F6-g 3.2 ± 0.4 Au1289(C12)185(F6)46 20.0 -81.06 -126.35 0 

NP-C12/F6-h 3.8 ± 0.3 Au2267(C12)232(F6)68 22.7 -81.08 -126.37 0 

NP-C12/F6-i 3.6 ± 0.6 Au1830(C12)197(F6)73 27.0 -81.26 -126.52 0 

NP-C12/F6-j 3.6 ± 0.6 Au1830(C12)209(F6)85 28.6 -81.22 -126.54 0 

NP-C12/F6-k 3.6 ± 0.6 Au1830(C12)206(F6)86 29.4 -81.15 -126.47 0 

NP-C12/F6-l 3.6 ± 0.6 Au1830(C12)180(F6)100 35.7 -81.66 -126.70 26.6 

NP-C12/F6-m 2.5 ± 0.7 Au488(C12)81(F6)48 37.0 -81.33 -126.60 0 

NP-C12/F6-n 3.6 ± 0.6 Au1830(C12)184(F6)123 40.0 -81.76 -126.72 26.6 

NP-C12/F6-o 3.2 ± 0.8 Au1289(C12)123(F6)112 47.8 -81.94 -127.07 26.6 

NP-C12/F6-p 3.0 ± 0.8 Au976(C12)74(F6)108 60.0 -82.07 -127.14 60.0 

NP-C12/F6-q 3.1 ± 0.4 Au1200(C12)73(F6)160 72.0 -82.10 -127.13 62.5 

Table 19: Table S5. Characterization data for nanoparticles NP-C12/F6, 19F chemical shifts of CF3 and 7-

CF2 groups and percentage of C6F6 added. a Average diameters and standard deviation obtained by analysis 

of a population of at least 300 particles. b Calculated on the basis of the TGA and TEM and 1H NMR analyses 

of decomposed nanoparticles. c Percentage of the fluorinated ligand in the monolayer of nanoparticles NP-

C12/F6 determined by 1H NMR analysis of decomposed nanoparticles. d Percentage of C6F6 in the mixture 

CDCl3/C6F6 added to solubilize the nanoparticles for NMR experiments. 
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APPENDIX B 

Atomic Force Microscopy 

An Atom Force Microscopy (AFM) experimental investigation was conducted at 

NanoInnovation Laboratory (Head Dr. Loredana Casalis) established in Elettra Sincrotrone 

(Trieste) to evaluate how SAM coated NPs interact with synthetic membranes. Initially, 

some preliminary experiments were carried out employing different functionalized gold 

nanoparticles (AuNPs), already available in the laboratory, in order to become familiar with 

the machine, procedures and protocols commonly used. 

The lipid layers deposition techniques we tried were (Figure 71): 

• drop casting deposition protocol 

• liposome deposition protocol 

According to the drop casting technique, lipid powder was melted in a solvent (usually 

methanol/chloroform) and successively a drop was placed on the substrate (glass or mica). 

The system was heated in order to evaporate the solvent and left on the substrate only the 

lipid layers. Unfortunately using this technique there were many limits to cope with; 

uniformity and thickness of the layer above all were difficult to control. 

The liposome deposition protocol allowed the creation of lipid vesicles in a buffer (like PBS, 

methanol/chloroform) through extrusion. A drop of the solution was placed on the glass 

substrate and the system has been heated in oven at 40 °C for 20-30 minutes. In this way 

vesicles broke and formed membranes full of defects on the substrate. However, this protocol 

leads to a greater probability to obtain a single layer due to the presence of no self-assembling 

between lipid molecules (Figure 72). 
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Figure 71: comparison of the drop casting deposition protocol (right) and liposome deposition protocol (left). 

 

 

Figure 72: comparison of a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane, obtained with the 

drop casting deposition protocol (left panel) and of a DOPC/sphingomyelin (SM)/cholesterol (Chol) 

membrane, obtained with the liposome deposition protocol (right panel). From the height profile is possible to 

appreciate the formation of a double bilayer (left) and of a single layer (right). AFM imaging in non-contact 

mode in milliQ water. Substrate used, glass. 

 

Later, further experiments were carried out to evaluate the interaction between AuNPs and 

synthetic lipid membranes. NP concentration, lipid type and deposition techniques of the 

Supported Lipid Bilayer (SLB) (drop casting and vesicles) were varied, without changing 

the glass substrate. These experiments were carried out in liquid (usually PBS and H2O) 

optimizing the controlled formation of the layers in order to enhance AuNPs insertion. From 

literature is known that the presence of more than 2 lipidic bi-layers invalidates NPs 

insertion; in this situation NP can penetrate through layers avoiding the superficial imaging 

of the AFM. It is also known that a defect-free membrane does not permit insertion which is 

enhanced at defect’s edges in presence of large defects. The deposition protocol optimization 

is necessary in order to have more or less 1-2 bi-layer membrane defects.  After NPs addition, 

no changes in the morphology of the membrane was observed. This can be related to the 
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presence of more than one bi-layer, through which AuNPs may have been penetrated, 

avoiding the AFM superficial imaging. In order to obtain 1-2 layer on the substrate we 

focused our attention on the optimization of the SLBs deposition protocol (in collaboration 

with Fabio Perissinotto, PhD student in Nanotechnology working on these techniques and 

topics in his research project) both with liposomes and drop casting.  

Further experiments were carried out on DOPC membrane with a new batch of NPs (NP-

C12/F10, see Chapter 3) provided by Prof. Lucia Pasquato (Department of Chemical and 

Pharmaceutical Sciences, University of Trieste).  

We performed the experiments using the drop casting deposition protocol, following the 

procedure employed by the group of Stellacci in (86). In all the experiments no variations in 

terms of height  were observed after the addition of NPs except in one case (Figure 73), in 

which we noticed an effect similar to that reported in literature (86), The interaction between 

NPs and the membrane seemed to be enhanced along the edges of lipid islands, as observed 

by Stellacci et all in (86). Unfortunately, it was difficult to be reproduced. 

. 

 

Figure 73: Comparison of referenced (86) results (A and B) with our results obtained following the same AFM 

procedure of A and B (C and D). The lipid components used has been the same in both cases which differ in 

the mixture employed in coating NPs. Ligand ratio was the same. The injected NPs were 2:1 MUS:OT AuNPs 

(B) and 2:1 C12:F10 AuNPs (D). 
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APPENDIX C 

In-vitro experimental assays of C8T/F8P-AuNPs 

This activity was performed by prof. Sabrina Pacor, prof. Alessandro Tossi and Dr. Filomena 

Guida (Department of Life Science, University of Trieste) and some relevant results useful 

to complement the computational analysis are reported here.  

The confocal analysis (Figure 74) clearly displayed that both M1- and M2-

C8T/F8P/BODIPY crossed the plasma membrane and reach the cytoplasm, while they did 

not appear to localize in the nuclear compartment. Even taking the difference of BODIPY 

loading and quenching into account, using a M1-C8T/F8P/BODIPY at a concentration ten 

times higher than M2-C8T/F8P/BODIPY, the fluorescence signal of cells treated with Janus 

NPs appeared less intense. This was confirmed also by flow cytometric analysis (Figure 

74D). The effects of NP concentration and exposure time on the interaction of M1- and M2-

C8T/F8P with MEC-1 cells are shown in Figure 74 indicating a remarkable different 

behavior between the two mixed systems, in line with that observed in SPR experiments and 

the computational analysis.  

 

Figure 74: Confocal microscopy and flow cytometry of cells treated with mixed-ligand, BODIPY-tagged 

SAM-AuNPs. Confocal images of (A) control MEC-1 cells, (B) cells treated with 1 mg mL-1 M1-

C8T/F8P/BODIPY AuNPs and (C) cells treated with 0.1 mg mL-1 M2-C8T/F8P/BODIPY AuNPs, for 60 min 

prior to counterstaining nuclei with Hoechst dye. (D) Flow cytometric monoparametric overlay plot of green 

fluorescence emitted from untreated (grey peak) and cells treated with 1 mg mL-1 M1-C8T/F8P/BODIPY 

AuNPs () and 0.1 mg mL-1 M2-C8T/F8P/BODIPY AuNPs (-----). 
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APPENDIX D 

Experimental data Crystal Violet (UV e NMR) 

The interaction of AuNP and CV have been studied in solution via UV and 1H NMR. 

Unfortunately, misleading results have been obtained based on UV and NMR techniques 

due to bigger complexity of the system.  

 

D.1) UV 

The freedom of CV molecules to form multiple interactions with more than one AuNP 

caused the formation of small insoluble aggregates, which didn’t allow to study the system 

employing UV and NMR techniques. 

Figure 75 showed the UV titration in D2O of Crystal Violet (CV) with 4nm gold 

nanoparticles covered 100% with MUS ligand. The Blue shift of the CV max absorbance 

(587nm to 530nm) has been observed. This phenomenon confirmed multiple interactions of 

CV molecules with present gold nanoparticles, leading to the formation of small particle and 

CV aggregates (Absorption of GNP shifted from initial 515nm to 530nm). 

 

 

 

Figure 75: UV spectra of Crystal Violet (CV) with 4nm gold nanoparticles covered 100% with MUS ligand 
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D.2) NMR 

Figure 76 showed the 1H NMR (400MHz, D2O) titration of Crystal Violet (CV) with 4nm 

gold nanoparticles covered 100% with MUS ligand. Marginal downfield shift of aromatic 

CV signals (d 6,9011ppm -> 6,9210ppm and d 7,3470ppm -> 7,3711ppm) and final signal 

disappearance have been observed. The disappearance of N-CH3 signal (3,1432ppm) has 

been observed as well. This behavior confirms the interaction of CV and GNP forming small, 

insoluble, aggregates. The GNP broad pick can be noticed between 1,400ppm and 

1,5500ppm. The D2O signal has been omitted for clarification.  

 

 

Figure 76: 1H NMR (400MHz, D2O) titration of Crystal Violet (CV) with 4nm gold nanoparticles covered 

100% with MUS ligand 
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