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Abstract

In the last few years, research on active prosthetics for upper limbs focused
on improving the human functionalities and the control. New methods have
been proposed for measuring the user muscle activity and translating it into
the prosthesis control commands. Developing the feed-forward interface so
that the prosthesis better follows the intention of the user is an important
step towards improving the quality of life of people with limb amputation.
However, prosthesis users can neither feel if something or someone is
touching them over the prosthesis and nor perceive the temperature or
roughness of objects. Prosthesis users are helped by looking at an object,
but they cannot detect anything otherwise. Their sight gives them most
information. Therefore, to foster the prosthesis embodiment and utility,
it is necessary to have a prosthetic system that not only responds to the
control signals provided by the user, but also transmits back to the user

the information about the current state of the prosthesis.

This thesis presents an electronic skin system to close the loop in prostheses
towards the restoration of the sense of touch in prosthesis users. The
proposed electronic skin system inlcudes an advanced distributed sensing
(electronic skin), a system for (i) signal conditioning, (ii) data acquisition,
and (iii) data processing, and a stimulation system. The idea is to integrate

all these components into a myoelectric prosthesis.

Embedding the electronic system and the sensing materials is a critical is-
sue on the way of development of new prostheses. In particular, processing
the data, originated from the electronic skin, into low- or high-level infor-
mation is the key issue to be addressed by the embedded electronic system.
Recently, it has been proved that the Machine Learning is a promising
approach in processing tactile sensors information. Many studies have
been shown the Machine Learning effectiveness in the classification of input

touch modalities.



More specifically, this thesis is focused on the stimulation system, allowing
the communication of a mechanical interaction from the electronic skin
to prosthesis users, and the dedicated implementation of algorithms for
processing tactile data originating from the electronic skin. On system
level, the thesis provides design of the experimental setup, experimental
protocol, and of algorithms to process tactile data. On architectural level,
the thesis proposes a design flow for the implementation of digital circuits
for both FPGA and integrated circuits, and techniques for the power

management of embedded systems for Machine Learning algorithms.
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Chapter 1

Introduction

Interactions with our surroundings make up a major part of our lives. We receive
information about the world around us every second, every day, through the five major
sensory modalities: one of these is touch. Unlike other senses, the sense of touch is not
restricted to any particular part of our body as we receive touch information through
the skin extending all over it. However, there are parts of the body more sensitive
than others, e.g., fingers are very sensitive to touch.

When something comes into contact with our body, even without looking at it,
we can determine if it is hard or soft, cold or hot, wet or dry, and find out its shape
or texture. Besides, we can feel pain when a sharp object is touching us or we can
realize if something, for example a bottle, is slipping out of our hands. We routinely
use the sense of touch with remarkable ease, effortlessly, numerous times during the

activities of our daily life.

Given technological advances in mechanics, electronics, etc. (e.g., smaller motors,
more powerful processors, and better sensors built within the hand), in the last few
years research on prostheses has been exploring a way to substitute a missing sense of
touch by using an alternative intact sense. To date, modern prostheses are successfully
controlled by using muscle electrical activity. A number of methods have been proposed
for measuring the user muscle activity and translating it into the prosthesis control
commands [1]. For example, prosthesis users can open or close the prosthetic hands,
but they can neither feel if something or someone is touching them over the prosthesis
nor perceive the temperature or roughness of objects. Prosthesis users are helped by
looking at an object, but they cannot detect anything otherwise. Their sight gives
them most information. Without the sense of touch, they would have no physical

self-awareness.



There are between 50 and 270 new upper-limb amputees every year in Europe,
with an estimated population of around 1900 traumatic upper-limb amputees and
94000 total upper-limb amputees. In the USA, there are an estimated 1.6 million
people live without a limb, 34% of which are upper limbs. From these numbers it
appears how important are improvements in user compliance in the prosthetic market.
Restoring sensory feedback is a long-standing challenge in prosthetic research.

The idea to provide a sensory feedback to an amputee controlling upper-limb
prosthesis is not a new concept [2]. This was quite a popular research topic during
60s and 80s, but new technologies now available allow the implementation of better
solutions. Vincent Hand [3] is the only device recently supplied that can be used as a
replacement for the lost limb integrating a simple sensory feedback.

In addition to increase prosthesis functionality (tactile information is given back
to the user), providing sensory feedback to users could foster embodiment (amputees
may have the impression that the feeling prosthesis is part of their own body),having a
direct potential for therapeutic applications and, consequently, substantially improving

the quality of life of prosthesis users.

This proposed research would address this gap.

Cosmic Lab (http://www.cosmiclab.diten.unige.it/) group has been working on a
system to close the loop in prostheses, restoring the sense of touch in prosthesis user.
As shown in Figure [1.1], the idea is to cover the prosthesis with an electronic skin
providing a dense matrix of sensitive piezoelectric tactile receptors (taxels), to embed
an electronic system integrating signal conditioning, data acquisition, and tactile data
processing in the prosthesis pocket, and to translate and transmit tactile sensor data
to the user through electrotactile stimulation.

The first electronic skin was a bench prototype based on Piezoelectric polymer
films of Polyvinylidene Fluoride (PVDF), which meets the requirements of mechanical
flexibility, high sensitivity, detectability of dynamic contact events, wide dynamics
(light /strong touch), low cost, light weight and robustness. For the consecutive
realization, screen printing technology has been used for ad-hoc electronic skin design,
optimizing taxel size and sensor pitch according to application requirements. An
elastomer layer has been integrated on top for stress transmission and sensor protection.

For the embedded electronic system that has to acquire the tactile data, process
and extract structured information, a dedicated real-time hardware implementation of

tactile data processing algorithms has been studied. The first studies have highlighted



Figure 1.1: Towards the restoration of sensory feedback. From left to right: prosthetic hand covered
with electronic skin, electronics system in the prosthesis pocket, electrotactile stimulation delivered
to the skin of the residual limb.

that special attention must be given to the features of this system, such as power
consumption, complexity, and delay. The requirements related to the development of
embedded data processing unit for e-skin are still far from being achieved. Therefore,
new methods and techniques to reduce hardware complexity and power consumption
of the embedded electronic system have been investigated.

Electrotactile stimulation delivering low-level electrical current pulses to the skin
to depolarize skin afferents, thereby eliciting tactile sensations has been studied and
tested. Methods have been developed to interpret tactile data in real time and retrieve
touch information such as contact location, area and duration and to efficiently deliver
artificial tactile information (recorded by artificial skin) to the prosthesis user through

multichannel electrocutaneous stimulation.

Within this project, this thesis is focused on the tactile feedback system, allowing
the communication of a mechanical interaction from the electronic skin to prosthe-
sis users, and the dedicated embedded implementation of tactile data processing
algorithms.

The conducted work regards different aspects of the Cosmic Lab project from system

to architectural level. At system-level thesis includes:



e Design of the experimental setup, experimental protocol and pilot tests;
e Design of algorithms to process tactile data acquired from the electronic skin;
and at architectural level:

e Design flow for the implementation of digital circuits for both FPGA and

integrated circuits;

e Techniques for the power management of embedded systems for Machine Learning

algorithms.

Chapter [2| presents the system approach for an artificial skin implementation.
Starting with the explanation of why the human skin plays an important role in the
human life and why researchers are trying to reproduce an artificial skin, an overview
of the human sense of touch and of human skin, and then a perspective of the artificial
skin are introduced.

Artificial or electronic skin being able to mimic functionalities of human or animal
skin would open the door to many possible applications including soft robotics,
prosthetics, artificial intelligence and health monitoring. Interest in large-area networks
of electronic devices inspired by human skin is motivated by the promise of creating
autonomous artificial intelligence, medical diagnostics, and replacement prosthetic
devices capable of providing the same, if not better, level of sensory perception than
the organic equivalent.

Then, the state of the art of electronic skin is described as a system, detailing
all the aspects such as: tactile sensors, the electronic interface and the embedded

electronic system.

Chapter [3[concerns the study of tactile feedback system. What the sensory feedback
is and what techniques are used towards the restoration of the sensory feedback in
prosthetics are discussed considering the state-of-the-art of many tactile transmission
methodologies. Many studies are focused on evaluating different methods to provide
prosthesis with sensory feedback.

More specifically, the chapter is focused on electrocutaneous stimulation: the
tactile feedback technique investigated in the conducted experiments/studies. The
aim is to increase the reliability of information transmission when using non-invasive
interfaces ,i.e., electrocutaneous stimulation, with many stimulation points. A novel

dual-parameter modulation (intensity and frequency) is developed and tested to assist



the subject in correctly identifying an active pad within the matrix. Furthermore, for
the first time, the performance of a matrix electrotactile interface is compared to that

of the natural skin being mechanically stimulated over analogous contact areas.

In Chapter 4} the system implementation to transmit mechanical information
from a multi point tactile sensor (e-skin) to the human subject using multichannel
electrotactile stimulation is described. The system is evaluated by assessing the ability
of the human subjects to perceive the properties characterizing dynamic and versatile
mechanical interaction with the skin. Precisely, from electrostimulation the subjects
try to recognize spatial and temporal features of the mechanical stimuli moving over
the e-skin surface. The system comprises an advanced tactile sensor with many sensing
elements, acquisition electronics and multichannel stimulator connected to flexible
matrix electrodes placed on the natural skin (forearm).

Although the concept of applying e-skin technology for somatosensory feedback in
prosthetics has been proposed earlier [4], the present study is the first evaluation of an
online system implementing the prospective communication link, i.e., the information

transmission from e-skin to the human subject.

Chapter [5| introduces the topic about how to give sensor data back to the prosthesis
user and how to help the human brain to successfully interpret the elicited artificial
tactile information. Among open questions in prosthetics is which kind of information
- whether raw data or processed - about a touched object should be sent back to
the user. One approach would be to send the sensor signals directly to the user,
who needs to meaningfully interpret this information. Alternatively, learning from
robotics, sensor data can be locally processed at the body periphery (prosthesis socket
with embedded electronics) and high level tactile information (e.g., texture properties,
grasp stability) can be extracted and delivered to the user.

In particular, a Machine Learning algorithm is employed for tactile data processing
unit with high level information extraction and, then, an analysis regarding the
hardware implementation requirements for processing unit is reported. The analysis
demonstrates that the hardware implementation of the processing unit is still far from
being achieved as a processing unit of a system to close the loop in prosthetics should
be real-time and low-power. Therefore, methods and techniques to reduce hardware
complexity and power consumption of the embedded electronic system have to be

explored.
Chapter [5] supports Chapter [6] and Chapter [7]



Approximate computing has become a major field of research in the sense that it
could significantly improve energy efficiency and performances of modern digital circuit.
More specifically, Chapter [0] aims at implementing approximate circuit techniques
in the FPGA implementation of real-time tactile data processing for e-skin system
application. It focuses on the implementation of the Coordinate Rotation Digital
Computer algorithm, as it is used for several computing tasks such as Singular-
Value Decomposition, the most computationally expensive algorithm for Machine
Learning approaches that has ever been considered in Chapter [5} This first attempt
of approximate CORDIC implementation on FPGA uses Inexact Speculative Adder
(ISA) architectures, a circuit-level technique optimized for high-speed arithmetic

computations.

As the current challenge of development of an embedded and real-time system
for Machine Learning data processing relies on an efficient implementation and low
power requirements, in Chapter [7] an approximate computing technique capable of
improving energy efficiency by relying on the ability to tolerate some loss of accuracy
is introduced. Chapter [7| provides an overall description of the Tunable Floating-Point
and a detailed analysis of two Machine Learning algorithms implementing the Tunable
Floating-Point approach.

The use of Tunable Floating-Point precision is an interesting approach in compu-
tations, which allows to arbitrarily set the precision for each operation by selecting a
specific number of bits for significand and exponent in the floating-point representation.
By profiling and tuning the precision for a given algorithm, an efficient trade-off can
be achieved to allow an acceptable target error while lowering the energy cost of
computations.

Machine Learning algorithms are exploited to evaluated the Tunable Floating-Point,
reducing power consumption while still producing acceptable accuracy of results in
both algorithms. The Singular-Value Decomposition (SVD) algorithm is investigated
as it represents the most computationally expensive algorithm for Machine Learning

approaches that has been considered for this real-time embedded prosthetics.
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Chapter 2

Electronic Skin System

2.1 Introduction

This chapter contextualizes the general framework in which the herein presented project
was developed illustrating the system for an artificial skin implementation. Firstly, an
overview of the human sense of touch and of human skin, then a perspective of the
artificial skin are presented. Secondly, the state of the art of electronic skin is descibed
as a system: starting from tactile sensors, going through the electronic interface and

the embedded electronic system, all the way to a communication interface.

Among various human sensations like sight, hearing, taste and smell, touch is a
critical co-existing sensation required to interact with the surrounding environments
[5]. The exquisite sensitivity provided by the sense of touch enables us to discriminate
various surface textures, precisely grasp and manipulate objects, etc. Unlike the
other senses based on discrete sensory organs, the sense of touch arises from receptors
distributed throughout the entire body [6]. In fact, these receptors are embedded in
the skin which is the outer covering of the body.

In humans, the skin is the largest organ of the integumentary system.

Because it interfaces with the environment, skin plays an important immunity role in
protecting the body as anatomical barrier from pathogens and damage between the
internal and external environment. Additionally, its other functions are insulation,
temperature regulation, sensation.

The sense of touch also plays a significant role in many applications in robotics [7],
and advanced prosthetics [9]. Many studies concern tactile sensing technologies for
robot hands, for minimal invasive surgery [10], biomedical applications, slip detection

in hand prostheses [11], whole-body tactile sensing, large area tactile skins |12] and
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so on. For instance, as robots move from laboratories to domestic environments
(real-world), they will be required to perform manipulation tasks in unstructured
environments. Such robots must be able to achieve sophisticated interactions with the
environment and to perform complex tasks such as grasping objects with arbitrary
unknown shapes 13|, and avoiding slip while applying minimal force to the grasped
objects. In these settings, the ability of tactile sensing becomes a particularly valuable
and desirable.

During the past decade tremendous efforts and progress have been made by the
industry and academia to mimic the sense of touch in humans. Besides, researchers are
also addressing the development of electronic skin system consisting of the mechanical
arrangement of the skin itself (i.e. soft or rigid mechanical support, structural and
functional material layers, etc.) plus an electronic embedded system in charge of
locally processing tactile data, which has to be transmitted to a robot or a prosthesis

user, for example in robot or prosthetic applications.

2.2 Sense of Touch

According to Loomis and Lederman |14}, the sense of touch in humans comprises three
main submodalities, i.e., cutaneous, kinesthetic, and haptic characterized on the basis
of the site of sensory inputs.
The cutaneous sense receives sensory inputs from the receptors embedded in the skin.
In fact, the cutaneous system involves physical contact with the stimuli and provides
awareness of the stimulation of the outer surface of body by means of receptors in the
skin and associated somatosensory area of central nervous system (CNS).
The kinesthetic system, receiving sensory inputs from the receptors within muscles,
tendons, and joints [14,/15], provides information about the static and dynamic body
postures on the basis of 1) afferent information originating from the muscles, joints,
and skin; and 2) efference copy, which is the correlate of muscle efference available to
the higher brain.
The haptic sense perceives heat, cooling, and various stimuli that produce pain by
using significant information about objects and events both from cutaneous and
kinesthetic systems [14,(16].

The human sense of touch deals with the spatiotemporal perception of external stim-
uli through a large number of receptors (e.g., mechanoreceptorsfor pressure/vibration,
thermoreceptorsfor temperature, and nocioceptorsfor pain/damage [17]) that are dis-

tributed all over the body with variable density. The response to mechanical stimulus
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is mediated by mechanoreceptors that are embedded in the skin at different depths.
Their number, per square centimeter area, is estimated to be 241 in the fingertips and
58 in the palm of adult humans [18].

In details, thanks to studies about the tactile afferents in the late 1960's [19], there
are four main types of mechanoreceptors embedded in the human skin throughout
the body [20], and each is responsible for the reception of specific stimuli; these
four include Pacinian corpuscles, Meissners corpuscles, Merkel discs, and Ruffini
cylinders, all of which can be divided into two categories: slowly adapting (SA)
mechanoreceptors and fast adapting (FA) mechanoreceptors [21]. The slowly adapting
mechanoreceptors including Merkel discs (SA-I mechanoreceptors) and Ruffini cylinders
(SA-IT mechanoreceptors) respond to low frequency stimuli, and they describe the
static properties of a stimulus. In contrast, high frequency stimuli make the fast
adapting mechanoreceptors, i.e., Meissners corpuscles (FA-I mechanoreceptors) and
Pacinian corpuscles (FA-II mechanoreceptors) fire in response. The border distinctness
and the size of the receptive field differentiate SA-I mechanoreceptorsfrom SA-II
mechanoreceptors, and FA-I mechanoreceptors from FA-II mechanoreceptors. In
other words, the receptive fields of SA-I mechanoreceptors and FA-I mechanoreceptors
have more distinct borders and smaller sizes than those of SA-II mechanoreceptors
and FA-II mechanoreceptors. Figure illustrates the characteristics of human

mechanoreceptors and summarizes the characteristics of each mechanoreceptor [22].

Pacinian corpuscles are nerve endings responsible for sensitivity to deep-pressure
touch and high-frequency vibration. They are located beneath the bottom layer of
skin, called the dermis which is subcutaneous fat. They are considered fast adaptive
receptors. The Pacinian corpuscles are oval shaped and are approximately 1 mm in

length and 0.6 mm in diameter.

Meissner's corpuscles are responsible for sensitivity to light touch. They are located
in the top layer of skin, called the epidermis. Similar to Pacinian corpuscles, they
are fast adaptive receptors.Meissner's corpuscles are between 80 and 150 m in length

andbetween 20 and 40 m in diameter.

Merkel discs provide information regarding pressure, vibration,and texture. They
are the most sensitive of the four mechanoreceptors to vibrations at low frequencies,
at around 15 Hz. They are located in epidermis. In contrast to the two previous
receptors, they are slowly adaptive receptors. This means they have sustained response

to stimulation since they are not capsulated, as are the two previous ones.

13



Classification Basis

Pacinian Corpuscle  Ruffini Corpuscle

Type FAT SA Tl
Adaptation Rate Fast Slow
Spatial Acuity (mm) 10+ T+
Vibration/rapid Best{pum) 0.01 40
indent. threshold Mean(um)  0.08 300

40-500+

35-70

Temporal changes in the
skin deformation

High frequency vibration
detection; Tool use.

Stimuli Frequency (Hz)
Conduction Velocity (m/s)
Effective Stimuli

100-500+

35-70

Sustained downward Pressure;
Lateral skin stretch; Skin slip
Finger position; Stable grasp;
Tangential Force;

Motion direction

Sensory Function

Papillary Ridge

Sensory *
Nerves

Merkel Cells

SAl

Slow

05

3

30

0.4-3

40-65

Spatial deformation, Sustained
pressure; Curvature, edge, comers
Pattern/form detection; texture
perception; Tactile flow
perception

Meissner's Corpuscle
FAL

Fast

3-4

4]

3-40

35-70

Temporal changes in skin
deformation

Low frequency vibration &
mation detection; Grip control,
Tactile flow perception

Figure 2.1: Section of glabrous skin showing physical location and classification of various mechanore-
ceptors [7].

Ruffini cylinders are sensitive to lateral skin stretch and contribute to the kinesthetic
sense and control of finger position and movement. They register mechanical defor-
mation within joints, more specifically angle change, with a specificity of up to 2, as
well as continuous pressure states. They are also believed to be useful for monitoring
slippage of objects along the surface of the skin, allowing modulation of grip on an

object. Ruffini cylinders are located in the dermis layer.

2.3 Electronic Skin

Electronic skin refers to flexible, stretchable and self-healing electronics that are able
to mimic functionalities of human or animal skin. Advances in electronic skin research,
that focuses on designing materials that are stretchy, robust, and flexible, would open
the door to many possible applications including soft robotics, prosthetics, artificial
intelligence and health monitoring.

Interest in large-area networks of electronic devices inspired by human skin is
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motivated by the promise of creating autonomous artificial intelligence (e.g., robots),
medical diagnostics, and replacement prosthetic devices capable of providing the
same, if not better, level of sensory perception than the organic equivalent. Endowing
robots with sensing capabilities could extend their range of applications to include
highly interactive tasks, such as caring for the elderly [23], and sensor skins applied
on or in the body could provide an unprecedented level of diagnostic and monitoring
capabilities [24].

An artificial skin with such sensory capabilities is often referred to in the literature
as sensitive skin, smart skin, or electronic skin (e-skin).

In 1974, Clippinger demonstrated a prosthetic hand capable of discrete sensor
feedback [25]. Nearly a decade later, Hewlett-Packard (HP) marketed a personal
computer (HP-150) that was equipped with a touchscreen, allowing users to activate
functions by simply touching the display. It was the first mass-marketed electronic
device capitalizing on the intuitive nature of human touch. In 1985, General Electric
(GE) built the first sensitive skin for a robotic arm using discrete infrared sensors placed
on a flexible sheet at a resolution of 5 cm. The fabricated sensitive skin was proximally
aware of its surroundings, allowing the robot's arm to avert potential obstacles and
effectively maneuver within its physical environment. Despite the robotic arm's lack of
fingers and low resolution, it was capable of demonstrating that electronics integrated
into a membrane could allow for natural humanmachine interaction.

In the 1990s, scientists began using flexible electronic materials to create large-
area, low-cost and printable sensor sheets. Jiang et al. proposed one of the first
flexible sensor sheets for tactile shear force sensing by creating silicon (Si) micro-
electromechanical (MEM) islands by etching thin Si wafers and integrating them on
flexible polyimide foils. Around the same time, flexible arrays fabricated from organic
semiconductors began to emerge that rivaled the performance of amorphous Si [26].
Just before the turn of the millennium, the first Sensitive Skin Workshop was held in
Washington DC under the aegis of the National Science Foundation and the Defense
Advanced Research Projects Agency, bringing together approximately sixty researchers
from different sectors of academia, industry, and government. It was discovered that
there was significant industrial interest in e-skins for various applications, ranging
from robotics to health care.

Significant progress in the development and advancement of e-skin has been
achieved in recent years, and particular emphasis has been placed on mimicking
the mechanically compliant yet highly sensitive properties of human skin. Suo and

coworkers have developed stretchable electrodes [27], and Rogers and coworkers have
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transformed a typically brittle material, Si, into flexible, high-performance electronics
by using ultrathin (100 nm) films connected by stretchable interconnects [28]. Someya
and coworkers have fabricated fl exible pentacene-based organic fi eld-effect transistors
(OFETS) for large-area integrated pressure-sensitive sheets with active matrix readout
[29], while Bauer and coworkers have investigated novel pressure sensing methods
using foam dielectrics [30] and ferroelectrets [31] integrated with FETs. Bao's group
has investigated the use of microstructured elastomeric dielectrics for highly sensitive
capacitive pressure sensors [32] and has developed a composite conductive elastomer
exhibiting repeatable self-healing and mechanical force sensing capabilities [33]. Other
groups have developed stretchable optoelectronics, including light-emitting diodes
(LEDs) [34] and organic photovoltaics (OPVs) [35] for integration with e-skin. A
timeline outlining the major milestones towards the development of e-skin is depicted
in Figure

Important considerations for the development of e-skin are the choice of materials
used in its fabrication and the ability to confer the mechanical properties of human
skin (e.g. stretchability and flexibility) into its artificial counterpart.

A remarkable characteristic of human skin is its ability to stretch and flex with
bodily movements without incurring damage. While arrays of flexible electronics have
been developed by using very thin plastic substrates [36], stretchable devices have
been more difficult to achieve, and new processes and materials are often required
[37]. In general, stretchable devices can be fabricated by developing devices comprised
of intrinsically stretchable materials or by appropriate geometrical arrangement of
conventional materials.

The human skin is also able to perceive simultaneous and multiple stimuli. Hence,
in order to simulate the multifunctional nature of skin, e-skin should sense many
parameters simultaneously. The tendency of simple, discrete devices to respond to
multiple stimuli can be advantageous for this purpose.

Moreover, the human skin and e-skin should be aesthetically similar for allowing for
the possibility of integrating e-skins with the human body in prosthetic applications,
for example. In this direction, much progress has been made toward developing
biocompatible and biodegradable devices.

E-skin could enhance capabilities, such as improved sensitivity, higher receptor
density, and faster response times, and could endow robots and prosthetics with these

capabilities that surpass those of our own skin.
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Figure 2.2: A brief chronology of the evolution of e-skin .
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2.4 Electronic Skin as a System

The development of the e-skin is a very challenging goal which should be tackled
from a system perspective. The e-skin is usually intended as a hybrid stack-wise
arrangement which incorporates tactile sensing (structural and functional materials,
signal conditioning and acquisition, signal processing) and interpretation. Sensory
inputs similar (but not limited) to those possessed by humans are essential to provide
the necessary feedback to explore the environment and interact with objects.

In addition to tremendous effort being concentrated on the development of the
e-skin hardware, the design of an effective digitization which requires software to
provide a communication interface with the user is needed. The signals produced from
sensors in e-skins have to be digitalized (from analog to digital signal) for interfacing
with modern digital microprocessors. After digitization, software algorithms could
be used to process, interpret, and act on the large amounts of data in a coherent
fashion. Further integration of other signal processing methods (such as wireless
technologies) could be used to create super skins, such as implantable biofeedback

devices for healthcare applications.

An electronic skin system should consist of:

1. Sensing arrays being able to reproduce the sense of touch in humans.
2. Interface electronics to convert from analog to digital tactile signals.
3. Tactile data processing and decoding system.

An example of this general structure is shown in Figure (adapted from [39)]).
The bottom layer (substrate) is made of a structural material which can be rigid
(e.g. the robot mechanical structure) or soft. Next layer (electronic layer) hosts
the electronic circuits. Conventional electronics is typically integrated on very hard
and flat (brittle) surfaces. Here the need is to conform to curved surfaces, requiring
flexibility but also stretchability, to a certain extent, to follow all movements and
deformations of the parts into which the electronic layer is integrated. The adoption of
a flexible substrate does not necessarily guarantee the flexibility of the entire electronic
circuit, as a too dense or not well organized layout may drastically limit the flexibility
of the overall structure. In fact, even if the substrate is stretchable, the routing
lines are intrinsically not, unless a dedicated design is adopted. Some interesting
concepts are related to the creation of compliant and stretchable interconnections

[40,/41] and a very widespread approach to materials and mechanics for stretchable
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Figure 2.3: General physical structure of the e-skin system [].

electronics is contained in [42]. Requirements on conformability and stretchability
put severe constraints on the reliability of the electronics, as mechanical stress on
the electronic circuits can cause faults on interconnections and circuits itself. Next,
sensors are embedded in a protective layer. The geometry of the sensor array (i.e.
overall area, sensor size, sensor pitch, sensor distribution) depends on the transducer
technology and on the given application requirements. The protective layer, which
is usually polymer based (e.g. PDMS), protects the whole from damages induced
by contact with objects, environmental chemical agents and water, etc. Moreover, it
implements a mechanical filtering of the input stimulus, concentrates/distributes the
mechanical stimulus onto the sensor array below depending on the thickness and the
compliance of the layer. As a consequence, e-skin spatial resolution depends on the

sensor geometrical arrangement as well as on the features of this protective layer.

2.4.1 Tactile Sensing

In the development of artificial skin, the materials chosen for its fabrication should
reflect the flexibility and stretchability of natural human skin. To achieve these
properties, the choice of materials is critical, and technological advancements in
e-skin have been largely possible through the development of new materials and
processing methods for the fabrication of stretchable and flexible devices. In addition
to mechanical compliance, good electrical performance and compatibility with large-

area processing techniques are important to create highly functional, low-cost devices.
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Different kind of sensors (see Table could be embraced for the frabication
of an e-skin showing multimodal sensing capabilities [43], bendability, flexibility and
stretchability, hopefully shrink and wrinkle ability as human skin has [44]. On the
basis on what happens in human skin, transduction technologies and corresponding
sensors should enable such capabilities as normal and shear force sensing, tensile strain
monitoring and vibration detection (at least up to 800 Hz) [38], and e-skin featuring
a large frequency bandwidth which spans from zero to 1kHz is desirable. According
to the application, the spatial resolution (defined as the smallest distance between
two distinguishable contact points |13]) should range from a minimumof 1mm to a
maximum of 20-30 mm. Detectable force should span in a range of three orders of
magnitude (e.g. 1- 1000 g [38]). Even if human skin features high hysteresis, it is
preferable that e-skin presents a low hysteresis, to avoid significant processing and
complex electronics. The requirements outlined above together with some others
(extracted and adapted from literature, in particular from [7,/13,20] are summarized
in Table 2.2l The requirements are general and can be satisfied totally or partially,
according to the target application. Many of the previous requirements are satisfied
by many examples reported in the literature, even if, to our knowledge, no e-skin

implementation satisfies all of them.

Tactile sensors ‘Working principle Advantage Disadvantage

. . . Simple electronics; High sensitivity; Hysteresis; Temperature
. . Its resistance varies with the . o L .
Piezoresistors . . Ease of integrating in MEMS; sensitivity; Fragile and
deformation caused by applied force. . . . .
Resistant to interference. rigid; High cost.

Sensitivity of small force change;

Reliability; Large dynamic range, L. . X
s . . . . . Limited spatial resolution;
Capacitive Its capacitance varies with the suitable for both dynamic and . o
. . . Noise sensitivity;
sensors deformation caused by applied force. static force measurement; .
L complex electronics.
Low temperature sensitivity;

Low power consumption.

Low spatial resolution;
. . X . No need for power supply; .
Piezoelectric An electric voltage will be produced . o . High temperature
. . High reliability; Fast dynamic L .
sensors when a force applied to it. sensitivity; Inability to
response. .
sense static value.

. . . Fragile and rigid; Large size;
. The intensity or the spectrum of Immune to electromagnetic fiels; .
Optical sensors . X . . . X Inability to transparency and
light varies with the applied force. High spatial resolution. K .
highly refletice surface.

Table 2.1: Characteristics of different sensors for the e-skin fabrication ([45)).
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Design criteria

Character

Detectable force range (Dynamic range)

Tactile Sensing Element (Taxel)
pitch (for array only)

Spatial resolution

Sensor frequency bandwidth

(sensor response time)
Temporal variation

Mechanical sensing detection capability

Sensor Mechanical characteristic

Sensor Electrical characteristic

Sensor response

0.01 N— 0 N(1000 : 1)

< Imm for small sensing areas > 5mm

for large less sensing areas

< 1mm for fingertips 5mm 20—30mm

(e.g. limbs, torso, etc.)

About 1kHz (1ms)

Both dynamic and static.
Normal and shear forces; vibrations.

Flexible, stretchable, conformable and

soft, robust and durable.

Low power, minimal wiring and cross
talk, electrically and magnetically minimal

sensitivity.

Monotonic, not necessarily linear, low

hysteresis, stable and repeatable.

Table 2.2: Design requirements for tactile sensing system (adapted from [7}(13//20]).

Piezoresistive sensors transduce a change in the resistance of a device into a

measurement of strain and have been investigated extensively. Piezoresistive polymer

composites have been extensively investigated as strain- and force-sensitive materials

because of their low cost and easy integration into devices. The change in resistance

can be derived from several factors, including changes in the geometry of the sensing

element for example.

Capacitive sensors for tactile sensing have demonstrated high strain sensitivity,

compatibility with static force measurement, and low power consumption [46,47]. A

major advantage of capacitive sensors is that their governing equation is simple, which
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simplifies device design and analysis. Furthermore, capacitive sensors are susceptible

to interference from external sources [48].

Piezoelectricity sensors are able to generate a voltage in response to an applied
force. The force causes a change in the length and separation between dipoles in
the material |49], leading to the build-up of compensating charges on the electrodes.
Owing to the high sensitivity of piezoelectric sensors to dynamic pressure and their
fast response speed, they are often used to measure the vibrations associated with slip,
and their transient sensing capabilities resemble those of the RA receptors in human
skin. However, piezoelectric materials exhibit drift in sensor response over time and

have unreliable static sensing properties.

Optical sensors convert a tactile input into an electrical output using light as
an intermediate. These sensors consist of a light source, transmission medium, and
detector. The modulation of light intensity through force-sensitive wave guides [50] or
flexible optical fibers has been used to fabricate optical sensors. While these fiber-optic
sensors had low wiring complexity, exceptional linearity, and negligible drift, they

were not stretchable.

2.4.2 Interface and Acquisition System

Interface electronics includes blocks for signal conditioning and data acquisition [51-53].
Figure [2.4) shows a general functional block diagram of interface electronics illustrated
in [12].

Signal Conditioning implements a set of circuit level functions such as low noise
amplification, input/output impedance adaptation, setting the reference DC values
(e.g. signal ground), lowpass or bandpass filtering (e.g. antialiasing lowpass filter)
[53]. The output of the signal conditioning circuit is input to analog to digital (A/D)
converter. Usually a dedicated signal conditioning channel is needed for each sensor
element in the array with a single A/D converter. Signal conditioning channels (one
for each sensor element of the array) are time multiplexed via an analog multiplexer
at the input of the A/D converter.

Data acquisition involves addressing the signal conditioning channel and digitization
(i.e. analog to digital conversion) of the analog input. The tactile sensing control

can query and read tactile data from any sensor in the system. The ability to query
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Figure 2.4: A general functional block diagram of the interface electronics ( \

).

individual tactile sensors is helpful e.g. for diagnostics and calibration. Issues like
wiring complexity also influence the interface electronics, in particular for large skin
area arrays. The addressing can be serial and fixed to decrease complexity
at the expenses of an increase of array scanning rate. An alternative arrangement
for signal conditioning and data acquisition is to translate the sensed signal into a
frequency value, which is subsequently digitized and acquired via a digital counter.
The advantage of this approach is the robustness of the sensor output signal with
respect to noise and disturbances. Wiring is minimized as the sensor output is a single
signal /wire. On the other hand, the acquisition time can be very long as it depends

on the oscillating frequency and on the sensing resolution.

2.4.3 Tactile Data Processing and Decoding System

A step forward towards the integration of the e-skin into robots or prosthesis devices
focuses on dedicated real-time hardware implementation of tactile data processing
algorithms. The embedded electronic system should comply with severe constraints
imposed by the application, e.g. real time response, reliability, low power consumption
and low cost. The system should read the electrical conversion of the applied mechanical
stimuli, extract and transmit structured or unstructerd information.

A complete sensing system (hardware and software) for an anthropomorphic robotic
hand which closely matches the low levels structure (up to the Tactile Data Transmis-

sion Level) is presented in [55]. The system can be interfaced to different transmission
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protocols (e.g. CAN, USB, RS232). Signal processing tasks and classification (e.g.
slip detection, contact, etc.) are implemented by the embedded electronic system. In
[56], the basic sensing module (HEX-0-SKIN) approach is implemented by hexagonal
PCB which hosts a microcontroller for data preprocessing (e.g. clustering, feature
extraction, etc.) and transmission interface, and a bunch of custom and off-the-shelf
sensors (e.g. proximity, pressure, vibration, temperature, etc.). HEX-0-SKIN can be
arranged in a modular way to configure skin patches hierarchically interfaced to the

robot backbone.

2.5 Conclusion

In the past decade, the e-skin development has accelerated dramatically owing to
the availability of new materials and processes. Interest in e-skin has been driven by
its potential to: 1) enable highly the development of interactive and versatile robots
that are capable of performing complex tasks in less structured environments; 2)
facilitate conformable displays and optics; and 3) revolutionize healthcare by providing
biomimetic prostheses, constant health monitoring technologies, and unprecedented
diagnostic and treatment proficiency.

Despite rapid progress, there is a continuing need for further development before
the goal of integrating multiple functionalities into large-area, low-cost sensor arrays
is reached. Furthermore, the ability to mimic the mechanical properties of human
skin (e.g., flexibility and stretchability) is critical.

One of the most important functions of skin is to facilitate the sense of touch,
which includes normal force sensing for grip optimization, tensile strain sensing for
proprioception, shear force sensing for object manipulation, and vibration sensing for
slip detection and texture analysis. While the commonly used transduction methods
(such as piezoresistive, capacitive, piezoelectric, optical, and wireless) are readily
available, advancements in device structures and materials have produced dramatic
improvements in tactile sensor performance.

Not only tremendous effort has been concentrated on developing e-skin hardware,
but also has been done towards the system digitization, which requires software to
provide a communication interface with the user. The signals produced from sensors
in e-skins are analog, and signal digitization is required for interfacing with modern
digital microprocessors. Ideally, digitization would be performed at the sensor device
level in a manner that does not require considerable power consumption in order

to integrate a large density of sensors. After digitization, software algorithms could
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be used to process, interpret, and act on the large amounts of data in a coherent
fashion. Further integration of other signal processing methods (such as wireless
technologies) could be used to create super skins, such as implantable biofeedback
devices for healthcare applications.

Several highly integrated e-skins demonstrating multiple functionalities for appli-
cations such as biomedical devices, robotics, and optoelectronics have been recently
reported. The rapid pace of progress in e-skin technology suggests that the fabrication
of a more complex e-skin with properties far surpassing those of their organic equivalent

will soon be possible.
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Chapter 3

Tactile Feedback System

3.1 Introduction

The results presented in this chapter are not published yet. The candidate contributed
to the this work by designing algorithms for the control software of the tested system,
developing of the experimental setups, planning the experimental protocols and pilot
tests, and performing measurements. She also conducted a comprehensive statistical
analysis of the collected data, gave all motivations, compared the work w.r.t. the

state-of-the-art and provided discussion and conclusions.

Peerdeman et al. [57] developed a survey examining the requirements for feedback

(and control). In hierarchical importance, the feedback priorities are:
1. Continuous and proportional feedback on grasping force should be provided;

2. Position feedback should be provided to user;

w

. Interpretation of stimulation used for feedback should be easy and intuitive;
4. Feedback should be unobtrusive to user and others;
5. Feedback should be adjustable.

Several different methods can be employed to provide amputees with sensory
feedback and they can be defined in two different ways. Sensory feedback systems
distinguish invasive and non-invasive methods. The invasive methods elicits sensory
feedback by interfacing directly to physiologically relevant neural structures in the
peripheral nervous system (PNS) or the central nervous system (CNS); the non-invasive

methods (e.g. using temperature, mechanical pressure, and augmented reality) provides
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feedback to intact sensory systems (e.g. tactile stimuli on the residual limb, chest,
etc.).

Alternatively, the sensory feedback systems could be divided into: somatotopically
matched, modality-matched, and sensory substitution methods. Somatotopic matching
refers to methods in which the feedback signal is perceived as being anatomically
matched in location to where the stimulus is being applied to the prosthesis (i.e. inva-
sive methods or sensory feedback applied to phantom mapping). Modality matching
refers to a feedback signal that is congruent to the external stimulus detected by the
prosthetic sensor; however, the feedback signal may not be presented to a location
physiologically representative of the hand or limb. Sensory substitution categorizes
a group of feedback systems that apply a feedback signal that is not matched in
modality to the stimulus occurring at the prosthesis. Furthermore, the feedback
signal is presented to a location that, physiologically, will not be perceived to the
user as in the same corresponding location on their missing limb. The success of
the approach depends on the users ability to interpret the type and location of the
stimulus and associate it with the prosthesis. The most common methodology has been
to translate tactile information from the prosthesis to the amputee using vibration,
electrocutaneous or auditory stimuli.

A mind map of the different feedback methods is shown in Figure |3.1

Non-Invasive

Neural Stimulation Mechanotactile Electrotactile Auditory
Target Reinnervation Vibration Augmented Reality

A S

if applied to
phantom mapping

Figure 3.1: Classification of Sensory Feedback Methods.
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Although first results with direct neural stimulation [58-61] were promising [59],
more extensive studies are needed to understand how to safely stimulate afferent
pathways of the human nervous system to provide effective sensory feedback. Besides,
these approaches are invasive and require a surgical procedure, which may strongly
affect their acceptance by the prosthesis users.

Non-invasive sensory feedback systems could prove to be an interesting alternative
to invasive solutions. Implied assumption is that it might not be necessary for an
artificial system to exactly restore the biological information transmission, provided
that an intuitive communication between the prosthetic device and the human brain
is established through a non-invasive interface

In addition to the sensory modality (what is fed back), another crucial aspect is

the timing of sensory feedback (when is fed back). The latency between a variation of
the output stimulus corresponding to a sensory input variation should be as short as
possible for an effective use of such information. In the human sensory system, tactile
stimuli take 14-28 ms to reach the cuneate nucleus [62]. Therefore it is reasonable
to believe that to avoid increasing this value significantly, artificial sensory feedback
should be delivered to the individual in a fraction of that time (e.g. 3-5 ms). Short
latencies are also important for the brain to develop a sense of embodiment (body
ownership) of the prosthesis. Indeed, the attribution of a visible hand to the self
depends on a match between the afferent somatic signals and visual (and eventually
audio) feedback from the hand [63]. Self-attribution occurs with temporal delays up
to 300 ms, as reported by Shimada et al. in [64].
Johansson and Birznieks wrote that both friction between the object and the fingertips
and the shape of grasped surfaces, recognized by tactile mechanisms, are reflected
in the applied fingertip forces within ~100 ms of initial contact (in [65]). Besides,
they claimed that accidental slips and unexpected perturbations of a grasped object
elicit responses in tactile afferent triggering specific behavioral consequences even
faster (~65 ms). To conclude, peripheral nerve conduction times and muscular force
generation delays account for ~45 ms of the delay and at least 15 ms is required for
central processing8 10.

The prevalence of stimulation, i.e. how continuous sensory feedback is to be
provided is still a debating point within the field. Traditionally, researchers have
implemented systems that presented the sensory feedback in a continuous fashion.
However, continuous feedback yields to adaptation, meaning that the stimulation is no

longer or just barely perceived by the individual after a short while. Considerations
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regarding the adaptation phenomenon will be debated in paragraph “Open Issues’
(Section [3.6)).
In the Section the principal features, advantages and disadvantages of some

sensory feedback methodologies are presented.

3.2 Motivation

The incidence of upper limb amputees in European countries ranges from 50 to 270
per year [66], [67], with around 1900 traumatic upper limb amputees per year and
a total of 94 000 upper limb amputees in the European community. [68] estimated
there are 1.6 million people living in the USA with the loss of a limb, 34% of which
were upper limb.

Upper limb loss is one of the most difficult challenges for prosthetic replacement,
given the complexity of fine sensory input and dexterous function of a hand. Closely
mimicking the performance of a human hand and arm is technically challenging. A
normal hand is capable of coordinating movements with 27 degrees of freedom to
perform strength-based grasping functioning as well as highly coordinated precision
movements [69]. In the last years, there have been extensive advances in motorized,
multi articulated prosthetic arms that are capable of a wide range of grasps and
movement [70]. These devices are of three types: 1) cosmetic; 2) body powered; and
3) myoelectric. Body-powered prostheses are controlled by amputees body movements
(e.g., shoulder shrugging) transferred through cable and/or harness systems to a
terminal device such as hand or hook. These devices, although characterized by
reliability, durability, cost, weight, and tension feedback to the body, suffer from the
need for (gross) body movements, energy expenditure, and less cosmetic appearance
than a myoelectrical prostheses. Myoelectric hands leading industrial developers are
Ottobock (Germany), LTT (USA), and Motion Control (USA). Yet surveys [71] on
the use of these artificial hands reveal that 30%-50% of amputees do not use their
prosthetic hand regularly, basically due to its low functionality, poor cosmetic and
unnatural appearance, lack of sensory feedback, and low controllability. Even though
prostheses are becoming very sophisticated robotically, they are not satisfactory to
users and are often abandoned by amputees as these devices do not allow amputees
to perform tasks that are necessary for activities of daily living (ADLs).

Most of upper limb amputees discontinue usage of their prosthesis [72] as the
inability to grasp/manipulate objects and the inability to sense and explore the

surrounding is too disturbing. Typically, prosthetic users adopt a system of strategies
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Figure 3.2: The restoration of sense of touch in prosthesis.

to compensate for this lack of sensory information; they rely heavily on visual feedback
as well as on indirect feedback mechanisms [73]. Moreover, amputees experience
phantom pain (i.e. pain that feels like it is coming from a body part that is no longer
there) from the missing limb. Users do not perceive the prosthesis as a part of their
own body but rather as an external device, experiencing a decrease of confidence in
its use.

Restoring sensory feedback is a long-standing challenge in prosthetic research
[74], |2] as contemporary myoelectric prostheses respond to electrical muscle activity
and thereby restore lost motor functions, but the amputee users do not feel their
artificial limbs. Apart from a single recent example [3], the commercial prostheses
do not provide any somatosensory feedback to the user. It is known from the human
motor control that a bilateral communication between the brain and the limb is
essential for the smooth execution of the movements |75]. Therefore, it is even more
important considering that sensory feedback is truly instrumental for the motor control
in able-bodied subjects, especially during dexterous activities such as manipulation
and grasping [76]. By using a prosthesis equipped with the sensory feedback-restoring
device, the subject will be able to control the force exerted with the prosthesis and
recognize the stiffness and shape of objects in a perceivable and effortless manner. The
subject could have a decrease in phantom limb pain and, most importantly, perceive
the prosthesis as a part of his own body. This could foster to improve the quality of

life of amputees.
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3.3 Transmission Methodologies Overview

There is a variety of feedback methods that have currently been deployed within
literature including the use of temperature, vibration, mechanical pressure and skin
stretching, electrotactile stimulation, audio feedback, and augmented reality. Some of
these methods are described with an assessment and discussing any challenges and

opportunities that are involved in each technique.

3.3.1 Peripheral Nerve Stimulation

Authors of , consider that the most obvious solution to simulate sensory
feedback could be to electrically stimulate physiological channels as the nervous system
functions on electrical voltage potentials. Peripheral nerve stimulation relies on the
principle that, following upper limb amputation, the original afferent neural pathways
are preserved proximally and can be exploited for interfacing with prostheses .
This principle suggests that natural physiological feedback can be restored through
strategic electrical stimulation of nerve afferent using invasive neural electrodes. To
date, peripheral nerve stimulation has been investigated in amputees using two styles
of electrodes: nerve cuff electrodes, where the electrode wraps around the exterior

of the fascicle [25]; and longitudinal intrafascicular electrodes, where electrodes are

Figure 3.3: Peripheral nerve stimulation (source )
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placed in the nerves longitudinally [80H84]. As a technique for sensory feedback,
peripheral nerve stimulation holds inherent technological limitations. Ultimately, the
success of eliciting a particular sensation in a certain location is dependent on the
systems ability to selectively stimulate specific sensory afferents in a particular fascicle.
Current electrodes lack this selectivity and as a result, spatial resolutions of referred
sensations are often large, encompassing entire fingers or areas as large as the palm
, . Beyond spatial discrimination, this lack of selectivity often results in a loss
of naturalness in elicited sensations. Although participants do report tactile sensations,
they are frequently accompanied by foreign sensations resembling vibration, taping or
fluttering on the skin , . Furthermore, the long-term stability of intrafascicular
electrode stimulation in human participants has yet to be comprehensively studied
, . Therefore, whether the body acclimates to the stimuli or if the system
requires adjustments of the stimulus parameters over time remains unknown. For this
method to move forward, the longevity, and ultimately feasibility, of using peripheral

nerve stimulation in clinical or long-term prosthetic applications must be proven.
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Figure 3.4: Targeted reinnervation (source )
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3.3.2 Targeted Reinnervation

Targeted Reinnervation (TR) is a surgical procedure that moves the motor and sensory
nerves that previously innervated the amputated limb to muscle and skin target sites
. This surgery was initially performed to increase the number of motor control
sites for myoelectric prostheses and to allow for intuitive control . However, it
was found that the redirected sensory afferents also reinnervate overlying skin. This
reinnervation creates an expression of the hand map such that when touched, the
patients feel as if they are being touched on the missing limb [91H93]. TR allows the
reinnervated sites to be selectively placed . also been shown to be repeatable and
discrete.

Although TR feedback techniques are promising, research is still ongoing to develop
means of effectively utilizing the reinnervated skin sites as a further limitation lies in

the need for surgery to utilize this techniques.

3.3.3 Vibrotactile

Vibrational feedback typically uses small commercially available vibrators, which are
applied to the skin surface and activate the Pacinian corpuscle mechanoreceptors in
the skin. These are usually small and light weight. The user learns to associate the
vibration at that site with one of the senses from their prosthetic hand.

The two main features of the stimulus are vibration amplitude and frequency, but
other features like pulse duration, shape, and duty cycle, can be modulated to convey
different kinds of information , .

Generally incorporating vibration feedback reduces cognitive load required to pick

up objects compared to using visual feedback alone, however, this was not consistent
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Figure 3.5: Examples of vibrators used in vibrotactile feedback (source )
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across all the subjects. Vibrational feedback requires users to undergo training in
order to develop the full benefit .

Despite the fact that vibrational feedback offers a cheap and lightweight system of
feedback that users prefer the sensation over electrotactile feedback , one limitation
is the delay in stimulation as it can decrease embodiment [99], [64]. Recent studies
are working on this aspect. Another limitations is that the perception of vibrational
frequency can be affected by how tightly a vibration motor is attached , which

raises difficulties in predictive and reliable sensory feedback.

3.3.4 Electrotactile

Electrotactile (or electrocutaneous) feedback communicates sensory information to
the prosthetic user via electrodes placed on the users skin. Electrotactile stimulation
evokes sensations within the skin by stimulating afferent nerve endings through a local
electrical current. The sensation is not necessarily confined to the zone under the
electrodes but elicited sensations could spread if these are placed near nerve bundles
1101].

Electrotactile stimulators can be designed to be either current- or voltage-regulated.
With current-regulated stimulation, the current is not affected by changes in the tissue
load and impedance at the electrode interface; on the other hand, voltage-regulated
stimulation minimizes the possibility of skin burns owing to high current densities.
Current amplitude, pulse waveform (biphasic/monophasic, rectangular/sinusoidal),
pulse frequency and duration, duration of pulse bursts, and location of stimulation
(with multiple electrodes), which leads to a higher bandwidth being available ,

are the principal features of the stimulation. Electrocutaneous stimulation can evoke a

Figure 3.6: Examples of electrotactile electrodes (source )
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range of sensations that have been qualitatively described by participants as a tingling,
itch, vibration, buzz, touch, pressure, pinch and sharp or burning pain [101] depending
on the stimulating voltage, current and waveform, as well as on the electrode size,
material and contact force, and the skin location, hydration, and thickness. Electrodes
with a small area are required when only a limited area is available, even though
larger electrodes provide a more comfortable sensation [101]. Hence, a trade-off
between electrode size and skin area should be identified when performing multi-site
stimulation.

A few studies have demonstrated the benefit of using electrotactile feedback, such
as [103]. Strbac et al. [104] demonstrated a different electrode design that enabled
users to distinguish up to 16 stimulation locations, with up to five different frequencies
at once, to provide multiple levels of feedback. Test results from a small number of
able-bodied and amputee subjects demonstrated that six electrodes with four different
frequency signals could be identified with more than 90% accuracy by the subjects
after minimal training.

Electrotactile feedback shows potential for a quick and easily controllable method
of feedback that users can identify multiple sites of feedback at once. Typically
electrotactile devices consume less power and respond faster than vibrotactile systems
as there are no moving mechanical parts. However, in order to perceive electrotactile
stimulation each person’s minimum sensation threshold and pain threshold is different
and the perception of electrotactile information changes with the placement of the
electrodes [105], with movements as small as 1 mm having an influence [101]. In
addition, skin conditions can also influence the comfort and dynamic range of electro-
tactile stimulation [101]. Not only does this mean that re-calibration of thresholds
are required every time electrodes are placed on the user; but that the pulse width,
frequency and amplitude may need readjusting to achieve the same perception each
time. Elicited sensations are too dependent on many stimulation parameters as well
as physiological factors |101]. Therefore, the ability to repeatedly isolate and elicit a
specific sensation becomes an involved task. In a prosthetic context, sensory feedback
devices should have long-term stability and consistency of the prosthetic-to-user com-
munication channel. Without stability in the elicited sensations, the user may face

substantial challenges in learning to interpret feedback.

3.3.5 Mechanotactile

Mechanotactile feedback is accomplished when a force normal to the skin is applied by

a pusher to convey sensory information. The main features of this class of stimulators
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are accuracy (how accurately the output force/pressure resembles the sensory input),
precision, range, resolution and bandwidth (or its inverse concept, i.e. response time).

In amputee studies, incorporation of mechanotactile feedback has been shown
to improve performance during object manipulation tasks . Additionally, as
a feedback signal, mechanotactile tactors can provide graduated levels of force (or
pressure) and typically enable the user to discriminate between various levels [107],
[108]. Casini et al. demonstrated the application of distributed haptic force to
help a user determine an object as hard, medium or soft. A combination of pressure
and skin stretch on the bicep was used as the feedback mechanism for the subject.

Compared with other feedback systems, mechanotactile systems typically consume
more power and are often larger and heavier than vibrotactile or electrotactile devices;
development into minimizing these drawbacks is ongoing [110], [111].

F§y ™

Figure 3.7: Mechanical pressure feedback device and Silicon bulb mechanical feedback (source )

Figure 3.8: Pressure feedback cuff (source )
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3.3.6 Temperature

Temperature feedback has only been deployed to communicate identify force of their
grip and the position of their fingers [57]. However, temperature provides users with
extra information about their environment, and potential dangers or warnings that
involve heat. Producing heat on the upper arm to correspond with temperature
detected at the prosthetic hand was the only method of temperature feedback found
within literature.

A potential focus of research would be to incorporate temperature feedback with
another feedback method so that they occur simultaneously, since it is not a priority

to occur by itself.

3.3.7 Audio

Wilson and Dirven [112] demonstrated the potential of deploying audio to communicate
sensory feedback from a prosthesis. They examined the test subject’s ability to interpret
modulation of two audio channels to control a computer simulation. Their data showed
that the subject could interpret two channels, but there was a 602 ms delay and the
audio feedback resulted in a high cognitive load. Other studies [113] utilised triads to
communicate the movement of a robotic hand. The sound of cello corresponded to
the force on the thumb and a piano sound represented the force on index finger. The
subjects were also able to use the audio feedback to help improve their movements
and control when grasping objects.

Each of these audio feedback experiments was given their high cognitive load
required, further investigation is required to determine their effectiveness whilst

background noise is occurring.

3.3.8 Augmented Reality

Markovic et al. [114] used Google glasses to communicate the aperture angle, contact
time, grasping force and EMG strength for sensory feedback of a prosthetic hand to
its user. Subjects used the visual feedback to improve their task performance when
moving objects that required various strengths without breaking them. The subjects
noted, however, that they typically only glanced at the information and did not use
EMG strength signals.

Moreover, [115] suggests that although performance repeatability can be increased

with augmented feedback, it increases the cognitive load required from the user.
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3.4 Electrocutaneous Stimulation System

Traditionally, the non-invasive sensory feedback systems rely on a few discrete sensing
and stimulation units [4], [94]. In a typical approach, a sensor is used to measure a
global prosthesis variable (e.g., overall grasping force), and this information is then
transmitted to the prosthesis user through a single stimulation unit, which can be
an electrode placed on the residual limb [94], [102]. The intensity and/or frequency
of stimulation can be modulated according to the measured variable. For example,
the higher the grasping force, the higher is the stimulation intensity delivered to the
subject, which leads to a stronger tactile sensation |101]. The subject needs to learn
to associate the elicited sensation to the measured variable. This can be a challenging
task, and typically, only few levels of grasping force/hand aperture can be reliably
communicated [59,86,116,[117].

The contemporary methods for feedback restoration are characterized by a limited
information transfer. To mitigate this drawback, feedback interfaces comprising several
stimulation units were presented. In principle, the multichannel stimulation could allow
to better exploit the inherent potential of the human skin as the feedback stimulation
can be distributed over a larger skin area (spatial coding). An array of vibration
motors was used to communicate hand aperture [98] and grasping force [118] feedback.
Advanced interfaces for electrotactile stimulation integrating multiple electrode pads
have been recently tested [104]. In [119], an electrode array integrating 16 pads
placed circumferentially around the forearm was used to deliver force feedback from a
Michelangelo prosthesis. A matrix electrode with 4 x 8 pads has been used to transmit
tactile data recorded by an electronic skin to the subject forearm [120]. The tactile
data recorded by four neighboring taxels were fused and delivered through a spatially-
congruent electrode pad. The spatial coding and artificial skin were used in another
experiment |121] where the stimulation was delivered through a 4 x 2 arrangement
of conventional self-adhesive concentric electrodes. Preliminary experiments on the
ability to localize touch delivered to the artificial skin by identifying the elicited
electrotactile sensation have been performed on two subjects. These studies have
shown the potential of the multichannel stimulation, however, they also pointed out
that spatial localization is a challenging task, especially considering a low density of
tactile receptors on the human forearm (stimulation target in prosthetics).

The focus here is not on what information to transmit to the prosthesis user, but the

aim is to increase the reliability of information transmission when using non-invasive
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interfaces with many stimulation points. More specifically, a novel electrotactile
interface that has not been tested before is used.

The studies in the literature investigating multichannel stimulation rely on linear
arrays (e.g., rows or columns of stimulation points) [98,/104,118|, whereas a dense
6x4 electrode matrix is proposed. An electrode matrix is particularly suitable for
transmitting tactile information from an artificial skin covering the prosthetic device,
as demonstrated in our previous study [120]. Arranging the electrodes in a matrix is
useful for applications because it leads to a compact interface, however, this can be a
challenge for spatial localization of the tactile stimulus. The spatial localization is
important for transmitting an accurate tactile information to the user of a prosthesis
(e.g., contact location) or when conveying other prosthesis variables using spatial
coding (e.g., aperture [98]). This provides the motivation for the present study, which
investigates if the quality of localization can be improved by exploiting the flexibility
in parameter modulation provided by an electrotactile interface.

The electrotactile stimulation allows independent modulation of intensity and
frequency, while these parameters are intrinsically coupled in commonly used vibration
motors [122]. A novel dual-parameter modulation (intensity and frequency) has
been developed and tested to assist the subject in correctly identifying an active
pad within the matrix. Furthermore, for the first time, the performance of a matrix
electrotactile interface is compared to that of the natural skin being mechanically
stimulated over analogous contact areas. The detailed setup for the multi-channel
electrotactile feedback system is illustrated in Figure [3.9]

The MaxSens stimulator prototype developed by Tecnalia Research and Innovation
generates electrostimulation profiles to be transmitted to the participant through a
matrix of electrodes applied to his/her forearm. The system was presented previously
and tested in the context of transmitting multimodal proprioceptive [104] and high-
resolution force feedback [119], facilitating the closed-loop control of a myoelectric
prosthesis. The MaxSens is actually the next generation of the IntFES stimulation
system [123], adjusted for electrotactile feedback applications (lower stimulation
amplitudes with higher resolution).

The stimulator comprises a single stimulation unit that can generate continuous,
biphasic, symmetric and rectangular current pulses [104]. The biphasic waveform has
been preferred to monophasic pulses due to less skin reddening and more comfortable
sensations [102]. The waveform is presented in Figure [3.10] with all the relevant
stimulation variables marked on the plot. The stimulation unit is connected to a

matrix electrode through an analog multiplexer, which can distribute the pulses in
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Figure 3.9: Experimental setup. The indenter is used for mechanical stimulation, while all other
elements are used for electrotactile stimulation experiments.

time and space over the matrix electrode, thus providing multichannel stimulation
interface. The MaxSens is fully programmable and the stimulation parameters can be
adjusted online by sending text commands from the host PC via Bluetooth connection.
The communication protocol is supported by several programming languages (C, C#,
JAVA, LabView, MATLAB), enabling custom-made control software to be developed
for a preferred platform. Importantly, stimulation parameters regulate the intensity
and frequency of electrostimulation as well as the location (by changing the active
electrode). The adjustable stimulation parameters are: (1) the current amplitude
that can be changed in the range 0-5 mA with increments of 0.1 mA, (2) the pulse
width (from 50 to 1000 s with increments of 10 s), and (3) the stimulus frequency
(1 - 400 Hz, 1Hz step). Current regulated stimulation has been chosen to minimize
the influence of capacitive effects at the electrode-skin interface and ensure consistent
activation of the cutaneous nerves . This guarantees that the nerve stimulation
and thereby elicited tactile sensation will not be altered throughout the experiment
due to changes in skin moisture and hydrogel adhesion.

In this study, the stimulator was connected to two custom designed flexible matrix
electrodes developed by Tecnalia Research and Innovation. Each matrix electrode
consists of 16 oval units (=pads) with the longitudinal radius of 5 mm and transverse

radius of 3 mm. They are arranged in 6 x 2 geometry, plus 4 lateral pads (two at
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Figure 3.10: Typical stimulation waveform. Notation: A pulse amplitude; w pulse width; d
inter-pulse delay; T inter-pulse interval (pulse rate = frequency = 1/T).

each side). The center-to-center distance between two adjacent pads is 20 mm in the
longitudinal and 14 mm in the transverse directions. Each pad is made of Ag/AgCl
conductive layer and conductive hydrogel circular elements of 5 mm radius (AG730,
Axelgaard, DK) are added on top of each pad to assure good electrical contact between
the pad and the skin. An insulation coating is distributed on top of the electrode,
excluding the pad areas. The pads on the matrix were designated as cathodes whereas
a single self-adhesive electrode (ValuTrode Foam [125]) placed on the dorsal side of the
forearm acted as the common anode (Figure [3.9). The ValuTrode bottom electrode is
made of glycerin, water and poly(acrylate) co-polymer. It is a well-known product on
the market, recognized for its durability and multiple applications to the skin. The
rectangular ValuTrode electrode with size 5 x 9 cm? was used.

For the experiment, the two flexible matrix electrodes have been overlapped in
their central part in order to obtain a rectangular array including 6 x 4 pads (Figure
, distributed over a total area of 11 x 5 cm?. Hereafter, this rectangular array will
be called the matrix electrode. The 4 lateral pads (two at each side) were not used in
the present study. In the overlapped zone, the four pads of the matrix electrode on
top have been deactivated. The matrix electrode was placed on the volar side of the
subject forearm, while the common electrode was positioned on the dorsal side.

The rationale for the design of the matrix electrode is a trade-off between the
number of pads, pad spacing and electrode size to transversally cover the volar aspect
of the forearm (Figure , which is good point of application for electrotactile
feedback due to high tactile sensitivity and acuity.

The electrotactile interface has been designed so that the spacing between the
pads is higher than the spatial discrimination threshold on the forearm [126] while the
number of pads is still enough for a flexible mapping of prospective feedback variables.

Moreover, the specific design of the multichannel interface enables an intuitive spatial
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Figure 3.11: Reference position for matrix electrode placing is indicated by a black dot: it corresponds
to the intersection between two superficial flexors, i.e. the palmaris longus and the flexor carpi ulnaris
muscles. Reference pad for that position is number 22.

mapping between contact on the prosthesis and stimulation: the four columns can be
mapped to the four fingers (4 x 5) and the thumb can be represented on the remaining
row (4 x 1). In this configuration, the phalanges are mapped into the different (bottom,
middle, top) subsections of the columns / row.

The overlapping electrodes were placed on the volar side of the subject forearm
(Figure [3.11)). Particular care has been taken for electrode placement and the same
procedure has been used for all the tests, to make results comparable for different
participants and for same participant over different trials. Columns were aligned with
the four fingers and a reference point for electrode positioning on the longitudinal
direction was associated to the intersection of two specific muscles, as indicated in
Figure In particular, the intersection between two superficial flexors, i.e. the
palmaris longus and the flexor carpi ulnaris muscles has been used as the reference
position for a specific pad (number 22). The indicated position was identified by
asking the participant to close the hand and contract the muscles of the forearm. The

electrodes were wrapped by a bandage to prevent movement and improve contact.

3.5 Proposed Methods

The present study assessed the subject ability to localize the electrical stimulus deliv-
ered through a compact matrix electrode with many pads. The results demonstrated

that conventionally applied electrotactile stimulation (single frequency) can reach
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similar performance in tactile acuity as natural mechanical stimulation. With a novel
dual-parameter modulation scheme, the electrotactile interface provided higher dis-
criminability than the mechanical stimulation. This is an important outcome for the
provision of sensory feedback in prosthetics, as it implies that an electrotactile matrix
interface can be used to transmit reliable high-fidelity feedback from the prosthesis,
by exploiting the flexibility in spatial and parameter modulation characteristic of
electrotactile stimulation.

A novel non-invasive interface for multichannel electrotactile feedback is presented,
comprising a matrix of 24 pads (6 x 4), and the ability of able-bodied human subjects
to localize the electrotactile stimulus delivered through the matrix is investigated.
More specifically, a conventional stimulation (same frequency for all pads) and a spe-
cific dual-parameter modulation scheme (interleaved frequency and intensity) designed
to facilitate the spatial localization over the electrode were tested. The mechanical
stimulation of the same locations on the skin was used as the benchmark. An ex-
perimental campaign on eight able-bodied subjects demonstrated that the proposed
interleaved coding of the electrostimulation signal substantially improved the spatial
localization compared to the same-frequency stimulation. The results also showed that
the same-frequency stimulation was equivalent to the mechanical stimulation, whereas
the performance with the dual-parameter modulation was significantly better. These
are encouraging outcomes for the application of multichannel interface with many
stimulation pads for the restoration of feedback in prosthetics. The high-resolution aug-
mented interfaces might be used to explore novel scenarios for intuitive communication

with the prosthesis user enabled by maximizing information transmission.

3.5.1 Experimental Procedure

The main experimental campaign involved eight able-bodied volunteers (2 females, 6
males, 35+8 years). The experimental study has been approved by the Regione Liguria
Ethical Committee (approval ID 172REG2016, approval date September 13, 2016).
An informed consent form was signed by each participant prior to the experiments.

The subject sat comfortably on a chair in front of a table. The forearm of the
non-dominant arm (always left, as all participants were right-handed) was placed on
the table surface, with the volar side oriented upwards. The skin was preliminary
prepared by moisturizing with a water-soaked cotton cloth to enhance the attachment
of the electrodes and improve electrical conductivity.

The main aim of the experimental procedure was to assess the subject ability in

identifying the location of the electrotactile stimulus delivered through the matrix
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Figure 3.12: (a) Electrostimulation tests: a sketch of the matrix electrode (4 columns, 6 rows) is
placed on the table next to the forearm. (b) Spatial correspondence between the matrix electrode
and the geometrical arrangement of the pads in the sketch is preserved.

electrode. This was compared to the quality of localization when the mechanical
stimulation was applied to the skin (benchmark condition). To foster attention
and concentration, a silent environment was chosen to avoid any distraction for the
participant. To maintain alertness and minimize adaptation, the subjects were always

given sufficient rest during experiments [127], [12§].
The stimulation software for managing experiments was developed in Matlab

2015b.

The experiment was divided in two sessions performed in consecutive days. The
electrical stimulation (Figure was tested using two coding schemes: 1) a conven-
tional approach with uniform frequency (50 Hz) for all the pads (hereafter denoted
as same-frequency condition) and 2) a dual-parameter modulation of intensity and
frequency, interleaved across the electrode columns (hereafter denoted as interleaved
stimulation). The main idea of the latter approach was that additional cues (parameter
modulation) would assist the subject in recognizing the location of the active pad. In
this scheme, the pads within the columns 1-4 were activated at the frequencies of 10,
400, 10 and 400 Hz, respectively. In addition, the stimulation at 10 Hz was delivered
at a lower intensity compared to 400 Hz. The specific frequencies and intensities
were determined through pilot tests. The interleaved stimulation was tested in the
first session, and conventional electrical and mechanical stimulation in the second
session. The session duration was low enough (i.e. ~ 1-1.5 hours) to avoid fatigue

and distraction of the participant.
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(a) (b)

Figure 3.13: Experiments with mechanical stimulation. A screen is placed between the participants
forearm and the sketch of the matrix electrode. (b) Top view. (b) Side view.

In the second session, the electrical stimulation was tested first and the mechanical
was tested next (Fig. 5). When electrodes were removed, the position of the pads
was still clearly visible via skin reddening. The experimenter therefore marked the
position of each pad by using skin-friendly marker. A rubber indenter (radius 4mm,
contact area of approximately 8-10mm diameter ~ same size of the pad) was used to
mechanically stimulate the skin of the participant (inset in Figure )

Each stimulation modality (interleaved, same-frequency and mechanical) was tested
using the same experimental protocol comprising three phases: intensity adjustment,
training and testing.

Intensity adjustment. For electrotactile conditions, the participant was first
asked to define the intensity of the stimulation of each pad for clear perception,
avoiding any discomfort. For that, the stimulation intensity was increased gradually
(0.1mA each step) and the participant was asked to stop the experimenter when
clear sensation was achieved. The pads were activated in a systematic way, column
by column. Inside each column, adjacent pads were not activated sequentially: a
specific order was chosen to minimize adaptation (same order for all columns, referring
to column 1 in Figure : 1-3-6-4-2-5). Whenever numb feelings were reported,
strongly affecting the possibility of localizing the stimulus as the sensation spread over
to the whole forearm, the electrode array position was slightly adjusted.

In the case of interleaved stimulation, the experimenter additionally needed to
adjust the intensities for the 10 Hz and 400 Hz stimulation. To set the low stimulation

intensity for 10 Hz, the subject was asked to look for low but clear sensation. These
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values (level 1) were commonly associated to 1-2 steps above the sensation threshold.
To set the higher stimulation intensity for 400 Hz, the subject was asked to look for
high but not painful sensation, typically stopping 2-3 steps above level 1. After setting
the 2 intensity values for the two frequencies, the experimenter let the participant
experience both sensations moving all over the columns, and small adjustments were
allowed.

The intensity of the mechanical stimulation was preliminarily tuned for the stim-
ulation to be clearly perceived by the participant. In any case, preliminary studies
showed that there was no relevant difference in pad recognition for different intensities
of the mechanical stimulation.

Training. After defining stimulation intensities, a training session was performed
for the participant to familiarize with electrostimulation and build a mental mapping
between the experienced sensation and the position of the stimulated pad and/or
the pad number. For that, a sketch of the matrix electrode including the real-size
24 numbered active pads was placed on the table adjoining the forearm, preserving
spatial correspondence with the matrix electrode (Figure .

The subject was first trained by experiencing sequential stimulation over each
column from top (wrist) to bottom (elbow), while the experimenter orally reported
the pad number. Here the participant knew in advance which column and pad would
be stimulated and he/she was expected to associate felt sensation to the pad location
(number).

In the second training stage, the column was known, but the pads within the
column were stimulated in random order. The participant guessed the pad number and
then the experimenter provided verbal feedback about the correct answer (reinforced
learning).

Testing. During testing, the task for the subject was to identify the active pad,
and no feedback was provided about the correctness of the guess. The single pads
were activated in a pseudo-random order so that each pad was presented two times (48
stimulations). The participant was asked to identify the activated pad, by indicating
its number or identifying its position over the sketch. In few cases, the subject could
not decide on the location, and this was registered as a missed sensation.

In the training and testing phase during electrical stimulation, the participant was
allowed to freely direct the look from the forearm to the sketch and back (Figure
3.12h). During mechanical stimulation, a screen was placed between the participants
forearm and the sketch of the matrix electrode to prevent the participant having visual
cues to identify the stimulation location (Figure . In all modalities, the duration
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of the stimulus delivered to the subject was 2 s. In both conventional and interleaved
stimulation modalities, pulse width and inter-pulse delay were set to w = 200 s and

d =1 s, respectively.

3.5.2 Data Analysis

The main outcome measure was the success rate (SR) in locating the stimulus. This
included the identification of the exact pad at which the stimulation was delivered.
However, our intended application is in prosthetics, where small errors can be often
tolerated. Therefore, the SR was computed also for pointing to the first neighbor
around the correct pad (one-position error) and to the pad within the same column
as the correct pad (correct column). The latter (correct column) is of interest when
mapping prosthesis variables to the electrode pads, since mistaking the column could
represent a much larger error.

The SRs were computed per subject for each specific stimulation modality (me-
chanical, same frequency, and interleaved stimulation). The SRs of all subjects were
then averaged to obtain the overall mean SR and its standard deviation. The results
were reported as mean + standard deviation in the text and figures.

The data were tested for normality using Kolmogorov-Smirnov test. In all cases,
the tests indicated normal distributions, and therefore one-way repeated measure
ANOVA was used to assess statistically significant differences at the level of the group
followed by Tukeys honestly significant difference test for post hoc pairwise comparison.
One-way ANOVA tests were used to compare the success rates in recognizing the
specific pad or column across stimulation modalities. The threshold for the statistical
significance was adopted at p < 0.05, and the statistical analysis was conducted in
Matlab R2015b (MathWorks, US).

3.5.3 Results and Discussion

Figure[3.14]shows the performance for individual subjects across stimulation modalities.
The bars represent the SR in (i) correctly identifying the right pad (light blue), (ii)
wrongly identifying the pad but pointing to the right column (orange), (iii) wrongly
identifying the pad and the column (grey). The variability across subjects is noticeable
for mechanical stimulation.

The summary results, i.e. overall SR, is shown in Figure [3.15 In general, pad
recognition was not an easy task for the subjects (Figure [3.15h). The overall SR for

the mechanical stimulation was 1749%. The electrotactile stimulation using the same
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Figure 3.14: The results for individual subjects (P1-P8). Reported percentages are associated to
identifying the right pad (light blue), missing the pad but addressing the right column (orange),
missing the pad and the column (grey), no answer (yellow).

frequency for all pads (50 Hz) was characterized with the similarly low SR (21+4%).
Therefore, the same-frequency electrotactile stimulation provides comparable quality
of spatial localization to that of the mechanical stimulation. However, with both
modalities the performance was still substantially better than pure chance, where
the subject would simply randomly select one of the pads (1/24~ 4%). Importantly,
the SR for the electrotactile stimulation that used the interleaved frequencies and
intensities was significantly better (38£9%) compared to both mechanical (p < 0.001)
and the same-frequency electrical stimulation (p < 0.001). The performance almost
doubled with the interleaved stimulation scheme. Therefore, the dual-parameter
modulation substantially improved the subjects ability to correctly localize the elicited

tactile sensation.
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The summary performance in localizing the stimulus up to an error margin around
the active pad are reported in Figure [3.15b-d. Figure [3.15p gives percent of trials in
which the subject pointed to a correct pad or its immediate neighbor within the same
column (one-position, within-column error tolerance). Figure [3.15¢ is a percent of
trials in which the subject pointed to a correct pad or any other pad that belonged
to the same column (within-column error tolerance). Again, the SRs in the case of
one-position error (Figure[3.15p) for interleaved stimulation (70411%) was statistically
significantly higher than for the same-frequency electrical (42+6%, p < 0.01) and
mechanical stimulation (45+20%, p< 0.01). If a small localization error can be
tolerated, the interleaved stimulation can therefore lead to a very good performance
(e.g. SR up to 96% for subject P6). More generally, with the interleaved stimulation,
the subjects could reliably detect the right column (Figure m:) The success rate for
this modality was significantly better (80+£7%) than for the same-frequency (60+£5%,
p < 0.01) and the mechanical stimulation (59+21%, p < 0.01). Finally, Figure
reports for all modalities the percent of trials in which the subjects pointed to a
correct pad or its immediate neighbor, regardless of the column. This figure further
emphasizes the equivalence of mechanical stimulation (SRs: 63+£21%) and same-
frequency electrostimulation (SRs: 644+9%). The interleaved coding leads again to a
higher average SR (~79+8%), though this time there was no statistically significant
difference with the other two modalities.

The overall success rates for the recognition of individual pads of the matrix
electrode in each of the stimulation modalities are show in Figure (mechanical), ¢
(same-frequency), and d (interleaved stimulation). The figure once again demonstrates
that the interleaved modality is the technique which allows for the best recognition
of single pads. With mechanical and same-frequency stimulation, there is a trend
that the pads on the borders of the electrode area are more successfully recognized
compared to the inner pads. In the case of interleaved stimulation, the SR increases
for most of the pads and some inner pads reach comparably high SRs.

It has been investigated if the modulation of additional parameters (frequency
and intensity) can improve the spatial localization of the electrotactile stimuli. The
(natural) mechanical stimulation of the skin was adopted as the benchmark.

The first important conclusion of the study is that the electrotactile stimulation
delivered conventionally, using the same frequency for all the pads, resulted in a
similar performance as the mechanical stimulation. The electrotactile stimulation is
non-specific and activates a combination of mechanotactile receptors. In addition,

the electrical current spreads in the tissue, especially in this configuration where the
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Figure 3.15: The summary results for all subjects. The bars show the success rates (mean standard
deviation) in identifying the right pad (a), pointing to the right pad or first neighbors (F.N.) within
the same column (b), pointing to the right pad or any pad belonging to the same column (c) and
pointing to the right pad or any of its first neighbors, regardless of the column (d).

common electrode is positioned outside of the integrated matrix. The fact that the
electrical and mechanical stimulation performed similarly is an encouraging outcome
for the application of multichannel interfaces with significant number of pads to the
feedback restoration in prosthetics.

The second important conclusion is that the electrical stimulation has an intrin-
sic potential, namely, the flexibility in parameter modulation, which can be used
to increase the reliability of information transmission to the subject. The present
experiment has demonstrated how dual-parameter modulation can be used to substan-
tially improve the performance in spatial localization of the elicited tactile sensation.
The subjects were far more successful in identifying the stimulation location using
the interleaved stimulation modality compared to other modalities in those analyses
related to addressing the correct pad (Figure ), or when accepting (small or
large) errors within the right column (Figure and Figure mc) The interleaved
stimulation is therefore advantageous for spatial localization, and in addition, the
performance increased substantially above the inherent potential of the human skin,
as tested by stimulating the skin mechanically.

This leads to an interesting possibility in prosthetics, where an electrotactile

interface can be used to equip a prosthesis user with an artificial tactile sense that
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Figure 3.16: Success rates for the identification of each pad. The scheme reported in (a) illustrates
the orientation of the matrix electrode with respect to the forearm.

can overcome some limitations of the real skin (e.g., low-density of receptors and
thereby poor spatial localization over the forearm). Furthermore, this is a unique
advantage of electrical stimulation, as this is the modality where the parameters
are truly independent. In vibration motors, for example, the parameters are often
mechanically coupled [127], and in modality matched stimulation there is often
only one parameter to modulate (e.g., the pushing force [106]).

The matrix electrodes as well as simultaneous modulation of stimulation parame-
ters have been used previously but not in the same context. demonstrated that
the subjects were able to recognize the dynamic stimulus moving along the matrix elec-
trode, i.e., different shapes (geometries and letters) were presented using conventional
stimulation with a fixed frequency (corresponding to same-frequency condition of the
present study). used simultaneous modulation of location and frequency (mixed
coding) to communicate clearly a number of levels of prosthesis grasping force using
an array electrode (effectively only 5 pads). In the present study, however, it is showed

how simultaneous modulation of frequency and intensity (dual-parameter modulation
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in interleaved frequency condition) can be used to improve the spatial localization of a
large number of closely spaced stimulation points (24 pads). The spatial localization
has been investigated in [121], however, the stimulation was delivered using fixed
frequency and large, conventional electrodes arranged in 2x4 matrix.

Since the aim of the present study was to improve stimuli localization, exploiting
both frequency and intensity (dual-parameter modulation) to make the distinction be-
tween the columns as clear as possible has been decided. However, due to simultaneous
modulation, it cannot be determined how much each of the parameters individually
(frequency versus intensity) affected the localization. This question can be addressed
by changing one parameter only, while controlling the other, which is relevant but
outside the scope of the present study. Therefore, this will be the goal of future
experiments. The difference in tactile sensation produced by 10 Hz-low intensity and
400 Hz-high intensity stimulation was clearly perceivable and thereby successfully
assisting the participants in identifying the correct column and, in turn, the stimulated
spot within the column. However, it was not easy to determine an effective modulation
scheme and to this aim, extensive pilot tests have been performed . For example,
one approach that has been tested in the pilot experiments was to associate different
stimulation frequency to each column, e.g., 5, 10, 20, 50 Hz for columns 1, 2, 3,
4. Tt turned out that using increasing frequencies (including different ranges and
different steps between them) was not effective for better pad recognition and this
type of modulation has been abandoned. Therefore, the interleaved frequencies with
substantial gap were selected (10 vs 400 Hz), but even in this case, the modulation of
frequency had to be complemented with the interleaved intensity, in order to further
increase the contrast between the columns. The frequency of 400 Hz was chosen as
this was the maximum of the stimulator, but it is likely that the results would be
similar with other high frequencies as well (e.g., 10 vs 100 Hz), as the sensations are
similar.

In principle, the order of the trials might have an important influence over the
success rate in recognizing the pad and optimally it should have been randomized.
However, the order that was adopted in the present experiment due to technical con-
straints was in fact less favorable for the novel modality (dual-parameter modulation).
The interleaved stimulation was tested in the first session and same frequency and
mechanical stimulation were assessed in the second session, and yet the best results
were obtained with the interleaved stimulation. This is further demonstration of the
effectiveness of the dual-parameter modulation which resulted in the best performance

although the participants were not yet acquainted with electrotactile stimulation.
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The dual-parameter modulation has indeed shown to be an effective method for
improving spatial localization of the active pad, allowing the electrotactile interface
to even surpass the sensitivity of the skin to the natural mechanotactile stimulation
on the forearm. The enhanced capability of distinguishing the single pad inside the
column might therefore enable high-resolution contact localization inside a specific
finger and the proposed high- resolution interface can be used as a research platform
to explore different possible scenarios for high-bandwidth sensory transmission to the
prosthesis user. An interesting example is transmitting high-resolution information on
contact mechanics (e.g. force distribution) which might be required for advanced tasks
as dexterous manipulation. For that, this multichannel interface is to be combined
with the multichannel sensing systems such as electronic skins developed in robotics
but now increasingly considered for prosthetic applications [126].

With the same high-resolution interface, other mappings could be of direct interest
to communicate prosthesis variables using high resolution. The columns could represent
different prosthesis dofs (hand open/close vs. wrist pro/supination) and the rows
could be the levels of the feedback variable (e.g., the aperture or rotation angle). Such
an interface would reliably communicate both the current dof (active column) and the
variable value (active pad) to the prosthesis user.

However, a drawback of this method is that the spatial localization is improved
at the expense of utilizing the two additional stimulation parameters (intensity and
frequency). Therefore, they cannot be used anymore to convey feedback information
through parameter modulation, as proposed in other approaches (e.g. increasing fre-
quency/intensity to indicate higher grasping force and/or aperture [104}/116,/119]).In-
stead, the relevant prosthesis variables would need to be communicated spatially
through an active pad, as explained before.

More than single information could also be transmitted at the same time. The
next step in this research will be to investigate how well the subjects could perceive
several electrotactile stimuli that are delivered simultaneously or sequentially along
the columns (two or more active pads). In this context, each column/row of the matrix
could represent a dedicated prosthesis variable (e.g., hand aperture and grasping
force). If the subject could identify the active pads in each column, even when they
are activated at the same time, this would allow transmitting several levels of different
prosthesis variables concurrently. Such feedback would complement the capabilities of
the state of the art regression methods for prosthesis control which allow operating

several prosthesis degrees of freedom simultaneously.
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3.6 Open issues

Sensory feedback information (such as a touch) should be reliable during prolonged
periods of use, naturally interpretable and transferred without inducing pain. One
of the research goal on sensory feedback is to explore methods for a successfully
transmission of the stimulation to a prosthesis user.

Traditionally, researchers have implemented systems that presented the sensory
feedback in a continuous fashion. However, continuous feedback yields to adaptation:
after a certain period the stimulation is no longer or just barely perceived by the
individual.

The adaptation time can be vary depending on the stimulus frequency and intensity
over a certain location in electrocutaneous stimulation. In [130], Szeto and Lyman
studied the adaptation time as a function of the stimulus frequency (i.d. using
fixed stimulation intensity), and as a function of the stimulus intensity (e.d. using
fixed stimulation frequency, and different waveform types). In [131], Szeto et al.
demonstrated that adaptation do not occur by changing the waveform type. In
[102], they also showed that pulse frequency has a large effect on adaptation. Little
adaptation occurred when applying 10 pulses per second, while strong adaptation
occurred within seconds when using 1000 pulses per second. Adaptation time was also
evaluated comparing continuous and intermittent stimuli and focusing on the influence
of the stimulation intensity. In [127], they found that higher adapatation (meaning
less time for adaptating yourself to the stimulation feeling) occurs for a sensitivity
(low) sensations than for a discomfort (high) one. In addition, they demonstrated
intermittent stimuli show smaller adaptation.

The fact that higher frequencies cause shorter adaptation [102] can be managed
by applying a specific novel stimulation protocol, in which the pulses are distributed
sequentially over several closely positioned electrodes. The sequential stimulation of
different electrodes over a reduced area gives the subject the impression of a localized
stimulation at higher frequency than each electrode frequency.

Several experiments have been conducted in different sessions and days. Figure
3.17 schematically reported some of the tests. Experiments consisted of 8-12 sensation
decay measurements. Each measurement lasted maximally 15 min and was followed
by a pause of 5 min. The duration of the stimulation and the pause was selected based
on the literature, as enough time to lead to adaptation and recovery, respectively.
One, two or four pads out of the 16 pads were selected depending on the performed

experiment at the right time. Then, the stimulation ran at fixed frequency (e.g. 10 Hz
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Figure 3.17: Study of the adapation phenomenon testing electrocutaneous stimulation (synchronously
or sequentially) over one single pads or more.

or 100 Hz) and the intensity of stimulation was increased by one-step (1 mA) at a time
starting from zero. The participant was asked to identify the sensitivity (low) and
discomfort (high) thresholds respectively. The threshold determination was necessary
to compute the used stimulation level (corresponding to 50% of the whole available
range between discom fort — sensitivity thresholds) during the experiment.

The subject was instructed to judge the sensation level after an auditory cue,
every 30 s. This judgment was recorded using a commonly accepted Visual Analog
Scale (VAS). VAS is a line of 10 cm with two boundaries, the left corresponding to no
sensation, and right to discomfort. The subject was required to quantify the sensation
level by inserting a cross on the line of the VAS scale. Afterwards, the subject was
instructed to identify new sensitivity and discomfort thresholds after an auditory cue,
every 60 s. To measure the adaptation phenomenon the same method employed in
[127] have been exploited here for a fair comparison.

The main outcome of these tests were that the concept of higher adaptation for
higher frequencies cannot be generalized. Many participants were experimentally
tested, but a clear statement was not achieved by observing the obtained results.
Besides, using the VAS scale was too difficult and subjective. The VAS scale seemed

neither reliable measure of an absolute intensity (a reference seems to be needed to
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give a number with a certain confidence) nor of a relative one (it seems that the
needed reference value is something in between the last stimulation (stronger) and
the memory of the initial one (more uncertain and vague). Personal perception also
is highly variable and depend on many variables: electrode positions on the skin,
muscle movements / activation during the test, attention (also affected by motivation),
fatigue, expectations, physiological variables (e.g. hormones and autonomic nervous
system), and emotions (e.g. anxiety and fear).

In order to increase the prosthesis utility, another aspect to consider is the prosthesis
embodiment. A way to measure the embodiment effect is to conduct a test similar
to the Rubber Hand Illusion test [132]: Artificial Rubber Hand Illusion (ARHI) test.
Figure [3.18 shows the comparison of the setup between RHI and ARHI tests.

The experimenter will use a small paintbrush to stroke the artificial rubber hand,
while the subjects hidden hand will be solicited by the corresponding electrostimula-
tions. Each stroke will be about 2-3 ¢cm long. During this phase, the subjects will be
instructed to relax and observe the artificial rubber hand on the table. The ARHI
test will consist of five trials. Each will last for 2/3 minutes using an irregular rhythm
and between every trial will be 40 seconds. When the ARHI test is finished, subjects
will complete a questionnaire. The questionnaire will indicate if subjects experienced
an illusion in which they would feel the touch they were looking at, as if they owned
the artificial rubber hand. To obtain behavioural evidence that the illusion happened,
a pointing task would be required (adopted in [132]). Immediately before starting the
experiment and after each trial, the participants will be required to close their eyes
and point to where they feel their arm. A ruler mounted on the table will be used to
measure the distance between the point indicated by subjects index finger and his
real arm. The larger the distance is, the higher the number of subjects who feel the
artificial rubber hand as their real hand. Obviously, the pointing drift should be from
the real hand towards the artificial rubber one.

A first pilot study was evaluated, but further investigation are needed.

3.7 Conclusion

Human reaching and grasping is a complex motor task for which the biological
controller needs to coordinate the kinematics and dynamics of many degrees of
freedom (DOFs) concurrently. Yet, they are performed routinely, with a remarkable
ease, effortlessly, numerous times during the activities of daily living (ADL). This

remarkable performance requires a combination of feed-forward and feedback control,
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CLASSIC RUBBER HAND ILLUSION VS ARTIFICIAL RUBBER HAND ILLUSION

Real hand with
Rubber hand with
Real hand i i
Rubber hand electrocutaneous stimulation artificial skin
Experimenter stimuates both real and rubber Experimenter stimulates the rubber hand with a
hand with a paintbrush: at the same time paintbrush, and the artificial skin generates signals
and in the same point. transmitted to the real hand via electrostimulation.

Figure 3.18: Rubber Hand Illusion versus Artificial Rubber Hand Illusion setup.

integrating sensory information from multiple sources and motor commands based
on internal models of the environment and the body acquired through learning and
development , .

Apart from a single recent example , none of todays prostheses have purposely
designed sensory feedback. Body-powered prostheses provide awareness of the terminal
device through the control cable. Battery-powered prostheses provide only incidental
clues. Therefore prosthesis users largely rely on vision or audio feedback when it is
possible. However as anticipated, it is known from the human motor control that
bilateral communication through the provision of sensory feedback is also instrumental
for learning and execution of the movements [75]. Therefore, to foster the prosthesis
embodiment and utility, it is necessary to have a prosthetic system that not only
responds to the control signals provided by the user, but also transmits back to the
user the information about the current state of the prosthesis. For a user friendly
control of these complex devices this new approach proposes a radically different
control framework, mimicking characteristics of the biological control, such as the
comprehensive perception of the environment, multimodal sensor fusion and cognitive-
like processing.

Nowadays, many studies are focused on evaluating different methods for provide
prosthesis with sensory feedback. Sensory feedback can be elicited invasively, by
interfacing directly the nerves or non invasively, by providing feedback on the skin.
Direct nerve stimulation is a viable means for eliciting proprioceptive and touch sensa-
tions, but the quality of the sensation is usually a foreign feeling, due to technological

limitations of todays neural interfaces.
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Sensory substitution has also been investigated in prosthetic research. Prevalent
techniques have been vibrotactile and electrotactile. Although the sensation is substi-
tuted, these devices are low-cost and a low-power and can be actually be integrated
in the prosthetic socket.

Moreover, modality-matched feedback is achievable with non-invasive mechanotac-
tile devices; even though these are bulky, power-consuming and expensive.

In moving toward the new concept for prosthesis capable of being implemented
for long-term use, the concept of providing natural, physiological feedback must be
considered. The participants concentration cannot entirely be dedicated to interpreting
the feedback signals provided as day-to-day activities incorporate varying levels of
complexity with corresponding concentration required of the user. Besides, as many
systems proposed in literature require training and sensory adaptation to interpret
signals [101], an additional processing of information could increase the cognitive
load and could have the potential to negate one of the largest benefits of sensory
feedback reducing conscious attention. It is important for researchers to develop better
measures for evaluating the usability of sensory feedback systems in day-to-day life,
such as reporting on the naturalness of measured sensations as well as the amount of
cognitive burden required.

Another consideration is regarding the timing of the sensory feedback. Delay from
the sensory input should be in the order of milliseconds. A too prolonged stimulus

could be made the feedback less effective and cause adaptation.
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Chapter 4

Applications

Figure 4.1: Ottobock Hand

4.1 Introduction

The results presented in this chapter were published in [120]. The candidate particularly
contributed to the published work by:

e Developing of algorithms to process tactile data using Matlab.
e Developing of the experimental setup.

e Designing of the experimental protocol and pilot tests. on healthy subjects to
evaluate the capabilities of the human brain to successfully interpret the elicited

artificial tactile information.

e Designing a program in Matlab to automatize the experimental protocol, store

the data and generate preliminary results.

e A comprehensive statistical analysis of the collected data using STATISTICA

tool.
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A myoelectric prosthesis can be used to compensate for the loss of motor function
after a hand amputation. In this system, the electrical activity of the users muscles
is recorded, processed and then decoded to estimate the user intention. Decoding is
performed using simple heuristics, as in the classic two-channel control, or machine
learning (pattern classification and regression) in multichannel systems [1], [135].
Typically, the same muscles that were used to accomplish a motor task before the
amputation control analogous functions in the prosthesis, e.g., hand and wrist flexors
and extensors control prosthesis closing and opening, respectively. This association
provides an intuitive connection between the brain and the prosthesis, but this
connection is unidirectional. However, a bilateral communication between the brain
and the periphery, including both efferent and afferent information flow, is necessary
for the human movement learning and execution [75]. Closing the prosthesis control
loop by providing sensory feedback to the user is a key point in research on active
prosthetics [136], [4] as well as an often cited requirement of the prosthesis users
[137]. Nevertheless, apart from one recent example [3], there are still no commercially-
available prostheses transmitting somatosensory information back to the user.

Artificial tactile feedback can be provided using a method known as sensory
substitution [138] (see Chapter [3). The prosthesis is equipped with sensors measuring
the system state (e.g., joint angles) as well as interaction with the environment (e.g.,
grasping force). To restore the feedback, the sensor data are read online, translated
into stimulation profiles according to the selected coding method and the stimulation
is delivered to the user invasively (e.g., neural [59] and brain stimulation [61]) or
non-invasively (e.g., electro [102] and vibrotactile interfaces [101]). The information is
transmitted by modulating the stimulation parameters.

The fidelity of the feedback that can be provided to the user depends on the available
sensors and stimulation interfaces. Typically, current prostheses are equipped with only
basic position and force sensors |[139]. Importantly, some more sophisticated sensing
elements are becoming available. BioTac [140] is a sensorized finger equipped with a
matrix of pressure sensors across the fingertip, as well as a vibration and temperature
sensor. Electronic skins integrating matrices of tactile (and other) sensing elements
embedded into flexible structures have been fabricated (eg [141-{145], references in
[146]).

An electronic skin (e-skin) can be therefore integrated into a prosthetic device to
endow the prosthesis with artificial cutaneous sensing by electromechanically converting
touches into electrical signals to be delivered to the human subject. The information

from multiple contact points can be used by the embedded prosthesis controller to
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automatically evaluate the grasp stability, control grip formation and/or prevent
slipping [147]. In the context of feedback to the user, such sensors are comprehensive
sources of tactile signals, which can be utilized to provide an unprecedented level
of afferent inflow, facilitating thereby the integration of the prosthetic device and
the user body and mind, as proposed conceptually in |[148-150], and stimulating the
cognitive and psychological mechanisms related to body ownership [151]. Some recent
sensors also implement biologically-inspired coding of the tactile information. For
example, [152] describes a flexible electronic skin capable of quantifying the applied
pressure and generate electrical signals to directly deliver such a sensory input in the
form of electrical pulse trains mimicking nerve action potentials to a living nerve cell
of the mouse brain.

Regarding the stimulation interfaces, non-invasive methods are still most common
[4]. Many studies provided important insights regarding the role and advantages of
feedback in prosthetics, but they utilized simple force and position sensors embedded
into the prosthesis. These conventional stimulation configurations are not suitable for
interfacing with the aforementioned advanced sensing systems. In order to transmit
the information from a large number of sensing elements, available in the e-skin
systems, the electrotactile interface needs to implement many stimulation channels
integrated into a compact device.

The first prototype of such a distributed sensing and stimulation interface has
been presented and the feasibility of communicating the tactile information to a
human subject has been evaluated [120]. The system comprises an e-skin including an
array of sensing elements (taxels), acquisition electronics and multichannel stimulator
connected to flexible matrix electrodes placed on the forearm.

Although the concept of applying e-skin technology for somatosensory feedback in
prosthetics has been proposed earlier [4], the present study is the first evaluation of an
online system implementing the prospective communication link, i.e., the information

transmission from e-skin to the human subject.

4.2 System to Close the Loop in Prosthetic

4.2.1 System Architecture

The tactile feedback system comprises the following components (Figure : 1)
e-skin with 64 sensing elements (taxels), 2) custom-made electronics for the signal
conditioning, 3) data acquisition card (NI ¢cDAQ 9174, National Instruments, USA),

4) fully programmable multichannel electrotactile stimulator (MaxSens, Tecnalia,
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Figure 4.2: (a) System Architecture. The system comprises e-skin with 64 sensing points, charge
amplifier assessing the response of each taxel to mechanical stimulus, data acquisition card to sample
the signals, and multichannel stimulator with flexible matrix electrodes integrating 32 electrode
pads to deliver the electrotactile stimulation to the subject. (b), (¢) E-skin and Electrode Array:
Sensor Fusion. The taxel signals are processed using integrative method and the signals from the

neighboring taxels (2 x 2) are fused in order to map more taxels to less electrode pads (red and black
dashed lines).

Spain) connected to two flexible matrix electrodes, and 5) a host laptop PC. The
host PC runs the online control loop which was implemented in Matlab 2013b and
operated as follows. The e-skin converted mechanical information (i.e. a specific way
of touching) into a set of electrical signals (one signal per sensor). The taxel signals
were sampled at the frequency of 1 kHz and the data were segmented into intervals
of 50 ms for processing (as described below). The stimulation parameters were sent
to the stimulator, which delivered the stimulation. The stimulation parameters were
therefore refreshed at 20 Hz (1/data window length).

The e-skin (Figure[1.2b) was a rectangular patch (12.8 x 4.8 cm) made of Polyvinyli-
dene Fluoride (PVDF), which is a piezoelectric polymer directly converting mechanical
stress into charge [153]. The intrinsic flexibility of this polymer in the form of a
film together with its wide frequency bandwidth (1 Hz-1 kHz) and large measurable
pressure range (50 Pa-1 MPa) make it a good candidate as functional constituent
of a flexible e-skin measuring dynamic contacts. Sixty-four different sensors (taxels)
were obtained by screen printing patterned electrodes on a single commercial
100-m thick PVDF sheet [155]. Taxels were circular (radius 1.5 mm) and arranged
in a rectangular array (9.6 x 3.5), with the sensor pitch (centre-to-centre distance)
of approximately 8 mm. In the present application, the PVDF sheet was placed on

a rigid substrate and an elastic layer (Polydimethylsiloxane) was added on top for
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stress transmission and sensor protection [156]. The charge is read from each taxel
by a custom-made multi-channel charge amplifier (CA), converted into voltage and
conditioned by a band-pass filter (details are reported in [157]). The analog outputs
from the amplifier were connected to the analog inputs of the data acquisition card,
which sampled the signals at 1 kHz and communicated the data to the host PC via a
USB port.

The MaxSens stimulator whose details are explained in Chapter [3] (Section
was also employed for this study.

The stimulator was connected to two flexible matrix electrodes (Figure[4.2k). These
electrodes were custom designed, each array consisting of 16 round electrodes with
the radius of 0.5 cm, arranged in a 4x4 geometry, with the total size of 10.4x9.1 cm.
The distance between two adjacent electrodes was approximately 1.5 cm, which is
well above the two-point discrimination threshold for electrotactile stimulation (~
9 mm on the forearm [126]). The round electrodes were the cathodes whereas the
long bars in-between the cathodes served as the common anodes. It should be noted
that the stimulation pulses were biphasic with symmetrical compensation, so that the
current changed direction between the stimulus and the compensation pulse of the
same width and amplitude. In this context, the terms anode and cathode refer to the
physical design of the electrode and the consequent role of the pad (i.e., depolarizing
vs. neutral) rather than polarity (i.e., electrical current direction). Namely, the surface
of the anode pads was more than 10 times larger than the surface of the cathodes.
The anodal current densities were therefore significantly lower and below the threshold
required to excite the cutaneous afferents. Consequently, the tactile sensations were
produced only below the cathodes, as confirmed by the psychometric assessment [158].
This configuration was selected in order to localize the current flow, from a cathode
to its closest anode segment, eliciting focused tactile sensation.

The electrodes used in the present study were fairly large, as they were based on a
design that was developed and tested previously [158]. Importantly, the technology for
electrode production is flexible and allows custom solutions, as explained in previous
paragraph. Therefore, an important future goal will be to optimize the design of the
electrode (e.g., decrease the pad size, increase pad number and density etc.).

The intensity and quality of the electrostimulation (isolated touch, vibration,
tingling) [159], [160] can be adjusted by modulating the pulse amplitude, width, and
rate of delivery (parameter coding) as well as the location of stimulation by changing
the active electrode (spatial coding) [102], [101].
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4.2.2 Tactile data processing

Before starting the online loop, the baseline levels of the taxel signals were determined.
Signals were recorded from the skin for at least 5 s with no mechanical interaction
and the mean value of the collected samples was computed for each taxel. During the
online operation of the system, the baseline was subtracted from each taxel output,
centering the signals at zero level. The zero-mean taxel data were then multiplied by a
calibration matrix that represented the scaling factors compensating for the variation
of sensitivity across individual taxels.

The data were acquired from the skin in blocks of 50 samples corresponding to
the data segments of 50 ms. After applying the calibration steps, as described above,
the integrative processing was implemented. The taxels are piezoelectric sensors,
capturing the dynamic aspects of the mechanical input to the skin. Figure [4.3h.c
depicts the taxel signals responding to a step input in pressure, i.e., a finger pressing
and then releasing the skin. As a response, the taxels generated two phasic burst
outputs (Figure 4.3, d), indicating the pressure and release events, while in-between
there was almost no response apart from some wiggling due to small movements
of the pressing finger. The contact event was indicated with a positive deviation
whereas release generated a negative deflection of the taxel signal. Also, the figure
demonstrates that the mechanical stimulus propagates across the skin (Figure ),
activating neighboring taxels and even taxels distant with respect to the point of
contact, with the response intensity decreasing with the distance.

Raw taxel data were processed in order to capture the static features of the
mechanical input and also to suppress the aforementioned spurious activations. For
the latter, a threshold was defined and the taxel signals below the threshold were set
to zero. Considering that contact and release events elicited transient responses of
opposite polarity (Figure [£.2k), an integrative method was implemented to estimate
the static response: a mean value within the 50-ms data segment was computed for
each taxel and the taxel means were added cumulatively across the time intervals.

More formally, lets define (i) S;(k) as a sequence of vectors of N = 64 elements (one
element per taxel), representing taxel outputs at the time instant of k milliseconds,
where k = 1,2,...50, within the ith data segment (50 ms duration), and (ii) S; as a

vector (Nx1) containing taxel data averaged across the ith data segment:

Si=5 Silk) (4.1)
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The mean tactile data from the present data segment S; were added to the
cumulative mean S;_;

of all the previous data segments yielding:
gi — EZ + gi—l A §0 =0 (42)

The final output of this processing was a single value per taxel per data segment.
The processed taxel signals are depicted in Figure (b—d). The raw signals are
sampled at 1 kHz while the processed data are outputted at the sampling rate of 20
Hz (new value each 50 ms). During this time interval (Figure vs Figure [1.2d), the
signals rise as the pressure is applied, remain at the non-zero level while the pressure is
maintained, and decrease back to zero as the pressure is released. The initial positive
deflection (contact) increased the cumulative mean, which then remained constant
during contact since the taxel signal was below the threshold. Finally, a negative
deflection due to release decreased the cumulative mean. To counteract the fact that

positive and negative deflections were not completely symmetric, the cumulative mean
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Figure 4.3: Electrical response (taxel signals) due to a pressure applied to the e-skin using a finger.
The mechanical stimulus comprised a step input (pressure-hold-release) delivered to a single taxel.
TOP: color map representing a snapshot of all the taxel signals while pressure is applied for (a)
raw and (b) processed data. BOTTOM: signal traces for the stimulated taxel (inset, yellow arrow)
and its neighbors for (¢) raw and (d) processed data. The signal plots have the line color of the
corresponding taxels (see inset). The signals are zero-mean but where shifted using offsets for the
sake of plot readability. The contact and release events elicit positive and negative deflections in the
raw signals, respectively. Processed signals are clean from spurious activations and capture also the
static properties of the mechanical stimulus.
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was further processed. The cumulative mean was forced to zero when below a fixed
threshold until it exceeded the threshold due to a new contact event (negative values
for the cumulative mean were not allowed). The response signal amplitude scaled

with the applied pressure input.

4.2.3 Electrotactile spatial coding

To map 64 tactile sensor outputs to 32 stimulation electrodes, tactile data from
neighboring taxels were averaged in groups of 2x 2. This resulted in 32 mean values
that exactly corresponded to the number of stimulation channels. The mapping
between taxel groups and stimulation electrodes is shown in Figure [4.2Lower panel).
The electrotactile channels were activated only if the corresponding mean value was
above a predefined threshold, which has been previously chosen for each participant
in pilot tests to guarantee a clear perception of the electrostimulation (details are
reported in Sect. 3.2). Since the focus in the present study was on the recognition of
spatially moving stimuli (see Experimental Protocol), the stimulation location was
modulated while the intensity and frequency were kept constant. The stimulation
frequency was set to 100 Hz based on our previous experience [161]. A single electrical
pulse elicits a brief tactile sensation (transient touch). However, at the high rates, such
us 100 Hz, the discrete sensations fuse into a continuous feeling of tingling or tickling,
which can be easily and clearly perceived by the subjects. The intensity was set for
each electrode and subject individually to just above the sensation threshold (see the

Experimental Procedures), resulting in comfortable and localized tactile sensations.

4.3 Experimental Results

4.3.1 Experimental Evaluation

The experiments were conducted in eight healthy volunteers (three females, five males,
2845 years). The study has been approved by the local Ethical committee of the
Specialized Hospital for Rehabilitation and Orthopedic Prosthetics (approval number
1172). Before starting, the subjects signed an informed consent form.

The subjects were seated comfortably on a chair in front of a table. The forearm of
the dominant arm was placed on the table surface, with the volar side oriented upwards.
The electrode arrays were positioned on the volar aspect of the subject forearm. The
first electrode was placed 1 cm below the elbow and the second right after it. The

electrodes were then secured with medical tape to prevent movement and improve
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contact. The electrostimulation was adjusted to be strong enough so that it is clearly
perceivable, but without being uncomfortable or causing pain. First, electrotactile
sensation thresholds were determined for each of the 32 channels individually using the
method of limits [162]. The current pulse amplitude, starting at zero, was increased in
steps of 0.1 mA until the subjects reported that they felt the electrostimulation. After
determining the subjective stimulation threshold, the perception was additionally
checked by repeatedly activating/deactivating the pad, and asking the subject to
report when he/she felt the stimulation. If the subject was able to detect the change
in state (on/off), the stimulation amplitude was accepted as appropriate, and the
procedure was repeated for the next pad. Otherwise, the amplitude was increased until
the subject could detect the transition. Furthermore, small adjustments in the current
amplitudes were made to roughly equalize the tactile sensations across the electrode
pads. The experimenter activated the pads in sequence from the first to the last and
the subject reported if the sensation corresponding to a certain pad was too different
from the others. In this case, the current amplitude would be increased/decreased, as
needed. This was repeated several times until the subject reported that the elicited
sensations across pads were indeed similar. This procedure lasted between 15 and 30
min. The experiment comprised blocks of different trials in which the experimenter
applied a mechanical stimulus to the e-skin, while the system online translated this
stimulus into stimulation profiles delivered to the subject (as described before).

The task for the subject was to perceive the stimulation and report to the experi-
menter the properties of the mechanical stimulus.

The mechanical stimulus was applied to the skin using a small roller to ensure
contact reproducibility between different trials. To produce a natural and realistic
motion, the experimenter moved the roller along the skin at a self-selected speed and
pressure, aiming to be consistent across the trials.

Three categories of mechanical patterns have been tested (see Figure and Figure
4.5)): single lines (10 patterns), geometrical shapes (7 patterns) and letters (8 patterns).
The lines and geometrical shapes were additionally organized in subcategories (see
Figure .

The subject could not see the experimenter, nor the skin. A sheet of paper was
placed in front of the subject with a schematic drawing of the electrode array. After
receiving the electrical stimulation, the subjects were first asked to verbally estimate
the perceived shape of the movement: longitudinal, transversal, diagonal line; square,
rectangle or triangle; an exact letter (Figure . If the shape estimate was correct,

the subjects were asked to retrace the perceived stimulus by moving their index finger
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Figure 4.4: Touch Modalities. Movement test patterns applied to the e-skin. Each line in this table
corresponds to a single touch modality (pattern). S (Shape), T (Trajectory) and D (Direction): touch
modality features.

across the schematic drawing. If this corresponded to the pathway of rolling when
delivering the stimulus (and thereby applied electrical stimulation), it was deemed
that the subjects correctly recognized the movement trajectory. Finally, if the subjects
retraced the trajectory segments (lines) in the proper direction, as indicated by arrows
in Figure the movement direction was also correctly perceived.

During the first three blocks, after the subject reported the recognized movement
features, the experimenter provided feedback about the correct features of the applied
movement, in terms of shape, trajectory, and direction. The experimenter verbally
described and also demonstrated the specific movement using a roller (reinforced
learning phase). In the last two blocks, such information was not provided to the

subject (test phase).
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Figure 4.5: Example of movement test patterns applied to the e-skin by an experimenter using a
roller. TOP: longitudinal (left), transversal (center), diagonal (right) single lines. MIDDLE: square
(left), rectangular (center), triangle (right). BOTTOM: letters: T and L (left), N and mirrored V
(center), X and mirrored T (right).

4.3.2 Data analysis

The main outcome measure was the success rate (SR) in recognizing a feature of
the movement, i.e., movement shape, trajectory and direction. The SRs for the
trajectory and direction were conditioned on the correct recognition of the shape, as
described above. The SRs were computed per subject for the specific categories (lines,
geometries, letters) and sub-categories, i.e., shapes (lines: longitudinal, transversal
and diagonal; geometries: rectangle, square and triangle) of the tested mechanical
stimuli. The letters were treated differently, with no subcategories, as each letter was
peculiar and different from others. The SRs of all subjects were then averaged to
obtain the overall mean SR and its standard deviation. The results were reported as
mean + standard deviation in the text and the figures.

The data were tested for normality using Kolmogorov-Smirnov test. In case the
test indicated normal distribution, one- and two-way repeated measure ANOVA was
applied to assess statistically significant differences at the level of the group followed
by Tukeys honest significant difference test for post hoc pairwise comparison.

If the distribution was not normal, the Friedman test was used instead of ANOVA,
while the post hoc analysis remained the same. Following this scheme, one-way
ANOVA or Friedman test (as appropriate) were used to compare the success rates in
recognizing movement features across movement categories and sub-categories (see
Figure . Finally, two-way ANOVA could be applied only in the case of geometries
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(category), where the factors were subcategory (triangle, rectangle, and square) and
movement feature (trajectory, direction). To evaluate the effect of training, the success
rates in recognizing all the movement features simultaneously during training (blocks
1 to 3, pooled) and testing (blocks 4 and 5, pooled) were compared using two-way
ANOVA with category (lines, letters, geometries) and phase (training, testing) as the
factors. The threshold for the statistical significance was adopted at p < 0.05, and
the statistical analysis was conducted in Matlab R2014a (MathWorks, US).

4.3.3 Results

There was no significant difference in performance between the reinforced learning
and testing phase. There was no significant interaction nor main effect in the two-way
ANOVA for the factors category and phase. Therefore, the data from both phases
were pooled together and used for the subsequent analyses.

Figure shows the overall mean SR across all subjects, movement features and
categories. In general, the recognition of the dynamic stimuli was not an easy task
for the subjects. The SRs for the correct identification of all the movement features
simultaneously Figure [1.6h) were poor (66+15%). The SRs were similar for simple
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Figure 4.6: Overall success rate of recognizing either (a) all three movement features (shape, trajectory,
direction) together, or (b) shape, (c) trajectory and (d) direction provided that the shape has been
correctly predicted. This analysis is performed for single lines (RED bars), geometric shapes (BLUE
bars) and letters (BLACK bars). Bars and stars indicated statistical significance (*, p<0.05; **,
p<0.01; *** p<0.001)
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movements (single lines) and more complex dynamic patterns comprising several
segments (geometries and letters), with no statistically significant differences between.
Importantly, the subjects were more successful when identifying the movement shape
(77£13%), which means that they could interpret the semantic aspect of the movement
(e.g., recognlze a specific latter or shape). For the movement shape, the performance
(Figure 1.6b) was better (p < 0.05) for the lines (86+8) than for the geometries
(73+£13) and the letters (72+12).

When the shape had been properly recognized, the subjects could retrace the full
trajectory in 87£10% of cases (Figure ), and they could guess the movement
direction almost perfectly (97+£5%, p < 0.05) (Fig. 4d). Interestingly, the movement
trajectory was traced significantly better for the letters (98+2%) compared to the
lines (81£9%, p < 0.001) and the geometries (82£8%, p < 0.001), while there were no
significant differences between the latter two. Regarding the movement direction, the
SR was lower for the geometries (93+7) than for the lines (100£1%, p < 0.05) and
the letters (98+3%, p < 0.05). The SR for the direction of the lines and the letters
was similarly high (no statistical difference).

For the subcategories (transversal, longitudinal, and diagonal) of the line patterns
(Figure - red bars), there was no difference in performance when recognizing the
shape (Figure [4.7h) and direction (Figure [4.7¢). In particular, the subjects could
identify the direction almost perfectly (SR ~ 100%). However, the trajectory tracing
(Figure [£.7p) was significantly better for the diagonal lines (99+4%) compared to
transversal (79+£14%, p < 0.01) and longitudinal lines (76+£13%, p < 0.01). The three
best recognized patterns were the diagonal (drl), transversal (t), and longitudinal
(1) line. Overall, the subjects were more successful (Figure vs. ¢, p < 0.001) in
identifying the line direction (100+£1%) than in tracing the trajectory (81+9%).

Regarding the geometries (Figure blue bars), the movement shape was identi-
fied significantly better in triangles (814+14%) and squares (76+£19%) compared to
rectangles (56+19%, p < 0.01). There was no significant interaction nor main effect
in the two-way ANOVA for the factors subcategory and movement feature (trajectory
and direction). As for the single lines, direction recognition was easier (Figure Vs
d), i.e., the overall SR was 8242% for trajectory tracing vs. 93+£7% for direction; but
there were no significant differences between the these two. The geometries with the
highest SR (Figure [4.8b) were triangle (ltr) and square (1s).

The best recognized letters were Z, mirrored Z and L (Figure [4.8). Note that
those are the letters composed of the best recognized single lines (see Figure )

For the letters, contrary to lines and geometries, there was no statistically significant
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Figure 4.7: Success rate of recognizing the shape (a), trajectory (b), and direction (c), for each category
of lines (longitudinal, transversal, and diagonal indicated by RED bars) and of geometries (triangle,
rectangle and square indicated by BLUE bars). Bars and stars indicated statistical significance (*,
p<0.05; ** p<0.01; *** p<0.001).

difference between the trajectory tracing (Figure , 98+2%) and identification of
direction (Figure [4.61d, 98+3%).

4.4 Discussion

The ability of the human subjects to identify the direction of motion over the skin
has been investigated in earlier studies , to obtain insights into normal
and pathological human sensory processing. Typically, an apparatus that could
apply well controlled motion of the fine brush over the skin surface was used for the
tests. The studies demonstrated that directional sensitivity depends on the body site
(mechanoreceptor density), increases with longer trajectories, exhibits preferential
range of movement velocities (decreases for too slow and too fast movements), and does

not to depend on the movement orientation. The direction sensitivity was tested also

72



© & & &
Figure 4.8: Three best recognized patterns: single lines (a), geometries (b), letters (c). For each panel,
pictures at the top illustrate how each pattern was applied to the e-skin, pictures below indicate

the electrodes activated during electrotactile stimulation to communicate the pattern to the subject,
while the success rate and the textual code (Table 1) for the pattern are reported at the bottom.

by simulating movements using a matrix of tactile stimulators delivering predefined
stimulation profiles . The authors concluded that success rate in discriminating
directions depends on the number of successively activated stimulation points (amount
of sent information), rather than the distance between the first and last point.

In , the tactile motion patterns were simulated by controlling a 24 x 6 matrix
of miniature probes indenting the skin. Moving patterns were produced by turning
on and off the rows of the matrix in fast succession. The stimulation was delivered
to the palm and fingers, since the intended application was the substation of hearing
using distributed tactile stimulation. The setup was used in a sequence of studies
with microneurography for the investigation of the basic properties of
mechanoreceptors. However, the tactile profiles were preprogrammed, i.e., the setup
did not include the sensing element such as the e-skin used in the present study.

The results obtained in the present experiment demonstrate that the novel system

successfully translated the tactile signals into profiles of electrical stimulation using
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the proposed online processing and control. The human subjects could successfully
interpret the delivered multichannel stimulation to recognize the properties of tactile
stimuli moving across the skin surface. The whole process was running online and
thereby under realistic conditions, leading to variability in tactile signals and electrical
profiles across the trials, e.g., occasionally activating taxels and electrodes that did not
belong to the ideal trajectories (Figure . Importantly, the ability to recognize all
the movement features correctly was similar across simple and more complex patterns,
indicating robustness. Regarding the shape detection, the subjects could well identify
lines with different orientation (longitudinal, transversal, diagonal) with no preference
with respect to the specific orientation along the forearm. For more complex patterns,
the ability to identify the shape decreased, but the subjects could still recognize quite
reliably specific patterns comprising 3 to 4 connected lines (Figure . They could
even precisely retrace the full movement trajectory in a reasonable number of cases,
and recognize the direction of the movement along the skin with a high confidence. The
performance in recognizing direction was consistently better than in trajectory tracing,
overall and also for the lines and the geometries. The consistency in identifying the
direction is in accordance with the results of previous studies [163-165], considering
that our motion patterns were rather long and with multiple stimulation points (e.g.,
8 electrode pads for longitudinal lines).

In general, the subjects were more successful with the patterns stretching across
the full extent of the e-skin (and thereby matrix electrode) compared to the patterns
localized to smaller areas. This is indicated by the fact that the performance was
better for the letters than for the geometries in both trajectory tracing and direction
identification. Furthermore, the subjects had difficulties when they needed to precisely
localize one of several patterns with the same shape but different positions on the
forearm. This is a likely reason for the worse performance of trajectory tracing for
lines vs. letters, since the former category contains closely spaced longitudinal and
transversal lines (Figure . Despite the fact that additional measurements are
needed to extend this analysis to a larger number of subjects and investigate the
learning effects through training, it can be concluded that this sensory feedback system
is feasible and intuitive. There are several possible reasons why the training failed to
improve the performance. The training could have been too short and/or dynamic to
allow learning. There were many shapes (10 lines, 7 geometries and 8 letters) which
were presented randomly and only three times per shape. In addition, there was
a level of variability, i.e., tracking the same shape did not evoke exactly the same

electrotactile activation, as explained before in this section. Finally, the subjects
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were not allowed to look at the skin while the experimenter applied the pattern, and
therefore he/she received only the tactile information. As demonstrated before [169],
multisensory integration might facilitate the learning. All in all, optimal training
paradigms for the presented tactile system are yet to be determined.

The tests employed in the present study are similar to those used for assessing
graphesthesia |[170], |[171], which refers to the ability of recognizing numbers traced on
the subject own skin. These tests are applied to assess the capability of the tactile
sensor system to process differences in the position and direction of a moving tactile
input and fuse that information into higher cortical representations. This assessment
is conducted in healthy subjects as well as in patients to provide basic insights into
the nature of sensory processing and/or diagnostic conclusions. The promising results
obtained in the present study demonstrate that the developed skin substitute maintains
the consistency of tactile perception and processing. In [170], the subjects recognized
10 numbers (0-9, size: 5 x 7 cm) presented by the experimenter moving his index
finger along the skin of the dorsal side of the forearm with an SR of 89%. In another
study [171], 12 letters were presented by moving a stylus over the palm of the subject
resulting in the SR of 75%. In the present study, 8 letters (9x20 cm) were recognized
(shape) with a success rate of approximately 72%. This is in agreement with the
previous studies considering that the patterns were delivered using a non-ideal, online
loop with electrotactile stimulation (compared to ideal, direct contact with the skin,
as used in [170], |[171]). The present study demonstrated that the subjects were able
to recognize complex shapes, which is an encouraging result. However, the electrical
profile was transmitted to the user by sequentially activating the pads along the
trajectory. If the profile was presented in parallel, by simultaneously activating all the
pads, the recognition would probably worsen [172]. The latter paradigm is likely to
be more common during the practical application (e.g., a prosthetic hand grasping an
object).

The experimental protocol in the present study was defined by considering the
limitations of the available setup and the scope of the current work. These first
results are encouraging considering the future applications of the proposed system in
prosthetics. The fact that human subjects were able to perceive the tactile features of
moving electrotactile stimuli can be of relevance for prosthesis control as well as for
embodiment. As pointed out in [165], moving tactile stimuli can be an effective method
for information transmission to the user, because mechanoreceptors respond stronger
to this type of stimuli compared to simple (static) pressure. Also, such perception

can be the basis for the exploration of the environment, as when the subject would
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move the prosthetic hand across the object surface to assess texture by relying on
artificial tactile stimulation, as demonstrated through simulations in [173]. Finally, the
transmission of a rich, dynamic information between the subject and the prosthesis
can be used to promote the embodiment of the artificial system. A similar set of
mechanical test patterns, as those used in the present study, could be applied to the
prosthesis allowing the subject to perceive, visually and through a tactile channel, a
set of realistic interactions. This would be similar to the classic setup for the rubber
hand illusion but including a variety of stimulation profiles. The richer stimulation

could facilitate the illusion, though this needs to be tested in future experiments.

4.5 Conclusion

A system was implemented to transmit mechanical information from a multipoint
tactile sensor (e-skin) to the human subject using multichannel electrotactile stim-
ulation. The system was evaluated by assessing the ability of the human subjects
to perceive the properties (shape, trajectory, direction) characterizing dynamic and
versatile (lines, geometries, letters) mechanical interaction with the skin. To the best
of our knowledge, this is the first development integrating an advanced tactile sensor
with many sensing elements and an electrotactile stimulation unit with a flexible
matrix of electrodes into an online system for the transmission of tactile data from
artificial to natural skin (forearm).

However, the current study did not yet demonstrate the utility of the proposed
technology in the real-life application, which is an important future goal. To this aim,
the next step is to cover a myoelectric prosthetic hand with an e-skin in order to test

the closed-loop system during functional tasks, as shown the example in Figure

Figure 4.9: Rubber hand integrating the e-skin.
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where the prosthetic hand was actually a rubber hand. The scope is to assess if a
sophisticated tactile feedback would increase the utility of the device and/or facilitate
the feeling of embodiment. An e-skin covering the prosthetic hand would provide
sophisticated tactile sensing that could be used to react to the environment. For
example, high sensitivity of the e-skin could be exploited to detect and thereby prevent
incipient slip. This could be done automatically, through the prosthesis controller (as
in Autograsp feature of Otto Bock Sensor Hand [174]), and/or by transmitting slip
feedback to the user, so that he/she can react and manually tighten the grasp (as
demonstrated in [175]).

Moreover, contrarily to the passive reception of the electrotactile stimuli, as in
the present study, placing the skin on the prosthetic hand would allow the user to
actively explore the environment. In this case, the tactile feedback would arise as an
interaction between volitional commands and movements of the user and the objects
with which he/she interacts. This is known to affect the haptic performance and is
therefore an important factor that needs to be considered in the future [16,176).

Importantly, the e-skin used in the present setup is only an illustrative example of
what can be done. The skin production technology is flexible and allows designing
patches of different physical characteristics (e.g., size, shape, pad density). For the
practical application, the e-skin will be dimensioned according to the prosthetic hand
to which it will be applied. Ideally, the e-skin should be placed to cover the whole
prosthesis, mimicking the skin of the natural hand (as proposed in [43]). The current
work regards placing the prototype on the volar side of the Otto Bock Michelangelo
Hand (e.g., finger pads, palm) to support stable grasping.

7
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Chapter 5

Tactile data processing

5.1 Introduction

Before presenting the results achieved by the implementation of approximate techniques
into Machine Learning algorithms for the classification of touch modalities ( i.e., the
classification of attributes of the contacting objects such as roughness, textures,
patterns and shapes), this chapter describes methods for processing tactile data.
In Chapter [3] and [4] the electronic skin system processes tactile data as low level
information, instead methods for processing high level information are considered in
this chapter. Furthermore, the section better motivates why approximate techniques,
introduced in the next Chapters, are needed in the hardware implementation of the

touch modality classification algorithm.

An essential task of the electronic skin system is to process the tactile data and
send information either to mimic human skin or to respond to the application demands.
The electronic skin must be fabricated together with an embedded electronic system
which has the role of acquiring the tactile data, processing, and extracting information.

Tactile data processing requires efficient methods to extract meaningful information
from raw sensor data and deals with different kinds of information, which could be
divided into two categories: low- and high- level information. Tactile data processing
concerns lower level information as that is related to an accurate estimation of finger-
object interaction such as contact location, area and duration, contact force intensity,
direction and distribution, together with temperature. Alternatively, tactile data
processing involves higher level information for the classification of attributes of the

contacting objects e.g. roughness, textures, patterns, shapes, as well as data related
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Figure 5.1: Several examples of touch modalities ( Source [183]).

to object movement on the cutaneous surface, e.g. slip detection, vibration, up to the
discrimination of the touch modality.

Machine learning (ML) has increasingly been employed to provide solutions for
difficult tasks, such as image and speech recognition. Besides, ML algorithms have
been exploited to classify and interpret input touch modalities as they represent a
powerful technology for tackling clustering, classification and regression problems in
complex domains, e.g., in robotics to retrieve partial contact information on specific
systems [55,/177-181]. In this thesis, the ML which is based on Tensorial Kernal
approach and mentioned in [182], has been proposed to interpret touch modality in
the e-skin system.

The rationale behind the choice of adopting ML-based methodologies is twofold.
First, ML techniques can support predictive systems that make reliable decisions on
unseen input samples [184]. This ability is especially appealing in the case of the
interpretation of sensor data, as complex, non-linear mechanisms characterize the un-
derlying phenomenon to be modelled and an explicit formalization of the input-output
relationship is difficult to attain. ML technologies model the input-output function
by a learning from examples approach (Figure ; eventual implementations can
vary according to different application scenarios, but all share a common probabilistic
setting.

Second, the theoretical framework introduced in [185] allows one to extend every

learning machine based on kernel methods to a tensor-based learning model. This
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Figure 5.2: Machine Learning approach.

research exploits such aspect by proposing a pattern-recognition framework that
involves the class of regularized kernel methods |184], which address the intricacies of
the minimization problem embedded in empirical learning by controlling the complexity
of the solution. This feature may indeed prove useful when coping with the issue
of learning from small training set, as is the case for the interpretation of touch

modalities.

5.2 Classification Algorithms in Machine Learning

In machine learning, classification is the problem of identifying to which of a set of
categories a new observation belongs, on the basis of a training set of data containing
observations (or instances) whose category membership is known. More specifically,
given an n x d training data matrix D (database D), and a class label value in 1...k
associated with each of the n rows in D (records in D), create a training model M,
which can be used to predict the class label of a d—dimensional record. Many data
mining problems are directed toward a specialized goal that is sometimes represented
by the value of a particular feature in the data. This particular feature is referred to
as the class label. Therefore, such problems are supervised, where in the relationships
of the remaining features in the data with respect to this special feature are learned.
The data used to learn these relationships is referred to as the training data. The
learned model may then be used to determine the estimated class labels for records,
where the label is missing. The record whose class label is unknown is referred to as

the test record.
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To date, there is a lot of classification algorithms available, which one is superior

to other depends on the application and nature of available data set. To name a few:

e Logistic Regression (LR), that is a machine learning algorithm for classifi-
cation, the probabilities describing the possible outcomes of a single trial are

modelled using a logistic function.

e Naive Bayes (NB) algorithm based on Bayes theorem with the assumption of

independence between every pair of features.

e Stochastic Gradient Descent (SGD): a simple and very efficient approach
to fit linear models. It is particularly useful when the number of samples is very

large.

e Decision Tree (DT) that produces a sequence of rules that can be used to

classify data given a data of attributes together with its classes.

e Support Vector Machine (SVM) representing the training data as points in

space separated into categories by a clear gap that is as wide as possible.

5.3 ML based on Tensorial Kernel Approach

Considering the processing of tactile data deriving from the e-skin, the problem is to
interpret the sensor signals to discriminate between a set of stimuli that the system is
expected to recognize. ML techniques may indeed face challenging assignments such
as the discrimination of materials or the interpretation of touch modalities. To this
purpose, one can reduce the overall complexity of the pattern recognition problem by

splitting the modeling process into two tasks:

1. The definition of a suitable descriptive basis for the input signal provided by
the sensor (or lattice of sensors), i.e., a feature-based description that lies in a

feature space JF:

o(S) = F (5.1)

In (5.1), S is the third-order tensor that characterizes sensor outputs and
represents actually the composition of the two-dimensional geometry of the

e-skin with the third-dimension for the time response of the sensor itself.
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2. The empirical learning of a model for the non-linear function, {, that maps the

feature space, F, into the set of tactile stimuli of interest:

(: F=>T (5.2)

Here, T includes a finite number of stimuli; hence, ¢ in principle, implies a

multi-class classification task.

In the literature, a wide range of ML-based techniques has been proposed to set
up (. However, taking into account the peculiarities of a tactile-sensing system the
range of solutions that better fit shrink. The setup of ( is supported by a theoretical
approach that can lead to a tensor-oriented kernel machine. The function ( is learned
by using Support Vector Machine algorithm. Accordingly, the pattern recognition
module can benefit from a powerful machine-learning paradigm (Support Vector
Machine); and a suitable processing of sensors data.

5.3.1 Support Vector Machine

Support Vector Machines (SVM) is a very weel-known method for the classification of
both linear and nonlinear data. The SVM uses a nonlinear mapping to transform the
original training data into a higher dimension. Within this new dimension, it searches
for the linear optimal separating hyperplane. With an appropriate nonlinear mapping

to a sufficiently high dimension, data from two classes can always be separated by a
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Figure 5.3: Online classification exploiting the Tensorial Kernel approach.
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hyperplane. The SVM finds this hyperplane using support vectors (training tuples)
and margins (defined by the support vectors).

In general, given a set of training examples, each marked as belonging to one or
the other of two categories, an SVM training algorithm builds a model that assigns
new examples to one category or the other, making it a non-probabilistic binary linear
classifier. An SVM model is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by a clear gap
that is as wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall (Figure .

The simplest case is a two-class problem, where the classes are linearly separable.
The data set D is given as (X1,y1), (X2,%2),... and X € R where X; is the set of
training tuples with associated class labels, y;. Each y; can take one of two values,
either +1 or —1 (i.e.,y; € +1,—1), and y = f(x) which approximates the relation
between x and y. If we plot the product y f i.e. the product between the true y and the
estimated value f, we are interested in obtaining the correct tag during classification,

so the error function is given by the so called hard loss. When the signs are the same

Figure 5.4: Examples of SVM classification method.
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we have right prediction, else we have some error. The problem of this function is that

it can't be easily minimized (NP problem).

Considering the target application, the SVM classification equation is defined as:

Np
i = fovu(a;) =Y BiK(xi,y;) +b (5.3)
=1

where x; represents the input, y the predicted category ( e.g., £1), f; are the
weights obtained during the training phase, Np is the number of support vectors, b
is the “bias” term, and K (z;,y;) is the kernel function. The SVM aims to compare

training and new (on-line) data through the computation of the kernel function. For
details concerning K (z;,y;) see Section [5.3.2,

5.3.2 Kernel Computation

In machine learning, kernel methods are a class of algorithms for pattern analysis,
whose best known member is the SVM. The general task of pattern analysis is to
find and study general types of relations (for example clusters, rankings, principal
components, correlations, classifications) in datasets. In its simplest form, the kernel
trick means transforming data into another dimension that has a clear dividing margin
between classes of data.

The kernel function is given by:

z

K(z,y) = [[¥(=.v) (5.4)

1

where k*(z,y) represents the kernel factors. As the target application uses a tensor

of three-dimensions, z = 1,2, and3. The kernel factors in turn are defined as:

L (1, — trace(Z7 2))) (5.5)

k‘(l",y) = 6:Up(—272

Referring to [21], the Z in (5.5)) can also be expressed as V,I'V,. Hence, the kernel
factors in (5.6 becomes:

1
k(a,y) = eap(— o5 VIV = V) (5.6)

where |||| > is the Frobenius norm, V,, and V,, represents the tensorial inputs for the

testing and training phase, respectively. The kernel computation is also intended as
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the distance between the singular vector input matrices V,, with the corresponding
singular vector training matrices V,,. Both V, and V| are obtained by using the
Singular-Value Decomposition properly defined in Section [5.3.3

Equations and show that the tensorial kernel function K (x,y) extends

the conventional Gaussian kernels to tensor patterns.

5.3.3 Singular Value Decomposition

The Singular-Value Decomposition (SVD) factorizes a real m x n matrix M into a
product with the form:
M=USV?* (5.7)

where:

e U is a m x m orthogonal matrix (UTU = I,,),

e S is a m x n rectangular diagonal matrix with non-negative numbers on the

diagonal,
e V is an n x n unitary matrix (VIV = I,,).

The column elements of U and V matrices correspond to the left-singular and
right-singular vectors of M, respectively. Instead, the diag(oy,, 0, ;) elements of the

S matrix are the singular values of M.

In the considered application, as the tactile data inputs originating from the
e-skin are three-dimensional tensors while the SVD only works with matrices (two-
dimensional inputs),in order to fill the gap between the SVD input and the e-skin

outputs the Tensor Unfolding is explained in the next section.

5.3.4 Tensor Unfolding

The Tensor Unfolding main goal is processing tactile data, rearranging them in two-
dimensional matrices, without losing any information. In this process, results are
matrix representations of tensor: the first contains the columns information ( i.e., all
the columns vectors are stacked one after the other), the second contains the rows
information ( i.e., all the rows are stacked one after the other), and the last one
represents the information brought along the third tensor dimension.

In general, assuming an N** — order tensor A € CT1*2X**In the matrix unfolding
Amy € ClnxUntilng2InDlz Ity contains the element a0 ;n at the position with

row number 7,, and column number equal to:
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Figure 5.5: Unfolding of the (/; x Iy x I3)—tensor A to the (I; x II3)—matrix A, the (Iy x
I31;)—matrix Ag), and the (I3 x [y [3)—matrix Ay (source [22]).
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Thus, the third order tensor ¢ € CT1*2*% results three different matrices unfolding
which are: Ay € Clix(f2ls) Apy € CXUs1) and A, € Ol (L)

Figure [5.5 shows the unfolding procedure for a three-dimensional tensor.
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5.4 Computational Complexity

The computational complexity is defined as the number of operations performed by
an algorithm. Table reports an estimation of the number of operations needed for
the different computational functions which are explained in Section

The table presents a generic estimation where m and n are the dimensions of the
unfolded matrix, N, is the number of classes to be classified, /V; the number of training
tensors, and Ngy is the number of support vectors obtained from the offline training
stage. In [183], a Matlab script has been implemented to automatically generate the
operation number needed according to the tensor dimension. They authors considered
a case study for an input tensor ¢(8 x 8 x 20) noting that the complexity dramatically
increases with the increase of the tensor dimension. The unfolding process results
three different matrices (A (8 x 160), Ay (8 x 160), Az (20 x 64)) to which the
SVD should be applied. Taking into account that the target task is to classify three
input touch modalities, i.e., N, = 3, and the number of training tensors is set to 100,
the number of operations that the algorithm must perform in real time is equal to 302
G-ops.

In [177], details regarding the dataset used as benchmark for the target application
are given. Briefly, the database includes seventy participants. The have been involved
in the experimental campaign and were asked to touch the tactile sensor array using
three different predetermined modalities of touch, i.e. sliding the finger, brushing
a paintbrush and rolling a washer as shown in Figure [5.6 Every participant was
asked to complete two different actions for each of the three gestures. Thus, first
the participant completed the gesture on the tactile sensor array moving horizontally
over a random line; then, the same participant completed the same gesture over a
vertical random line. The horizontal and vertical stimuli for each gesture were acquired
separately. Each participant was allowed to complete every single touch within a time
window of 7 seconds. No particular indications were given to the participants about
the duration of the stimuli and the pressure level to apply. The overall experiment
eventually resulted in a total of 420 patterns (70 participants, 3 gestures, 2 patterns

for each gesture - horizontal and vertical stimuli).
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Number of Operations

Singular-Value Decomposition 24m(n — 1)[n*(2n — 1) + n> + 6]

Kernel Function [(2(2n — D)n* + (n+3)) + 2] XN, x N,

Classification (14 3N;) x Ngy

Table 5.1: Computational complexity of the studied ML algorithms (source ).

Figure 5.6: Tested touch modalities: brushing a paintbrush, sliding the finger, and rolling a washer

(source )

The analysis of the computational complexity of the tensorial kernel approach
results the SVD as the most computational expensive algorithm of the overall approach:
it represents about the 70% of the computational load . Therefore, methods and
architectures for the hardware implementation of the SVD have been investigated and
evaluated to select the most suitable architecture for the target application. More
specifically, three hardware implementations for the SVD have been proposed in |187]
and reported with some further considerations in Section

5.5 Hardware Implementation of SVD

Because of the crucial role it plays in a wide range of signal processing applications,
efficient computation of the SVD is the subject of many publications. A VLSI Design
of Singular Value Decomposition Processor for Portable Continuous-wave Diffusion

Optical Tomography Systems is presented in [188], the design was implemented using
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90nm CMOS process technology and simulation results verify the functionality of the
JSVD design within the developed CW-DO'T system. Highly parallel accelerators such
as Graphic Processing Unit (GPUs) and multi-core platforms have been employed to
explore parallel SVD implementations, although these works only achieved speedups
when the input matrices have dimensions greater than 1000 [189,(190]. An FPGA
implementation based on Jacobi method for singular value decomposition is presented
in [191]; it introduced a floating-point Hestenes Jacobi architecture for SVD, which is
capable of analyzing arbitrary sized matrices.

Altough the most practical SVD algorithm is based on a Jacobi algorithm [192],
this could be implemented by using different methods. This section briefly outlines
three FPGA implementations of the one sided Jacobi algorithm for SVD based on
different computation methods [187].

As the SVD is based on diagonalizing rotations since applying a sequence of rotation
to the original matrix M allows to reach the diagonal matrix S, the general flow
diagram of the SVD computation could schematically be represented as in Figure

The Phase Solver (PS) is the block which computes the sine and cosine functions or
the angle of rotation. The Rotation Blocks (RBs) consist on the pre- and post-rotation
inside of the algorithm. To implement the PS and the RB two different methods
each can be used: Jacobi or CORDIC method, and the one sided Jacobi rotation or
CORDIC rotation, respectively (see Figure . Details about the SVD hardware
implementation are given in Chapter [6| and Chapter [7], considering both FPGA and
ASIC implementation.

Investigating both FPGA and ASIC implementation for the SVD is important.
For example, the power consumption could be reduced by exploiting an ASCI imple-
mentation. Figure illustrates the power consumption variation in terms of number
of training tensors when the touch modalities are fixed to three, and Figure in

Input Matrix Phase Rotation
Matrix |:> SYMM |:> Solver |:> Block Output
M MM PS RB SVD(M)

Figure 5.7: General flow diagram for the hardware implementation of the one sided Jacobi algorithm
for SVD computation.
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Figure 5.8: Architectures definition based on the different implementation methods (source [187]).

terms of number of touch modalities when the number of training tensors is set to
100. These results point out the power consumption issue which will be tackled in
future work by proper circuit design strategies such as approximate computing [193]:
it is used to reduce the silicon area and the power consumption by finding a trade-off
between quality and performance of the systems. As estimated in Figure and
Figure |5.10, approximate computing may reduce the power consumption of the system
by approximately 25% [193].

Another possible solution to fix the power consumption issue will be addressed
by using ASIC implementation (e.g. using standard cell and a deep submicron)
technology which may considerably reduce the power consumption of the overall
system as estimated in Figure and Figure [194]. Power supply is a limiting
factor in wearable devices whose form factor constrains battery size. Endowing the
prosthesis with wearable harvesters that collect energy from the environment will
represent a promising solution to achieve the long-life goal for truly wearable and

self-powered devices [195].
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5.6 Conclusion

A key challenge nowadays is to provide wearable artificial systems with advanced
tactile perception skills, facilitating dexterous exploration and interaction with the
environment. Several efforts are underway to bridge the technological gap between
artificial and biological skin, which both act as an interface to the external world.

An electronic skin (e-skin) can be used in prosthetics for effective capturing of touch,
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and the acquired real-time tactile information can be delivered to the human subject
through multichannel cutaneous electrostimulation. This would enable transmitting a
comprehensive somatosensory feedback from the prosthesis to the user, thereby closing
the loop in myoelectric prosthesis control and facilitating the sense of embodiment of
the assistive device into the body scheme of the user [75,[136].

In the perspective of prosthesis utility and embodiment, human sense of touch can
inspire research and technological solutions needed to support the required artificial
tactile system functions (eg. spatial acuity, frequency bandwidth, sensory function).

On the other hand, wider scenarios can open on how to give back sensor data to
the prosthesis user and how to help the human brain to successfully interpret the
elicited artificial tactile information. Among open questions in prosthetics is which
kind of information - whether raw data or processed - about a touched object should
be sent back to the user. One approach would be to send the sensor signals directly to
the user, who needs to meaningfully interpret this information. Alternatively, learning
from robotics, sensor data can be locally processed at the body periphery (prosthesis
socket with embedded electronics) and high level tactile information (e.g., texture
properties, grasp stability) can be extracted and delivered to the user.

Machine learning (ML) methods provide powerful tools for data decoding, they
address complex, nonlinear problems by exploiting a learning by examples approach
[184]. Therefore, a ML algorithm have been chosen for processing of tactile data

deriving from the e-skin.

In this Chapter, Machine Learning based on a tensorial kernel approach have been
explained in details. After describing the employed algorithm for touch modality
classification, the computational complexity of overall algorithm evaluated in [186] has
been reported. In particular, the Singular-Value Decomposition (SVD) represented
about 70% of the computational complexity of the overall approach. For this reason,
methods and architectures for the hardware implementation of the SVD have been
investigated in order to select an appropriate architecture suitable for the targeted
application, i.e., electronic skin system for prosthetics.

The analysis conducted in [187] shows the requirements for tactile data processing
unit with high level information extraction are very challenging and are still far
from being achieved with the current methods. Therefore, methods and techniques to
reduce hardware complexity and power consumption of the embedded electronic system

have to be explored. More effort should be dedicated to the hardware architectures:
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implementation issues should be firstly assessed in order to address an adequate

trade-off to balance real time functionality and hardware resources utilization.

In this context, inexact circuit and approximate computing techniques have recently
emerged as a promising approach to energy efficient design of digital systems. Using
such methods could provide a solution to reduce the hardware complexity and the
power consumption of the desired embedded electronic system [197,|198].

The next Chapters are focused on applying to the proposed algorithms inexact

and approximate circuit techniques.
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Chapter 6

Approximate Techniques for
Hardware Implementation

6.1 Introduction

This chapter regards approximate techniques and the importance that are assuming
in the last years. More specifically, Chapter ISA aims at implementing approximate
circuit techniques in the FPGA implementation of real-time tactile data processing
for e-skin application. It focuses on the implementation of the Coordinate Rotation
Digital Computer (CORDIC) algorithm, as it is used for several computing tasks such
as Singula-Value Decomposition (SVD), the most computationally expensive algorithm
for Machine Learning approaches that has ever been considered[199]. This first attempt
of approximate CORDIC implementation on FPGA uses Inexact Speculative Adder
(ISA) architectures [200], a circuit-level technique optimized for high-speed arithmetic
computations. The results for the ISA implementation in the CORDIC were published
in [201].

In this chapter, the Inexact Speculative Multiplier (ISM) architecture is also presented
as it has been exploited for the SVD implementation, explained in Chapter [5

The candidate contributed to this work by:

e Designing and implementing the ISM in the SVD algorithm.

Designing and implementing the ISA in the CORDIC algorithm.

Analyzing data.

Considerations and conclusions.
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Performance, density and energy efficiency of integrated circuits have been in-
creasing exponentially for the last four decades following Gordon Moore's remarkable
prediction. However, power and reliability pose several challenges to the future of
technology scaling. Power has definitely emerged as a critical concern due to the
poor scaling of Vy,, while transistor miniaturization reaching atomic scale has led to
tremendous Process-Voltage-Temperature (PVT) variations. Unfortunately, achieving
low power and robustness against variability requires complex and conflicting design
constraints.

For example, while power efficiency calls for voltage downscaling and minimization
of hardware, robustness demands higher voltage, larger transistors and additional
correction or redundancy. As a result, designers are being pushed to seek new energy-
efficient computing techniques to meet the increasing demand of data processing.

The concept of error tolerance, i.e. accepting error in a design to save resources,
is well known in many abstraction layers and is already implicit in digital signal
processing as the representation of real numbers is approximated due to the finite
number of bits. Built on these ideas, approximate computing [202] has emerged as a
promising candidate to improve performance and energy efficiency beyond technology
scaling. Designing approximate circuits explores a new trade-off, not only by accepting
unreliability, but by intentionally introducing errors to save area and power and
overcome the limitations of traditional circuit design.

With the exploding amount of data being processed in the cloud and on mobile
devices, a wide range of applications can trade accuracy without compromising the
functionality or the user experience. For example, in multimedia processing, due to
the limited perceptual capability of humans, occasional errors such as dropping a
particular frame or a small image quality loss often rarely affect a user's satisfaction.

The growing demand for statistical algorithms such as data mining, search and
recognition represents another opportunity to compute in an approximate way as the
outcome of those applications is not required to be a single golden result, but an
adequate match.

To design approximate systems, several approaches have been investigated at
different hardware levels, such as voltage frequency over-scaling [203] at physical level
or significance based memory protection [204] at algorithmic level. At circuit level,
an interesting approach is to perform computations using approximate arithmetic
operators, such as adders and multipliers, allowing a controlled and limited amount of

errors against significant power saving or performance increase.
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Approximation Technique

Loop perforation, Code perforation
Program Thread fusion, Tunable kernels,
Patter reduction

Architecture Approx%mate storage, ISA extensions,
Approximate accelerators

Circuit Imprecise logic, Voltage overscaling,

Analog computation, Precision scaling

Table 6.1: Approximate techniques at different layers (source [205))

In Table[6.] a few representative approximate techniques spanning from application
level to circuit level are shown. In general, at the hardware layer, a less accurate
yet more energy-efficient circuit could be used for computation or the supply voltage
could purposely be reduced for certain hardware components to trade-off energy and
accuracy. At the software layer, certain computations and/or memory accesses that
are not critical to the final quality of the application to achieve the same objective

could be selectively ignored.

6.2 Approximate Techniques: An Overview

Approximate computing techniques present several challenges, which are shown below:

e Limited application domain. Due to their nature, some applications are not
amenable to approximation, e.g., cryptography. Therefore, some approximation

strategies are only valid in a certain range of an application.

e Correctness issues. Approximate computing techniques may prevent program
termination (e.g. a matrix computation kernel where approximate computing
can lead to an unsolvable problem), or lead to corrupt output which may not

even be detected by the quality metric used |206].

e Finding application-specific strategies. A naive approximation approach such as
uniform approximation is unlikely to be efficient. No strategy can be universally
applied to all approximable applications. Hence, the approximation strategies
need to be determined on a per-application basis by the user or a sophisticated

program module [207].
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e Overhead and scalability. Several approximate computing techniques may have
large implementation overhead, for example, voltage scaling may require voltage
shifters for moving data between different voltage domains [208]. Similarly,
analog neural network implementations [209,210] require conversion of signals

between digital and analog domain.

e Providing high quality and configurability. Approximate computing techniques
must maintain the Quality-of-Results (QoR) to a desired level and also provide
tunable knob(s) to trade-off quality with efficiency [211]. If QoR falls below a
threshold, the application may have to be executed precisely which increases

design and verification cost and may even nullify the gains from approximation.

The strategies used for approximation consist of reducing their precision, skipping
tasks, memory accesses or some iterations of a loop, performing an operation on
inexact hard- ware, etc. These strategies are not mutually exclusive. Considering
an application/algorithm /circuit, one or more than one of the strategies mentioned
above could be used for working on approximable variables and operations once they
have been identified. To note that finding approximable variables and operations
is the crucial initial step in every approximate computing technique. While this is
straightforward in several cases (e.g. approximating lower-order bits of graphics data),
in other cases, it may require insights into program characteristics, or error-injection to
find the portions that can be approximated with little impact on QoR. Closely related
to it is the output monitoring step, which verifies adherence to the quality constraint
and triggers parameter-adjustment or precise execution in case of unacceptable quality
loss.

Several approximate computing techniques work by changing the precision (bit-
width) of input or intermediate operands to reduce storage/computing requirements.
Tian et al. |212] present a technique for scaling precision of off-chip data accesses for
saving energy. They apply their technique to mixed-model based clustering problem,
which requires accessing large amount of off-chip data. They note that in a clustering
algorithm, a functional error happens only when a sample is assigned to a wrong
cluster. Based on it, the precision can be lowered as long as the relative distances
between clusters and samples are still in correct order, so that no functional error
happens.

Some techniques use loop perforation approach which works by skipping some

iterations of a loop to reduce computational overhead. Sidiroglou et al. [213] identify
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several global computational patterns which work well with loop perforation, such as
Monte Carlo simulation, iterative refinement and search space enumeration.

Memoization approach is also employed as approximate computing technique. It
works by storing the results of functions for later reuse with identical function/input.
By reusing the results for similar functions/inputs, the scope of memorization can be
enhanced at the cost of possible approximation.

Other approximate methods selectively skip memory references, tasks or input
portions to achieve efficiency with bounded QoR loss. Samadi et al. [214] present a
SW-based ACT which works by identifying common patterns in data-parallel programs
and using a specific approximation strategy for each pattern.

Approximate computing techniques could also exploit inexact/faulty circuits at
architecture level. Kahng and Kang [215] present the design of an inexact adder. For
an N-bit inexact adder, (N = k — 1) sub-adders (each of which is a 2k-bit adder)
are used to perform partial summations. The inexact adder avoids the carry chain
to reduce critical-path delay and this can be used to improve performance and/or
energy efficiency. When a carry input needs to be propagated to the result, the
output of all (except the last) sub-adders becomes incorrect. With increasing k value,
the probability of correct result increases but the dynamic power consumption and
minimum clock period of the inexact adder also increase. Thus, by changing the
value of k, the accuracy of the inexact adder can be controlled. Venkataramani et
al. [216] present an approach for designing general inexact circuits based on register
transfer level (RTL) specification of the circuit and QoR metric (such as relative
error). Ganapathy et al. [217] present a technique for minimizing the magnitude of
errors when using unreliable memories, which is in contrast to the ECC technique
that actually corrects the errors.

Voltage scaling reduces energy consumption of circuits at the cost of possible errors
[218]. For example, reducing SRAM supply voltage saves leakage energy but also
increases probability of read upset (flipping of a bit during read operation) and write
failure (writing a wrong bit) [219]. Chippa et al. [220] present an technique that uses
approximation at multiple levels of abstraction. For example, for k-means clustering,
at algorithm level, early termination and convergence-based pruning are used. At
architecture level, both input and intermediate variables are represented and operated
upon with scaled precision. This leaves some bit slices in the data path unutilized
which are power-gated for saving energy. At circuit level, voltage overscaling is used,
with- out scaling the clock frequency. The adder circuit is segmented into adders of

smaller bit-width. Based on voltage scaling, carry propagation across segmentation
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points is adaptively controlled and errors due to ignored carry values are reduced by

using a low-cost correction circuit.

6.3 Inexact Speculative Adder (ISA)

Among numerous speculative adders[221], the Inexact Speculative Adder (ISA)[200] is
a general and optimum architecture of speculative addition to improve speed, power
efficiency and accuracy management thanks to a short speculative path and to an
adaptable double-direction error compensation mechanism. This technique allows to
precisely control mean and maximum errors. It has also shown significant benefits
compared or combined with other low-power techniques or successfully integrated
within bigger ASIC systems. In the case of FPGA, the ISA could be particularly
interesting in order to overcome FPGA’s hardware limitations, e.g. fixed number of
Look-Up Tables (LUT) and interconnect constraints.

Additions are the most frequent arithmetic units used in digital systems. Hence,
many have tried to improve their speed or power efficiency. For this purpose, some
approximate adders have been built using the concept of carry speculation [197]. This
is feasible as carry chain propagation typically does not cover the entire length of
the adder, allowing to guess relatively accurately an internal carry based on a small
number of preceding stages. As a result, the carry propagation chain, critical path
of the circuit, can be sliced in multiple shorter paths executed in parallel, loosing up
delay constraints over the whole circuit and enabling performance beyond theoretical
bounds of exact adders.

Among numerous speculative adders[221], the Inexact Speculative Adder (ISA)[200]
is a general and optimum architecture of speculative addition to improve speed, power
efficiency and accuracy management thanks to a short speculative path and to an
adaptable double-direction error compensation mechanism. This technique allows to
precisely control mean and maximum errors. It has also shown significant benefits
compared or combined with other low-power techniques [222-224] or successfully
integrated within bigger ASIC systems[193]. In the case of FPGA, the ISA could be
particularly interesting in order to overcome FPGA’s hardware limitations, e.g. fixed

number of Look-Up Tables (LUT) and interconnect constraints.

Figure 6.1: Block schematic of the Inexact Speculative Adder (ISA) [200]. Every speculative path
comprises a carry speculation block (SPEC), an adder block (ADD) and a double-direction error
compensation block (COMP).
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Figure 6.2: Example of arithmetic computation in an ISA with 4-bit ADD, 2-bit SPEC, 1-bit COMP
correction and 2-bit COMP reduction.

The general block schematic of the ISA is presented on Figure It slices
the carry chain in several speculative sub-paths executed in parallel, each of them
consisting of a carry speculation block (SPEC), an addition block (ADD) and an error
compensation block (COMP) that overlaps on two ADD blocks. For each of these
paths, the functionalities of the blocks are the following:

e The SPEC block produces a speculated internal carry from a very short number
of input bits. This is generally done with a carry look-ahead unit. If a carry
propagation spans the entire SPEC block, it cannot predict exactly the carry
and a wrong guess could lead to a speculative error. Since long propagation
sequences are uncommon, the rate of erroneous speculations decreases with
larger the SPEC block size.

e The ADD block computes a local sum from the carry speculated in the SPEC
block.

e Without compensation, incorrect carry speculations could cause disastrous errors.
The COMP block detects those incorrect speculations and compensates erroneous
sum either by trying to correct a fixed number of bits in the current sum, or by

balancing some bits in the preceding sum to limit its relative arithmetic value.

The achieved adder arithmetic is shown on Figure|6.2l Errors only occur in the
speculative paths on the right. The COMP is triggered when the speculated carry
differs from the carry-out of the prior sub-adder. The COMP’s correction technique
implements an incrementer or decrementer on a fixed group of LSBs of the current
ADD block that fully corrects a missed carry. This technique fully resolves most
speculative errors, as in the central path of Figure for which the sum’s LSB of
the has been corrected. In the cases where the stages above correction bits are all in
propagation modes, the sum bits cannot be corrected as it would cause an internal
overflow. Thus, the COMP’s reduction flips the MSBs of the preceding sum in order
to reduce the arithmetic error as in the right path of Fig 6.2
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6.4 Inexact Speculative Multiplier (ISM)

Many works have tried to improve speed or power efficiency of adders|200,225-227].
But the case of the multiplier circuits has been little studied, despite their much higher
area, power consumption and delay.

The Error Tolerant Multiplier (ETM) [228], one of the first approximate multipliers,
is based on the truncation of multiplier into an accurate multiplication part for the
MSBs, and a low-cost non-multiplication part for the LSBs similarly as in the Error
Tolerant Adder (ETA) [229]. This part uses OR gates as low-cost addition, and
propagating in the right direction, it sets all lower-significance bits to the same value
to balance the error if it happens. The Broken-Array Multiplier (BAM) [230] removes
some carry-save adders of the array multiplier in both horizontal and vertical directions,
improving circuit efficiency, but yet still suffering from high rate and mean of errors.

The Inexact Speculative Multiplier (ISM), a new approximate multiplier circuit
derived from error-compensated speculative architectures, is introduced here.

Conventional parallel multiplier architectures are based on computing a set of
partial products and summing them together. To be integrated in high-performance
blocks such as a FPU, this process is generally pipelined with several stages. The ISM
is based on a two-stage multiplier architecture. First, a Partial Product Multiplier
generates and merges partial products with a compressor tree into two partial sums.
Then, an Inexact Speculative Adder [200] adds them in a speculative way in the last
stage. This approach strongly reduces the overall critical path, and with a retiming
step, used for instance in the case of pipelining, it significantly relaxes the timing
constraints, leading to smaller overall area and power consumption.

Sizing of the different speculative elements of the adder stage directly allows
to trade worst-case and average errors in a delay-accuracy approach in the case of
unsigned operation, as in [200]. In the case of two’s-complement signed multiplication,
a dynamic carry guess of the inverse of the expected sign is required on all speculative
paths to avoid any sign error (i.e. a XNOR of the two operand’s MSBs). Other
parameters are selected in the same approach as for unsigned operation.

As the mantissa multiplier is in the critical path of the FPU circuit, even the
slightest level of approximation can significantly relax the timing constraints. Moreover,
the ISM error compensation and the FPU rounding unit both share the same philosophy
that a few bits in one direction are equivalent to a single one at adjacent position. For
instance, the FPU rounding would approximate the sequence ‘0.111" by ‘1.000’, while
the speculative error ‘0.000” instead of ‘1.000” would be compensated by ‘0.111".
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The ISM architecture has been studied for the Singular Value Decomposition (SVD)
implementation mentioned in Chapter [5. As this work is still under-development, no

measured results are available yet.

6.5 ISA in Machine Learning

In most robotic and biomedical applications, the interest for real-time embedded
systems with tactile ability has been growing. For example in prosthetics, a dedicated
portable system is needed for developing wearable devices. The main challenges for
such systems are low latency, low power consumption and reduced hardware complexity.
In order to improve hardware efficiency and reduce power consumption, approximate
computing techniques have been assessed. This strategy is suitable for error-tolerant
applications involving a large amount of data to be processed, which perfectly fits
tactile data processing.

Considering the Machine Learning (ML) algorithm explained in Chapter |5, the
creation of a real-time embedded data processing unit for e-skin is yet far from
achievement. This ML approach requires the use of Singular Value Decomposition
(SVD) algorithm, which is a computationally intensive[231] process. As one of the
SVD architectural implementation has been based on the Coordinate Rotation Digital
Computer (CORDIC) algorithm (]232]), the implementation of CORDIC on FPGA

uses ISA architectures has been investigated.

6.5.1 CORDIC Algorithm

The CORDIC [232] is an iterative and particularly well parallelizable algorithm
extensively used in digital signal processing. It only contains iterative Shift-Add
operations to calculate a variety of functions, such as logarithmic, trigonometric and
hyperbolic functions. It can be operated in vectoring mode or in rotation mode. The
first produces a rotation of the input vector to the x axis while recording the angle
needed for that rotation. The second, called rotation by Deprettere et. al [233], makes
a rotation of the input vector by a specified angle. Despite the CORDIC can be
operated in both modes, only the latter has been considered in this work.

The CORDIC rotation-mode algorithm starts by initializing the angle accumulator
z with the requested rotation angle z,. Then, depending of the sign of the angle

after every iteration, a decision d; is taken in order to decrease the angle accumulator
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Figure 6.3: Architecture of the CORDIC in rotation mode.

magnitude. The equations in rotation mode are:

Zip1 = 2; — d;arctan(27")
Yirs = yi— 27" di;

where (i) ¢ = {0, N — 1}, (ii) N the number of iterations, and (iii) d; = —1 if z; < 0

and +1 otherwise;
which implies that:

T, = A, (xg coS zp — Ypsin 20)

Yo = Ap (azg sin 2y + yg cos 20) 62)

2z, =10
A, =J[Viiz™

where A, is a gain depending on the number of iterations.

6.5.2 Hardware Implementation

The CORDIC algorithm architecture uses a single Shift-Add operation for each
component: x, y, and z. Each unit consists of a MUX (2:1 multiplexer), a shift register
and an adder-subtractor. At the beginning of each CORDIC computation, x,, y, and
zp values are given as inputs to the MUX. Then the computation proceeds using the
values stored in Xreg, Yreg and Zreg, respectively. In the ROM, the micro-rotation
angles arctan(27*) are stored. The CORDIC algorithm is an iterative process varying
according to the ROM input 7. In the considered case, the assigned values of the
variable ¢ are from 0 to 29. To control the ROM addresses, the FSM tracks the shifting
distance and enables the multiplexer signals.

In order to apply ISA within the CORDIC architecture, modifications have been
needed. The new architecture is illustrated in Figure [6.3] As ISA normally works
with unsigned numbers, the adder-subtractors for x, y and z components have been
substituted with conventional adders. Adding a MUX that considers the positive or
the negative signal depending on a control signal makes possible to construct a circuit

performing both addition and subtraction at the same time. This expedient has been
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used to have the right working principles of the CORDIC algorithm as both addition
and subtraction operations can occur depending on the sign of Zreg.

As the CORDIC in rotation mode has just been taken into account only the MUX
selecting the angle accumulator z or the initialization input value z,, the desired
angle of rotation, has been considered. Figure depicts a Xilinx Vivado simulation
example underling the independence of z, and y, on the initial CORDIC operations.

According to (6.1]) and , the results of the rotation-mode CORDIC computation

are the cosine z,, and sine y, of the input angle z,y. In particular, by setting:
Yo=20 (6.3)

the equations in (2) are reduced to:

T, = A, cos zy

6.4
Yn = Apsinzg (6.4)
and by setting:
1

where A,, = 0.6073, the rotation produces the unscaled cosine and sine of z.

6.5.3 Experimental Results

The proposed CORDIC architecture has been modeled in VHDL and simulated using
Xilinx Vivado (Figure . It has then been synthesized and implemented on a Xilinx
ZYNQ-7000 ZC702 device.

This work aims at reducing resource utilizations (e.g. hardware complexity, power
consumption, or latency) and analyzing computations accuracy of CORDIC and
approximate CORDIC architectures. Although it would be advantageous to optimize
the bigger number of speculative paths, this study solely considers limited cases of
speculative paths with regular speculative structures (i.e. identical speculative paths).
As first validation of the use of speculative arithmetic within an FPGA platform,
over a hundred ISA architectures have been considered and eight of them have been
selected. Table lists the different ISA configurations of the approximate CORDIC
implementations. The parameter value choice are based on the considered CORDIC
data width of 32 bit.

In order to quantify the computation accuracy of the approximate designs, two

metrics have been considered as in[200]. Both are built with the relative error (RE),
defined as:
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ISA configuration details
2 paths, ADD = 16, SPEC = 0, COR = 6, RED =0
2 paths, ADD = 16, SPEC =1, COR =2, RED =4
2 paths, ADD = 16, SPEC =2, COR =1, RED = 3
2 paths, ADD = 16, SPEC = 3, COR = 0, RED = 2
4 paths, ADD = 8, SPEC = 0, COR =1, RED = 2
4 paths, ADD = 8, SPEC =1, COR = 3, RED =0
4 paths, ADD = 8, SPEC = 2, COR =5, RED =0
4 paths, ADD = 8, SPEC = 3, COR =0, RED =0

||| o x| w| | —|TFk

Table 6.2: ISA configurations of the approximate CORDIC implementations

Uapproz — Ucorrect

RE =

(6.6)

Ucorrect

where Vgppror and Veorreer are the approximate and correct values of CORDIC
computation, respectively. The two metrics used are the Root Mean Square (RMS)
of the relative error (REgpys), which is a well-known accuracy estimator, and the
maximum relative error (RFEy4x), that defines the worst-case accuracy.

Figure shows the error characteristics and normalized costs of each approximate
CORDIC implementation for sine and cosine outputs. Hardware costs, normalized to
the conventional FPGA design, are expressed in terms of dynamic power and Power-
Delay-Area Product (PDAP). Despite different REgys and REjyax values between
sine and cosine computing, the error characteristics follow the same trends. The
persistent gap between cosine and sine errors is expected to come from the stimuli

angles, ranging from 0 to 45° as required by the tactile data processing application.

Figure 6.4: Normalized costs and relative errors for both sine and cosine computa-tions of the
approximate CORDIC implementations.

Approximate circuits in the CORDIC design allows a dynamic power consumption
saving up to 40 % and a general improvement of PDAP of 58 % at the cost of low
errors with RERps of 0.049 % for sine and 0.003 % for cosine computations. Though,
some designs, as # 5 and # 6 display both bad accuracy and hardware characteristics,
showing that small 8-bit ADD combined with low SPEC size does not provide a
good enough addition for the convergence of the CORDIC. Configurations with 16-bit
ADD blocks have lower circuit costs than 8-bit ones, this result contradicts the ASIC
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intuitive results in [200], this is due to FPGA’s fixed LUT architecture. In effect, some
ISA architectures might fit better the LUT implementations and interconnections to

minimize their required number or delay.

6.6 Conclusion

Approximate computing has become a major field of research in the sense that it could
significantly improve energy efficiency and performances of modern digital circuit. To
date, many approximate techniques have been presented in the literature.

Inexact and approximate circuit design is a radical approach to trade this coun-
terproductive quest for perfection for substantial gains in power, speed, and area.
The primary challenge, however, is to determine where and how to let an error or an
approximation occur in the circuits without compromising the functionality or the
user experience. With ever-increasing amount of data being processed, a wide variety
of applications could tolerate inaccuracies. For example, in multimedia processing, a
small proportion of errors is not perceptible to humans, and in highly computational
algorithms such as data mining, search or recognition, the outcome is not required to
be a single result but an adequate match. A promising approach to design inexact
circuits is to use speculation to trade circuit accuracy for better power and speed.
Taking advantage of such circuits would help to realize extremely energy-efficient and
high-performance DSPs and hardware accelerators at lower integration cost and with

higher speed, data rate or duty-cycling.

This chapter has proposed a first attempt of approximate Coordinate Rotation
Digital Computer (CORDIC) implementation on FPGA using Inexact Speculative
Adders (ISA). The use of speculative arithmetic has allowed high performance and
efficiency improvements of the CORDIC module, with up to 40 % power consumption
reduction and up to 21 % delay reduction, offering overall cost reduction of up to 58 %.
The approximate CORDIC has been characterized by its relative arithmetic error,
showing negligible average and maximal errors, i.e., RMS relative errors being only
0.003 % for cosine computations and 0.049 % for sine computations.

This first FPGA implementation of approximate CORDIC, sub-task of the compu-
tationally expensive SVD required in tactile data processing, represents a successful
preliminary investigation of approximate computing for real-time embedded prosthet-

ics.
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Chapter 7

Approximate Arithmetics for
Hardware Implementation

7.1 Introduction

Before presenting the results achieved by implementing an approximate computing
technique called Tunable Floating-Point (TFP), this technique is briefly outlined. The
first section contextualize the general framework in which the herein presented project
was developed. Furthermore, it better motivates the constraints and requirements of
the hardware implementation.
In this chapter, two different algorithms have been exploited to evaluate the novel
Tunable Floating-Point, reducing power consumption while still producing acceptable
accuracy of results both algorithms.

The results presented in this chapter were published in [234,235]. The candidate
contributed to the published work by:

e Implementing the TFP technique in the tested algorithms at software and

hardware level.
e Analyzing data.
e Considerations and conclusions.

In the last years, approximate computing has been undergoing a rapid growth as a
promising approach to energy-efficient design of digital systems in a wide spectrum of
domains ranging from digital signal processing, to robotics and machine learning. By
relying on the ability of many systems and applications to tolerate some loss of accuracy,
approximate computing techniques achieve improved energy efficiency. Approximate

computing encompasses a broad spectrum of techniques that relax accuracy to improve
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efficiency: both at hardware and software level (e.g. skipping computations, voltage
overscaling, loop perforation, and quality-scalable or approximate circuits [201},208]).
Moreover, there are some studies that combine multiple approximation techniques[236].

Machine Learning (ML) is arguably the hottest application field for arithmetic
processors. ML algorithms execute a large number of operations, predominantly
multiplications and additions, and require dedicated hardware to accelerate the
execution.

Due to the huge size of the datasets to process in ML, the processing time and the
energy necessary is very large [237]. To increase the power efficiency, one idea is that
the computation migrates from double-precision (binary64 in IEEE 754- 2008 standard
[238]) to single (binary32) and half (binary16) precision. In [239], Nurvitadhi et al.
report the precision scaling trend is particularly suitable for FPGA-based accelerators.
A big advantage of FPGA-based accelerators is that the hardware can be tailored
exactly to match the requirements of the application.

Previously, Nannarelli implemented multi-precision multipliers to increase the
power efficiency of on-chip accelerators [240]. Then, the author addressed the design
of an on-chip accelerator with Tunable Floating-Point (TFP) precision in [241]. That
is, the precision of operands and results can be chosen for a single operation by
selecting a specific number of bits for significand and exponent in the floating-point
representation.

Numerous studies also report that employing different data formats in Deep
Neural Networks (DNNs), the dominant Machine Learning approach, could allow
substantial improvements in power efficiency considering an acceptable quality for
results. As high classification accuracy comes at expenses of significant computation
cost (area/time/energy) in DNNs [237], it may be advantageous to trade computational
throughput for accuracy/quality. For example, in image processing, due to the limited
perceptual capability of humans, occasional errors such as dropping a particular frame
or a small image quality loss often rarely affect a users satisfaction. The precision and
the data format requirements depend on the computation phases/workloads in DNNs.
The training phase presents numerical challenges as it typically contains millions of
parameters that are usually trained iteratively over a vast amount of data. In contrast,
in the inference phase, input data have to go only once through the network and the
required precision is usually lower than in the training phase [237].

Traditionally, neural networks (NNs) are trained in double or single-precision, a
common practice in general scientific computing. However, to reduce the execution time

(especially in memory transfers) and to increase the energy efficiency, the computation

110



is migrated from double-precision (binary64: 53-bit signiﬁcandﬂ, 11-bit exponent) in
IEEE 754-2008 standard [238], to single (binary32: 24-bit significand, 8-bit exponent)
and half (binary16: 11-bit significand, 5-bit exponent) precision.

Recent developments suggest that more efficient data formats could allow savings
in power consumption at the cost of reduced precision in the results. Google has
already made its way into production hardware with the Tensor Processing Unit
(TPU) |242] designed for inference. The TPU supports the Brain-FP format consisting
of 8-bit for the significand and 8-bit for the exponent. Moreover, some studies show
that it is possible to achieve dramatic reductions in bit width from 32-bit all the way
down to one bit (i.e., binary networks [243]).

Nvidia included Tensor cores specifically designed for ML in their latest generation
of GPUs [244]. Each Tensor core can perform fully parallel 4x4 matrix multiplication
on binaryl6 operands to produce binary32 results.

Intel introduced the “Flexpoint” format for deep learning with the aim to replace
the training done in binary32. The Flexpoint format is a blocked fixed-point format for
tensors (matrices) consisting in a block of 16-bit significands sharing a 5-bit exponent
[245].

7.2 Motivation

To thoroughly comprehend the advantages of the TFP precision, an example reported
in [241] has been considered.

Nannarelli illustrated that the TFP unit is more power efficient than the binary32
one, for multiple operations in reduced significand precision (m < 24).

The experiment consisted in testing single and multiple multiplications. The operands
exponent, e, has always been set to 8, instead of the operands significand m which

was equal to 24,20, 16, 14,11, 8, 6. In particular, the test cases were:
1) Multiplication Z = X x Y.
2) Multiplications (two) Z = (X xY) x W.

The results for the total average power dissipation are reported in Table and
the trends are shown in Figure [7.1] The performance of the TFP-mult is almost the
same for the two test cases, the plots are almost completely overlapped in Figure

(squares).

Tt includes the integer bit. Significands are normalized in [1.0,2.0) in IEEE 754.
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Pve Z=XxY Z=(XxY)xW

m  TFP-mult b32-mult ratio TFP-mult b32-mult ratio
24  15.51 14.24 1.09 15.72 14.42 1.09
20  14.19 12.89 1.10 14.26 16.63 1.05
16 11.14 10.26 1.09 11.10 11.86 0.94
14  10.17 9.42 1.08 10.09 11.26 0.90
11  &8.58 7.91 1.08 8.54 10.28 0.83
8  6.05 5.67 1.07 5.98 8.52 0.70
6  5.08 4.72 1.08  5.07 7.36 0.69

Table 7.1: Average power dissipation for TFP-mult and b32-mult (RTN) [241].
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Figure 7.1: Trends of average power dissipation for comparison TFP-mult vs. b32-mult [241].

The trends show that if the number of multiplication increase the average power
dissipation drastically drops decreasing the significand number bit for the multiplication
operands. This behaviour begins to be distinct by the cross-over of the red/blue curves
in Figure[7.1]at m ~ 18, and by the ratios < 1.0 in Figure[7.1] Therefore, implementing
the TFP precision into very complex algorithms can make the computations more

power efficient.

7.3 Tunable Floating-Point

The floating-point representation of a real number z is

r=(=1)% .M, bb rER
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where S, is the sign, M, is the significand or mantissa (represented by m bits), b is
the base (b = 2 in the following), and £, is the exponent (represented by e bits). The
representation in the IEEE 745-2008 standard [238] has its significand normalized
1.0 < M, < 2.0 and biased exponent: bias= 2¢"! — 1.

The dynamic range, defined as the ratio between the largest and the smallest (non-zero

and positive) number [246], for binary floating-point (BFP) is defined as:
DRppp = (2™ —1)-2271. (7.2)
For example, for binary32 (single precision, m = 24, e = 8)
DRyso = (224 — 128 1~ 9.7 x 10% (7.3)

which is much larger than the dynamic range of the 32-bit fixed-point representation:
DRpxp = 2% — 1~ 4.3 x 10° [246].

The Tunable Floating-Point (TFP) representation is a floating-point (FP) rep-
resentation with arbitrary number of significand’s and exponent’s bits: m and e,
respectively. Dynamic ranges are only considered from and below the binary32 repre-
sentation. These ranges are suitable for signal processing and ML applications. We
support significand’s bit-width from 24 to 4 and exponent’s bit-width from 8 to 5.

Table [7.2] shows the dynamic ranges for some TFP cases.

m e DR Sﬁﬁ*ge comment

24 8 9.7x10% 32 binary32

11 8 1.2x10% 19

4 8 8.7x107 12

24 5 3.6 x 10 29

11 5 4.4 x10' 16 binary16

4 5 3.2x101° 9

8 8 1.5x10™ 16 Brain-FP [242L
16 5 1.4x10" 16 Flexpoint [245] |

16 65,536 16 16-bit FXP

* It includes the sign bit.

Table 7.2: Dynamic range for some FP formats.

By comparing TFP with FXP ranges in Table [7.2] the main advantage of FP over
the fixed-point (FXP) representation is that the dynamic range is much larger than
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the FXP for similar bits of storage. This is true especially for multiplication where the
dynamic range increases quadratically. As for the significand’s precision, the optimal
bit-width depends on the application.

The TFP representation is normalized to have the conversions compatible with
the IEEE 754-2008 standard [238]. Therefore, the implicit (integer) bit is not stored.
Subnormals are flushed-to-zero in TFP. numbers when the exponent is less than
~(Ermaz — 1).

As for the rounding, TFP supports three types:

- RTZ Round-to-zero (truncation);

- RTN Round-to-the-nearest where half ulp (unit in the last position) is always
added before the rounding.

- RTNE Round-to-the-nearest-even (on a tie) which is the default mode roundTiesTo-
FEven in IEEE 754-2008.

7.4 TFP Units

The algorithms and implementations for TFP addition and multiplication are not too
different from those for FP operations. The main challenge to implement the adder
and multiplier in TFP is to perform the rounding in a variable position.

For FP operations rounding, few additional fractional bits, called guard bits, are
necessary to perform the different rounding modes. In particular, the guard bits are
labeled as: G for guard, R for round, and T for sticky. These additional bits are
arranged in the significand after the last bit (LSB), L, as Figureshows. Considering
FP operations (Figure , using the RTZ allows to truncate a value at bit L. For
RTNE, after adding 1 in position G the correction of the bit in position L is needed
if there is a tie. Namely, L = 0 if G(R+ T)’ = 1. Implementing the RTNE, first the
round value rnd is evaluated as rnd = G(L + R+ T'), and then the rnd bit is added
to the representation of X.

The main challenge to implement the adder and multiplier in TFP is that the
rounding must be done in a variable position, namely extracting the L, G, R and
T in variable positions. To do so, additional hardware has to be used. A bit-vector
called Rounding Word (RW), in which all bits are zero except the one in the rounding
position, is exploited. A simple decoder generate RW depending on m. In Figure [7.4
two example scenarios for m=24 (binary32) and m=21 are illustrated. The figure

shows the result S and the rounding position (bit of weight 224 for m=24) marked by
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Figure 7.2: Representation of the significand m: f fractional bits; L last bit; G guard bit; R round
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Figure 7.4: Rounding in variable position for m = 24 and m = 21. RW holds the position of the
rounding bit, marked as e

e in RW. Besides, a mask that is generated by the decoder has also to be added in
the m-MSB to zero the m LSBs of the product. This mask can be generated by the

decoder. For example for m = 11:

RW: 0000 0000 0001 0000 0000 0000
MASK: 1111 1111 1110 0000 0000 0000

More details are given in [241].
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7.4.1 TFP Multiplier

The architecture of the TFP multiplier (TFP-mul) is sketched in Figure [7.5] The
significand and exponent bit-widths m(= 5) and e(= 2) can be selected for the single
operation by setting a 7-bit value in a control register.

The significand path consists of a radix-4 multiplier array with product in carry-
save format (Pg, Pr) followed by rounding and normalization blocks. The rounding
is performed speculatively and in a variable position by selecting a rounding word
(RW) depending on the precision m required. The exponent path is depicted at left in
Figure More details are given in [241].

X Y
+ 24 + 24 + 5
r
Radix—4 |de°°d° l
Multiplier 24 23
Array
PS PC
47 47 RW
Speculative
Eots OVF Rounding
23 P1 %23
P2 )( MASK

1 masked 2:1 mux 0 /;

Figure 7.5: Architecture of TFP-mul.

7.4.2 TFP Adder

The architecture of the TFP adder (TFP-add) is derived from the “double-path”
scheme of [246], and it is sketched for the significand path in Figure[7.6] Depending
on the effective operation (addition or subtraction) and the exponent difference the
operation is performed either in the “close” (at left) or the “far” (at right) path.
Simililarly to the TFP-mul, a decoder provides the rounding word and the mask to
implement the TFP operation.
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24 24 5
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diffl mux
FI‘W expDiff 24 23
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Add & Round Right-Shift
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LOD
° Left-Shift Add & Round
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MASK
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23 000...000
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J[zs
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Figure 7.6: Architecture of TFP-add (significand only).

7.4.3 Hardware Implementation

For the implementation of the TFP multiplier and adder a 45 nm CMOS library of
standard cells by using commercial synthesis and place-and-route tools (Synopsys)
has been chosen.

A target throughput of 1 GFLOPS for the single TFP multiplier and TFP adder
has been set. To reach this target, the architecture of Figure and Figure must
be pipelined in two stages, with pipeline registers indicated by the horizontal blue
lines in the corresponding figures.

For the power dissipation, traces (TFP vectors) have been generated from the
simulator (see Section by extracting the actual operands multiplied or added in
the tested algorithms, and post-layout simulations through Synopsys VCS has been

run for several cases.

7.5 TFP Simulation

Implementing a simulator to profile the applications and determine the acceptable
precision and dynamic range was a fundamental step. A first version of the simulator
consists in a library of C functions implementing TFP operations. The supported

operations are: addition/subtraction, multiplication, division and square root. Each
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operation is implemented with a standard FP algorithm by limiting the computation
of the significand bits to m and by applying the specified rounding mode. However, all
operands and results are rendered in double-precision (double) in C. Therefore, it is
necessary to trap the cases when the unbiased 11-bit exponent exceeds the maximum
e-bit exponent generating an infinity exception, and flushing the double to zero, when
the unbiased 11-bit exponent is less than the minimum e-bit exponent. In the first
version of the simulator, the algorithm under test is coded in the C main program
by invoking the TFP operations with arbitrary m, e. Each operation may have a
different m, e, i.e., precision and dynamic range can be changed in different parts of
the algorithm. The simulator also executes the algorithm under test in double and
provides the error in key points. Moreover, by setting a debug option, the error can
be displayed for each TFP operation. Moreover, the simulator generates TFP vectors

(either in format binary32 or binary16) to be used to test the hardware implementation.

7.6 TFP for Deep Learning

Deep Neural Networks has emerged as the dominant Machine Learning (ML) algo-
rithm showing remarkable success in many challenging application domains as image
processing, speech recognition, and machine translation|247,248].

Neural networks (NN) can be considered a simulation of the human nervous system.
The human nervous system is composed of cells, referred to as neurons. Biological
neurons are connected to one another at contact points, which are referred to as
synapses. Learning is performed in living organisms by changing the strength of
synaptic connections between neurons. Typically, the strength of these connections
change in response to external stimuli. As in the case of biological networks, the
individual nodes in artificial NN are referred to as neurons. These neurons are units
of computation that receive input from some other neurons, make computations on
these inputs, and feed them into yet other neurons. The computation function, called
activation function, at a neuron is defined by the weights on the input connections
to that neuron with an additional bias. The NN is also defined as a mathematical
model that consists in a set of layers: input, hidden and output layers. An input layer
represents a training or inference data set, a hidden layer generates computations and
transfers information to the output layer that produces the results. If a NN consists
in many hidden layers, it is called Deep Neural Network (DNN).

These models typically contain a very large number of parameters (weights w; and

bias terms b;) and are usually trained iteratively over vast amounts of data. The NN
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Figure 7.7: Neural network structure.

structure can be represented as in Figure [7.7] The training phase consists of feeding
data to the network, forward propagating through the whole network, estimating
whenever incorrect predictions are made by comparing predictions with ground truth
(i.e. a target for the NN), computing and back-propagating weights through the
network to minimize the error of incorrect predictions. At the beginning the error
(defined as cost function) has a high value, then the neural network training adjusts
the parameters of the neural network in order to attempt to minimize the value of
the cost function step by step. The gradient descent algorithm has been chosen to
reduce the error value. The gradient descent is an efficient optimization algorithm
that attempts to find a local or global minima of a function and, in NN, enables a
model to learn the gradient or direction that the model should take in order to reduce
differences between actual Y and predicted ¥ (Figure .

E A

initial E|--A\------=-—------

gradient l
descent
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weights  weights
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Figure 7.8: Gradient Descent Algorithm in Neural Network.
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An epoch is defined as a full pass over the entire training data set. While the NN
training can require hundreds of epochs before reaching the final parameter values,
the inference phase consists of a single pass over the entire network. After training,
the optimal parameter values are computed and the model is ready to classify new
input data.

Figure [7.7 represents as the first stage in a NN starts by training a model to learn
to predict outputs from some inputs, and then as the second stage deploys that model

to predict outputs from a novel input data set.
Hence by changing these weights appropriately, the computation function can be

learned, which is analogous to the learning of the synaptic strength in biological neural
networks. The ”external stimulus” in neural networks for learning these weights is
provided by the training data. The key to the effectiveness of the neural network
is the architecture used to arrange the connections among nodes. A wide variety of
architectures exist, starting from a simple single-layer perceptron to complex multi
layer networks. Neural Networks are networks of several interconnected units with a
simple behaviour, most often without memory and capable of a simke input-to-output
transformation.

The function of a node that defines the output of that node, or "neuron,” given
an input or set of inputs has called activation function. In NN, the most common
non-linear activation functions are: (i) step function, (ii) logistic or sigmoid, and (iii)
the Rectified Linear Unit (RELU). Figure [7.9| schematically illustrates these activation
functions. Nowadays, RELU is very popular as it allows a easier learning for a NN.
For this reason, RELU has been used as activation function in part of the study that

have been conducted.

STEP FUNCTION SIGMOND /

RelU

Figure 7.9: Example of activation functions.
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7.6.1 Training in TFP

Figure [7.10| shows the architecture for the two-hidden-layers NN, which has been
considered as reference example to illustrate the properties of TFP. Moreover, a data
set corresponding to a cosine-trend curve with 200 points have been chosen (see
Figure . The goal is to interpolate the function approximating the distribution of
the points.

The conducted study shows the approximation errors, that depend on selecting
a specific precision for the significand in the floating-point representation, for the

training and inference stage of a NN. Results for NN training are presented.

input layer hidden layer 1 hidden layer 2 output layer

n

.
p0; = RELU (Z wx + b,~> p1; = RELU (Z wix; + b,)
i=1

j=1

Figure 7.10: Neural network with two hidden layers (depth=2).

binary32 —

binary16 ——

Figure 7.11: Training: interpolated functions by NN of Figure

Table reports the training for the test case cosine for several TFP precisions.

The table lists the approximation relative error (€,,) obtained at the given epoch,

121



m €| €we €poch  Ngp | FPogd Pouw  Piot ratio
24 8(0.13 212 6,127|5.84 13.99 19.83 1.00
20 8(0.13 229 6,618|5.59 12.35 17.94 0.90
16 8]0.13 214 6,188(5.24 10.44 15.68 0.79
14 8(0.19 5 145]15.02 9.68 14.70 0.74
11 5/0.12 5 145(4.70 8.77 13.47 0.68
9 5(0.27 9 258(4.48 7.69 12.17 0.61
7 510.27 4 115(4.27 7.07 11.34 0.57
5 510.27 3 86(3.99 6.13 10.12 0.51

x10% | P,y [mW] measured at 1 GHz.

Table 7.3: Average error and average power dissipation for TFP training.

the number of the TFP operations executed, the average power dissipation (at 1 GHz
for addition, multiplication and total), and the ratio among the total dissipated power

for all the considered TFP precisions. The €,,. has been defined as:
|0 — o] (7.4)

where v and v are the approximate and binary64 values of the NN computation,
respectively.

The trends in Table show that the power dissipation drops linearly as m is
scaled. Scaling m in the NN allows to achieve a good power efficiency as a reduction
up to 30 % and 50 % is reached comparing m=24 with m=11 and m=5, respectively.
Table also shows that the operands precision has an impact on the convergence
rate. For cosine training, the binary32 smallest error is obtained for a large epoch.
From m = 14 the NN converges very rapidly at epoch 5, and for binaryl6 we obtain
the lowest error. Figure shows the curves approximated for the case of binary32
(212 epochs) and binary16 (5 epochs). The reason for this behavior is that, when m
and e are reduced, small numbers are flushed to zero causing a sort of pruning in
the NN. A lower precision may lead to faster convergence, but also to an excessive

pruning resulting in the NN not converging.

7.6.2 Error Characterization

The neural network of Figure is used to interpolate the function describing the
distribution of the training points. Since for the test case of Figure the function
generating the training points is known, the error can easily be evaluated.

The approximation error is the error due to approximation done by the NN.
Referring to Figure [7.12] assume there are a number of points (dark “+” in the
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Figure 7.12: Approximation error for NN interpolated function.

figure) and we want to detect which ones are within a given distance from the ideal
function/curve. This region is delimited in Figure by the blue lines, and the
points which fall in the region in the ideal case of the generating function are marked
with a green “x” (120 points).

However, when repeating the inference with the NN interpolated function (curve
in magenta), a different set of points, marked with a red “«” in Figure lies within
the given distance (129 points). By analyzing the results of the experiment, the points
correctly identified by the NN lying in the region are 97, i.e., the intersection of the

green and red sets. The miss-classified points are:
e 23 green x which are inside the region, but not detected by the NN;

e 32 red x which are detected inside the region by the NN, but they are actually

outside.

In addition to the approximation error, there is also the quantization error due
to the reduction in the precision of the operations. By repeating the experiment of
points lying in the given region for different TFP precisions, the obtained results are
reported in Table[7.4] In this case the reference set is the one obtained for inference
with binary32 precision.

In Table the column marked (* N x*) shows the points detected correctly for the
given precision with respect to binary32; the column marked () reports the points
lying in the region for binary32, but not detected in the given precision; the column
marked (*), vice versa, reports the points detected in the region for the given precision,

but which are outside the region for binary32.
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m e Npror (xNx) (x) (%)
24 8 binary32 129 - - -
20 5 129 129 0 0
11 5 binaryl6 128 127 2 1
95 129 127 2 2
8 8 Google BFP| 131 124 5 7
85 131 124 5 7
75 132 121 8 11
6 5 129 116 13 13
55 129 97 32 32

Table 7.4: Quantization error for different TFP precisions.

The results of the error evaluation done for this specific example, show that even a
small variation in precision may lead to a sizeable increase in the overall classification
error. Therefore, finely tuning the precision, as in TFP, may significantly improve the

results of NN inference with respect to fixed-precision formats.

7.6.3 Advantages of TFP for Deep Learning

The novelty of TFP format is its flexibility. To prove the flexibility advantage studies
have been conducted on the inference phase as the inference usually requires lower
precision than the training phase [237].

A NN with two hidden layers needs three different parameter levels (0, 1, 2).
Consequently, weights and bias terms has been divided in w,;°, wj;', w;* and b;°, b;!,
b? (Figure . The precision of parameters has been reduced depending on the level
belonging to. Each parameter level has been varied by selecting a specific number of
bits for significand among 16 or 8 fixing e = 8 in the floating-point representation.
The flexibility of the employed TFP format for significand has been reported in the
Table [7.5] together with results.

Results obtained by using binary32 representation have been also included for
comparing with the chosen TFP precision. Table|7.5{depicts the quantization error with
respect the different TFP precisions, and also shows which parameters configurations
can be more power efficient.

The maximum results quality and minimum dissipated power are achieved when
m® m', m? = 16,8, 8. These precisions allow to reduce power dissipation by 30% (ratio
= 0.70) and to detect correctly 98% (127/129) points respect to binary32. Instead,
the largest power reduction (40%, ratio= 0.60) is reached by exploiting the lowest
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m® m' m?| Npror (N0 %) (%) (%)| Pada P P,; ratio
24 24 24| 129 129 6.02 14.80 20.82 1.00
16 16 16| 129 125 5.31 11.32 16.63 0.80
16 16 8 127 125 4.83 10.37 15.20 0.73
16 8 16| 127 125 4.94 10.91 15.85 0.76
16 8 8 129 127 4.52 9.99 14.51 0.70
8 16 16| 126 123 5.16 9.68 14.84 0.71
& 16 8 125 120 4.68 8.59 13.27 0.64
& 8 16| 126 123 4.75 9.20 13.95 0.67
&8 8 8 128 123 4.36 8.21 12.57 0.60
P.,e [mW] at 1 GHz.

OO O N
G O W NN NN

Table 7.5: Quantization error and average power dissipation for flexible inference (e = 8).

precisions (i.e. m®,m!', m? = 8,8,8). For the given precisions only the 95% (123/129)

points respect to binary32 are correctly detected.

7.7 TFP for Embedded Machine Learning

The current challenge of the development of an embedded and real-time system for
Machine Learning (ML) data processing relies on the efficient implementation and
power requirements. An example would be prosthetic applications. ML paradigms [55,
177,]179,181] have been used to retrieve information about object contacts as they are
powerful methods for tackling clustering, regression or classification problems. ML
algorithms execute a large number of operations, mainly multiplications which are the
most power demanding arithmetic operations. In order to increase the power efficiency
in processing ML algorithm, new design dimensions and tradeoffs need to be explored.
In this context, many quality-scalable [201] or approximate circuits [227] have been
presented in the recent years.

This section presents the implementation of the TFP representation [249] in the
Singular-Value Decomposition (SVD) algorithm based on One-Sided Jacobi, as SVD
is the most computationally expensive algorithm for ML approaches that has ever

been considered [199] for real-time tactile data processing.

7.7.1 SVD Algorithm

The singular-value decomposition (SVD) factorizes a real m x n matrix M into a
product with the form:
M=USV?* (7.5)
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Algorithm 1 Matrix M Symmetrization Algorithm.

/*¥If M satifies condition nrow # ncol = Mymm = M©T s M*/
for i=1 to ncol do
for ii=i+1 to ncol do
for j=i+1 to nrowl do
tmp = tmp + M[j][i1*M[j][ii];
end for
Msymm [i] [ii]l= tmp;
tmp = 0;
end for
end for

Algorithm 2 Jacobi Rotation Algorithm.
for i=1toi < jdo

for k=1 to ncol do
t = Ags;
Ap; = tcos - Ap;sind;
Apj = tsinf + Ayjcost;
end for
end for

where U is a m x m orthogonal matrix (UTU = I,,), S is a m x n rectangular diagonal
matrix with non-negative numbers on the diagonal, and V' is an n X n unitary matrix
(VIV = 1I,). The column elements of U and V matrices correspond to the left-singular
and right-singular vectors of M, respectively. Instead, the diag(cy,,0,.;) elements of
the S matrix are the singular values of M.

Despite different SVD algorithms exist, the most practical algorithm is based on a
Jacobi algorithm [192]. In this work, the One-Sided Jacobi algorithm that calculates
eigenvalues of a symmetric matrix has been considered.

The first step is to compute the product MM to symmetrize the matrix M. Then,
the One-Sided Jacobi algorithm applies a sequence of rotations to Mgy, in order
to reach the diagonal matrix S. Considering Mgy, as the m x m matrix Ay, the
Jacobi algorithm produces a sequence A;, A, which eventually converges to a diagonal
matrix with the eigenvalues on the diagonal [14]. A;,; is obtained from A; by the

transformation given by the formula
Ai—/—] = J<Zvj’ Q)TAZJ(Z7.77 6) (76)

where J(i, j,0) is a Jacobi rotation. The Jacobi rotation J(i, 7, 6) (eq. 3) is introduced,
for an index pair (4, 7) and a rotation angle 6, as a square matrix that is equal to the

identity matrix I plus four additional entries at the intersections of rows and columns
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1 and j. The Jacobi rotations are calculated on every 2 x 2 matrix to annihilate the

off-diagonal terms of A,.

(7.7)

71, ,6) = (COSH —sm@)

sinf cos6

The symmetrization and the Jacobi rotation operations are described in Algorithm

1 and 2, respectively.

7.7.2 Simulation and Results

In order to implement the TFP simulator (in Section , the SVD algorithm based
on One Sided Jacobi method (OSJ) has been coded in the C main program. The
TFP operations with arbitrary m, e have been invoked in the operation reported in
Algorithm 1 and 2. Each operation of addition and multiplication had a different m, e,
i.e., precision and dynamic range could be changed in different parts of the algorithm.
Figure shows the simulation flow. The symmetrization (SYMM) of Algorithm 1,
and the Jacobi Rotation (JR) of Algorithm 2 are implemented in TFP in the simulation.
The simulator executes the algorithm in both double and TFP, and provides the error
in key points (SYMM and SVD). Moreover, by setting a debug option, the error can
be displayed for each TFP operation.

SVD
double double double

| | symm > OS] | jr
M
m x n matrix double

TFP
|_. TFP R 0S)

SYMM JR
TFP SVD

Figure 7.13: Simulation flow: SVD and TFP-SVD.

Multiplication is the operation that occurs more frequently in the analyzed SVD
algorithm. In particular, the JR method consists of four multiplications, one addition
and one subtraction, and is that these operations are repeated for multiple rotations.
The number of rotations depends on n, the dimensions of the matrix which has been
rotated, and n;rgg, the necessary iteration number to reach the diagonal matrix S
through the OSJ.
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As the JR have been defined as n(n — 1)/2 transformations of the matrix which
has been rotated, the crucial point of the OSJ algorithm is the stopping criteria, the
convergence. If the OSJ iterations are stopped too early, the required accuracy may not
be reached. In contrast, if the iterations are stopped too late, unnecessary operations
would have been done increasing time and energy consumption. One criteria could be
the evaluation of how close to zero are the off-diagonal elements of the original matrix.

The simulations have been run on a 15 x 10 matrix with fractional random elements
(input) with values in the range (0.0,1.0), and by keeping the exponent bit-width
to e = 8 and varying uniform significand bit-width to m = {5,7,9, 11, 14, 16, 20, 24}.
Specifically, a 15 x 10 matrix has been considered since sensors in [?] have the same
size.

In Figure and Figure the average errors occurring in the SVD algorithm
are reported under the three rounding modes: RTZ (blue), RTN (black), and RTNE
(red).

Figure[7.14]shows the average error of the SYMM (dashed lines) and JR (continuous
lines) algorithms when the TFP-precision has been used on each algorithm individually.
Focusing on the average errors of the SYMM (addition and multiplication operations)
(Figure dashed lines), the RTZ leads to almost an order of magnitude larger error
(i.e., factor 10, the scale is logarithmic on the y-axis). The RTZ also leads to a larger
average error in the JR algorithm (Figure continuous lines), for m > 9 especially.

The error difference for RN and RTNE is very similar. Figure shows that
for the RTN and RTNE simulations the average error with respect to the double-
precision simulation is below 1% for m = 7. This error is probably acceptable for
many applications including the prosthetic.

In Figure [7.15] the comparison between the whole SVD algorithm (based on OSJ)
with double-precision and with TFP precision, where TFP-precision has been used for
the SYMM and JR operations, has been analyzed. In particular, the average errors
have been obtained by observing the errors between final V' matrices for the SVD and

TFP-SVD, respectively, when the algorithms reached the convergence point.
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Figure 7.14: Average error for SYMM (dashed lines) and JR (continuous lines) algorithms under
TFP rounding modes.
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Figure 7.15: Average error for SVD algorithm under TFP rounding modes.

The overall average error are slightly larger than the errors obtained after the
TFP-SYMM. This is due to the fact that the errors computed at the JR level included
also the TFP symmetrization errors. Figure depicts that for the RTN simulations
the average error with respect to the double-precision simulation is below 1% for
m =9 and for RTNE simulations is below 1% for m = 11. Also in this analysis, the
RTZ results to be the worst rounding mode.

Simulations were also repeated for exponent bit-width e = 5 and the result in
errors were almost identical. As consequence, for this range of operands and operations
the error mostly depends on the significand precision.

In all the simulations illustrated (double- and TFP- precision), eight was the
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iteration number (n;rpg) in order to respect the convergence criteria and annihilate
only the upper off-diagonal elements of the rotated S matrix. Regarding the total
number of JR (ngor), in SVD and TFP-SVD algorithm the average ngor were 235
and 230, respectively. As there is almost no difference between the obtained ngor
and the goal of this work is reducing power at the cost of accuracy results, another
convergence criteria has been implemented. The new criteria has been defined by
stopping SVD algorithm when the upper off-diagonal elements of the rotated S matrix
are less than certain values (i.e. 27 - 26). In Figure[7.15, the trend of the average
errors obtained by comparing SVD and TFP-SVD under the RTN mode for the three
different convergence criteria (black and grey lines) has been depicted. Despite the
number of iterations did not apparently change significantly in SVD and TFP-SVD
algorithm (i.e. from 8 to 5), the variation of the rotation number changed considerably.

As the multiplication is the dominant operation in the considered algorithm, only
the TFP multipliers have been estimated. Besides, the clock frequency was set to 100
MHz since the application target is a low-power embedded system.

Figure depicts the results for the average power dissipation. The trends show
that the power dissipation drops linearly as m is scaled. Using TFP multipliers allows
power efficiency reductions up to 50 % and 70 % compared to binary32 with m=11

and m=>5, respectively.
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Figure 7.16: Average power dissipation (mW) for TFP multiplier at 100 MHz.

Figure illustrates an estimation of the energy for the JR (i) when the TFP-
SVD convergence is to 0 (grey bars), (ii) when TFP-SVD convergence is to 2710 (yellow
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bars) and (iii) to 2% (brown bars). The energy to perform the JR required in the OSJ
algorithm is defined as:
Ejr = Puve - tyur -4 - nror (7.8)
where P, is the average power for each m expressed in Figure [7.10] ¢y, is the
multiplier latency (20 ns), 4 indicates the number of multiplications in each JR, and
the ngor values are reported in Table [7.6, Figure shows a persistent gap among
the TFP-SVD convergence to 0, to 2°1° and to 2.
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Figure 7.17: Energy to perform the JR required in the OSJ algorithm.

m bits

0 | 231|236 | 238|236 | 237 | 236 | 236 | 236
27101 170 | 173 | 175 | 174 | 175 | 176 | 175 | 175
26199 | 80 | 90 | 90 | 90 | 90 | 89 | 89

conv

criteria

Table 7.6: Number of JR depending on the convergence criteria.

Observing Figure[7.15]and Figure[7.17 shows that the TFP-SVD is more convenient.
Focusing on m=9, an error of 10 could save up to 65 % of energy depending on the

chosen convergence criteria (30 % for a convergence to 271° and 65 % for 29).

7.8 Conclusion

Today power efficiency is probably one of the most relevant aspects in the design of

embedded digital systems.
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The development of embedded and real-time systems for Machine Learning data
processing is challenging (e.g. IoT) as relies on the efficient implementation and power
requirements. Machine Learning algorithms execute a large number of operations,
mainly additions and multiplications, which are the most power demanding arithmetic
operations.

In order to increase the power efficiency in processing Machine Learning algorithm,
new desing and trade-off need to be explored. Therefore, approximate computing
techniques have been investigated. In fact, approximate computing has emerged as
a promising approach to energy-efficient design of digital systems in many domains,
including digital signal processing and machine learning.

Considering Machine Learning algorithms, an interesting approach is the use of
Tunable Floating-Point (TFP) precision in computations, which allow to arbitrarily set
the precision for each operation by selecting a specific number of bits for significand and
exponent in the floating-point representation. By profiling and tuning the precision
for a given algorithm, an efficient trade-off can be achieved to allow an acceptable

target error while lowering the energy cost of computations.

This chapter has proposed the implementation of a Tunable Floating-Point tech-

nique in two different test cases:

1) Into a deep neural network with two-hidden-layers to achieve a lower power
consumption implementing Tunable Floating-Point adder and multiplier. The
TFP-unit worked at different precisions in the two phases of training and
inference of neural networks by simply setting the required precision of operations.
Experiments showed that TFP may (a) significantly improve the results of NN
inference with respect to fixed-precision formats, and (b) be used in a novel

flexible mode to save more power at cost of reasonable errors.

2) Into a Singular Value Decomposition algorithm based on One Sided Jacobi
method implementing the Tunable Floating-Point multiplier. The use of Tun-
able Floating-Point representation has allowed high performance and efficiency
improvements of the SVD, with up to 57 % power consumption reduction and
up to 65 % energy, at the cost of a negligible 1% average error, in the specific
case m=9 and e = 8. This TFP implementation into the SVD algorithm is
sub-task of the computationally expensive Machine Learning algorithm used in
tactile data processing [199], and represents a successful investigation of TFP

for real-time embedded prosthetics.
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Part 1V

Outlook and Conclusion
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Chapter 8

Outlook and Conclusion

This thesis presented an electronic skin system to close the loop in prostheses, restoring
the sense of touch in prosthesis user.

Apart from a single recent example [3], none of today's prostheses have purposely
designed sensory feedback. Integrating an advanced distributed sensing (electronic
skin), electronic system for (a) signal conditioning, (b) data acquisition, and (c) tactile
data processing and stimulation system into a myoelectric prosthesis would allow
closing the prosthesis control loop by providing sensory feedback to the user.

A prosthetic system that not only responds to the control signals provided by the
user, but also transmits back to the user the information about the current state of
the prosthesis fosters the prosthesis embodiment and utility. It is an important step
towards improving the quality of life of people with limb amputation and key point in
research on active prosthetics.

In particular, this work showed a tactile feedback system, allowing the communi-
cation of a mechanical interaction from the electronic skin to prosthesis users, and the
dedicated implementation of algorithms for processing tactile data originating from

the e-skin.

In moving toward the new concept for prosthesis capable of being implemented
for long-term use, the concept of providing natural, physiological feedback must be
considered. As many systems proposed in literature require training and sensory
adaptation to interpret signals |101], an additional processing of information could
increase the cognitive load and could have the potential to negate one of the largest
benefits of sensory feedback reducing conscious attention. It is important to develop
sensory feedback systems reporting the naturalness of measured sensations as well as

the amount of cognitive burden required.
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Attempting to mimik the naturalness of a sensation, a system was implemented to
directly transmit mechanical information from a multi-point tactile sensor to the human
subject by using multichannel electrotactile stimulation. The system was evaluated
by assessing the ability of the human subjects to perceive the properties (shape,
trajectory, direction) characterizing dynamic and versatile mechanical interaction with
the skin. This was the first development integrating an advanced tactile sensor with
many sensing elements and an electrotactile stimulation unit with a flexible matrix of
electrodes into an online system for the transmission of tactile data from artificial to
natural skin (forearm).

However, the current study did not yet demonstrate the utility of the proposed
technology in the real-life application, which is an important future goal. To this aim,
the next step will be to cover a myoelectric prosthetic hand with an electronic skin in

order to test the closed-loop system during functional tasks.

On the other hand, wider scenarios can open on how to give back sensor data to the
prosthesis user and how to help the human brain to successfully interpret the elicited
artificial tactile information. In fact, among open questions in prosthetics is which kind
of information - whether raw or processed data- about a touched object should be sent
back to the user. An approach is to send the sensor signals directly to the user, who
needs to meaningfully interpret this information. Alternatively, learning from robotics,
sensor data can be locally processed at the body periphery (prosthesis socket with
embedded electronics) and high-level tactile information (e.g., texture properties, grasp
stability) can be extracted and delivered to the user. Machine Learning algorithms
have been exploited to classify and interpret input touch modalities as they represent
a powerful technology for tackling clustering, classification and regression problems in
complex domains, e.g., robotics.

An essential task of an electronic skin system for the restoration of the sense of
touch is to process the tactile data and send information either to mimic human skin
or to respond to the application demands. More specifically, Machine Learning based
on Tensorial Kernal approach has been proposed to interpret touch modality in the
electronic system to close the loop in prosthetics. The computational complexity of the
employed Machine Learning algorithm has been assessed and showed that too many
resources were needed. As the requirements for a tactile data processing unit with
high-level information extraction are very challenging and still far from being achieved,
methods and techniques to reduce hardware complexity and power consumption have

been explored.
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In the last few years, approximate computing has become a major field of research
as it could significantly improve energy efficiency and performances of modern digital
circuit. Inexact and approximate technique design is a radical approach to trade this
counterproductive quest for perfection for substantial gains in power, speed, and area.
The primary challenge, however, is to determine where and how to let an error or an
approximation occur in the circuits without compromising the functionality or the
user experience. With ever-increasing amount of data being processed, a wide variety
of applications could tolerate inaccuracies.

Two encouraging approaches have been studied and implemented in the Machine
Learning for the touch modality classification. The first one uses speculation to trade
circuit accuracy for better power and speed. It was the first attempt of implementing an
approximate Coordinate Rotation Digital Computer on FPGA with Inexact Speculative
Adders. The use of speculative adders has allowed high performance and efficiency
improvements showing negligible average and maximal errors.

The second approach uses Tunable Floating-Point precision in computations, which
allow to arbitrarily set the precision for each operation by selecting a specific number
of bits for significand and exponent in the floating-point representation. As well as the
previous case, the Tunable Floating-Point representation has allowed to considerably
reduce the power consumption at the cost of a insignificant errors into the Singular
Value Decomposition algorithm.

These first implementations of the approximate techniques into the Coordinate
Rotation Digital Computer and the Singular Value Decomposition algorithms were a
sub-task of the computationally expensive Machine Learning algorithm used in tactile
data processing, and represented a successful investigation for real-time embedded
prosthetics. The next step will be to implement the approximate techniques into the
overall Machine Learning algorithm for the touch modality classification in order to
establish the maximum reduction of the computational algorithm complexity. If these
methods allow to achieve better results, the future development will be to design
an integrated circuit specific for the restoration of the sense of touch in upper limb

prosthetics.
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Appendix A

Ethical Committee Proposal

In this appendix, part of the application for the Ethical Committee approval is reported.
For brevity reasons, not all the application documents have been listed.

The Ethical Committee approval has been necessary since the stimulator device is
not a commercial product and since it directly communicates with experiment subjects
injecting current through superficial electrodes wrapped around the subject’s forearm.

This study was evaluated and approved on September 16'®, 2016 (protocol number:
P.R.172REG2016).

The candidate took care of obtaining the consent writing the proposal.
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PROTOCOL

Protocol Title: Tactile information transmission through electrostimulation
Protocol Version: 1.0

Protocol Date: 08 April, 2016

Principal Investigator: Prof. Maurizio Valle

Research Team: Marta Franceschi, Lucia Seminara, Luigi Pinna

I. Abstract

Myoelectric prostheses are successfully controlled using muscle electrical activity, thereby restoring
lost motor functions. The association between the muscle activity and the prosthesis functions provides
an intuitive connection between the brain and the prosthesis; however, this connection is
unidirectional. A bilateral communication between the brain and the periphery is necessary for human
movementlearning and execution [1], but the somatosensory feedback from the prosthesis to the user
is still missing.

The idea to provide a sensory feedback to an amputee controlling upper limb prosthesis is not a new
concept [2]. This was quite a popular research topic during 60’s and 80’s within the field of the so -
called sensory substitution, where the goal is to substitute a missing sense by using an alternative
intact sense. With respect to the aforementioned previous research (in 60’s, 70’s and 80’s), many new
technologies are now available to implement the feedback interface. They offer more capabilities and
they are also better in terms of ergonomics and practicality. For example, there are smaller motors,
multichannel electronic stimulators, more powerful processors, and better sensors built within the
hand.

Out of many commercially available systems, there is only one recently presented device integrating a
simple vibrotactile feedback of grasping force. Integrating an advanced distributed sensing (artificial
skin) and stimulation system into a myoelectric prosthesis would allow closing the prosthesis control
loop by providing sensory feedback to the user. A prosthetic system that not only responds to the
control signals provided by the user, but also transmits back to the user the information about the
current state of the prosthesis fosters the prosthesis embodiment and utility. It is an important step
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towards improving the quality of life of people with limb amputation and key point in research on
active prosthetics [3], [4].

IL Current study

In this study, we present a prototype of a distributed sensing (artificial skin) and stimulation interface.
The system comprises an artificial skin including a matrix of sensing elements (taxels), acquisition
electronics and multichannel stimulator connected to flexible electrode matrix placed on the forearm.
Electrotactile stimulation is conducted by delivering low level electrical current pulses through
specific electrodes placed on the skin, to stimulate skin afferents and activate the tactile sense.

The envisioned future setup would integrate a prosthetic hand covered by artificial skin, miniature
stimulators, and a matrix of stimulation electrodes integrated into the prosthetic socket.

In this framework, our overall scope is to study what are the best methods to deliver artificial
tactile information (recorded by artificial skin) to the prosthesis user through multichannel
electrocutaneous stimulation and to test the effectiveness of the prosthetic system embodiment.

While testing the prosthetic system on amputees is the final goal, at present we study how this works
on healthy and voluntary subjects.

In details, our goals are detailed in the following:

1) Studying methods to transmit tactile information by electrostimulation, in order to foster the
participant recognition of the tactile stimulus.

Consequently, we will:

a) optimize electrostimulation parameters for each participant

Touch information should be reliable during prolonged periods of use, naturally interpretable and
transferred withoutinducing pain. However, it is known that the perceived sensation decays within
a certain period (minutes) due to central adaptation, both if the stimulation is applied continuo usly
and intermittently [5], [6] and [7].

Therefore, the first step in our research is to optimize the stimulation to reduce adaptation. The
fact that higher frequencies cause shorter adaptation [8] can be managed by applying a specific
novel stimulation protocol, in which the pulses will be distributed sequentially over several closely
positioned electrodes. The sequential stimulation of different electrodes over a reduced area gives
the subject the impression of a localized stimulation at higher frequency than each electrode
frequency.

The experiments will study the sensation decay during classic and novel stimulation protocols:
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- the adaptation time as a function of the stimulus frequency (fixed amplitude, fixed waveform
type), applying the stimulus sequentially to different stimulation electrodes (one channel after the
other), ie. the novel protocol;

- the adaptation time as a function of the stimulus frequency (fixed amplitude, fixed waveform
type) applying the stimulus synchronously to different stimulation electrodes (one channel after
the other), i.e., the classic protocol;

- the adaptation time as a function of the stimulus amplitude (fixed amplitude, fixed waveform
type) in different stimulation electrodes and protocols.

b) evaluate the capabilities of the human brain to successfully interpret the elicited artificial
tactile information.

The task will be to perceive and interpret the delivered electrical stimuli in order to extract the
properties of the mechanical stimulus applied onto the e- skin. More specifically, from
electrostimulation the subjects will try to recognize spatial and temporal features (shape, direction
and trajectory) of the mechanical stimuli moving over the e-skin surface.

Consequently, methods for processing tactile data acquired from the skin will be tested as well as
the translation of this processed information into patterns of electrical stimulation to be delivered
to the subject.

2) Testing and evaluating the effectiveness of embodiment of the prosthetic system (artificial
skin + electrostimulation).

To date, different experiments have been conducted showing as humans are able to feel a
rubber (or robotic) hand [9-11] as if it was their hand. Rubber hand illusion is based on a three-way
interaction between vision, touch and proprioception, and may supply evidence concerning the basis
of bodily self-identification.

We propose a modification of the original experiment: we will integrate both an artificial skin into
the rubber hand and electrostimulation to convey artificial tactile information to the subject.

Once we have defined the best electrostimulation methods to transmit tactile data, is the participant
able to recognize that anything happened on the skin (e.g. somebody touched) and exactly perceive
what happened (e.g. a specific object is sliding from gripping), without watching it? This would mean
that the prosthesis is identified by the participant him/herself as a part of his/her body
(=embodiment).
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Flow chart of the project
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III. Experiment description (Design of experiments)

The overall experiment takes place on three days. Each experimental session lasts for about 2.5 hours,
except for the last session that will last about 30 minutes. The days do not have to be consecutive. A
researcher from the research team will conduct the experimental tasks in these three sessions.

Session 1: Touch /tactile information transmission modality tests.

IntFES ver 2 — MAXSENS Stimulator

ELECTRODE Array

Fig. 1
Step 1: PREPARATION

The subjects will seat comfortably on a chair in front of a table. The forearm of the dominant arm will
be placed on the table surface, with the volar side oriented upwards. An electrode matrix will be
positioned on the volar aspect of the subject forearm. The matrix will be placed at one third of the
forearm length distal to the elbow. The electrode matrix will be then secured with medical tape to
prevent movement and improve contact. This phase will last about 5 minutes.

Step 2: THRESHOLD DETERMINATION

Electro tactile sensation thresholds will be determined for all employed stimulation electrodes (out of
16), individually, at fixed frequencies (in the 10-400 Hz range). For each electrode and at each
frequency, the participant is asked to identify the sensation and discomfort thresholds. The sensation
threshold is defined as the lowest current amplitude at which the stimulation is perceivable. Similarly,
the discomfort threshold is defined as the lowest current amplitude at which the subject evaluates the
sensation as uncomfortable. In order to determine sensation and discomfort thresholds, the current
pulse amplitude, starting at zero, will be increased in steps of 0.1 mA until the subjects will reportthat
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they feel the stimulation for the first time and that the stimulation becomes uncomfortable,
respectively. This phase will last between 10 and 20 minutes.

Step 3: STIMULATION LEVEL DETERMINATION

As previous studies have already tested the effects of low, medium and high stimulation levels on
adaptation time and their results have indicated high adaptation with low stimulation level and low
adaptation with high stimulation level (significant changes in the sensation and marginally or no
significant changes in the discomfort thresholds after the sensation d ecay measurements) [7], we have
decided to test the medium stimulation level (exactly in between sensation and discomfort
thresholds). However, each stimulation electrode will have its own medium stimulation level,
computed as the mean of the interval between the sensation and discomfort thresholds, and the
sensation elicited using the medium level may be electrode specific. To minimize this effect,
adjustments will be made to equalize the tactile sensations across the electrodes. It is important that
the sensations over the different channels are similar because this will improve the comfortability.
This phase will last few minutes.

Step 4: ADAPTATION TESTS

Experiments will consist of 8-12 sensation decay measurements. Each measurement will last
maximally 15 min (900 s) and will be followed by a pause of 5 min (300 s). The duration of the
stimulation and the pause was selected based on the literature, as enough time to lead to adaptation
and recovery, respectively [5]. During each trial, the subject will be instructed to judge the sensation
level after an auditory cue, every 30 s. This judgment will be recorded using a commonly accepted
Visual Analog Scale (VAS) [12]. VAS is a line of 10 cm with two boundaries, the left corresponding to
no sensation, and right to discomfort. The subject is required to quantify the sensation level by
inserting a cross on the line of the VAS scale.

During every sensation decay measurement, it will be evaluated if the subject can detect the end of the
stimulation. To this purpose, the subject will be instructed (i) that the stimulation may be stopped
randomly by the experimenter, and (ii) that he/she should indicate a “stop” when she/he feels thatthe
stimulation has stopped.

During each sensation decay measurement, the stimulus amplitude and frequency will be fixed. Each
sensation decay measurement will be done twice (at each frequency) in a random order.

This phase duration will depend on the participant adaptation time, but never exceeds 2 hours.
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" o INtFES ver 2 — MAXSENS Stimulator

ELECTRODE Array

IE (Interface Electronics)

=

DAQ (Data Acquisition) System

=

Processing Software

via Bluetooth

Fig. 2

Step 1: PREPARATION

The subjects will seat comfortably on a chair in front of a table. The forearm of the dominant arm will
be placed on the table surface, with the volar side oriented upwards. Two electrode matrices will be
positioned on the volar aspect of the subject forearm. The first electrode will be placed with its center
at one third of the forearm length distal to the elbow and the second right after it, towards the hand.
The electrode matrices will be then secured with medical tape to prevent movement and improve
contact. This phase will last about 5 minutes.

Step 2: THRESHOLD DETERMINATION

Electro tactile sensation thresholds will be determined for all employed stimulation electrodes (out of
32), individually, at fixed frequencies (in the 10-400 Hz range). For each electrode and at each
frequency, the participant will be asked to identify the sensation threshold (see Session 1). This will
allow fixing the stimulation amplitude for each electrode, corresponding to a higher value with respect
to the sensation threshold, so that the elicited tactile sensation will be comfortable and clearly
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recognizable. Furthermore, adjustments will be made to roughly equalize the tactile sensations across
the electrodes. This phase will lastbetween 15 and 30 min.

Step 3: PATTERN RECOGNITION

The experiment will comprise blocks of trials in which the experimenter will apply a mechanical
stimulus to the e-skin, and stimulation profiles will be delivered to the subject accordingly.

The task for the subject will be to perceive the stimulation and report to the experimenter the
properties of the mechanical stimulus.

The mechanical stimulus will be applied to the skin using a small roller to ensure contact
reproducibility between different trials. To produce a natural and realistic motion, the experimenter
will move the roller along the skin at a self-selected speed and pressure, aiming to be consistent across
the trials.

Three categories of mechanical patterns can be tested: single lines, geometrical shapes and letters.
Each set will be presented to the subjects in five blocks and within each block the test patterns will be
applied in arandom order.

The subject could not see the experimenter nor the skin. A sheet of paper will be placed in front of the
subject with a schematic drawing of the electrode matrix. After receiving the electrical stimulation, the
subjects will be first asked to verbally estimate the perceived shape of the movement: longitudinal,
transversal, diagonal line; a specific geometry (e.g. square, rectangle or triangle); an exactletter. If the
shape estimate is correct, the subjects will be asked to retrace the perceived stimulus by moving their
index finger across the schematic drawing. If this corresponds to the actual rolling pathway, it will be
deemed that the subjects correctly recognized the movement trajectory. Finally, if the subjects retrace
the trajectory segments (lines) in the proper direction, the movement direction will be also correctly
perceived.

This phase will last about 90 min.
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Session 3: Embodiment tests.

CLASSIC RUBBER HAND ILLUSION VS ARTIFICIAL RUBBER HAND ILLUSION

Real hand with

Real hand X X Rubber hand with
Rubber hand electrocutaneous stimulation artificial skin
Experimenter stimuates both real and rubber Experimenter stimulates the rubber hand with a
hand with a paintbrush: at the same time paintbrush, and the artificial skin generates signals
and in the same point. transmitted to the real hand via electrostimulation.
Fig.3

Step 1: PREPARATION

The subjects will seat comfortably on a chair in front of a table. The right forearm will be placed on the
table surface, with the dorsal side oriented upwards. A stimulation electrode matrix will be positioned
on the dorsal aspect of the subject forearm, with the extremity over the wrist. The electrode will be
then secured with medical tape to prevent movement and improve contact. This phase will last about 5
minutes.

Step 2: THRESHOLD DETERMINATION

See Step 2, Session 2.

Step 3: ARTIFICIAL RUBBER HAND ILLUSION SETUP

A standing screen will be positioned beside the subject’s arm to hide it from the subject’s view. A life -
sized artificial rubber model (integrating the artificial skin already tested in Session 2) of a right arm
will be placed on the table directly in front of the subject. The subject will sit with eyes fixed on the
artificial hand.
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Step 3: ARTIFICIAL RUBBER HAND ILLUSION TESTS

The experimenter will use a small paintbrush to stroke the artificial rubber hand, while the subject’s
hidden hand will be solicited by the corresponding electrostimulations. Each stroke will be about 2-3
cm long. During this phase, the subjects will be instructed to relax and observe the artificial rubber
hand on the table.

The ARHI test will consist of five trials. Each will last for 2/3 minutes using an irregular rhythm and
between every trial will be 40 seconds.

When the ARHI test is finished, subjects will complete a questionnaire. The questionnaire will indicate
if subjects experienced an illusion in which they would feel the touch they were looking at, as if they
owned the artificial rubber hand.

To obtain behavioural evidence that the illusion happened, a “pointing task” would be required
(adopted in [13]).

Immediately before starting the experiment and after each trial, the participants will be required to
close their eyes and point to where they feel their arm. A ruler mounted on the table will be used to
measure the distance between the point indicated by subject’'s index finger and his real arm. The
larger the distance is, the higher the number of subjects who feel the artificial rubber hand as their
real hand. Obviously, the pointing drift should be from the real hand towards the artificial rubber one

(Fig. 3).

IV. Duration

Date of study: 2 May 2016 - May 2020
Recruitment start: 2 May 2016

Date of termination of recruitment: March 2020

Date of study termination: May 2020

V. Risk-benefit analysis

Both direct mechanical and electrical stimulation have been used in a number of previous studies and

also within working prototypes to provide the sensory feedback [14-17]. There are no known side

effects of the electrical stimulation. This is generally perceived as a gentle pinch that is typically judged

as quite comfortable by the subjects. In the current study, the intensity of electrical stimulation is very

low (I: 4-5 mA, PW: 100-500 us), much lower than that applied for therapeutic or orthotic purposes

(e.g., functional electrical stimulation and therapy). In the latter case, the stimulation can cause skin
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damage if not properly applied. However, if standard practices are followed (new electrodes, good
skin-electrode contact), it is usually considered as highly unlikely for the skin burns to happen [18]. In
our case, due to the very low intensity that is employed in this study, the risk for skin burns is truly
minimal. As a precaution, we will be checking the skin-electrode contact multiple times throughoutthe
experiment. Some subjects may find the sensations due to electrical stimulation as quite
uncomfortable. To minimize the discomfort, stimulation parameters will be adjusted by relaying on
the constant feedback from the patient, i.e., the patient will indicate if the stimulation is uncomfortable
and the stimulus intensity will be decreased accordingly. Furthermore, the parameter adjustment will
always start from the minimum value and then gradually increase so that a subject can get used to the
sensory consequences of the stimulation. Finally, before applying the stimulation, the skin will be
checked for eventual small injuries (e.g., abrasions, scratches), and the stimulation will not be applied
over.

The outcome of the current study will potentially improve the quality of life for amputees significantly,
leading to the development of a closed loop controlled prosthetic and/or potentially a therapeutic
device. Therefore, the proposed study has potentially a significant social and economic impact, and its
benefit certainly outweighs the limited risks it involves.

VI. Subject recruitment

a. Number of subjects and duration of the study

The study will recruit a total of 50 able-bodied subjects. Subjects could participate in more than one
experimental session. Subjects who will participate in two or three experimental sessions will do it on
two or three separate days (respectively). The third session will last about 30 minutes, while the other
session will individually last from 2.5 to 3 hours. The days have to be not consecutive.

b. Subject Selection

All subjects will be recruited through the University of Genova.

i.Inclusion criteria

Healthy subjects aged between 18 and 65 years will be included in the study. No gender
preference is applied. The subject has to have legal capacity to give the consent at his/her
own will.

ii.Exclusion criteria

Subjects having any illness (active diagnosis) and/or receiving any medication, taking drugs
or suffering from alcohol abuse will be excluded from the study. If the subject is taking part
in other medical, clinical or scientific experiments/studies he/she will also be excluded.
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VII. Medical screening

a. Personal data

Only the necessary personal data for the identification of the subjects during the experiment will be
collected. All personal data collected during the experiment, such as name, age, and gender, will be
strictly confidential, and will not be disclosed to a third party other than the patient and the
experimenter. When the experimental results are reported, the identity of the subjects will be replaced
with an ID (numerical code). The connection between the ID and the subject will only be present in a
separate, dedicated document (i.e., a key list). The list will contain subject names and IDs, and double
copies will be kept in locked cabinets in the office of the chief investigator and/or people of the
research team. It will not be given to a third party, and it will be kept stored for 10 years. A key list will
never be present in the electronic form. In case of experiment interruption, personal data for subject
identification will be deleted.

b. Measurement parameters and laboratory parameters

The following parameters will be varied during the tests: 1) intensity and frequency of the
electrostimulation of each employed electrode, 2) electrostimulation type (synchronous - sequential).

During the tests, we will measure the following variables: 1) sensation and discomfort thresholds, 2)
sensation levels (VAS), 3) success rate of stimulus identification on the artificial skin transmitted
through electrostimulation; 4) the distance between the perceived hand/arm and the real one; 5)
BOTVINICK and COHEN questionnaire.

VIII. Materials and Methods

Our experiments will employ a stimulation device (IntFES Ver 2 - MaxSens, Tecnalia, Spain) that will
generate electrostimulation profiles to be transmitted to the subject through a matrix of electrodes
applied to the participant’s forearm.

Electrostimulation is an electric pulse applied locally, via the nervous tissue, which stimulates the
muscles and causes a physiological contraction. The electrostimulation created by IntFES Ver 2 -
MaxSens replicates the natural process controlled by the brain.

Electrostimulation is a technique which has been practiced for many years and no major problems
have been reported to date. There is no associated risk so long as you follow the safety instructions.
Occasionally harmless rashes may appear on areas of sensitive skin. If this occurs, remove the
electrodes and wash the area with soap and water. The rashes will disappear after a few minutes.
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The IntFES Ver 2 - MaxSens stimulator comprises a single stimulation unit that can generate biphasic
symmetric current-controlled pulses and distribute these pulses in time and space over the multi-pad
electrode, thus providing multichannel stimulation interface. The stimulator is fully programmable and
the stimulation parameters can be adjusted online by sending text commands from the host PC via a
Bluetooth connection. The current amplitude can be changed in the range 0-5 mA in increments of 0.1
mA, the pulse width from 50 to 1000 us in increments of 10 us, and the frequency resolution is 1 Hz
with the maximum rate of 400 Hz. The output channel of the stimulator is connected to a multiplexer
which can route the generated pulse to one of 64 stimulation channels.

The stimulator can at maximum be connected to four flexible electrode matrices. Each electrode matrix
has its own geometry and size. Each electrode matrix consists of 16 round electrodes. The round
electrodes are the cathodes whereas the long bars in-between the cathodes served as the common
anodes. This configuration is selected in order to localize the current flow, from a cathode to its closest
anode segment, eliciting focused tactile sensation. The stimulation electrodes were made of a polyester
layer, an Ag/AgCl conductive layer, and an insulation coating covering the conductive leads.

To improve the electrode-skin contact, conductive hydrogel pads (AG702, Axelgaard, DK) were placed
on the top of the electrode pads. This design allowed electrode bending and provided a close contact of
the electrode with the skin.

Our experiments will also employ an artificial skin that provides information about mechanical contact
over its surface, through a high density matrix of piezoelectric polymer (Polyvinylidene fluoride -
PVDF) tactile sensors. When a pressure is applied on the artificial skin, tactile information from the
sensor matrix is sent to the host PC via USB port (processing software). Processed signals are sent to a
stimulator and the subject receives the tactile information through electrostimulation. PVDF was
selected since it has wide frequency bandwidth (1Hz-1kHz), large measurable pressure range (50Pa-
1MPa), flexibility, conformability and low cost. Due to its frequency bandwidth, only dynamic contacts
can be measured while static ones are notrecorded. A rigid substrate is currently used as a support
and a 2.5 mm thick Polydimethylsiloxane (PDMS) elastomer layer is used for stress transmission and
sensor protection [19]. In between, a commercial [20] PVDF sheetintegrates on both sides 64 ad -hoc
screen-printed electrodes [21] organized in a rectangular matrix.
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Appendix B

IntFES v2 Stimulator

The IntFES v2 stimulator prototype (Tecnalia, San Sebastian, ES) has been adapted to
be used for electrotactile feedback applications in the MaxSENS project ([104,250,251]).
Specifications of the IntFES v2 stimulator are reported in Table [B.1]
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Table B.1: Technical Characteristics of MaxSens Stimulator

Display TFT 320x240
Touch Panel Type Resistive
Battery 2xLi-Ion 3.7V 1400 mAh
Charger 12V DC
Bluetooth 2.1

Bluetooth range 10m

CAN Bus 1.0/2.0
Number of electrodes 1to4
Channels for each electrode 1 to 16

Pulse instensity (amplitude) 1 to 5mA
Pulse width 50 o 1000us
Pulse rate 1 to 400Hz
Number of pulses 1 to INF
Delay of stimulation 0 to 50000ms
Stimulation voltage 95V

Rising Factor

0 to 99 no. of pulses

Falling Factor

0 to 99 no. of pulses

Time between Plets

1 to 99ms

Size

96mm/154mm/34mm L/W/H
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