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Introduction

The discovery of the late-time accelerated expansion of the Universe (refs. [2, 3]) at the turn
of the XX century has posed one of the most challenging problems in modern physics. In
the current picture of cosmological studies, the standard ACDM model seems to be the most
suitable to describe the expansion history, constrained with a wide range of observations (e.g.
ref. [4]). In this scenario, the nature of Dark Energy, which is invoked to explain the current
accelerating expansion (e.g. ref. [2]) and which should represent about 70% of the total density
of the Universe, is still unknown. In the last decade several alternatives have been proposed
to explain the origin of the acceleration; a possible solution is to modify the theory of General
Relativity (GR hereafter), assumed in the Standard Cosmological model, on large scales by
introducing new degrees of freedom which can reproduce the same effect of a cosmological
constant (see e.g. refs. [5, 6]) and at the same time propagate a new force. Even when
considering theories where the predicted expansion history is identical to that of the ACDM
model, the evolution of the perturbations can be significantly different from ACDM. A possible
evidence of modified gravity (hereafter MG) should also involve a change into the relation
between the scalar potentials & and ¥ which appear in the perturbed Friedmann-Lemaitre-
Robertson-Walker (hereafter FLRW) metric and the fluctuations in the matter density field
both at linear and non-linear level (ref. [7]). These deviations can be constrained with a broad
range of observational probes, such as Cosmic Microwave Background anisotropies (refs. [8,
9, 1]), Barionic Acoustic Oscillations (e.g. ref. [10]), redshift space distortions (e.g. ref.
[11, 12]), galaxy clusters (e.g. refs. [13, 14]) and gravitational waves (e.g. ref. [15, 16]).
Since GR is tested at high precision at Solar System scales (see e.g. ref. [17] and references
therein), MG models must match the standard theory of gravity in this regime. Solar System
constraints on modification of gravity can be accounted for a screening mechanism which
suppresses the modifications restoring GR in high density environments (see e.g. ref [18] for

areview). Alternatively, local gravity constraints can be escaped by assuming that baryons are
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decoupled (ref. [19]).

The study of the mass profiles of galaxy clusters, the most massive gravitationally bound

structures in our Universe, offers interesting possibilities to investigate deviation from GR at
intermediate scales, where the effects of modification of gravity start to become important.
Indeed, while internal processes are governed by baryonic physics, the overall dynamics of a
cluster is dominated by gravitational interactions and reconstructions of the total mass profile
depend on the assumed model of gravity.
In this Thesis I constrain deviations from GR by comparing mass profiles of galaxy clusters
as derived from gravitational lensing and from a kinematic analysis of member galaxies. In
fact, galaxies moving within clusters under the action of gravity only feel the time-time part
of the perturbed FLRW metric, which is expressed by the potential ®. On the other hand, the
geodesics along which photons propagate within clusters reflect the contribution of both time-
time and space-space components of the linear metric perturbations, i.e. they feel the sum of
the two potentials & + W. Since in standard gravity & = U at first order perturbation theory
with non-relativistic matter sources and in the post-Newtonian approximation on a Robertson-
Walker background, mass profiles obtained from kinematic and lensing analyses, under the
assumption of GR, should coincide as long as GR itself is valid !. In other words, under the
assumption that astrophysical and observational systematics are well understood for both the
kinematic and lensing analyses, any deviation of mass profiles based on using either photons or
galaxies as tracers of the metric perturbations should reflect a deviation from GR. The idea to
combine lensing and kinematic mass profile determinations of galaxy clusters was first applied
on real data by ref. [20] and later by ref. [21] to constrain the equation of state for Dark Matter
under the assumption that GR is valid.

In the first part of this work, published in ref. [22], I present the results from the analy-
sis of MACS J1206.2-0847 (hereafter MACS 1206) a galaxy cluster at redshift z = 0.44 for
which high-quality imaging and spectroscopic data have been analyzed in detail as part of the
Cluster Lensing And Supernova survey with Hubble (CLASH, ref. [23]) and the spectroscopic
follow-up with the Very Large Telescope (CLASH-VLT, ref. [24]) programs. By using the
reconstructed mass density profiles from kinematic analysis of ref. [25] and combined strong-
weak lensing measurements of ref. [26], I derive a relation between the mass profiles and

the metric scalar potentials ® and W to estimate their ratio 7(r, z = 0.44), which parametrize

'Note that the above statement is valid only if second order effects in standard perturbative expansion and
relativistic corrections to the post-Newtonian approximation are negligible
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generic departures from standard gravity, under the assumption of spherical symmetry of the
cluster mass distribution. The possibility of measuring 7 from observations and therefore to
detect deviations from the GR was discussed in ref. [27, 28], where it was pointed out that by
combining constraints on the metric potentials ratio 77 and on the evolution of density perturba-
tions, it is in principle possible to distinguish modifications of gravity from non-standard dark
energy models. Other possible cluster-scale tests search for signatures of departures from GR
looking at changes in the dynamical potential alone, as discussed in [29].

In order to translate the bounds on 7 in constraints on the free parameters of specific classes
of modified gravity models, the second part of the Thesis considers the Horndeski Lagrangian
(ref. [30]), the most general theory of massless gravity and a single scalar field with second-
order equations of motion. In the quasi-static regime, i.e. when the wave nature of the scalar
degree of freedom can be neglected, the extra force carried by the scalar field manifests itself as
a Yukawa correction to the Newtonian potential, characterized by two parameters, a strength )
and a range \. To simplify our task, I focus on a sub-class of Horndeski models, the so-called
f(R) models, in which case it turns out that 2Q? = 1/3 and also that the lensing dynamics is
not affected by modification of gravity. The new force is suppressed in high density regions
by a non-linear mechanism that quenches deviations from GR, as required by consistency with
the current observations, known as chameleon screening (ref. [31]). I will aim at constraining
the interaction range A by performing a joint kinematics and lensing analysis of the galaxy
clusters MACS 1206 and RXC J2248.7-4431 (hereafter RXJ 2248) at z = 0.35, which is an-
other cluster analyzed within the CLASH and CLASH-VLT collaborations. I determine the
dynamic mass profiles in f(R) gravity under the assumptions of spherical symmetry and dy-
namical relaxation of the clusters by using a modified version of the MAMPOSSt code of ref.
[32], in which I included a parametric expression of the gravitational potential valid for generic
MG models. This expression is obtained by imposing a Navarro-Frenk-White profile (NFW
hereafter, ref. [33]) for the matter density perturbation. With a Maximum Likelihood approach
I constrain the free parameters in our analysis, namely the scale radius rg, the radius rgg (a
proxy for the virial radius), the parameter describing the velocity anisotropy profile 5(r) and
the interaction range A. I assume a constant value for the scalaron mass my, = 1/, which
means we are neglecting the change in my, due to the environmental density. This can be
translated as dealing with models where the screening mechanism takes place at scales much
smaller than the cluster size (e.g. few kpc), but also with models for which the screening is

so effective that maintains the field mass nearly constant to the value inside the overdensity.
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In this case, the results we obtain on A refer to an effective "screened" f g, which is much
smaller than the background field (ref. [34]). I discuss also the explicit effect of the chameleon
screening for the Hu& Sawicki functional form of f(R) (ref. [5]), assuming an instantaneous
transition between the screened and non-screened regime, in order to place constraints on the
background field value | fg|. I further combine the MAMPOSSt Likelihood with the posterior
probability distribution of the NFW parameters 75 and ropo obtained by the joint strong+weak
lensing analysis of ref. [35] in order to improve our results on .

The results of this analysis, published in ref. [36], will invoke the necessity to revise the as-
sumption on which the method relies. In particular, deviations from spherical symmetry and
lack of dynamical relaxation state of the cluster introduce systematic effects which can produce
a spurious detection of modified gravity. The calibration of these systematics has important im-
plications in view of upcoming and future large imaging and spectroscopic surveys (e.g Euclid,
LSST), that will deliver lensing and kinematic mass reconstruction for a large number of galaxy
clusters but with an expected signal-to-noise ratio much lower than for the two CLASH clus-
ters.

The last part of this Thesis is thus devoted to the study of synthetic cluster-size dark matter
halos simulated assuming GR, aimed at evaluating and calibrating the impact of systematics.
In order to investigate what kind of constraints can be obtained in the most ideal situation, I
have first developed a code that generates isolated spherically symmetric self-gravitating ha-
los of collisionless particles for which all the assumptions of our method are met. The code
is thought to work in any viable modified gravity framework which produces a change in the
dynamical gravitational potential; for the purposes of this Thesis, I will produce and analyze
synthetic halos assuming GR only. I then perform a detailed analysis of clusters from a set of
N-body ACDM cosmological simulations performed with the GADGET-3 code of ref. [37].
I define two observational criteria which are related to the main systematics of this analysis;
the first one parametrizes deviation from gaussianity of the line-of-sight velocity distribution,
which has been shown to be a good proxy for the dynamical relaxation state of the cluster (see
e.g. ref. [38]). The second criterion is the y? obtained from the fit of the projected number
density profile of the galaxies with a NFW profile, which takes into account several effects,
including deviation form spherical symmetry and the parametric modeling of unknown quan-

tities. The results of this analysis will be included in a paper in preparation.

The study developed within this Thesis presents a competitive method to constrain devi-
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ation from GR which requires few selected objects in order to produce stringent bounds on
the free parameters of viable modified gravity models. Notwithstanding, the high precision
reachable with our method demands an accurate control of possible systematics, which can be
achieved with the analysis of cosmological simulations both in ACDM and in non-standard
frameworks (e.g. ref. [39]). It is worth to notice that this work can be easily applied to test a
broad class of models simply adapting the parametrization of the metric potentials thus offer-
ing a powerful tool to deepen our knowledge of the Universe.

The Thesis is organized as follows: in Part I the basic notions of the ACDM cosmolgical
model are discussed (Chapter 1); in Chapter 2 I also present a brief overview on modified
gravity models further deriving the general parametrization of the metric potentials adopted in
my analysis. Part II is devoted to describe galaxy clusters highlighting the connection between
mass profile reconstructions and departures from GR. More specifically, in Chapter 3 I discuss
general properties of galaxy clusters and the determination of cluster mass profiles using the
dynamics of the member galaxies; I further present the modified version of the MAMPOSSt
code developed within this Thesis. Chapter 4 is devoted to explain the basic theory of gravita-
tional lensing and how it can be used to infer cluster mass profiles.

Finally, in Part III the results of the Thesis are presented and extensively discussed. In partic-
ular, Chapter 5 presents the data-set of the two clusters on which our analysis is based. The
leading results discussed above are included in Chapter 6, 7 and 8 respectively; I then summa-

rize the work carried out in this Thesis and I deliver my main conclusions.



Part 1

Basics of Cosmology



Chapter 1

Standard Cosmology

In this Chapter I briefly review the basic principles of standard cosmology, focusing in partic-
ular on the background expansion history of the Universe and the evolution of linear perturba-
tions in the Newtonian and relativistic regime. I further discuss some aspects of gravitational
collapse of non-linear structures; in particular, I introduce the Navarro Frenk White density
profile, which has been shown to provide a good description for Dark Matter halos in CDM
simulations (ref. [40]) and which will be extensively used within this Thesis. A detailed treat-
ment of these topics can be found in several textbooks of basic cosmology; for this part I refer
to Chapters 14, 15 of ref. [41] and Chapters 3,4 and 6 of ref. [42]

1.1 The ACDM cosmological model

Our current understanding of the structure and evolution of our Universe can be formalized
in the so called ACDM concordance model, which is so far the simplest model providing an
excellent description of observational data. It is based on the theory of General Relativity (GR
hereafter, see Appendix A for a quick review of the basic notions) and relies upon two main
principles:

The Cosmological Principle. Over sufficient large scales, the Universe can be considered as
homogeneous and isotropic;

The Copernican Principle. There are no privileged observers in the Universe.

The cosmological principle is nowadays well tested to hold on very large scales thanks to
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the analyses of the Cosmic Microwave Background (CMB) radiation (e.g. ref. [4]). In terms
of space-time geometry, the metric describing a homogeneous and isotropic Universe is the
Friedmann-Lemaitre- Robertson-Walker metric (FLRW hereafter), whose line element can be

expressed in spherical coordinates as:

+ r2d0?| . (1.1)

ds® = —c*dt* + a(t)? T 72
In the above equation, a(t) is the (dimensionless) scale factor which identifies the change in
the physical distance between two objects as a consequence of the expansion of the Universe;
(r,0,¢) are the comoving coordinates independent of the expansion, d2? is the solid angle in
terms of 0, ¢, t is the cosmological time as measured by an observer at rest in the comoving
system and c is the speed of light. Finally, £ = 1,0, —1 determines the spatial curvature of the
Universe (closed, flat and open Universe respectively).

It is often useful to define a conformal time dr = dt/a(t) measuring the comoving distance

traveled by a photon in the cosmological time dt. By introducing the coordinate transformation:

ﬁ sin(vVEx) k>0,
r—= fr(x) =4 x k=0,
\/%7 sinh(v—kx) k<O,

in the new system (7, x, 0, ¢) eq. (1.1) reads:
ds® = a(1)? [-c2dr® + (d* + fu(x)?d9?)] . (1.2)
For a light ray propagating along a radial null geodesics in this metric ds? = 0 and so:
cAdt? dr?

2,2 — 7.2
d = — = d
car a(t)?2 11— kr? X

one can define the proper distance of an observer at the point (¢1,71, 60, ¢) from the origin
(t(]a To = Oa 97 Cb) as

m dr oedt
l= a(tl)/o N a(t1) /to alt) — a(t1)x. (1.3)

For a light ray emitted at 5 — 0, in eq. (1.3) x is a measure of the comoving distance traveled
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by the photon within the age of the Universe, thus it represents the maximum observable re-

gion of the Universe at time ¢1; this quantity is called particle horizon or cosmological horizon.

In an expanding spacetime described by the metric of eq. (1.1), photons suffer a shift in
the frequency due to the dependence on the scale factor. Considering a light ray emitted by a
source with a frequency v, and received by an observer in the origin with a frequency v,, the
redshift z is defined through the relation:

1+z:& alto)

Vo a(te)’

(1.4)

which depends only on the value of the scale factor at the time of emission and at the time of
observation. In an expanding Universe where a(t) is a monotonic function of ¢, the redshift z

is an alternative measurement of cosmological time.

1.1.1 The Friedmann Equations

In GR, the relation between the geometrical structure of the space-time and its energy density

content is expressed through the Einstein’s field Equations:

1 8rG
R, — §g“VR +Aguw =G + Mg = ?Tuw (1.5)

where R, is the Ricci tensor, which (in GR) is a function of the first and second derivatives of
the metric g,,,,, R = R}, is the Ricci curvature scalar, G is the gravitational constant and 7),,, is
the energy momentum tensor which describes the energy content of the Universe. The term A
is called cosmological constant, and was first introduced by Einstein in order to find a solution
reproducing a static Universe. The implications of the cosmological constant in the ACDM
model will be discussed below.
Eq. (1.5) can be derived in the Lagrangian formalism from the variation of the general action:
A

= _ _ 4
ST / V=9[R = 20" + S [V, v, (1.6)

assuming that g, is the only independent variable. In eq. (1.6) S, is the action of the matter
field ¥,,, and
4
c
167G

/ V—gRd*z (1.7)

SEn =
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is called Einstein-Hilbert action. This formalism is particularly convenient to derive modified

field equations in the context of non-standard theories of gravity, as I will show in Chapter 2.

The energy content of the Universe is described by a perfect fluid, characterized by an

energy momentum tensor:

p
Tuu =PI + 62 <g + P) Up Uy, (18)

where p and p are the pressure and the density of the fluid respectively, u* = dz*/dr is the
4-velocity of the fluid element in unit of ¢ such that u,u* = —1. The time component of the
conservation equation V,T"” = 0 (where V, is the covariant derivative) for a FLRW metric
is given by: _
p+32 (p+5) =0, (1.9)
a c
where the dot indicates derivative with respect to the cosmological time ¢. Given a proper
equation of state (EoS hereafter) connecting density and pressure, such that p/c? = w p, the
solution of eq. (1.9) reads
pla) o a=30+w), (1.10)

By comparing eq. (1.5) with eq. (1.8), it is easy to show that the cosmological constant can
be interpreted as a fluid characterized by an EoS with w = —1. The vacuum energy or Dark

Energy density associated to A is defined as:

62

= A.
&rG

oA (1.11)

Note that if A > 0 also the vacuum density is positive, and so the pressure associated with this
fluid is negative.
The solution of eq. (1.5) for an expanding Universe where g,,,, is the FLRW metric and 7, is

given by eq. (1.8) leads to the Friedmann equations (ref. [43]):

L\ 2
a 8 k A
=) =SaGp—- S+ = 1.12
<a> 3TGr— 5t 3, (1.12)

%:_i (n+32) +§. (1.13)
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Egs. (1.12) and (1.13), determine the evolution of the scale factor a(t) as a function of the
energy content of the Universe and its curvature k. In the Standard Model of cosmology,
the density p reflects the contribution of a relativistic (radiation) and non-relativistic (matter)
components p,, pr,,. Note that with the definition of eq. (1.11), one can absorb the last term
of both Friedmann equations into a total density which accounts for the contribution of the
vacuum energy: p = pr + pm + pa. Each component evolves independently according to eq.

(1.10), where the parameter w is given by:

matter;

0
w = % radiation;

—1 cosmological constant.

Thus, the density associated to the relativistic component (photons and neutrinos) scales with
a~4, the density of non-relativistic matter decreases as a2 while the density associated to A
is independent of the scale factor. This means that in an expanding Universe the contribution
of a positive cosmological constant will always be dominant in the late time expansion for
any values of p;, pp,. From eq. (1.13) it follows that if the total density is dominated by a
component with w < —1/3 (as the case of a positive A) @ > 0 and the universe is in a phase of
accelerated expansion. In general, all those theories which introduce an additional component
to the energy density of the Universe producing an accelerated expansion close to the effect of
the cosmological constant are called Dark Energy models (see Chapter 2).

The evolution of the density components can be equivalently expressed as a function of the
redshift, eq. (1.4): p.(2) o (a + 2)*, pm(2) o (1 + 2)3, pa(z) = const.

Figure 1.1 from ref. [44] shows how the densities scale with z in the case matter (black line),
radiation (red line) and cosmological constant (light blue line). The light blue shaded area
represents all the Dark Energy models where w = 1 + 0.2.

Note that at very early times the relativistic component dominates over the others up to 1 +
Zeqg = 2.4 % 10%92,,,h? where the matter density equals the radiation density'. For z < Zeq the

relevant contribution to the total density is then given by p,,.

The quantity _
a
- =H(t
Y= H),

'The value of z., can be directly estimated from the present values of the densities imposing pm (zeq) =
pr(Zeq)-
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Figure 1.1: Evolution of density components as a function of redshift z. Red line: radiation. Black
line: matter. Light blue line: cosmological constant. The colored region indicates Dark Energy models
with w = 1 4 0.2. From ref. [44]

is called Hubble parameter and expresses the rate at which the scale factor changes in time. The
present value of the Hubble parameter Hy = H (t,) gives an an approximate estimate of the
age of the Universe. Indeed, its inverse t;; = 1/H| corresponds to the age of a constant-rate
expanding Universe. The latest (global) measurements of the present-day Hubble parameter
made by CMB observations (ref. [4]) have constrained Hy = (67.4 £ 0.5) km s71 Mpc_l,
while the value found by local distance indicators (e.g. refs. [45, 46]), Hy = (73.52 +
1.62) km s~! Mpc~!, shows a ~ 3.80 tension with the global determination. This tension
has been not fully understood yet and it represents a challenging problem of the standard cos-
mological model. For the purposes of this Thesis, I will not discuss this issue; the interested
reader can find more details in e.g. ref. [47] and references therein.

Generally, cosmological scales are expressed in unit of the reduced Hubble constant, given by:

H

h = .
(100 km s—t Mpc—1)

(1.14)

From eq. (1.12) it is possible to define a critical density p.;(t) as the total energy density of
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a flat Universe at the cosmological time ¢:

3

—. 1.1
8w (1.15)

pcrit(t) = H2(t)

The density components of the Universe are often given in units of the critical density by

defining the dimensionless cosmological parameters:

_ pa(t)
Qx(t) B pcrit(t)

i

where x = m, r, A. The sum of these parameters 2(t) = Q. (¢) + Q. (t) + Q4 (¢) is related to
the spatial curvature of the universe Q(t) = —k/H (t)%a® = 1 — Q(t).

With the above definitions, the first Friedmann equation can be rewritten as:
H*(t) = H§ [Qm(1+2)° + Q1+ 2)" + Qa + (1 - Q)(1 + 2)?] (1.16)

where all the dimensionless density are computed at present day (i.e. 2, = Q. (5)).
Egs. (1.12), (1.13) admit several solutions, depending on the values of p,,, p, pa and k, which

can be found in any textbook of cosmology.

1.1.2 The ACDM concordance model

The study of the light curves of type la Supernovae (SNe Ia) by ref. [48] and ref. [49] pro-
vided in 1999 the first evidence that the expansion of the Universe is accelerated. This result
has been further confirmed in the last two decades by a broad number of observations, such
as improved wider supernova samples, CMB spectrum, Baryon Acoustic Oscillation (BAO),
galaxy clusters, weak lensing (see e.g. refs. [4, 50, 51, 52, 53], ref. [54] for a review). In
particular, combined analyses of SNe Ia, BAO and CMB data (e.g. refs. [55, 56]) have shown
that the Universe has passed from a phase of deceleration, where the dominant contribution to
the density was given by p,,, to a phase of accelerated expansion around z = zpg ~ 0.6.

As discussed above, in the framework of General Relativity a positive acceleration ¢ > 0 can
be obtained by introducing an additional "Dark Energy" component, which dominates the late
time expansion, characterized by an equation of state w < —1/3. Current observations are
consistent with a time independent density for Dark Energy w(z) = const = —1 (i.e. a cos-
mological constant) which represents about the 70% of the total composition of the Universe

at present time.
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More specifically, the recent analyses of ref. [4], which is the state-of-art of the current con-
straints on the cosmological parameters, provided 25 = 0.6689 + 0.0058, 2, = 0.3111 £+
0.0056 and 1 — ©Q = Q = 0.001 £ 0.002.

This means that observations are consistent with a spatially flat universe at present time (so that
the total density equals the critical density p.rit0), dominated by a Dark Energy component
compatible with a cosmological constant and with a negligible contribution of the relativistic
component (€2, ~ 1072, see e.g. ref. [53]).

Moreover, the fraction of the matter density associated with baryons is constrained to be
Qp h? = 0.02242+00014, with h defined in eq. (1.14) with Hy = (67.440.5) km s~ Mpc~1.
Thus, only ~ 5% of the total density of the Universe is in the form of ordinary matter. Ev-
idences of the presence of a collisionless non-luminous dominant matter component, dubbed
as Dark Matter, have been obtained from several astrophysical and cosmological probes (see
e.g. ref. [57] for a review). First suggested by Zwicky in 1933 as a possible solution for the
problem of the missing mass in the Coma cluster, Dark Matter is a necessary ingredient of the
current cosmological model in order to explain different issues, such as the rotational curves of
spiral galaxies, the small temperature fluctuations in the CMB spectrum, the hierarchical for-
mation of structures in the Universe and the total mass profiles of galaxy clusters. In agreement
with the present observational picture, Dark Matter should be dominated by a "cold" compo-
nent, that is non-relativistic at time of decoupling in order to guarantee a correct timing for the
assembly of cosmic structures from initial density fluctuations even if the perturbations in the
baryonic component are suppressed (see Sec. 1.2).

The Standard Cosmological model, or ACDM Concordance model, sums up all the concepts
I have introduced so far. The model assumes that the Universe is spatially flat and contains
a cosmological constant A, which is currently dominating the energy density driving the ob-
served accelerated expansion, while the matter content is mostly given by a cold Dark Matter
component (CDM), plus baryons and a small (but not negligible) contribution of neutrinos. As
shown in Figure 1.2, from ref. [58], the theoretical predictions of the Concordance model are
in excellent agreement with a broad compilation of data-sets, obtained from different probes
spawning a wide range of redshifts and three order of magnitudes in scale.

The expansion history predicted by the Standard model can be summarized as follows.

e Shortly after the initial singularity (¢ ~ 10733 s), the Universe enters in phase of expo-
nential expansion called inflation. In the simplest model, the expansion is driven by a

single scalar field with a potential energy much larger than the kinetic energy; during
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Figure 1.2: The linear power spectrum of matter density fluctuation P(k) =< |;|* > at redshift z = 0
as predicted by the Concordance ACDM model (black solid line) compared to the power spectrum

inferred by several observations Credit: Planck collaboration, ref. [58]

this phase small primordial density fluctuations are formed.

e As the inflation ends, the original field decays into particles and the temperature rises

up (reheating phase); the relativistic component dominates the total density and the Uni-

verse expand decelerating. Primordial nucleii of the lightest elements form in the first

three minutes trough the Big Bang Nucleosynthesis (BBN).

o Atl 4 25y = 24 % 10%€),,,h? the radiation density component becomes equal to the

matter component. The Universe enters in the matter-domination era.

o Atl+z;, = 1082[1+0.0188(£2,/2y)] ~ 1100, where §2;, the baryon density parameter

today, photons decouple from baryons and the Universe becomes transparent to radia-

tion. The last-scattered photons are now observable as the CMB.
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e At z ~ (.6 the Dark Energy associated to the cosmological constant starts to dominate

the total density and the expansion enters the current phase of acceleration.

1.2 Evolution of cosmological perturbations

In the previous section I have described the background expansion history, as predicted by
the Standard cosmological model, assuming that the Universe is homogeneous and isotropic.
However, the cosmological principle is valid only on very large scales; on smaller scales the

Universe is filled by a filamentary "cosmic web" of structures (see Fig. 1.3) which have thought

Figure 1.3: Slice of the 3D map of the distribution of galaxies in the local Universe as seen by the
Sloan Digital Sky Survey (SDSS) with the Earth located at the center. Galaxies are observed within -
1.25 and 1.25 degrees declination, color-coded in function of the age of their stars (redder points identify
early-type galaxies). Credit: M. Blanton and the Sloan Digital Sky Survey

to assemble from the growth of tiny density fluctuations, generated during the inflation. These
perturbations are observable in the CMB spectrum as small anisotropies in the temperature of
the photons of the order §7/T ~ 10~°, as shown in Fig. 1.4.

According to the ACDM picture, the components of the Universe are perfect fluids with
density p(&,t), connected to the pressure p through the equation of state and characterized

by a velocity u(Z,t). We can express the density as a background mean value p(t) plus a
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Figure 1.4: Map of the CMB temperature obtained by the Planck Mission (credit: ref. [59]). Red and
blue spots indicate small fluctuations from —300 K (bluer regions) to 300 K (redder regions) with
respect to the average temperature 7' = 2.72548 £+ 0.00057 K.

perturbation 0p(Z, t) = p(Z,t) — p(t):
p(7,t) = p(O)[1 + (7, )], (1.17)

where 6 = dp/p is called density contrast. A qualitative description of the perturbations
growth can be made assuming that the scale of those fluctuations is much smaller than the
horizon A < Ry = (aH)™! and the fluid can be treated as non-relativistic. In this case we
can work in a Newtonian framework, where the fluid evolution is determined by the continuity
equation:

Dp

D

where 5; = % + (4 - V) is the convective derivative; the Euler equation:
Du 1
— =—-Vp—-Vo, 1.19
Dr P P (1.19)

which is the equivalent of the second Newtonian law expressing the momentum conservation.

The gravitational potential @ is related to the density through the Poisson equation:

V2® = 47Gp. (1.20)
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The set of equations is then completed with the fluid equation of state p = p(p, S) where S is
the entropy. Observations suggest that the evolution of density perturbations is adiabatic, i.e.
dS/dt = 0; in this case the pressure depends only on the energy density.

In an expanding Universe the proper coordinates is given by & = a(t)¢, where ¢/ is the comov-

ing coordinate. Thus the velocity reads:

@ =aj+ay =aHij+a¥ = HZ + a¥,

=

where the first term is related to the expansion of the Universe, while the second term is due
to peculiar motions different from the general cosmic expansion. The quantity av is called
peculiar velocity and represents the velocity of the fluid element as measured by a comoving
observer at /.

Fluctuations in the density field §p are connected to perturbations in the gravitational potential
¢, the pressure and Jp and the velocity field . Under the assumption that the density contrast
is small & < 1, the above set of equations can be combined keeping only the linear terms in the
perturbed quantities. In Fourier space, the time evolution of the density fluctuations is given
by the following relation:

.. A . 2 2
o + 2%% 1 [k s _ 47er} — 0, (1.21)

a2
where k = 27 /y is the comoving wavenumber and
&k B
Ok = [ oz 0(He "V
k / (271')3 (y)e

is the Fourier transform of the density field in comoving coordinates. The quantity v? =

<g—§) 5 is the fluid sound speed. An interesting scale in eq. (1.21) is given by
=const

471G pa’
kJ:,/TQP, (122)

for which the term in the square brackets vanishes; the associated wavelength \; = 27 /k;
is called Jeans’ length. It represents the limit below which the pressure dominates over the
gravitational instability, preventing the growth of perturbations that oscillate and decay in time
for the effect of the Hubble drag term 21 b
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During the radiation-dominated era (z > z¢4) the Jeans’ length for the baryon-radiation fluid
is larger than the size of the horizon, thus the fluctuation in the baryonic component can not
grow. Also perturbations on the pressureless Dark Matter component inside the horizon cannot
grow before the equivalence due to the fact that the Hubble drag 2H o prevails on the source
term 847G pry; in this case fluctuations in the Dark Matter fluid are frozen to a constant value
(Meszaros effect, ref. [60]).

After the equivalence and before recombination z,... < 2 < 24, perturbations in the baryon-
photon fluid are still oscillating while Dark Matter perturbations can now grow through gravi-

tational instability. In particular, writing the density field as:
Ok (t) = D(t)k,in, (1.23)

where D(t) is called linear growth factor, it is possible to identify a growing-mode and a
decaying-mode solution D4 (¢) in eq. (1.21). Assuming a flat matter dominated Universe
Q,, ~ 1):

D_(t) o< H(t) ~t71,

t /

Dy (t) o H(t)/o CMZM o a~ 23, (1.24)
Thus, the growing mode of DM fluctuations inside the horizon evolves as the scale factor at the
linear level. Note that the integral expression in eq. (1.24) is in general a solution of eq. (1.21)
only for pressureless matter perturbations, and only if the relativistic component is negligible
and the Dark Energy EoS parameter w = —1. It is worth to point out that, even if a collision-
less fluid is not affected by the pressure contribution, the fluid elements move along timelike
geodesics in the FLRW metric with a typical velocity v which defines a free streaming length
Afs, as the distance traveled by a DM particle within a Hubble time. Any perturbation with
A < Ay is damped; thus, the free streaming scale defines a cutoff for the structure formation
in the Universe at a given time. According to the current observational scenario, cosmological
structures assemble through gravitational interaction following hierarchical bottom-up process,
where smaller structures form earlier. This is possible only if Dark Matter is cold, i.e. it is char-
acterized by a sufficiently small velocity vy, (meaning a large mass of DM particles), so that
the free streaming length is much below the size of a galactic halo (see e.g. ref. [61]).

Note that the second of eqs. (1.24) depends on the background expansion through the Hubble
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rate H (a); therefore, how the amplitude of the initial fluctuations scales in time is sensitive to
the underlying cosmological model, providing an excellent tool to constrain cosmological pa-
rameters. The left panel of Figure 1.5 shows the growth factor D(z) for and Einsten-de Sitter
(EdS) Universe (red line), characterized by €2,,, = 1, Q5 = 0 and Q0 = 0, an open Universe
with Q,,, = 0.3 (green line) and the ACDM Universe (blue dotted line), all normalized at the
present time z = 0. In the ACDM scenario and in an open Universe the growth of structures is
suppressed with respect to the EdS case, due to the larger expansion rate. This is further high-
lighted in the right panel of the same Figure, where two snapshots of a cosmological N-body
simulations are shown. The upper panels refer to a flat ACDM Universe while the bottom
panels are for an EdS Universe; yellow circles identify galaxy clusters which would show a
temperature of X-ray emission larger than 3 keV. Note that in the EdS model structures grow

much more rapidly across the same cosmic time.

LA L Ly B A L B B L

Growth factor

O}l\l\‘i\ll\\l‘\l\l\l\u\

0 2 4 6 8 10
Redshift

Figure 1.5: Right plot: evolution of the growth factor D(z) as a function of the redshift z for an
EdS Universe (red solid line), an open Universe with 2,,, = 0.3 (green line) and a ACDM Universe
(2, = 0.3, Q4 = 0.7, blue dotted line). Left plot: snapshots from a cosmological N-body simulation
in a ACDM scenario (upper line) and in an EdS scenario (bottom line); each snapshot shows a region
250 h'Mpc side and 75 h'Mpc thick. The yellow circles mark clusters as would be identified in X-rays
observations with a temperature 7' > 3keV . From ref. [62].

The linear growth factor, or its logarithmic derivative:

_ dlog D(a)
f(a) = “dloga (1.25)

can be used to test non-standard cosmologies. In particular, as I will discuss in the next Chapter,
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modifications of gravity or additional interacting Dark Energy fields generally introduce a scale
dependence D(a) — D(k, a) which changes the linear evolution of perturbations with respect
to the ACDM scenario (see e.g. ref. [63]).

1.2.1 Relativistic perturbation theory

A correct description for the linear evolution of cosmological perturbations requires a general
relativistic treatment, where fluctuations in the background FLRW metric are connected to

perturbations in the density field through the linearized Einstein’s equation:

81G
(6@ = 5 (6T, (1.26)
together with the conservation of the energy-momentum tensor V, 7*” = (. Given the above
equations, one can follow the linear evolution of generic density contrast at any cosmological
scale.

Starting from a flat FLRW metric, eq. (1.2) with f(x) = ¥, in cartesian coordinates we have:

-1 0
Guw = a*(7) [ i %] : (127)

An arbitrary small perturbation g of the metric g such that
Guv = Guv = Guv + 5g,ul/7
can be generally written as:

—2¢/c? wj

, (1.28)
w; —265@' + thj

OGuv = a2(7') [

where w;, ¢ e h;; are functions of Z, ¢t and h is traceless.Eq. (1.28) can be decomposed into a

scalar, vector and tensor part:

g = 6951, + 5951, + 6951, =

= a*(7) ([_QWCQ o ] -
87;11) —2(@D/C2)6ij + 2D1D]h
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+ 0w +0 0 (1.29)
wi- 2hj) 0 2h); ’ '

where h,w are scalar fields defined from h;; and w; respectively, wil is the divergence-
free part of w; and hiTj is the component of h;; perpendicular to the gradient V. Finally,
V/c? = e+ %VQh. The symbol D; indicates the covariant derivative with respect to the spatial
index 7 (see eq. (A.2)), while (¢; j) denotes the symmetrized covariant derivative.

Scalar modes are related to gravitational potential and are the relevant quantities to describe
the formation of cosmic structures. Vector modes trace rotational effects while tensor pertur-
bations identifies gravitational waves. For the purposes of this Thesis, I will focus only on
scalar perturbations; in order to remove the additional components one can consider that in GR
perturbation theory there are some extra degrees of freedom in the choice of the coordinate
system. These degrees of freedom arises form the fact that the correspondence between points
in the background space-time and in the perturbed space-time is not unique. This means that
different coordinate systems can be chosen to describe the evolution of perturbations without
changing the physics; the transformation between two different coordinate systems is called
gauge transformation.

Since physical quantities can assume different values for any choice of the system (gauge), it
is useful to define gauge-invariant variables and describe the evolution of those quantities in a
suitable gauge. In particular, the scalar perturbations ¢ and v can be rephrased in terms of the

gauge-invariant Bardeen potentials (ref. [64]):

<I>:<b+2[(w—h’)a]/,

/
=1 Z(w—1), (1.30)

a
where the prime indicates derivative with respect to the conformal time coordinate cr. As
will be shown in the next Chapters, the Bardeen potentials are the fundamental quantities on
which the analysis developed within this Thesis is based; the physical meaning of ® and ¥ can

be understood by fixing a convenient gauge, called the Conformal Newtonian Gauge where
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w; = 0 and h;; = 0. In this case, the fluctuation dg reduces to:

54 — —29/c? 0
0 —20/c?

Note that in this gauge ¢ and 1) coincides with ® and ¥ respectively. Thus, the distance element
in the total linearly perturbed FLRW metric g,,, = g, + 09, can be written as:

i 1 _
ds® = gdatde” = a®(7) [ (1 + 22) c*dr? + <1 - 22> 5ijdx’d:v7] . (13D
C C

Eq. (1.31), up to the conformal factor a(7), is equivalent to the line element in the Newtonian
limit of gravity? where U = ® = &y is the Newtonian potential. Therefore, as mentioned
before, the Bardeen potentials play the role of the gravitational potential times the scale factor;
if GR theory is valid the Bardeen potentials should coincide, at least at linear level. This
could be seen by solving the linearized eq. (1.26), which connects the metric of eq. (1.31)
to perturbations in the energy momentum tensor of a perfect fluid; it can be shown that the

difference between the Bardeen potentials obeys the following equation in Fourier space:

k(U — ®) = —871Ga*PTI, (1.32)

_ 3 (kik; 1 o1

the stress tensor of the fluid. Thus, in the absence of anisotropic stresses, which is true for

with

perfect fluids and minimally coupled scalar field, IT = 0 and

¢ =0. (1.33)

Since it has been obtained from the Einstein’s Equation, the validity of the above relation de-
pends on the assumption that GR is the correct theory to describe the gravitational interaction,
but this is no more true in a generic modified gravity framework where the two Bardeen po-
tential are generally different, as I will discuss in Chapter 2. This implies that independent

measurements of ® and ¥, or of their combination, are a good probe to test alternative theories

Note that for a generic value of the curvature in the background metric, the spatial part of eq. (1.31) is given
by the spatial part of eq. (1.2) times the factor (1 —2)
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to GR. In this Thesis I will focus on mass profiles reconstructions as a tool to constrain the
Bardeen potential and therefore to obtain information about the nature of gravity.

It is worth to point out that eq. (1.33) is derived in linear perturbation theory, i.e. assuming
that all the quantities involved are much smaller than unity and second-order effects are neg-
ligible. One can argue that this relation cannot hold in the case of a galaxy cluster, where the
measured gravitational potential is linear, generally of the order of ~ 10~%¢? (see Chapter 3),
but the density contrast ¢ is orders of magnitude larger than unity. However, this situation is
better described by the post-Friedmann approximation (see ref. [65] and references therein) -
which is the expansion of the metric and the Einstein’s equations over a FLRW background
in powers of 1/c - rather than by linear relativistic perturbation theory. It can be shown that,
keeping only the leading order terms in the post-Friedmann expansion (referred as Newtonian
approximation), the two (linear) scalar potentials that appears in the perturbed metric coincides
in GR independently of the fact that the density field ¢ is linear too. It is nevertheless important
to remind that tiny departures form ¥ = & can be sourced by non-linear effects in GR and
not by a modification of gravity; these higher-order corrections should be taken into account

as systematic effects for future applications of the method proposed within this Thesis.

1.2.2 Non-linear evolution

The linear theory presented above provides a good description for the evolution of density
perturbations when they are much smaller than unity. However, observations of the present-
day Universe reveal that the majority of observable structures, such as galaxies and cluster of
galaxies, have formed in collapsed environments where dp > p. Thus, in order to fully un-
derstand the assembly history of those structures we need to analyze the gravitational collapse
of overdensities in non-linear regime. Unfortunately, an exact solution of the equations de-
scribing the non-linear evolution is generally not available, although several simple analytical
approximations are very insightful and they have been widely used in literature to determine
the qualitative behavior of gravitationally bound systems. For example, the spherical top-hat
collapse model (ref. [66]) is a fundamental simplified model to describe the non-linear growth
of cosmic structure, applied in a broad range of studies, such as calculation of the halo mass
function (e.g. the Press & Schechter formalism, ref. [67]), or the description of gravitational
collapse in the ACDM model and in several extensions (e.g. refs. [68, 69]). In this analytical
framework, a spherical isolated overdense region with a constant density initially evolves with

the expanding background universe, then it slows down and it decouples from the Hubble flow



Chapter 1. Standard Cosmology 25

turning from expanding to collapsing, eventually virializing in a relaxed state.

Other analytical approaches, such as the Zel’dovich approximation (ref. [70]) or, more in gen-
eral, Lagrangian perturbation theory at different orders, provide valuable hints to explain the
formation of the skeleton of large-scale structure (see Figure 1.6 which shows a comparison
between a full N-body simulation and the result of the Zel’dovich approximation in the left

and right panels respectively). Nevertheless, a full treatment of the non-linear growth of per-

Full N-body

Zel'dovich
ATy

Figure 1.6: Comparison between a snapshot of a full N-body simulation at z = 0 (left panel) and a
simulation performed with the Zel’dovich approximation (right panel). Both plots show the positions
of particles in a sheet extracted from a 2563-particles ACDM simulations. As shown in the plot, the
position of the cosmological structures is reproduced also with the approximated method, even if with
a much lower accuracy. Credit: ref. [71]

turbations requires numerical methods; in particular, formation of galaxies and clusters reflects
complex dynamical processes which should account also for the baryonic physics involved and
which spawn a range of scales from tens kpc for a single galaxy to few Gpc for a population
of galaxy clusters. In the last 25 years, the implementation of cosmological N-body and hy-
drodynamical simulations has been greatly improved thanks to the speed-up of computational
technologies and the improvements in the efficiency of simulation codes. Nowadays, numer-
ical techniques are one of the most powerful tools for cosmological and astrophysical studies
(see e.g. refs. [72, 73] for reviews); simulation codes have been principally developed in New-
tonian limit for the computation of the gravitational force (e.g. ref. [37]), but recently full
general relativistic schemes have been presented (e.g. refs. [74, 75]).

A detailed study of structure formation and cosmological simulations is beyond the aim of this
Thesis; here I will only discuss a specific result obtained from the analysis of cold dark matter

halos in N-body simulations that will be broadly adopted in the next Chapters.
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The Navarro-Frenk-White model
In a seminal series of papers (refs. [76, 77, 33]) by J. Navarro, C. Frenk and S. White it has
been shown that CDM simulated halos in equilibrium configuration follow an universal density

profile, independently of the halo mass, the redshift and the underlying cosmological model.

In particular, ref. [33] presented a double-power low radial profile, proportional to ! in
the innermost region and to 7~ at large radii, which provides a good fit for halos in N-body

simulations over two decades in radius (see Figure 1.7). They found the fitting formula:

Fcoma \\

| Iy \\'

Log Density

1 0y=1
T n=-1

Log radius

Figure 1.7: Density profiles of one of the most (rightmost curve in each plot) and one of the least
massive (leftmost curve in each plot) halos in a set of cosmological N-body simulations performed in
different cosmologies, specified by the values of {2 = €2 and of the index n of the power spectrum of
initial density fluctuations. In the Standard CDM (SCDM, 2,,, = ¢ = 1) and ACDM models radii are
given in kpc and densities are in units of 10'° M, /kpc®. In all plots the arrows indicate the value of the
gravitational softening. From ref. [33].

(1.34)
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with the shape v = —1, which is called Navarro-Frenk-White (NFW hereafter) density profile.
In the above equation, p.(z) = 3H?(z)/87G is the critical density of the Universe at redshift
z, Ts = r_9 is the scale radius corresponding to the point at which the logarithmic derivative

of the profile equals —2; finally, . is a characteristic overdensity given by:

3
Avir C

b = 3 log(l+c¢)—c/(1+¢c)’

(1.35)

where ¢ = 1y, /15 is called concentration and r,;, is the radius enclosing a mean overden-
sity A, times the critical density. In this Thesis I will always refer to A,; = 200 (and so
Tvir = 7T200), Which is close to the density at virialization predicted by the spherical collapse
model in a EdS universe Ay, = 178.

Note that eq. (1.34) depends only on two parameters, which can be chosen to be e.g. 7200
and rg, or Myyg = %71 200pcr§’00 and ¢ = c909, and which are strongly correlated. Indeed,
ref. [33] showed that the earlier a halo has formed, the larger is the value of its concentration.
Since on average, according to the hierarchical structure assembling paradigm, more massive
halos formed later, this leads to an inverted mass-concentration relation. Given the large scat-
ter in the assembling history of Dark Matter halos, the mass-concentration relation exhibits
a notable scatter too. In particular, it has been shown that at a fixed mass the concentration
parameter follow a log-normal distribution with a typical standard deviation o1y . ~ 0.25 (e.g.
ref. [78]). Figure 1.8 from ref. [79] shows the mass-concentration relation extended over 15
order of magnitudes in CDM halo mass; the black solid line represent a model to compute the
mean concentration proposed by ref. [80] with a scatter 01,5 ~ 0.14 (gray area), while the
dotted line is the model of ref. [81]; the violet-filled and blue circles with the relative errorbars
represent the result from the MultiDark and Bolshoi simulations respectively.

Numerical studies on the mass-concentration (¢ — M) relation by ref. [82] indicated that
¢(M, z) is a decreasing function of both mass and redshift. Moreover, they found that at high
redshift the mass dependency is significantly reduced. More recently, the analysis of refs.
[80, 83] showed instead an upturn in the ¢ — M relation at high redshift, which however has
been shown to disappear when selecting only the most relaxed clusters in the sample.

The dynamical relaxation state, which will be a fundamental assumption for the analysis pre-
sented in this Thesis (as I will discuss in Chapter 3), has been demonstrated to be correlated
with the concentration. Indeed, from both simulations (e.g ref. [84]) and observations (e.g

ref [85]) it has been found that more relaxed clusters are on average also more concentrated.
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Figure 1.8: Mass-concentration relation in a CDM scenario for halos in the mass range
[107¢ A= M, 10" h=1M]. Violet-filled circles with the relative errorbars are from the MultiDark
the blue circles are the results from the Bolshoi simulation. The solid black line shows the mass-
concentration model from ref. [80] while the gray band represent the scatter within 1 0144 . ~ 0.14. The
dotted line represent the model of ref. [81]. Credit: ref. [79]

From the observational point of view, several studies of galaxy clusters at low and intermediate
redshift confirm the predictions of theoretical analysis about the anti-correlation between ¢ and
M (see e.g. refs [85, 86, 87]). However, a generally steeper slope and a higher normalization
has been found compared to the simulations-derived relation. According to e.g. ref. [88] the
discrepancy can be explained in terms of bias in the selection of the observed sample. For
example, in strong lensing-selected clusters elongated along the line of sight higher mass and
concentration are measured, while the opposite effect is obtained in clusters which are elon-
gated in the direction perpendicular to the line of sight.

In this Thesis I will consider two galaxy clusters from the CLASH and CLASH-VLT collabo-
rations, within which a total sample of 25 galaxy clusters has been analyzed. 20 clusters in the
CLASH sample has been selected by their X-ray morphology (see Chapter 5). The CLASH
mass-concentration relation is shown in Figure 1.9 from ref. [87] (solid lines and shaded pur-
ple area), where each data-point represents one of the selected clusters. Both models and data
are color-coded according to their redshift. Ref. [87], which analyzed 19 of the X-ray se-
lected clusters with redshift between 0.19 and 0.89, derived the ¢ — M relation adopting the
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parametrization of ref. [82]:

1.37\ % Moo K
C(M”O’Z):Ax(Hz) X<8><1014M@/h) | (150

with
A=366+0.16, B=0.14+052, K =0.32+0.18. (1.37)

The study of ref. [87] is in excellent agreement with the ¢ — M relation derived from cosmo-
logical simulations when clusters are selected by 2D X-ray images; this confirms that X-ray
morphology-based selections reduce the bias due to elongation and shape of the strong lensing
selection.

The gray contours in the plot indicate the results derived by ref. [89] from the stacked weak-
shear analysis of 16 CLASH X-ray selected clusters, referred to a redshift = ~ 0.35. The
results of the two analyses are in agreement within the errors, even if the stacked contours are

slightly above the value predicted by the relation of ref. [87].
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Figure 1.9: Solid lines: the best-fit c-M relation to the CLASH data in the Msgg — c2q¢ plane for z = 0.2
(blue), z = 0.35 (purple) and z = 0.9 (red). The labeled data points in the top panel show each CLASH
cluster color-coded according to redshift. The shaded area around the purple line shows the 1o error
on the normalization of the CLASH ¢ — M relation. Grey contours refer to the 1o and 20 confidence
levels, respectively, for the ¢ — M stacked analysis of ref. [89] at z ~ 0.35. Credit: ref. [87].

Given its relative simplicity, the NFW profile has been widely adopted in literature to
describe the mass profile of gravitationally bound structures such as galaxy clusters, where
it has been shown to provide a generally good fit to observational data (e.g. refs. [25, 35],

see also Chapter 5); nonetheless, some discrepancies between different sets of simulations and
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observations have been found regarding the inner shape of Dark matter halo mass profiles.
More specifically, the analysis of ref. [90] on cosmological N-body simulations showed that
the central region of CDM halos follows a steeper (cusp) profile with v = 1.5 (Moore profile).
Around the same years, observational studies of dwarf and low-surface brightness galaxies (e.g
ref. [91, 92]) revealed a shallower Dark matter profile (i.e. v — 0) towards the center; this is
usually referred as the cusp-core problem. More recent works (e.g. ref. [93]) indicate that the
presence of baryons can flatten or steepen the Dark Matter halo profile with respect to a pure
CDM paradigm; in particular, ref. [93] demonstrated that Supernova feedback in the central
region of dwarf galaxies can be responsible of the generation of the inner core in the profile.
As for the debate about the simulated halos, the analysis of ref. [94], which studied the central
regions of DM halos in high-resolution N-body simulations, indicates that the density profile
for r — 0 is actually shallower than the value v = 1.5 of the Moore model; at the same time,
the NFW profile tends to underestimate the density below the scale radius. Ref. [94] found

that the inner profile is better described by an exponential law (Einasto profile):

p(r) = p(rs) exp {(j [(;)a - 1] } ;

where 0.12 < « < 0.25 (e.g ref. [95]).

Despite the controversies about the inner shape (both between data and simulations and differ-
ent sets of simulations) are still open, the NFW profile remains a good model to characterize
the overall distribution of matter in cosmological structures. Moreover, the parametric nature
of the profile makes it suitable to describe the equilibrium configuration of density perturba-
tions also in non-standard frameworks such as modified gravity theories, as I will discuss in

the next Chapter.



Chapter 2

Beyond the Concordance Model:
Modified Gravity

In this Chapter I will present a general overview of modified gravity models which have been
introduced to explain the accelerated expansion of the Universe as a possible alternative to
the Concordance ACDM model where GR is assumed along with the introduction of the cos-
mological constant. I will briefly discuss the Horndeski parametrization, a general class of
scalar-tensor theories with second order equations of motion; I will then focus on a viable sub-
class of the Horndeski Lagrangian, the f(R) models of gravity, which will be used as a case
study within this Thesis. Finally, in the last part of the Chapter, I will discuss the state-of-art
of cosmological constraints of modified gravity, further highlighting the role of the work pre-
sented here for the investigation of the nature of gravity. Throughout this Chapter, unless not

explicitly specified, I will assume ¢ = 1.

2.1 Modified Gravity and Cosmology

GR is without doubt a successful theory in describing the gravitational interaction, and it has
been shown to be valid by a broad range of observations at small and intermediate scales, such
as Solar System and stellar tests, gravitational waves (e.g. refs. [96, 97]); however, tests of
GR at cosmological scales have been much less precise so far. Attempts to modify and extend
GR were made already few years later its formulation, mostly motivated by purely academic

interest (e.g. ref. [98]); later on, the introduction of higher order terms in the action of GR

31
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has been proposed to solve theoretical issues related to quantum corrections in strong gravi-
tational regime (i.e. effects becoming relevant at scales close to the Planck scale, as the very
early universe or near black hole singularities). Only after the discovery of the late-time accel-
erated expansion modified gravity models have became a popular subject of study as a viable
alternative to the presence of the cosmological constant in the Standard ACDM model. In-
deed, even if the Concordance model has been proved to outstandingly fit the large amount
of observational data-sets, with excellent agreement at different scales and redshifts (as dis-
cussed in the previous Chapter), it suffers several problems. For example, the observed value
of the energy associated to the cosmological constant is small: py ~ (1073 eV)?; according to
quantum field theory, vacuum energy affects the dynamics in GR producing a non-negligible
contribution which can in principle explain the presence of a positive A in the Einstein’s equa-
tion. However, the predicted value of the vacuum energy density is expected to be of the order
of the Planck energy density, and therefore many orders of magnitude larger than p, inferred
by observations, requiring a exceptional fine-tuning at any perturbative order in the quantum
corrections (see e.g. ref. [99]). Another challenging issue related to the cosmological constant
is the so called Why now- problem, or coincidence problem, concerning the remarkable fact
that the density parameters €2, and {5 are roughly of the same order at the present time. The
equivalence between matter and dark energy densities occurs at very low redshift, and thus it

seems that we live in a special period of the cosmic history just by coincidence.

In the last 25 years, several alternatives to the cosmological constant has been proposed in
order to explain the late-time expansion of the Universe; one possibility is to replace py with
a generic dark energy component ppg characterized by an EoS ppr = w(a)c?ppr, where
wo = w(ap) < —1/3 in order to have acceleration. Dark energy can be interpreted as the
energy density of some new fields with a potential term dominating over the kinetic term (e.g.
quintessence models, ref. [100]). At the background level, w is often parametrized as a linear
function of the scale factor w(a) = wo + (1 — a)w,, known as Chevallier-Polarski-Linder
(CPL) parametrization. In Figure 2.1 the contours in the plane wq, w, for the analysis of ref.
[1] are shown. Different colors indicate different combinations of data-sets, including CMB
data, expansion probes (Type Ia Supenrovae, BAO and local measurement of Hy) and growth
rate probes (redshift space distortion and weak lensing data). Note that the contours from
CMB and Weak lensing analyses (green shaded regions) show a ~ 2¢ tension with the ACDM
predictions, while when considering the combination of Planck CMB data, SNe type Ia, BAO
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and local measurements of Hy (Planck+BSH, blue shaded areas in the plot), the constraints are
in agreement with the expectations of the Concordance model w, = 0wy = —1. I will come

back to this apparent tension in Section 2.3.
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Figure 2.1: 1o and 20 contours in the plane (wg, w,) as obtained by various combinations of data-sets.
The intersection of the dashed lines corresponds to the ACDM model (—1,0).

The simplest models assume that dark energy is smooth, i.e. it doesn’t cluster on sub-
horizon scales and is totally described in term of the EoS parameter w(a). More sophisticated
options allow for clustering dark energy having a speed of sound ¢? = dppgr/éppr < c?
(e.g. ref. [101]). Nevertheless, the effects on structure formation are generally very small and
vanish when w — —1; according to ref. [102], deviations from c; to the speed of light are
very difficult to be constrained with present and upcoming data-sets. For a recent review on

Dark Energy model, see ref. [103].

Another alternative approach to explain the late-time acceleration of the Universe is to
break down the assumption that GR is the correct theory to describe the large-scale gravita-
tional interaction. Possible modifications of the Einstein’s field equations can indeed produce
an accelerated expansion without the explicit contribution of the cosmological constant, mim-

icking the expansion history of the ACDM model. All the extensions of the Concordance
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model based on a different theory of the gravitational interaction are called modified gravity
(MG) models (see e.g. refs. [104, 105] for reviews).

It is worth to notice that modifying GR is not an easy task. According to Lovelock’s theo-
rem (ref. [106]), GR is the only four-dimensional local theory of gravity with second-order
derivatives of the metric in the equations of motion. This means that any departure from GR
should introduces either non-locality, additional degrees of freedom, higher-order derivatives
or higher dimensional spacetimes (e.g. the braneworld gravity, ref. [107]), giving rise to pos-
sible theoretical issues related to the consistency of the theory. I will not focus on this topic
within the Thesis; more details can be found in e.g. ref. [108] and references therein.

A second important point to discuss is an effective definition for modified gravity. As I will
show below, the effect of modifications of gravity can be rephrased in terms of additional fields
which contribute to the total energy momentum tensor; in this view, modified gravity models
are indistinguishable from Dark Energy models. An operative classification can be made by
analyzing how the new degrees of freedom couple to the metric; I define modified gravity mod-
els as those models where the additional degrees of freedom are coupled non-minimally to the
metric.

Over the last decades several modified gravity models have been proposed; in the following
I will consider only the class of scalar-tensor theories, which are the most studied modified
gravity models so far, especially in the cosmological context, as they encompass a wide phe-

nomenology given a relatively simple structure.

2.1.1 Scalar-tensor theories

With scalar-tensor theories we commonly define all those models where both a scalar field
(or several scalar fields) and a tensor field are included. The general action of a scalar-tensor

theory with a single scalar field ¢ coupled to the gravitational field g,,, can be written as:

R w
S = /&x@ [167@(/5 - (;ﬁb) V.6V b — 2V () — Loy g | @2.1)

where W (¢) is a differentiable function of the scalar field and £, is the Lagrangian of the
matter fields ¥,,,. Variation of the action with respect to the metric and to the scalar field

leads to the modified Einstein’s equations and to the equation of motion of the scalar field
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respectively:
6 (B g0t + | T029,696 + 06 + V(0)] g
-V,.Vyo — VV;QS)VVQSVMZ) =81GT), ,
(2W (¢) + 3)0p + W () V.oV + 4V (¢) — 20V (¢) = 87GT, 2.2)

together with the energy momentum conservation equation V, T#” = 0. In the above relations,
the prime indicates derivative with respect to ¢ and the energy momentum tensor refers to the

matter fields. If we consider now a metric g,,,, related to g,,, by a conformal transformation:

uv = Q2(¢)§um
it can be shown that the action of eq. (2.1) in terms of the new metric takes the form:

_R__1

— B .
i g VeV —U(®) ~ LoV X)) | (23)

sp = [ d'av=g

with the tilde indicating that quantities are computed with respect to g,,. Note that I have

introduced the scalar field ¢ which is related to ¢ by:

dd
dInQ

= 12+ 8Q2(¢) W (¢).

In this particular frame, called the Einstein Frame and indicated by the subscript F, the scalar
degree of freedom is coupled minimally to the metric, analogous to a pure dark energy model
such as Quintessence, but now the matter fields are coupled to ¢ via the conformal function §2.

This leads to Einstein’s field equations which are GR-like:

N 1 N -
Ryy — 59uR = 8rGTL, (2.4)

where:

(to T v v = vid ~
T =Ty + V, 8V, & — <2v0¢v ® + V(<I>)> Gy (2.5)
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is the total energy momentum tensor of the matter field plus an additional fluid component
expressed in terms of ®. However, the matter energy-momentum tensor is no longer conserved
and this produces an additional fifth force in the geodesic equation proportional to the gradient
of the scalar field V.

In conclusion, a modified gravity model of the scalar-tensor type is identified in term of the
metric g,,, (usually dubbed as the Jordan frame) by manifestly non-GR Einstein’s equations,
but matter particles fall along geodesics in spacetime. In the Einstein frame instead, the metric
field equations are GR-like with an enhancement of the gravitational force, driven by the new

scalar field, appearing in the geodesic equation.
The most general class of scalar-tensor theories with second order equations of motion in

four dimensions and with an universal coupling between matter and gravity is incorporated in

the so-called Horndeski action (ref. [30]), which can be written as:

S = /d4x\/—g

5
1
e E Ei(gum ¢) + Em(g,uua V)| - (2.6)
=2

The Lagrangian densities £; are expressed in terms of four generic functions G; of the field ¢
and of its kinetic term X = V ,pV#¢:

Lo = Go(¢, X),

L3 = —Gs(¢, X)Oo,

£4= Ga(6, X)R + 508(6,X) [(06) ~ V,V,094V4]

10
L5 = G5(6, X) G V'V" ) — £ 5=Gs(, X) [(0g)*+
+2V,,0" V¢Vt — 3V, V,0VHFVY ¢ . 2.7)

The Horndeski framework includes as subclasses several popular modifications of gravity stud-
ied in literature, such as covariant Galileion, Brans-Dicke theory, f(R) gravity (see below),
but also Dark energy models as the above mentioned Quintessence or more general k-essence

models (ref. [109]). The recent detection of a gravitational wave (GW) event and its electro-
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magnetic counterpart emitted by the merging of two neutron stars (GW170817) by ref. [97]
provided strong constraints on the speed of GWs |cgy — ¢| /¢ < 10715, narrowing the allowed
habitable zone for the Horndeski models (see e.g. refs. [16, 110]). In particular, a severe fine-
tuning required to set the speed of GW equal to ¢ can be avoided if G5 = 0 and G4 = G4(¢)
should be a function of the scalar field only. In this case, the most general viable Horndeski

Lagrangian density assumes the form:
L = Ga(d) R+ Go(0, X) — G3(¢, X)L (2.8)

The f(R) models of gravity, which I will discuss in Section 2.2, are included in eq. (2.8) by
setting Gz = 0 and Ga (¢, X) = Ga(9) .

2.1.2 Linear perturbations in Modified Gravity

As discussed in Chapter 1, linear perturbations over a FLRW background can be written in
terms of the scalar Bardeen potentials ¢ and ¥ when the conformal Newtonian gauge choice
(see ref. [111]) is adoped. In spherical coordinate, for generic value of the curvature K we

have:

ds? = a2() { (1 4 2;{;) dr? — <1 - 232) dy® + ffg(x)dQQ]} , (2.9)

This metric is formally equivalent to the one obtained in the post-Friedman expansion keeping
only the leading-order terms, as already mentioned in Chapter 1, where ¥ and ® are two scalar
conformal-Newtonian components which coincide with the Bardeen potential only when first-
order relativistic corrections to the expansion are negligible. Note that through this Thesis I
will refer to "Bardeen potential” to indicate the Newtonian metric components.

In the Newtonian approximation, assuming ®, ¥ < ¢? does not automatically implies that
the matter perturbations should be small too. In galaxy clusters, for example, the average
gravitational potential is of the order of 10~%¢? +— 1075¢? while the density perturbations &p
are highly non-linear.

I have already shown that in General Relativity, under the assumption of no anisotropic stresses
in the Energy Momentum Tensor 7),,,, the two Bardeen potentials are equal, ® = ¥ = &y,

where @ is the usual Newtonian potential obeying the Poisson equation (in Fourier space):

Koy = —%Qm(t)émfﬂ. (2.10)
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In the expression above k = ko, /a is the physical wavenumber, €2,,(¢) is the time dependent
matter density parameter, H is the Hubble parameter, 8, = (pm — pbg)/prg the matter density
contrast, where py, is the background matter density at that time. Here I have already assumed
spherical symmetry, i.e. &y = ®n(k), 1, = I (k). In a general modified gravity scenario,
® is no longer equal to W, and the Poisson equation should be changed as (see e.g. refs.
[112, 113]):

Ed = —%Y(k, @) ()6, H?, Q.11)

together with the equation for the lensing potential:
3
(4 0) = —5Y (k@) [1+n(k, )] Qu ()0, H?. (2.12)

Here Y (k,a) is the effective gravitational constant and 7(k,a) = W/® is the anisotropic
stress, or gravitational slip, in Fourier space, both equal to unity in standard gravity. As shown
in ref. [112], in the Horndeski framework these quantities can be expressed in terms of five

parameters introduced in ref. [113]:

(2.13)

1+ k%h
Y(kva):hl( * 5>7

1+ k‘2h4
1+ k2h3 '

i, @) = b <1+k2h5

Here, hj...hs are functions of time only and can be considered constant for small redshift
ranges, as the one spanned by the clusters used within this Thesis. Note that the above men-
tioned constraints from the speed of GW here imply ho = 1.

It is useful to define Q% = (hs — h3)/2hs and Q? = (hy — hs3)/2hs such that:

20212 >

= (2.14)

Yn=hiho (1 +

21.2
Y—h1<1+ 207k >

m2 + k2

which are in the form of Yukawa potentials with strength QQ and Q? respectively and charac-
teristic mass m? = 1/h3. Scale-independent standard gravity is recovered for m — oo and

h1, ho — 1. Fourier-inverting eq. (2.11) in real space one obtains:

10 50
T—ZET ECI) =4rGo(r), (2.15)

where I have defined
V ikr 3
o(r) = o /e Y (k)8 pm (k) d3k. (2.16)
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The general solution of eq. (2.15) can be written as

oo rl 1 4 902~ mly—r|
@&):-QwGh{/ m/ *f96r| 5 pm(y)y2dyds=, 2.17)
0 -1 y -

with z = cosf. In the above equation, one can split the integral into two contributions:

2 -mly—1]
/ / OomW) 24y + / / 20 () dyd
1y — ly —r|

=M [(I)N+(I)Mg], (2.18)

O(r) = —27Ghy

where the first term is the usual Newtonian potential while the second part reflects the addi-
tional contribution given by deviations from GR. The constant h; encodes modification of the

gravitational constant and could be absorbed into the definition of G as Gy = h1 G.

I now parametrize the mass density perturbations as a Navarro-Frenk-White model which,
as already discussed in Chapter 1, represents a good fit of the mass distribution in simulated
Dark Matter Halos. As I will discuss in Chapter 5, the NFW mass profile provides the highest
likelihood in the kinematic and lensing analyses of the two galaxy clusters considered in this
work. Solving the first double integral in the right hand side (RHS) of eq. (2.18) we obtain the

expression for the Newtonian potential sourced by a spherical distribution of mass:
T dy
On(r)=G fQMpr(y), (2.19)
ro Y
in terms of the standard-gravity NFW profile:

My pw(r) = Maog [log(1 + 1/rs) = r/rs(1+r/r) "] x [log(1 + ¢) — ¢/(1+ )] !
(2.20)
described in terms of the scale radius r¢ and the radius r9g. I recall that »4 = r_5 is the radius
at which the logarithmic derivative of the density profile equals —2 and ryqg is the radius
enclosing an overdensity 200 times the critical density of the universe at the redshift of the
object, as defined in Chapter 1. ¢ = r9go /75 is the concentration.

For this particular mass density model it is possible to derive an analytical expression for the
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modified gravity contribution. Focusing on the second part on the RHS of (2.18):

2p—mly—r|
—2m G/ / 20 e —————0pm(y)y dydz

ly —r
2 ,—ma/y +r2 2ryz
— 271G / / 20 Spm (y)ydydz
V212 = 2ryz
= —4rGQ? / F(r,y)y*6p(y)dy, (2.21)
0
where
—-m(y—r) _ g—m(y+r)
1 e e y >,
F(Tv y) -
mry em(y—r) — e_m(y'i'r) y <7

Substituting §pp, (y) = po(r200,7s) [y/7s(1 +y/rs)?] ~!and integrating over dy, we get:

Bara(r) = 27Tfpo 3{ —m(rs+r) [Ei(mrs) — Ei(m(rs 4+ r))]

—e™ T [—m(rs + 7)) + €™ IEi(-m rs)} =2Q%mc(r),  (222)

so that the final expression for the time-time Bardeen potential in configuration space reads
" dx 9
O(r)=h |G EM(@ +2Q%Pmg (1) | - (2.23)
T

I now recast eq. (2.23) in terms of an effective dynamical mass

d
Mayn(r) = hy [Mpr(T) + 2Q2§:’}"} , (2.24)
which generates the Bardeen potential ® according to:
" dx
_G / O My (). (2.25)
To

As m — 0, the additional contribution ¢,,4(r) reduces to

4 G
7 por o 7“s+7“’ (2.26)
r

Ts

Pmg(r) —
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which coincides with the expression of the Newtonian potential ® () when the integral in
eq. (2.19) is explicitly computed. This means also Mgy, (1) — hiMyrw (r)(1 + 2Q?) for a
given r . In Figure 3.5 of Chapter 3 I will show the behavior of the modified mass profile M,
for different values of the parameter A\ = 1/m in the case of f(R) gravity (where, as shown
below, 2Q? = 1/3).

Combining eq. (2.11) and eq. (2.53), we obtain a similar expression for the space-space

potential W:
T d .
\11(7“) = hiho [G/ ;iMpr($) + 2Q2¢mg(r) . (2.27)
0

The effect of modifications of gravity is thus completely determined by the choice of the pa-
rameters h1, ho, Q, Q, m. In the general case they are totally independent from each other, but,
as I will discuss in the next paragraph, fixing a particular model allows us to establish relations
among these parameters, reducing the number of degrees of freedom.

As I will discuss in Chapter 3, since in a galaxy cluster the typical velocities of the galaxies
are non-relativistic (~ 103 km/s < c), the motion of the galaxies is determined only by the
time-time component of the metric; it is thus possible to infer the Bardeen potential ®, and
consequently the dynamical mass Mg,,,, by the dynamical analysis of the observed galaxies in
a cluster. The combination of W and ® can instead be determined through gravitational lensing
observations. Indeed, photons perceive the gravitational potential due to the contribution of
both time-time and space-space metric components. In Chapter 4 I will define at leading order
in ¥, ® a lensing potential ;s = (¥ + @)/2, which is related to the lensing mass density

profile through the Poisson equation
VEiens = 471G prens - (2.28)

Hence, gravitational lensing analysis gives at the linear level sum of the Bardeen potentials.

2.2 f(R) gravity

One of the simplest and most investigated alternatives to General Relativity (GR) is the class
of theories known as f(R) gravity, proposed by ref. [114], in which the Einstein-Hilbert action

is modified by adding a general non-linear function of the Ricci curvature scalar R.
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In the Jordan frame the total action reads:

_ [ .
5= T6rG / V=9[R + f(R)d"z + SV, gy, (2.29)

where S, is the action of the matter field ¥,,,. Note that for f(R) = const = —2A one recov-
ers GR in presence of a cosmological constant. I will work in the so-called metric formalism
of f(R) gravity, i.e. I assume that the metric is the only independent variable on which apply
the variational principle in order to derive Einstein’s equations. There is another possible ap-
proach, dubbed Palatini formalism, in which both the metric g,,, and the connection Ff)u are
independent variables and should be taken into account in the variation, under the assumption
that the matter action S,,, [V, gu,,] does not depend on the connection. In standard General
Relativity, where the action is linear in R, the two procedures are equivalent and lead to the
same field equations. However, this is no more true in modified gravity scenarios with a more
general action, and a distinction between the two formalisms should be made. For complete-
ness, I mention also a third version of gravity theories called metric affine formalism where
the assumption of ‘Sg—rm = 0 is relaxed; metric affine gravity is a generalization of the Palatini
approach. A more detailed description of those aspects could be found in e.g. ref. [115] and
references therein.

Variation of eq. (2.29) with respect to the metric g, gives rise to the modified Einstein equa-

tions:
1
1+ fr)Ruw — 5gw[f(R) + Rl + (90— V.V, fr =81GT,,. (2.30)
The quantity
;o T
BT AR

usually known as the scalaron, is a new degree of freedom which can be interpreted as a scalar
field, mediating an additional fifth force with a characteristic range described by the physical
Compton length A\ (see below). Thus, f(R) models are actually a sub-class of scalar tensor
theories where the scalaron field is coupled to gravity; this can be explicitly shown defining a
conformal transformation:

167G 7
3¢

fr(R)=¢ , (2.31)
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from which the action of eq. (2.29) becomes identical to the action of a scalar-tensor theory in
the Einstein frame for the field qg with a potential (see e.g. ref. [116]):
- Rfr—f(R)

U(p) = Tl6nG % (2.32)

In the case of flat FLRW universe, the Ricci scalar is given by

iy 0
R, =6 <“ + H2> = 3H3Q, [(1 + 2)3 + 4QA} , (2.33)
a m

where the subscript b indicates background value, a(t) is the scale factor, 2, is the matter
density parameter today, and H = a(t)/a(t) is the Hubble parameter; overdot means derivative
with respect to the cosmic time ¢. Under the assumption of the cosmological principle, from

eq. (2.30) we can further derive the Friedmann equation:

1 a . 81CG
H? + o/ (B) = —fr+ Hfp=—"pmp (2.34)

The trace of eq. (2.30) shows explicitly the role of the field f . Indeed we have:
1
Ofr= 3 [R— frRR+2f(R) — 87Gpn], (2.35)

which can be seen as the equation of motion for the scalaron, with a canonical kinetic term and

an effective potential

OVerr

1
ofn =3 [R— frR+2f(R) — 87Gpm) . (2.36)

For the class of viable models that in the high-curvature regime satisfy | f g| < land |f(R)/R| <

1 (see e.g. refs. [117, 118]), Vs s has an extremum at the general-relativistic value

rG
R=—p,.
3 P

The concavity of the potential in the extremum is given by its second-order derivative:

o2V, 1/1+ fr
m2 eff—( ’ —R), 2.37
"= 9%, "3\ fan 237

where frr = df r/dR; mjy, represents the scalaron mass and its inverse A\ = 1/my,,
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the Compton length, gives the typical interaction range of the fifth force. In the limit of

|Rf rrl,|f r| < 1 one has
1

2
M 3frRr

Constraining the scalaron mass means therefore to constrain the second derivative of f(R),

(2.38)

rather than just f r. Notice also that, in this approximation, in order to have a stable minimum,
f.rr > 0 is thus required. Ref. [119] argued that this is a critical constraint to avoid short
timescale instabilities in the high curvature regime. Physically, the condition means a non-
tachyonic scalaron field.

Looking to perturbations in the FRW background, under the quasi-static approximation for
which Vfr > f r (which is achieved for scales k/aH > 1), it is possible to rearrange the

field equation (2.35) in a Poisson-like form for the fluctuations, as shown in [120]:
2 1 8
VZ3fr = 30R(fR) = 37GOpm, (2.39)

where I am working in physical coordinates and the perturbed quantities are defined as 6.X =
X — Xj. Solving the linearized modified Einstein equations in the Newtonian gauge of eq.

(2.9) one can furthermore derive the Poisson equation for the Bardeen potential ®:

167G
3

(14 0920 = 22 5, — SOR(f ). (2.40)

In the linear regime, the curvature perturbations are everywhere small compared to the GR
value 0R < 8wGdpy,. This happens for example if | f gy > |®n|, where @ ~ 1072 is
the typical Newtonian potential for a galaxy cluster. Following e.g. ref. [117] and references

therein I expand the curvature perturbation as:

OR 9
~ | — =3 2.41
oR <8f,R>Rb 0f r=3ms.0f R, (2.41)

where mfeR refers to the background scalaron mass. Combining the last three equations and

writing the result in Fourier space, we obtain an expression for the time-time Bardeen potential:

ArGopm 1 1 k?
dh)=—— " (14— 2.42
(k) 1+ fr l<:2< +3m§R+k2>’ (242)
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which is the same as eq. (2.11) with:
2Q°=1/3, =1+ fr) ' ~1, m=my,. (2.43)

A similar equation can be derived for W:

ArGopp, K2 ArGopy, 1 1 k2
U(k) = —hihg 2 0Pm (4 _ g _ 1(_1
(%) T2 < Qm’j;RJrk? 1+ fr k2 3m% +k2 )’

(2.44)
where 2@2 = —1/3,hy = 1. In real space, for a NFW mass density profile, we finally get:

¥(r) = |6 [ M)+ 3 mge)| + O 245
¥(r) = |G [ M) = Gomglrmp)| + O (2.46)

We are now left with only one free parameter, i.e. the background scalaron mass m, (or,
equivalently, the interaction range \), related to the background f i through eq. (2.37). The
maximum enhancement of gravity due to the effect of the fifth force is 1/3 with respect to GR
on scales £ > my,. Eq. (2.45) is what I will use in the analysis of the cluster dynamics in
order to constrain A = 1/m.

It is straightforward to compute the lensing potential form eqgs. (2.45), (2.46):
1 "dz
Drens(r) = §(<I> +VU)=G EM(JJ) +O(f Rr)- (2.47)
T0

In f(R) models photons perceive only the Newtonian part of gravity except for a correction
of order ~ f p. Thus, for models with |f r| < 1, geodesics of photons are unchanged by the
presence of the new degree of freedom. This feature is physically related to the property that
f(R) and scalar-tensor theories in general can be generated by a conformal rescaling of the
metric, together with the conformal invariance of electromagnetism (see e.g. [29]).

For small field values |f pp)| < [®n], the characteristic mass becomes larger and the
contribution of the force modification is suppressed. Moreover, if one considers an overdensity
such as a galaxy cluster (assumed to be spherically symmetric), in the interior the field is close
to the minimum of the effective potential, given by the GR limit § R ~ 87(Gdp,y,; in this case

field gradients are negligible except for a shell at the boundary where the overdensity matches
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the cosmological background. The thickness of this shell is given by
AT = Tyateh — S. (2.48)

In the above equation, 7,4, indicates the boundary of the overdensity and .S is dubbed the
screening radius. For r < S gravity is described by standard GR and eq. (2.40) becomes the
usual Poisson equation for the Newtonian potential.

In order to use the same formalism of eq. (2.42), derived by linearizing the curvature
perturbations, inside the overdensity, one has to replace m ¢, with an effective mass meys(k),
which depends on the environmental density, and is related to the scalaron minimum value
inside the overdensity. If in the region enclosed within the screening radius S we have full
screening, me s becomes so large that the field does not propagate and the additional terms in
eqs. (2.42),(2.44) tend to zero. The mechanism to recover GR in high density regions by using
an environment-dependent field is known as the chameleon mechanism (ref. [31]).

Assuming a constant value for m. in this picture (i.e. neglecting the dependence on the
environment) is equivalent to assume a screening mechanism so efficient (or so inefficient) that
the transition of the scalaron field to its background value takes place at scales much larger

(much smaller) than the cluster size.

2.2.1 The Hu & Sawicki model

One of the most common viable functional forms for f(R) is the popular Hu & Sawicki model

of ref. [S] (H&S hereafter), in which f(R) is expressed as a power law:

o cl(R/M2)"

J(R) =~ e (R/M?)n +1

(2.49)

where M? = H, g Qi n, c1, co are free parameters that can be suitably related to each other in

order to reproduce the expansion history of the ACDM model. Indeed, by requiring

617 QA R "
a_ﬁgm, cQ<M2> >> 1, (2.50)

it is possible to expand eq. (2.49) as:

n—+1

. fro ROG

1 R) ~ 6 — =— 2
(MQ}II%%f( ) AT T

(2.51)
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with

9\ n+1
fro=Falz=0)= % (M )

2 RO,b

the background value of the scalar field at present time. For |f po| < 1 eq. (2.51) reduces
to a cosmological constant; moreover, since R(z) is an increasing function of redshift, the
approximation is valid at all cosmological times. The H&S functional form has been widely
used in literature given its relatively simple parametrization, which allows to derive constraints

on MG from the comparison with observational data.

2.3 Cosmological constraints on modified gravity

At the beginning of this Chapter I classified all the alternatives to the ACDM model in two
main categories: the first one includes models in which the energy density content of the Uni-
verse is modified with the introduction of new fields (Dark Energy models), while the second
one questions if our current understanding of gravity is adequate to describe the gravitational
interaction at large scales (Modified Gravity models). In general, any departure from a simple
cosmological constant comes at the price of additional degrees of freedom which intervene in
the formation and evolution of cosmological structures (with the exception of non-clustering
Dark energy models), leaving in principle a detectable imprint even if the background expan-
sion is indistinguishable from the one predicted by the standard Concordance model. Search
for such signatures, both at background and perturbed level, is a key feature to investigate the
nature of the modification and distinguish viable models among the broad class of scenarios
proposed in the literature (see e.g. ref. [108] and references therein for more details). In the
following I present an overview of cosmological tests of modified gravity, identifying the main
observables used to constrain deviations from the Concordance model. For a recent review, see
ref. [121].

Departures from General Relativity on large scales modify the Friedmann equations, as I
have shown for f(R) gravity, altering the background expansion history of the Universe with
respect to the the ACDM one. Therefore, a precise determination of the time evolution of the
scale factor is a good way to test alternative models of gravity at cosmological scales. This
can be achieved by using observables which measure quantities that directly probe cosmic

expansion history, such as Type Ia SNe and BAO, related to the luminosity distance and the
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angular diameter distance respectively ( e.g. refs. [122, 123]), as well as model-independent
probes of H(z) such as cosmic chronometers (e.g. refs. [124, 125]) in combination with lo-
cal measurements of Hy (e.g. ref. [45]). As already discussed in Chapter 1 and in Section
2.1, current data-sets have shown that the background evolution of the Universe is in excep-
tional agreement with the one predicted by the ACDM model, although some tensions are still
present. Expansion probes constraints are generally combined with information coming from
large scale structure analysis, such as Weak Lensing surveys (e.g. refs. [126, 127]), galaxy
clustering and cluster abundance (refs. [128]), redshift space distortion (RSD, e.g. ref. [129]),
CMB and CMB lensing (ref. [1]).

Cosmological tests of modified gravity aim at constraining the phenomenological functions
Y (k,a) and n(k, a), which define general departures from GR in the growth of cosmic struc-

tures, or their combination

Y (k,a)[1 4 n(k,a)]

Y(k,a) = 5 , (2.52)
which expresses modification in the lensing potential as
b+ U 3
kQ% = k2B = —53(k, a) Qo ()0 H?. (2.53)

Another possibility is to infer the linear growth rate f(a), eq. (1.25); as already mentioned
in Chapter 1, the linear evolution of cosmic structures changes when introducing additional
degrees of freedom coupled with the matter fields. Even for pure collisionless dark matter
perturbations, the differential equation eq. (1.21) now exhibits an explicit scale-dependence;

in terms of f = dlog D(a)/dlog a it can be rewritten as:

df H 3

where the scale enters through the function Y (k, a). In GR it has been shown (e.g. ref. [130])

that f(a) is well described by a power-low function of €2,,,:

where v ~ 0.545 is the growth index, with small correction induced by presence of Dark

Energy. In modified gravity or Dark Energy frameworks ~ assumes different values (e.g ref.
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[131]), thus it can be used to discriminate between various models. The linear growth rate
can be probed by e.g. RSD measurements, which however are sensitive to the combination
f(2)os(z), where og(z) is the amplitude of matter fluctuations over a scale of 8 h~'Mpc. RSD
are distortions in the redshift space caused by peculiar velocities of cosmological objects. Since
the peculiar motion follows the infall of matter toward over dense regions, RSD analysis traces
the growth rate of cosmic structures. In particular, the galaxy power spectrum in redshift space

reads:
Py (k, py2) = P7(k, 2)[b(2) + 1 f(2)],

where b(z) is the galaxy linear bias, y is the cosine of the angle between the wavenumber k
and the line-of-sight, P"(k, z) is the matter power spectrum in real space, which comes with
its amplitude (e.g. og). Thus, the linear growth function f(z) inferred from RSD surveys
is degenerate with the amplitude of matter fluctuations. In Figure 2.2 from ref. [132] the
evolution of f(z)og(z) is shown for 6 different models (solid and dashed lines) compared with
several constraints from RSD data (points with errorbars). The measurements at z < 1 include
6dFGS, the SDSS main galaxies, the 2dFGRS, the SDSS LRG, the BOSS LOWZ, the BOSS
CMASS, WiggleZ, VVDS and VIPERS surveys. The red solid line indicates the predictions of
the Concordance model with the amplitude fitted using the filled points and squares. The plot
demonstrates that current RSD measurements at low-redshift are not sufficient to distinguish
from various alternatives to the ACDM model. The inclusion of higher redshift data and the
reduction of the uncertainties as expected by future surveys (e.g. DESI, Euclid) are necessary
in order to discriminate the behavior of different MG models. In particular, the analysis of
ref. [132] shows that the high-redshift measurement obtained from the Subaru FMOS galaxy
redshift survey (red filled point in the plot) is consistent with GR but other models were found

outside the 1o region.

Constraints on the MG parameters Y (k, a), n(k, a) and X(k, a) from the combined analy-
sis of CMB data, expansion probes and growth-rate probes are presented in ref. [1]. I show in
Figure 2.3 the 10 and 20 marginalized contours in the plane (7(z =0)—1,Y (2 =0) —1) and
(X(2=0)—1,Y(z = 0) — 1) obtained by ref. [1] (Left panel of Figure 14 and Figure 15 in
the paper, respectively) when no scale dependence is assumed !. As a result, a tension with GR

is found at ~ 30 C.L. when Planck CMB data are combined with constraints from Baryonic

"Note that the parameter Y is indicated as p in ref. [1]
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Figure 2.2: Measurements of f(z)os(z) in the redshift range 0 < z < 1.55 compared with the
predictions of 5 MG models plus the ACDM model. For the Concordance model (red solid line),

the amplitude is determined by minimizing the y? of the data indicated by the filled point and squares.
Credit: ref. [132]

Acoustic Oscillations, Redshift Space Distortions and Weak Lensing data. Interestingly, the
tension with ACDM predictions is alleviated when including in the analysis also the contribu-

tion from CMB lensing. Even if the origin of this discrepancy is still debated, the results of ref.
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Figure 2.3: Constraints on MG parameters in the plane (n(z = 0) — 1,Y (2 = 0) — 1) (left panel)
and (X(z = 0) — 1,Y (2 = 0) — 1) (right panel) obtained from the analysis of the Planck CMB
spectrum combined with expansion probes (Planck+BSH), Weak Lensing (Planck+WL) and RSD
(Planck+BAO/RSD). The inner shaded regions indicate 1o contours while the outer lighter regions

correspond to 2o-contours. The vertical dashed lines show the GR ACDM values. From Figure 14 and
Figure 15 of ref. [1].
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[1] show that combined informations coming from several distinct observational probes are
required get stringent constraints on deviations from GR. Whether the apparent tension is the
effect of systematics or a true indication of new physics is a question to be investigated with the
advent of future more precise data-sets from growth-rate and expansion probes. In this context,
it is fundamental to find new approaches to constrain modification of gravity which are totally

independent of other determinations.

As I will discuss in Chapter 6, the method I present in this Thesis, based on galaxy clusters

mass profiles reconstruction, provides constraints on MG parameters quite competitive with
the current determinations in literature; in particular, the bounds on the parameter 7 obtained
from the analysis of one single galaxy cluster will be shown to be as stringent as (or even better
than) the results of ref. [1]. The potential of our method, which provides a promising tool
to investigate the nature of gravity in view of the next generation imaging and spectroscopic
surveys, however necessarily requires a severe control of the possible systematics, as will be
extensively pointed out in Chapter 8.
Nowadays, the most stringent constraint on the parameters 3., Y in the scale-independent case
has been found by ref. [133] using a combination of CMB data from Planck, cosmic shear from
CFHTLenS and DES science verification data, RSD from BOSS DR12 and the 6dF galaxy
survey. They obtained, at 1o C.L.:

¥ —1=-001550;, Y —1=-0.06%0.18.

In addition to the above mentioned tests for modified gravity, it is worth to remind also the
already discussed GWs, which are an excellent probe to select viable non-standard models.
As for the specific class of f(R) models, current analyses performed by using distance in-
dicators at low-redshift (ref. [134]), galaxy cluster abundance (refs. [128, 14]) and redshift
space distortions (ref. [135]), have tightened the constraints on the background field up to
| f ro|l < 1075, compatible with very small deviations from GR, although the recent results of
ref. [125], obtained with the Cosmic chronometer approach, show a slight tension with stan-
dard gravity when particular functional form of f(R) are used.

In conclusion, among the large variety of observational probes aimed at constraining devia-
tions from the Concordance Model, some analyses seem to indicate possible tensions with the

ACDM predictions whose nature is still unclear; developing new methods to test GR is crucial
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to explore the origin of the apparent inconsistencies from other perspectives and to obtain a

better understanding of the behavior of gravity at cosmological scales.
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Chapter 3

Dynamics of galaxies in clusters

In this Chapter I will study the relation between the motion of galaxies in a cluster and the
underlying gravitational potential; in particular, I will introduce the Jeans’ equation, which is
used to recover the the mass profile of a galaxy cluster under the assumption of dynamical
relaxation, further discussing how cluster dynamics analyses can be used to constrain modified
gravity. The Chapter is organized as follow: Section 3.1 provides a brief introduction about
galaxy clusters, Section 3.2 presents the dynamics of collisionless systems in an equilibrium
configuration, highlighting under what conditions it approximates the dynamics of a galaxy
cluster. For this part I refer to Chapter 4 of ref. [136] and Chapter 5 of ref. [42]. In Section
3.3 Iintroduce the MAMPOSSt procedure developed in ref. [32] to determine the mass profile
of a cluster from the dynamics traced by the member galaxies. I illustrate the modified version
of MAMPOSSt implemented within this Thesis to constrain the free parameters of alternative
models of gravity; the modified MAMPOSSt method will be applied in the framework of f(R)
gravity to obtain the results presented in Chapter 7 and Chapter 8.

3.1 Phenomenology of galaxy clusters

A cluster of galaxies is a massive object with typical size of 1 Mpc, spawning approximately
two order of magnitude in mass (from 103 M, to 10'® M). Clusters are made of hundreds
to thousands galaxies, but only a tiny fraction of the total cluster mass (~ 2 +5%) corresponds
to galaxies (e.g ref. [137]).

The galaxy population of a cluster is mainly composed by elliptical early-type galaxies, up to

54
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~ 80% in regular clusters; the total projected distribution of cluster member galaxies is on
average well fitted by a (projected) NFW profile (see e.g. ref. [138]), but also other models
have been shown to provide adequate fit. For example, in the case of the galaxy cluster MACS
1206 ref. [25] found that even if the NFW profile gives the least x? in the maximum likelihood
fit to the total number density distribution, the King profile of ref. [139]:

1

n(R) o 1+ (R/r,)?*

where 7, is a characteristic scale radius, is also not rejected by data; moreover, it is preferable
to the projected NFW when only the star-forming galaxies are considered in the fit.

A fraction of the missing mass in galaxy clusters (from 10% to 20% of the total mass) was iden-
tified to be ordinary matter not associated with galaxies in the form of a hot ionized plasma with
an average temperature of the order of 10% K and typical densities varying from 10~em =3 to
10~*em 3. The diffuse gas is called Intra Cluster Medium (ICM hereafter) and emits in the
X-band with luminosity between 10*3 and 10*° erg/s due to the interactions of the free elec-
trons with the ions (mostly protons and Helium nuclei) via thermal bremsstrahlung. The ICM
contains also traces of heavy elements partially ionized, such as Carbon, Oxygen and Iron, with
typical abundances of one third of the solar value. From X-ray observations one can estimate
the temperature map of the hot gas and its density profile from the surface brightness (see e.g.
ref. [140]). The high temperature of the ICM is thought to be generated by a shock heating
mechanism during the gravitational collapse of the gas. Minor contributions are also given by
non-gravitational effects, such as Active Galactic Nuclei (AGN) and Supernovae, especially in
the central regions and in low-mass clusters.

The majority of the matter content (~ 80%) of a galaxy cluster is contained in a halo of
smoothly distributed Dark Matter, which thus dominates the global cluster dynamics.

In the hierarchical structure formation paradigm, galaxy clusters are thought to form through
a series of merging events of smaller systems which assembled via gravitational interactions.
In this context, galaxy clusters represent the largest gravitationally bound objects that emerge
as the final step of the hierarchical formation process. They offer a fertile soil for studying a
large variety of phenomena at the edge between astrophysics and cosmology; indeed, while
the overall structure of a cluster and its assembling history are determined by gravity, as the
physics can be almost entirely described in terms of the evolution of collisionless Dark Matter,

the internal properties of clusters reflect the contribution of dissipative processes governed by
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the physics of baryons.

Galaxy clusters can be used in different ways as excellent cosmological probes; for example
their statistical properties, such as spatial distribution and abundance (e.g. refs. [141, 142]),
clusters peculiar velocities (e.g. refs. [143, 144]) or features related to the internal structure
baryon gas fraction (e.g ref. [145]), and cluster mass profiles reconstructions (e.g. ref. [146]).
In particular, within this Thesis, I investigate the internal distribution of the total cluster mass
(i.e. the mass profile) with two different probes, namely the dynamics of the member galaxies
and the gravitational lensing effects, which in the last few years has reached an unprecedented
level of precision, allowing for the possibility to constrain departures from GR in a competitive

and independent way with respect to other probes, as discussed in Chapter 2.

The right panel of Figure 3.1 shows the composite X-ray and optical image of the cluster
Abell 383; the ICM is identified by the violet haze. Note that the hot gas exhibits an almost
concentric distribution peaked near the cluster core; also the member galaxies are spherically
distributed, with no evident substructures, around the Brightest Central Galaxy (BCG) which is
further located in projection close to the X-ray luminosity peak. These features are indications
that Abell 383 is a dynamically relaxed cluster, which means that all the matter components
are in an equilibrium configuration within the same total gravitational potential. This is also
suggested by the fact that in regular clusters the mean quadratic velocity of the ICM particles,
related to the gas temperature as
9 _ 3kpT

gas - ’
wmp

<w

3.1

where 11 is the average mass of a gas particle in terms of the proton mass m,, is comparable to
the velocity dispersion of the member galaxies agal.

Dynamical relaxation is a fundamental requirement for the analysis developed within this The-
sis. As I will extensively discuss in the next Sections, clusters in dynamical equilibrium show
convenient properties for the reconstruction of the total cluster mass profile; in Chapter 2 I have
shown that the mass profile is connected to the underlying gravitational potential and this rela-
tion is sensitive to the assumed model of gravity. Thus, relaxed clusters are interesting targets

to investigate the effect of possible departures from GR.
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Figure 3.1: Left: Optical image of the galaxy cluster Abell 383 obtained from the Hubble Space
Telescope. Credits: NASA, ESA, J. Richard (CRAL) and J.-P. Kneib (LAM). Right: composite
X-ray/optical image of the same cluster; the purple area shows the ICM X-ray emission. From
NASA/CXC/Caltech/A.Newman et al./Tel Aviv/A. Morandi & M. Limousin (X-ray), NASA/STScI,
ESO/VLT, SDSS (optical).

3.2 Dynamics of collisionless systems

When considering astrophysical systems such as star clusters, galaxies and galaxy clusters, the
relevant interaction which dominates the dynamics is the gravitational force; if single inter-
actions and close encounters are negligible, the systems is said to be collisionless and each
tracer (e.g. a galaxy in a cluster) experiences an acceleration caused by the overall smooth
gravitational potential. At equilibrium, velocities randomize and the dynamics is determined
by the evolution of the phase-space distribution function f(Z,v,t) through the collisionless
Bolzmann equation (see below). As discussed in Chapter 2, the typical velocity dispersions
in galaxy clusters are of the order of 1073 ¢2 (e.g. refs. [25, 147]), thus the weak field limit
approximation of eq. (A.16) is valid and galaxies perceive only the time-time component of
the metric. Even if galaxy clusters are characterized by an average matter density fluctuation
dp highly non-linear, the space-time geometry perturbations are small compared to the back-
ground, and the metric of a cluster is given by eq. (2.9) in the conformal Newtonian gauge.
This implies that the gravitational potential involved in the dynamics of galaxies in clusters is
the Bardeen potential ®.

Consider now a cluster made of N ~ 102 = 10% members with typical masses m ~ 10 M,

in a configuration of dynamical equilibrium; it is easy to show that encounters are relatively
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unimportant and the cluster can be treated as a system of collisionless particles. To demonstrate
this, I estimate the variation of the velocity d¢ of a reference galaxy in the cluster induced by
the interaction with another member. Under the approximation of a small variation in the ve-
locity |d97/U| << 1, and assuming a straight line trajectory in the region of the encounter, the

variation in the direction orthogonal to the motion |§¥/, | is given by:

0| ~ — 3.2
|07 | o (3.2)

where b is the impact parameter of the interaction. By approximating the cluster as a sphere of

radius R, one can express the mean surface density of galaxies as:

N

After one crossing of the system, the reference galaxy will have experienced a number of
encounters with impact parameter in the differential interval from b and b 4 db, which is equal
to

2N

dv =v x 2mbdb = ﬁb db. 34

After each interaction the velocity changes by an amount §v ; since the direction of the
variation is random, the average change is negligible when summing all the contributions
< 0¥ >= 0. We thus consider the sum of the squared variations induced by all the en-

counters in one crossing:

2
2Gm) 2N . (3.5)

(5173_)67”085 ~ 5?73_ X dV — ( b/U ﬁ

The total variation (Aﬁi)cmss is obtained by integrating over all the values of the impact
parameter b € [byin, bmaz)> Where bar = R and byi, = Gm/v?. The last statement arises

from the condition |§7/%] < 1 which is violated for b < Gm/v%. We have:

R roGm\? 2N Gm\ 2 R
AT ) eross = “bdb=8N | — ] 1 ) 6
(871) / < bv > R? ° ( Ru > ! (bmm) G0

bmin
Since I have assumed that the cluster is in dynamical equilibrium, I can apply the virial theo-

rem 27" = |Ey4|, where T is the total kinetic energy and Ey is the (Newtonian) gravitational
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potential energy generated by all the members of the system:

1 G(Nm)> Gm R
2-Nmv? = == .
5 muv I = 2 N (3.7
from which one obtains:
AT 8 R 8
< /172 >Cross = Nhﬁl (bmln> ~ NIDN (38)

From eq. (3.8) it follows that in order to have a variation in the velocity of order of unity, a

galaxy should cross the cluster a number of times

N R\
Necross = g |:1n (bmm>:| . 3.9

If one crossing of the systems happens in t..0ss ~ R/v, I define the relaxation time t,; as

the product tcross X Meross ~ N R/(v8In N). The relaxation time expresses the timescale
for which the motion of a member of the system is significantly perturbed by encounters with
other members. In the case of a rich galaxy cluster, N ~ 103 and SO Neposs ~ 18, with a typical
crossing time of 10° yrs; this means that the relaxation time is of the order of 10'° yrs, which
is comparable to Hubble time. Thus, collisions of galaxies in clusters can be irrelevant or not,
depending on the dynamical assembly history of the cluster. In galaxy clusters at equilibrium
configuration (hereafter dynamically relaxed clusters) the effect of encounters is negligible and
the dynamics is described by the evolution of the phase-space distribution function f(Z, 7, t)

under the influence of a smooth gravitational potential ®(Z, ¢).

3.2.1 The Vlasov equation

A self-gravitating system of N collisionless objects governed by the total potential ® (&, ¢) can
be described in terms of the number of particles d/N which, at a specific time ¢, occupy the

positions between Z and Z + d® and are characterized by velocities between ¥ and 7 + d>@"
dN = f(&,7,t)d>Zd>7, (3.10)

where f > 0 is the above mentioned distribution function and it expresses the density of objects
in the phase-space {(Z, ¥) }; given a set of initial conditions at ¢, the value of f is determined

for any t > .
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—

The dynamical quantities of the system are identified by the 6-dimensional vector w = (Z, ¥)
and its velocity
w = (Z,7) = (7, -V®), (3.11)

with ® the total gravitational potential related to the mass density profile trough the Poisson
equation:
V2® = 47Gp. (3.12)

Since I am neglecting collisions, the flow of points in the phase-space is characterized by a

regular "drift" motion, and the distribution function satisfies the continuity equation:

Z fw’ - (3.13)

where the index runs over all the 6 components. Integrating eq. (3.13) over a volume AV in
the phase-space it is easy to show that the first term describes the rate at which the number
of particles changes within this volume, while the second term expresses the rate at which
particles flow in or out the same volume.

Since & and ¥ are independent variables and ® does not depend on ¥, it follows that

Owi _~[dv; 9 (92)\] _
> G =2 o g (a2)] =* G.19

i=1 =1

Thus, it is possible to rewrite eq. (3.13) as:

of N~ Of _ 00 01 _

which is called Vlasov equation or collisionless Boltzmann equation. In terms of the convective
derivative % = % + (- V), eq. (3.15) reads:
D

— (@50 =0, (3.16)

and it describes the conservation of the density of points in the phase space as seen by an
observer which is comoving with the flow; in other words, the Vlasov equation shows that

the flow of points in phase-space is that of an incompressible fluid. When collisions become
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important, an additional contribution appears in eq. (3.15):

().
ot coll

which expresses the variation of the distribution function induced by encounters between mem-
bers of the system.

If the system under study exhibits symmetries, it is useful to recast the Vlasov equation in a
different suitable coordinate frame. Within this Thesis I will always assume spherical symme-
try, and thus the spherical coordinate system (r, 6, ¢, v,, vg, vg) is adopted!. In this frame,

eq. (3.15) can be written as:

of _ Of wdf _ ws Of . Of . Of . Of

ot v Urar + r 00 + rsinf ¢ Uy +U98v9 +U¢av¢ ’ (3-17)
where ) )
. vy tvg 0P
Uy = - —
" r or’
_ 1)35 cot —vvg 19
p=—"""—— ——,
r r or
. VU + VgUy cOt O 1 00
= — — —. 3.18
ve r rsinf 0¢ (3-18)

3.2.2 The Jeans’ equation

I am now interested in investigating the properties of the collisionless Boltzmann equation by

computing its moments. As a first step, integrating eq. (3.15) over the velocities one obtains:

d3*+2[

2
_axz 0. ] 0. (3.19)

By introducing the spatial density of the particles v and their mean velocity v; as

1
= /f(f, v, 0d3T, () = /vlf(f 7,t)d37,

v

'T will discuss departures from spherical symmetry as possible source of systematics in Chapter 8
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it is possible to rearrange eq. (3.19) to get:

v, O(vo)
ot (%c,

=0, (3.20)

where the sum over ¢ is implied. Eq. (3.20) is the continuity equation for the spatial number
density v.
Multiplying now eq. (3.15) by v; and then integrating again over the velocity space, one gets

the first moment of the Vlasov equation, which can be written as:

0(vvy) n 0(v;05) n 0P

o e v 0, (3.21)

where I have defined

1 .
VU = ” vv; f 37

I now multiply eq. (3.20) for v; and I subtract it to eq. (3.21); introducing the velocity stress

tensor:

VO‘Z-QJ- = I/(UZ‘ — 57;)(1}j — Uj) =v [W — @i@j] , (3.22)

we finally obtain the Jeans’ equation (J. Jeans, 1919)

ov;  ov;  0d  O(vod)
I/E + |24 axz = —Va7j - 8@ . (323)

Eq. (3.23) is similar to the Euler equation, eq. (1.19), where the role of the pressure is played
by the velocity stress tensor.

The Jeans’ equation relates observed dynamical quantity to the underlying gravitational poten-
tial ®; for a galaxy cluster, described by the linearly perturbed FLRW metric (eq. (2.9)) in the
Newtonian gauge, ¢ coincides with the time-time Bardeen potential times the conformal scale
factor a(7)>.

Note that, while in the case of the Euler equation we can relate the pressure p to the density p
through the equation of state, for the Jeans’ equation there is no analogous relation connecting
the 6 independent components of o to the number density v. One can imagine to compute
the second moment of the Vlasov equation by multiplying it by v;vj, and integrating over the

velocity space. In doing so we end up with a new equation containing terms v;0;v;, which

’In the Jeans’ analysis I will neglect the scale factor since a galaxy cluster is actually disentangled by the Hubble
flow and the dynamics of galaxies is not affected by the expansion of the Universe.
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will require an additional relation, and so on. In order to close this hierarchy of equations it
is possible to either truncate the system for a given order n, or making assumptions on the
structure of the velocity field. As already discussed above, the results presented in this Thesis
are derived assuming that the clusters are spherically symmetric. In this particular case, the
Jeans’ equation can be derived in spherical coordinates starting from eq. (3.17):

d(vo?) v(r) 9 dd

Tt = 207 = (05— 09)] = —v(n) (3.24)

where Uf 0, are the velocity dispersions corresponding to the the diagonal components of the
velocity stress tensor, related to vy, vy, vy respectively.

I define velocity anisotropy profile the ratio:

03 —|—O’§)

2 Y
207

B(r)=1 (3.25)

which is a function of the radial distance from the center of the halo r; since in spherical
symmetry the velocity dispersions along the tangential and azimuthal direction are equal ag =

Ji, the velocity anisotropy reduces to:

%
B(r)=1-—3. (3.20)
0-7'
In this way, the Jeans’ equation can be written as:
d [v(r)o}(r)] v(r)op(r) _ d®(r)

+26(r)

o (3.27)

Thus, measurements of the number density profile v, of the velocity dispersion o, and of the
velocity anisotropy 3(r) allow us to constrain the gravitational potential through eq. (3.27).

As shown in Chapter 2, @ is related to the effective dynamical mass (see eq. (2.25)):

dd G Mdyn(r)
—_— 3.28
dr r2 ’ (3.28)

where Mgy, is the cumulative mass enclosed within the radius r. A different version of eq.
(3.27) can be obtained in terms of Mg,
r o [d(lnv) d(lno?)

Manr) = =G [an * aun 270 G2
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which makes explicit the relation between the mass profile and the dynamical quantities.

The Jean’s equation is in principle a powerful method to determine galaxy cluster mass pro-
files, but the application of eq. (3.27) is limited by the fact that what one can actually infer is
only the velocity dispersion along the line of sight and the projected number density profile. It
is in general impossible to infer independently o2 and 3(r); moreover, tangential velocities are
generally small and direct measurements of the anisotropy are complicated. Different methods
have been developed in the literature to reconstruct 3(r); for example, one possible solution is
to assume a parametric model for the anisotropy and to determine the parameters of the profile
along with the mass profile with a Maximum Likelihood fit to the data (see Sec. 3.3). Another
possibility is to infer 5(r) with some non-parametric technique by inverting the Jeans’ equa-
tion (e.g. refs. [148, 149]), but this generally requires additional information and assumptions.
Observations of galaxy clusters (e.g. ref. [25, 150]) as well as analyses of cosmological sim-
ulations (e.g. refs. [151, 152]) indicate that generally orbits tend to be isotropic in the center
(i.e. 8 = 0) while the anisotropy grows with radius. As an example, Figure 3.2 shows the non-
parametric reconstruction of 5(r) from the analysis of the galaxy cluster MACS 1206 by ref.
[25] while Figure 3.3 shows the velocity anisotropy profile of dark matter particles from 6 sim-
ulated halos taken from the set of cosmological N-body simulations I will discuss in Chapter
8. The halos considered spawn a mass range Mag € [2 x 1014,1.7 x 10'°] M.

It is worth to mention that the Jeans’ analysis is not the only possible method to determine
galaxy cluster mass profiles through the dynamics of member galaxies. Moreover the assump-
tion of dynamical equilibrium limits the validity of the Jeans’ equation out to the virial radius,
which at z = 0 corresponds to the radius 79y defined in Chapter 2. Other techniques for
which no assumption on the dynamical state of the cluster is needed can be used to reconstruct
the mass profile in more external regions r > rggg. For example, the Caustic method of ref.
[153] identifies the curves .A(r) in the projected phase space (R, v ) (see below) of the galax-
ies where the phase space number density is formally infinite. The amplitude of those caustics
depends on the averaged escape velocity squared along the line of sight (vgm(r», which is in
turn connected to the gravitational potential ®(r). This technique does not require assuming
dynamical equilibrium and a model for the mass profile, but comes at the price of introduc-
ing an additional function of ® and ((r) which relates M (r) to A(r) and whose calibration
represents the main systematics of this method (see e.g. ref. [25] which applied the Caustics
technique to estimate the mass profile of the cluster MACS 1206 in the external regions). In this

Thesis T apply only the Jeans’ reconstruction to determine Mg, assuming a parametric model
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Figure 3.2: Anisotropy profile 5(r) of the galaxy cluster MACS 1206 as a function of the radial distance
derived by ref. [25] inverting the Jeans’ equation (white solid line in the upper panel, red solid and blue
dashed line in the bottom panel) assuming the reference mass profile found by the analysis of Section
3 in ref. [25]. Top panel: all cluster members are used. The gray band indicates the 68% confidence
region while the black dashed curves correspond to 3 parametric profiles of 3(r) obtained as the best fit
from the MAMPOSSt analysis (see Sec. 3.3 and Chapter 5). Bottom panel: red line and orange shaded
area show the anisotropy derived using passive galaxies only, while the blue dashed line and the light
blue region correspond to the anisotropy profile of active galaxies. Both shaded intervals are the 68%
confidence regions. Credits: ref. [25].

for the mass profile; this is because my analysis will be performed always within the virial ra-
dius to avoid large-scale structure contaminations (see Chapter 6). More important, parametric
expressions for the Bardeen potentials eq. (2.23), eq. (2.27) are useful when one is interested

in constraining specific classes of modified gravity models, as I will discuss in the next Section.

The study of the X-ray emission from the ICM is another possible way to determine the
cluster mass profile under the assumption that the gas is in hydrostatic equilibrium with the

total potential. Assuming spherical symmetry, the total mass enclosed in a radius r from the



Chapter 3. Dynamics of galaxies in clusters 66

=

O

0.8 I\IIIII\|\|||||\||\||||||\||\||
- AR
L Ly
L . r,‘_.r\.}')ﬁf\:‘/“ hat '”.-“fﬂw
06 F T A ]
_ T ]
S oo kil M
L4 [ ')
£ 02 kN
& AR

—_——

0.4 Dol b b b
0 02040608 1 12 14

r/ r200

Figure 3.3: Velocity anisotropy profile of 5 dark matter halos taken from a set of cosmological N-body
simulations performed with the GADGET-3 code (see Chapter 8) as a function of the radial distance
from the halo center scaled for the virial radius 5.

center is related to the gas density through (e.g. ref. [154]):

P _ G M(r)

Pgas(r) - , (3.30)

r2
where P and py, are the pressure and the density of the gas respectively. If I further use the

equation of state for a perfect gas:
o pgaskBT
- )

Hmyp

P

it is possible to obtain a relation between the total cumulative mass, the density and the tem-

perature of the gas:

kT (r)r [dln pgas(r) n dInT(r)

M =
(r) pmyG dlnr dlnr

(3.31)

Eq. (3.31) is very similar to the Jeans’ equation (3.29) where the gas temperature is replaced

by the velocity dispersion of the galaxies. It is worth to notice that since both galaxies and ICM
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perceive the same gravitational potential, the two methods for reconstructing the mass profile
are sensitive in the same way to modification of gravity. Nevertheless, diffuse gas and galaxies
dynamics suffer different systematics; for instance non-thermal pressure, e.g. associated to
unthermalized gas motions, leads to a biased estimate of the cluster mass from X-ray analyses
compared to other methods (see e.g. ref. [155] and references therein, ref. [156]), especially
in the cluster outskirts where the contribution of non-thermal pressure becomes large (e.g. ref.
[157]).

In Thesis I will not use X-ray mass profiles reconstructions, as I am interested in constraining
the gravitational potential out to the virial radius r999 while X-ray observations are generally
limited to r500; moreover, X-ray measurements are biased in the outskirt of galaxy clusters due
to gas clumping (see e.g. ref. [158]). Clearly, combined X-ray and Jeans’ analyses to infer
the gravitational potential in the central region of relaxed clusters could in principle help in
tightening the constraints on the inner shape of the profile (e.g. constraints on the scale radius
rs of the NFW mass model); as I will discuss in Chapter 7 and Chapter 8, having additional
information on the mass profile parameters is quite important to detect possible signatures of

modified gravity.

3.3 Mass profiles from the MAMPOSSt method

MAMPOSSt (Modelling Anisotropy and Mass Profiles of Observed Spherical Systems) is a
method to derive mass profiles of galaxy clusters from the analysis of the dynamics of the
member galaxies, under the assumption of spherical symmetry and dynamical relaxation. In
this section I briefly describe the code, developed by ref. [32] and the modification I have made
to include the effects of modified gravity models.

The MAMPOSSt method performs a Maximum-Likelihood fit to the distribution of the
galaxies, assumed to be collisionless tracers of the gravitational potential, in the projected
phase space (R,v.), where R is the projected radius from the cluster center and v, is the
velocity measured along the line of sight (l.o.s.), given in the rest frame of the cluster (i.e.
< v, >~ 0). Thus, large samples of spectroscopic redshift data for the cluster member
galaxies are the key ingredient for the MAMPOSSt procedure. Figure 3.4 shows the projected
phase spaces of the member galaxies identified for two clusters analyzed in this Thesis, namely
MACS 1206 (left panel, from ref. [25]) and RXJ 2248 (right panel). Vertical solid lines corre-
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Figure 3.4: Left panel: projected phase space for the cluster MACS 1206. Filled circles show the se-
lected member galaxies, while green curves identify the caustics; from ref. [25]. Right panel: projected
phase space for the galaxy cluster RXJ 2248. In both plots the vertical lines indicate the values of r4qg
found by the lensing analysis of ref. [26] and ref. [35] respectively.

spond to rogg estimated by the lensing reconstruction of ref. [26] (MACS 1206) and ref. [35]
(RX1J 2248). Green curves in the left panel are the caustics found by the analysis of ref. [25].
MAMPOSSt works under the assumption of a 3-dimensional Gaussian distribution for the ve-
locities of the tracers. It is worth to point out that the method can be generally performed given
any model of the 3D velocity distribution; the choice of a Gaussian is the simplest, but the code
has been extensively tested and verified to work quite well on halos drawn from cosmological
simulations in which the velocity distribution along the 1.0.s. can have significant deviations
from Gaussianity. More in detail, ref. [32] extracted 11 cluster-mass Dark Matter halos from a
cosmological hydrodynamical simulation performed by ref. [159] using the parallel Tree+SPH
GADGET-2 code [37]; 10 of the halos were logarithmically spaced in 7999 while the last one
was chosen to be the most massive halo in the simulation.

Ref. [32] sampled 500 dark matter particles from each halos and applied the MAMPOSSt
procedure in combination with different interlopers® removal algorithms, showing that MAM-
POSSt provides an overall good, almost unbiased, estimation of the free parameters in the
dynamical analysis (see e.g. Table 4 in ref. [32]).

The MAMPOSSt technique solves the spherical Jeans’ equation eq. (3.27) given a parametric

form of the mass profile M (r), the velocity anisotropy profile 3(r) = 1—03 /02, and the num-

31 define interlopers particles(galaxies) which are not belonging to the cluster but whose projected radius lies
within the cluster range. As discussed in ref. [160], not taking into account those objects can produces a highly
biased estimation of the dynamical mass parameters.
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ber density profile of the galaxies v(r). It is worth to notice that the distribution of galaxies in
clusters does not follow the total distribution of mass; in particular, ref. [138] derived the mean
projected number density profile of galaxies in clusters from a catalog of the SDSS DR7 in the
redshift range 0.15 < z < 0.4, finding that the average concentration parameter is roughly a
factor of two lower than that predicted for dark matter halos in N-body simulation. Also the
analysis of ref. [161] on a stacked sample of 59 clusters has shown that the baryonic mass pro-
file exhibit a smaller concentration with respect to the total mass profile; thus v(r) generally
scales in a different way with respect to the mass profile M (r). Nonetheless, MAMPOSSt can
be also run imposing that the scale radius of the two profile is equal (i.e. light follows mass
assumption).

Within this Thesis, I will consider 4 parametrizations of 3(r) implemented in the MAMPOSSt
code:

the constant anisotropy model ’C”

B(r) = Be, (3.32)

the Mamon&Lokas model ”ML” of ref. [162], which has been shown to provide a good fit
to the average cluster-size halos anisotropy profile over a set of cosmological simulations (see
e.g ref. [152])

1 r
= - 3.33
B(r)mL 2y (3.33)
where 1 is a characteristic scale radius;
the Tiret model T” of ref. [163]
BT = foo— (334)
r)p = .
T o'} r e+, )
a generalized version of the "ML” which tends to 5, at large radii;
the Opposite model ’O”
r—1Te
= 3.35
B (T)O Boo 4 Te ) ( )

which allows for tangential orbits in the innermost region.

In MAMPOSSt the scale radius for the ”T” and ”O” profiles is set to be equal to the scale
radius of the mass profile r. = 7.
In eq. (3.27) ®(r) is the gravitational potential which is given by the time-time Bardeen po-

tential for the linearly perturbed FLRW metric (in Newtonian gauge); it coincides with the
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Newtonian potential in standard GR. o.(r) is the velocity dispersion along the radial direction.

The solution of the Jeans’ equation can be written as (e.g. ref. [162]):

o2(r) = V(lr) /0 " exp [2 / sﬂ(t)‘ﬂ V(s)dq;is)ds. (3.36)

Note that eq. (3.36) is the only relation in which the gravitational potential enters directly;

I thus modified this expression by substituting d®/ds with the derivative of eq. (2.11). The
solution is obtained in GR by assuming that the cluster is an isolated object. Ref. [164] showed
that eq. (3.36) holds also in a cosmological ACDM background.

For simple models of the velocity anisotropy profile 5(7), the integral in the exponential inside
eq. (3.36) has an analytical solution such that the expression for o2 becomes:

ol(r) = y(r)lK(r) /000 K(s)v(s) d(fl,(j) ds, (3.37)

where I have defined the kernel K (r) as

K)o 0]

I list here below the expressions of K (7) (up to an constant integration factor) for the 4 models

of B(r) adopted in this work:

TZ'B ﬁ — 75(:”7

r _|,_ r ﬁ — ”ML”,
K(r)= g

(T + TB)QBOO B — ”T”,

(r+ 7‘5)26007'_2(1+B°°) B ="0".

The probability density of observing an object at position (R, v,) in the projected phase space

is given by: dnRe(R.v.)
mhg(f, vy

Np<Rmaz) - Np(Rmin) 7

with N, (R) the predicted number of galaxies lying at the projected distance R from the cluster

q(R,v,) = (3.38)

center and g(R,v) is the surface density of observed objects with L.o.s. velocity v; In the
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case of a 3D-Gaussian velocity distribution, it takes the form:

dr v?
9(,vz) = \f/R \/7}2202(}? " &P [‘2@(&@]’ 539

where o, (R, ) is the velocity dispersion along the line of sight defined as:

R2
o.(R,r) = 0op(r)\[1=B(r)— . (3.40)

T

steps through which the MAMPOSSt procedure works can be summarized as follows:

(i) For a given choice of the parameter vector 8 = {rs,1r200,7,, 3} (see below) o, (r) is
computed from eq. (3.37) over a logarithmic grid of radii ; and then performs a cubic-

spline interpolation to evaluate at intermediate radii.

(ii) The solution of the Jeans’ equation is then used to calculate g(R, v,) for each (R;, v, ;).
The integral of eq. (3.39) is numerically solved by assuming a cutoff for the upper limit
of ~ 15799, where the velocity of the matter pushed by the Hubble flow is roughly 3o
above the mean value of the cluster. Variations of the viral radius by up to a factor of 2

do not change significantly the result of the integration (ref. [32]).

(iii) The Likelihood is computed from eq. (3.38) as:

—log L= - logq(R;,v.6). (3.41)
=1

The minimum value of — log £ is found by searching over a grid in the parameter space. In
its original version, the MAMPOSSt code works with four free parameters, namely the scale
radius of the tracers density profile r,, the parameter of the velocity anisotropy profile, the

scale radius r; and the radius r2gg of the chosen parametric mass profile.

3.3.1 MG-MAMPOSSt

I have modified the MAMPOSSt procedure by introducing the generic form for the gravitational
potential @ of eq. (2.23):

" dx
O(r) =hy [G/ EMNFW(xaTSaT%O) +2Q2 bmg (2, 75, 7200, M, S) | (3.42)
To
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which accounts for a broad range of viable modified gravity models, including the f(R) case.
I have expanded the parameter array by introducing 4 additional parameters, which are the
interaction range A = 1/m, the conformal rescaling h1, the coupling factor ) and the screening
radius S, under the assumption of an instantaneous transition between the screened and non-
screened regime (see Sec. 7.2).

For the purposes of this Thesis, I will focus on f(R) models as a case study; in this framework,
as already discussed in Chapter 2, Q is a constant fixed such that 2Q? = 1/3. Furthermore,
hi = 1/(1 + f r); I will restrict the analysis to the range A < 100Mpc, which, for example,
in the Hu & Sawicki model of f(R) (ref. [5]) roughly corresponds to |f r| < 1073, so one
can safely set hy = 1. It is also worth to notice that in general h; is totally degenerate with
the observed mass of the overdensity, whose information is already encoded in the virial radius
7200+

The modified gravity module of the code (MG-MAMPOSSt hereafter) is implemented only
for the case of a NFW mass density profile, which provides the highest Likelihood in the
GR analysis of both clusters used in this work (see Chapter 5); an extension of the code to
work with other choices for the parametrization of the mass profile in generic modified gravity
models is relatively straightforward and will be implemented for future analyses.

I tested the MG-MAMPOSSt code in linear f(R) models (i.e. A = const) to reproduce
the results of ref. [25] for MACS 1206 in the limit of standard gravity A — 0; as shown in
Figure 3.5, for A = 0.1 Mpc (black solid line) the contribution given by the modification of
gravity is very small and, except for the innermost region, the effective mass profile is very
close to the GR profile obtained by ref. [25] in the standard MAMPOSSt analysis (red dotted
line and red shaded area). In the opposite situation (A > 1) I checked that the modification
in the effective mass profile reaches the maximum enhancement of 1/3 as expected for f(R)
gravity. It is worth to notice that the contribution of the additional degree of freedom satu-
rates for A = 10 Mpc: the overall relative difference in the effective mass profile computed for
A = 10Mpc (blue line) and A = 1000 Mpc (brown dotted line) is less than 1%. This is not
surprising since A determines the typical length at which the fifth force decreases; for scales
much larger than the cluster size it is impossible to distinguish the effect induced by different
values of the interaction range. In Fig. 3.6 I also show the enhancement in the radial velocity
dispersion profile o, given by the solution of the Jeans’ equation (3.27) for different values of
the interaction range \. Since o, is proportional to the square root of the effective mass profile,

for A — oo T'have oM¢ — 1.160CF.
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I will apply our MG-MAMPOSSt code on the data of two galaxy clusters in the framework
of f(R) gravity for the case of a constant value of m = 1/\, and for environment-dependent
function:

Ar) =X x f(r;9), (3.43)

where ) is the background value and f(r; S) is a step function equal to 0 for » < S and equal to
1 otherwise. The screening radius .S at which the transition happens will be fixed by assuming
the H&S functional form of f(R) (Sec. 2.2.1). The results will be presented and discussed in
Chapter 7.
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Figure 3.5: Upper panel: mass profiles in f(R) gravity, expressed in unit of Mgy =
200H2(2)r3y,/2G, for different values of the interaction range and ra09 = 1.96 Mpc, rs = 0.27 Mpc
(best fit values of the GR analysis of ref [25] for MACS 1206). Brown dotted line: A = 1000 Mpc. Blue
solid line: A = 10Mpc. Purple solid curve: A = 1Mpc. Black solid curve: A = 0.1 Mpc. The red
shaded area shows the GR profile within the 68% C.L. in the NFW parameters with the best fit indicated
by the red dashed curve. Bottom panel: relative enhancement of the profiles with respect of the GR one,
for the same value of A as in the upper plot. For A > 1Mpc the profile is enhanced by a factor 1/3
with respect the GR value, while for A = 0.1 Mpc the modifications of gravity are suppressed with the
exception of the central regions.
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Figure 3.6: Upper panel: radial velocity dispersions in f(R) gravity for different values of the inter-
action range and ro09 = 1.96 Mpc, r; = 0.27Mpc (best fit values of the GR analysis of ref [25] for
MACS 1206). The velocity anisotropy is parametrized as a "O" model with normalization parameter
B = 0.5 and the scale radius of the number density profile r, is set to be equal to r;. Brown dotted
line: A = 1000 Mpc. Blue solid line: A = 10 Mpc. Purple curve: A = 1Mpc. Black solid curve:
A = 0.1 Mpc. the GR profile is indicated by the red dashed curve. Bottom panel: relative enhancement
of the profiles with respect of the GR one, for the same value of A as in the upper plot For A > 1 Mpc
the profile is enhanced by a factor 0.16 with respect the GR value, while for A = 0.1 Mpc the result is
very close to standard gravity except in the cluster central regions.



Chapter 4

Gravitational Lensing

with galaxy clusters

In this Chapter I briefly discuss the theory of photon propagation in curved spacetime. I will
derive the lensing potential ®;,,; from the linearly perturbed FLRW metric, showing how it
depends on both Bardeen potentials, which is a crucial point of the method for constraining
modified gravity presented in this Thesis. Section 4.2 then provides an overview on galaxy
cluster mass profiles reconstruction with gravitational lensing in the two regimes of Strong
Lensing and Weak Lensing, highlighting what kind of data are required to perform these anal-
yses.

For a more detailed description, I refer to the lecture notes of ref. [165] and to refs. [166, 167]

4.1 Propagation of light rays in a gravitational field

The idea that the trajectory of a light ray could be bended by the presence of a gravitational
field dates back to the Eighteenth century. In 1804 Soldner, embracing the current view of
corpuscular nature of light, applied the Newton’s gravitational law to compute the deflection
angle of a light "particle" under the influence of the gravitational potential at the surface of the

Sun:
2G Mg

2R, ~ (.83 arcsec.

a =

This results was then derived and corrected by a factor 2 by Einstein using the General Rela-

tivity principles; the value of 1.7 arcsec was observationally proved during the total eclipse in

76



Chapter 4. Gravitational Lensing
with galaxy clusters 77

1919 by measuring the apparent displacement of a star near the Sun surface (Dyson, Edding-
ton, Davidson, 1920) and it is considered one of the most important fundamental tests of GR
in literature. The light deflection induced by the presence of mass distributions in spacetime is
called gravitational lensing and it can be used to investigate properties and composition of both
the region in which those bending effects are generated (the lens) and the background "lensed"
sources whose light rays are distorted by the lens. In particular, gravitational lensing effects in
galaxy clusters are an exceptional tool to study the structure of Dark Matter within the cluster
and the nature of gravity, as well as to probe cosmology from the analysis of lensed images
(e.g. ref [168] and references therein).

As already mentioned, the geometry of a galaxy cluster is described by the linearly perturbed
FLRW metric. Since possible departures from GR are expected to be small, as confirmed by
recent observations (see Chapter 2), the Bardeen potential ¥ should be of the same order of
® ~ 107*c%. T am now going to define the effective refractive index n(x) for light propaga-
tion in a FLRW spacetime which is linearly perturbed by the presence of a matter distribution,

showing the connection between n and the two Bardeen potentials.

4.1.1 Linearly perturbed FLRW metric and effective refractive index

Propagation of electromagnetic waves in curved spacetimes are described by the covariant

Maxwell equations. In vacuum, for a generic metric g,,, we have:

B (VoFuw + Vo lFpu + Vyuky,) = 0;

W

nvip) =

V,FH =0, 4.1

where F),, is the electromagnetic Field-Strength tensor. Semicolon indicates covariant deriva-
tives while comma represents partial derivatives.

By using the definition of covariant derivative and Christoffel symbols, eqs. (4.1) become:

Fluv,p =0,

(V=9gF""), = (g"g"’\/=gFug), = 0. (4.2)
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Let us now consider a conformal transformation of the metric:

9uv — guu = QQ(x'u)guu-

It is straightforward to see that the first of eqs. (4.2) is invariant under such transformation,

since it does not explicitly depend on the metric. For the second equation, considering that:
2~ —4 =
g =g, V=9=Q"/~g,

it follows that the term g#®g”5,/—g is also invariant under conformal transformations. Thus,
the evolution of electromagnetic fields in curved spacetime is determined only by the confor-
mal part of the metric.

A linear perturbation of the FLRW background, adopting spherical coordinates in the Newto-
nian Gauge, is given by eq. (2.9). Dividing and multiplying by the time-time component of the

metric ggg, we obtain a conformally equivalent version of the perturbed metric as:
20\
ds* = a*(7) <1 + 02> ds?,

where I have defined

. 1-%%
d3* = —Pdr? + T [dx* + f7(x)d’] (4.3)

c2
and I have re-introduced for convenience the factor c. Using the fact that the Bardeen potentials
are small compared to c¢?, one can expand the coefficient of the spatial part in eq. (4.3) in the

following way:

2V
<~ (11— — 1l—— )| ~1—-=5(V+ )+ 0¥, o). 4.4
1+267‘§‘ ( C2>< C2> C2( + )+ ( ) ) ( )

Introducing the lensing potential ®;ep,s = %, we finally obtain the expression of the confor-

mal metric:
_ 4
ds? ~ —c*dr? + (1 — gélens) [dx? + f2(x)d92?] . (4.5)

Thus, light rays propagation is affected by the geometry of eq. (4.5), which depends on the

sum of the two Bardeen potentials through ®;.,,;. This means that lensing mass profile recon-
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structions are sensitive to both ® and ¥; this is a fundamental point for the derivation of the
results I wil present in Chapter 6 and Chapter 7.

Note that the spatial part of the line element d3? is conformally equivalent to the spatial part
of the background FLRW metric. Using the definition of effective refractive index in eq. (B.8)

we obtain, at first order in ® and W:

[ 4 2
n=1/1=5®ps =1 — S Pens + O, ¥?). (4.6)
C C

Eq. (4.6) coincides with the usual relation (see ref. [169]):

2
~]1—-—=®
n 22
setting & = U.
The speed of a light ray which is moving under the influence of a gravitational field can then

be expressed in terms of the lensing potential:

d ¢
Up = —=—~cCc+ —Dpeps.
T n c

4.1.2 The deflection angle and the lens equation

I have shown that propagation of photons in curved spacetime is analogous to the classical
geometrical optics; the presence of gravity plays the role of a medium with a refractive index
n > 1!, modifying both the speed and the path of light rays. In general, the region in which
the trajectories of photons are perturbed is much smaller than the distance light travels from
the source to the observer. This path can be divided in 3 distinct parts: propagation from the
source to the mass distribution acting as gravitational lens, propagation through the lens and
propagation from the lens to the observer. If the size of the mass distribution is negligible with
respect to the total distance traveled by photons, we assume that the lens is distributed in a
bi-dimensional sheet orthogonal to the line of sight (thin screen approximation). The plane of
this sheet is called lens plane.

The surface mass density X of the lens can be expressed in terms of the 2-components vector

'Note that the Bardeen potentials are negative
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gon the lens plane (see Fig. 4.1 from ref. [165]) as:

2(€) = / p(€, 2)dz, 4.7)

where p(g, z) is the mass density of the lens integrated along the line of sight z. The thin screen

=18
oy

Figure 4.1: Light deflection in thin screen approximation. & is the deflection angle. Credits: ref. [165].

approximation is valid also when considering structures like galaxy clusters. Indeed, typical

distances of galaxy clusters, of the order of 102 <103 Mpc, are generally much larger than their
typical sizes ( ~ 1 + 2 Mpc).

In analogy with the geometrical optic, one can define the deflection angle with the effective

refractive index:
52 — _/ v;nds = —/VJ_(]HR) dS, (48)

where the gradient is computed along the direction perpendicular to the light ray propagation

and integrated over the actual light path. Inserting eq. (4.6) into eq. (4.8) and using the fact
that |®;,,s| << c? it follows that:

- 2
A 49)
C

which connects the deflection angle to the lensing potential. Note that the integral is now

computed along the line of sight, which is a consequence of the fact that @ is expected to be
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small. For a mass distribution in thin screen approximation it can be shown that:

5 _ 4G / (€ 1)) o

(€)= — g Lo (4.10)

—

where () is given by eq. (4.7). Note that & is in general a 2-dimensional vector whose
components lie in the lens plane. If the lens exhibits circular symmetry, the deflection angle is

a scalar given by:
. A4GM(R)
W ="ap

with R the projected radius from the center of the lens and

@.11)

R
M(R) = 271’/0 Y(x)xdx

the total mass enclosed within the radius R.

Consider now a light ray emitted by a source S which reaches the observer located at the
point O after being deflected by an angle &. T want to qualitatively analyze the geometry of
gravitational lensing to derive some fundamental relations used in the reconstruction of galaxy
cluster mass profiles. I define 5 the angle between the optical axes of the lens and the position
of the sources S and 6 the angle between the optical axes and the position of the image I (see
Fig. 4.2).

Figure 4.2: Geometrical description of gravitational lensing. ¢ identifies the point of minimum distance
of the light ray to the source. & indicates the deflection angle, while « is the reduced deflection angle.
Figure from ref. [165]
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I introduce the reduced deflection angle as:

Di. -
&= Dd:a, 4.12)

where Dy e D, are the distance between lens and source and the distance between source and
observer respectively. The reduced reflection angle expresses the angular separation between
source and image with respect to the observer.

Since gDS = BDS + &Dds, using the definition eq. (4.12) we obtain the lens equation:
B3=06-a(o). (4.13)

This relation is generally non linear in g, meaning that for a single source at an angle S it
is possible to obtain different images located at angles 6;, solutions of eq. (4.13). Note that
despite eq. (4.13) has been derived in Euclidean space, it can be shown that it is valid also in
a generic spacetime using the geodesic deviation equation (see e.g. ref. [170] and references
therein), where distances should be now interpreted as angular diameter distances.

For a circularly symmetric lens with a constant surface density the reduced deflection angle is

given by:
_ 4D4G

 D.,2R
where I used eq. (4.11). The projected radius R is related to the angle 6 through R = D0,

YrR2,

ar(R)

thus:
4rGE Ddst
0) = —0
() = 5= ==,
such that the lens equation becomes
41GY DgsD
=0~ =BTy o, (4.14)
c s

It will exist a critical value of the surface density .., defined as:

c? Dy
Ecr = T A
4rG DdDds

D
= 0.35¢cm ™2 <1Gpc : > ,
DyDgs

for which a(6) = 0, so from the lens equation 5 = 0 for any value of 6. If ¥ > X, the lens is
said to be supercritical and in this case multiple images of the same sources are generated. Let

us focus on a circularly symmetric supercritical lens with an arbitrary mass distribution M (0);
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the lens equation reads:
Dgs AGM(0)

—_—. 4.15
DyD, 20 (4.15)

If the source lies on the optical axis (i.e. 8 = 0) then for the symmetry of the problem the

5(0) =0 -

corresponding images will be a ring of radius

_ [4GM(8) Dgs
eE_\/ 2 DaD (4.16)

which is called the Einstein ring. The value of 8 depends not only on the mass distribution but
also on the distance scales, and it is one of the fundamental quantities in gravitational lensing
analyses. Indeed, the Einstein radius 6 defines the typical scale to discriminate strong lensing
(0 < Og) and weak lensing effect (6 = 0, see Sec. 4.2); it is worth to notice that the average

surface density enclosed within the Einstein ring is by definition the critical density X.,.

4.1.3 Magnification and Shear

The Liouville theorem ensures that the surface brightness of an object is preserved when the
light is deflected by a gravitational field. Nevertheless, gravitational lensing changes the ap-
parent solid angle of a source such that the flux received from an image would be amplified or
decreased by the ratio between the areas occupied by the image and the source. This quantity

is called magnification p and for a spherically symmetric lens is given by

0do

= 4.17
Gap (4.17)

“

In the case of a lens with a generic matter distribution the magnification will be described by a

magnification tensor defined as: o6
M, = 4. (4.18)
J 8/6]

In order to understand the physical interpretation of the components M;;, I consider the pro-
jection on the lens plane of the rescaled lensing potential ®;ey,s:

N 2 Dds

¢<9) - ?DdDS q)lens(Ddey Z)d2'7 4.19)
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which is called effective potential. The gradient of 1/)(5) along § coincides with the reduced

deflection angle; the Laplacian instead gives:

2 DD
2, d/ds 2
V§¢ - g Ds /vgq)lensdzy

which can be related to the lens surface density through the Poisson equation for ®;.,,:

2 DyD L xlens(g) ~
2 dds lens

Vi) = — ArGY =2—= =2 4.2
A (6) SH k(0), (4.20)

where I used the definition of ... Note that in a generic modified gravity scenario X* is
not related to the usual Newtonian potential since ®;.,,s # P ; nonetheless, I have already
discussed that for some classes of models with a particular conformal structure (such as f(R))
the lensing potential coincides with the Newtonian potential due to a cancellation of the effects

induced by additional degrees of freedom between W and .

The quantity n(g) = EE(—:’T) is called convergence and it describes an isotropic magnification of

the source. In terms of x, the effective potential can be derived solving eq. (4.20):

—

W@ =L / W) In |6 — |20 @21)

™

Let’s now focus on the inverse of the magnification tensor, which gives the Jacobian of the

mapping from the source to the image in the lensing process:

“_861‘_ -1
Sij = 56, =ML

Using the lens equation (eq. (4.13)) to replace 3; we obtain:

80@ 027,/)

S =0 = 59, =00~ 0,00,

dij — Vij, (4.22)

where I have further substituted the definition of 1) in eq. (4.21). The quantity:

_ 0%
00,00,

ij

identifies the deviation from the identity induced by gravitational lensing. Using the compo-

nents of S, the convergence x(f#) can be written as a combination of the diagonal elements:
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t?’(lﬂij). (4.23)

N~

K= %(1/111 +122) =

The other derivatives of the effective potential can be combined to introduce an object called
shear tensor describing the degree of deformation of the image with respect to the source (see
Figure 4.3):

11(8) = 5 (1 — ) = 7(8) cos(26(6)),

— — —

Y2(0) = 12 = Y21 = v(0) sin(2¢(9)). (4.24)

In the above equation v = /% + 73 expresses the intensity of the distortion while the angle
¢ identifies the orientation in the lens plane. Combining now eq. (4.24) with eq. (4.23), the

inverse magnification tensor becomes:

l—-k—m —72
—72 l—rk+m

S =

[1 0 cos 2 sin 2
(1—k) — ¢ ¢ (4.25)
0 1 sin2¢ —cos2¢
The scalar magnification p is now given by the determinant of the magnification tensor:
1 1
p=det M = (4.26)

detA (1—k)2—~2%

Thus, measurements of the convergence and of the shear are connected to the projected lensing
potential and can be used to reconstruct the matter distribution of gravitational lenses. In the
next section I will summarize the typical features of the so called strong and weak lensing

regimes and how these effects are used to reconstruct mass profiles of galaxy clusters.

4.2 Mass profiles of galaxy clusters from lensing analyses

When considering gravitational lensing effects, two different classes of phenomena can be
identified, namely strong and weak gravitational lensing. In the context of galaxy clusters,
Strong Lensing (SL hereafter) classify all the effects associated with the production of multiple

images of the same source. As already mentioned, typically this occurs when the surface den-
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Figure 4.3: Effect of the lensing distortion on a circular source where the separate contributions of

— —

convergence k(6) (isotropic magnification) and shear v 2(6) (distortion of shape and orientation) are
highlighted . Credits: ref. [165].

sity of the lens is larger than the critical density in some points (i.e. the lens is supercritical).
In this case there exists critical curves 7y.,;; for which the determinant of S, eq. (4.25), must be
singular, meaning that the magnification diverges. The true angular positions (i) of those
curves with respect to the lensing map are called caustics. When a caustic has points with not
defined derivatives (cusps), the image of nearby sources in the lens plane is strongly magnified
and distorted, and generally it gives rise to spectacular giant arcs.
Note that, similarly to the caustics in the phase space of galaxies defined in Chapter 3, those
curves are characterized by a quantity that tends to infinity.
Strong Lensing effects are observable in the innermost region of galaxy clusters and allow to
infer the corresponding mass profile. Indeed, if one considers a caustic producing a tangen-
tial arc with respect to the lens center (tangential critical curves), it can be shown that for a
spherically symmetric lens:

M(8) = e, m(0Dy)?, 4.27)

where M (0) is the total projected mass enclosed within the radius R = 6D,. Despite its
simplicity, eq. (4.27) illustrates the basic idea of SL mass profile reconstruction. A real mass
distribution is actually asymmetric and a more detailed modeling of lensing effects is required
(see e.g. ref. [171]), together with high-quality imaging and spectroscopic data to identify mul-
tiple images and arcs; Figure 4.4 from ref. [172] shows the spectroscopic confirmed multiple
images for the galaxy cluster MACS 1206, obtained thanks to the combined information from
CLASH and MUSE data (see also Chapter 5). Usually the mass profile is recovered assuming
a parametric model (e.g. refs. [173, 35, 172]) and performing a Maximum Likelihood fit to

constrain the free parameters. It is worth to notice that with excellent data sets available, SL
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analyses allow not only to determine the overall cluster mass profile, but also to estimate the
contribution of single substructures and clumps in the mass distribution near the cluster core
(see e.g. ref. [174]).

57 kpc

Figure 4.4: Multiple images in the core of the cluster MACS 1206 (green and white circles) spectro-
scopically identified by CLASH-VLT+MUSE programs observations. The image is obtained combining
the information of 12 CLASH-HST filters. Credits: ref. [172].

The second class of lensing phenomena, named Weak Lensing (WL hereafter), groups all
the smaller effects generated by light rays deflection in a gravitational field, which generally
occur in galaxy clusters for distances from the center larger than the Einstein radius out to the
outskirt. WL produces a set of weakly distorted images (typically ~ 50 objects per arcmin?)
called arclets. For each lensed galaxy the image is unique, so that the matrix S is always
invertible, and the typical values of x,y << 1 In this case individual changes in the shape
and magnitude of background sources due to the lensing mapping are much more difficult to
detect, in particular for ground-based observations where the presence of turbulences in the
atmosphere can change the value of the source ellipticity, totally masking the lensing distor-

tion. Thus, mass profile reconstructions with WL analyses are performed using a statistical
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approach. Considering that the average intrinsic ellipticity of galaxies is ~ 0.25 (e.g. ref.
[175]) and assuming a random distribution for the orientations and intrinsic ellipticities of the
unlensed sources, we can obtain the value of -y, by averaging over a large sample of galaxies.
In the case of a single isolated lens, the WL effect consists in an alignment of the lensed im-
ages in the tangential direction with respect to the lens. The resulting averaged tangential shear
< 7y > can then be related to the surface density contrast of the matter distribution generating
the gravitational lensing effects.

The first algorithm to infer the mass profile of clusters with WL analyses was developed by
ref. [176] and it requires the knowledge of the shear components =y, y2 only to estimate the

convergence as:

L1 Lo
k() = - / 29R [D*(a — @@, (4.28)
T
where ) ) .

6]

is a convolution kernel and I' = +; + i7ys is the complex shear. Eq. (4.28) can be derived from
the derivatives of the effective potential +);;. More sophisticated methods combine complemen-
tary measurements of the magnification, which can be estimated for example from multi-band

imaging data (see e.g. ref. [177]).

Gravitational lensing effects offer a powerful method to determine the mass distribution
of a galaxy cluster independently of its dynamical state. Moreover, SL events, although they
are certainly rarer than WL phenomena, allow to infer the density profile also in the very
central region of clusters (R < 0.1 Mpc) with higher accuracy compared to other probes.
Nevertheless, lensing analyses still suffer from several systematics, such as the contamination
of cluster member galaxies in the lensing signal and the influence of surrounding large-scale
structure which affects especially the outer regions; as I will discuss in Chapter 6, this second
effect is one of the reasons to limit the analysis presented in this Thesis out to the cluster virial
radius. As for SL, the number of multiple images used in the analyses as well as the number of
spectroscopic redshifts available can significantly affect the accuracy in SL modeling (e.g. ref.
[178]). Furthermore, it is worth to notice that the 3-dimensional mass profile is obtained by
de-projecting the surface mass density, and thus it requires to make assumptions on the overall
shape of the gravitational potential (such as spherical symmetry).

The general concepts introduced in this Chapter are the basis of the joint Strong and Weak
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lensing mass profile reconstruction for the two galaxy clusters analyzed within this Thesis (see
Chapter 5). As I will discuss in the next Part, the unprecedented level of precision reached
in the determination of the two profiles - which is the key requirement for constraining tiny
effects such as deviations from GR - relies on the excellent quality multi-band imaging data
and spectroscopic data provided by the CLASH and CLASH-VLT collaborations.
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Chapter 5

Observational data sets

This Chapter is devoted to describe the two galaxy clusters whose data are used in this Thesis,
namely MACS J1206.2-0847 (hereafter MACS 1206) at redshift = = 0.44 and RXC J2248.7-
4431 (hereafter RXJ 2248) at z = 0.35; these objects were extensively analyzed as part of
the Cluster Lensing And Supernova survey with Hubble (CLASH, ref. [23]) and the spectro-
scopic follow-up with the Very Large Telescope (CLASH-VLT, ref. [24]). Section 5.1 shortly
describes the above mentioned programs, with particular emphasis on CLASH-VLT, which
provided high-quality data-set of low and medium resolution spectroscopic redshifts for the
cluster member galaxies, needed to obtain the input line of sight (l.0.s.) velocities in the MAM-
POSSt procedure (see Chapter 3); in Section 5.2 and Section 5.3 I will introduce MACS 1206
and RXJ 2248, highlighting the properties of these two clusters which are relevant in view of
the analysis presented in Chapters 6 and 7 .

5.1 The CLASH and CLASH-VLT programs

In August 2009, after NASA Service Mission 4 (SM4) of repairing and upgrading the Hubble
Space Telescope (HST) concluded with the installation of the Wide Field Camera 3 (WFCS3,
see ref. [179]), a new class of HST surveys, called Multi-Cycle Treasury (MCT) Programs,
was developed. In order to use the full potential of the improved instrument, more than 500
orbits of HST were allocated to allow projects aimed at reaching challenging scientific achieve-

ments by means of large observational time. The Cluster Lensing And Supernova survey with
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Hubble (CLASH') is one of three selected projects for the MCT program, approved in 2011
with Principal Investigator M. Postman; using 524 total orbits of the Hubble Space Telescope
over 3 years of observations, CLASH collected high-quality panchromatic imaging data for 25
galaxy clusters. The sample, observed in 16 filters form the near-ultraviolet to the near-infrared
with the ACS (Advanced Camera for Surveys) and the WFC3, encompasses a redshift range
0.15 < z < 0.9 and a mass range from ~ 5 x 104 M to ~ 3 x 10'® M. The CLASH
project accomplished four main goals:

(1) the study of the Dark Matter distribution in galaxy clusters at an extraordinary level of pre-
cision,

(ii) the analysis of the internal properties of galaxies in those clusters,

(iii) the identification of distant Type Ia Supernovae up to z ~ 2.5,

(iv) to find and analyze galaxies at very high redshift z > 7.

The 25 galaxy clusters were taken from the MAssive Cluster Survey (MACS) catalog (see e.g.
ref. [180] and references therein) and from the Abell catalog (ref. [181]); 20 of these objects
were selected from X-ray observations for their properties of apparent dynamical relaxation. In
particular, they show a well-defined central surface brightness peak and an overall concentric
distribution of the X-ray-emitting gas, with an average temperature Ty > 5keV. Additional
indications of a relaxed state for the clusters in this subsample come from the analysis of the
X-ray pressure maps, which exhibit negligible departures from hydrostatic equilibrium; more-
over, the projected distance of the Brightest Central Galaxy (BCG) from the X-ray peak is
always less than 23 kpc. Fig. 5.1 show the X-ray images of the 20 relaxed clusters from the
Archive of Chandra Cluster Entropy Profile Tables (ACCEPT?).

The other 5 clusters in the CLASH catalog were chosen as powerful gravitational lenses to
magnify sources at very high redshift, since they are characterized by large values of the Ein-

stein radius (from 35" to 55).

The CLASH-VLT VIMOS Large Programme is one of the follow-up of the CLASH project,
approved in Period 86 (PI: P. Rosati) to carry out an exhaustive spectroscopic survey of 13
CLASH clusters observable from the Southern hemisphere. The 4-channel Visible Multi-
Objects Spectrograph (VIMOS, ref. [182]), mounted on the ESO-Very Large Telescope in

Chile, was used to collect data for a total of 225 hours of observation in order to achieve the

"http://www.stsci.edu/ postman/CLASH/Home.html
2/fwww.pa.msu.edu/astro/MC2/accept/
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Abell 209 Abell 383 Abell 611 Abell 1423 Abell 2261

MACS 0329-0211 MACS 0425-0253 MACS 0744+3927  MACS 1115+0129 MACS 1206-0847

CU1226+3332 MACS 1311-0310 RXJ 1347-1145 MACS 1423+2404 RX) 1532+3020

MACS 172043536 MACS 1931-2634 RXJ 2129+0005 MS-2137 RXJ 2248-4431

Figure 5.1: X-ray images from the ACCEPT catalog for the 20 X-ray selected clusters in the CLASH
sample; each plot shows an area subtending an angle of ~ 3.45 arcmin?. From ref. [23].
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following goals:

(i) Spectroscopically confirm at least ~ 500 member galaxies for every cluster, out to 2 times
the virial radius in order to recover the mass profile from dynamical analysis with the same
accuracy of the mass profile obtained by strong+weak lensing analysis;

(ii) Confirm the multiple imaging systems found by HST and the angular diameter distances
for lensed sources by measuring the spectroscopic redshift of nearly 200 lensed galaxies in the
cluster center;

(iii) Obtain a full high-quality set of multi-wavelength data to study galaxy population proper-
ties in different environments.

Observations were conducted using a combination of the VIMOS low resolution LR-blue grism
and the medium resolution MR grism, in four pointings for each cluster, covering a total area
between 15 and 20 arcmin?); each pointing is chosen to have a different channel of the spec-
trograph aligned with the cluster central region.

The complete data-set also includes imaging data from the Suprime-Cam of the Subaru tele-
scope for several clusters, and from ESO Wide Field Imager (WFI) for RXJ2248, which is
the southernmost cluster in the sample. Fig. 5.2 from ref. [24] shows the distribution of
galaxies of the cluster MACSJ0416-2403, in the field of view of Subaru/Sup-Cam R-band
(29 x 25 arcmin?). The red points are all the spectroscopically-confirmed cluster members
(~ 900), whose redshift corresponds to rest-frame velocities (with respect to the median clus-
ter redshift) v, | < 3000 Km/s; blue points indicate other galaxies in the redshift range
0.02 < z < 4.15. The collection of spectroscopic redshifts was additionally used as a cal-
ibration of the photometric redshifts obtained by CLASH- HST. The joint information from
VIMOS and from the 16-band HST photometry brought down the accuracy in redshift to
Az/(1+ z) ~ 0.03, which is a key point for accurate lensing reconstructions.

CLASH + CLASH-VLT provides one of the best up-to-date combined imaging and spectro-
scopic data-set for single clusters, allowing for mass profiles reconstruction with unprecedented
precision (see below); this is extremely important if one wants to investigate signatures of mod-
ification of gravity at clusters scales, which for any viable model should be very small in order
to encompass all the cosmological and astrophysical constraints. Furthermore, such modest ef-
fects are in general systematics-dominated; an adequate control of the assumptions is required

to obtain robust results. I will extensively discuss those points in the next Chapters.
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Figure 5.2: Main central plot: confirmed member galaxies (red points) of the cluster MACSJ0416-2403,
analyzed within the CLASH / CLASH-VLT programs, in the field of view 29 x 25 arcmin?. Other 3307
galaxies in the range z € [0.02, 4.15] are shown as blue points.The black circles corresponds to region
with projected radius of 1,3 and 5 Mpc centered on one of the two BCGs of the cluster. Right plot:
zoomed-in (1.8 x 2 aremin?) view of the cluster core obtained by HST ACS-WFC3. Left plot: 3D
redshift distribution in the range 0.2 < z < 0.6 of the galaxies in the main plot. Credits: ref. [24].
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Figure 5.3: HST ACS+WFC3 composite image of MACS 1206. The field of view is 65 x 65 arcsec,
centered on the BCG. Credits: NASA, ESA, M. Postman (STScl), and the CLASH Team .

5.2 MACS 1206

The galaxy cluster MACS 1206, located at redshift z = 0.44, is one of the 20 X-ray selected
clusters observed as part of the CLASH survey. In Fig. 5.3 I show the composite image of the
cluster from HST ACS+WFC3 observations in a field of view 65 x 65 arcsec?.

MACS1206 appears as a large-scale relaxed object with a few minor overdensities in the
two-dimensional distribution of the member galaxies (ref. [183]). This result is also supported
by the analysis of ref. [184], that does not find a significant level of substructures within
the cluster when the most conservative selection is used to assign the membership of cluster
galaxies. The concentric distribution of the mass components (stellar, gas and dark matter, see
ref. [26]) further point to a relaxed status of the cluster (see also ref. [185] who demonstrate
that the projected separation of the BCG and the X-ray emission peak is a robust indicator of a
system’s dynamical state). Moreover, the kinematic mass profile determination is in agreement

with the analysis based on the Chandra X-ray observations under the assumption of hydrostatic
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equilibrium. As discussed in Chapter 3, mass profiles based on hydrostatic equilibrium of the
intra-cluster medium and on the Jeans’ equation are both sensitive to the time-time component
of the metric, but they feel the lack of equilibrium in different ways. Therefore, the consistent
results obtained by these methods suggest that the cluster is in an equilibrium configuration
(i.e. dynamically relaxed).

A first strong lensing analysis of MACS1206 was carried out in ref. [171] using 50 mul-
tiple images of 13 background lensed galaxies. An upgrade of this analysis was presented in
ref. [26], exploiting a combination of strong lensing information with weak lensing shear and
magnification measurements from Subaru multi-band images. Taking advantage of high purity
sample of background galaxies derived from extensive multicolor and spectroscopic informa-
tion, a robust measurement of the cluster mass density profile was obtained out to ~ 2 Mpc.
In the radial region between 0.3 and 0.4 Mpc, the mass profiles derived from strong lensing
and weak lensing shear and magnification analyses have been shown to be consistent with
each other. The resulting mass profile is parametrized according to the Navarro-Frenk-White
model. Additional lensing analyses of the CLASH clusters involving also MACS 1206 were
carried out by refs. [87, 89, 186, 35]; for the first part of this Thesis, presented in Chapter 6, 1
refer to the joint Strong+Weak lensing analysis of ref. [26]. For the second part (see Chapter
7), I used the updated results of [35], that refined the shear-and-magnification weak-lensing
analysis of ref. [89] by including HST strong-lensing information for a sample of 20 CLASH
clusters inclusive of MACS 1206. The weak+strong lensing results take into account model-
dependent systematics of their strong-lensing modelling. Their error analysis also accounts
for the intrinsic variations of the projected cluster lensing signal due to variations in cluster
asphericity and the presence of correlated halos (see ref. [186]).

The measurement of the kinematic mass profile is presented in ref. [25] using spectroscopy
information from the CLASH-VLT project (ref. [24]). Observations with VLT/VIMOS led to
a total of 2749 galaxies with reliable redshift measurements in the cluster field. After the
rejection of interlopers, 592 cluster members were identified. The sample was then analyzed in
the projected phase-space with the MAMPOSSt method, presented in Chapter 3, that solves the
Jeans’ equation, eq. (3.27), to provide a maximum likelihood fit for the parameters of different
mass models out to the virial radius (~ 2Mpc). In eq. (3.27) the galaxy number density v/(r)
is parametrized as a NFW model (see eq. (1.34)):

1
(L4+r/r,)?r/r,’

v(r) «



Chapter 5. Observational data sets 98

characterized by a scale radius 7, = 0.63f8:(1]é Mpc, obtained by fitting the projected distribu-

tions of the member galaxies n(R) (see Chapter 7; o, indicates the radial velocity dispersion.
The kinematic analysis also requires modeling the velocity anisotropy profile 3(r) of the trac-
ers of the gravitational potential,due to the well-known mass-anisotropy degeneracy. In the
original analysis of ref. [25] three models for 5(r) were considered, the "Tiret" model of eq.
(3.34), the "O" model of eq. (3.35), and constant anisotropy with no radial dependence, eq.
(3.32). As already discussed in Section 3.3, the parameter 7. is assumed to coincide with the
scale radius 75 of the NFW mass profile. In fact, ref. [152] proved that with this value of . the
“O" and “T" models provide a good fit to the average anisotropy profiles predicted by a set of
cosmological simulations of galaxy clusters.

The NFW model gives the highest likelihood fit to the kinematic data for the mass pro-
files reconstructed with the MAMPOSSt method, and in combination with the anisotropy "O"
model it gives the smallest product of the relative errors in the two free parameters 75 and 72g.
Fig. 5.4 shows the projected mass profiles of MACS 1206 obtained with different method:
strong+weak lensing analysis from ref. [26] (red and yellow band), dynamics analysis (gray+
green bands) of ref. [25] and the best fit X-ray hydrostatic mass from Chandra (blue dashed
line). The overall excellent agreement between independent data-sets and mass profile deter-
minations is an additional indicator of the relaxed state of the cluster; moreover, it suggests that
the application of our method to constrain the anisotropic stress 7(r) (see Chapter 6) should

provide bounds consistent with standard gravity n = 1.

5.3 RXJ 2248

The galaxy cluster RXJ 2248 at redshift z = 0.35 (first identified as Abell S1063 in ref. [181])
is another object from the sample of the 20 X-ray selected clusters for their apparent properties
of dynamical relaxation. The HST combined image is shown in Fig. 5.5. Given the large mass
of the cluster at a relatively high redshift, many lensing analyses have been performed: for the
strong lensing analysis refs. [187, 188, 189, 186, 146], and for the weak lensing analyses refs.
[190, 89, 191, 192, 35]. The strong lensing mass profile used in this Thesis is an improvement
of the one presented in [146].They used a combination of 22 strong lensing models on a data
set of 47 multiple images belonging to 16 families in a redshift range of [0.1 — 6] detected
down to mpgiaww = 26. This data-set comes from the HST imaging, the spectroscopy with
VIMOS-VLT, and obtained during the MUSE-VLT science verification programme (ID 60.A-
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Figure 5.4: Projected mass profiles for the galaxy clusters MACS 1206. Strong lensing analysis: red
band. Weak lensing analysis: yellow band and white dashed line (best fit). Dynamics analysis: gray and
green areas, black dashed line (best fit). Chandra X-ray analysis: blue dashed line. All shaded regions
corresponds to 1o confidence level. From ref. [24].



Chapter 5. Observational data sets 100

Figure 5.5: HST WFC3+ACS image of the galaxy cluster RXJ 2248 in a field of view of 2.07 x
2.32 arcmin®
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9345, P.I.:K. Caputi). As in the case of MACS1206, the results I will present in Chapter 7
are derived using the weak lensing analysis of ref. [35] that combine weak lensing shear and
magnification information from WFI 2.2m images out to ~ 2.5 Mpc. I use the weak lensing
information together with the strong lensing one from ref. [146]. The combined mass profile
is parametrized with a NFW model.

As for the kinematic analysis I refer to the results obtained in Sartoris et al (in prep.) In this
analysis they use a sample of 1233 galaxy members selected among more than 3700 galaxies
with spectroscopic redshift provided by the VIMOS and MUSE observation out to ~ 5 Mpc.
The MAMPOSSt technique has been applied using several anisotropy and mass profile models.
Sartoris et al. find that the best combination of models is the NFW mass profile with a Tiret
(eq. (3.34)) velocity anisotropy model.

According to ref. [193], RXJ 2248 has undergone a recent off-axis merger. However,
moderately deep X-ray Chandra (ref. [146]) observations do not show evidence of massive
substructures in the inner region, but only a regular elongated shape, orientated like a large
scale filament (ref. [192]).



Chapter 6

Model-independent constraints on GR

violation

In this Chapter I combine high-precision dynamic and lensing measurements of the total mass
profile of the galaxy cluster MACS J1206.2-0847 to estimate the value of the ration = ¥/®
between the two scalar potentials in the linearly perturbed FLRW metric.

As anticipated in Chapter 1 and Chapter 2, an accurate measurement of the anisotropic stress
7, could show possible, interesting deviations from the predictions of the theory of General
Relativity, according to which W should be equal to ®. In Part II was pointed out that whereas
the mass profile derived from the analysis of the dynamics of the members galaxies tracks
only the time-time part of the perturbed metric (i.e. only ®), the lensing mass profile reflects
the contribution of both time-time and space-space components (i.e. the sum ® + W). I thus
express 7 in terms of the mass profiles and perform the analysis over the radial range 0.5 Mpc <
r < r999 = 1.96 Mpc to provide new model-independent constraints of MG at cosmological
scales. Both mass distributions are parametrized with a spherical Navarro-Frenk-White profile,
which gives the highest probability from the fit to data (see Section 5.2); I consider the effect
of assuming different functional forms for mass profiles and of the orbit anisotropy in the
kinematic reconstruction as possible sources of systematics. The results shown in this Chapter,
which are published in ref. [22], highlight the potential of this method to detect deviations
from GR, while calling for the need of further high-quality data on the total mass distribution
of clusters and improved control on systematic effects. Within this Chapter and the next one I

assume a background ACDM model with €2,,, = 0.3 for the matter density parameter and Hy =

102
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70 km s~*Mpc ! for the present-day Hubble constant; note that the derived constraints do not
depend on the specific cosmology chosen, which is used only to convert observed angular

scales into physical scales.

6.1 7(r) from galaxy cluster mass profiles

As discussed in the previous Chapters, the spacetime geometry around a galaxy cluster is de-
scribed by a linear perturbation to the FLRW metric, which can be written in the conformal
Newtonian gauge, eq. (1.31), in terms of two gauge-invariant scalar quantities, the Bardeen
potentials ® and V. In Section 1.2.1 I showed that the perturbed metric is related to the pertur-
bation in the matter and energy content through the linearized Einstein’s field equations which,
in the absence of anisotropic stresses (II = 0), lead to the condition that & = W. We thus de-
fine the anisotropic stress in configuration space 7(x) as the ratio U (z)/®(x), where x = a*
are the spacetime coordinates; a deviation of this parameter from the value 7 = 1 indicates a
violation of the Einstein’s equations, i.e. a deviation from standard gravity.

In the following analysis, I carry out an observational determination of 1 by using the
cluster mass profiles obtained from measurements of the velocity dispersion of the cluster
galaxies and from combined strong and weak lensing measurements. These two methods to
infer mass profiles from observational data are connected to the gravitational potentials in
different ways. The motion of the galaxies in a cluster is determined by the metric time-
time component gog = —(1 + 2®/c?), since their typical velocities, ~ 103 kms~!, are non-
relativistic. For example, in the case of the cluster MACS 1206, the velocity dispersion along
the line of sight has been measured by ref. [25] o059 = 1087f§§ kms™! < c.

The Bardeen potential ® is related to the source term by the (0,0) component of the Einstein’s

equations, which in this context is simply given by the Poisson equation
V2@ = 47GSpayn , (6.1)
where 0pqyy, is the effective dynamical mass density profile, which in Furier space is given by
Spayn (k) = Y (k, a)dp(k). 6.2)

In the above equation, Y (k, a) expresses the modification in the Poisson equation defined in

eq. (2.11). It is worth to stress that in this first analysis I do not assume any parametric form
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for Y, since I am only interested in constraining generic deviation from GR.
As for lensing mass profile, in Chapter 4 T introduced the lensing potential as ®j.,,s = (P +
) /2. from which it is possible to define an effective density field e, s through the Poisson
equation:

V2P ens = ATGOprens - (6.3)

Under the assumption of spherical symmetry one can integrate eq. (6.1) and eq. (6.3) over a

sphere of radius 7, thus obtaining

d G

5. 2() = 5 Maya(r), (6.42)
d 2G
o [D(r) 4+ U(r)] = T—QMlens(r) . (6.4b)

In the above equations, Mgy, (r) and Mje,s(r) are the total dynamic and lensing effective
masses enclosed within a sphere of radius r. Combining eq. (6.4a) and eq. (6.4b) and in-
tegrating once more with respect to r, I derive the relation between the ratio of the Bardeen

potentials and the cumulative mass profiles:

\IJ(T) — \I/(T’[)) _ f,:) r% [2Mlens(rl) - Mdyn(T/)] dr'’
O(r) — D(ro) I %Mdyn(r’)dr’

TO T

(6.5)

Here ®(r) and W(rg) are two integration constants that one can set equal to zero using the

freedom in the definition of the potentials.

6.2 Results

In this section I discuss the application of eq. (6.5) to compute the anisotropic stress () for
MACS 1206, using the lensing and kinematic mass profiles considered above. In our anal-
ysis, I integrated the mass profiles in the radial range [rg,7200], With 7o = 0.55Mpc and
r900 = 1.96 M pc, where the latter is the best-fit value as obtained from both the kinematic
and lensing analysis of refs. [25, 26]. At larger radii, dynamical equilibrium cannot be reliably
assumed, and therefore the Jeans’ equation can no longer be used to infer the gravitational
potential. Moreover, at such large radii, the lensing masses become less reliable, as the weak

shear signal becomes increasingly contaminated by large-scale structure filaments that might
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affect the recovered mass profiles.

In spite of MACS 1206 global behavior (see Section 5.2 of Chapter 5), in the innermost
regions (r < 0.5 Mpc) we do not have sufficient information to establish whether the central
core is dynamically relaxed and to confirm the validity of the spherical symmetry assumption.
In fact, Chandra X-ray observations of MACS 1206 show an inner entropy profile (see ref.
[194]) which is higher than expected for a relaxed cool core cluster, thus indicating a dynam-
ically active core. Moreover, optical photometric observations in the cluster central region
(R < 0.1Mpc), presented in ref. [195], show evidence for a distribution of the intracluster
light (ICL) which is asymmetric with respect to the position of the BCG, with an elongation in
the direction of the second brightest cluster galaxy. This suggests the presence of a tidal inter-
action between these two central galaxies, further questioning dynamical relaxation to hold in
the central region of MACS 1206.

In this analysis I consider four parameters: r_» and 729, derived from the dynamics analy-
sisinref. [25] and r_9 and 7y derived from the lensing analysis by ref. [26]!. For the dynamic
mass profile, following ref. [25], I adopt the combination of the NFW profile, eq- (2.20), and
the “O” model of eq. (3.35) for the orbit anisotropy (“NFW+O" hereafter) as the reference
model, as obtained considering the scale radius of the number density profile r, = 0.63 Mpc.
In order to propagate the statistical errors from the mass profile parameters to 7(r), and follow-
ing the analysis of ref. [21], I repeated the calculation of 7(r) by Montecarlo sampling with
10* trials the two probability distributions in the (r_g, rogo) parameter space, as provided by
the dynamics and by the lensing mass reconstructions. The results of these trials are shown in
Figure 6.1 for the three models of the mass profile considered in the analysis (see the discus-
sion about systematics below). From left to right: NFW, Hernquist (eq. (6.6) ) and Burkert
(eq. (6.7) ) profiles, with red and blue points for the dynamics and lensing, respectively. As
discussed in ref. [21], the joint distribution of the (rapp,7_2) parameters from the kinematic
analysis has nearly zero covariance, so the errors on these two characteristic radii are almost
uncorrelated. On the other hand, the joint probability distribution of the parameters from the
lensing analysis can be assumed to be a bi-variate Gaussian with covariance between r_o and
r900- As expected, the iso-probability contours in the (r200, 7—2) plane are almost elliptical in
this case (see Figure 6.1). In Figure 6.2 I plot the results for n(r) as a function of the distance

from the center, r. For the reference analysis based on the NFW+0O mass model, I show the

'In this Chapter I refer to 7_» instead of 75 in order to have a quantity which can be compared among different
mass profile models. Indeed, r_2 # 7 for Burkert and Hernquist profiles
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Figure 6.1: Results of the 10* Montecarlo simulations generated by sampling the joint probability
distribution of 1509 and r_5 from the dynamics analysis (red points) and from the combination of strong
and weak lensing analyses (blue points). Left panel: NFW mass model of ref. [33]; central panel:
Hernquist mass model of ref. [196]; right panel: Burkert mass model of ref. [197].

results in the range 0.55 — 1.96 Mpc with the red solid line, along with the corresponding 68%
C.L. (orange shaded area). The effect of starting the integration of the mass profiles in eq. 6.5
from a smaller radius, namely ro = 0.07 Mpc, is shown by the black dashed curve, with the
yellow area marking the corresponding 68% C.L. The errors increase when using information
from the cluster central region where the mass profile derived from strong-lensing has larger er-
rors than the one obtained from weak-lensing (see Figure 13 of ref. [25]). Here the errors in the
strong-lensing regime are dominated by model-dependent systematic uncertainties [26, 186].
The weaker constraint affects all the 7 profile by virtue of the correlation between errors at dif-
ferent radii. I also notice that the median values of 7(r) are slightly lower than those estimated
when using 79 = 0.55 Mpc. In both cases, the results are consistent with = 1, thus with the
predictions of GR.

Possible systematic effects could in principle affect the analysis. From an observational
point of view, the cluster orientation and asphericity can affect both lensing and kinematic
mass profile determinations. Ref. [183] found that the ellipticity of the galaxy distribution for
MACS1206 is € = 0.20f8:82. Such value is low especially for a medium-z cluster compared
with what found at low redshift by ref. [198] ((¢) = 0.25+0.12 in a sample 44 Abell clusters)
and by ref. [199] ((¢) = 0.4 for a sample of 99 Abell clusters). Moreover, since the kinematic
analysis is based on the Jeans equation and thus on the assumption that the cluster is in dy-
namical equilibrium, the presence of substructures could affect our results on 7. However, as

discussed in Chapter 5, MACS1206 do not show a significant level of substructures. In order
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Figure 6.2: Constraints on the radial profile of the anisotropic stress 7(r) for the reference analysis
based on the NFW parametrization of the density profile (see eq. (2.20)) and the O-model of eq. (3.35)
for the orbit anisotropy. Results correspond to g = 0.55 Mpc (NFW-betaO) and 0.07 Mpc (NFW-
betaO extended) for the minimum radius down to which mass density profiles are considered. Solid red
and black dashed curves show the median values of 7)(r), while the narrower orange and broader yellow
areas mark the corresponding 68 % C.L. regions.
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Figure 6.3: The effect of changing the reference model for the mass density profile (left panel) and the
orbit anisotropy profile 5(r) (right panel) on the resulting constraints on the anisotropy stress profile
n(r). Here I assume 7o = 0.55 Mpc. Left panel: three mass profile models with fixed anisotropy
B = 70”. NFW model, ref. [33]: red solid curve; Hernquist model, ref. [196]: blue dashed curve;
Burkert model, ref. [197]: black dash-dotted curve. Right panel: NFW mass profile for different
anisotropy models. # = ”7O”: red solid curve; 8 = 7T black dashed curve; 8 = ”C”: blue dotted
curve. In both panels the shaded area indicates the 68% C.L. errors for the reference NFW+0O model.
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to estimate the dependence of the 7(r) measurement eq. (6.5), on the kinematic mass profile

used, I also consider the Hernquist (ref. [196], hereafter “Her”” ) model:

(2r_2 + 7200)* r
M(r) = M- 6.6
and the Burkert (ref. [197], hereafter “Bur") model:
Infl + (r/rg)? + 2In(1 + r/rg) — 2arctan(r/rg
V() — Mgy L+ /7)) 4 210014 7/ (r/r)) .

In[1 + (ro00/75)2)] + 2In(1 4 rogo/r5) — 2 arctan(rago/r5)’

where rp ~ %r,g. In Table 6.1, I summarize the kinematic mass models for which I derived
constraints on 7.

In Figure 6.3 I quantify the systematic effect on 7 obtained by changing all the mass and
anisotropy models. I stress that all the kinematic mass and anisotropy profile combinations
considered in this analysis have been proven in ref. [25] to provide acceptable fits and none of
them is rejected by data. The same finding also holds for the mass profiles from the lensing
analysis. In the left panel, I consider three different mass profiles (see also Table I) in both
kinematic and lensing analysis, assuming in all cases 5 = ”O” for the orbit anisotropy. The
solid, dashed and dash-dotted lines indicate the median values of the distributions for NFW,
Hernquist and Burkert respectively, while the colored area indicates the 68% C.L. region for
the NFW+O profile. I note that GR predictions are now slightly outside the 68% C.L. regions
when using the “Bur” mass profile, thus underlining the importance of the adopted mass profile
parametrization. However, it is worth to point out that the “Bur” model has been statistically
disfavored by the ensemble mass profile derived from a stacked lensing analysis of the CLASH
X-ray-selected sample, also including MACS J1206, based on strong-lensing, weak-lensing
shear and magnification data [200].

In the right panel of Figure 6.3 T show 7(r) computed using the NFW mass profile and
the three anisotropy profiles discussed in Section 5.2. The shaded areas indicate the 68%
confidence regions for the reference model NFW+O while the solid, dashed and dotted lines
represent the medians of the distributions. In this case, although the details of the results
are sensitive to the anisotropy model adopted, the resulting 7 profiles always lie within the
statistical uncertainties of the reference model (see also Table I).

As mentioned above, since 7 is obtained as a ratio of integrals depending on the mass

profiles (see eq. 6.5), the errors at different radii are correlated. In fact, the determination of
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Mass profile 3 n  An(68%C.L.) An(95%C.L.)

NEW O 1.00 +031 My
NFW C 122 +0.45 e
NFW T 123 +0.33 )
Bur 0 065 +0.26 B
Her O 0.8 ig;gé tg:gg

Table 6.1: Constraints on the anisotropic stress 7 for the different mass and anisotropy models. Column
1: mass model used (NFW: ref. [33]; Bur: ref. [197]; Her: ref. [196]). Column 2: model for the profile
of orbit anisotropy as fitted in the kinematic mass reconstruction (O: eq. 3.35; T: eq. 3.34; C: constant
B). Column 3: median values for 7 at r509; Columns 4 and 5: errors at 68% and 95% C.L.

n(r) at a fixed radius 7 is affected by the shape of the profile at » < 7. For this reason, I quote
the values of 1 computed at 200 = 1.96 Mpc for all the models analyses, as reported in Table
6.1.

For the reference model (NFW with anisotropy profile *O’), I obtain

1n(1.96 Mpc) = 1.0070 3% (stat) =+ 0.35 (syst), (6.8)

at 68 % C.L. where the systematic error is computed taking into account the variation in the
median value of 7(r200), due to the different anisotropy and mass profiles used. As such, our
analysis provides constraints on the anisotropic stress 7 which are fully consistent with the GR

predictions.

6.3 Conclusions

In this Chapter I have presented a method to derive constraints on the anisotropic stress 1 =
® /W by comparing high-precision determinations of the total mass profiles of galaxy clusters
from lensing and kinematic analyses. As a case study, I have applied this method to MACS
1206, a bona fide relaxed cluster at z = 0.44 with Magg = (1.4 & 0.2) x 105 M, (ref.[25]).
Lensing masses for MACS 1206 have been derived by ref. [26] using the high-quality imaging
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and photometric data obtained from HST and Subaru within the CLASH project. Kinematic
mass profiles have been derived by ref. [25] thanks to intensive spectroscopic observations
carried out within the CLASH-VLT program. Galaxy motions are sensitive only to the time-
time component ¢ of the metric perturbation, while lensing is sensitive to both the time-time
and space-space components, i.e. to ® + W. Therefore, a comparison of mass profiles based on
these two independent methods allows one to set constraints on possible deviations from the
prediction of General Relativity (GR), n = 1.

The results of this analysis can be summarized as follows.

e Comparing mass profiles over the range of radii from r9 = 0.55 Mpc out to r29g = 1.96
Mpc, I find results to be consistent with the prediction of GR: 7(r200) = 1.00f8:§é
at 68% C.L. for the reference analysis based on the NFW parametrization of the mass

density profile and a specific model for the profile of orbit anisotropy.

e While the above errors refer only to statistical uncertainties, we also estimated the effects
of systematic uncertainties related to changing the parametrization of the mass density
and orbit anisotropy profile, as well as changing the minimum radius down to which
mass profiles are considered. Within the range of models considered, these systematic

uncertainties roughly double the uncertainty in the measurement of 7.

o Interestingly, I find these constraints to be competitive with those obtained by com-
bining expansion probes, cosmic microwave background anisotropies and large-scale
structure observations (e.g., refs. [201, 1]). In particular, ref. [202] constrained the
values of n(z = 0) and Y (z = 0); this analysis was based on WMAP-5 data com-
bined with cosmic shear data from CFHTLenS and Integrated Sachs Wolf (ISW) data,
taking into account also a possible time evolution of the two functions. They found
n(z = 0) = 0.98%07 for 2, = 1.0 and n(z = 0) = 1.30 + 0.35 for 2, = 2, where
zs 1s a transition redshift at which the parameters smoothly change to their late time
values, with uncertainties referring to 68% C.L.. In a similar way, ref. [203] obtained
—1.6 < n(0) — 1 < 2.7 at 95% C.L. by combining CMB constraints from WMAP-5,
Type-Ia SN from Union2, and cosmic shear data from CFHTLS and COSMOS surveys.

Ref. [1] combined CMB data with different cosmological probes to study time- and
scale-dependence of the modified gravity parameters 7 and Y, both extrapolated to z =
0, as already mentioned in Chapter 2. When the contribution of CMB lensing is included
in the analysis, they obtain n(z = 0) — 1 = 0.60 + 0.86 for the scale-independent
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Figure 6.4: Comparison between the results of this analysis (yellow vertical bands) and joint constraints
onn(z = 0),u = Y(z = 0) in the scale-independent case, obtained by ref. [1] (Fig. 14, left panel)
combining CMB data, Baryonic Acoustic Oscillations, Redshift Space Distortions and Weak Lensing
data. The inner darker yellow region refers to 1o stat+syst uncertainties, while the lighter shaded area
corresponds to 20 confidence region.

determinations. They also show that the constraints become weaker when introducing

the dependence on the scale.

In general, the results obtained are broadly consistent with the above constraints on de-
viations from GR, even if our method provides constraints only on 7. The statistical
uncertainty in the measurement of 7 is quite competitive with those obtained from CMB
and large-scale structure probes. This can be seen in Figure 6.4, where I compare the
bounds on 7(ra00, 2 = 0.44) including also sytematics uncertainties (lighter and darker
yellow regions) with the results on 7(z = 0) and x = Y (z = 0), shown in left panel
of Figure 14 in ref. [1]. However, I emphasize once again that an accurate control of
systematics in the analysis is mandatory for our proof-of-concept analysis to turn into an
accurate and robust method to constrain modifications of gravity at the scales of galaxy

clusters.

It is worth pointing out that the above results have been obtained from high-quality observa-
tional data of only a single galaxy cluster, thus highlighting the potential of using mass profiles

of clusters as tools to probe the nature of gravity on cosmological scales. In principle, this
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result should not surprise; as long as the cluster in consideration satisfies the main assumptions
on which lensing and kinematic mass profiles are recovered, the precision of the derived con-
straints is only limited by the quality of observational data. Kinematic mass profiles are based
on solving the Jeans equation for the projected phase-space distribution of cluster galaxies,
assuming a spherically symmetric stationary system within which galaxies moves as tracers of
the underlying potential. Even though the lensing mass profile do not rely on any assumption
on the dynamical state of the cluster, its reconstruction still assumes spherical symmetry, as
well as negligible contamination from the surrounding large-scale structure. In this respect,
the choice of MACSJ 1206 for this case study is close to be optimal, given the overall appear-
ance of this object as dynamically relaxed system.

MACSIJ 1206 is only one of a dozen clusters of the CLASH-VLT survey for which data of
comparable quality are available. The extension of this analysis to other clusters requires the
combination of large redshift samples, high-quality weak and strong lensing data, as well as
X-ray data on well selected clusters. A sample of at least 500 redshifts of member galaxies is
needed for accurate dynamical mass profiles. Together with deep X-ray data, kinematic data
are also needed to check whether the system is relaxed or whether other astrophysical system-
atics can play a significant role. As a complementary approach, applying the same analyses to
realistic cosmological simulations of galaxy clusters should quantify the impact of systematics
in the measurement of lensing and kinematic mass profiles, and, ultimately, their impact in
precision tests of gravity at the scale of galaxy clusters. This aspect will be broadly discussed

in Chapter 8.

Finally, it is important to notice that the analysis discussed in this Chapter does not take
into account specific models of modified gravity. In order to better highlight how the bounds
obtained on 1 compare with those derived from other cosmological probes - as well as to further
investigate the constraining power of our method - it is interesting to recast them in terms of
constraints on the free parameters of viable modified gravity theories.

In spite of these considerations, in the next Chapter I will focus on the specific class of f(R)
modified gravity models, performing a detailed kinematc mass profile reconstruction for the
clusters MACS 1206 and RXJ 2248. I will then combine the information provided by the
Strong+Weak lensing analyses of these two galaxy clusters to constrain the interaction range

parameter A defined in eq. (2.37).



Chapter 7

Constraints on f(R) models

In this Chapter I apply the method of combining dynamics and lensing mass profile recon-
structions, presented in the previous Chapter, to the specific case of f(R) models of gravity;
the results shown here have been published in ref. [36].

As already mentioned, the bounds on 7(r) obtained from the analysis of the galaxy cluster
MACS 1206 are derived without assuming any parametrization for modified gravity; I now
focus on the class of Horndeski models, for which the expression of the Bardeen potentials ®
and W is given by eq. (2.23) and eq. (2.27) respectively, further restricting the analysis to f(R)
gravity, as a case study, where the only additional free parameter is the fifth force interaction
range A = 1/m. Using the modified version of the MAMPOSSt code introduced in Chapter
3, I perform a maximum likelihood fit to the phase-space data of the clusters MACS 1206 and
RX(C2248 to determine the total mass profile from dynamics in f(R) framework. I assume a
spherical Navarro-Frenk-White mass profile in order to obtain a constraint on A for models in
which the dependence of this parameter on the environment is negligible at the scale considered
(i.e. A = const). I then use information from lensing mass profile determinations to put a prior
on the other NFW free parameters. As I will discuss, the joint kinematic+lensing analysis in
the case of RXJ 2248 leads to a peculiar behavior that could in principle be explained in terms
of modifications of gravity. The results are presented in Section 7.1. I will further show in
Section 7.2 how the obtained constraints change when introducing a radial dependence in the
interaction range (i.e. a screening effect), modeled with an analytical approximation. I discuss
the impact of systematics and the limits of our analysis as well as future improvements of the

results obtained in Section 7.3. This work has interesting implications in view of upcoming and

114
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future large imaging and spectroscopic surveys, that will deliver lensing and kinematic mass

reconstruction for a large number of galaxy clusters.

7.1 Results

In this section I present our results for the constraints on the interaction range A obtained from
the analysis of the galaxy clusters MACS 1206 and RXJ 2248.

I apply the MAMPOSSt method to constrain A = 1/me ¢ using the parametric expression
of eq. (2.23) for the gravitational potential in generic f(R) models (i.e. setting the parameters
as in eq. (2.43)) without screening, i.e. by assuming that the dependence of the environment
of meyy is negligible at the scales we are looking. In other words, I assume the screening
radius to be much smaller - or much larger - than the cluster size. The situation could be also
described in terms of a model with a strong screening mechanism where the effective mass of
the scalaron remains always close to the minimum inside the overdensity.

For both clusters I include in the analysis data out to the virial radius, that is close to
7200, to ensure the validity of the Jeans equation. Moreover, the region below r = 0.05 M pc is
excluded since the internal dynamics of the Brightest Central Galaxy (BCG) becomes dominant
(see e.g. ref. [161]).

7.1.1 MACS 1206

In the case of MACS 1206, for which 592 cluster members were identified in ref. [25], I
use a sample of 345 galaxies, namely all the members lying within the radial range used in
our analysis [0.05 Mpc — 2.0 Mpc| in which I assume the Jeans’ equation to be valid. The
projected number density profile of the tracers n(R) is fitted with a projected NFW (pNFW,
ref. [204]) with a face value of the scale radius parameter r, = 0.63 Mpcfgjéé, as given by the
Maximum Likelihood fit on the total sample of spectroscopic+photometric members (see Sect.
2.2 of ref. [25]).

I run the MAMPOSSt procedure in the modified gravity scenario with four free parameters,
7200, T's, A plus the velocity anisotropy parameter 5. I use the "C" velocity anisotropy model
(constant anisotropy with radius) as the reference model of the analysis, since it provides the
highest probability in the MAMPOSSt fit in agreement with the GR results (see Table 2 of ref.
[25])

In Figure 7.1 I show the marginalized likelihood distributions for the four free parameters
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Figure 7.1: Results for MACS 1206. Marginalized likelihood distributions for the free parameters in the
MAMPOSSt analysis obtained by integrating over the other three. Upper panels: 75 and r209. Bottom
panels: o,/09 = 1/y/1T— B and A = 1/m.ss. The red distributions are obtained from the kinematic
analysis alone, while the blue curves show the joint lensing+kinematic results. Red and blue vertical
lines represent the values corresponding to the maximum of the MAMPOSSt Likelihood and of Ly
respectively. Black solid lines are the best fit values of the GR analysis. Filled Red shaded areas in 7,
r900 and f indicate the 68% C.L. error from the dynamic analysis; the dark and light blue regions below
the distribution of A show the Ax? = 1.0 and the Ax? = 2.1 confidence intervals respectively.
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in the case of 3(r) = const. As inref. [25], I consider the quantity o, /o9 = 1/+/1 — [3 instead
of 8. The red curves are the results from the kinematic analysis while the blue curves represent
the marginalized distributions when adding lensing information (see below). The vertical red
solid lines indicate the best fit values given by MAMPOSSt for each parameter, compared with
the GR best fit (black dashed lines). The red shaded regions in the rg, 7999 and 3 probability

distributions show the 68% statistical errors. I obtain:
raoo = 2.0070 9% Mpe, 75 =0.3910 10 Mpe, B =pc = 1317037, (7.1)

at 68% C.L., consistent with the results of [25]. The constraints on the parameters r; and
Bc in GR are basically unaffected by the introduction of the modified gravity term in the
dynamical analysis with the MAMPOSSt method. In the case of the virial radius r99¢ instead,
the distribution tends to be wider with respect to the one obtained from the analysis of ref. [25],
with a bimodal feature that, as explained below, is due to the degeneration with the interaction
range A.

From the red curve in the bottom right panel of Fig. 7.1 it can be seen that the distribution
of A from the dynamics alone is almost flat; in the limit of A — 0 (i.e. merp — o0) this is
not surprising, since we are approaching the GR regime and the contribution of M,,, in eq.
(2.23) becomes negligible. To give an example, for A < 0.05 Mpc the increase in the mass
profile at » = 0.3 Mpc due to the fifth force is ~ 10™%, that is undetectable if compared to the
modification induced by the statistical uncertainties in r5 and 72qg.

More interesting is the case A > 1 Mpc, associated with considerable deviations from GR.
The flattening behavior of the curve for large A is explained by looking at the degeneration
directions in the two-dimensional distributions of Fig. 7.2. Each plot is obtained by marginal-
izing over the other two parameters; here the red and green lines indicate the dynamics contours
at Ax? = 2.3, 4.61 (where x?> = —2log[L]) respectively. As \ increases, the virial radius
T900 tends to assume lower values, while the scale radius r5 shows only a slight change for
A > 1. This behavior is a consequence of the relatively small maximum gain (up to 1/3) pro-
duced in the mass profile by the additional force in f(R) gravity. In fact, the effect generated
by the term M, for large values of A can be compensated by suitably adjusting rs (which de-
termines the inner slope of the profile) and 9o (which is related to the total observed mass of
the cluster) with respect to the GR values, so that the resulting modified mass profile becomes

very close to the GR one. Physically, this means that in f(R) gravity the galaxy dynamics is
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altered in a similar way as the modification induced by a deeper potential well in GR, and even
the high-quality data used are not sufficient to distinguish between the two cases.

The interaction range distribution shows a smooth peak at A = 0.1 Mpc, corresponding to
the best fit given by MAMPOSSt, but the excess of probability is statistically irrelevant; the
presence of the peak is related to the degeneration between A and r;.

As discussed in Sect. 2.2, up to a conformal rescaling (1 + f, R) ', photons are affected
only by the Newtonian contribution in f(R) models. I thus can get additional information
on the NFW parameters r; and 7999 by using the results of the gravitational lensing analysis
presented in ref. [35].

In order to improve the derived constraints, I multiply the total likelihood distribution ob-
tained by the MAMPOSSt method with the posterior probability distribution Pje,s(7s, 7200)
given by strong+weak lensing analysis of [35] assuming flat prior in log(Magg), log(c). Since
the lensing distribution peaks at 7y = 0.53 £ 0.18 Mpc, 2990 = 2.14 #+ 0.16 Mpc!, favoring
larger values of the NFW parameters compared to the MAMPOSSt result (see left panel of Fig.
7.2), the final likelihood, defined as

log(ﬁtot) = log(ﬁdyn) + log(Plens)a (7.2)

explores a region in the parameter space that is in the orthogonal direction with respect to
the degeneracy direction in the dynamical analysis, thus increasing the significance of small
deviations from GR. The new two-dimensional contours at Ay? = 2.3, 4.61, obtained by
including the lensing prior, are shown by the dark and light blue regions in Fig. 7.2, while
the marginalized distributions of L, are plotted as the solid blue curves in Fig. 7.1. The
blue vertical dotted lines in each panel correspond to the maximum of the total likelihood L
including lensing informations. Now I can put an upper limit, after marginalization, on the
effective scalaron interaction range A < 0.49 Mpc at Ax? = 1.0 (blue shaded area in the right
bottom panel of Fig. 7.1) and A < 1.01 Mpc at Ax? = 2.71 (light blue shaded area in the right
bottom panel of Fig. 7.1), in agreement with the results presented in Chapter 6 which indicate
negligible deviations from GR for this cluster.

The analysis discussed above has been performed for the best fit model, NFW and "C"

"Here the errors are estimated by approximating the distribution to a bivariate Gaussian around the maximum of
the probability. Note that the maximum-likelihood values of 7209 and rs I find are slightly smaller than the values
given in Table 2 of ref. [35]. This is because they quoted marginalized posterior constraints on the respective
parameters obtained using the biweight location and scale estimators of ref. [205]
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Figure 7.2: Results for MACS 1206. Two-dimensional likelihood distributions obtained from the dy-
namical analysis alone (red and green contours) and from the total likelihood with lensing contribution
(dark and light blue shaded areas) after marginalization over the other two parameters. Upper panels:
7200 VS T's, T200 VS A. Bottom panels 75 vs A\, 8 vs A. The inner contours/shaded regions correspond to
the points within Ax? < 2.3 from the maximum of the probability (roughly measuring the 68% C.L)
while the outer contours/filled regions indicates points within Ax? < 4.6 (which represents the 90%
C.L.). In the upper left panel the cyan and magenta lines show the Ax? < 2.3 and Ax? < 4.61 contours
from the lensing analysis of ref. [35].
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anisotropy profile in the dynamical analysis, by assuming a fixed value for the scale radius of
the number density profile of the tracers r,, as the best fit value given by ref. [25]. I can asses
now by how much the constraints are affected by a change of the anisotropy profile and of the
parameter 7, . To this purpose, we repeat the analysis for the other two anisotropy models
mentioned, "T" and "O"; moreover, for the reference model we run MAMPOSSt with r,, set
to the extremes of the 68% confidence region obtained by the GR analysis of ref. [25]. The
results are summarized in the first 5 rows of Table 7.1 while the marginalized distributions are
shown in Fig. 7.3 and Fig. 7.4.

In each plot of both figures the red lines are for the distributions obtained from the reference
model "C" with r, = 0.63 Mpc. In Fig. 7.3, the black dashed line shows the results for the "O"
model, while the blue dotted curve is obtained from the "T" model. It is worth to notice that
the best fit value of A, as well as the position of the peak of the interaction range marginalized
distribution, is not modified significantly by the different parametrization of the anisotropy
profile. This is not surprising since A is totally degenerate with /3, as one can see from the
right bottom plot of Fig. 7.2%. On the other hand, the shape of the distribution near the peak
is affected by the changes in the anisotropy model. This is a consequence of the degeneration
between A and the scale radius rs, which is responsible of the internal structure of the mass
profile (right bottom panel of Fig. 7.2). In fact, the more the distribution in r is sharp, the more
the peak in A is evident. Fig. 7.4 shows the effect of changing 7, within the 68% C.L. given by
the GR analysis. The relatively small statistical uncertainties with which r,, is known produce
a negligible effect on the marginalized distributions of the free parameters in our analysis.
The black dashed curves in each plot indicate the results for r,, set at the upper limit of the
68% confidence region, while the blue dotted curves are for 7, set to the lower value. It’s
interesting that this last case (r, = 0.54 Mpc) produce a likelihood slightly higher than the
best fit r, = 0.63 Mpc (see Table 7.1), but we stress again that the scale radius is obtained by
a fit which is external to the MAMPOSSt procedure. The corresponding vertical lines indicate
the values which maximize the likelihood L gy, .

To estimate the systematic uncertainties in our results on rg, ro0g and A I take into account
the variation caused by these changes. For the standard NFW parameters we obtain:

ra00 = [2.0010 9% (stat) £ 0.06(syst)] Mpe, (7.3)

] verified that this statement remains valid for the other two models analyzed
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Results for MACS 1206. Marginalized likelihood distributions of rogg, 75, 0-/09 =

1/4/1 — 3 and \ from the MAMPOSSt analysis obtained by changing the anisotropy model §(r) for
r, = 0.63Mpc. in the bottom left plot 5 indicates B¢ for the "C" model and S, for "T" and "O"

models.

Black dashed curves: "O" model. Red solid curves:

"C" model. Blue dotted curves :"T"

model. The corresponding vertical lines indicate the MAMPOSSt best fit of each free parameter.
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Figure 7.4: Results for MACS 1206. Marginalized likelihood distributions of 7409, 75, 0, /09 =
1/4/1 = B and )\ obtained for the reference model "C" by changing the scale radius of the number
density profile of the galaxies 7, within the 68% confidence region of the G.R. analysis. Red solid
curves: r, fixed to the GR best fit value. Black dashed curves: r, fixed to the lower limit of the 68%
confidence region. Blue dotted curves: 7, (8,) settled to the upper limit of the 68% confidence region.
The corresponding vertical lines indicate the MAMPOSSt best fit of each free parameter.
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rs = [0.39701%(stat) £ 0.09(syst)] Mpc, (7.4)

where the statistical errors indicates the 68% confidence region as above, and the systematic
errors are computed as the maximum difference between the best fit values (vertical lines). For
B = Bc one can estimate only the variation induced by r,, since the parameter has a different
meaning for each velocity anisotropy profile. As one can see from Fig. 7.4, no measurable
effects are produced on the /3 distribution when r, is modified.

In the case of A, I estimate the impact of systematics looking at the modifications in the

upper bound after adding information from lensing analysis:
A < [1.61 +0.30(syst)]Mpc ~ Ax* = 2.71, (71.5)

where the systematic uncertainty is the largest difference (in absolute value) between the upper
limits obtained from the models analysed. The result is still compatible with small or negligible

deviations from standard gravity.

7.1.2 RXJ 2248

I perform the analysis for the cluster RXJ 2248 in the radial range [0.05 Mpc — 2.3 Mpc], using
the 981 member galaxies lying in this region out of a sample of 1233 cluster members identified
(Sartoris et al., in prep.).

As for MACS 1206, I fixed the number density profile whose parameter is given by the best
fit value of the standard GR study (Sartoris et al., in prep.). In particular, the projected number
density profile is again a pNFW with 7, = 0.59 £ 0.08 Mpc, where this value is obtained by
a Maximum Likelihood analysis on the spectroscopic members only. For 5(r) I use the same
models discussed above; the highest probability for this cluster is given by the Tiret model "T"
of eq. (3.34). The results of the MAMPOSSt procedure applied to the modified gravitational
potential of eq. (2.23) with the velocity anisotropy model "T" are shown in Figs. 7.5 and
7.6. As before, the red and green curves in Fig. 7.5 indicate the contours at Ay? = 2.3 and
Ax? = 4.6 respectively. The distributions for each parameter, obtained after marginalizing
L 4y, are plotted as the red curves in Fig. 7.6.

The effective interaction range probability distribution (bottom right plot of Fig. 7.6) shows
the same qualitative behavior as found from the analysis of MACS 1206: the curve flattens

both for large A and for A — 0, although the shape is more peaked near the MAMPOSSt best
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Figure 7.5: Results for RXJ 2248: two-dimensional contours at AX2 < 2.3 and Ax2 < 4.61 from the
maximum of the probability of the MAMPOSSt analysis (red and green lines respectively) and of the
joint dynamics+lensing analysis (dark blue and light blue filled regions). The cyan and purple lines in
the left upper panel show the lensing contours at 68§% C.L. and 90% C.L.
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Figure 7.6: Results for RXJ 2248: single parameter distributions obtained by marginalizing the total
likelihood over the other three. Upper panels: 7y and ro09. Bottom panels: o,./0p = 1//1—
and A = 1/meys. Red curves: dynamics analysis, blue curves: lens+dyn. Vertical red solid lines
indicate the MAMPOSSt best fit values, blue dotted lines correspond to the values maximizing the total
likelihood while black dashed lines are the dynamics GR best fit. The filled areas below the marginalized
distributions of r, 909 and 5 = [, represent the 68% C.L. of the dynamics results. The dark and
light blue regions below the curve P()\) show the AX2 < 1.0 and Ax2 < 2.71 confidence intervals,
respectively.
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fit value A = 0.91 Mpc (red vertical solid line) compared to the previous cluster. As mentioned
above, the presence of the peak is strictly related to the distribution of the scale radius 75, which
controls the inner shape of the mass profile. Also the 2-dimensional degeneration directions
with 7y, r900 and S (Fig. 7.5) are very similar to those of Fig. 7.2. The reason for a nearly
constant, non-zero probability to have large deviations form GR can be again explained in
terms of the small enhancement of the mass profile produced by the fifth force, which allows A
to be large if r; and ro0g change in such a way to compensate the effect of the additional term.
It is worth to point out that the number of galaxies used in the MAMPOSSt fit for this cluster is
about three times larger than that of MACS 1206; this means that roughly tripling the statistics
is still not sufficient to set meaningful constraints on A from the analysis of dynamics alone.

As for the standard NFW parameters and the velocity anisotropy, I obtain the results:
rooo = 2.70T059 Mpe, 7, = 0.7510 18 Mpe,  Boo = 1.437073, (7.6)

at 68% C.L., where the errors are computed with respect to the best fit values of the MAM-
POSSt procedure (red vertical solid lines in Fig. 7.6). The constraints are consistent with
the results obtained from the GR analysis (Sartoris et al., in prep.) 7200 = 2.73J_r8:8§ Mpc,
ry = 0.65f8:5% Mpc and B = 1.43:1):81 (black dashed lines in Fig. 7.6). Nevertheless, as
for MACS 1206, the degeneration between the virial radius and the modified gravity parameter
produce a shallower marginalized distribution of 7999, with an excess of probability towards
lower values. There is a modest difference between the GR and MG best fit values, suggesting
that the impact of the interaction range A on the total likelihood distribution is larger than for
MACS 1206. Since the best fit is sensitive to every small variation in the probability, the slight
preference of A ~ 0.3 (roughly three times the value from the best fit obtained in the previous
case) is sufficient to move away the other parameters from the GR values, but the excess is still
not relevant enough to affect the marginalized distributions which remain in agreement with
the analysis of Sartoris et al. (in prep.).

Following the same approach as in Sect. 7.1.1, I combine the likelihood distribution gener-
ated by the MAMPOSSt method with the lensing posterior probability distribution P(rag0, 7s)
derived from the results of [35] and Caminha et al. (in prep). The blue contours and the blue
lines of Figure 7.6 show what I obtain from the analysis of L;, defined in eq. (7.2). No
upper limits can be provided for A in this case. On the contrary, the joint kinematic+lensing

study indicates a preference for large values of the effective interaction range, excluding at
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Ax? = 2.71 the region A < 0.14 Mpc, as one can see from the marginalized distribution in the
right bottom panel.

The origin of this behavior is related to a slight tension between the lensing and dynam-
ics probability distributions in the plane (rs, r200). Indeed, Pjeys(7200, 7s) exhibits a peak for
ro00 = 2.24+0.22Mpc, rs = 0.55+0.27 Mpc (see the purple contours in the upper left panel
of Fig. 7.6), while the 2-dimensional dynamics distribution has a maximum for 4 = 0.81 Mpc
and 7200 = 2.65 Mpc. When combining the 2 analyses, we increase the probability in the re-
gion of parameter space corresponding to relatively large \ values, while decreasing the prob-
ability for a vanishing interaction range, as can be seen from the 2 dimensional distributions of
Fig. 7.5.

As before, I now study the effect of changing the scale radius of the tracers r,, within the
68% C.L. of the GR analysis and the anisotropy model 3(r). Fig. 7.7 shows the effect on the
marginalized distributions due to the different parametrization of the anisotropy profile while
Fig. 7.8 displays the changes induced by r,. The red curves in both Figures indicate the
reference model ("T" in this case) with r, = 0.59 Mpc. Again, the largest effect on the results
is obtained when changing the anisotropy model (Fig. 7.7). In this case both the position and
the shape of the peak in the distribution of A are modified as a consequence of the variations in
the s marginalized likelihood; this is particularly evident for the model "O" which shows the
largest discrepancy in the best fit value of rs compared to the reference model (vertical lines in
the upper left plot of Fig. 7.7, see also Table 7.1). Nevertheless, the tension with lensing results
is not resolved when including these systematics. As shown in the five bottom rows of Table
7.1, all the runs provide a lower limit on A which is larger than the reference model, except for
the case of r, = 0.66 Mpc where the constraint on the interaction range relaxes from A > 0.30
to A > 0.06 Mpc at Ax? = 2.71.

Note that the results for r, = 0.54 Mpc is slightly preferred with respect to the case of
7, = 0.59 Mpc (last row in Table 7.1), similarly of what I found for MACS 1206. In order to
take into account the variation induced on the NFW parameters g, 7200 by the changes in the
anisotropy profile and in the scale radius of the number density profile, I consider the maximum

difference between the best fit values of each run and of the reference model:
ro00 = [2.70709% (stat) & 0.04(syst)] Mpc, rs = [0.7570 18 + 0.20(syst)] Mpc. (7.7)

As 1 did for the previous cluster, I estimate the systematic uncertainties in S5, from the variation
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Figure 7.7: Effects on the marginalized likelihood distributions of raqq, 75, 0/ = 1/ /1= and
A from the dynamics analysis of RXJ 2248 when changing the anisotropy model 3(r). Red solid
curves: reference model "T". Black dashed curves: "O" model. Blue dotted curves: "C" model. The
corresponding vertical lines indicate the MAMPOSSt best fit of each free parameter. In the bottom left
plot, 8 = B for the "T" and the "O" models, while 5 = S¢ for the "C" model.
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Figure 7.8: Effects on the marginalized likelihood distributions of 29, 7's, 0, /09 = 1/4/1 — 5 and A
of the dynamics analysis of RXJ 2248 for the reference model "T" when changing the scale radius of
the number density profile of the galaxies r,, within the 68% confidence region of the GR analysis. Red
solid curves: r, fixed to the GR best fit value. Black dashed curves: r, fixed to the lower limit of the
68% confidence region. Blue dotted curves: r,, settled to the upper limit of the 68% confidence region.
The corresponding vertical lines indicate the MAMPOSSt best fit of each free parameter.
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induced by r,, only, obtaining:
Boo = 1437059 (stat) £ 0.10(syst). (7.8)

Anis. 7, 7200 Ts (1= Bejo) 12 A Ax?
model [Mpc] [Mpc] [Mpc] [Mpc]
y \ MACS 1206
C  0.63 | 2.00755% 0.391040 1317029 <161 0.0
O 063 | 1.93705% 0307047 1.5119-99 <131 0.72
T 063 | 1.9470% 0.35703 1417355 <131  0.20
C 074 | 1.967095 0.42703 1317939 <131 0.20
C 054 | 200009 042108 1317029 <178 —0.14
RXJ 2248
T  0.59 | 2707097 0.757018 1431059 >0.14 0.0
O 059 | 26801 05501 153701 >0.84 0.64
C 059 | 2731957 0.83702) 1.1870-% >0.80 0.44
T 066 |26753% 0.78702% 1.5310-99 >0.06 0.20
T 054 | 273098 0.747)33 1.4310-5¢ >0.19 —0.16

Table 7.1: Results on the free parameters of our analysis for the cluster MACS 1206 (first 5 rows) and
RX1J 2248 (last 5 rows). The bold characters indicate the reference models adopted for each of the
two clusters. The errors in ro00, rs and 0. /o9 = 1/+4/1 — (3 are the 68% C.L. from the MAMPOSSt
procedure; the upper(lower) limits on ) are obtained at Ax? = 2.71 from the joint kinematic+lensing
analysis. The last column indicate the logarithmic difference between the likelihood of the model anal-
ysed and the likelihood of the reference model.
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7.2 Chameleon screening: constraints on |fx(2)|

As highlighted in Chapter 2, in general A = A(7) is a function of the environment; in particular,
the interaction range tends to vanish in the limit of high density regions and small scales to
recover standard GR. The transition between the screened and non-screened region depends on
the structure of the effective potential V, ;¢ in the equation of motion of the field (2.35), which
is determined by the choice of the functional form f(R). It is important to point out that in
this analysis I have considered only generic f(R) models in which the screening mechanism
works at scales smaller (or much larger) than those investigated here, so that we could neglect
the dependence of m, = 1/X on the local density.

In order to translate our results in a bound on the background scalaron field |f g|, one has
to take into account how the chameleon screening works once a particular model is fixed. As
an example, I focus on the H&S model in which, as shown in Chapter 2, the functional form

of f(R) can be approximated by a power law:

n+1
f.ro Bop
n R’

F(R) ~ 6Qp — (7.9)

where I set n = 1; f ro < 0 is the background scalaron value at present day. An accurate
treatment of this situation requires a full numerical solution of the nonlinear equation (2.35),
which is hard to obtain due to computational issues. Indeed, the transition between the inte-
rior (screened) and the exterior linear regime is very stiff for the most common viable models,
including the H&S parametrization. Bettoni et al. (in prep) tries to overcome this problem
solving the equation using the full metric around a spherical distribution of mass.

As a proof-of-concept, I follow here a simple analytical approximation to describe the screen-
ing mechanism in this case, just to show what I can obtain with our method. I model the
chameleon regime with an instantaneous transition between the region of full screening r < .5,
where f r = 0, and the linear region r > S, where the Newtonian potential is modified ac-
cording to eq. (2.42). As explained in ref. [206], this can be achieved by taking dfr =
min(éf,l}%nv ‘fﬁ

earization condition (2.41).

), where § f’l}'_z” is the solution of the field equation, eq. (2.35), with the lin-

In terms of A, I define the effective interaction range constant and equal to the background value
in the unscreened region > S and equal to zero for r < S. I define S to be the screening

radius, which is given solving ¢ ff}é”(S ) = f g for each value of 7, 7200, A = A tr- In Fig-



Chapter 7. Constraints on f(R) models 132

1e-008 1 |

SN T T T

1e-009

L IlIlJJl

8fr(r)

T
L

1e-010

T T T
\Jlllli]

1e-011 ‘ ' | '
0 5 0 15 20 25

riMpc]

Figure 7.9: Perturbations in the scalaron field 5f p = f r — f r as a function of the radial distance
from the cluster center for A = 0.1 Mpc 5 = 0.27 Mpc, r99 = 2.00 Mpc.

ure 7.9 I show the behaviour of the field perturbation J f r as a function of the radial distance
from the cluster center for the best fit parameters of the MAMPOSSt analysis of MACS 1206
assuming a Hu & Sawicki functional form. As we can see, the screening mechanism is very
strong for this class of models, masking the effect of the additional force up to ~ 7 Mpc for
A = 0.1 Mpc. With the method proposed in this work one would be able, in the most optimistic
case, to constrain the background field only down to values for which the screening radius is
smaller than the cluster size (i.e. less than ~ 2 Mpc) corresponding to | f r| ~ 1078 for H&S
model.

I run again the MAMPOSSt procedure computing the screening radius S, and then requiring
®mg(r) of eq. (2.22) to be zero for » < S. Combining the resulting likelihood with the
lensing posterior I get S\fR < 20Mpc and S\fR > 12Mpc at Ax? = 2.71 for MACS 1206
and RXJ 2248, respectively. Now \ r 1s related to the background field value through eq.
(2.37), which is so constrained to be |f g(z = 0.44)| < 4.0 x 1075 and |f g(z = 0.35)| >

1.4 x 1075, The first bound is in agreement with current determinations of the magnitude of
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the background scalaron, obtained using distance indicators at low-redshift (ref. [134]), galaxy
cluster abundance (refs. [128, 14]) and redshift space distortions (ref. [135]), which have

tightened the upper limit up to f ro| < 107%, compatible with very small deviations from GR.

On the other hand, it is not surprising that the effect of introducing screening for RXJ 2248 is
to increase the tension I found, leading to a value of | f ro| for this particular model which is

totally inconsistent with other constraints.

7.3 Discussions

In this Chapter I have presented an analysis aimed at constraining modifications of gravity at
the scales of galaxy clusters by determining the time-time gravitational potential ®(r) from the
analysis of the dynamics of the galaxies in the cluster. I have focused on a particular sub-class
of scalar-tensor theories, the f(R) models, where the additional degree of freedom associated
to the modification of gravity is expressed in terms of the interaction range \; I have applied
the method to the case of two dynamically relaxed clusters MACS 1206 at z = 0.44 and
RXJ 2248 at z = 0.35, extensively analyzed within the CLASH/CLASH-VLT collaborations.
Assuming spherical symmetry, I have parametrized the cluster mass density profile as a NFW
profile, characterized by the scale radius rs and the virial radius 7999, constraining the vector
of parameters (75, 200, A) with the modified MAMPOSSt code described in Sect. 3.3. Since in
f(R) gravity photons are not affected by the fifth force contribution I have further combined
our results with the information on the NFW parameters 7, 1990 from the strong+weak lensing
analysis of ref. [35].

The results for the cluster MACS 1206 are in agreement with the GR predictions, confirm-
ing the previous general analysis of Chapter 6. When including lensing contribution, I obtain
an upper limit of [\ < 1.61(stat) + 0.30(syst) Mpc at Ax? = 2.71; the bound takes into
account variations in the velocity anisotropy profile 5(r) and in the scale radius of the galaxy
number density profile ., which enters in the kinematic determination of the gravitational
potential (or, equivalently, of the mass profile).

A peculiar behavior has instead been found in the case of RXJ 2248, where the joint kine-
matic+lensing analysis shows a 20 preference for values of A larger than 0. Including also
systematics effects due to changes in the anisotropy profile 5(r) and in r,, I get a lower bound
A > 0.12Mpc at Ax? = 2.71. This result arises from a mild tension < 1o between the

dynamics and lensing determinations of the mass profile in GR. Larger values of 75 and 7209
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Figure 7.10: Anisotropic stress 7 in the radial range [0.7 Mpc — 2.3 Mpc] for the cluster RXJ 2248. The
blue shaded region indicates the 68% C.L. while the light blue area is the 90% C.L. The best fit profile
is given by the black dashed line.

are favored by the dynamics analysis with respect to the lensing results; the discrepancy could
be interpreted as the additional contribution of the fifth force which affects only the motion of
non-relativistic particles. In order to better investigate the effect of this tension on the Bardeen
potential ¢ and ¥, I compute the anisotropic stress 7 = W/® in the radial range covered by
our analysis, following the approach of Chapter 6. The results are shown in Fig. 7.10, where
the blue and light blue areas represent the 68% and the 90% confidence regions, respectively.
As we can see, the discrepancy with the GR expected value n = 1 is at more than 1o for
r 2 1Mpc. For r = 2.3Mpc I obtain n = 0.57 £+ 0.42 at 90% C.L. Interestingly, this is in
agreement with the prediction of f(R) models, in which the anisotropic stress is smaller than
1, reaching the value n = 1/2 in the case of maximum deviations from GR.

The results from the analysis of RXJ 2248 point in the opposite direction of what I have
obtained for MACS 1206 (although the constraints I have derived on A from the 2 clusters are
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Figure 7.11: Black solid line: combined likelihood obtained by multiplying the marginalized probability
distributions from the analysis of the reference model for MACS1206 (red dashed line) and for RXJ
2248 (blue dashed line).

still compatible within the 90% C.L.), highlighting the need to check the systematics associated
to the assumptions on which our method relies. The presence of possible substructures and
departures from spherical symmetry could in principle affect both the dynamics and lensing
analyses; nonetheless, I stress again that both clusters belong to a sample of 20 X-rays selected
objects for their properties of apparent dynamical relaxation.

One can in principle assume that the interaction range is constant in time between the red-
shifts of MACS 1206 and RXJ 2248 and combine the marginalized likelihoods of A derived
from the analysis of the reference model for each cluster. As we can see in Fig. 7.11, the appar-

ent tension with GR is relaxed and I can still put an upper limit of A < 1.81 Mpc at Ax? = 1.0.

In conclusion, although two clusters are obviously too few to produce robust constraints,
they are already sufficient to show the potential of the method of combining dynamics and
lensing to test gravity. On the other hand, the tension I have highlighted shows that it is nec-

essary to model accurately the velocity anisotropy and to take into account deviations from
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spherical symmetry and from virialization before the method can be claimed to provide a ro-
bust determination of the anisotropic stress 7 and its scale dependence. This can be achieved
by studying simulated clusters, both in GR and in modified gravity, to better understand how
the above mentioned effects influence our constraints. As a first step in this direction, in the
next Chapter I will present the results of the analysis of a set of synthetic Dark Matter halos;
the main purpose of this work is to calibrate those systematics and to find observational criteria
in order to identify the suitable clusters for the application of our method.

Moreover, it is worth to notice that the analysis presented in this Chapter can be extended to
all the generic scalar-tensor theories where the coupling constant () is not fixed and the lensing
potential is still given by the Newtonian potential (® + ¥)/2 = &y (e.g. the Brans-Dicke
k-essence (BDK) model of ref. [207]). However, the data I used here are not sufficient to get
significant information on this kind of models.

Future imaging surveys, both from ground (e.g. LSST) and from space-borne telescopes
(e.g. Euclid) will provide lensing mass reconstructions for thousands of clusters, although at a
signal-to-noise level lower than that reached by the two clusters considered here. At the same
time, the next generation of high-multiplexing spectrographs on 8m-class telescopes will allow
a precise characterization of the phase-space structure for a sizable fraction of such clusters.
This increase in statistics calls for the need of controlling the above mentioned systematics in
the recovery of mass profiles from lensing and internal cluster dynamics, if we want to take
full advantage of the their potentiality as powerful diagnostics for the nature of gravity on

cosmological scales.



Chapter 8

Calibrating systematics with

simulations

In the previous chapters I have presented a powerful method to constrain modifications of grav-
ity using galaxy cluster mass profiles; nevertheless, I have already stressed that a solid control
of the assumptions on which the analysis relies is required in order to draw robust conclusions.
In particular, the interesting behavior found in the case of the cluster RXJ 2248 suggests that
some effects, whose contribution can be negligible in the framework of General Relativity,
may become relevant source of systematics when searching for small deviations, such as those

induced by the additional degrees of freedom in non-standard gravity.

In this Chapter I analyze a set of cosmological simulations of galaxy clusters carried out
in standard gravity, which is aimed at identifying and calibrating the impact of the above men-
tioned systematics. I follow two lines of investigation; in the first part I determine what kind
of constraints we expect in the ideal case when applying our method to a synthetic cluster for
which all the assumptions are met. This is achieved by generating equilibrium configurations
of isolated self-gravitating systems made of collisionless particles distributed according to a
spherical NFW profile, which are then analyzed with the MG-MAMPOSSt procedure in linear
f(R) gravity. The results indicate that the study of the dynamics of the tracers alone is not suf-
ficient to break the degeneracy between the mass profile parameters and the interaction range
A = 1/m even in the ideal situation, regardless of the number of particles used in the like-

lihood fit. Notwithstanding, combining the dynamics analysis with additional information on

137
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the virial radius 7299 and on the scale radius s with reasonable uncertainties (e.g. constraints
from a lensing mass reconstruction) leads to stringent bounds on A (or m) always in agreement
with GR predictions.

In the second part I evaluate how the constraints suffer the lack of dynamical relaxation and
departures from spherical symmetry by studying 29 massive Dark Matter halos taken from a
set of ACDM N-body simulations performed with the GADGET-3 code; I determine the influ-
ence of these effects as spurious detections of A > 0 (m < o) emerging from the analysis.
I furthermore define two observational criteria which can be used to get helpful insights in
identifying, among a generic population of galaxy clusters in the local Universe, those objects
that are more suitable for the application of the proposed method. I discuss possible develop-
ments of this work in light of the wide collection of imaging and spectroscopic data that will

be available with the next generation surveys.

8.1 Synthetic Dark Matter Halo

In order to investigate how possible systematics can affect constraints on modified gravity mod-
els obtained using a combination of lensing and kinematic information, one need first to test the
reliability of our method in the case when all the assumptions are perfectly satisfied. Adopting
a ACDM background with Hy = 70kmMpc~'s~1, Q,, = 0.3 and Q2 = 0.7 (where the cos-
mology enters only in the definition of the virial mass Msgg, defined in Chapter 1), I generate
a sample of spherically-symmetric, isolated halos made of collisionless particles distributed as
a NFW mass profile of eq. (2.20). I populate each halo out to ~ 7 r2g¢, imposing to have 1000
particles within the virial radius'. For each particle at a radial distance  from the cluster center,

I assign a velocity whose components in spherical coordinates are Gaussian-distributed with

2

a squared dispersion o;;

(r), o2(r) and O';(T), respectively. The radial component o2 is given
by the solution of the Jeans’ equation, eq. (3.36), while the dispersion along the tangential

direction is connected to the radial one through the velocity anisotropy profile 3(r):
oj(r) = [1 = B(r)]o} (r). (8.1)

Since I am assuming spherical symmetry, I further impose 035 = O'g.

In the Jeans’ analysis, the velocity anisotropy profile is generally unknown; as discussed in

'The choice of 1000 particles within 7200 is an optimistic, although not unrealistic, expectation on of the number
of cluster galaxies with accurate measured spectroscopic redshift from present and future surveys.
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Figure 8.1: Projected phase spaces of three synthetic clusters with different masses and concentrations.
Left panel: 7999 = 0.750 Mpc, rs = 0.096 Mpc. Central panel: ro09 = 1.650 Mpc, rs = 0.379 Mpc.
Right panel: 7599 = 2.850 Mpc, rs = 1.077 Mpc. The red vertical dashed line indicates R = 720

Chapter 3, MAMPOSSt assumes a parametric profile for 5(r), and fits the free parameters of
the chosen model together with the parameters of the mass profile and of the number density
profile. I generate the synthetic clusters with a "Tiret" model, eq. (3.34), where again 7. is
assumed to be equal to the scale radius of the mass profile r; and the normalization constant 3,
is fitted in the MAMPOSSt procedure. The halos are created all with 5, = 0.5, corresponding
to a Mamon&Lokas profile, eq. (3.33), with the additional constraint rg = 7.

I apply the MG-MAMPOSSt code to a sample of 15 synthetic halos generated at z = 0, whose
masses spawn a range from [5.1 x 103 Mg +2.9 x 10'® M]. For each halo, I choose the scale
radius ¢ according to the mass-concentration relation of eq. (1.36) (extrapolated ad z = 0),
obtained from the analysis of 19 CLASH clusters by ref. [87].

I have randomly sampled the value of the parameter A, B and K for every halo assuming that
they are Gaussian-distributed around the central value with a standard deviation given by the
uncertainties in eq. (1.37).

The input values of 7209 and 7 are given in the second and third columns of Table 8.1, ordered
by increasing mass. In Figure 8.1 I also show the projected phase spaces (R, vj,s) for the first,
the seventh and the last halos in the sample, on the left, central and right plots respectively. The

red vertical dashed line corresponds to the value of the virial radius rgg of each cluster.

8.1.1 Results from the MAMPOSSt procedure

As a preliminary test, I analyze the 15 realizations of projected phase spaces with the standard

MAMPOSSt procedure in GR using all particles with a projected radius R € [0.05 Mpc, 7200]
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’ ID ‘ 200 [ M pc] ‘ rs [Mpc] ‘ ry, [Mpc] ‘ 200 [ M pc](M) ‘ rs [Mpc](M) ‘ Ar(M) ‘

1

10

11

12

13

14

15

0.750

0.900

1.050

1.200

1.350

1.500

1.650

1.800

1.950

2.100

2.250

2.400

2.550

2.700

2.850

0.096

0.115

0.126

0.200

0.106

0.298

0.379

0.519

0.448

0.537

0.536

0.591

0.990

0.957

1.077

0.086

0.110

0.128

0.195

0.096

0.269

0.394

0.493

0.430

0.561

0.483

0.530

1.035

1.007

0.950

0.74 4+ 0.02
0.91 4 0.02
1.0670-92

+0.03
1.217 505

L9
1.4219:08
1.62°302
1.837009
1.951002

+0.04
2.11+0%

2.297002
2.401092
2.4970-99
2.81050

+0.04
2.89"0.31

0171503
0.18+5-01
0.14%5:03
0.3175:0
0.1675:02
0.4675:35
0.280:03
0.380:07
0.49%5:15
0.280:58
0.5070%3
0.647033
0.87+9:31
0.905:3%

+0.37
1.017577

> 3.5
> 1.30
1097553
1247078
158554
> 1.96
1385057
155754
> 0.93
0.98709
1247057
> 0.84
1.38734
1237518

+2.11

Table 8.1: second and third column: NFW parameters 59, rs for the sample of synthetic halos used in
our analysis. The fourth column shows the values of the scale radius r,, of the projected number density
profile of the particles fitted from the phase space, which is additionally required in the MAMPOSSt
procedure. Last three columns: constraints on the free parameters rogg, 75, A = 0gy/0, from the
MAMPOSSt analysis in GR. Bold numbers indicate the cases in which the true values are excluded at

the 68% C.L.
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in the fit; this choice has been made to be consistent with real observations, although the range
on which perform the fit could be totally arbitrary in this ideal case. Indeed, for an observed
cluster we cannot assume the validity of Jean’s equation behind r2g9, moreover at very small
radii the dynamics is dominated by the presence of the BCG.

As already discussed in Chapter 3 and Chapter 7, the version of MAMPOSSt code used within
this Thesis additionally requires a parametric model of the projected number density profile
of the tracers?, with a characteristic scale radius r,; since I am working with collisionless
particles, by construction the number density profile v(r) scales exactly as the NFW mass
profile p(r) (i.e. r, = r5). However, the projected number density profile, needed to compute
the probability of eq. (3.38), is obtained in MAMPOSS? by integrating the the 3-dimensional
profile along the line of sight, assuming that it extends to infinity. This leads to a value of
r, which can be slightly different from r; for this reason I fit the projected number density
profile form the phase space of each clusters and I use the best fit values of r,, as the input for
the MAMPOSSt analysis (see the fourth column of Table 8.1). This is also more reliable from
an observational point of view: as mentioned in Chapter 3, in a real cluster it is not guaranteed
that the distribution of the tracers (i.e. the member galaxies) scales in the same as the total
density profile. In general, the projected number density profile is determined by fitting the
observed distribution of the member galaxies. I have checked that the results do not change if
we fix r, = rs.

The last three columns of Table 8.1 show the constraints on the free parameters in the GR

analysis, 7900, 7's and .4, defined as the ratio:

g . 1
<ar>w T VI B &2

As expected, the true values of the parameters for each halo are included within the 68%
confidence level with the exception of few cases (marked in bold); this consistency check
confirms that the MAMPOSSt method effectively recovers the dynamical parameters for ideal
spherically-symmetric halos in equilibrium configuration, modulo statistical fluctuations in the
sampling of the projected phase spaces. As an example, Figure 8.2 shows the marginalized
probability distributions (upper plots) and the 2-dimensional contours at Ay? = 2.3 and

Ax? = 4.6 (bottom plots, blue and green curves respectively), for the halo number 9. The

21t is important to notice that in general the MAMPOSS! procedure does not necessarily involve a parametriza-
tion for the physical quantities in the Jenas’ equation; nevertheless, for the purpose of this Thesis a parametric
approach is worthed to investigate specific class modified gravity models, as pointed out in Chapter 3.
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Figure 8.2: Upper plots: marginalized probability distributions of the parameter rqgg (left) rs (central)
and A = (1 — Bo,) /2 (right) from the MAMPOSSt fit in GR. The red shaded areas correspond to the
68% confidence level for 909, 75 and to the Ax? = 1.0 region for A. Black vertical dotted lines are the
true values of each parameter. Bottom plots: iso-probability contours of the 2-dimensional likelihood
obtained integrating over the third parameter. The blue contours indicates Ax? = 2.3, while the green
curves correspond to Ax? = 4.6. True parameter values are marked as the black point in each plot.

black vertical dotted lines and the black points indicate the true values of the parameters.

I then apply the MG-MAMPOSSt method to the synthetic clusters sample in linear f(R)
gravity, fitting together the scalaron mass m = my , = 1/, the mass profile parameters 5 and
900 and the anisotropy normalization S in the same projected radial range [0.05 Mpc, r200]-

The 2-dimensional marginalized likelihoods in the plane (7200, log(m)), (rs,log(m)) and
the 1d distribution of the scalaron mass P[log(m)] are shown in Fig. 8.4 for the halo number
1 (upper plots), the halo number 8 (central plots) and the halo number 15 (bottom plots). In
each 2-dimensional distribution the red contours indicate points lying within Ax? = 2.3 from
the MAMPOSS? best fit, while the black solid contours correspond to Ax? = 4.6. Note that
here I am considering the parameter log(m) instead of A: this means that GR is virtually

recovered for log(m) = 1.8, which corresponds to A = 1.8 Mpc. Indeed, for larger values of
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the modified gravity parameter the relative change in the marginalized likelihood is on average
less than 0.1% (see Figure 8.3). The results from MG-MAMPOSSt show the same behavior
as for the analysis of MACS 1206 and RXJX 2248, discussed in Chapter 7; even in the ideal
case, no constraints can be obtained on the scalaron mass. This fact is a consequence of the
degeneracy between the mass profile parameters and the modified gravity parameter in this
particular class of models. The velocity dispersion of a self-gravitating system of particles in
GR can be mimicked by a modification of gravity with a suitable combination of raqg, s and
m producing the same effect on the phase space of the tracers. In particular, from the structure
of eq. (2.23) one can see that an increase of the value of A = 1/m (i.e. larger departure
from GR) corresponds to an increment in ¢,,, which can be compensated by lowering 72¢. In
the same way, a shift from GR could be obtained by increasing r;; this is responsible for the
peak in the marginalized distribution of m. Moreover, since the term m 7y always appear as

an exponent, a small variation in the scale radius is sufficient to move the maximum of P(m)
away from the GR expectation m — oo. Nonetheless, GR is always included within 1o, and
the results are independent from the values of rs and rogg; I remark that the same behavior has
been found for all the phase spaces analyzed.

As an additional test, I investigate the effect of increasing the statistics by doubling the number
of tracers used in the MAMPOSSt fit. 1 thus generate 8 new halos, all with the same values of
the NFW parameters o090 = 1.96 Mpc, rs = 0.27 Mpc, which can be interpreted as different
random realizations of the same cluster; each halo is built with 2000 particles within the virial
radius. I furthermore fix the anisotropy parameter to the true value 3., = 0.5 in order to
reduce the number of free parameters. Figure 8.5 shows the contours at Ayx? = 2.3 in the
space (r200,log(m)) and (rs,log(m)) for all the 8 realizations. Despite the large number
of points in the fit and the idealized control of all the assumptions, m remains unconstrained,
even if GR is never excluded within 1o7; this result indicates that the analysis of the dynamics of
galaxies in a cluster with the MAMPOSSt method alone is not sufficient to constrain deviation
from standard gravity in f(R) models. It is worth to notice that the results obtained in this
part are independent of the anisotropy model used to generate the synthetic cluster. However,
in the MAMPOSSt analysis I found that the profile labeled as ”O” (see eq. (3.35)) produces a
slightly stronger degeneracy between the scale radius r; and the mass scale of the scalaron m
in the Likelihood distribution; this is a consequence of the different dependence of 3(r) from
rs, Which is exponentially enhanced in eq. (3.36).

One can now assess how strong should be a prior on the NFW parameters, such as the one
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Figure 8.3: Relative changes in the marginalized likelihood P[log(m)] for the MG-MAMPOSSt analysis
of the galaxy cluster RXJ 2248 with the "T" anisotropy model and NFW mss profile. The vertical dotted
line corresponds to the limit chosen in this work above which GR is assumed to be totally recovered.

provided by a lensing probe (which, as shown in the previous chapter, is not sensitive to the
additional parameter m), in order to break the degeneracy in the dynamics likelihood and

produce competitive constraints on the modified gravity parameter.

8.1.2 Effect of priors on the NFW parameters

I simulate the availability of additional information on r; and 7209 as a bivariate Gaussian

distribution:

1
Pr(rs,m200) = - 26XP{—2(1
_p —

2MO 7, Orogg

— 2 — —

T200 — T 2p(rs — Ts)(T200 — T

+( 200~ 200)°  2p(rs — 7s)(r200 200)} } ’ 8.3)
U?”Q()() OrsOrano

centered on the true values of the NFW parameters 7, 72990 shown in Table 8.1. In the above

equation, p indicates the correlation. I then obtain the joint likelihood distribution log L,y =

log Layr, +log Pr, where Lgyy, (7200, s, 5, m) is the likelihood from the MAMPOSSt analysis.
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Figure 8.4: In each row: 2-dimensional likelihood distributions in the plane (7290, log(m)) (left plot),
(rs,log(m)) (central plot) and the marginalized distribution P[log(m)] obtained by the emphMG-
MAMPOSSt analysis of the synthetic halo number 1, 8 and 15. the red contours in the left and central
plots refer to points at Ay? = 2.3, while the black contours indicate points at Ax? = 4.0. First line:

halo 1. Central line: halo 8. Bottom line: halo

15.
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In general, the virial radius 7509, which is related to the total cluster mass, can be constrained
much better than the shape of the halo mass profile, expressed in terms of 5. As shown e.g.
in Table 2 of ref. [35], typical uncertainties on the scale radius given by a lensing probe are of
the order of ~ 30 <+ 40%, while rogg can be recovered up to ~ 5 -+ 10%; I thus assume a fixed
or, = 0.4 X rg, while I change o, to investigate the variation of the bounds on the modified
gravity parameter as a function of the additional constraints on the virial radius. As for the
correlation p between 7, and 7909 in Pr(7s,7200) I use the value p = 0.67 found by fitting a
bivariate Gaussian on the posterior distribution of the Strong+Weak lensing analysis of MACS
1206 discussed in the previous Chapter. It is worth to notice that, despite different values of
the correlation mildly change the shape of the confidence regions for each cluster, the overall
qualitative behavior resulting from our analysis is independent of the choice of p.
In Fig. 8.6 1 plot the contours at Ax? = 2.3 in the 2-dimensional plane (200, log(m)) (left) and
(rs,log(m)) (right) for halo 1 (upper plots), 8 (central plots) and 15 (bottom plots), increasing
the strength of the prior on roqg.

This simple exercise shows that an additional information on 7, 7909 with 40% and 7 +
10% uncertainties respectively is on average sufficient to produce constraints on m by the

joint "lensing"+dynamics analysis of a single ideal cluster when the number of galaxies in the
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dynamics analysis is ~ 103. It is worth to notice that this result doesn’t change significantly
with the number of dynamical tracers in the phase space; moreover, each synthetic phase space
never excludes the GR limit within 1o. The contours in the plane (7, log(m)) for halo 1 (right
upper plot) are a consequence of the fact that the likelihood from dynamics in rs is largely
biased with respect of true value, as already shown in Table 8.1 for the GR analysis, producing
a joint distribution almost bimodal in the scale radius; nonetheless, the constraints on m are
unaffected by such behavior.

The dependence of the averaged lower limits in the marginalized distributions of m on the
strength of the prior on rogg at Ax? = 1.0 (red bars) and Ax? = 4.0 (blue bars) is shown in
the left panel of Figure 8.7. Each point is obtained by averaging the lower limits for every halo,
while the associated errorbars correspond to the dispersion around the mean value.

In order constrain m at 95% confidence level with one cluster, one need at least o,,,, =
0.07 X rogp. The right panel of the same Figure displays instead the distributions obtained by
combining the marginalized total likelihoods of all the 15 clusters as a function o,,,. In this
case, a prior of 40% in r, and rog for a relatively small number of halos is already enough to

provide stringent bounds on the scalaron mass. I obtain:

m>7.6Mpct  Ax? =40,

m>188Mpc™t  Ax? = 1.0, (8.4)

corresponding to A < 0.053 Mpc at Ax? = 1.0 which is close to the lower limit of the radial
range considered in this analysis (R = 0.05Mpc), and thus it is the tightest constraint reach-
able with our method. Indeed, decreasing o,,,, produces negligible effects on the combined
distribution, as shown in Fig. 8.7; clearly, this result relies on the perfect control of the as-
sumptions in the analysis. I will discuss deviations from the ideal situation of a spherically

symmetric halo in perfect equilibrium as a possible source of systematics in the next section.

8.2 Analysis of ACDM cosmological simulations

The results from the analysis of the synthetic halos indicate that, in the ideal case, a combina-
tion of lensing and dynamics with reliable uncertainties and number of tracers for about a dozen

objects is enough to constrain the interaction range up to ~ 50 kpc. In order to understand what
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Figure 8.7: Left: lower limit on m obtained averaging the lower limits of each marginalized distribution
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bars indicate the scatter around the mean value computed over this ensemble of synthetic halos. Red:
Ax? = 1.0. blue: Ax? = 4.0. Right: all-halos-combined distribution of m. Different lines correspond
to different values of the prior in 729

kind of clusters in the real Universe should be observationally selected as testbed for constrain-
ing deviations from GR, one needs to investigate how departures from the main assumptions
of the analysis affects the constraints on m. To this purpose, I consider a set of 29 simulated
DM halos selected as the most massive clusters at the center of 29 Lagrangian regions from
a cosmological ACDM simulation carried out with the parallel Tree-PM SmoothedParticle-
Hydrodynamics (SPH) code GADGET-3 of ref. [37]. The parent simulation consists in a
periodic box of size 1 A~ 'Gpc and assumes a flat cosmology with €2, = 0.24, Q = 0.76,
h = 0.72 and og = 0.8 (see e.g. refs. [208, 209, 156]). Each Lagrangian region is re-simulated
with the Zoomed Initial Condition (ZIC) technique of ref. [210]; particles of mass increasing
with distance are used outside the region to correctly reproduce the tidal field on large scales.
In the high-resolution region the mass of DM particles is mpys = 109 b~ M); the simulation
is performed in such a way that at z = 0 the central halo in not contaminated by low-resolution
particles at least out to 5 X raqg.

Among the central halos, 24 over the 29 in the sample have masses Mgy > 8 X 10 hilM@,
while the remaining 5 are less massive (Mapg ~ 1+4 % 1014 h_lM@). In order to increase the
statistics in the mass range spawned, I consider also other 20 DM halos, selected among the

second massive clusters in each Lagrangian region, requiring that no low resolution particles



Chapter 8. Calibrating systematics with simulations 150

are included out to 3 X ragg. I additionally restrict the analysis only to those halos for which
ro00 > 1 Mpc at z = 0 (corresponding to Magg > 9 x 1013 h=1 M) I refer to the first sample
as "group 0", while I call "group 1" the halos belonging to the second sample.

I parametrize the mass profile of each simulated cluster as a NFW model, which is shown to
provide a good description for dark matter halos in cosmological simulations as discussed in
Chapter 1. In the first two columns of Table 8.2 I list the best fit values of the NFW parameters
7200, T's, Obtained by a Maximum Likelihood fit over the total 3-dimensional distribution of
particles in every cluster. The other four columns indicate the best fit values of the velocity
anisotropy free parameter, resulting from the 3D fit of 5(r) over the particle velocity distri-
bution for each model adopted in this analysis (see below). In the "O" and "T" profile, the
fit is done considering the anisotropy scaling radius 7. = 75, as assumed in the MAMPOSSt
procedure.

Since I am now interested only in calibrating the effect induced by systematics in our con-
straints on m = 1/, I fix the parameters r5 and r9oo of the mass profile in the MAMPOSSt
procedure to be equal to the "true" values of Table 8.2. As shown in Sec. 8.1, for a halo for
which all the assumptions are satisfied MAMPOSSt provides results that are always compat-
ible with GR within 1o, independently of the mass of the cluster and the anisotropy model
used to generate the object. Therefore, any departure from this condition is a measure of the
systematic uncertainties affecting the analysis.

I randomly select 5 subsamples of 1200 DM particles from each halo in the radial range
[0, 1.2750p] (so that ~ 1000 particles are included in the MAMPOSSt fit from 0.05Mpc to
r200), considering every bi-dimensional projection as an independent phase space. This fact
takes into account our ignorance about the orientation with which a generic cluster is observed
on the sky as well as possible biases in the completeness of the tracers distribution.

I run the MG-MAMPOSSt code on a total of 735 projected phase spaces to fit together the
scalaron mass m and the velocity anisotropy parameter (3, adopting 4 different anisotropy
models, namely the T, "ML”, ”O” and ”C” profiles of eqns. (3.34), (3.33), (3.35) and (3.32)
respectively. Looking at the marginalized distribution of m, I classify the phase spaces as "reg-
ular" (R) if the MAMPOSSt analysis does not exclude GR at 68% C.L., "semi-regular" (SR)
if GR is included within 95% C.L. and "irregular" (IR) if the tension with standard gravity
is larger than 20. The percentage of each class is shown in Table 8.3 for all the 3 profile
models assumed in our analysis. As discussed above, we assume that GR is recovered for

log(m) = 1.8, which corresponds to a galaxy-scale interaction range A < 0.015Mpc. The
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ID 7200 Ts ca00 | rg("ML") | a9/0.("T") | 09/0-("O") | 09/0("C")
[Mpc] | [Mpc] | [Mpc] | [Mpc]
group 0
1 2.443 | 0.727 | 3.360 0.147 >20 0.971 0.407
2 1.612 | 0.466 | 3.459 0.127 2.016 1.235 0.393
3 1.767 | 0.549 | 3.219 0.28 1.738 1.107 0.316
4 1.639 | 0.755 | 2.171 0.198 2.293 0.905 0.343
5 1.178 | 0.464 | 2.539 0.473 1.392 1.092 0.261
6 2.328 | 0.706 | 3.298 0.089 >20 0.94 0.443
7 2.308 | 0.656 | 3.518 0.27 1.677 0.909 0.307
8 2.458 | 1.205 | 2.040 >10 0.904 0.958 -0.031
9 1.016 | 0.220 | 4.618 0.096 1.617 1.862 0.413
10 2.281 | 0.549 | 4.154 0.324 1.621 1.065 0.3
11 2.140 | 0.781 | 2.740 1.446 1.241 0.916 0.158
12 2.690 | 1.157 | 2.325 0.196 >20 0.837 0.359
13 2.450 | 2.240 | 1.094 5.317 1.155 0.971 0.049
14 2.573 | 0.731 | 3.520 0.277 2.444 0.992 0.327
15 2.511 | 0.831 | 3.022 0.133 3.181 0.841 0.373
16 3211 | 1.231 | 2.608 0.616 2.18 0.907 0.226
17 2.554 | 1.516 | 1.678 0.236 >20 0.84 0.345
18 2.124 | 0.703 | 3.021 0.58 1.435 0.897 0.242
19 2.297 | 0.687 | 3.344 0.051 >20 0.916 0.486
20 2.503 | 0.806 | 3.106 0.111 >20 0.918 0.446
21 2419 | 0477 | 5.412 0.285 1.487 1.046 0.302
22 2.644 | 0.519 | 5.094 0.032 >20 1.249 0.539
23 2.297 | 0.525 | 4.375 5.267 1.067 0.912 0.09
24 2.328 | 0.490 | 4.751 0.089 2.823 1.287 0.437
25 2.102 | 0.869 | 2.418 3.317 1.119 0.953 0.082
26 2404 | 0.782 | 3.074 0.527 1.589 0.936 0.241
27 2458 | 1.003 | 2.451 0.292 2.671 0.859 0.31
28 2.658 | 0.546 | 4.869 0.657 1.378 1.054 0.229
29 2452 | 1.199 | 2.045 0.805 1.749 0.91 0.2
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ID 7200 Ts cooo | Ta("ML") | ag/0.("T") | 09/0-("O") | 09/0("C")
[Mpc] | [Mpc] | [Mpc] | [Mpc]
group 1
1 1.069 | 0.247 | 4328 | 0.615 1.234 1.213 0.239
2 1.060 | 0.199 | 5.327 | 0.141 1.44 1.549 0.364
3 1.349 | 0.316 | 4269 | 0.236 1.397 1.255 0.313
4 0.850 | 0.204 | 4.167 | 0.255 1.413 1.681 0.333
5 1.104 | 0.208 | 5.308 | 0.277 1.305 1.321 0.297
6 1.095 | 0.332 | 3.298 0.83 1.213 1.099 0.211
7 1.701 | 0.533 | 3.191 0.741 1.298 1.006 0.214
8 1.581 | 0.644 | 2.455 | 0.403 1.612 0.99 0.274
9 1.028 | 0.855 | 1.202 | 2.722 1.144 0.971 0.089
10 1.962 | 0.433 | 4.531 0.253 1.581 1.271 0.323
11 1.772 | 0.427 | 4.150 | 2.379 1.129 0.928 0.158
12 1.189 | 0.935 | 1.278 >20 0.998 1.001 -0.002
13 1.546 | 0.350 | 4.417 >20 0.969 0.909 -0.014
14 0.887 | 0.532 | 1.667 | 0.176 2272 1.3 0.381
15 1.987 | 0.782 | 2.541 0.94 1.326 0.897 0.194
16 1.086 | 0.334 | 3.216 >20 0.927 0.815 -0.04
17 1.508 | 0.374 | 4.032 | 4.369 1.05 1.078 0.044
18 1.671 | 0.235 | 7.111 0.146 1.458 1.517 0.357
19 1.403 | 0.302 | 4.646 1.274 1.161 1.118 0.17
20 1.381 | 0.377 | 3.663 | 0.752 1.251 1.134 0.215

Table 8.2: Best fit values of the NFW mass profile parameters (second and third column) and of the
velocity anisotropy parameter (last four column) obtained by a fit over the 3D particles and velocities
distribution of all the dark matter halos considered in this analysis. The "T" anisotropy model (5"
column) provides the lowest x? for ~ 60% of the sample

| B8 [R%) | SR%) [ IR(%) |
T | 42 13 45
ML | 26 11 63
o | 27 16 57
c | 33 10 57

Table 8.3: Percentage of simulated phase spaces which give a marginalized likelihood of m compatible
with GR at 10 (R), at 20 (SR) and excluding GR at more than 2¢ (IR) when running MAMPOSSt with
4 different anisotropy models.
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results are slightly different when varying the ansatz on (3(r); as already discussed in Chap-
ters 6 and 7, changing the model of 3 is an additional source of systematics in the dynamical
analysis. On average, given a generic population of clusters in a universe described by Gen-
eral Relativity, ~ 30% of the sample is suitable to be used as a test for gravity, regardless of
the choice of the anisotropy profile. Interestingly, the "T" model, which provides the highest
number of distributions in agreement with GR predictions, is also the parametrization with the
lower x? from the fit to the the 3-dimensional anisotropy profile for more than half of the halo
sample analyzed.

In order to identify the main sources of spurious departures from standard gravity, as well as
to characterize the properties of the "regular" projections, I consider two observational criteria

based on the informations that can be directly extracted form the projected phase space.

Anderson Darling Coefficient

The first criterion expresses deviations from Gaussianity rest frame velocity distribution of the
tracers along the line of sight which, as discussed in e.g. ref. [38], is a good indicator of the
dynamical relaxation state of a galaxy cluster. Indeed, observations and theoretical studies of
relaxed systems point out that at equilibrium the l.0.s distribution of galaxies is well described
by a Gaussian distribution, while unrelaxed objects show large departures from normality (see
e.g. refs [211, 212]); furthermore, ref. [38] found that this indicator highly correlates with other
relaxation proxies from X-ray analyses, suggesting that it is a suitable criterion to describe the
overall dynamical configuration of a cluster.

Deviations from Gaussianity are quantified by the so called Anderson-Darling (AD) test (T.
Anderson & A. Darling, 1952), which determines how different are the cumulative distribution

functions of the data set and of the ideal Gaussian case. The AD coefficient A2 is defined as:

A= —n— % > {llog ®(x;) +log(1 — (zn41-4))] (20 — 1)} (8.5)
=1

In the above equation x; is the i*"-element of the data set, in ascending order, which in our case
corresponds to the velocity of the i‘" particle; ®(z;) is the value of the cumulative Gaussian
distribution function? at z;. A large value of A% means large deviation from Gaussianity. The

left panel of Figure 8.8 illustrates the shape of the l.o.s. velocity distribution for two projected

3The AD statistics can be used to test other known distributions, such as flat or exponential, changing the form
of &(x)
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Figure 8.8: Left panel: line of sight velocity distributions of two projected phase spaces characterized
by a large and a small value of the AD coefficient (red and blue solid curves respectively). Right panel:
corresponding distributions P[log(m)] obtained by applying MG-MAMPOSSt procedure on these pro-
jected phase spaces assuming a "T" velocity anisotropy model in the fit.

phase spaces in our sample characterized by a value of A? = 11.3 (red curve) and A? = 0.45
(blue curve); on the right panel I show the corresponding marginalized distributions P[log(m)]
from the MG-MAMPOSSt analysis with a Tiret model for 5(r). As we can see, while the
phase space with A? < 1 produce a constrain on m in agreement with GR, the analysis of the

projected phase space with large A? excludes standard gravity at more than 4o.

Projected Chi Square
The second parameter used in this analysis is the reduced y? resulting from fitting the projected
numerical distribution of galaxies v/(r) in the phase space with a projected NFW density profile.
The value of x2 incorporates the effect of several systematics, such as departures from spherical
symmetry, the presence of substructures in the phase space and the uncertainties in the choice
of the parametrization of the number density profile.

In Figure 8.9 I plot the probability p(G'R) of finding a cluster consistent with GR predictions
within 1o as a function of x?2 (left plot) and of A? (right plot) for the 4 models of 3(r).
Interestingly, I found an overall increase of p(GR) towards lower values of both parameters,
with a stronger effect for the AD statistics, and the result does not depend on the chosen ansatz
in the velocity anisotropy. This means that phase spaces suitable for the application of our

method should be identified among those clusters characterized by an almost Gaussian l.o.s.
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Figure 8.9: Probability that, given a generic phase space, the MG-MAMPOSSt analysis produces results
compatible with GR predictions within 1o, expressed as a function of the reduced x? (left plot) and the
AD coefficient A? (right plot). Different colors and point types refer to different anisotropy models.
The binning is computed such that each bin contains the same number of clusters.

velocity distribution (A2 < 1) and a reduced chi square in the fit of the projected number
density profile x2 < 1.5.

To further highlight this behavior, Fig.8.10 shows the 2-dimensional variation of p(GR) for a
grid of values of A2 and 2. As expected, the probability rises in the region corresponding
to the lower values of chi square and AD coefficient, reaching ~ 70% for the "T" model (left
upper panel). It is worth to notice that p(GR) drops to zero for A2 < 1 and large x?; this is
due to the fact that there are no clusters with those particular combinations of parameters. In
other words, phase spaces with a small AD coefficient tend also to be better described by a
NFW profile.

I also explore 2 more theoretical criteria, which rely on the knowledge of the 3-dimensional
structure of the halo. As such, they cannot be used as a discriminant to select clusters from
observational data; however, since they are linked to the dynamical state of the halos, they can
help in understanding the effect of the major systematics. Those criteria are the center shift dr,
defined as the relative position between the center of mass of the system, computed considering

all the particles within the virial radius, and the most gravitationally bound particle, in unit of

7200-
S — lrcm — Thound|

7200

) (8.6)
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Figure 8.10: Color map of p(G R) as a joint function of A% and x2 for the 4 anisotropy profile models.
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Figure 8.11: Left plot: p(GR) as a function of the center shift §r. Central and right plot: p(GR) as a
function of the ratio £ and ( respectively. Different colors in each plot correspond to different models
of the velocity anisotropy profile.

and the shape of the halo inertia ellipsoid, expressed in terms of the eigenvalues of the inertia

tensor:
_ 1 (k) ,.(k)
L = gk myx;x; (8.7)

In the above equation, k runs over all the particles within ragg, while ¢, j, label the three spatial
dimensions; my, is the mass of each particles and M the total mass » & Mk

The center shift is widely used in numerical simulations to classify the dynamical state of a
cluster (see e.g. ref. [156]), while the eigenvalues of Z, a® < b? < ¢?, are related to the length
of the semi-axes of the inertia ellipsoid a, b, ¢ (e.g. ref. [213]), and thus parametrize deviation
from spherical symmetry. I define the ratios ¢ = 1 — a?/c? and ( = 1 — b?/c? such that in the
case of a perfect sphere £ = ( = 0.

In Figure 8.11 p(G'R) as a function of dr, £ and ( is shown in the left, central and right panels
respectively. The center shift appears to correlate with the probability to find a phase space in
agreement with GR, in particular for the case of the "T" anisotropy model for jr < 0.1, while
no evident effects are observed when considering the eigenvalues of the inertia tensor; on the
contrary, p(G R) seems to slightly increase with the parameter &.

This shows that the shape of the inertia ellipsoid is not a good criteria to identify systematics
induced by deviations from spherical symmetry in our analysis; the result is not surprising,
since what really enters when building a projected phase space is the orientation of the halo on
the plane of the sky with respect to the observer, which has been implicitly taken into account

in the definition of the y2 parameter.
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8.3 Discussions

In this Chapter I have examined a set of GR-simulated cluster-size Dark Matter halos in order
to estimate the impact of systematics in constraining modification of gravity using a combina-
tion of dynamics and lensing mass profile determinations. As a case of study, I have considered
the framework of linear f(R) gravity, where deviations from GR are expressed in terms of the
(constant) mass of the additional degree of freedom, m = m . In the first part of the analysis,
I have generated isolated spherically symmetric, self-gravitating distributions of collisionless
particles according to a NFW mass profile, spawning approximately two orders of magni-
tude in masses. I have then analyzed the synthetic phase spaces with the MG-MAMPOSSt
procedure to constrain m. I found that the dynamics analysis of 15 idealized halos with an
additional information of about 40% uncertainties in the NFW parameters 7 and 790 (such as
the one provided by a lensing probe) is sufficient to produce bounds on the modified gravity
parameter which are close to the limit reachable when using cluster mass profiles. Combin-
ing the marginalized distributions P(logm) from the 15 synthetic clusters I have obtained
m > 7.6 Mpc_1 at AX2 = 4.0 when assuming o,,, = 0.4 X 7200 and o, = 0.4 X 7, in the
Gaussian probability distribution Py (75, r200) as given by any additional probe which is sen-
sitive only to the Newtonian part of gravity. Moreover, each single P(logm) always includes
the GR limit within 1o, regardless of the values of the parameters with which the ideal clusters

are generated.

In order to understand how much the breakdown in the assumptions of the analysis affects
the constraints on m, I have furthermore considered 735 projected phase spaces of galaxy
clusters extracted from cosmological N-body simulations carried out with with the GADGET-
3 code. These clusters are taken at z = 0 and have masses in the range 9 x 103 h=1 M =
4 x 10" h=! M ; for each halo 5 projected phase spaces have been considered by randomly
sampling 1200 Dark Matter particles in the radial range [0.05Mpc, 1.27909] . The results
show that ~ 70% of clusters in a ACDM Universe (where GR is assumed) produce a spurious
detection of modified gravity when no selection criteria are used. This illustrates that the impact
of systematics in the proposed method, in particular deviations from spherical symmetry and
departures from a dynamical relaxed state of the cluster, plays a dominant role; an accurate
control and calibration of such effects is thus required in order to claim our procedure robust.

I define two observational parameters which correlate with the probability to find clusters in
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agreement with GR predictions and which can help in identifying the suitable clusters for the
application of our method. These parameter are the Anderson-Darling coefficient A2 of the
l.o.s. velocity distribution and the reduced x2 of the projected number density profile of the
tracers, which are connected to the main systematics affecting the analysis and can be directly
measured from the projected phase space. The first one identifies deviation from Gaussianity
of the L.o.s. velocity distribution, which is connected to the lack of dynamical relaxation, while
the second criterion is related to several systematic effects, including deviations from spherical
symmetry. The analysis I carried out shows that spurious detections of A = 1/m > 0 in the
marginalized distribution are correlated with the values of these two observational criteria; in
particular, the probability to find spurious detection of modified gravity decreases to ~ 30%
for A% < 1and x2 < 1.5 and "T" anisotropy model. Moreover, the trend is independent of the
parametrization of the velocity anisotropy 3(r) in the MAMPOSSt analysis, which is the major
source of uncertainties in the dynamics mass profile reconstruction. This demonstrates that the
proposed criteria can be used to help in identifying the suitable clusters for the application of
our method, among a generic population of objects.

The analysis presented within this Chapter has important implications for the study of galaxy
clusters as test of models of gravity alternative to GR; as already discussed, with the next
generation surveys such as Euclid, LSST, DES, a large amount of imaging and spectroscopic
data will allow lensing and dynamics mass profile reconstructions for several hundreds clusters
in quite large redshift range (e.g. Euclid will collect spectra of galaxies up to z ~ 1.8). The
results of this work show that few selected clusters, with reasonable number of galaxies used
in the dynamics analysis and feasible uncertainties on the additional lensing information, are
needed to obtain a constraint on the interaction range A < 0.053 Mpc for linear f(R) gravity.
For viable models where f rr < R~!, this corresponds to an average constraint on the second
derivative of f(R):

f RR(:=0)] < 9.36 x 10~ Mpc?, (8.8)

which is roughly three order of magnitude smaller than the bound derived from the analysis of
a single cluster. For example, in the case of MACS 1206 the constraint A < 1.9 Mpc translates
into |f rr(z=0)| S 1.2 Mpc?. The detection of such small effects call for a rigorous control
of the systematics and a careful selection of the clusters on which carry out our analysis. The
criteria I have introduced in this Chapter provide a simple discrimination method which has the
noticeable advantage that it requires only the projected information in the phase space. More-

over, even if I considered only halos at z = 0, the p.p.s. are independent of the redshift of the
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cluster, so that the selection procedure can be applied at any relevant cosmological time.

It is worth to remind that the results of this analysis, although very interesting, are ob-
tained studying only the dynamics of particles in simulated Dark Matter halos; the behavior of
galaxies in real clusters can be significantly different from that of DM particles, in particular
in the innermost regions where the effects of astrophysical processes become relevant (e.g. ref.
[214]). Several developments of the work presented in this Chapter can be made in order to
better quantify the effects of the above mentioned systematics. In particular, the analysis of
the dynamics of substructures in high resolution simulations, the inclusion of baryons (gas and
stars) as well as full lensing mass reconstructions will help in obtaining realistic constraints on

modified gravity parameters, at different redshifts, to be compared with real data.



Conclusions

In this PhD Thesis I have presented an extensive analysis aimed at constraining models of
gravity alternative to GR by combining mass profiles of galaxy clusters, reconstructed through
two different methods: gravitational lensing and internal dynamics as traced by the motion of
member galaxies. The analysis carried out focused on those classes of non-standard models
which provide a possible explanation for the accelerated expansion of the Universe, one of the

most challenging open problems in modern cosmology.

In the last decades, observations of the large-scale structure of the Universe and of the
anistropies of the Cosmic Microwave Background have been improving in quantity and quality,
reaching an unprecedented level of accuracy; nowadays, the Concordance Model, or ACDM
model, is found to be in excellent agreement with a large amount of data-sets available from
several probes. Nonetheless, in oder to account for the late-time accelerated expansion of the
Universe, the Concordance Model introduces a cosmological constant A in the Einstein’s equa-
tions which has no natural explanation in terms of the standard physics. Among the possible
alternatives to A, one possibility is to modify the theory that describes the gravitational interac-
tion, i.e. GR, in way that such modifications mimic the expansion history of the ACDM model
without the contribution of the cosmological constant.

With the increasing precision in observational surveys, some analyses have revealed possible
tensions between observations and theoretical predictions, whereas other studies has confirmed
the expectation of GR. In particular, while the results of CMB analyses in combination with
other probes (ref. [1]) indicate a tension between the Concordance Models and data, which in
principle can be explained invoking modification of gravity, with the recent observation of a
GW signal from a merging of two Neutron stars and its electromagnetic counterpart (ref. [97]),
the allowed region of existence of MG models has been consistently reduced, as discussed in

Chapter 2. This demands the need of new independent methods to test GR at cosmological

161
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scales, as well as requiring a severe control of systematics. In this picture, galaxy cluster mass
profiles offer an alternative and complementary approach to investigate the nature of gravity
alongside other cosmological probes.

The space-time around a galaxy cluster is described by a linear perturbation of the Friedman-
Robertson-Walker metric; this perturbed metric can be conveniently written in terms of two
scalar quantities, & and V¥, called Bardeen potentials, which encoded information about the
assumed theory of gravitation. I have discussed how determinations of the mass profile with
different methods are differently related to the Bardeen potentials. In particular, Chapter 3 was
devoted to describe the reconstruction of the cluster mass profile by the dynamics of the cluster
member galaxies, related to the potential ® through the Jeans’ equation, which is based on the
assumptions that galaxy clusters are spherically symmetric and dynamically relaxed; in Chap-
ter 4 I have presented reconstruction of cluster mass profile with gravitational lensing analysis,

which instead probes the combination of the Bardeen potentials @i, = ¢ + W.

The first part of this work, which has been presented in Chapter 6, and Chapter 7, fo-
cuses on the analysis of two galaxy clusters, namely MACS J1206.2-0847 at z = 0.44 and
RXC J2248.7-4431 at z = 0.35, for which high-quality imaging and spectroscopic data have
been obtained from the Cluster Lensing And Supernova survey with Hubble (CLASH) and
the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). I first combined
previous determinations of lensing and dynamics mass profiles for the galaxy cluster MACS
J1206.2-0847 to constrain generic deviation from general relativity, parametrized as the ra-
tio n = W/®, called anisotropic stress, under the assumption of spherical symmetry and
dynamical relaxation. In GR & = W, thus n should be identically equal to 1. I obtain
n(raoo = 1.96Mpc) = 1.01703% in the cluster outskirt at the 68% C.L., with a negligible
radial dependence; the result is in agreement with GR predictions and competitive with con-
straints obtained from completely independent analyses, such as the combination of CMB data
of the Planck mission, large scale structure (LSS) probes and independent determinations of
the Hubble parameter H.

This first analysis already showed that the combination of lensing and dynamics mass profiles
of galaxy clusters is indeed a powerful method to test the nature of gravity at cosmological
scales, thus providing interesting bounds on the anisotropic stress 7 even if the analysis has
been carried out on a single cluster. However, it is worth to mention that the quality and the

robustness of the results rely on the high quality data-sets used to reconstruct the mass profiles
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and on the detailed studies of the internal structure of MACS 1206, which have confirmed that
the main assumptions of the method (i.e. spherical symmetry in the matter distribution and

dynamical relaxation) are satisfied.

In order to translate the general constraints on 7 in terms of constraints on specific modified
gravity models, the second step of my work took into consideration the class of scalar-tensor
theories known as Horndeski Lagrangian. In particular, in order to extend to models of MG
the reconstruction of cluster mass profiles from dynamics, I implemented a modified version
of the MAMPOSSt procedure (Mamon, Biviano and Boué), a method to reconstruct galaxy
clusters mass profiles by solving the Jeans’ equation. I introduced in the new version of the
code, called MG-MAMPOSSt, a parametrization of the time-time potential & which accounts
for the large variety of modified gravity models in the Horndeski framework. The method and
the version of the code I have developed have been discussed in Chapter 3. As a case study,
I have determined the total mass profiles from dynamics of the two clusters MACS 1206 and
RXJ 2248 in the sub-class of f(R) gravity adopting a Navarro-Frenk-White parametrization
for the matter density perturbations (which provides the highest Likelihoods in lensing and
dynamics analysis for both clusters). It is worth to point out that the two clusters used in this
Thesis belong to a sample of few objects selected for their apparent relaxed dynamical state
and extensively analyzed within the CLASH and CLASH-VLT collaborations.

I have performed a Maximum Likelihood fit to the data in the projected phase spaces of the
member galaxies (R, vj,s) to constrain the mass profile parameters 75 and a0, the velocity
anisotropy parameter (3, together with the additional degree of freedom of the theory A, which
is dubbed as interaction range. The larger is A, the stronger is the departure from GR. As in
f(R) photon propagation is determined only by the Newtonian part of gravity, I have then
combined the information from the lensing mass profile reconstruction in order to narrow the
allowed region in the dynamics parameter space. To simplify the analysis, I have first assumed
a constant A (i.e. a negligible screening contribution over the scale considered in the analysis),
working in the so-called linear f(R) gravity, and then I have discussed the chameleon screen-
ing effect with an analytical approximation for the Hu & Sawicki functional form of f(R).

In the case of MACSJ 1206 the joint dynamics+lensing analysis is in agreement with GR
predictions A < 1.61 Mpc at Ax? = 2.71 in the linear regime, while for RXJ 2248 instead
a tension with standard gravity appears when adding lensing information A > 0.14 Mpc at

Ax? = 2.71. The results are shown and discussed in Chapter 7.
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The discrepancy between the GR expectations and the constraints obtained from the analysis
of RXJ 2248 is due to a slight shift between the lensing and dynamics probability distributions
in the GR parameter space (7, 7200 ); even if the mass profiles derived in GR from lensing and
dynamics analyses are not in tension, the lensing likelihood prefers a modestly lower cluster
mass with respect to the results from dynamics. Since the effects induced by viable modifica-
tions of gravity are in general very small, such modest difference is already enough to provide
a preference of modified gravity with respect to GR. As a consequence, the assumptions on
which the proposed method relies have to be carefully checked and controlled to avoid the in-
troduction of systematic false detections of modified gravity. This is very important in view of
next generation imaging and spectroscopic surveys, both ground-based and in space, that will
provide a large amount of data allowing mass profile reconstructions for hundred clusters; the
remarkable increase of statistics will however come at the price of a much lower sensitivity on

the internal structure of each cluster.

In order to quantify the impact that the violation of the main assumptions has on the con-
straints derived with this method, in Chapter 8 I presented the study of cosmological simula-
tions of galaxy clusters carried out in the GR framework of the standard LCDM cosmology.To
this purpose, I have divided the analysis in two parts; the first analysis has investigated the con-
straining power of the method in the case where all the assumptions are met. I considered a set
of 15 synthetic isolated Dark Matter halos generated over two order of magnitude in mass ac-
cording to a NFW distribution and with velocity dispersion given by the solution of the Jeans’
equation, assuming a specific model for the anisotropy profile.

The MG-MAMPOSSt procedure applied on such halos for the example case of linear f(R)
gravity shows that with the dynamics mass profile reconstruction alone no constraints on the
interaction range A can be obtained, even when increasing the number of particles used to sam-
ple the phase space of the halos. However, when adding additional information on the mass
profile parameters rs, 7200, €.g2. to be provided by a mass reconstruction from gravitational
lensing, I predict that a joint analysis on a dozen objects with reliable uncertainties is already
sufficient to saturate the statistical information, obtaining the tightest constraints on GR devia-
tions reachable with our method.

The second part of the study has explicitly determined the systematic effects on the obtained
constraints induced by the breakdown of the assumptions. In doing so, I have analyzed more

synthetic galaxy clusters drawn from a set of ACDM N-body simulations, performed with the
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GADGET-3 code, which spawn a mass range from 9 x 10'3 M, to 8 x 10> M; all the clusters
have been considered at z = 0.

The application of my method on all these halos, regardless of their dynamical status, reveals
that a significant spurious detection of modified gravity is present in roughly ~ 70% of the
analyzed clusters, confirming that systematics have a remarkable impact on our procedure. To
further investigate the relation between the assumptions of the method and the spurious con-
straints on the MG parameter A, I consider two parameters which can be computed from the
projected phase space, and thus they can be applied to real data; these parameters are the An-
derson Darling coefficient A% of the cumulative l.o.s. velocity distribution of the tracers and
the chi-square x2 given by the fit of the projected number density profile with a NFW profile.
use to assess to which level the assumptions of dynamical relaxation and spherical symmetry
are met; in particular A? parametrizes lack of dynamical relaxation while x? is connected to
deviation from spherical symmetry, systematics in the assumed parametric form of the density
profile and the presence of substructures in the projected phase space. I found that both param-
eters correlate with the probability to find clusters in agreement with GR predictions, and this
correlation is independent of the model chosen for the velocity anisotropy profile 5(r), which
is an additional unknown in the dynamics mass profile reconstruction. Once I select those
clusters where the assumptions of our method are better satisfied, characterized by low values
of A2 and 2, the probability to find halos where ) is consistent with zero rises up to ~ 70%.
This demonstrates that these two parameters can be used as selection criteria to discriminate
those clusters to be used as a test for GR.

The study of systematic effects carried out in this Thesis has considered only the dynamics
of Dark Matter particles, which are collisionless tracers of the gravitational potential, taken
from simulated halos in N-body simulation. The natural step further is to perform a similar
analysis by using substructures in high-resolution simulations of galaxy clusters, which better
reproduce the motion of galaxies with respect to Dark Matter particles; moreover, possible
improvements of this work should take into account the effect of baryons in hydrodynamical
simulations that could slightly modify the results shown in Chapter 8. As for the lensing part,
a detailed ray-tracing reconstruction of the simulated halos (e.g. refs. [215, 216]) is required
in order to perform a full joint lensing+kinematic analysis at different redshifts, and to obtain
a combined distribution of the new degree of freedom m(z) to be compared with future obser-
vations.

Although in my Thesis I focused mainly on linear f(R) gravity, the proposed method can be
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easily extended to a large variety of viable modified gravity models; in particular, both the MG-
MAMPOSSt procedure and the code for the generation of synthetic halos can be run in different
environments changing the parametrization of the Bardeen potential ®(r) and the number of
free parameters in the expression of o2 of eq. (3.36). Thus, it is possible to investigate the con-
straining power of our method in a broad range of frameworks; such analysis will be included
in a paper in preparation with L. Amendola S. Casas and I. Saltas, in which we will determine
the number of ideal clusters needed to constrain the anisotropic stress 7(r) for several classes

of modified gravity models with and without an explicit screening scale.

Recently, full cosmological simulation codes have been developed to work in non-standard
frameworks including modified gravity scenarios. In particular, ref. [39] implemented a mod-
ule based on the P-GADGET3 code (MG-GADGET) which can run both N-body and hydro-
dynamics simulations in f(R) gravity, assuming the H&S functional form. An application of
the procedure proposed in this Thesis to a modified gravity simulation, compared with the re-
sults obtained in ACDM analyses, will provide crucial information on what one should expect
in a Universe where the gravitational interaction is not described by GR theory. A future de-
velopment of this PhD project will focus on the study of halos extracted from modified gravity
simulations; the aim will be to carry out the analysis presented within this Thesis in the most
general background, in order to determine the best trade-off between a richer statistics and a
high control of the systematics, offering a remarkable comparison scheme between forthcom-
ing data-sets and viable modified gravity models.

In conclusion, within this Thesis I have demonstrated the potential of comparing galaxy
cluster mass profiles, reconstructed from dynamics and lensing analyses, as a new independent
probe for departures from GR at large scales. Few selected clusters can be used to produce
stringent bounds on the parameters of a large variety of modified gravity models at different
redshifts, with uncertainties comparable to (or even smaller than) that provided by other cos-
mological probes. Nevertheless, the expected precision requires a reliable control of all the
possible systematics, which can be achieved by a detailed analysis of cosmological simula-
tions. It is worth to remind that mass profiles of galaxy clusters can be estimated also from X-
ray and SZ effect observations, by assuming hydrostatic equilibrium of the ICM. With present
and next generation surveys (e.g. Athena*) new data will be available also for X-ray cluster

mass reconstructions which, has already mentioned in Chapter 3, are sensitive to the time-time

*https://www.the-athena-x-ray-observatory.eu
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potential ®. Since the hot gas suffers lack of equilibrium differently from the cluster member
galaxies, the combination of galaxy cluster dynamics, lensing and X-ray analyses will provide
not only more stringent bounds on the MG parameters, but also a more detailed control of the
systematics. With the compound of these upcoming data-sets and results from cosmological
simulations, the method proposed in my Thesis will allow to test the behavior of gravity at

cosmological scales down to an unprecedented level of accuracy.



Bibliography

[1] Planck Collaboration, Planck 2015 results. XIV. Dark energy and modified gravity,
A&A 594 (Sept., 2016) Al4, [arXiv:1502.01590].

[2] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich,
R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, and others, Observational Evidence
from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ 116

(Sept., 1998) 1009-1038, [astro—ph/9805201].

[3] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro,
S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, and others, Measurements of 2 and A
from 42 High-Redshift Supernovae, ApJ 517 (June, 1999) 565-586,
[astro-ph/9812133].

[4] Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, ArXiv
e-prints (July, 2018) [arXiv:1807.062009].

[5] W. Hu and I. Sawicki, Models of f(R) cosmic acceleration that evade solar system tests,
Phys. Rev. D 76 (Sept., 2007) 064004, [arXiv:0705.1158].

[6] G. Dvali, S. Hofmann, and J. Khoury, Degravitation of the cosmological constant and
graviton width, Phys. Rev. D 76 (Oct., 2007) 084006, [hep—-th/0703027].

[7] A. Lue, R. Scoccimarro, and G. Starkman, Differentiating between modified gravity
and dark energy, Phys. Rev. D 69 (Feb., 2004) 044005, [astro-ph/0307034].

[8] B. Hu, M. Liguori, N. Bartolo, and S. Matarrese, Parametrized modified gravity
constraints after Planck, Phys. Rev. D 88 (Dec., 2013) 123514,
[arXiv:1307.5276].

168


http://arxiv.org/abs/1502.01590
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/0705.1158
http://arxiv.org/abs/hep-th/0703027
http://arxiv.org/abs/astro-ph/0307034
http://arxiv.org/abs/1307.5276

Bibliography 169

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G.-B. Zhao, T. Giannantonio, L. Pogosian, A. Silvestri, D. J. Bacon, K. Koyama, R. C.
Nichol, and Y.-S. Song, Probing modifications of general relativity using current
cosmological observations, Phys. Rev. D 81 (May, 2010) 103510,
[2rXiv:1003.0001].

K. Yamamoto, B. A. Bassett, R. C. Nichol, Y. Suto, and K. Yahata, Searching for
modified gravity with baryon oscillations: From SDSS to wide field multiobject
spectroscopy (WFMOS), Phys. Rev. D 74 (Sept., 2006) 063525,
[astro-ph/0605278].

E. Jennings, C. M. Baugh, B. Li, G.-B. Zhao, and K. Koyama, Redshift-space
distortions in f{R) gravity, MNRAS 425 (Sept., 2012) 2128-2143,
[arXiv:1205.2698].

G.-B. Zhao, L. Pogosian, A. Silvestri, and J. Zylberberg, Searching for modified growth
patterns with tomographic surveys, Phys. Rev. D 79 (Apr., 2009) 083513,
[arXiv:0809.3791].

S. Ferraro, F. Schmidt, and W. Hu, Cluster abundance in f{R) gravity models,
Phys. Rev. D 83 (Mar., 2011) 063503, [arXiv:1011.0992].

M. Cataneo, D. Rapetti, F. Schmidt, A. B. Mantz, S. W. Allen, D. E. Applegate, P. L.
Kelly, A. von der Linden, and R. G. Morris, New constraints on f (R ) gravity from
clusters of galaxies, Phys. Rev. D 92 (Aug., 2015) 044009, [arXiv:1412.0133].

D. Langlois, R. Saito, D. Yamauchi, and K. Noui, Scalar-tensor theories and modified
gravity in the wake of GW170817, Phys. Rev. D 97 (Mar., 2018) 061501,
[arXiv:1711.07403].

L. Amendola, M. Kunz, I. D. Saltas, and 1. Sawicki, Fate of Large-Scale Structure in
Modified Gravity After GW170817 and GRB170817A, Physical Review Letters 120
(Mar., 2018) 131101, [arXiv:1711.04825].

C. M. Will, The Confrontation between General Relativity and Experiment, Living
Reviews in Relativity 9 (Mar., 2006) [gr—-gc/0510072].

J. Khoury, Theories of Dark Energy with Screening Mechanisms, ArXiv e-prints (Nov.,
2010) [arXiv:1011.5909].


http://arxiv.org/abs/1003.0001
http://arxiv.org/abs/astro-ph/0605278
http://arxiv.org/abs/1205.2698
http://arxiv.org/abs/0809.3791
http://arxiv.org/abs/1011.0992
http://arxiv.org/abs/1412.0133
http://arxiv.org/abs/1711.07403
http://arxiv.org/abs/1711.04825
http://arxiv.org/abs/gr-qc/0510072
http://arxiv.org/abs/1011.5909

Bibliography 170

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

L. Amendola, Coupled quintessence, Phys. Rev. D 62 (Jul, 2000) 043511.

A. L. Serra and M. J. L. Dominguez Romero, Measuring the dark matter equation of
state, MNRAS 415 (July, 2011) L74-L77, [arXiv:1103.5465].

B. Sartoris, A. Biviano, P. Rosati, S. Borgani, K. Umetsu, M. Bartelmann, M. Girardi,
C. Grillo, D. Lemze, A. Zitrin, and others, CLASH-VLT: Constraints on the Dark
Matter Equation of State from Accurate Measurements of Galaxy Cluster Mass
Profiles, ApJ 783 (Mar., 2014) L11, [arXiv:1401.5800].

L. Pizzuti, B. Sartoris, S. Borgani, L. Amendola, K. Umetsu, A. Biviano, M. Girardi,
P. Rosati, I. Balestra, G. B. Caminha, B. Frye, A. Koekemoer, C. Grillo, M. Lombardi,
A. Mercurio, and M. Nonino, CLASH-VLT: testing the nature of gravity with galaxy
cluster mass profiles, J. Cosmology Astropart. Phys. 4 (Apr., 2016) 023,
[arXiv:1602.03385].

M. Postman, D. Coe, N. Benitez, L. Bradley, T. Broadhurst, M. Donahue, H. Ford,
O. Graur, G. Graves, S. Jouvel, and others, The Cluster Lensing and Supernova Survey
with Hubble: An Overview, ApJS 199 (Apr., 2012) 25, [arXiv:1106.3328].

P. Rosati, 1. Balestra, C. Grillo, A. Mercurio, M. Nonino, A. Biviano, M. Girardi,

E. Vanzella, and Clash-VLT Team, CLASH-VLT: A VIMOS Large Programme to Map
the Dark Matter Mass Distribution in Galaxy Clusters and Probe Distant Lensed
Galaxies, The Messenger 158 (Dec., 2014) 48-53.

A. Biviano, P. Rosati, I. Balestra, A. Mercurio, M. Girardi, M. Nonino, C. Grillo,
M. Scodeggio, D. Lemze, D. Kelson, and others, CLASH-VLT: The mass,

velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy
cluster MACS J1206.2-0847, A&A 558 (Oct., 2013) Al, [arXiv:1307.5867].

K. Umetsu, E. Medezinski, M. Nonino, J. Merten, A. Zitrin, A. Molino, C. Grillo,

M. Carrasco, M. Donahue, A. Mahdavi, and others, CLASH: Mass Distribution in and
around MACS J1206.2-0847 from a Full Cluster Lensing Analysis, ApJ 755 (Aug.,
2012) 56, [arXiv:1204.3630].

L. Amendola, M. Kunz, and D. Sapone, Measuring the dark side (with weak lensing),
JCAP 0804 (2008) 013, [arXiv:0704.2421].


http://arxiv.org/abs/1103.5465
http://arxiv.org/abs/1401.5800
http://arxiv.org/abs/1602.03385
http://arxiv.org/abs/1106.3328
http://arxiv.org/abs/1307.5867
http://arxiv.org/abs/1204.3630
http://arxiv.org/abs/0704.2421

Bibliography 171

[28] B. Jain and P. Zhang, Observational tests of modified gravity, Phys. Rev. D 78 (Sept.,
2008) 063503, [arXiv:0709.2375].

[29] F. Schmidt, Dynamical masses in modified gravity, Phys. Rev. D 81 (May, 2010)
103002, [arXiv:1003.04009].

[30] G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional

space, International Journal of Theoretical Physics 10 (1974), no. 6 363-384.

[31] J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (Feb., 2004)
044026, [astro-ph/0309411].

[32] G. A. Mamon, A. Biviano, and G. Boué¢, MAMPOSSt: Modelling Anisotropy and Mass
Profiles of Observed Spherical Systems - I. Gaussian 3D velocities, MNRAS 429
(Mar., 2013) 3079-3098, [arXiv:1212.1455].

[33] J. E Navarro, C. S. Frenk, and S. D. M. White, A Universal Density Profile from
Hierarchical Clustering, ApJ 490 (Dec., 1997) 493-508, [astro-ph/9611107].

[34] B. Li, G.-B. Zhao, and K. Koyama, Haloes and voids in f(R) gravity, MNRAS 421
(Apr., 2012) 3481-3487, [arXiv:1111.2602].

[35] K. Umetsu, A. Zitrin, D. Gruen, J. Merten, M. Donahue, and M. Postman, CLASH:
Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20
Galaxy Clusters, ApJ 821 (Apr., 2016) 116, [arXiv:1507.04385].

[36] L. Pizzuti, B. Sartoris, L. Amendola, S. Borgani, A. Biviano, K. Umetsu, A. Mercurio,
P. Rosati, I. Balestra, G. B. Caminha, M. Girardi, C. Grillo, and M. Nonino,
CLASH-VLT: constraints on f(R) gravity models with galaxy clusters using lensing and
kinematic analyses, J. Cosmology Astropart. Phys. 7 (July, 2017) 023,
[arXiv:1705.05179].

[37] V. Springel, The cosmological simulation code GADGET-2, MNRAS 364 (Dec., 2005)
1105-1134, [astro-ph/0505010].

[38] I. D. Roberts, L. C. Parker, and J. Hlavacek-Larrondo, Connecting optical and X-ray
tracers of galaxy cluster relaxation, MNRAS 475 (Apr., 2018) 47044716,
[arXiv:1801.03999].


http://arxiv.org/abs/0709.2375
http://arxiv.org/abs/1003.0409
http://arxiv.org/abs/astro-ph/0309411
http://arxiv.org/abs/1212.1455
http://arxiv.org/abs/astro-ph/9611107
http://arxiv.org/abs/1111.2602
http://arxiv.org/abs/1507.04385
http://arxiv.org/abs/1705.05179
http://arxiv.org/abs/astro-ph/0505010
http://arxiv.org/abs/1801.03999

Bibliography 172

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

E. Puchwein, M. Baldi, and V. Springel, Modified-Gravity-GADGET: a new code for
cosmological hydrodynamical simulations of modified gravity models, MNRAS 436
(Nov., 2013) 348-360, [arXiv:1305.24138].

J. F. Navarro, C. S. Frenk, and S. D. M. White, A Universal Density Profile from
Hierarchical Clustering, ApJ 490 (Dec., 1997) 493—+, [astro-ph/9].

S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity. July, 1972.

H. Mo, F. C. van den Bosch, and S. White, Galaxy Formation and Evolution. May,
2010.

A. Friedmann, Uber die Kriimmung des Raumes, Zeitschrift fur Physik 10 (1922)
377-386.

J. A. Frieman, M. S. Turner, and D. Huterer, Dark Energy and the Accelerating
Universe, ARA&A 46 (Sept., 2008) 385-432, [arXiv:0803.0982].

A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson, J. W. MacKenty, J. B.
Bowers, K. I. Clubb, A. V. Filippenko, D. O. Jones, and B. E. Tucker, New Parallaxes
of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope:
Implications for the Hubble Constant, ApJ 855 (Mar., 2018) 136,
[arXiv:1801.01120].

A. G. Riess, S. Casertano, W. Yuan, L. Macri, B. Bucciarelli, M. G. Lattanzi, J. W.
MacKenty, J. B. Bowers, W. Zheng, A. V. Filippenko, C. Huang, and R. I. Anderson,
Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to
Gaia DR2: Implications for the Hubble Constant, ApJ 861 (July, 2018) 126,
[arXiv:1804.10655].

D. Camarena and V. Marra, Impact of the cosmic variance on Hy on cosmological

analyses, Phys. Rev. D 98 (July, 2018) 023537, [arXiv:1805.09900].

A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, and et al.,
Observational Evidence from Supernovae for an Accelerating Universe and a
Cosmological Constant, AJ 116 (Sept., 1998) 1009-1038, [astro—ph/9].


http://arxiv.org/abs/1305.2418
http://arxiv.org/abs/astro-ph/9
http://arxiv.org/abs/0803.0982
http://arxiv.org/abs/1801.01120
http://arxiv.org/abs/1804.10655
http://arxiv.org/abs/1805.09900
http://arxiv.org/abs/astro-ph/9

Bibliography 173

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro,
S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, and others, Measurements of {2 and A

from 42 High-Redshift Supernovae, ApJ 517 (June, 1999) 565-586,

[astro-ph/9812133].

H. Velten, S. Gomes, and V. C. Busti, Gauging the cosmic acceleration with recent type
la supernovae data sets, Phys. Rev. D 97 (Apr., 2018) 083516,
[arXiv:1801.00114].

M. e. a. Kowalski, Improved Cosmological Constraints from New, Old, and Combined
Supernova Data Sets, ApJ 686 (Oct., 2008) 749-778, [arXiv:0804.4142].

B. S. Haridasu, V. V. Lukovi¢, R. D’ Agostino, and N. Vittorio, Strong evidence for an
accelerating Universe, A&A 600 (Apr., 2017) L1.

J. Magafia, V. Motta, V. H. Cardenas, and G. Foéx, Testing cosmic acceleration for w(z)
parametrizations using fy.s measurements in galaxy clusters, MNRAS 469 (July, 2017)
47-61,[arXiv:1703.08521].

D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and
E. Rozo, Observational probes of cosmic acceleration, Phys. Rep. 530 (Sept., 2013)
87-255, [arXiv:1201.2434].

R. Giostri, M. Vargas dos Santos, I. Waga, R. R. R. Reis, M. O. Calvio, and B. L. Lago,
From cosmic deceleration to acceleration: new constraints from SN la and BAO/CMB,

J. Cosmology Astropart. Phys. 3 (Mar., 2012) 027, [arXiv:1203.3213].

M. Vargas dos Santos, R. R. R. Reis, and 1. Waga, Constraining the cosmic
deceleration-acceleration transition with type la supernova, BAO/CMB and H(z) data,
J. Cosmology Astropart. Phys. 2 (Feb., 2016) 066, [arXiv:1505.03814].

K. Freese, Review of Observational Evidence for Dark Matter in the Universe and in
upcoming searches for Dark Stars, in EAS Publications Series (E. Pécontal, T. Buchert,
P. di Stefano, and Y. Copin, eds.), vol. 36 of EAS Publications Series, pp. 113126,
2009. arxiv:0812.4005.

Planck Collaboration, Planck 2018 results. 1. Overview and the cosmological legacy of
Planck, ArXiv e-prints (July, 2018) [arXiv:1807.06205].


http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/1801.00114
http://arxiv.org/abs/0804.4142
http://arxiv.org/abs/1703.08521
http://arxiv.org/abs/1201.2434
http://arxiv.org/abs/1203.3213
http://arxiv.org/abs/1505.03814
http://arxiv.org/abs/0812.4005
http://arxiv.org/abs/1807.06205

Bibliography 174

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Planck Collaboration, Planck 2015 results. 1. Overview of products and scientific
results, A&A 594 (Sept., 2016) Al, [arXiv:1502.01582].

P. Meszaros, The behaviour of point masses in an expanding cosmological substratum,
A&A 37 (Dec., 1974) 225-228.

D. H. Weinberg, J. S. Bullock, F. Governato, R. Kuzio de Naray, and A. H. G. Peter,
Cold dark matter: Controversies on small scales, Proceedings of the National Academy
of Science 112 (Oct., 2015) 12249-12255, [arXiv:1306.0913].

S. Borgani and L. Guzzo, X-ray clusters of galaxies as tracers of structure in the

Universe, Nature 409 (Jan., 2001) 39-45, [astro—-ph/0012439].

T. Narikawa and K. Yamamoto, Characterizing the linear growth rate of cosmological
density perturbations in an f(R) model, Phys. Rev. D 81 (Feb., 2010) 043528,
[arxXiv:0912.1445].

J. M. Bardeen, Gauge-invariant cosmological perturbations, Phys. Rev. D 22 (Oct.,
1980) 1882-1905.

I. Milillo, D. Bertacca, M. Bruni, and A. Maselli, Missing link: A nonlinear
post-Friedmann framework for small and large scales, Phys. Rev. D 92 (July, 2015)
023519, [arXiv:1502.02985].

J. E. Gunn and J. R. Gott, III, On the Infall of Matter Into Clusters of Galaxies and
Some Effects on Their Evolution, ApJ 176 (Aug., 1972) 1.

W. H. Press and P. Schechter, Formation of Galaxies and Clusters of Galaxies by
Self-Similar Gravitational Condensation, ApJ 187 (Feb., 1974) 425-438.

D. F. Mota and C. van de Bruck, On the spherical collapse model in dark energy
cosmologies, A&A 421 (July, 2004) 71-81, [astro-ph/0401504].

R.-H. Lin, X.-H. Zhai, and X.-Z. Li, Spherical collapse and virialization inf( t)
gravities, Journal of Cosmology and Astroparticle Physics 2017 (2017), no. 03 040.

Y. B. Zel’dovich, Gravitational instability: An approximate theory for large density
perturbations., A&A 5 (Mar., 1970) 84-89.


http://arxiv.org/abs/1502.01582
http://arxiv.org/abs/1306.0913
http://arxiv.org/abs/astro-ph/0012439
http://arxiv.org/abs/0912.1445
http://arxiv.org/abs/1502.02985
http://arxiv.org/abs/astro-ph/0401504

Bibliography 175

[71] M. C. Neyrinck, Quantifying distortions of the Lagrangian dark-matter mesh in
cosmology, MNRAS 428 (Jan., 2013) 141-153, [arXiv:1204.1326].

[72] K. Dolag, S. Borgani, S. Schindler, A. Diaferio, and A. M. Bykov, Simulation
Techniques for Cosmological Simulations, Space Sci. Rev. 134 (Feb., 2008) 229-268,
[2rXiv:0801.1023].

[73] R. S. Somerville and R. Davé, Physical Models of Galaxy Formation in a
Cosmological Framework, ARA&A 53 (Aug., 2015) 51-113, [arXiv:1412.2712].

[74] D. Daverio, Y. Dirian, and E. Mitsou, A numerical relativity scheme for cosmological
simulations, Classical and Quantum Gravity 34 (Dec., 2017) 237001,
[arXiv:1611.03437].

[75] J. Adamek, D. Daverio, R. Durrer, and M. Kunz, General relativistic N-body
simulations in the weak field limit, Phys. Rev. D 88 (Nov., 2013) 103527,
[arXiv:1308.6524].

[76] J. E. Navarro, C. S. Frenk, and S. D. M. White, The assembly of galaxies in a
hierarchically clustering universe, MNRAS 275 (July, 1995) 56-66, [astro-ph/9].

[77] J. E. Navarro, C. S. Frenk, and S. D. M. White, The Structure of Cold Dark Matter
Halos, Apl 462 (May, 1996) 563—+, [astro-ph/9].

[78] D. H. Zhao, Y. P. Jing, H. J. Mo, and G. Borner, Mass and Redshift Dependence of
Dark Halo Structure, ApJ 597 (Nov., 2003) L9-L12, [astro-ph/0309375].

[79] M. A. Sanchez-Conde and F. Prada, The flattening of the concentration-mass relation

towards low halo masses and its implications for the annihilation signal boost,

MNRAS 442 (Aug., 2014) 2271-2277, [arXiv:1312.1729].

[80] F. Prada, A. A. Klypin, A. J. Cuesta, J. E. Betancort-Rijo, and J. Primack, Halo
concentrations in the standard A cold dark matter cosmology, MNRAS 423 (July,
2012) 3018-3030, [arXiv:1104.5130].

[81] A. V. Maccio, A. A. Dutton, and F. C. van den Bosch, Concentration, spin and shape of
dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and
WMAPS results, MNRAS 391 (Dec., 2008) 1940-1954, [arXiv:0805.1926].


http://arxiv.org/abs/1204.1326
http://arxiv.org/abs/0801.1023
http://arxiv.org/abs/1412.2712
http://arxiv.org/abs/1611.03437
http://arxiv.org/abs/1308.6524
http://arxiv.org/abs/astro-ph/9
http://arxiv.org/abs/astro-ph/9
http://arxiv.org/abs/astro-ph/0309375
http://arxiv.org/abs/1312.1729
http://arxiv.org/abs/1104.5130
http://arxiv.org/abs/0805.1926

Bibliography 176

[82] A.R. Duffy,J. Schaye, S. T. Kay, and C. Dalla Vecchia, Dark matter halo
concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology,
MNRAS 390 (Oct., 2008) L64-L68, [arXiv:0804.2486].

[83] A. A. Klypin, S. Trujillo-Gomez, and J. Primack, Dark Matter Halos in the Standard
Cosmological Model: Results from the Bolshoi Simulation, ApJ 740 (Oct., 2011) 102,
[arXiv:1002.3660].

[84] C. De Boni, S. Ettori, K. Dolag, and L. Moscardini, Hydrodynamical simulations of
galaxy clusters in dark energy cosmologies - II. c-M relation, MNRAS 428 (Feb.,
2013) 2921-2938, [arXiv:1205.3163].

[85] S. Ettori, F. Gastaldello, A. Leccardi, S. Molendi, M. Rossetti, D. Buote, and
M. Meneghetti, Mass profiles and c-Mpys relation in X-ray luminous galaxy clusters,
A&A 524 (Dec., 2010) A68.

[86] S. Amodeo, S. Ettori, R. Capasso, and M. Sereno, The relation between mass and
concentration in X-ray galaxy clusters at high redshift, A&A 590 (May, 2016) A126,
[arXiv:1604.02163].

[87] J. Merten, M. Meneghetti, M. Postman, K. Umetsu, A. Zitrin, E. Medezinski,
M. Nonino, A. Koekemoer, P. Melchior, D. Gruen, and others, CLASH: The
Concentration-Mass Relation of Galaxy Clusters, ApJ 806 (June, 2015) 4,
[arxiv:1404.1376].

[88] M. Meneghetti, E. Rasia, J. Vega, J. Merten, and M. e. a. Postman, The MUSIC of
CLASH: Predictions on the Concentration-Mass Relation, ApJ 797 (Dec., 2014) 34,
[arXiv:1404.1384].

[89] K. Umetsu, E. Medezinski, M. Nonino, J. Merten, M. Postman, M. Meneghetti,
M. Donahue, N. Czakon, A. Molino, S. Seitz, and others, CLASH: Weak-lensing
Shear-and-magnification Analysis of 20 Galaxy Clusters, ApJ 795 (Nov., 2014) 163,
[arXiv:1404.1375].

[90] B. Moore, F. Governato, T. Quinn, J. Stadel, and G. Lake, Resolving the Structure of
Cold Dark Matter Halos, ApJ 499 (May, 1998) L5-L8, [astro-ph/9709051].


http://arxiv.org/abs/0804.2486
http://arxiv.org/abs/1002.3660
http://arxiv.org/abs/1205.3163
http://arxiv.org/abs/1604.02163
http://arxiv.org/abs/1404.1376
http://arxiv.org/abs/1404.1384
http://arxiv.org/abs/1404.1375
http://arxiv.org/abs/astro-ph/9709051

Bibliography 177

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

B. Moore, Evidence against dissipation-less dark matter from observations of galaxy

haloes, Nature 370 (Aug., 1994) 629-631.

R. A. Swaters, B. F. Madore, F. C. van den Bosch, and M. Balcells, The Central Mass
Distribution in Dwarf and Low Surface Brightness Galaxies, ApJ 583 (Feb., 2003)
732-751, [astro-ph/0210152].

A. Pontzen and F. Governato, How supernova feedback turns dark matter cusps into
cores, MNRAS 421 (Apr., 2012) 3464-3471, [arXiv:1106.0499].

J. F. Navarro, The Inner Density Cusp of Cold Dark Matter Halos, in Dark Matter in
Galaxies (S. Ryder, D. Pisano, M. Walker, and K. Freeman, eds.), vol. 220 of JAU
Symposium, p. 61, July, 2004. astro-ph/0311361.

L. Gao, J. F. Navarro, S. Cole, C. S. Frenk, S. D. M. White, V. Springel, A. Jenkins,
and A. F. Neto, The redshift dependence of the structure of massive A cold dark matter
haloes, MNRAS 387 (June, 2008) 536-544, [arXiv:0711.0746].

E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani, U. Sperhake, L. C. Stein,

N. Wex, K. Yagi, T. Baker, and others, Testing general relativity with present and future
astrophysical observations, Classical and Quantum Gravity 32 (Dec., 2015) 243001,
[2rXiv:1501.07274].

B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams,
P. Addesso, R. X. Adhikari, V. B. Adya, and others, GWI170817: Observation of
Gravitational Waves from a Binary Neutron Star Inspiral, Physical Review Letters 119

(Oct., 2017) 161101, [arXiv:1710.05832].
A. S. Eddington, Can Gravitation be Explained?, JRASC 17 (Dec., 1923) 387.

A. Padilla, Lectures on the Cosmological Constant Problem, ArXiv e-prints (Feb.,
2015) [arXiv:1502.0529¢6].

B. Ratra and P. J. E. Peebles, Cosmological consequences of a rolling homogeneous

scalar field, Phys. Rev. D 37 (June, 1988) 3406-3427.

E. Sefusatti and F. Vernizzi, Cosmological structure formation with clustering
quintessence, J. Cosmology Astropart. Phys. 3 (Mar., 2011) 047,
[arXiv:1101.1026].


http://arxiv.org/abs/astro-ph/0210152
http://arxiv.org/abs/1106.0499
http://arxiv.org/abs/astro-ph/0311361
http://arxiv.org/abs/0711.0746
http://arxiv.org/abs/1501.07274
http://arxiv.org/abs/1710.05832
http://arxiv.org/abs/1502.05296
http://arxiv.org/abs/1101.1026

Bibliography 178

[102] R. de Putter, D. Huterer, and E. V. Linder, Measuring the speed of dark: Detecting dark
energy perturbations, Phys. Rev. D 81 (May, 2010) 103513, [arXiv:1002.1311].

[103] D. Huterer and D. L. Shafer, Dark energy two decades after: observables, probes,
consistency tests, Reports on Progress in Physics 81 (Jan., 2018) 016901,
[arXiv:1709.01091].

[104] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Modified gravity and cosmology,
Phys. Rep. 513 (Mar., 2012) 1-189, [arXiv:1106.2476].

[105] A.Joyce, L. Lombriser, and F. Schmidt, Dark energy versus modified gravity, Annual
Review of Nuclear and Particle Science 66 (2016), no. 1 95-122,
[https://doi.org/10.1146/annurev-nucl-102115-044553].

[106] D. Lovelock, The fourdARdimensionality of space and the einstein tensor, Journal of
Mathematical Physics 13 (1972), no. 6 874-876,
[https://doi.org/10.1063/1.1666069].

[107] R. Maartens, Brane-World Gravity, Living Reviews in Relativity 7 (June, 2004) 7,
[gr—-gc/0312059].

[108] K. Koyama, Cosmological tests of modified gravity, Reports on Progress in Physics 79
(Apr., 2016) 046902, [arXiv:1504.04623].

[109] C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Essentials of k-essence,
Phys. Rev. D 63 (May, 2001) 103510, [astro-ph/0006373].

[110] P. Creminelli and F. Vernizzi, Dark Energy after GW170817 and GRB170817A,
Physical Review Letters 119 (Dec., 2017) 251302, [arXiv:1710.05877].

[111] V. Mukhanov, Physical Foundations of Cosmology. Mar., 2001.

[112] L. Amendola, M. Kunz, M. Motta, I. D. Saltas, and 1. Sawicki, Observables and
unobservables in dark energy cosmologies, Phys. Rev. D 87 (Jan., 2013) 023501,
[arXiv:1210.0439].

[113] A. de Felice, T. Kobayashi, and S. Tsujikawa, Effective gravitational couplings for

cosmological perturbations in the most general scalar-tensor theories with


http://arxiv.org/abs/1002.1311
http://arxiv.org/abs/1709.01091
http://arxiv.org/abs/1106.2476
http://arxiv.org/abs/https://doi.org/10.1146/annurev-nucl-102115-044553
http://arxiv.org/abs/https://doi.org/10.1063/1.1666069
http://arxiv.org/abs/gr-qc/0312059
http://arxiv.org/abs/1504.04623
http://arxiv.org/abs/astro-ph/0006373
http://arxiv.org/abs/1710.05877
http://arxiv.org/abs/1210.0439

Bibliography 179

second-order field equations, Physics Letters B 706 (Dec., 2011) 123-133,
[arXiv:1108.4242].

[114] H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, MNRAS 150
(1970) 1.

[115] T. P. Sotiriou and V. Faraoni, f{(R) theories of gravity, Reviews of Modern Physics 82
(Jan., 2010) 451-497, [arXiv:0805.1726].

[116] T. P. Sotiriou and V. Faraoni, f{R) theories of gravity, Reviews of Modern Physics 82
(Jan., 2010) 451-497, [arXiv:0805.1726].

[117] M. Cataneo, D. Rapetti, L. Lombriser, and B. Li, Cluster abundance in chameleon
f(R) gravity I: toward an accurate halo mass function prediction, ArXiv e-prints (July,

2016) [arXiv:1607.08788].

[118] L. Pogosian and A. Silvestri, Erratum: Pattern of growth in viable f{R) cosmologies
[Phys. Rev. D 77, 023503 (2008)], Phys. Rev. D 81 (Feb., 2010) 049901.

[119] Y.-S. Song, W. Hu, and 1. Sawicki, Large scale structure of f(R) gravity, Phys. Rev. D
75 (Feb., 2007) 044004, [astro—ph/0610532].

[120] H. Oyaizu, Nonlinear evolution of f(R) cosmologies. 1. Methodology, Phys. Rev. D 78
(Dec., 2008) 123523, [arXiv:0807.2449].

[121] M. Ishak, Testing General Relativity in Cosmology, ArXiv e-prints (June, 2018)
[2rXiv:1806.10122].

[122] M. Amarzguioui, @. Elgargy, D. FE. Mota, and T. Multamiki, Cosmological constraints
on f(R) gravity theories within the Palatini approach, A&A 454 (Aug., 2006) 707-714,
[astro-ph/0510519].

[123] L. Taddei, M. Martinelli, and L. Amendola, Model-independent constraints on
modified gravity from current data and from the Euclid and SKA future surveys, J.
Cosmology Astropart. Phys. 12 (Dec., 2016) 032, [arXiv:1604.01059].

[124] S. Basilakos and S. Nesseris, Conjoined constraints on modified gravity from the
expansion history and cosmic growth, Phys. Rev. D 96 (Sept., 2017) 063517,
[arXiv:1705.08797].


http://arxiv.org/abs/1108.4242
http://arxiv.org/abs/0805.1726
http://arxiv.org/abs/0805.1726
http://arxiv.org/abs/1607.08788
http://arxiv.org/abs/astro-ph/0610532
http://arxiv.org/abs/0807.2449
http://arxiv.org/abs/1806.10122
http://arxiv.org/abs/astro-ph/0510519
http://arxiv.org/abs/1604.01059
http://arxiv.org/abs/1705.08797

Bibliography 180

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

R. C. Nunes, S. Pan, E. N. Saridakis, and E. M. Abreu, New observational constraints

on f( r) gravity from cosmic chronometers, Journal of Cosmology and Astroparticle
Physics 2017 (2017), no. 01 005.

H. Hildebrandt, M. Viola, C. Heymans, S. Joudaki, and others, KiDS-450:
cosmological parameter constraints from tomographic weak gravitational lensing,
MNRAS 465 (Feb., 2017) 1454-1498, [arXiv:1606.05338].

S. Joudaki, A. Mead, C. Blake, A. Choi, and others, KiDS-450: testing extensions to
the standard cosmological model, MNRAS 471 (Oct., 2017) 1259-1279,
[arXiv:1610.04606].

F. Schmidt, M. Lima, H. Oyaizu, and W. Hu, Nonlinear evolution of f{R) cosmologies.
II1. Halo statistics, Phys. Rev. D 79 (Apr., 2009) 083518—+, [arXiv:0812.0545].

S. Alam, H. Miyatake, S. More, S. Ho, and R. Mandelbaum, Testing gravity on large
scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS
CMASS, MNRAS 465 (Mar., 2017) 4853-4865, [arXiv:1610.09410].

P. J. E. Peebles, The large-scale structure of the universe. Research supported by the
National Science Foundation. Princeton, N.J., Princeton University Press, 1980. 435 p.,
1980.

E. V. Linder, Cosmic growth history and expansion history, Phys. Rev. D 72 (Aug.,
2005) 043529, [astro-ph/0507263].

T. Okumura, C. Hikage, T. Totani, M. Tonegawa, and H. e. a. Okada, The Subaru
FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from
redshift space distortions atz ~ 1.4, PASJ 68 (June, 2016) 38,
[arXiv:1511.08083].

A. Ferté, D. Kirk, A. R. Liddle, and J. Zuntz, Testing gravity on cosmological scales
with cosmic shear, cosmic microwave background anisotropies, and redshift-space

distortions, ArXiv e-prints (Dec., 2017) [arXiv:1712.01846].

B. Jain, V. Vikram, and J. Sakstein, Astrophysical Tests of Modified Gravity:
Constraints from Distance Indicators in the Nearby Universe, ApJ 779 (Dec., 2013)
39, [arXiv:1204.6044].


http://arxiv.org/abs/1606.05338
http://arxiv.org/abs/1610.04606
http://arxiv.org/abs/0812.0545
http://arxiv.org/abs/1610.09410
http://arxiv.org/abs/astro-ph/0507263
http://arxiv.org/abs/1511.08083
http://arxiv.org/abs/1712.01846
http://arxiv.org/abs/1204.6044

Bibliography 181

[135] L. Xu, Constraints on f(r) gravity through the redshift space distortion, Phys. Rev. D
91 (Mar, 2015) 063008.

[136] J. Binney and S. Tremaine, Galactic dynamics. 1987.

[137] A. H. Gonzalez, D. Zaritsky, and A. 1. Zabludoff, A Census of Baryons in Galaxy
Clusters and Groups, ApJ 666 (Sept., 2007) 147-155, [arXiv:0705.1726].

[138] J. M. Budzynski, S. E. Koposov, I. G. McCarthy, S. L. McGee, and V. Belokurov, The
radial distribution of galaxies in groups and clusters, MNRAS 423 (June, 2012)
104-121, [arXiv:1201.5491].

[139] 1. King, Density Law in Spherical Stellar Systems., AJ 67 (June, 1962) 274-275.

[140] Y. Suto, S. Sasaki, and N. Makino, Gas Density and X-Ray Surface Brightness Profiles
of Clusters of Galaxies from Dark Matter Halo Potentials: Beyond the Isothermal
B-Model, ApJ 509 (Dec., 1998) 544-550, [astro-ph/9807112].

[141] F. Lacasa and R. Rosenfeld, Combining cluster number counts and galaxy clustering, J.

Cosmology Astropart. Phys. 8 (Aug., 2016) 005, [arXiv:1603.00918].

[142] M. Sahlén and J. Silk, Cluster-Void Degeneracy Breaking: Modified Gravity in the
Balance, ArXiv e-prints (Dec., 2016) [arXiv:1612.06595].

[143] A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, and H. Ebeling, A measurement of
large-scale peculiar velocities of clusters of galaxies: Results and cosmological

implications, The Astrophysical Journal Letters 686 (2008), no. 2 L.49.

[144] S. Borgani, L. N. da Costa, W. Freudling, R. Giovanelli, M. P. Haynes, J. Salzer, and
G. Wegner, Peculiar velocities of clusters in cold dark matter models, The

Astrophysical Journal Letters 482 (1997), no. 2 L121.

[145] S. Ettori, A. Morandi, P. Tozzi, 1. Balestra, S. Borgani, P. Rosati, L. Lovisari, and
F. Terenziani, The cluster gas mass fraction as a cosmological probe: a revised study,
A&A 501 (July, 2009) 61-73, [arXiv:0904.2740].

[146] G. B. Caminha, C. Grillo, P. Rosati, 1. Balestra, W. Karman, M. Lombardi,
A. Mercurio, M. Nonino, P. Tozzi, A. Zitrin, and others, CLASH-VLT: A highly precise


http://arxiv.org/abs/0705.1726
http://arxiv.org/abs/1201.5491
http://arxiv.org/abs/astro-ph/9807112
http://arxiv.org/abs/1603.00918
http://arxiv.org/abs/1612.06595
http://arxiv.org/abs/0904.2740

Bibliography 182

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and
prospects for cosmography, A&A 587 (Mar., 2016) A80, [arXiv:1512.04555].

J. Ruel, G. Bazin, M. Bayliss, M. Brodwin, R. J. Foley, B. Stalder, K. A. Aird,

R. Armstrong, M. L. N. Ashby, M. Bautz, and others, Optical Spectroscopy and
Velocity Dispersions of Galaxy Clusters from the SPT-SZ Survey, ApJ 792 (Sept., 2014)
45, [arXiv:1311.4953].

J. Binney and G. A. Mamon, M/L and velocity anisotropy from observations of
spherical galaxies, or must M87 have a massive black hole, MNRAS 200 (July, 1982)
361-375.

O. Host, S. H. Hansen, R. Piffaretti, A. Morandi, S. Ettori, S. T. Kay, and
R. Valdarnini, Measurement of the Dark Matter Velocity Anisotropy in Galaxy Clusters,
ApJ 690 (Jan., 2009) 358-366, [arXiv:0808.2049].

O. Host, Measurement of the dark matter velocity anisotropy profile in galaxy clusters,
Nuclear Physics B Proceedings Supplements 194 (Oct., 2009) 111-115,
[arXiv:0810.3676].

S. H. Hansen and B. Moore, A universal density slope Velocity anisotropy relation for

relaxed structures, New A 11 (Mar., 2006) 333-338, [astro-ph/0411473].

G. A. Mamon, A. Biviano, and G. Murante, The universal distribution of halo
interlopers in projected phase space. Bias in galaxy cluster concentration and velocity

anisotropy?, A&A 520 (Sept., 2010) A30, [arXiv:1003.0033].

A. Diaferio and M. J. Geller, Infall Regions of Galaxy Clusters, ApJ 481 (May, 1997)
633-643, [astro—-ph/9701034].

C. L. Sarazin, Gas Dynamics in Clusters of Galaxies, in A Pan-Chromatic View of
Clusters of Galaxies and the Large-Scale Structure (M. Plionis, O. Lépez-Cruz, and
D. Hughes, eds.), vol. 740 of Lecture Notes in Physics, Berlin Springer Verlag, p. 24,
2008.

S. Ettori, A. Donnarumma, E. Pointecouteau, T. H. Reiprich, S. Giodini, L. Lovisari,
and R. W. Schmidt, Mass Profiles of Galaxy Clusters from X-ray Analysis,
Space Sci. Rev. 177 (Aug., 2013) 119-154, [arXiv:1303.3530].


http://arxiv.org/abs/1512.04555
http://arxiv.org/abs/1311.4953
http://arxiv.org/abs/0808.2049
http://arxiv.org/abs/0810.3676
http://arxiv.org/abs/astro-ph/0411473
http://arxiv.org/abs/1003.0033
http://arxiv.org/abs/astro-ph/9701034
http://arxiv.org/abs/1303.3530

Bibliography 183

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

V. Biffi, S. Borgani, G. Murante, E. Rasia, S. Planelles, G. L. Granato,

C. Ragone-Figueroa, A. M. Beck, M. Gaspari, and K. Dolag, On the Nature of
Hydrostatic Equilibrium in Galaxy Clusters, ApJ 827 (Aug., 2016) 112,
[arXiv:1606.02293].

D. Martizzi and H. Agrusa, Mass modeling of galaxy clusters: quantifying hydrostatic
bias and contribution from non-thermal pressure, ArXiv e-prints (Aug., 2016)

[arXiv:1608.04388].

D. Nagai and E. T. Lau, Gas Clumping in the Outskirts of ACDM Clusters, ApJ 731
(Apr., 2011) L10, [arXiv:1103.0280].

S. Borgani, G. Murante, V. Springel, A. Diaferio, K. Dolag, L. Moscardini, G. Tormen,
L. Tornatore, and P. Tozzi, X-ray properties of galaxy clusters and groups from a
cosmological hydrodynamical simulation, MNRAS 348 (Mar., 2004) 1078-1096,
[astro-ph/0310794].

R. Wojtak and E. L. Lokas, The importance of interloper removal in galaxy clusters:
saving more objects for the Jeans analysis, MNRAS 377 (May, 2007) 843-854,
[astro-ph/0606618].

A. Biviano and P. Salucci, The radial profiles of the different mass components in

galaxy clusters, A&A 452 (June, 2006) 75-81, [astro-ph/0511309].

G. A. Mamon and E. L. Lokas, Dark matter in elliptical galaxies - II. Estimating the
mass within the virial radius, MNRAS 363 (Nov., 2005) 705-722,
[astro-ph/0405491].

O. Tiret, F. Combes, G. W. Angus, B. Famaey, and H. S. Zhao, Velocity dispersion
around ellipticals in MOND, A&A 476 (Dec., 2007) L1-L4, [arXiv:0710.4070].

M. Falco, S. H. Hansen, R. Wojtak, and G. A. Mamon, Why does the Jeans Swindle
work?, MNRAS 431 (Apr., 2013) L6-L9, [arXiv:1210.3363].

R. Narayan and M. Bartelmann, Lectures on Gravitational Lensing, ArXiv Astrophysics

e-prints (June, 1996) [astro-ph/9606001].


http://arxiv.org/abs/1606.02293
http://arxiv.org/abs/1608.04388
http://arxiv.org/abs/1103.0280
http://arxiv.org/abs/astro-ph/0310794
http://arxiv.org/abs/astro-ph/0606618
http://arxiv.org/abs/astro-ph/0511309
http://arxiv.org/abs/astro-ph/0405491
http://arxiv.org/abs/0710.4070
http://arxiv.org/abs/1210.3363
http://arxiv.org/abs/astro-ph/9606001

Bibliography 184

[166] T. Faber and M. Visser, Combining rotation curves and gravitational lensing: how to
measure the equation of state of dark matter in the galactic halo, MNRAS 372 (Oct.,
2006) 136-142, [astro-ph/0512213].

[167] H. Hoekstra, M. Bartelmann, H. Dahle, H. Israel, M. Limousin, and M. Meneghetti,
Masses of Galaxy Clusters from Gravitational Lensing, Space Sci. Rev. 177 (Aug.,
2013) 75-118, [arXiv:1303.3274].

[168] T. Treu and P. J. Marshall, Time delay cosmography, A&A Rev. 24 (July, 2016) 11,
[arXiv:1605.05333].

[169] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses. 1992.

[170] M. Kilbinger, Cosmology with cosmic shear observations: a review, Reports on

Progress in Physics 78 (July, 2015) 086901, [arXiv:1411.0115].

[171] A. Zitrin, T. Broadhurst, R. Barkana, Y. Rephaeli, and N. Benitez, Strong-lensing
analysis of a complete sample of 12 MACS clusters at z > 0.5: mass models and
Einstein radii, MNRAS 410 (Jan., 2011) 1939-1956, [arXiv:1002.0521].

[172] G. B. Caminha, C. Grillo, P. Rosati, M. Meneghetti, A. Mercurio, S. Ettori, I. Balestra,
A. Biviano, K. Umetsu, E. Vanzella, and others, Mass distribution in the core of MACS

J1206. Robust modeling from an exceptionally large sample of central multiple images,
A&A 607 (Nov., 2017) A93, [arXiv:1707.00690].

[173] A.Monna, S. Seitz, 1. Balestra, P. Rosati, C. Grillo, A. Halkola, S. H. Suyu, D. Coe,
G. B. Caminha, B. Frye, A. Koekemoer, A. Mercurio, M. Nonino, M. Postman, and
A. Zitrin, Precise strong lensing mass profile of the CLASH galaxy cluster MACS 2129,
MNRAS 466 (Apr., 2017) 4094-4106, [arXiv:1605.08784].

[174] J. Richard, G. P. Smith, J.-P. Kneib, R. S. Ellis, A. J. R. Sanderson, L. Pei, T. A.
Targett, D. J. Sand, A. M. Swinbank, H. Dannerbauer, and others, LoCuSS: first results

from strong-lensing analysis of 20 massive galaxy clusters at z = 0.2, MNRAS 404
(May, 2010) 325-349, [arXiv:0911.3302].

[175] A. Leauthaud, R. Massey, J.-P. Kneib, J. Rhodes, D. E. Johnston, P. Capak,
C. Heymans, R. S. Ellis, A. M. Koekemoer, O. Le Fevre, and others, Weak


http://arxiv.org/abs/astro-ph/0512213
http://arxiv.org/abs/1303.3274
http://arxiv.org/abs/1605.05333
http://arxiv.org/abs/1411.0115
http://arxiv.org/abs/1002.0521
http://arxiv.org/abs/1707.00690
http://arxiv.org/abs/1605.08784
http://arxiv.org/abs/0911.3302

Bibliography 185

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements,
ApJS 172 (Sept., 2007) 219-238, [astro-ph/0702359].

N. Kaiser and G. Squires, Mapping the dark matter with weak gravitational lensing,
AplJ 404 (Feb., 1993) 441-450.

F. Schmidt, A. Leauthaud, R. Massey, J. Rhodes, M. R. George, A. M. Koekemoer,
A. Finoguenov, and M. Tanaka, A Detection of Weak-lensing Magnification Using
Galaxy Sizes and Magnitudes, ApJ 744 (Jan., 2012) L22, [arXiv:1111.3679].

T. L. Johnson and K. Sharon, The Systematics of Strong Lens Modeling Quantified: The
Effects of Constraint Selection and Redshift Information on Magnification, Mass, and
Multiple Image Predictability, ApJ 832 (Nov., 2016) 82, [arXiv:1608.08713].

R. A. Kimble, J. W. MacKenty, R. W. O’Connell, and J. A. Townsend, Wide Field
Camera 3: a powerful new imager for the Hubble Space Telescope, in Space
Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter, vol. 7010 of
Proc. SPIE, p. 70101E, July, 2008.

H. Ebeling, A. C. Edge, A. Mantz, E. Barrett, J. P. Henry, C. J. Ma, and L. van
Speybroeck, The X-ray brightest clusters of galaxies from the Massive Cluster Survey,
MNRAS 407 (Sept., 2010) 83-93, [arXiv:1004.4683].

G. O. Abell, H. G. Corwin, Jr., and R. P. Olowin, A catalog of rich clusters of galaxies,
ApJS 70 (May, 1989) 1-138.

O. LeFevre, M. Saisse, D. Mancini, S. Brau-Nogue, O. Caputi, L. Castinel,
S. D’Odorico, B. Garilli, M. Kissler-Patig, C. Lucuix, and others, Commissioning and

performances of the vit-vimos, 2003.

M. Girardi, A. Mercurio, 1. Balestra, M. Nonino, A. Biviano, C. Grillo, P. Rosati,

M. Annunziatella, R. Demarco, A. Fritz, and others, CLASH-VLT: Substructure in the
galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations, A&A 579
(July, 2015) A4, [arXiv:1503.05607].

D. Lemze, M. Postman, S. Genel, H. C. Ford, 1. Balestra, M. Donahue, D. Kelson,

M. Nonino, A. Mercurio, A. Biviano, and others, The Contribution of Halos with


http://arxiv.org/abs/astro-ph/0702359
http://arxiv.org/abs/1111.3679
http://arxiv.org/abs/1608.08713
http://arxiv.org/abs/1004.4683
http://arxiv.org/abs/1503.05607

Bibliography 186

[185]

[186]

[187]

[188]

[189]

[190]

[191]

Different Mass Ratios to the Overall Growth of Cluster-sized Halos, ApJ 776 (Oct.,
2013) 91, [arXiv:1308.1675].

D. S. Hudson, R. Mittal, T. H. Reiprich, P. E. J. Nulsen, H. Andernach, and C. L.
Sarazin, What is a cool-core cluster? a detailed analysis of the cores of the X-ray
Sflux-limited HIFLUGCS cluster sample, A&A 513 (Apr., 2010) A37,
[arXiv:0911.04009].

A. Zitrin, A. Fabris, J. Merten, P. Melchior, M. Meneghetti, A. Koekemoer, D. Coe,
M. Maturi, M. Bartelmann, M. Postman, and others, Hubble Space Telescope
Combined Strong and Weak Lensing Analysis of the CLASH Sample: Mass and
Magnification Models and Systematic Uncertainties, ApJ 801 (Mar., 2015) 44,
[arxXiv:1411.1414].

A. Monna, S. Seitz, N. Greisel, T. Eichner, N. Drory, M. Postman, A. Zitrin, D. Coe,
A. Halkola, S. H. Suyu, and others, CLASH: z ~ 6 young galaxy candidate quintuply
lensed by the frontier field cluster RXC J2248.7-4431, MNRAS 438 (Feb., 2014)
1417-1434, [arXiv:1308.6280].

T. L. Johnson, K. Sharon, M. B. Bayliss, M. D. Gladders, D. Coe, and H. Ebeling, Lens
Models and Magnification Maps of the Six Hubble Frontier Fields Clusters, ApJ 797
(Dec., 2014) 48, [arxiv:1405.0222].

J. Richard, M. Jauzac, M. Limousin, E. Jullo, B. Clément, H. Ebeling, J.-P. Kneib,

H. Atek, P. Natarajan, E. Egami, R. Livermore, and R. Bower, Mass and magnification
maps for the Hubble Space Telescope Frontier Fields clusters: implications for
high-redshift studies, MNRAS 444 (Oct., 2014) 268-289, [arXiv:1405.3303].

D. Gruen, F. Brimioulle, S. Seitz, C.-H. Lee, J. Young, J. Koppenhoefer, T. Eichner,
A. Riffeser, V. Vikram, T. Weidinger, and A. Zenteno, Weak lensing analysis of RXC
J2248.7-4431, MNRAS 432 (June, 2013) 1455-1467, [arXiv:1304.0764].

J. Merten, M. Meneghetti, M. Postman, K. Umetsu, A. Zitrin, E. Medezinski,
M. Nonino, A. Koekemoer, P. Melchior, D. Gruen, and others, CLASH: The
Concentration-Mass Relation of Galaxy Clusters, ApJ 806 (June, 2015) 4,
[arXiv:1404.1376].


http://arxiv.org/abs/1308.1675
http://arxiv.org/abs/0911.0409
http://arxiv.org/abs/1411.1414
http://arxiv.org/abs/1308.6280
http://arxiv.org/abs/1405.0222
http://arxiv.org/abs/1405.3303
http://arxiv.org/abs/1304.0764
http://arxiv.org/abs/1404.1376

Bibliography 187

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

P. Melchior, E. Suchyta, E. Huff, M. Hirsch, T. Kacprzak, E. Rykoff, D. Gruen,
R. Armstrong, D. Bacon, K. Bechtol, and others, Mass and galaxy distributions of four

massive galaxy clusters from Dark Energy Survey Science Verification data, MNRAS
449 (May, 2015) 2219-2238, [arXiv:1405.4285].

P. L. Gémez, L. E. Valkonen, A. K. Romer, E. Lloyd-Davies, T. Verdugo, C. M.
Cantalupo, M. D. Daub, J. H. Goldstein, C. L. Kuo, A. E. Lange, and others, Optical
and X-Ray Observations of the Merging Cluster AS1063, AJ 144 (Sept., 2012) 79.

K. W. Cavagnolo, M. Donahue, G. M. Voit, and M. Sun, Intracluster Medium Entropy
Profiles for a Chandra Archival Sample of Galaxy Clusters, ApJS 182 (May, 2009)
12-32, [arXiv:0902.1802].

V. Presotto, M. Girardi, M. Nonino, A. Mercurio, C. Grillo, P. Rosati, A. Biviano,
M. Annunziatella, I. Balestra, W. Cui, and others, Intracluster light properties in the
CLASH-VLT cluster MACS J1206.2-0847, A&A 565 (May, 2014) A126,
[arXiv:1403.4979].

L. Hernquist, An analytical model for spherical galaxies and bulges, ApJ 356 (June,
1990) 359-364.

A. Burkert, The Structure of Dark Matter Halos in Dwarf Galaxies, ApJ 447 (July,
1995) L25, [astro—ph/9504041].

B. Binggeli, The shape and orientation of clusters of galaxies, A&A 107 (Mar., 1982)
338-349.

P. A. M. de Theije, P. Katgert, and E. van Kampen, The shapes of galaxy clusters,
MNRAS 273 (Mar., 1995) 30-46, [astro-ph/9409011].

K. Umetsu, A. Zitrin, D. Gruen, J. Merten, M. Donahue, and M. Postman, CLASH:
Joint Analysis of Strong-Lensing, Weak-Lensing Shear and Magnification Data for 20
Galaxy Clusters, ArXiv e-prints (July, 2015) [arXiv:1507.04385].

L. Xu, Constraints on f(r) gravity through the redshift space distortion, Phys. Rev. D
91 (Mar, 2015) 063008.

G.-B. Zhao, T. Giannantonio, L. Pogosian, A. Silvestri, D. J. Bacon, K. Koyama, R. C.

Nichol, and Y.-S. Song, Probing modifications of general relativity using current


http://arxiv.org/abs/1405.4285
http://arxiv.org/abs/0902.1802
http://arxiv.org/abs/1403.4979
http://arxiv.org/abs/astro-ph/9504041
http://arxiv.org/abs/astro-ph/9409011
http://arxiv.org/abs/1507.04385

Bibliography 188

cosmological observations, Phys. Rev. D 81 (May, 2010) 103510,
[arXiv:1003.0001].

[203] S. F. Daniel, E. V. Linder, T. L. Smith, R. R. Caldwell, A. Cooray, A. Leauthaud, and
L. Lombriser, Testing general relativity with current cosmological data, Phys. Rev. D
81 (June, 2010) 123508, [arXiv:1002.1962].

[204] M. Bartelmann, Arcs from a universal dark-matter halo profile., A&A 313 (Sept.,
1996) 697-702, [astro—-ph/9602053].

[205] T. C. Beers, K. Flynn, and K. Gebhardt, Measures of location and scale for velocities
in clusters of galaxies - A robust approach, AJ 100 (July, 1990) 32-46.

[206] L. Lombriser, K. Koyama, G.-B. Zhao, and B. Li, Chameleon f(R) gravity in the
virialized cluster, Phys. Rev. D 85 (June, 2012) 124054, [arXiv:1203.5125].

[207] H. Kim, Brans-Dicke theory as a unified model for dark matter-dark energy, MNRAS
364 (Dec., 2005) 813-822, [astro-ph/0408577].

[208] A. Bonafede, K. Dolag, F. Stasyszyn, G. Murante, and S. Borgani, A non-ideal
magnetohydrodynamic GADGET: simulating massive galaxy clusters, MNRAS 418
(Dec., 2011) 22342250, [arXiv:1107.0968].

[209] S. Planelles, S. Borgani, K. Dolag, S. Ettori, D. Fabjan, G. Murante, and L. Tornatore,
Baryon census in hydrodynamical simulations of galaxy clusters, MNRAS 431 (May,
2013) 1487-1502, [arXiv:1209.5058].

[210] G. Tormen, F. R. Bouchet, and S. D. M. White, The structure and dynamical evolution
of dark matter haloes, MNRAS 286 (Apr., 1997) 865-884, [astro—-ph/9603132].

[211] A. Yahil and N. V. Vidal, The Velocity Distribution of Galaxies in Clusters, ApJ 214
(June, 1977) 347-350.

[212] A. L. B. Ribeiro, R. R. de Carvalho, M. Trevisan, H. V. Capelato, F. La Barbera,
P. A. A. Lopes, and A. C. Schilling, SPIDER - IX. Classifying galaxy groups according
to their velocity distribution, MNRAS 434 (Sept., 2013) 784-795,
[arXiv:1306.4722].


http://arxiv.org/abs/1003.0001
http://arxiv.org/abs/1002.1962
http://arxiv.org/abs/astro-ph/9602053
http://arxiv.org/abs/1203.5125
http://arxiv.org/abs/astro-ph/0408577
http://arxiv.org/abs/1107.0968
http://arxiv.org/abs/1209.5058
http://arxiv.org/abs/astro-ph/9603132
http://arxiv.org/abs/1306.4722

Bibliography 189

[213] N. E. Chisari, N. Koukoufilippas, A. Jindal, S. Peirani, R. S. Beckmann, S. Codis,
J. Devriendt, L. Miller, Y. Dubois, C. Laigle, A. Slyz, and C. Pichon, Galaxy-halo
alignments in the Horizon-AGN cosmological hydrodynamical simulation, MNRAS
472 (Nov., 2017) 1163-1181, [arXiv:1702.03913].

[214] M. Schaller, C. S. Frenk, R. G. Bower, T. Theuns, J. Trayford, R. A. Crain, M. Furlong,
J. Schaye, C. Dalla Vecchia, and 1. G. McCarthy, The effect of baryons on the inner
density profiles of rich clusters, MNRAS 452 (Sept., 2015) 343-355,
[arXiv:1409.8297].

[215] M. Killedar, S. Borgani, M. Meneghetti, K. Dolag, D. Fabjan, and L. Tornatore, How
baryonic processes affect strong lensing properties of simulated galaxy clusters,
MNRAS 427 (Nov., 2012) 533549, [arXiv:1208.5770].

[216] M. Meneghetti, P. Natarajan, D. Coe, E. Contini, G. De Lucia, C. Giocoli, A. Acebron,
S. Borgani, M. Bradac, J. M. Diego, and others, The Frontier Fields lens modelling
comparison project, MNRAS 472 (Dec., 2017) 3177-3216, [arXiv:1606.04548].

[217] T. Watanabe and M. J. Hayashi, General Relativity with Torsion, ArXiv General
Relativity and Quantum Cosmology e-prints (Sept., 2004) [gr—-gc/0409029].

[218] A.D.I. Latorre, G. J. Olmo, and M. Ronco, Observable traces of non-metricity: new
constraints on metric-affine gravity, ArXiv e-prints (Sept., 2017)
[arXiv:1709.042409].

[219] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. 2017.


http://arxiv.org/abs/1702.03913
http://arxiv.org/abs/1409.8297
http://arxiv.org/abs/1208.5770
http://arxiv.org/abs/1606.04548
http://arxiv.org/abs/gr-qc/0409029
http://arxiv.org/abs/1709.04249

Appendix A

Basic notions of differential geometry

In this appendix I review some useful concepts of differential geometry which have been used
within this Thesis and the basis of the theory of General Relativity. In the following I will

adopt natural units ¢ = 1 and the Einstein convention for summed indexes:

3
AVCES AL
pn=0

In GR, the spacetime is identified by a four-dimensional differentiable manifold (M, g) on
which a metric g is defined (see below). Considering a point z € M and a function V#(x)
defined in an open neighborhood U, if a coordinate transformation to another neighborhood U’

is such that U N U’ # @ it follows that:

or'*

V(") = V¥ (x) EoR

V# is called contravariant vector. A quantity W, (x) which change under coordinate transfor-

mation as:

ox”
1N
W#(a: ) = Wy—awm,

is called covariant vector.

A Tensor of rank (:;) is defined as an object with n contravariant indexes and m covariant

190



Chapter A. Basic notions of differential geometry 191

indexes, which transform as:

T/ M1eeoifn T 01....0n axpl axan ax/ul 8$/M"
v = T eeeeeeen 85{;/”7" 3x01

(A1)

A.1 Covariant derivative and Parallel transport

Let us consider a curve () defined on M between the points P e ), where A € [p,q] C Ris
a parameter describing the curve such that y(p) = P and v(q) = Q.

Given a point z(\) € ~, which is locally identified by the coordinates z*(\), I define the
tangent vector to vy on z the quantity

t(x) = thou(x) = %x

Supposing to have another vector field V' = V#9,,, the covariant derivative of V along ()

is defined as:

t'vV, V=9, VH + t’T“l,pV", (A.2)
which can be rewritten as:
dz¥ 0 dz¥ D
T, P=_—VH, A3
d\ 8x”v + )\ v dA (A-3)

where I'#,,, are called Christoffel Symbols or Affine Connection and they are related to the
geometrical structure of the manifold.
A vector field V' is said to be Parallel Transported along a curve () if, given % the tangent

vector field of +, the following relation is satisfied:

D
EV“ = f(z)V*H, (A4)

meaning that the covariant derivative of V' along the curve is proportional to the vector field

itself up to an arbitrary function f(x).
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A.2 The equivalence principle

The theory of GR is built upon the so-called equiviance principle, which can be expressed in

three different forms:

The weak equivalence principle (WEP) states that the inertial mass and the gravitational
mass are equivalent, m; = my. Thuis means that the local effects induced by the presence of a

gravitational field are indistinguishable from those of an accelerated observer in flat spacetime.

The Einstein equivalence principle (EEP) assumes the validity of WEP and that any local
non-gravitational experiment made by an observer in a freely falling system is independent of

the velocity of the system and its location in spacetime.

The strong equivalence principle (SEP) extends the EEP to any local experiment (includ-
ing the effect of gravitation); it can be rephrased as the fact that in the presence of a gravitational
field is always possible to find a locally inertial coordinate system.

As an example, consider an observer freely-falling in a constant gravitational field g. Assuming

that the WEP holds, in the laboratory coordinate system, the equation of motion reads:

d?x

mi
dt?

=mg,

The description in the observer reference frame can be obtained by a coordinate transformation

z(t) — 2/(t) = z(t) — 3gt>. In this case the equation of motion becomes:

A2’

Thus, a freely-falling observer does not perceive external forces, and the physics is that of a
(locally) inertial frame. Gravity assumes a pure geometric connotation; the effects of a grav-
itational field are encoded in the coordinate transformations between two different coordinate

systems.
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A.2.1 The geodesics equation

The motion of a particle in a locally inertial frame, identified by the set of coordinates £ =
(€0,¢1, €2, ¢3), is described by eq. (A.5), which can be rewritten in four dimensions as:
d2 fa
—= =0 A.6
dr? ’ (A.6)
where dr? = ds? = nagdfadfﬁ is the proper time for an observer at rest in the particle frame;

Nag = diag[l,—1,—1, —1] is a rank 2 tensor whose meaning will be clarified below. From the

point of view of a second observer in the coordinate system x*, eq. (A.6) reads:
d (0§%dxt\ 0:
dr \Oz+ dr )

0E™ d%at 0% dat dxv B

- — A7
Ozt dr? OxkOxY dr dr (A7)

Multiplying both sides of eq. (A.7) by g%f and using the fact that gf; g%z = 5“5 , we obtain:

d?zP dzt dx¥
8 =0 A.8
dr? "odr dr ’ (&.8)

where I have identified the affine connection defined in eq. (A.2) with:

™ - LWB a2§a
H 9 Qo dav”

Eq. (A.8) is called geodesics equation and can be related to the concept of parallel transport;

considering that t# = % is the tangent vector of the curve parametrized by 7:

d
B B
—t"+ 1,

dat
dr

V=0 A9
dr ’ (A.9)

which corresponds to eq. (A.4) for the tangent vector t? with f(z) = 0. Thus, a geodesic is a
curve for which the tangent vector is parallel transported along the curve itself. The parameter
7 for which f(z) = 0 is called affine parameter.

Geodesics can be classified in three categories, according to the properties of the tangent vec-
tor:

1. Timelike geodesics (t't,, > 0) describe trajectories of massive bodies in a gravitational field.
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2. Null geodesics (t#'t, = 0) represent the trajectory of a particle with null rest mass in a

gravitational field.

3. Spacelike geodesics (t"t,, < 0) describe a series of events which are simultaneous as seen

by an appropriate observer.

A.3 The metric tensor

Consider now the interval ds?, which in the locally inertial frame coincides with the proper
time dr? = N d§HdEY; since it is a scalar, it should be invariant under generic coordinate

transformations. In an arbitrary coordinate system {z* }:

IE> 9gP
ds’? = ds® = 8755#855” Napdatdz” = g, datdz” (A.10)
where the metric tensor, defined as:
9E> 9EB

Juv = @@Uuﬁv

is a rank (g) symmetric tensor which in 4 dimensions is represented by a 4 x 4 locally non-
singular matrix. Eq. (A.10) expressed the infinitesimal distances between two events in a
generic 4-dimensional manifold. In Minkowski spacetime g = n = diag[l,—1,—1,—1] is
constant, but in general the components of the metric are functions of the points in the mani-
fold g, = g ().

The fact that the metric has a non-vanishing determinant for any local coordinate system pro-
vides some important consequences. First of all, the number of positive, negative and null
eigenvalues (the signature) is the same in all the manifold. Moreover, is possible to define
an inverse metric g¥* such that g, g"* = 0,%; finally a non-singular metric allows the con-
struction of a non-degenerate scalar product between two vectors S =V - W = g, VFIW".
The contraction of the metric tensor with a vector produces a rank ((1)) tensor (i.e. a covector);

analogously, the contraction of the inverse metric with a covector is a vector.
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From the infinitesimal interval of eq. (A.10), the 4-dimensional path between two points

A, B in M can be written as:

B B XB dxt dxv
s:/ ds :/ vV Guvdahdx? :/ G ————dX, (A.11)
A A YA dx dx

where x € [xa,xB| parametrizes the curve s. Imposing 0s = 0 for small variation of the

coordinates dz*, it follows that

d?z” 1 da? dax?
Guv dr2 + g;w.gya |:a’ygoz6 - 2604957] ar dr =0, (A.12)
which coincides with eq. (A.8) if connection is given by:
IH,53 =T"s, = L o 0 0 19) A
78 = T¥py = 59" 101905 + 05970 — Bagpn] - (A.13)

Eq. (A.13) defines an unique relation between the metric tensor and the Christoffel symbols;
in this case, the metric is the only independent variable. This particular connection is known
as Levi-Civita connection and often indicated by {5 5}.

Formally, the above equation can be derived imposing that the Chirstoffel Symbols are sym-
metric with respect to the exchange of the lower indexes and assuming V#g,,, = 0. This means
that the torsion tensor 7;‘/‘8 = '3 — I'* 3, and the non-metricity tensor C,po = V,guq are
identically equal to zero. Some extensions of GR relax these assumptions by introducing both
torsion and non-metricity components (see e.g. refs. [217, 218] and references therein), such

that the connection can be generally decomposed as:

1 1
Fuﬁv = {/wﬂ} + gcuﬂv + 9 (Eﬂv + Tﬂw + 7Z3w + Cvﬂu - Cﬂw) .

A.4 The weak field limit

Consider a particle with coordinates {z*} freely-falling in a gravitational field described by

the metric:

Guv = Nuv + h,uzla

where 7 is the Minkowski metric and h is a small perturbation |k, | < 1. If the speed of

the particle is much smaller than the speed of light v < ¢, the spatial components of % are
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negligible with respect to the time component % = %. In this way, the geodesic equation,

A2t dt
Poo [ == ) =
gz o (m)

eq. (A.8), can be rewritten as:

2z 1 (dt\?
72 3 <d7‘) 1" djhoo; (A.14)
d?t

where we used the fact that I'# .5 is given by eq. (A.13), and that the metric is independent of
time. The solution of the last equation is given by % = cost; dividing eq. (A.14) by (%)2,

we obtain: )
dxz 1
— = =Vhopo. A.16
772 = 5 Voo (A.16)
Thus, in the limit of non-relativistic particles and weak gravitational field, the geodesic equa-
tion reduce to the Newtonian equation of motion where the acceleration is sourced by the
potential ¢ = —2hgg + cost. Note that for a linearly perturbed FLRW metric hqq is given by

the Bardeen potential ®.



Appendix B

Fermat Theorem in GR and effective

refractive index

I present the derivation for the effective refractive index in a generic stationary curved space-
time by applying the method of ref [166]. This result is applied in Chapter 4 to the case of
the linearly perturbed FLRW metric. Consider a static gravitational field for which the metric

could be written as:

09 = 0; 9oi = gio = 0. (B.1)

The light ray propagation in this metric is described by null curves
ds? =0 = gudatda”,

from which one has

dt? = — 94 quiges. (B.2)
goo
I define the Fermat metric in a 3-dimensional Riemanian manifold as §;; = — gg{) . As shown
in ref. [166], the null geodesic equation:
2z da" da’
* T, (B.3)

vV 3 o Pyii—
I g T Ty
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with affine parameter Y, is equivalent to a geodesic equation in the 3-dimensional Riemanian
space in which g;; is defined with affine parameter t!. After some passages I obtain:
2.k l m
T . 1. . dz' dx
gjkﬁ + [amgjl - 28jglm} o ar 0, (B.4)
where the term inside the square parentheses is the Christoffel symbol for the Fermat metric

I'j 1. By means of the definition of geodesics, the affine parameter ¢ satisfies

5725/ dt:Ozé/ \/ giidxtdxd; (B.5)
o C !

T represents the length of the path C' in the Riemanian manifold, or equivalently the time coor-
dinate 2 = 7 as measured by an observer in the 4-dimensional spacetime. Eq. (B.5) is exactly

the formulation of the Fermat principle in General Relativity:

Theorem. Let S be an source event and | the worldline of an observer in a spacetime
(M, gu). Then a curve y from S to | describes a light ray if and only if the arrival time T on |

is stationary for first order variations 6.

For a detailed proof, the interested reader could refer to ref. [219] pages 100-103.
It is possible to obtain a more general result for the case of a conformal stationary spacetime

described by a metric:
ds? = 2/ (a") [— (dt + dA)idxi)Q + Qijdajidxj} , (B.6)
where g%l(x“) is called Fermat 1-form. The Fermat principle can be rephrased as:
§ / [ gijdaidad — é,dxi] = 0. (B.7)

Eq. (B.7) reduces to eq. (B.5) for a static spacetime where qgl = 0;h, with h a scalar function
of the space coordinates Z.

Let’s now focus on a light ray propagating over a background spacetime (e.g. Minkowski
spacetime) which is perturbed by the presence of a gravitational field described by the metric

guv; considering that the speed of light across a medium can be defined as v, = -, where

"Note that ¢ is not an affine parameter in the 4-dimensional spacetime with metric g,,.
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n indicates the refraction index of the medium, I express the Fermat principle in terms of the

optical distance instead of time:

5/Cdt = 5/n(z,y, 2)vpdt = 5/n(:ﬂ,y,z)dl =0, (B.8)

where I used the fact that v, = dl/dt, with dl = \/d;;dx’dz’ the 3-dimensional distance
element the background metric (Euclidean in this case). If the unperturbed light ray passes
through a region in which there is a stationary gravitational field described by g,,,,, with a cor-

responding Fermat metric g;; conformally equivalent to the 3-dimensional background metric:
9ij = L (x,y, 2)d35,

then eq. (B.5) can be written as

5/\/§¢jd:vid:cj = 5/Q(x,y, z)\/ dijdaidrd = 5/Q($,y,z)ds =0. (B.9)

The above equation coincides with eq. (B.8) if I set 2 = n.

Thus, in a stationary spacetime with metric g, one can recast the effect of gravity defining
an effective refractive index as the coefficient of the conformal transformation connecting the
spatial part of the background unperturbed metric to the Fermat metric. If g;; is not conformally

equivalent to the background metric, the effective refractive index will be a tensor:

nij = \/Jij-



	
	
	
	
	
	

	
	
	


	
	
	
	

	
	

	


	
	
	
	
	
	

	
	


	
	
	
	
	

	


	
	
	
	
	

	
	
	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	
	

	
	

	


