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Abstract—Internet-of-things (IoT) devices have led to ubiq-
uitous, remote and autonomous computing at the edge of the
networks. These devices offload sensing, actuation and processing
tasks away from the core of the network. The concept of
Smart Cities tries to leverage Edge Computing based on IoT
technologies for remote and distributed computing. Sieve, Process
and Forward (SPF) is a Value-of-Information (VoI) based Fog as
a Service (FaaS) solution for dynamic IoT applications in Smart
City scenarios. The military has been looking to utilize the SPF
platform for Edge Computing to assist in Human Assistance
and Disaster Recovery (HADR) operations. A recent NATO IST
147 RTG demonstration proved the validity of SPF, but also
highlighted the need of extending the current architecture to
support specific use-case scenarios for HADR systems. This paper
tries to propose a generic architecture based on SPF to enable
interoperability between military C2 (Command and Control)
and core computing systems to support future HADR operations
in Smart City environments.

Index Terms—Humanitarian Assistance and Disaster Recovery
(HADR), Internet-of-Things (IoT), Smart Cities, Fog Computing,
Edge Computing.

I. INTRODUCTION

The idea of IoT refers to the pervasive and ubiquitous
presence of things connected to the network of things such as
micro-computers, micro-processors, Radio-Frequency Identi-
fication (RFID) tags, sensors, actuators, mobile phones, etc
via the Internet or internet [1]. These things can interact
and collaborate with each other to reach common goals
such as computing, sensing and actuation. Such a connected
environment of independent and intelligent things allows for
new interactions among IoT devices and humans, and enables
the realization of concepts of smart cities i.e. infrastructures,
and services that enhance the quality of life [2]. According
to Cisco, an estimated 50 billion devices will connect to the
Internet by 2020 [3]. These IoT devices would generate 500
zettabytes per year in data and that number is expected to
grow exponentially [4]. This post-cloud era asks for computing
at the edge of the network so that the IoT applications
satisfy real-time computation needs by computing tasks and
filtering required data for the core. Edge computing allows for
addressing needs of IoT applications such as latency, mobile

devices’ limited battery life, bandwidth costs, security, and
privacy.

The concept of Smart Cities tries to leverage modern ICT
technologies to provide services to its citizens. IoT assets
in Smart Cities enable the city administrations to remotely
monitor, manage and control city activities and services, and
create new insights and actionable information from mas-
sive streams of real-time data [5] [6]. These IoT devices
are remotely deployed on buildings, streets, people’s houses,
industrial installations etc. inside a city. They gather a plethora
of information and actuate resources based on demands.
Sending all the data to a central server or cloud in raw form
puts a severe strain on resources such as bandwidth usage,
processing and analysis resources of the core components of
the city’s ICT, security [7] implications of data transmission
and interoperability concerns of the data transmitted from
multiple sources. In order to circumvent these issues, solutions
such as Edge Computing, Fog Computing, Multi-access Edge
Computing (MEC), mobile cloud computing etc. have come
into the picture which offload the computation tasks away from
the core of the city’s ICT systems [8]. This would allow for
real-time analysis of the data collected at the edge, filter the
data required to reported to the core ICT and allow quicker
responses for the operational demands.

Now, with the growth of cities, the tangible resources in
the city have increased by many fold. The human population
concentrates in the cities now rather than rural or sub-urban
areas. This upsurge of population creates a huge demand on
city administrations to manage people and its resources [9].
Smart Cities with their ICT and IoT systems try to solve
this issue. The natural disasters due to global warming as
well as man-made situations like fatal industrial accidents,
terrorist attacks etc. call for cities to be prepared for large-
scale Humanitarian Assistance and Disaster Recovery (HADR)
operations [10]. These HADR operations would require large
involvement of technology assets along with the human assets.

IoT assets particularly in this case can be largely used for
providing real-time Situational Awareness (SA) by sensing,
computation and actuation since they operate closest to the
ground. They are built for the purpose of running on restricted
resources such as power which allows them to operate in978-1-5386-4980-0/19/$31.00 ©2019 IEEE



Fig. 1. SPF in a Smart City Scenario

adverse conditions. Thus deploying Edge Computing solutions
on these edge (IoT) assets would inherit the advantages of
IoT devices and further their usage in restricted conditions by
reporting filtered out, analyzed and useful data required for
HADR operations.

The NATO Informations Systems Technology (IST) 147
Research Task Group (RTG) was formed for investigating the
military applications of Internet-of-Things (IoT). The group
is looking towards using SPF Edge Computing platform for
deployment in HADR operations. A recent demonstration in
Warsaw proved the validity of SPF, but also highlighted the
need of extending the current architecture to support specific
use-case scenarios. This paper tries to propose a generic archi-
tecture to the existing SPF platform to extend its functionality
and its implementation scope. The new architecture also tries
to address some of the drawbacks of the existing SPF imple-
mentation related to resource discovery and management. The
new architecture aims at ready deployment by the military as
well as the civilian counterparts which in future could be used
for HADR operations.

II. SIEVE PROCESS AND FORWARD (SPF)

SPF is a Fog as a Service (FaaS) platform [11] that allocates
part of the IoT information processing at the edge of the
network, thus exploiting the proximity of sources and users.
SPF is based on the Adaptive, Information-centric and Value-
based (AIV) information model that adopts filtered and value-
based information processing policies of the IoT data [12].
According to the AIV, SPF ranks each information object
according to its Value of Information (VoI) [13] in order to
prioritize the dissemination of critical information at the edge
of the network.

Fig. 1 illustrates the two main components of the SPF
architecture: the Controller and the Programmable Internet
Gateways (PIGs). The SPF Controller acts as interface be-
tween the users and the different PIGs that can be located at
the Edge or in the Cloud. The SPF Controller is responsible to
dispatch the requests for services, received from the users, to
the available PIGs, which will execute the required services.

SPF applications are available to users, which can request
the execution of a service to the SPF Controller over the
available communication networks. When the SPF Controller
receives a request for a service, it analyses the information
contained in the request and then selects a PIG, which is the
component responsible for executing the users’ requests and
delivering back the responses.

Within the SPF architecture, management functionalities
are provided by the SPF Controller, which is responsible
for deploying the information processing and dissemination
functions required by the registered applications. Using the
management functionalities, the SPF Controller can also re-
programs the PIGs in the case a new service is required using
a proprietary programming interface.

The Information Processing and Dissemination functions
are instead provided by Proactive Dissemination Service
(DSPro) [13], which leverages the set of filtering and com-
munications functions implemented by the software platform,
according to the commands received by the SPF Controller.
According to the SPF design, PIGs can be deployed directly on
the gateway nodes at the edge of the network or on dedicated
hardware placed in the gateway nodes’ proximity.

Finally, the SPF architecture identifies different roles for the
stakeholders: administrators which are responsible deploying,
running, and operating the SPF components, service providers
that develop and deploy IoT applications, and the users of the
SPF applications.

III. INTEGRATING SPF WITHIN A MILITARY C2
INFRASTRUCTURE

Considering the role of stakeholders envisioned for the
SPF applications, the military C2 Infrastructure is one of the
possible users of the SPF platform. Especially for HADR
operations, where the NATO IST-147 group is looking towards
applying the IoT technologies, SPF is considered as a possible
candidate for Edge Computing solutions. For HADR opera-
tions in Smart City environments, the SPF solution can be
used to gain hybrid SA i.e. from the IoT assets deployed by
Smart Cities as well as by the military at the edge [14], [15].

In the envisioned scenario, the various sensing and reporting
platforms from the ICT systems of the Smart City and the
military gather SA data about various events and incidents
in a disaster or emergency situation. These ICT systems may
gather data from various sensors, cameras, human-source in-
telligence, Non-Government Organizations (NGOs) and first-
emergency responders to help citizens across the city. They
might get and report specific inputs which might of interest
for further analysis and operations to help citizens or secure
resources in the emergency.



Based on the data or reports gathered form the ICT sys-
tems, further analysis might be performed to find out what
action needs to be performed correspondingly. These might
be according to the operational needs as set for the disaster
recovery situation where a specific set of actions need to
performed to assist citizens in that situation. For example,
an incident might be reported by a team located on ground
of a severe fire in a building and based on the severity of
fire, the city’s ICT systems might want to direct the nearest
located fire trucks to the rescue area to save time and increase
efficiency of the rescue operation. After getting the analyzed
data from the ICT systems, the administrators (Smart City)
or commanders (Military) might want to initiate an action
to work on the received inputs or intelligence. These can
be autonomously done through the C2 applications to initiate
an action. For example, whenever the C2 application knows
about a fire in a building, based on the camera resources
available at the edge, it would trigger the cameras at the
vicinity of the incident to send in the video streams to monitor
the situation. Also, manually a resource can be chosen to
take some action. For example, the map being displayed by
the C2 UI can be used to pin-point camera resources on the
ground and activate them to report the video streams. These
C2 applications can be running on the central command’s ICT
systems or on a Mobile Tactical Operations Center (MTOC)
based on Federated Missions Networking (FMN) architecture.

The demonstration at the International Conference on Mil-
itary Communications and Information Systems (ICMCIS
2018), Warsaw, Poland, 22-23 May, 2018 by the IST-147
group, showed the possible implementations and use-cases for
military applications of IoT and military C2 systems [14].
These demonstrations proved that SPF is particularly well
suited as on edge computing platform showing use-cases for
running face recognition and object detection algorithms [16]
for video captured at the edge and streamed back to the C2
end. However, in order to highlight its potential within military
environments, the Warsaw demo identified the need to extend
the SPF architecture to support better integration for military
systems and processes.

From the management perspective, there is the need to
develop low interfaces with external C2 applications such
as Android Tactical Assault Kit (ATAK) [14]. The current
implementation of SPF components i.e. Controller, and PIGs
is based on proprietary interfaces that could be improved to
increase the possible use-case scenarios. These components
right now are not abstract in nature and are designed (code-
wise) to carry out specific tasks. As a result, whenever a new
interaction or operation involving any of these components is

required then an entire new functionality has to be added to the
existing workflow. Also, future additions and configuration of
specific modules would require a lot of rework and thus a lot
of redesign of the existing implementation that would satisfy
that particular use-cases and might not be applicable for future
use-cases.

At the other end, the components in charge of executing
SPF services (pipelines and services) right now communicate
using a proprietary protocol based on unicast UDP, and
disseminate information using the ACM DSPro middleware.
In order to better highlight the SPF potentials for military
applications, these interfaces should be compatible with IoT-
specific along with other legacy protocols. With this regard, the
NATO IST-147 RTG identified the Message Query Telemetry
Transport (MQTT) as a protocol for message and telemetry
transfer within the IoT domain for military operations [15].
Fig. 2 shows the MQTT topic format and a sample JSON
message being exchanged between the military systems as
demonstrated in the Warsaw demo for NATO IST 147 RTG.
The interfaces between components and information produc-
ers/consumers should adhere to these MQTT message formats
for systems to exchange data between themselves, initiate
requests and responses, and trigger specific strategies and
pipelines at run-time.

Finally, from the execution model perspective there is the
need to consider additional methods for running services
within a PIG. The services on PIGs are invoked through
the processing strategies and pipelines running on them. In
fact, the Warsaw’s demo highlighted the need to consider
different services, such as the transcoding of video formats,
using COTS components. At the same time, we can envision
the opportunity to allow the execution of components based
on industry standard protocols, such as OSGi.

IV. EXTENDED ARCHITECTURE FOR SPF

To address these issues, we extended SPF to make interac-
tions between the components open and extensible for various
use-case scenarios or implementations, to re-utilize certain
components, and to reduce the coupling and dependencies
between the components by adopting common format for data
exchange and interaction based on the existing military C2
platform architecture and ICT systems.

Fig. 3 shows the extended architecture for utilizing the SPF
Edge computing platform for a HADR scenario involving
military and civilian ICT systems and assets. The MTOC
system houses the IoT Applications for C2 and resource man-
agement of IoT resources. These applications and resources
employ the SPF Controller for application management and

Fig. 2. MQTT Topic Format and Sample JSON Message



Fig. 3. Extended SPF Architecture

coordination. In this architecture, the SPF Controller issues
commands and get responses based on commands received
from the C2 application. In order to receive commands, the
MTOC application would use the Protocol Adaption Interface
(PAI), to communicate with the SPF Controller. PAI is a
protocol adapter i.e. it can employ any kind of protocol as
suited for the use-case, such as MQTT and HTTP as illustrated
in Fig. 3. The Warsaw demo demonstrated that MQTT well
suits the needs of military applications and it can be used as
data messaging protocol. By adopting MQTT, PAI can thus
receive the JSON payloads from the C2 applications included
in the MQTT messages and interpret the request type. While,
at the other end, the SPF Controller makes use of the PAI to
communicate with the MTOC application.

The SPF Controller illustrated in Fig. 3 has two main
components: the above described PAI and the Service Inter-
faces (SI). According the workflow of this architecture, PAI
listens to receive inputs from the IoT application to execute
a job/service over the HTTP and MQTT protocol. Instead,
SI acts as an interaction-counterpart for the SPF controller
and the SPF based applications. In the proposed architecture,
the SI would interact with the PAI by receiving commands
and initiating responses. The SPF controller would use the
SI commands to initiate its internal functionality of triggering
the edge resources or the remote PIGs deployed at the edge.
The PAI will translate any commands received by non-SPF
applications into a SI specific command.

In detail, this SPF’s operation would involve to observe the

implemented PAI to receive commands from MTOC applica-
tion, to translate the requests from the MTOC into specific
or use-case based requests, and to apply the application
configuration dynamically at run-time instead of maintaining
an application specific configuration file. Instead, the SI would
be responsible for locating and triggering the use-case based
PIGs based on the requests.

The remote PIG running at the edge has a list of hardware
resources which it can interact with such as cameras, sensors,
actuators etc. The PIG is responsible for triggering specific
services on the deployed resources to execute use-case specific
tasks. For instance, a request from the SPF Controller can
ask the PIG to deliver HD Camera stream from its available
camera to monitor a building under fire. The PIG can instan-
tiate a service that sends back byte streams of camera feed
back to the SPF Controller. In addition, it can also employ
security specific mechanisms to handle military and civilian
data streams separately. The triggering of services is based
on Strategy-Pattern where a specific instance of a service on
the PIG can be instantiated based on the request from the C2
application and its interpretation by the SPF controller.

Based on the service and processing strategies, the Service
Component Manager (SCM) decides which pipelines and/or
services have to be executed/invoked on the PIG. The SCM
has a list of available pipelines for the PIG, and thus triggers
specific pipelines and/or services to execute specific tasks
and return results. Typically, in the original architecture of
SPF, pipelines and services were dedicated to the processing



of all content of the same type. However, in this extended
architecture, pipelines and services for the Civilian assets and
Military assets are differentiated and initiated as separate, since
military assets are deployed by the military and are presumed
to be more reliable and trustworthy than the civilian assets for
which the owner could not be verified in HADR operations.

PIGs can collect data from assets using two different
methodologies depending on the type and the capabilities of
those assets. First, PIG can periodically polling data from
assets in case they expose a REST fashion API, such as traffic
cameras located on the street. On the other hand, we also
specify that PIGs can collect data by means of the MQTT
Bus illustrated in Fig. 3, which listens for data sent by assets
on pre-defined and configurable MQTT topics.

Apart from sending back the results to the SPF controller
running at the MTOC level, the PIG can also send data
directly to the C2 application, based on the specific inputs
from the MTOC IoT applications. As illustrated in Fig. 3
these results/packets (Consumer Ready Information Objects
in Fig. 3) are delivered as JSON payloads over MQTT. The
PIG also employs a proprietary UDP connector which can be
used for sending out UDP packets instead of using MQTT
in specific use-cases such as delivering video streams. More
in detail, remote PIG’s operations would involve: to receive
and parse commands from the SPF Controller, to configure
dynamically the PIG components at run-time instead of using
static configuration files, to invoke user-case Service and
Processing Strategies based on the request’s parameters, and
to locate the appropriate pipeline to execute the service on.

Based on the civilian or military edge system at which
the PIG is deployed, different and specific pipelines can be
deployed for the specific assets. For example, in a HADR
scenario that involves the use of civilian assets, video streams
provided by cameras deployed on the streets can be used as
input data for face recognition pipelines running on PIGs. In
this case, the video stream will be elaborated and analyzed
to provide to the SPF Controller and the requesting C2
application the results of the face recognition algorithm. As
illustrated in Fig. 3 other examples of assets can be sensors,
actuators, and IoT Wearable devices located across the Smart
City scenario.

V. SPF: APPLICATIONS DEPLOYMENT ON PIG

Another architectural change would involve to make the
SPF platform capable of supporting dynamic services in-
stantiation on the remote PIGs at run-time. In the original
SPF architecture, a SPF Controller can configure and manage
multiple remote PIGs, also by activating applications at run-
time. This architectural change will let the SPF Controller
also to upload new applications on PIGs and to schedule their
execution and activation without re-configuring or restarting
the PIGs. Furthermore, as illustrated in Fig. 4 to extend the
range of possible services deployable on PIGs we envisioned
there different types of services running on the SPF platform:
generic (Unix) processes, SPF specific applications, and OSGi
bundles.

Fig. 4. SPF: PIG applications

First, SPF service components are algorithms and tasks
specifically designed as integrated services for SPF. These
applications are written as part of PIG’s software or could be
standalone Ruby classes and represent the applications part of
the legacy SPF architecture.

Furthermore, in the SPF architecture, a PIG is supposed
to be executed on a Unix-like operating systems, and thus
enabling the execution of architecture-specific applications
such as video decoder and transcoder, elaboration tools, and so
on. Each application is supposed to be pre-installed on PIGs
and it needs to be trusted and known otherwise, the execution
of an untrusted application could compromise the security of
the whole system.

Finally, we believe in the adoption of the OSGi [17] [18]
specification1 to support the execution, the composition, and
the management of bundles (Java based applications) at run-
time. In particular, adopting OSGi enables the possibility to
efficient manage applications through containerization tech-
niques, which will let new bundles to be created, uploaded,
and activated on request without performing any cold or warm
restarts of the other applications running on the same remote
gateway.

We believe that extending the SPF platform with the possi-
bility of running multiple types of applications would enhance
its utility and facilitate its integration within civilian or military
environments.

VI. PROCESSING A HADR OPERATION WITHIN THE
PROPOSED ARCHITECTURE

To illustrate the capabilities provided by the extended ar-
chitecture in an HADR scenario, let us consider the following
use case. In the envisioned architecture, the SPF Controller is
assumed to be running on the MTOC or to be a component
of an IoT application running on the command vehicle, where
the command center of the HADR operation is operating. The

1https://www.osgi.org/developer/architecture/



assumption is due to the fact that the Controller is expected
to have larger resources for handling requests from service
consumers and notably more stable (not susceptible to crashes
due to lack of resources like memory, computing power etc.).
The SPF Controller would also be associated with a database
containing a registry or records of the PIG resources and
services available, so would need larger computation resources
as opposed to remote IoT assets/resources.

An example of a possible request for a HADR operation
could be the request of an elaborated video feed from a camera
in a certain location, e.g. the monitor the presence of moving
objects after an earthquake. In this example, a C2 application
or a user would request the elaborated video stream by sending
a command to the MTOC application using a MQTT message
containing a JSON payload with a list of parameters: the action
to be performed (object detection on video feed), the location
of the camera specified as latitude and longitude, the resolution
of the requested video feed, and so on.

The request for service is elaborated when the MTOC
running the IoT application receives the command and reads
the JSON payload contained in the MQTT message. The
MTOC sends the service invocation request along with other
required parameters to the PAI of the SPF Controller using one
of the supported protocol, in this case MQTT. The request
is then received by the SPF Controller, which looks up in
the associated Asset database in order to find information
regarding PIGs and resources that need to be invoked to
serve the received request. In particular, the SPF controller
looks for a PIG capable to serve request based on multiple
characteristics such as its location (being matched as requested
by the C2 application) and the resources (assets, computational
power, and so on) associated to that PIG.

When a PIG capable of serving the request is found, the
SPF Controller communicates with the PIG by forwarding it
the request using the SPF proprietary protocol. Then, the SCM
schedule the request to start the object detection algorithm on
the video stream on the correct pipeline. If the elaboration
requires multiple capabilities such as the transcoding and
decoding of the video stream, the SCM would coordinate the
effort of more pipelines and/or services. Finally, the elaborated
video stream can be sent over the network using the UDP
connector or delivered to back to the SPF Controller and then
to the C2 application, which requested it.

VII. CONCLUSION

The paper describes an extended architecture of an Edge
Computing solution based on SPF for a military HADR
scenario which can be extended for any third party usage such
as Smart City ICT systems. The idea is to make the service
interfaces abstract and extend them for a SOA approach. This
would enable better cohesion between the interacting applica-
tions and allow for future application/service integration and
scalability in operations. Also, a way to store and retrieve asset
information and capabilities is described so that a specific asset
can be used for a specific use-case based request in a HADR
scenario.

Future work involves creating test-beds with integration of
heterogeneous edge devices to test-out practicality and scal-
ability of the proposed architecture. The existing architecture
can be extended for addition of extra functionalities for edge
specific operations both the PIG as well as the SPF levels.
The concepts of workload distribution at run-time amongst
the edge devices also has to be looked at.
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