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Abstract 

Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous 

throughout all kingdoms. The main function of MTs is scavenging of free radicals and 

detoxification and homeostating of heavy metals. In humans, 16 genes localized on 

chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1 

– MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises 

many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M 

and -1X. The rest of the MT-1 genes (MT-1C,-1D,-1I,-1J and -1L) are pseudogenes. The 

expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-

cellular level and in individual tissues. Changes in MTs expression are associated with the 

process of carcinogenesis of various types of human malignancies, or with a more aggressive 

phenotype and therapeutic resistance. Hence, MT (sub)isoforms profiling status could be 

utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive 

summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single 

tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.  

 

Keywords: Metallothioneins, Cancer; Diagnosis; Therapy; Hypermethylation 
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Introduction 

Metallothioneins (MTs) are a group of low molecular mass, cysteine-rich proteins that have 

been found in bacteria, plants, invertebrates and vertebrates (Cai, et al., 2014; Ruttkay-

Nedecky, et al., 2013). In mammals, number of amino acids in MTs varies from 61 to 68, 

from which 20 or 21 are 20 cysteines. Due to high thiol groups content, MTs are able to bind 

12 monovalent or 7 divalent metal ions and their main functions include maintaining 

homeostasis of essential metals (Cu and Zn), detoxification of toxic metal ions (Cd) and 

scavenging free radicals to protect cells against oxidative stress (Klaassen, Liu, & Diwan, 

2009). MT-encoding genes are located on chromosome 16 in a cluster and involve 16 

identified genes, from which five are pseudogenes. Two pseudogenes and one MT-like gene 

are located elsewhere, for details see Table 1. In humans, four MT isoforms exist, labelled by 

numbers (MT-1 – MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-

1 comprises many subtypes encoded by a set of 13 MT-1 genes. The known active MT-1 

genes are MT-1A,-1B, -1E, -1F, -1G, -1H,-1M and -1X. The rest of the MT-1 genes (MT-1C,-

1D,-1I,-1J and -1L) are pseudogenes whose protein product has not been found in humans 

(Cai, et al., 2014; Romero-Isart & Vasak, 2002). Summary of MTs genes, (sub) isoforms, loci 

and synonyms is shown in Table 1. The most distinctive differences can be found comparing 

MT-1/MT-2 with MT-3, which contains a conserved acidic hexapeptide insert near the C-

terminus in the α-domain, additional threonine residue in β-domain and a unique pair of 

prolines (-TCPCPS-) near the N-terminus in the β-domain, which are essential for biological 

activity of MT-3, heavy metals binding properties and association with other proteins, which 

suggest function diversification in various physiological processes (Bogumil, et al., 1998).  

MT-1 and -2 are the most widely expressed in the body, occurring predominantly in tissues of 

kidney, liver, intestine and pancreas. MT-3 is found mainly in the brain, but it is also 

expressed ubiquitously in trace amounts. MT-4 can be detected in epithelia and the maternal 
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deciduae (Wei, et al., 2008). Other differences can be found at the level of the expression and 

localization of individual MT (sub)isoforms, which vary at intra-cellular level (cytosol, 

nucleus, mitochondria and lysosomes) and also in individual tissues (Moleirinho, et al., 2011; 

Sharma, Rais, Sandhu, Nel, & Ebadi, 2013; Thirumoorthy, et al., 2011).  

Questions regarding a purpose of a high number of MT (sub)isoforms and genes arise with 

increasing knowledge. Even though differences between affinity to zinc and other metals 

among single isoforms have been found, as well as susceptibility to antioxidants, these 

differences do not justify such a high number of isoforms, which, as we anticipate, have to 

have some further biological importance (Schmidt & Hamer, 1986). Mammalian MT-1 and 

MT-2 are transcriptionally induced conserved proteins essential for metals binding. In most 

mammalian genomes one copy of MT-2, MT-3, MT-4 and multiple copies of MT-1 are 

present. Specifically, in human genome, 13 MT-1 genes are present, from which 5 are 

pseudogenes. The highest number of MT-1 copies is found in primate genomes indicating the 

relatively recent duplication events. The process of gene duplication contributes to phenotypic 

diversity of living organisms. Novel gene functions arise from mutations altering the sequence 

of gene product or affecting gene expression. Dynamic changes in tissue expression 

preference of paralogs with different duplication ages suggest differential contribution of 

paralogs to specific organ functions. Paralogs are enriched for genes with brain-specific 

expression and provide evidence for differential forces underlying the preferential emergence 

of young testis- and liver-specific expressed genes (Guschanski, Warnefors, & Kaessmann, 

2017). Phylogenetic analyses show that MT-1 pseudogenes are derived from functional genes 

by loss of invariant cysteines and incorporation of aromatic amino acids, and thus 

accumulation of loss-of-function mutations. The sequence of MT-4 is highly conserved 

between humans and mice, but it shows the highest divergence in humans with two 

structurally disrupting polymorphisms. These polymorphisms reach about 30% frequency in 
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African and Asian populations suggesting its non-functionality in some individuals. Some 

MT-1 duplicates have cellular specificity and some of them are expressed in epithelium. 

Taken together with similarities between mouse MT-1 and MT-4 structural and metal binding 

properties it is possible that the high number of MT-1 genes compensates and backs-up the 

loss of MT-4 gene (Moleirinho, et al., 2011). These findings indicate that the change in 

expression of single MT genes should be changed in the process of carcinogenesis. In the 

present review we attempt to summarize up-to-date knowledge on the role of MTs 

(sub)isoforms with special emphasis on their roles in malignant diseases (Fig. 1). Due to the 

fact that MTs could be helpful as diagnostic and/or prognostic biomarkers in several types of 

cancers, we also discuss the bioanalytical methods, which enable determination of MTs on 

(sub)isoform levels. Last but not least, we put our attention on a regulation of MTs by 

epigenetic processes, whose importance has been evidenced in most of malignancies, and on 

utilization of regulation of MTs to enhance efficiency of cancer therapy, too. 

 

Methods enabling estimation of MT isoforms and (sub)isoforms  

It is clear from the above-mentioned facts that MT exists as a mixture of variable forms. This 

broad heterogeneity leads to the need for development of powerful separation and 

bioanalytical techniques that enable the study and understanding of the importance of 

individual MT (sub)isoforms, however, this is still challenging task. Although there is a high 

chemical and structural similarity among the isoforms, single MTs are involved in various 

processes and their expression is dependent on a particular process and tissue. Expression of 

MTs can be monitored both on nucleic acid level and protein level (Fig. 2), i.e. MT protein 

presence and its modifications, especially metalation, oxidation, acetylation and methylation 

(Ogra & Suzuki, 1999; Ryvolova, et al., 2011). However, due to the high structural similarity 

of MTs, current proteomic methods lack the specificity to distinguish all 11 (sub)isoforms. 
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Therefore the most frequent methods for assessment of single MT isoform expression are 

nucleic-acids based methods, such as in situ hybridization, (Q)-RT-PCR and microarrays 

(Albrecht, et al., 2008; Han, et al., 2013; Krizkova, et al., 2016). These methods allow for 

detection of MT genes polymorphisms, regulation of MT expression both based on MT 

mRNA synthesis and/or degradation by mechanisms of RNA interference either by 

determination of mRNA, small RNA or non-coding long RNA presence (J. Yang, et al., 

2017). Determination of mRNA does not reflect the amount of MT proteins due to the 

different mRNA induction and degradation rates as well as RNA-based regulation 

mechanisms. Thus, determination of both MT protein and mRNA can be useful to obtain 

complete information (Fig. 2). 

For determination of MT proteins, the most of the methods are based on specific chemical 

properties of MT, especially high thiol groups content and heavy metals content, on which are 

based Elman’s assay, electrochemical and metal-saturation methods, respectively 

(Bienengraber, Forderkunz, Klein, & Summer, 1995; Dutton, Stephenson, & Klaverkamp, 

1993; Krizkova, et al., 2009; Ryvolova, et al., 2011; Savas, Shaw, & Petering, 1993). These 

methods do not allow distinguishing of specific MT protein isoforms, even though the 

differences in redox potential and heavy metals affinity have been found. To detect MT 

isoforms in biological samples, antibody-based methods such as immunohistochemistry, 

immunocytochemistry, ELISA and western-blotting are most frequently used. Predominantly, 

the antibodies recognizing MT-1+2 and MT-3 are employed. Due to a high structural 

similarity between MT-1 and MT-2 isoforms, the development of isoform-specific antibodies 

is an issue. First the MT-1 and MT-2 isoforms have to be separated or produced by 

recombinant DNA technology and the obtained antibodies has to be purified from isoform-

cross-reactive immunoglobulins (H. M. Chan, Pringle, & Cherian, 1992). Distinguishing of 

MT-1 (sub)isoforms by using antibodies is even more tricky, due to their high amino acid 
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sequence and structural homology, however commercially available anti-MT-1G and anti-

MT-1A antibodies have been used for verification of Q-RT-PCR and RNA interference (X. F. 

Sun, et al., 2016). Antibodies specific to MT-3 most frequently recognize the additional N-

terminal 6-amino acid-containing domain, which is specific for MT-3 only (Sens, Somji, 

Garrett, Beall, & Sens, 2001). 

Other methods for analysis of MT on a protein level comprise a broad range of spectroscopic 

methods hyphenated with different separation techniques. Of them, the most predominant are 

capillary electrophoresis or high-performance liquid chromatography coupled with mass 

spectroscopy (CZE-MS or HPLC-MS) (Ryvolova, et al., 2011). Mass spectrometry 

[electrospray ionization (ESI), matrix assisted laser desorption-ionization (MALDI) and 

inductively coupled plasma (ICP) ionization techniques] represents the most advanced 

method in metallomics. These techniques provide essential information about protein identity 

and structure (ESI, MALDI), and elemental composition (ICP). It has to be also noted that 

some MS-based studies have succeeded in identifying MT (sub)isoforms in human cells either 

based on tryptic digests (Alvarez, et al., 2012; Shabb, Muhonen, & Mehus, 2017; Wang, et 

al., 2007), or on unique masses of intact isoforms (Mounicou, et al., 2010; Wang, et al., 

2007). Moreover, MALDI imaging allows for studying of proteins distribution in paraffin-

embedded tissue slices or cryosections analogical to histology, with the advantage of 

detection of multiple or unknown analytes without labelling (Arentz, et al., 2017; Norris & 

Caprioli, 2013; Panderi, et al., 2017; Rodrigo, et al., 2014).  

 

MTs can regulate and be distinctly regulated by a number of biological processes 

MTs are involved in regulation of numerous processes, among others, cell proliferation and 

apoptosis and several aspects of the carcinogenesis or inflammation (Theocharis, Margeli, 

Klijanienko, & Kouraklis, 2004). Regulative functions of MTs are particularly connected to 
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their protein-protein interactions, metal binding and antioxidant properties. The target proteins 

for interaction belong to transcription and growth factors, cytokines, extracellular matrix 

degrading enzymes, apoptosis regulators, stress proteins related to oxidative and radiation 

damage. Transcription factors such as p53 protein, nuclear factor–κB (NF-κB), esophageal 

cancer-related gene 4 (ECRG4), specificity protein 1 (Sp1), transcription factor IIIA (TFIIIA), 

estrogen receptor (ER), Gal4 and tramrack (TTK) interact with MTs and change their 

function. MTs are also source of zinc or copper and therefore activators of various 

metalloenzymes, for example matrix metalloproteinases (MMP), carbonic anhydrase, alkaline 

phosphatase (AP), δ-aminolevulinic acid dehydratase, or superoxide dismutase (SOD). 

Interaction with MTs was documented also at endocytic low-density lipoprotein receptors 

(LDLRs), especially megalin and lipoprotein receptor related protein 1 (LRP1) (Krizkova, et 

al., 2012; Zalewska, Trefon, & Milnerowicz, 2014).  

Although MTs show increased expression in various tumours (breast, kidney, lung, 

nasopharynx, ovary, salivary gland, testes, thyroid and bladder cancers, in certain 

malignancies such as hepatocellular carcinoma, prostate and colorectal cancer, their down-

regulation has been evidenced (Gumulec, Raudenska, Adam, Kizek, & Masarik, 2014; S. 

Takahashi, 2015). Kanda et al. have suggested that the mechanisms of MT-1G silencing were 

related to promoter hypermethylation (Kanda, et al., 2009). Furthermore, representative 

primary gastric cancer having no expression of MT-3-encoding mRNA demonstrated 

hypermethylation of the MT-3 intron l CpG island (Deng, et al., 2003). The methylated and 

unmethylated MT-1 promoters are differentially regulated by DNA methyltransferase and 

methyl-CpG binding proteins, and the suppression of MT promoters by DNA 

methyltransferase is independent of its enzymatic function (Majumder, et al., 2006). DNA 

methylation plays an important role in cancer formation by silencing tumour suppressor 

genes, and thus will be discussed in a separate chapter. Down-regulation of MT synthesis may 
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be also connected with mutation of tumour suppressor genes (Cherian, Jayasurya, & Bay, 

2003). In TP53 mutated cell lines MT was not induced and apoptosis was not initiated after 

the addition of cadmium or copper (Fan & Cherian, 2002). Epigenetic inactivation of XAF1 

tumour suppressor gene is frequently observed in multiple human cancers. Shin et al. 

presented evidence that XAF1 plays a critical role in cell-fate decisions under heavy metal 

induced stress conditions through the mutual antagonism with MT-2A. XAF1 is activated as a 

transcription target of MTF-1 and destabilizes MT-2A through the interaction-directed 

lysosomal degradation, whereas it is destabilized by MT-2A under cytostatic stress 

conditions. XAF1-mediated MT-2A inactivation leads to elevation of free intracellular zinc 

level and up- and down-regulates proteins p53 and XIAP, respectively, to promote apoptosis 

(Shin, et al., 2017). 

MT polymorphisms may increase or decrease the expression efficiency of genes. Highly 

statistically significant associations were detected between single-nucleotide polymorphisms 

in core promoter region of MT and Cd, Zn, Cu and Pb levels in prostate cancer tissue 

(Krzeslak, et al., 2013). MTs are transcriptionally regulated in response to metal ions. A key 

protein in this process is metal-regulatory factor 1 (MTF1), which binds metal responsive 

elements located upstream of MT genes. Thus, genetic variation in MTF1 may modulate 

expression of MT and thereby influence biological management of metals (Adams, et al., 

2015). 

Connection between epigenetics and MTs regulation human carcinogenesis 

Epigenetics, originally defined by C. H. Waddington (Waddington, 1942) as ‘the causal 

interactions between genes and their products, which bring the phenotype into 

being’, involves understanding chromatin structure and its impact on gene functions. The 

information conveyed by epigenetic alterations plays a crucial role in all DNA-based 

processes, and thus can have profound influence on the development and maintenance of 
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malignant diseases (Dawson & Kouzarides, 2012). As MTs play an important role in many 

types for solid tumours and leukemias, the significance of epigenetic modifications of MT 

genes in cancer cells merits discussion. 

 

Epigenetic alterations due to DNA methylation processes  

Genome-wide analyses have shown that DNA methylation is found in long stretches of 

chromosome regions containing clusters of contiguous CpG islands or gene families. 

Hypermethylation of various gene clusters has been reported in many cancer types (Esteller, 

2007) (Jadhav, et al., 2015). Several studies, which have performed methylation analyses, 

identified de novo hypermethylation of MT promoters associated with consequent MTs 

silencing. In that way, Jadhav and colleagues revealed that methylation contributes to 

repression of MT-1 gene cluster in breast cancer, irrespective of oestrogen receptor (ER) 

status (Jadhav, et al., 2015). Noteworthy, they also revealed a negative correlation between 

invasiveness of ERα+ cells (MCF-7) and MT-1F and MT-1M expression, which thus may 

play an anti-oncogenic role. Distinct role was identified for MT-3, which is commonly 

silenced in normal breast tissue and breast-derived cell lines, but can be found in breast 

cancers tending to poor disease outcome (Gomulkiewicz, et al., 2016; Kmiecik, et al., 2015; 

Zeisig, Koklic, Wiesner, Fichtner, & Sentjurc, 2007). Interestingly, Somji et al. revealed that 

treatment of non-tumorigenic MCF-10A cells with demethylation agent Decitabine or histone 

deacetylase inhibitor, Entinostat, restored the expression of MT-3 (Somji, et al., 2010), 

suggesting its epigenetic regulation. Comparable phenomenon has been also observed in 

endometrial cancer cells, in which demethylation agent Azacytidine reactivates expression of 

MT-1E (Tse, et al., 2009). Moreover, it was found that promoter of MT-1E was 

hypermethylated in more than 42% of endometrial carcinoma specimens, but not in normal or 

hyperplastic endometrial tissue samples.  
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It is worth noting that epigenetic regulation can act in a location-specific manner. Peng and 

co-workers have shown that oesophageal carcinomas display high rate of methylation of CpG 

of MT-3 from -372 to -306 from the transcription start site, which was not found in benign 

specimens (D. F. Peng, et al., 2011). Moreover, they identified a significant correlation 

between hypermethylation of -127 to -8 CpG sites with advanced tumour stages and lymph 

node metastases. Deliberately, we do not mention all studies, as they demonstrate similar 

results (MT-1F in colon cancer, MT-1 in rat hepatoma, MT-2A in gastric cancer, MT-1M and 

MT-1G in hepatocellular carcinoma or MT-1G in thyroid cancer (J. Fu, et al., 2013; Ghoshal, 

Majumder, Li, Dong, & Jacob, 2000; Ji, et al., 2014; Pan, et al., 2016; Yan, et al., 2012)), but 

overall, it is evident that hypermethylation of specific regions in CpG islands of selected MT 

genes could be a valuable diagnostic and prognostic marker, warranting further investigation.  

One may ask why these events occur. Several factors mechanistically linked with altered 

methylation have already been identified. During aging a large overlap among 

hypermethylated genes and tumorigenesis has been identified, and is thus considered as one 

of the important factors (Klutstein, Nejman, Greenfield, & Cedar, 2016; Kwabi-Addo, et al., 

2010; Teschendorff, et al., 2010). Clear molecular links with aberrant DNA methylation were 

found also for exposures to chemical agents (Hutt, et al., 2005) or inflammatory processes 

caused by Helicobacter pylori or hepatitis B virus (J. Liu, et al., 2006; Niwa, et al., 2010; Su, 

et al., 2007). Despite that there is still a lack of studies showing the straight links between 

specific exposures and aberrant methylation of MTs genes, which could bring novel insights 

into carcinogenic processes. 

 

Role of microRNA (miRNA) in post-transcriptional regulation of MTs 

MiRNA belong to a class of short (18-25 nucleotides) noncoding RNAs, involved in RNA 

interference machinery to regulate gene post-transcriptional gene expression (Sato, Tsuchiya, 
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Meltzer, & Shimizu, 2011), contributing to physiological and pathophysiological functions 

including carcinogenesis (Lu, et al., 2005). Although miRNAs were discovered in 1993 (R. C. 

Lee, Feinbaum, & Ambros, 1993) and till that time it has been intensively investigated, only 

little is known about relation between miRNA and MTs regulation. 

Zhang and co-workers revealed that miR-1246 and miR-1290 are significantly enriched in 

tumour-initiating cells and play a critical role in regulation of tumour growth and metastasis, 

particularly through repressing the MT-1G (Zhang, et al., 2016). In gastric cancer, MT-2A 

was found to be a potential target of miR-23a (An, et al., 2013). A significant inverse 

correlation between expression of miR-23a and MT-2A was detected in 70% of tumour 

samples and furthermore, overexpression of miR-23a also greatly reduced both MT-2A 

protein and mRNA expression levels in gastric epithelial (GES1) cells. Similarly, we have 

identified negative inverse correlation between miR-376 and MT-2A in malignant prostate 

cells (22Rv1) and miR-224 and MT-1A in metastatic prostate (PC-3) cells. It is worth noting 

that miRNAs obviously directly regulates specific genes encoding MTs (sub)isoforms, 

however further research might be done to fully understand this phenomenon (An, et al., 

2013). 

  

Regulation and expression of MTs (sub)isoforms is distinct across various types of 

malignant diseases 

Complex role of MTs in cancer  

Numerous immunohistochemical and gene expression studies have demonstrated that changes 

in MTs expression are associated with the process of carcinogenesis in various types of 

human malignancies, or are even associated with a more aggressive phenotype and 

therapeutic resistance, ultimately resulting in a worse prognosis (Gumulec, et al., 2014; 

Pedersen, Larsen, Stoltenberg, & Penkowa, 2009; Thirumoorthy, et al., 2011). Importantly, 
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the change in MT-1/2 protein expression may differ from the change in the expression of 

single MT isoforms. For instance, MT-1/2 over-expression has been found in cutaneous 

malignant melanomas in association with poor prognosis (Emri, et al., 2013; Sugita, 

Yamamoto, & Asahi, 2001; Weinlich, 2009), but it has also been demonstrated that epigenetic 

down-regulation of MT-1E and MT-1G isoforms might play a role in melanoma progression 

(Faller, et al., 2010; Koga, et al., 2009). Most likely, some MT isoforms have specific 

functions in the cells, but the exact mechanisms behind these phenomena remain still unclear. 

Interestingly, meta-analysis of independent microarray datasets revealed that expression of an 

inhibitor of apoptosis (BIRC5) and certain MT isoforms (MT-1B, -1E, -1F, -1H, -1X) 

clustered in various cancers showing a high interconnection between these genes (Choi, Yu, 

Yoo, & Kim, 2005). Nevertheless, MT isoform expression pattern in a cancer might reflect 

the tissue type, differentiation status, proliferative index, the level of inflammation, and 

perhaps the carcinogenic stimuli and signalling pathways implicated in tumour development 

(Hanada, Sawamura, Hashimoto, Kida, & Naganuma, 1998; Cherian, et al., 2003). 

Exploration of changes in expression of particular MT isoforms in various cancers can 

contribute to better understanding of the process of carcinogenesis and identification of novel 

therapeutic targets. 

To this date numerous studies aiming on MTs in cancer, both in human tumour tissues and 

cell lines, have been published providing an extensive pool of data. To provide a 

comprehensive insight into the complicated relation between MTs and cancer, the results 

showing expression of MTs and their pseudogenes in various tumour tissues are summarized 

in Table 2, while the overall summary of results obtained from cell cultures in vitro are 

summarized in Tables 3 – 10. As it is obvious from the presented tables, the most data 

regarding MT (sub)isoforms expression is known for metals exposure, particularly for Cd
2+

 

and Zn
2+

, which are known MT inducers. Noteworthy, induction of MT genes is not uniform 
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upon metals treatment, as well as it is not within single cell lines even those derived from the 

same cancer type. The similar trend is seen for other treatments with other metals and 

cytostatics or inhibitors of cellular processes, natural compounds and/or nanoparticles. Other 

important fields of studies are focused on regulation of MT genes and studies of cancer-

related conditions such as chemoresistance, DNA mutations, RNA interference and hypoxia. 

The most of work for MT-1 (sub)isoforms and MT-4 isoform has been done using nucleic 

acids-based methods due to the lack of reliable antibodies. On the other hand, expression of 

MT-2A and MT-3 were also studied using immuno-based assays. Overall, based on the data it 

should be stated that due to the variability of MTs within various tumour types and 

conditions, a number of MT genes can be identified, whose expression exhibits tumour-related 

functions, and thus their modulation can reverse the tumour progression. In next sub-chapters 

we will describe the most notable findings regarding the MTs (sub)isoforms and specific 

types of malignant diseases. 

 

Prostate cancer 

Reduced MT-1/2 protein expression was reported in tissues derived from prostate cancer as 

compared with benign prostatic hyperplasia (J. D. Lee, Wu, Lu, Yang, & Jeng, 2009), 

however, in other studies, an increased expression of MT-1/2 and MT-3 has been found in 

prostate cancer, even it was shown to correlate with the histological grade of neoplasm 

(Albrecht, et al., 2008; El Sharkawy, Abbas, Badawi, & El Shaer, 2006; Garrett, Sens, et al., 

1999). A recent study on 128 patients with prostate cancer demonstrated that high expression 

of MT-2A protein in cancer cells is associated with a decreased biochemical recurrence-free 

survival rate (Ma, et al., 2015). The -5 A/G single nucleotide polymorphism (SNP; 

rs28366003) in core promoter region of MT-2A is able to affect the expression of the MT-2A 

gene in prostatic tissue (Krzeslak, et al., 2013). Compared to homozygous common allele 
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carriers, heterozygosity for the G variant is coupled with a significantly increased risk of 

prostate cancer in a Polish population (Forma, et al., 2012). The expression of MT-2A seems 

to negatively correlate with Cu, Pb and Ni concentrations in prostate cancer tissues (Krzeslak, 

et al., 2013). While MT-1A, MT-1E, MT-2A, and MT-3 expressions have been shown in both 

healthy prostatic tissue and prostate cancer, the expression of MT-1X gene could only be 

detected in normal prostate (Garrett, et al., 2000; Garrett, Sens, et al., 1999). Down-regulation 

of MT-1G by promoter hypermethylation was demonstrated in 29 (24%) of 121 prostate 

cancer, 5 (13%) of 39 high-grade prostatic intraepithelial neoplasms, 3 (10%) of 29 benign 

prostatic hyperplasia, and 0 (0%) of 13 normal prostate tissue samples without significant 

differences in methylation frequencies or levels (Henrique, et al., 2005). Methylation levels 

were found to correlate with tumour stage and were more frequent in prostate cancer that 

spread beyond the prostate capsule (Henrique, et al., 2005). Low expression of MT-1H due to 

promoter hypermethylation has been described in prostate cancer with poor prognosis (Han, et 

al., 2013). In a microRNA microarray study on 50 prostate adenocarcinomas with and without 

perineural invasion, miR-224 has been identified as the most differently expressed microRNA 

(Prueitt, et al., 2008). This microRNA has been shown to be expressed by perineural cancer 

cells and to down-regulate MT expression in these cells (Prueitt, et al., 2008). For summary of 

MTs (sub)isoforms expression studies in human prostate cancer cell lines see Table 3. 

 

Lung cancer 

Increased MT-1/2 protein expression has been demonstrated in 62 (89.9%, n=69) non-small 

cell lung cancer (NSCLC) samples as compared to non-malignant lung tissues (NMLT, n=12) 

(Werynska, Pula, Muszczynska-Bernhard, Gomulkiewicz, Piotrowska, et al., 2013). 

Expression of MT-1B, -1F, -1G, -1H and -1X genes were found to be significantly up-

regulated, while MT-1E was significantly down-regulated in NSCLC cancer tissues 
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(Werynska, Pula, Muszczynska-Bernhard, Gomulkiewicz, Piotrowska, et al., 2013). Higher 

MT-1B mRNA expression was associated with squamocellular and adenocarcinoma subtype 

of NSCLC (Werynska, Pula, Muszczynska-Bernhard, Gomulkiewicz, Piotrowska, et al., 

2013), where a review of studies on MT expression in human lung cancer cell lines is shown 

in Table 4. Higher MT-1F mRNA expression was associated with larger primary tumour size, 

with higher grade of malignancy and poor patients' survival (Werynska, Pula, Muszczynska-

Bernhard, Gomulkiewicz, Piotrowska, et al., 2013). In this study, statistically insignificant 

higher MT-1A mRNA expression was also detected in larger primary tumours, as well as up-

regulated MT-2A mRNA that predicted poor prognosis (Werynska, Pula, Muszczynska-

Bernhard, Gomulkiewicz, Piotrowska, et al., 2013). In another study, the level of MT-1A, 

MT-2A, and MTF-1 expression have been shown to be even lower in lung cancer specimens 

compared to cancer-surrounding tissues (Liang, et al., 2013). Importantly, MT-1X was 

identified as metastasis related gene in NSCLC cell lines in a very recent study (Y. Liu, et al., 

2016). Comparing the expression level of MT-1X in human lung cancer tissues and matched 

adjacent normal lung tissues, a significant difference could be shown between stages I and IV 

confirming the prognostic value of MT-1X gene expression in clinical settings (Y. Liu, et al., 

2016). Five SNPs in the MT-1 gene region have been found to be associated with increased 

risk of lung cancer among non-heavy smokers in a Japanese population (rs7196890 showed 

the strongest association) and the impact of the polymorphisms decreased with the increasing 

consumption of cigarettes (Nakane, et al., 2015). Expression of MT-3 has also been 

investigated in lung cancer, and was found to be significantly up-regulated in NSCLC as 

compared to NMLT (Werynska, Pula, Muszczynska-Bernhard, Gomulkiewicz, Jethon, et al., 

2013). In addition, compared with NMLT, higher nuclear, but lower cytoplasmic MT-3 

expression could be detected in cancer cells (Werynska, Pula, Muszczynska-Bernhard, 

Gomulkiewicz, Jethon, et al., 2013). Low cytoplasmic MT-3 expression was associated with 
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larger primary tumour size, nevertheless, lower nuclear MT-3 expression was linked with 

higher tumour grade, and lower MT-3 mRNA expression seemed to be associated with poor 

patient outcome (Werynska, Pula, Muszczynska-Bernhard, Gomulkiewicz, Jethon, et al., 

2013). From the epigenetic point of view, an overall increase in gene promoter methylation 

has been reported in association with age and environmental exposure in NMLT (Tsou, et al., 

2007). Furthermore, an association between methylation status of MT genes and gender, 

histology, asbestos exposure, and lymph node involvement was demonstrated in patients with 

malignant mesothelioma (Tsou, et al., 2007).  

 

Breast cancer 

Disequilibrium in zinc homeostasis and high concentration of zinc in breast cancer tissues has 

been reported (Chandler, et al., 2016). The increased MT gene expression can frequently be 

detected in breast tumour specimens with predominantly cytoplasmic MT protein expression 

(see Table 5 for a review of studies on MT expression in human breast cancer cell lines), and 

it correlates with higher histological grade and significantly lower recurrence-free survival 

after treatment with adjuvant chemotherapy, but seems to be independent of age, tumour size 

and oestrogen receptor (OR) status (Yap, et al., 2009). MT-1A, MT-1E, MT-1F, MT-1G, MT-

1H, MT-1X and MT-2A but not MT-1B mRNA was detected in invasive ductal breast cancer 

tissue (IDBC) samples (R. X. Jin, et al., 2002). MT-2A, MT-1E, MT-1F were found to be 

expressed in both IDBC specimens and their adjacent benign breast tissues, although MT-1F 

expression seemed to be significantly higher in benign breast tissues compared with the breast 

cancers; MT-2A was demonstrated as the predominant isoform in both benign and malignant 

breast tissues (R. X. Jin, Bay, Chow, Tan, & Dheen, 2001; R. X. Jin, et al., 2002). In another 

study, higher MT-1F mRNA expression was found to be associated with higher histological 

grade of breast neoplasm (R. X. Jin, Bay, Chow, & Tan, 2001). MT-2A mRNA and MT 
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protein expression were found to be in association with cancer cell proliferation (Ki-67 

immunolabelling) and histological grade (R. X. Jin, et al., 2002). In case-control studies, 

SNPs in MT-2A (rs1580833 in a German population and rs28366003 in a Polish population) 

showed a positive association with breast cancer risk (Krzeslak, et al., 2014; Seibold, et al., 

2011). In further study, significantly higher MT-1E mRNA expression was detected in OR-

negative breast tumour tissues specimens compared to OR-positive ones (R. Jin, Bay, Chow, 

Tan, & Lin, 2000). Nevertheless, epigenetic repression of MT-1 gene cluster was also 

demonstrated in breast cancer (Jadhav, et al., 2015). In silico analysis revealed much lower 

gene expression of this cluster in The Cancer Genome Atlas cohort for OR-positive tumours 

(Jadhav, et al., 2015). Comparing the methylation of CpG islands in tissues (tumour, healthy 

breast and blood) from patients with breast cancer revealed that the promoter of MT-1A was 

methylated above 25% in 18 primary and metastatic tumours, but there was also >10% 

methylation of healthy breast tissue in 5 samples suggesting that the methylation process for 

this gene takes place already in normal breast cells (Piotrowski, et al., 2006). Interestingly, 

metal induced MT gene expression also seems to be dependent on epigenetic regulation in 

breast cancer cells, namely on the histone acetylation status of the gene promoter, which is 

determined by p53 function (Ostrakhovitch, Olsson, von Hofsten, & Cherian, 2007). In the 

presence of mutated p53 the expression of MT-1A and MT-2A is dampened in response to 

metal, but constitutive MT-3 gene expression is allowed (Ostrakhovitch, Song, & Cherian, 

2016). Sens et al. showed that MT-3 over-expression was detected in breast cancer samples, 

and it was found to be associated with high recurrence rate (Sens, et al., 2001). In another 

study, however, MT-3 expression has been found to be lower in IDBC specimens compared 

with non-malignant breast tissues or mastopathies, in addition, the level of MT-3 mRNA was 

demonstrated to be even lower in breast cancers with lymph node metastasis than in 

carcinomas without metastasis (Gomulkiewicz, et al., 2016).  
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Colorectal cancer 

The down-regulation of MT-1/2 expression was revealed in association with colorectal cancer 

progression, although a relatively high MT content could be detected in colorectal cancers 

with very poor prognosis (Arriaga, et al., 2012; Janssen, et al., 2000). A review of studies on 

MT expression in colorectal cancer cell lines is shown in Table 6. Down-regulation of MT-1B 

(Jansova, et al., 2006), -1E (Arriaga, et al., 2012), -1F (Arriaga, et al., 2012; Jansova, et al., 

2006; Yan, et al., 2012), -1G (Arriaga, et al., 2012; Jansova, et al., 2006; Yan, et al., 2012), -

1H (Arriaga, et al., 2012; Jansova, et al., 2006), -1M (Arriaga, et al., 2012), -1X (Yan, et al., 

2012), and MT-2A (Jansova, et al., 2006; Yan, et al., 2012) has been demonstrated during the 

transition from normal mucosa to cancer, the less down-regulated expression of MT-1X and 

MT-2A was thought to support MT protein expression in tumour tissue (Arriaga, et al., 2012). 

Radiotherapy seems to be able to induce the expression of MT-1F, MT-1X and MT-2A genes 

in rectal cancer tissue, however, there is no difference in MT-1/2 protein expression levels 

between the samples obtained before and after radiotherapy (Szelachowska, et al., 2012). 

Regarding the mechanism of down-regulation of gene expression, promoter hypermethylation 

of MT-1G (Arriaga, et al., 2012), and loss of heterozygosity at the MT-1F locus (Yan, et al., 

2012) have been also identified. Noteworthy, in high microsatellite instability colorectal 

carcinoma tissues MT-1X T20 (3'UTR, T20 mononucleotide repeat of the MT-1X gene) 

instability can be more frequently detected as compared to microsatellite stable or low 

microsatellite instability colorectal cancer cases (97.3% sensitivity and 100% specificity) 

(Morandi, et al., 2012). Serine peptidase inhibitor, Kazal type 1 (SPINK1) that has been 

shown to contribute to increased cell proliferation, invasion, soft agar colony formation, and 

therapy resistance in colon adenocarcinoma cell culture through activation of oncogenic 

signalling pathways, also seemed to be involved in reduced expression of various MT 
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isoforms in colon cancer cells as SPINK1 knockdown leads to up-regulation of MT-1B, -1E, -

1G, -1H, -1L, -1M, -1X, and MT-2A genes in these cells (Tiwari, et al., 2015). 

 

Hepatocellular carcinoma  

Compared to the adjacent non-malignant liver, significant repression of MT-1G and MT-1M 

due to promoter hypermethylation has been demonstrated in primary hepatocellular 

carcinomas (K. Y. Y. Chan, et al., 2006; Kanda, et al., 2009; J. Mao, et al., 2012). A recent 

study confirmed that low MT-1M expression correlates with high alpha-fetoprotein levels and 

early (<24 months) tumour recurrence after surgery (Ding & Lu, 2016). Furthermore, the 

methylation status of MT-1G and MT-1M promoters detected in serum cell free DNA (liquid 

biopsy) in patients with hepatocellular carcinoma was also shown to be significantly higher 

than that in patients with chronic hepatitis B or in normal controls (Ji, et al., 2014). In 

addition, in carcinoma patients associations have been found between serum MT-1M 

promoter methylation and tumour size, and between simultaneous MT-1G and MT-1M 

promoter methylation and higher incidence of vascular invasion or metastasis, respectively 

(Ji, et al., 2014). Association between hypermethylation of the promoter region of MT-1H and 

liver cancer with poor clinical outcome has also been reported (Han, et al., 2013). Increased 

activity of DNA methyltransferase 1 (Dnmt1) might be one of the reasons responsible for 

down-regulation of MT gene expression in liver cancer (Takata, et al., 2013). Dnmt1 is a 

direct target of miR-140, and reduced expression of the microRNA-containing 

ribonucleoprotein complex component DDX20, which is frequently seen in hepatocellular 

carcinomas, can lead to the impairment of miR-140 function (Takata, et al., 2013). MT-1M is 

also a target gene of miR-24-3p that is another significantly up-regulated microRNA in liver 

cancer tissues as compared with non-tumour liver tissues (Dong, et al., 2016). Furthermore, 

MT gene expression is dependent on DNA binding activity and phosphorylation of 
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CCAAT/enhancer binding protein alpha (C/EBPalpha) in liver cells (Datta, et al., 2007). In 

hepatocellular carcinoma the phosphorylation of C/EBPalpha is decreased due to suppressed 

activity of glycogen synthase kinase-3, a downstream effector of PI3K/AKT signalling 

pathway (Datta, et al., 2007). In a hospital-based case-control study it has been revealed that 

MT-1 rs8052394, rs964372, and rs8052334 A-G-T haplotype can enhance the carcinogenic 

effect of smoking on liver, and carriers with this haplotype have higher risk for liver cancer 

development than the control group (A-C-T, the most common haplotype) (Wong, et al., 

2013). Decreased expression of MT-1A, -1E, -1F, -1G, -1H, -1X genes was demonstrated in 

intrahepatic cholangiocarcinoma tissue samples as compared with normal liver tissues in 

patients residing in Northeast Thailand, a region with a high prevalence of liver fluke 

infection (Subrungruang, et al., 2013). Table 7 summarizes studies on expression of MT in 

hepatic cancer cell lines. 

 

Head and neck cancer 

Significantly higher MT-1/2 expression was observed in oral squamous cell carcinoma tissues 

comparing with oral leukoplakia or normal epithelial tissue samples (Pontes, et al., 2009). 

Nevertheless, up-regulation of MT-1F gene expression, but down-regulation of MT-1A, MT-

1X, MT-3 and MT-4 gene expressions was detected in carcinoma tissue specimens compared 

with non-neoplastic oral mucosa (Brazao-Silva, et al., 2015). High MT-1X expression in 

cancer tissues was restricted to non-metastatic cases, but high MT-3 expression was 

associated with increased risk of lymph node metastasis (Brazao-Silva, et al., 2015). 

Furthermore, the low level of MT-1G mRNA in carcinoma tissues correlated with poor 

prognosis (Brazao-Silva, et al., 2015). An SNP analysis revealed that MT-1 rs11076161 AA, 

rs964372 CC, and rs7191779 GC genotypes are protective against oral squamous cell 

carcinomas, whereas MT-1 rs8052394 A allele is associated with a higher risk to oral cancer 
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development (Zavras, Yoon, Chen, Lin, & Yang, 2011). Regarding squamous cell laryngeal 

cancer, the -5 A/G (rs28366003) SNP in the core promoter region of the MT-2A has been 

shown to be related to the higher cancer risk (Starska, Krzeslak, Forma, Olszewski, Lewy-

Trenda, et al., 2014). Moreover, the most carriers of minor allele had a higher stage, increased 

cancer aggressiveness, as defined by a higher total tumour front grading score and diffuse 

tumour growth (Starska, Krzeslak, Forma, Olszewski, Lewy-Trenda, et al., 2014). In further 

study, a significant association between the rs28366003 SNP in the MT-2A gene and MT-2A 

mRNA levels was demonstrated in squamous cell laryngeal cancer and non-cancerous 

laryngeal mucosa samples, and an inverse relation was shown between MT-2A expression 

and Cd, Zn and Cu content in tissues (Starska, Krzeslak, Forma, Olszewski, Morawiec-

Sztandera, et al., 2014). Table 8 summarizes studies on expression of MT in head and neck 

cancer cell lines. 

 

Oesophageal cancer 

Down-regulation of MT-1G, -1M, and MT-3 gene expressions have been detected in 

oesophageal squamous cell carcinoma tissue samples as compared with non-malignant 

oesophageal tissues (Kumar, Chatopadhyay, Raziuddin, & Ralhan, 2007; Y. C. Lee, et al., 

2011; Oka, et al., 2009; E. Smith, et al., 2005). Importantly, methylation study on tissue 

specimens from normal oesophageal mucosae from healthy subjects without carcinogen 

exposure, normal mucosae from healthy subjects with carcinogen exposure, normal mucosae 

from cancer patients, and in cancerous mucosae has revealed significantly higher methylation 

of MT-1M in cancer samples, and in addition, in drinkers and in smokers (Y. C. Lee, et al., 

2011; Oka, et al., 2009). Down-regulation of MT-3 gene expression in oesophageal squamous 

cell carcinoma seems also to be associated with promoter hypermethylation (E. Smith, et al., 

2005). Nevertheless, a study on DNA methylation profiles in the MT-3 promoter region in 
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oesophageal adenocarcinomas has revealed that in tumour tissues the CpG nucleotides in two 

regions (from 2139 to -49 and +296 to +344) were significantly hypermethylated as compared 

to normal samples, whereas CpG nucleotides from -372 to -306 from the transcription start 

site were highly methylated in both tumour and normal samples (D. F. Peng, et al., 2011). 

Furthermore, the DNA hypermethylation from 2127 to 28 CpG sites was found to be 

associated with advanced cancer and lymph node metastasis (D. F. Peng, et al., 2011). 

Recently, up-regulation of the expression of a long non-coding RNA, HNF1A-AS1, has been 

demonstrated in oesophageal adenocarcinomas relative to their corresponding normal 

oesophageal tissues, and MT-1E was identified as its downstream target (X. Yang, et al., 

2014). 

 

Tumours of central nervous system 

Gene expression studies on glioblastoma tumour specimens revealed an association between 

high MT-1A, -1B, -1E, -1F, -1H, and MT-3  expression and poor patient survival (Mehrian-

Shai, et al., 2015). Moreover, MT-2 protein expression was found to be significantly higher in 

glioblastoma multiforme tissue samples from the first surgery than in tumour's fragments of 

the same region but obtained 1 year apart suggesting a dynamic change in MT gene 

expression with progression in this type of cancer (de Aquino, et al., 2016). Very recently, 

down-regulation of miR-340 and up-regulation of miR-1293 has been shown in glioblastoma 

multiforme biopsies (Cosset, et al., 2016). Interestingly, several MT genes (MT-1A, -1E, -1F, -

1H, -1X, -2A) were identified as targets of these microRNAs, but it was emphasised that the 

induced changes in gene expression is influenced by the cellular micro-environment (Cosset, 

et al., 2016). Down-regulation of MT genes (MT-1L, MT-1G, MT-1E, MT-1X, MT-1B, MT-2A, 

and MT-3) has been demonstrated as a common event at relapse of ependymoma, however, 

loss or deletion of the MT genes cluster could not be demonstrated (Peyre, et al., 2010). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

26 
 

Methylation of the promoter of MT-3 gene has been supposed, but could not be proved 

(Peyre, et al., 2010). 

 

Thyroid cancer 

Although the up-regulation of MT expression in follicular thyroid carcinoma has been 

reported in one study (Back, et al., 2013), several data have been published to demonstrate the 

down-regulation of MT expression in thyroid cancers (both in papillary and follicular thyroid 

carcinoma, but to a greater extent in papillary carcinoma) compared to normal thyroid tissue 

(Ferrario, et al., 2008; J. Fu, et al., 2013; Huang, De La Chapelle, & Pellegata, 2003). It has 

been demonstrated that promoter methylation contributes to MT-1G inactivation in thyroid 

cancers, even an association between MT-1G hypermethylation and lymph node metastasis in 

papillary thyroid cancer patients has been found (J. Fu, et al., 2013; Huang, et al., 2003). Loss 

of heterozygosity seems to be a remarkably rare mechanism of loss of MT-1G gene function 

in this cancer (Huang, et al., 2003). 

 

Renal cancer 

MT protein expression has been demonstrated in specimens from renal cell carcinoma (RCC) 

and it was found to be associated with significantly worse prognosis (Nguyen, et al., 2000; 

Tuzel, Kirkali, Yorukoglu, Mungan, & Sade, 2001). However, down-regulation of MT-1H 

(Alkamal, et al., 2015; Nguyen, et al., 2000; M. Takahashi, et al., 2001), MT-1G (Alkamal, et 

al., 2015; M. Takahashi, et al., 2001), MT-2A (Alkamal, et al., 2015), MT-1A, MT-1L and 

MT-1E (M. Takahashi, et al., 2001) have been shown in RCC. In one study, comparing cancer 

tissue samples to non-malignant tissues from 11 patients with RCC the same level of MT-1E, 

MT-1F and MT-1X expression, but up-regulation of MT-2A and down-regulation of MT-1A 

and MT-1G expression were detected in cancer tissue specimens (Nguyen, et al., 2000). 
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Gastric cancer 

Lower MT-2A mRNA and protein expression has been detected in gastric cancer tissue 

samples comparing with the adjacent normal gastric tissues (J. M. Kim, et al., 2005; Pan, 

Xing, Cui, Li, & Lu, 2013). In addition, loss of MT-2A expression in gastric cancer seems to 

be associated with down-regulation of I kappa B-alpha expression, diffuse- and intestinal-type 

histological subtypes, higher grade, and an advanced clinical stage (Pan, Huang, et al., 2013; 

Pan, Xing, et al., 2013). MT-2A is a potential target of miR-23a, and comparing gastric cancer 

tissue specimens to matched normal tissues an increase in miR-23a expression has been 

detected and an inverse correlation was found between miR-23a and MT-2A expression (An, 

et al., 2013). Nevertheless, expression of MT-2A can be induced by chemotherapy, and high 

MT-2A expression in gastric cancer tissue is associated with better response to chemotherapy 

and prolonged patient survival as compared to those with low MT-2A expression (Pan, et al., 

2016). Furthermore, it seems to be possible to induce the up-regulation of MT-2A expression 

by inhibition of histone deacetylase activity in gastric cancer cells (Pan, et al., 2016). Down-

regulation of MT-3 gene expression by hypermethylation has also been found in gastric 

cancers, particularly in p53-negative cases (Deng, et al., 2003). 

 

Bladder cancer 

MT-1/2 protein over-expression has been demonstrated in bladder cancer tissues, whereas 

MT-1/2 expression could not be detected in non-malignant bladder specimens (Somji, Sens, 

Lamm, Garrett, & Sens, 2001). In bladder cancer patients a high MT expression in tumour 

tissues was linked to shorter tumour-specific survival, and increased recurrence rates (Hinkel, 

Schmidtchen, Palisaar, Noldus, & Pannek, 2008). Expression of mRNA for the MT-2A and 

MT-1X genes could be shown in both normal and cancerous bladder tissues, the expression of 
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MT-1E was found to be variable, while expression of MT-1X proved to be up-regulated in 

cancer as compared to the level of MT-1X mRNA in normal bladder tissue (Somji, et al., 

2001). In another cohort of patients with bladder cancer the expression of MT-1E has been 

found to be associated with higher cancer stage (Wu, Siadaty, Berens, Hampton, & 

Theodorescu, 2008). Using loss of function analysis, the same research group demonstrated 

that MT-1E expression contributes to cancer cell migration (Wu, et al., 2008). MT-3 protein 

expression seems to occur frequently in carcinoma in situ as well as in low- and high-grade 

urothelial cancer (Somji, et al., 2011; Zhou, et al., 2006). In contrast, MT-3 gene is silenced in 

non-transformed urothelial cells by a mechanism involving histone modification of the MT-3 

promoter (Somji, et al., 2011). 

 

Endometrium cancer 

Loss of MT expression in association with copy number changes has been found to be an 

early event in development of uterine corpus endometrial carcinoma, and it was found to be 

associated with poorer prognosis (Delaney & Stupack, 2016). Down-regulation of MT-1E 

gene expression due to promoter hypermethylation could be demonstrated in carcinoma tissue 

samples, particularly with low OR-alpha expression, as compared with normal endometrial 

tissues or hyperplasias (Tse, et al., 2009). 

 

Ovarian cancer 

Down-regulation of MT-1L, -1X, and MT-2A gene expression could be revealed in ovarian 

tissues reflective of low malignant potential/early cancer onset and possible pre-malignant 

stages (Mougeot, et al., 2006). However, the absence of MT protein expression in ovarian 

cancer samples correlated with improved progression-free survival in patients treated with 

adjuvant platinum-based chemotherapy (Woolston, et al., 2010). 
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Pancreatic cancer 

High MT protein expression was detected in pancreas adenocarcinoma tissues compared with 

pancreatic serous cystadenoma or healthy pancreatic tissue samples (Sliwinska-Mosson, 

Milnerowicz, Rabczynski, & Milnerowicz, 2009). 

 

Sarcoma and other mesenchymal tumours 

Up-regulation of MT-1B, -1E, -1G, -1H, -1L, -1X, and MT-2A gene expression was found in 

osteosarcoma tissue samples compared with bone biopsies of non-malignant lesions, and three 

MT isoforms (MT-1E, -1H and MT-1X) were among the 10 most highly up-regulated genes in 

the osteosarcoma transcriptome  (Endo-Munoz, Cumming, Sommerville, Dickinson, & 

Saunders, 2010). An association between MT-1F, -1H, -1X, and MT-2A over-expression in 

tumour specimens and high metastasis risk has also been observed in patients with high-grade 

soft tissue sarcoma (Skubitz, Francis, Skubitz, Luo, & Nilbert, 2012). As mentioned above, 

the down-regulation of MT-2A expression is a frequent finding in gastric cancer tissues 

compared to adjacent normal tissue samples (J. M. Kim, et al., 2005; Pan, Xing, et al., 2013). 

Interestingly, comparing MT-2A expression in tissue specimens of gastrointestinal stromal 

tumour (GIST) located in the stomach with that in early gastric carcinomas, significantly 

lower MT-2A mRNA expression and nuclear MT protein expression were found in GIST 

samples  (Soo, et al., 2011). 

 

Haematological malignancies 

Up-regulation of MT gene expression has been demonstrated in diffuse large B-cell 

lymphoma (DLBCL) with poor prognosis, including activated B-cell and type-3 DLBCL 

(Poulsen, et al., 2006). In contrast, low to undetectable MT expression has been found in 
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germinal center DLBCL (Poulsen, et al., 2006). Down-regulation of MT-3 gene expression 

due to promoter methylation has been detected in paediatric acute myeloid leukaemia samples 

(Y. F. Tao, et al., 2014). Table 9 summarizes studies on expression of MT in human 

haematological cancer cell lines. 

 

Melanoma and non-melanoma skin cancers 

MT-1/2 over-expression has been found in cutaneous malignant melanomas in association 

with poor prognosis (Emri, et al., 2013; Sugita, et al., 2001; Weinlich, 2009). Over-expression 

of cancer-testis antigen 16 (CT16, PAGE5), a positive regulator of MT-2A has been 

demonstrated in melanoma metastasis (Nylund, et al., 2012). Nevertheless, MT-1E gene 

promoter methylation could be revealed in 1 of 17 (6%) of the benign naevi, in 16 of 43 

(37%) primary melanoma tumours and in 6 of 13 (46%) melanoma metastases (Faller, et al., 

2010). Higher incidence of promoter methylation of MT-1G was also demonstrated in 

melanomas compared with normal melanocytes and nevi (Koga, et al., 2009). Ectopic over-

expression of MT-1E has been demonstrated to increase the sensitivity of melanoma cells to 

cisplatin-induced apoptosis (Faller, et al., 2010). Low MT-3 protein expression has been 

demonstrated in normal skin epidermis (Pula, et al., 2015; Slusser, et al., 2015). Significantly 

higher MT-1/2 and MT-3 expression was noted in actinic keratosis and cutaneous squamous 

cell cancer, as compared with normal skin epidermis, whereas very low levels of MT-3 

expression were found in basal cell cancer (Pula, et al., 2015; Slusser, et al., 2015; Zamirska, 

Matusiak, Dziegiel, Szybejko-Machaj, & Szepietowski, 2012). Table 10 summarizes of MTs 

(sub)isoforms expression studies in other human cancer cell lines. 

 

Possibilities of using the MTs regulation in cancer therapy 
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Above chapter gives clear evidence that due to their roles and altered expressions in tumours 

MTs could be targeted to enhance the efficiency of anticancer therapy (Lai, Yip, & Bay, 

2011). Noteworthy, pretreatment with MT inducers can improve chemotherapy tolerance by 

decreasing the toxic effects of cytostatics on non-target organs (Heger, et al., 2016). On the 

other hand, this action can result in significant increase of chemoresistance of cancer cells. 

Thus, specific knowledge on particular roles of MTs has to be obtained. SiRNA silencing of 

MTs was already published in (Lai, et al., 2010; Tarapore, Shu, Guo, & Ho, 2011), where 

Tarapore et al. used phage Phi29 Motor pRNA as a vehicle to carry siRNA specifically 

targeted to MT-2A mRNA in ovarian cancers (Tarapore, et al., 2011). Lai et al. (Lai, et al., 

2010) reported that silencing of MT-2A gene by siRNA induces entosis in MCF-7 breast 

cancer cells. Targeting of a unique mRNA molecule using antisense approaches, based on 

sequence specificity of double-stranded nucleic acid interactions should, in theory, allow for 

design of drugs with high specificity for intended targets. Antisense-induced degradation or 

inhibition of translation of a target mRNA is potentially capable of inhibiting the expression 

of any target protein (Jason, Koropatnick, & Berg, 2004). Downregulation of MTs by 

antisense RNA/DNA is known to inhibit growth of various types of tumour cells. Using this 

strategy it is possible to inhibit the growth and metastases of breast cancer cells 

(AbdelMageed & Agrawal, 1997), leukemia P388 cells, Ehrlich carcinoma, sarcoma 180 

(Takeda, et al., 1997) and nasopharyngeal cancer cells (O. J. K. Tan, Bay, & Chow, 2005). 

Antisense MT mRNA may also induce sensitivity of the cancer cells to cytostatic, either 

heavy metal-based (Kennette, Collins, Zalups, & Koropatnick, 2005) or others, such as 

anthracyclines (Wulfing, et al., 2007; Yap, et al., 2009) and kinase inhibitors (X. F. Sun, et al., 

2016). 

Cisplatin resistance was inhibited in mouse melanoma cell line by RNA interference using 

reducible oligo-peptoplex (J. H. Lee, et al., 2015). In human cell lines the decrease in basal 
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MT expression by antisense MT mRNA caused increasing of tumour cells sensitivity to 

cisplatin (Kennette, et al., 2005). Use of sorafenib, a tyrosine kinase inhibitor, leads to a 

survival benefit in patients with advanced HCC, but its use is hampered by drug resistance. 

Targeting MT-1G enhances the anticancer activity of sorafenib in vivo, where suppression of 

MT-1G expression increased sorafenib sensitivity and negative regulation of ferroptosis in 

Huh7 and HepG2 cells (X. F. Sun, et al., 2016).  

Another potential role of MT in cancer therapy is its protective action during chemotherapy 

(Volm, 1998). Overall, cells with developed resistance to heavy metal-based cytostatics have 

often increased expression of MTs (Bredel, 2001; Chao, 1996; Naito, Yokomizo, & Koga, 

1999; Perez, 1998; Scanlon, Kashanisabet, Tone, & Funato, 1991). Targeting the MTs with 

antisense RNA/DNA for reversal of multidrug resistance was successfully proposed (Gosland, 

Lum, Schimmelpfennig, Baker, & Doukas, 1996), and could be considered as pivotal part of 

personalized cancer therapy. 

Although the use of these approaches demonstrates very promising results, we anticipate that 

further detailed insights into the complex kingdom of MTs may bring higher therapeutic 

efficiency. For instance, antisense-based therapy can be targeted to multiplex targets, not only 

one specific sub-isoform. This can enable for possible multiplication of therapeutic effects, 

however a lot of experiments is still required to accelerate these applications. 

 

Conclusions and future outlooks 

MTs are crucial biological molecules with a wide range of roles. Particularly, in cancer 

management, the detailed knowledge of changes in MTs expression on sub-isoforms levels 

allows for a proposal of systems for silencing or restoring their expression with the aim to 

modulate the efficiency of the treatment protocol and to enhance the patient’s outcome. It is 

worth noting that recent literature shows that the accurate classification of expression pattern 
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of MTs could be also helpful to enhance the diagnostic possibilities and patient’s stratification 

for personalized treatment. Despite fast advances in the field of analytical chemistry, the 

proper identification of MTs on a protein level is still complicated. Anyway, we believe that 

such methods will allow for exact understanding of expression of certain subisoforms. This 

progress will accelerate the description of the biological roles of certain MTs, which are 

indisputably pivotal for a number of pathophysiological processes. 
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Captions for Figures  

Figure 1 

Knowledge of MTs different expression and regulation in tumour diseases is usable for their 

treatments.  

Figure 2  

Overview of methods for determination of MTs expression with respect to features important 

in research of tumour diseases. For more information to single methods see (Haq, Mahoney, 

& Koropatnick, 2003; Krizkova, et al., 2016; Ryvolova, et al., 2011) 
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Figure 2  
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Table 1. Overview of human MT classification 

MT Isoform (Sub)isoform Gene symbol Gene name Previous Symbols Synonyms Locus 

MT 1 A MT-1A metallothionein 1A MT1, MT1S  16q13 

  B MT-1B metallothionein 1B MT1, MT1Q  16q13 

  E MT-1E metallothionein 1E MT1 MTD 16q13 

  F MT-1F metallothionein 1F MT1  16q13 

  G MT-1G metallothionein 1G MT1 MT1K 16q13 

  H MT-1H metallothionein 1H MT1  16q13 

  1HL1 MT-1HL1 metallothionein 1H like 1 MT1P2  1q43 

  M MT-1M metallothionein 1M MT1, MT1K  16q13 

  X MT-1X metallothionein 1X MT1 MT-1l 16q13 

   MT-1CP metallothionein 1C, pseudogene   16q13 

   MT-1DP metallothionein 1D, pseudogene  MTM 16q13 

   MT-1IP metallothionein 1I, pseudogene MT1, MT1I MTE 16q13 

   MT-1JP metallothionein 1J, pseudogene MT1, MT1NP, MT1J MTB 16q13 

   MT-1L metallothionein 1L, pseudogene MT1 MTF, MT1R 16q13 

   MT-1P1 metallothionein 1 pseudogene 1  bA435O5.3 9q22.32 

   MT-1P3 metallothionein 1 pseudogene 3 C20orf127, MTL4 dJ614O4.6 20q11.22 

MT 2 A MT-2A metallothionein 2A MT2  16q13 

MT 3  MT-3 metallothionein 3  GIF 16q13 

MT 4  MT4 metallothionein 4  MTIV 16q13 
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Table 2. Summary of MTs (sub)isoforms expression studies in human tumours. Up- and 

down regulation is related to surrounding non-tumour tissues, if not mentioned otherwise.   

Diagnosis Gene Tissue sample Observation Citation 

Prostate cancer MT-1F Perineural-invasive CaP downregulation (Prueitt, et al., 

2008) 

MT-1G CaP  hypermethylation (Henrique, et 

al., 2005) 

MT-1H CaP  hypermethylation (Han, et al., 

2013) 

MT-1M Perineural-invasive CaP  downregulation (Prueitt, et al., 

2008) 

MT-1X Advanced CaP  downregulation (Garrett, et al., 

2000) 

Gastric cancer MT-1A cisPt-resistant gastric cancer  expression (Suganuma, et 

al., 2003) 

MT-1B cisPt-resistant gastric cancer  expression (Suganuma, et 

al., 2003) 

MT-1E cisPt-resistant gastric cancer  expression (Suganuma, et 

al., 2003) 

MT-1F cisPt-resistant gastric cancer  expression (Suganuma, et 

al., 2003) 

MT-1G cisPt-resistant gastric cancer  upregulation (Suganuma, et 

al., 2003) 

MT-1JP Gastric cancer  downregulation (J. Yang, et al., 

2017) 

MT-1M Gastric cancer  downregulation (J. Yang, et al., 

2017) 

MT-2A Poor prognosis gastric cancer  

Docetaxel-responding gastric cancer  

downregulation 

upregulation 

(Pan, Huang, et 

al., 2013; Pan, 

Xing, et al., 

2013) 

(Pan, et al., 

2016) 

MT-3 cisPt resistant gastric cancer  

Gastric cancer  

expression 

hypermethylation 

(Suganuma, et 

al., 2003) 

(Deng, et al., 

2003) 

MT4 cisPt resistant gastric cancer  expression (Suganuma, et 

al., 2003) 

Thyroid cancer MT-1E thyroid cancer  downregulation (Ferrario, et al., 

2008) 

MT-1G thyroid cancer   hypermethylation 

downregulation,  

modulation of  PI3K/Akt pathway  

(Huang, et al., 

2003) 

(J. Fu, et al., 

2013) 

(Ferrario, et al., 

2008) 

MT-1X thyroid cancer  downregulation (Ferrario, et al., 

2008)  

MT-2A thyroid cancer  downregulation (Ferrario, et al., 

2008) 

Sarcoma MT-1B osteosarcoma  upregulation (Endo-Munoz, 

et al., 2010) 

MT-1E osteosarcoma  upregulation (Endo-Munoz, 

et al., 2010) 

MT-1F soft tissue sarcoma  upregulation (Skubitz, et al., 

2012) 

MT-1G osteosarcoma  upregulation (Endo-Munoz, 

et al., 2010) 

MT-1H soft tissue sarcoma  

osteosarcoma  

upregulation 

upregulation 

(Skubitz, et al., 

2012) 

(Endo-Munoz, 
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et al., 2010) 

MT-1L osteosarcoma  upregulation (Endo-Munoz, 

et al., 2010) 

MT-1X soft tissue sarcoma  upregulation (Skubitz, et al., 

2012) 

MT-2A soft tissue sarcoma  

osteosarcoma  

upregulation 

upregulation 

(Skubitz, et al., 

2012) 

(Endo-Munoz, 

et al., 2010) 

Breast cancer MT-1A breast cancer  

breast cancer 

hypermethylation 

downregulation 

(Piotrowski, et 

al., 2006) 

(Tai, et al., 

2003) 

MT-1B breast cancer  no expression (Tai, et al., 

2003) 

MT-1E breast cancer  

oestrogen negative breast cancer  

breast cancer 

downregulation in tumour area 

expression dependent on invasivity 

downregulation 

(R. X. Jin, Bay, 

Chow, Tan, et 

al., 2001) 

(R. Jin, et al., 

2000) 

(Tai, et al., 

2003) 

MT-1F breast cancer  

Different grades breast cancer tissues 

breast cancer  

downregulation in tumour area 

expression correlation with grade  

downregulation 

(R. X. Jin, Bay, 

Chow, Tan, et 

al., 2001) 

(R. X. Jin, Bay, 

Chow, & Tan, 

2001) 

(Tai, et al., 

2003) 

MT-1G breast cancer downregulation (Tai, et al., 

2003) 

MT-1H breast cancer downregulation (Tai, et al., 

2003) 

MT-1JP breast cancer  hypermethylation (Piotrowski, et 

al., 2006) 

MT-1X breast cancer  downregulation (Tai, et al., 

2003) 

MT-2A breast cancer  

breast cancer  

downregulation in tumour area 

expression 

(R. X. Jin, Bay, 

Chow, Tan, et 

al., 2001) 

(Tai, et al., 

2003) 

MT-3 breast cancer  with poor prognosis upregulation (Sens, et al., 

2001) 

Lung cancer MT-1A lung cancer  

malignant mesothelioma  

downregulation 

hypermethylation 

(Liang, et al., 

2013) 

(Tsou, et al., 

2007) 

MT-1B poor outcome NSLC  upregulation (Werynska, 

Pula, 

Muszczynska-

Bernhard, 

Gomulkiewicz, 

Piotrowska, et 

al., 2013) 

MT-1E poor outcome NSLC  

lung cancer  

downregulation 

downregulation 

(Werynska, 

Pula, 

Muszczynska-

Bernhard, 

Gomulkiewicz, 

Piotrowska, et 

al., 2013) 

(Liang, et al., 

2013) 
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MT-1F bad prognosis LLC  

poor outcome NSLC  

upregulation 

upregulation 

(da Motta, De 

Bastiani, 

Stapenhorst, & 

Klamt, 2015) 

(Werynska, 

Pula, 

Muszczynska-

Bernhard, 

Gomulkiewicz, 

Piotrowska, et 

al., 2013) 

MT-1G bad prognosis LLC  

poor outcome NSLC  

lung cancer  

upregulation 

upregulation 

downregulation 

(da Motta, et 

al., 2015) 

(Werynska, 

Pula, 

Muszczynska-

Bernhard, 

Gomulkiewicz, 

Piotrowska, et 

al., 2013) 

(Liang, et al., 

2013) 

MT-1H poor outcome NSLC  upregulation (Werynska, 

Pula, 

Muszczynska-

Bernhard, 

Gomulkiewicz, 

Piotrowska, et 

al., 2013) 

MT-1M bad prognosis LLC  upregulation (da Motta, et 

al., 2015) 

MT-1X bad prognosis LLC  

poor outcome NSLC  

upregulation 

upregulation 

(da Motta, et 

al., 2015) 

(Werynska, 

Pula, 

Muszczynska-

Bernhard, 

Gomulkiewicz, 

Piotrowska, et 

al., 2013) 

MT-2A lung cancer  

malignant mesothelioma  

downregulation 

hypermethylation 

(Liang, et al., 

2013) 

(Tsou, et al., 

2007) 

MT-3 lung tissue from patients exposed to 

sulfur mustard 

malignant NSLC  

lung cancer  

downregulation 

nuclear downregulation 

downregulation 

(Tahmasbpour, 

Ghanei, 

Qazvini, 

Vahedi, & 

Panahi, 2016) 

(Werynska, 

Pula, 

Muszczynska-

Bernhard, 

Gomulkiewicz, 

Jethon, et al., 

2013) 

(Liang, et al., 

2013) 

MT4 lung cancer  downregulation (Liang, et al., 

2013) 

Ovarian cancer MT-1L low malignant potential/early cancer 

onset  

downregulated (Mougeot, et 

al., 2006) 

MT-1X low malignant potential/early cancer 

onset  

downregulation (Mougeot, et 

al., 2006) 

MT-2A low malignant potential/early cancer 

onset  

downregulation (Mougeot, et 

al., 2006) 
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Melanoma and 

non-melanoma 

skin cancers 

MT-1E Melanoma  hypermethylation, cisPt sensitivity (Faller, et al., 

2010) 

MT-3 actinic keratosis  

basal cell carcinoma  

SCC 

Melanoma and SCC  

BCC  

upregulation 

downregulation 

upregulation 

moderate to intense expression 

low to moderate expression 

(Pula, et al., 

2015) 

(Pula, et al., 

2015) 

(Pula, et al., 

2015) 

(Slusser, et al., 

2015) 

(Slusser, et al., 

2015) 

Renal cancer MT-1A RCC  downregulation (Nguyen, et al., 

2000; M. 

Takahashi, et 

al., 2001) 

MT-1E RCC  downregulation (M. Takahashi, 

et al., 2001) 

MT-1G RCC  downregulation (Alkamal, et 

al., 2015; 

Nguyen, et al., 

2000; M. 

Takahashi, et 

al., 2001) 

MT-1H RCC  downregulation (Alkamal, et 

al., 2015; M. 

Takahashi, et 

al., 2001) 

MT-1L RCC  downregulation (M. Takahashi, 

et al., 2001) 

MT-2A RCC  

RCC  

downregulation 

upregulation 

(Alkamal, et 

al., 2015) 

(Nguyen, et al., 

2000) 

MT-3 APA upregulation (Felizola, et al., 

2014) 

Hepatocellular 

carcinoma 

MT-1A ICC 

HCC 

downregulation 

downregulation 

(Subrungruang, 

et al., 2013) 

(H. Li, Lu, 

Chen, & Liu, 

2017) 

MT-1E ICC downregulation (Tarapore, et 

al., 2011) 

MT-1F ICC downregulation (Tarapore, et 

al., 2011) 

MT-1G ICC 

HCC  

HCC  

HCC 

Hepatocytes from primary HCC 

downregulation 

downregulation, methylation 

downregulation, allelic lost 

downregulation 

upregulation 

(Tarapore, et 

al., 2011) 

(Kanda, et al., 

2009) 

(K. Y. Y. 

Chan, et al., 

2006) 

(C. L. Fu, Pan, 

Pan, & Gan, 

2017) 

(X. F. Sun, et 

al., 2016) 

MT-1H 

 

 

Liver cancer  

ICC 

HCC 

hypermethylation 

downregulation 

downregulation 

(Han, et al., 

2013) 

(Tarapore, et 

al., 2011) 

(Y. L. Zheng, 

et al., 2017) 

MT-1HL1 HCC downregulation (C. L. Fu, et 

al., 2017) 

MT-1IP ICC downregulation (Tarapore, et 
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al., 2011) 

MT-1M HCC 

 

serum from HCC patients 

downregulation, hypermethylation 

downregulation 

hypermethylation 

(J. Mao, et al., 

2012) 

(C. L. Fu, et 

al., 2017) 

(Ji, et al., 

2014) 

MT-1X ICC downregulation (Tarapore, et 

al., 2011) 

MT-2A HCC  downregulation (X. Tao, 

Zheng, Xu, 

Chen, & 

Zhang, 2007) 

Haematological 

malignancies 

MT-1E DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-1F DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-1G DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-1H DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-1L DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-1M DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-1X DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-2A DLBCL ABC  upregulation (Poulsen, et al., 

2006) 

MT-3 AML  hypermethylation, downregulation (Y. F. Tao, et 

al., 2014) 

Head and neck 

cancer 

MT-1A OSCC  downregulation (X. Yang, et 

al., 2014) 

MT-1E OSCC  upregulation (Brazao-Silva, 

et al., 2015) 

MT-1F OSCC  upregulation (Brazao-Silva, 

et al., 2015) 

MT-1G ESCC  

OSCC  

downregulation 

downregulation 

(Kumar, et al., 

2007) 

(Brazao-Silva, 

et al., 2015) 

MT-1H OSCC  downregulation (Brazao-Silva, 

et al., 2015) 

MT-1M ESCC  

SCC  

downregulation, hypermethylation 

hypermethylation 

(Oka, et al., 

2009) 

(Y. C. Lee, et 

al., 2011) 

MT-1X OSCC  downregulation (Brazao-Silva, 

et al., 2015) 

MT-2A OSCC  upregulation (Brazao-Silva, 

et al., 2015) 

MT-3 ESCC  

OSCC  

EAC  

hypermethylation 

downregulation 

hypermethylation 

(E. Smith, et 

al., 2005) 

(Brazao-Silva, 

et al., 2015) 

(D. F. Peng, et 

al., 2011) 

MT4 OSCC  downregulation (Brazao-Silva, 

et al., 2015) 

Endometrium 

cancer 

MT-1A p53 mutant UCEC  gene loss (Delaney & 

Stupack, 2016) 

MT-1E p53 mutant UCEC  gene loss (Delaney & 

Stupack, 2016) 

MT-1F p53 mutant UCEC  gene loss (Delaney & 

Stupack, 2016) 

MT-1G p53 mutant UCEC  gene loss (Delaney & 
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Stupack, 2016) 

MT-1H p53 mutant UCEC  gene loss (Delaney & 

Stupack, 2016) 

MT-1X p53 mutant UCEC  gene loss (Delaney & 

Stupack, 2016) 

MT-3 p53 mutant UCEC  gene loss (Delaney & 

Stupack, 2016) 

Colorectal 

cancer 

MT-1A crc  downregulation (Arriaga, et al., 

2012) 

MT-1B crc  downregulation (Jansova, et al., 

2006) 

MT-1E crc  downregulation (Arriaga, et al., 

2012; Yan, et 

al., 2012) 

MT-1F crc  

rectal adenocarcinoma after 

radiotherapy 

downregulation 

upregulation 

(Jansova, et al., 

2006; Yan, et 

al., 2012) 

(Szelachowska, 

et al., 2012) 

MT-1G crc  downregulation (Arriaga, et al., 

2012; Jansova, 

et al., 2006; 

Yan, et al., 

2012) 

MT-1H crc  downregulation (Arriaga, et al., 

2012; Jansova, 

et al., 2006; 

Yan, et al., 

2012) 

MT-1M crc  downregulation (Arriaga, et al., 

2012) 

MT-1X crc  

crc  

rectal adenocarcinoma after 

radiotherapy 

T20 repeat in unranslationed region 

downregulation 

upregulation 

(Morandi, et 

al., 2012) 

(Arriaga, et al., 

2012; Yan, et 

al., 2012) 

(Szelachowska, 

et al., 2012) 

MT-2A crc  

rectal adenocarcinoma after 

radiotherapy 

downregulation 

upregulation 

(Jansova, et al., 

2006) (Arriaga, 

et al., 2012) 

(Szelachowska, 

et al., 2012) 

CNS tumours 

 

MT-1A short survival glioblastoma multiforme  upregulation (Mehrian-Shai, 

et al., 2015) 

MT-1B bone marrow from neuroblastoma 

patients 

short survival glioblastoma multiforme  

overexpression 

upregulation 

(Scaruffi, et al., 

2012) 

(Mehrian-Shai, 

et al., 2015) 

MT-1E bone marrow from neuroblastoma 

patients 

short survival glioblastoma multiforme  

overexpression 

upregulation 

(Scaruffi, et al., 

2012) 

(Mehrian-Shai, 

et al., 2015) 

 MT-1F short survival glioblastoma multiforme  upregulation (Mehrian-Shai, 

et al., 2015) 

MT-1G bone marrow from neuroblastoma 

patients 

overexpression (Scaruffi, et al., 

2012) 

MT-1H bone marrow from neuroblastoma 

patients 

short survival glioblastoma multiforme  

overexpression 

upregulation 

(Scaruffi, et al., 

2012) 

(Mehrian-Shai, 

et al., 2015) 

MT-1HL1 bone marrow  from neuroblastoma 

patients 

overexpression (Scaruffi, et al., 

2012) 

MT-1L bone marrow from neuroblastoma 

patients 

short survival glioblastoma multiforme  

overexpression 

upregulation 

(Scaruffi, et al., 

2012) 

(Mehrian-Shai, 
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et al., 2015) 

MT-1X bone marrow from neuroblastoma 

patients 

overexpression (Scaruffi, et al., 

2012) 

MT-2A bone marrow from neuroblastoma 

patients 

overexpression (Scaruffi, et al., 

2012) 

MT-3 short survival glioblastoma multiforme  upregulation (Mehrian-Shai, 

et al., 2015) 

Bladder cancer MT-1X bladder cancer  upregulation (Somji, et al., 

2001) 

 

Abbreviations: CaP – prostate cancer, NSLC – non-small cell lung cancer, LLC – lung large-

cell carcinoma, SCC – squamous cell carcinoma, BCC – basal cell carcinoma, RCC – renal 

cell carcinoma, APA - adrenocortical aldosterone-producing adenoma, ICC – intrahepatic 

cholangiocarcinoma, HCC – hepatocellular carcinoma, DLBCL – diffuse large B-cell 

lymphoma, ABC – activated B-cell, AML – acute myeloid leukaemia, OSCC – oral squamous 

cell carcinoma. ESCC – oesophageal squamous cell carcinoma, EAC – oesophageal 

adenocarcinoma, UCEC – uterine corpus endometrial carcinoma, CRC – colorectal cancer.  

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

44 
 

Table 3. Summary of MTs (sub)isoforms expression studies in human prostate cancer cell 

lines. Up- and down regulation is related to non-treated cells, if not mentioned otherwise.   

Gene Cell line Treatment Observation  Citation 

MT-

1A 

LNCaP 

 

 

C/EBP alpha expression 

Zn2+ and Cd2+  

Hypoxia 

downregulation 

upregulation 

upregulation 

(Yin, 

Smith, & 

Glass, 

2005) 

(Hasumi, et 

al., 2003) 

(Yamasaki, 

Nomura, 

Sato, & 

Mimata, 

2007) 

PC-3 

 

 

C/EBP alpha expression 

Zn2+ and Cd2+  

Hypoxia 

downregulation 

upregulation 

upregulation 

(Yin, et al., 

2005) 

(Hasumi, et 

al., 2003) 

(Yamasaki, 

et al., 

2007) 

RWPE-1 Cu2+ 

Cd2+ 

upregulation 

upregulation 

(Bigagli, 

Luceri, 

Bernardini, 

Dei, & 

Dolara, 

2010) 

(Albrecht, 

et al., 

2008) 

MT-

1B 

LNCaP C/EBP alpha expression downregulation (Yin, et al., 

2005) 

PC-3 C/EBP alpha expression downregulation (Yin, et al., 

2005) 

RWPE-1 Cu2+ upregulation (Bigagli, et 

al., 2010) 

VCAP Disulfiram downregulation (Iljin, et al., 

2009) 

LTL313h (XG)  Genistein upregulation (Nakamura, 

et al., 

2013) 

MT-

1E 

RWPE-1 

 

Cu2+ 

Zn2+ or Cd2+ in presence of Ca2+ 

upregulation 

Ca2+ -modified regulation 

(Bigagli, et 

al., 2010) 

(Singh, et 

al., 2008) 

LTL313h (XG) Genistein upregulation (Nakamura, 

et al., 

2013) 

DU-145 MIC-1 downregulation (T. Liu, et 

al., 2003) 

MT-

1F 

LNCaP C/EBP alpha expression downregulation (Yin, et al., 

2005) 

PC-3 C/EBP alpha expression downregulation (Yin, et al., 

2005) 

RWPE-1 Zn2+ and Cd2+  upregulation (Albrecht, 

et al., 

2008) 

VCAP Disulfiram upregulation (Iljin, et al., 

2009) 

MT-

1G 

LNCaP Zn2+ upregulation (D. J. 

Smith, et 

al., 2006) 

RWPE-1 Cu2+ upregulation (Bigagli, et 
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Zn2+ and Cd2+ upregulation al., 2010) 

(Albrecht, 

et al., 

2008) 

VCAP Disulfiram downregulation (Iljin, et al., 

2009) 

C4-2 Zn2+ upregulation (D. J. 

Smith, et 

al., 2006) 

MT-

1H 

LNCaP C/EBP alpha expression downregulation (Yin, et al., 

2005) 

PC-3 C/EBP alpha expression 

no treatment 

downregulation 

promoter hypermethylation 

(Yin, et al., 

2005) 

(Han, et al., 

2013) 

RWPE-1 Cu2+ 

Zn2+ and Cd2+ 

upregulation 

upregulation 

(Bigagli, et 

al., 2010) 

(Albrecht, 

et al., 

2008) 

LTL313h (XG) Genistein upregulation (Nakamura, 

et al., 

2013) 

DU-145 no treatment promoter hypermethylation (Han, et al., 

2013) 

MT-

1JP 

PC-3 Zn2+ upregulation (Lin, Wei, 

Maeder, 

Franklin, & 

Feng, 

2009) 

MT-

1L 

LNCaP 

C4-2 

Zn2+ upregulation (D. J. 

Smith, et 

al., 2006) 

 

MT-

1M 

PC-3 Zn2+ upregulation (Lin, et al., 

2009) 

RWPE-1 Cu2+ upregulation (Bigagli, et 

al., 2010) 

MT-

1X 

LNCaP 

 

Zn2+ and Cd2+ 

Hypoxia 

upregulation 

upregulation 

(Hasumi, et 

al., 2003) 

(Yamasaki, 

et al., 

2007) 

PC-3 Hypoxia upregulation (Yamasaki, 

et al., 

2007) 

RWPE-1 Zn2+ or Cd2+ in presence of Ca2+ Ca2+ -modified regulation (Singh, et 

al., 2008) 

VCAP Disulfiram downregulation (Iljin, et al., 

2009) 

LTL313h (XG) Genistein upregulation (Nakamura, 

et al., 

2013) 

LAPC-4 Genistein 

17β-Estradiol 

upregulation 

downregulation 

(Raschke, 

Rowland, 

Magee, & 

Pool-Zobel, 

2006) 

(Raschke, 

et al., 

2006) 

MT-

2A 

LNCaP C/EBP alpha expression 

Zn2+ and Cd2+ 

Zn2+ 

Hypoxia 

downregulation 

upregulation 

upregulation 

upregulation 

(Yin, et al., 

2005) 

(Hasumi, et 

al., 2003) 

(D. J. 
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Smith, et 

al., 2006) 

(Yamasaki, 

et al., 

2007) 

PC-3 C/EBP alpha expression 

Zn2+ and Cd2+ 

Hypoxia 

downregulation 

upregulation 

upregulation 

(Yin, et al., 

2005) 

(Hasumi, et 

al., 2003) 

(Yamasaki, 

et al., 

2007) 

RWPE-1 Zn2+ 

Zn2+ or Cd2+ in presence of Ca2+ 

upregulation 

Ca2+ -modified regulation 

(Bigagli, et 

al., 2010) 

(Singh, et 

al., 2008) 

VCAP Disulfiram downregulation (Iljin, et al., 

2009) 

LTL313h (XG) Genistein upregulation (Nakamura, 

et al., 

2013) 

C4-2 Zn2+ upregulation (D. J. 

Smith, et 

al., 2006) 

EPN Raloxifene upregulation (Rossi, et 

al., 2011) 

MT-3 LNCaP C/EBP alpha expression 

Androgen (R1881)/As2O3/Cd2+ 

downregulation 

upregulation 

(Yin, et al., 

2005)  

(Juang, et 

al., 2013) 

PC-3 C/EBP alpha expression 

Zn2+ 

downregulation 

upregulation 

(Yin, et al., 

2005)  

(Lin, et al., 

2009) 

Abbreviations: XG – xenograft, MIC-1 – macrophage inhibitory cytokine 1, C/EBP alpha – 

CCAAT/enhancer-binding protein alpha, R1881 – methyltrienolone, synthetic androgen  
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Table 4. Summary of MTs (sub)isoforms expression studies in human lung cancer cell lines. 

Up- and down regulation is related to non-treated cells, if not mentioned otherwise.   

Gene Cell line Treatment Observation Citation 

MT-1A NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

SAE  THC upregulation (Sarafian, 

et al., 

2005) 

MT-1B NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

MT-1E NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

LLC 

HOP92 

no treatment upregulation (da Motta, 

et al., 

2015) 

MT-1F NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

LLC 

HOP92 

no treatment upregulation (da Motta, 

et al., 

2015) 

A-549 MGd 

Acrolein 

up-regulation 

downregulation 

(Magda, et 

al., 2005) 

(Thompson 

& 

Burcham, 

2008) 

MT-1G NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

LLC 

HOP92 

no treatment upregulation (da Motta, 

et al., 

2015) 

A-549 MGd  

cisPt resistance 

Rosiglitazone 

Carboplatin 

Rosiglitazone and carboplatin 

GW1892 

up-regulation 

promoter hypermethylation 

downregulation 

upregulation 

downregulation 

downregulation 

(Magda, et 

al., 2005) 

(Guo, et al., 

2013) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

MT-1H NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

SAE THC  upregulation (Sarafian, 

et al., 

2005) 

LLC 

HOP92 

no treatment upregulation (da Motta, 

et al., 

2015) 
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A-549 MGd  

cisPt resistance 

Acrolein 

Rosiglitazone 

Carboplatin 

Rosiglitazone and carboplatin 

GW1892 

upregulation 

up-regulation 

downregulation 

downregulation 

upregulation 

downregulation 

downregulation 

(Magda, et 

al., 2005) 

(Hou, Fan, 

Wang, & 

Lu, 2009) 

(Thompson 

& 

Burcham, 

2008) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

MT-1HL1 A-549 MGd upregulation (Magda, et 

al., 2005) 

MT-1JP NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

A-549 Acrolein downregulation (Thompson 

& 

Burcham, 

2008) 

MT-1L A-549 MGd 

Acrolein 

Rosiglitazone 

Carboplatin 

Rosiglitazone and carboplatin 

GW1892 

upregulation 

downregulation 

downregulation 

upregulation 

downregulation 

downregulation 

(Magda, et 

al., 2005) 

(Thompson 

& 

Burcham, 

2008) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

MT-1M LLC 

HOP92 

no treatment upregulation (da Motta, 

et al., 

2015) 

MT-1X NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 

LLC 

HOP92 

no treatment upregulation (da Motta, 

et al., 

2015) 

A-549 MGd  

Acrolein 

Rosiglitazone 

Carboplatin 

Rosiglitazone and carboplatin 

GW1892 

upregulation 

downregulation 

upregulation 

downregulation 

upregulation 

downregulation 

(Magda, et 

al., 2005) 

(Thompson 

& 

Burcham, 

2008) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

MT-2A NCI-H526 Titanocene C upregulation (Olszewski, 

et al., 

2011) 
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SAE THC upregulation (Sarafian, 

et al., 

2005) 

LLC 

HOP92 

no treatment upregulation (da Motta, 

et al., 

2015) 

A549 MGd 

Acrolein 

Rosiglitazone 

Carboplatin 

Rosiglitazone and carboplatin 

GW1892 

upregulation 

downregulation 

downregulation 

upregulation 

downregulation 

downregulation 

(Magda, et 

al., 2005) 

(Thompson 

& 

Burcham, 

2008) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

H-69 

SW2 

cisPt resistance upregulation (Y. Y. 

Yang, et 

al., 1994) 

MT-3 A-549 Rosiglitazone 

Carboplatin 

Rosiglitazone and carboplatin 

upregulation 

upregulation 

downregulation 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

(Girnun, et 

al., 2007) 

A-549 

A-427 

NCI-H358 

H-292 

H-23 

H-522 

H-1299 

H322 

H460 

no treatment 

 

downregulation due to GpG 

islands hypermethylation and 

histone acetylation 

 

(Zhong, 

Fields, Su, 

Pan, & 

Robertson, 

2007) 

 

Abbreviations: SAE – small airway epithelial cells, THC – delta-9-tetrahydrocannabinol, 

MGd – motexafin gadolinium, GW1892 – PPAR gamma antagonist,   
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Table 5. Summary of MTs (sub)isoforms expression studies in human breast cancer cell lines. 

Up- and down regulation is related to non-treated cells, if not mentioned otherwise.   

Gene Cell line Treatment Observation Citation 

MT-1A MCF-7 Ethanol upregulation (Gelfand, et al., 

2017) 

MCF-10F Parathion 

Estrogen 

Parathion and estrogen 

downregulation 

no change 

downregulation 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

MCF-12A Ethanol upregulation (Gelfand, 

Vernet, Bruhn, 

Vadgama, & 

Gonzalez-

Cadavid, 2016) 

MDA-MB-231 no treatment 

Cd2+ 

expression 

upregulation 

(Tai, et al., 

2003) 

(Sirchia, 

Longo, & 

Luparello, 

2008) 

Hs 578T 

T-47D 

ZR-75-1 

no treatment expression (Tai, et al., 

2003) 

MT-1B MCF-7 Ethanol 

no treatment 

upregulation 

no expression 

(Gelfand, et al., 

2017) 

(Tai, et al., 

2003) 

MCF-12A Ethanol upregulation (Gelfand, et al., 

2016) 

MDA-MB-231 Cd2+ 

no treatment 

no expression 

no expression 

(Sirchia, et al., 

2008) 

(Tai, et al., 

2003) 

Hs 578T 

T-47D 

ZR-75-1 

no treatment 

 

no expression (Tai, et al., 

2003) 

C3.6 EGF 

HRG 

upregulation 

upregulation 

(Worthington, 

Bertani, Chan, 

Gerrits, & 

Timms, 2010) 

(Worthington, 

et al., 2010) 

MT-1E MCF-7 Cd2+ 

Melatonin 

Cd2+ and melatonin 

H2O2 

TBH  

Menadione 

Zn2+ 

no treatment 

wtp53 silencing 

upregulation 

downregulation 

upregulation 

downregulation 

downregulation 

upregulation 

upregulation 

no expression 

downregulation 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Wierzowiecka, 

et al., 2016) 

(Friedline, 
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Garrett, Somji, 

Todd, & Sens, 

1998; Tai, et 

al., 2003) 

(Ostrakhovitch, 

et al., 2016) 

MCF-10A Cd2+ upregulation (Gurel, et al., 

2005) 

MCF-10F Parathion 

Estrogen 

Parathion and estrogen 

downregulation 

no change 

downregulation 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

MDA-MB-231 Cd2+ 

Melatonin 

Cd2+ and melatonin 

Zn2+ 

no treatment 

upregulation 

downregulation 

upregulation 

upregulation 

expression 

(Alonso-

Gonzalez, et 

al., 2008; 

Sirchia, et al., 

2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Wierzowiecka, 

et al., 2016) 

(Friedline, et 

al., 1998; Tai, 

et al., 2003)  

Hs 578T no treatment expression (Friedline, et 

al., 1998; Tai, 

et al., 2003) 

T-47D 

ZR-75-1 

no treatment 

 

no expression  

 

(Friedline, et 

al., 1998; Tai, 

et al., 2003) 

 

HB2 Cd2+ downregulation (Sirchia & 

Luparello, 

2009) 

PMC42 resistance to Cu2+ and Zn2+ upregulation (Barnes, 

Ackland, & 

Cornish, 2000) 

ME16C 

SK-BR-3 

Zn2+ upregulation (Wierzowiecka, 

et al., 2016) 

 

MT-1F MCF-7 Cd2+ 

Melatonin 

Cd2+ and melatonin 

Ethanol 

PLU-1/JARID1B overexpression 

Zn2+ 

no treatment 

downregulation 

upregulation 

downregulation 

upregulation 

downregulation 

upregulation 

expression 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Gelfand, et al., 

2017) 

(Scibetta, et al., 

2007) 

(Wierzowiecka, 

et al., 2016) 

(Tai, et al., 

2003) 
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MCF-12A Ethanol upregulation (Gelfand, et al., 

2016) 

MDA-MB-231 Cd2+ 

Melatonin 

Cd2+ and melatonin 

Zn2+ 

no treatment 

Cd2+ 

upregulation 

downregulation 

upregulation 

upregulation 

expression 

upregulation 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Wierzowiecka, 

et al., 2016) 

(Tai, et al., 

2003) 

(Sirchia, et al., 

2008) 

Hs 578T 

T-47D 

ZR-75-1 

no treatment expression (Tai, et al., 

2003) 

C3.6 EGF 

HRG 

upregulation 

upregulation 

(Worthington, 

et al., 2010) 

(Worthington, 

et al., 2010) 

ME16C 

SK-BR-3 

Zn2+ upregulation (Wierzowiecka, 

et al., 2016) 

MT-1G MCF-7 Ethanol 

H2O2 

TBH  

Menadione 

Zn2+ 

no treatment 

upregulation 

upregulation 

downregulation 

upregulation 

upregulation 

no expression 

(Gelfand, et al., 

2017) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Wierzowiecka, 

et al., 2016) 

(Tai, et al., 

2003) 

 MCF-10F Parathion 

Estrogen 

Parathion and estrogen 

downregulation 

no change 

downregulation 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

MCF-12A Ethanol upregulation (Gelfand, et al., 

2016) 

MDA-MB-231 Zn2+ 

Cd2+ 

no treatment 

upregulation 

expression 

no expression 

(Wierzowiecka, 

et al., 2016) 

(Sirchia, et al., 

2008) 

(Tai, et al., 

2003) 

MDA-MB-648 compared to BT-549 cell line downregulation in MDA (Tripathi, 

Misra, & 

Chaudhuri, 

2005) 

Hs 578T 

T-47D 

ZR-75-1 

no treatment no expression (Tai, et al., 

2003) 

C3.6 EGF 

HRG 

upregulation 

upregulation 

(Worthington, 

et al., 2010) 

(Worthington, 

et al., 2010) 

ME16C Zn2+ upregulation (Wierzowiecka, 

et al., 2016) 

SK-BR-3 Zn2+ downregulation (Wierzowiecka, 
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et al., 2016) 

MT-1H MCF-7 Ethanol 

H2O2 

TBH  

Menadione 

PLU-1/JARID1B overexpression 

no treatment 

upregulation 

upregulation 

downregulation 

upregulation 

downregulation 

expression 

(Gelfand, et al., 

2017) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Scibetta, et al., 

2007) 

(Tai, et al., 

2003) 

MCF-10F Parathion 

Estrogen 

Parathion and estrogen 

downregulation 

no change 

downregulation 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

MCF-12A Ethanol upregulation (Gelfand, et al., 

2016) 

MDA-MB-231 no treatment 

Cd2+ 

expression 

no expression 

(Tai, et al., 

2003) 

(Sirchia, et al., 

2008) 

Hs 578T 

T-47D 

ZR-75-1 

no treatment expression (Tai, et al., 

2003) 

C3.6 EGF 

HRG 

upregulation 

upregulation 

(Worthington, 

et al., 2010) 

(Worthington, 

et al., 2010) 

MT-1L MCF-7 Ethanol 

H2O2 

TBH  

Menadione 

upregulation 

upregulation 

downregulation 

upregulation 

(Gelfand, et al., 

2017) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

MCF-12A Ethanol upregulation (Gelfand, et al., 

2016) 

MDA-MB-648 compared to BT-549 downregulation in MDA (Tripathi, et al., 

2005) 

 HB2 Cd2+ downregulation (Sirchia & 

Luparello, 

2009) 

MT-1M C3.6 EGF  

HRG 

upregulation 

upregulation 

(Worthington, 

et al., 2010) 

(Worthington, 

et al., 2010) 

MT-1X MCF-7 Cd2+ 

Melatonin 

Cd2+ and melatonin 

Ethanol 

H2O2 

TBH  

Menadione 

PLU-1/JARID1B overexpression 

Zn2+ 

no treatment 

wtp53 silencing 

upregulation 

downregulation 

upregulation 

upregulation 

upregulation 

downregulation 

upregulation 

downregulation 

upregulation 

expression 

downregulation 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Gelfand, et al., 

2017) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 
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(Chuang, et al., 

2002) 

(Scibetta, et al., 

2007) 

(Wierzowiecka, 

et al., 2016) 

(Friedline, et 

al., 1998) (Tai, 

et al., 2003) 

(Ostrakhovitch, 

et al., 2016) 

MCF-10A Cd2+ upregulation (Gurel, et al., 

2005) 

MCF-10F Parathion 

Estrogen 

Parathion and estrogen 

downregulation 

upregulation 

downregulation 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

MCF-12A Ethanol upregulation (Gelfand, et al., 

2017) 

MDA-MB-231 Cd2+ 

Melatonin 

Cd2+ and melatonin 

no treatment 

Zn2+ 

upregulation 

downregulation 

upregulation 

expression 

upregulation 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Friedline, et 

al., 1998) (Tai, 

et al., 2003) 

(Wierzowiecka, 

et al., 2016) 

Hs 578T 

T-47D 

ZR-75-1 

no treatment expression (Tai, et al., 

2003) 

(Friedline, et 

al., 1998)  

PMC42 Cu2+ and Zn2+ resistance upregulation (Barnes, et al., 

2000) 

ME16C 

SK-BR-3 

Zn2+ upregulation (Wierzowiecka, 

et al., 2016)  

C3.6 EGF 

HRG 

upregulation 

upregulation 

(Worthington, 

et al., 2010) 

(Worthington, 

et al., 2010) 

MT-2A MCF-7 HIPK2 depletion 

Cd2+ 

Cd2+ and melatonin 

no treatment 

Ethanol 

H2O2 

TBH  

Menadione 

Zn2+ 

no treatment 

wtp53 silencing 

wtp53 silencing and Cu2+ exposition 

 

MT-2A knock-out 

upregulation 

upregulation 

downregulation 

upregulation 

upregulation 

upregulation 

downregulation 

upregulation 

upregulation 

expression 

expression 

downregulation 

loss of expression sensitivity 

proliferation and cell cycle arrest 

(Puca, et al., 

2009) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Gelfand, et al., 

2017) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 

(Chuang, et al., 

2002) 
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(Wierzowiecka, 

et al., 2016) 

(Wierzowiecka, 

et al., 2016) 

(Tai, et al., 

2003) 

(Ostrakhovitch, 

et al., 2016) 

(Ostrakhovitch, 

et al., 2016) 

 

(Lim, Jocelyn, 

Yip, & Bay, 

2009) 

MCF-10A Cd2+ upregulation (Gurel, et al., 

2005) 

MCF-10F Parathion 

Estrogen 

Parathion and estrogen 

downregulation 

no change 

downregulation 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

(Calaf & Roy, 

2007) 

MCF-12A Ethanol upregulation (Gelfand, et al., 

2016) 

MDA-MD-231 Cd2+ 

Melatonin 

Cd2+ and melatonin 

MT-2A overexpression 

Zn2+ 

no treatment 

Cd2+ 

upregulation 

downregulation 

upregulation 

invasivity, MMP-9 upregulation  

upregulation 

expression 

downregulation 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(Alonso-

Gonzalez, et 

al., 2008) 

(H. G. Kim, et 

al., 2011) 

(Wierzowiecka, 

et al., 2016) 

(Friedline, et 

al., 1998) (Tai, 

et al., 2003) 

(Sirchia, et al., 

2008) 

Hs 578T 

T-47D 

ZR-75-1 

no treatment 

 

expression (Friedline, et 

al., 1998; Tai, 

et al., 2003) 

PMC42 resistance to Cu2+ and Zn2+ upregulation (Barnes, et al., 

2000) 

ME16C 

SK-BR-3 

Zn2+ upregulation (Wierzowiecka, 

et al., 2016)  

HB2 Cd2+ downregulation (Sirchia & 

Luparello, 

2009) 

MT-3 MCF-7 Ethanol upregulation (Gelfand, et al., 

2017) 

MDA-MB-231 Cd2+ no expression (Sirchia, et al., 

2008) 

C3.6 EGF 

HRG 

upregulation 

upregulation 

(Worthington, 

et al., 2010)  

(Worthington, 

et al., 2010) 

HME PEITC upregulation (Telang, 

Braeau, & 

Morris, 2009) 

MT4 MCF-7 Ethanol upregulation (Gelfand, et al., 

2017) 

MCF-12A Ethanol upregulation (Gelfand, et al., 
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2016) 

MDA-MB-231 Cd2+ no expression (Sirchia, et al., 

2008) 

Abbreviations: EGF – epithelial growth factor, HRG – heregulin, TBH - t-butyl 

hydroperoxide, PLU/JARID18 – transcriptional repressor, member of ARID DNA binding 

proteins, PEITC -  Phenethyl isothiocyanate, HIPK2 - Homeodomain-interacting protein 

kinase 2,  
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Table 6. Summary of MTs (sub)isoforms expression studies in human colorectal cancer cell 

lines. Up- and down regulation is related to non-treated cells, if not mentioned otherwise.   

Gene Cell line Treatment Observation Citation 

MT-1A CaCo-2 Arsenic species upregulation (Calatayud, 

Devesa, & 

Velez, 2013) 

MT-1B CaCo-2 Gold nanoparticles 

Arsenic species 

upregulation 

upregulation 

(Bajak, et al., 

2015) 

(Calatayud, et 

al., 2013) 

WiDr SPINK1 knock-down upregulation (Tiwari, et al., 

2015) 

MT-1E CaCo2 Rosiglitazone and/or AS601245 

Gold nanoparticles 

upregulation 

upregulation 

(Cerbone, et 

al., 2012) 

(Bajak, et al., 

2015) 

WiDr SPINK1 knock-down upregulation (Tiwari, et al., 

2015) 

MT-1F CaCo-2 Rosiglitazone and/or AS601245 upregulation (Cerbone, et 

al., 2012) 

RKO 

 

MT-1F transfection 

no treatment  

inhibition of tumorigenicity 

hypermethylation 

(Yan, et al., 

2012) 

LoVo no treatment hypermethylation (Yan, et al., 

2012) 

MT-1G CaCo-2 Rosiglitazone and/or AS601245 upregulation (Cerbone, et 

al., 2012) 

WiDr SPINK1 knock-down upregulation (Tiwari, et al., 

2015) 

HT-29 

 

Tumour tissue DNA 

MT-1G transfection and Zn2+ 

MT-1G overexpression 

upregulation 

chemotherapy sensitization 

tumour suppression 

differential genes regulation 

(Furi, et al., 

2015) 

(Arriaga, 

Greco, 

Mordoh, & 

Bianchini, 

2014) 

(Arriaga, 

Bravo, 

Mordoh, & 

Bianchini, 

2017) 

HCT-116 MT-1G transfection and Zn2+ chemotherapy sensitization (Arriaga, et 

al., 2014) 

MT-1H CaCo-2 15-lipoxygenase-1 expresion 

Rosiglitazone and/or AS601245 

Taurine 

upregulation 

upregulation 

upregulation 

(Nixon, Kim, 

Lamb, 

Bottone, & 

Eling, 2004) 

(Cerbone, et 

al., 2012) 

(Gondo, 

Satsu, 

Ishimoto, 

Iwamoto, & 

Shimizu, 

2012) 

WiDr 

 

SPINK1 knock-down  

TPPS2a  

upregulation  

upregulation 

(Tiwari, et al., 

2015) 

(Prasmickaite, 

et al., 2006) 

HT-29 Tumour tissue DNA  upregulation (Furi, et al., 

2015) 

MSI crc no treatment upregulation (Giacomini, 

et al., 2005) 
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MT-

1HL1 

CaCo-2 Rosiglitazone and/or AS601245 upregulation  (Cerbone, et 

al., 2012) 

HT-29 Tumour tissue DNA downregulation (Furi, et al., 

2015) 

MT-1L CaCo-2 15-lipoxygenase-1 expresion upregulation (Nixon, et al., 

2004) 

WiDr SPINK1 knock-down  upregulation (Tiwari, et al., 

2015) 

MT-1M CaCo-2 Rosiglitazone and/or AS601245 upregulation (Cerbone, et 

al., 2012) 

WiDr SPINK1 knock-down upregulation (Tiwari, et al., 

2015) 

MT-1X CaCo-2 Rosiglitazone and/or AS601245 

Gold nanoparticles 

upregulation 

upregulation 

(Cerbone, et 

al., 2012) 

(Bajak, et al., 

2015) 

WiDr TPPS2a 

SPINK1 knock-down 

upregulation  

upregulation 

(Prasmickaite, 

et al., 2006)  

(Tiwari, et al., 

2015) 

HT-29 Tumour tissue DNA upregulation (Furi, et al., 

2015) 

HCT-116 Butyrate upregulation (H. T. Tan, et 

al., 2008) 

MSI crc no treatment upregulation (Giacomini, 

et al., 2005) 

MT-2A CaCo-2 Rosiglitazone and/or AS601245 

Gold nanoparticles 

Arsenic species 

15-lipoxygenase-1 expression 

upregulation 

upregulation 

upregulation 

upregulation 

(Cerbone, et 

al., 2012) 

(Bajak, et al., 

2015) 

(Calatayud, et 

al., 2013) 

(Nixon, et al., 

2004) 

WiDr SPINK1 knock-down in WiDr cell line upregulation (Tiwari, et al., 

2015) 

HT-29 Tumour tissue DNA 

Tea polyphenols 

upregulation  

downregulation 

(Furi, et al., 

2015) 

(H. Y. Jin, 

Tan, Liu, & 

Ding, 2010) 

SW-480 Tea polyphenols upregulation (H. Y. Jin, et 

al., 2010) 

LoVo 

HCT-116 

Tea polyphenols 

 

downregulation 

 

(H. Y. Jin, et 

al., 2010) 

 

MSI crc no treatment upregulation (Giacomini, 

et al., 2005) 

Abbreviations: SPINK1 - Serine Protease Inhibitor Kazal-Type 1, AS601245 – JNK inhibitor 

, TPPS2a - disulfonated meso-tetraphenylporphin, photosensitizer,  
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Table 7. Summary of MTs (sub)isoforms expression studies in human hepatic cancer cell 

lines. Up- and down regulation is related to non-treated cells, if not mentioned otherwise.   

Gene Cell line Treatment Observation Citation 

MT-1A Hep G2 Mutant thyroid hormone receptor 

Cd2+ 

Genistin and its glycosides 

SPIONs  

downregulation 

upregulation  

upregulation 

upregulation 

(Brazao-Silva, 

et al., 2015) 

(Fabbri, 

Urani, Sacco, 

Procaccianti, 

& Gribaldo, 

2012) 

(Chung, et al., 

2006) 

(He, et al., 

2016) 

Huh-7 HCV core proteins expression upregulation (K. Li, Prow, 

Lemon, & 

Beard, 2002) 

Bel-7402 Tanshinone IIA upregulation (Dai, et al., 

2012) 

MT-1B Hep G2 Cd2+ 

SPIONs  

upregulation 

upregulation 

(Cartularo, et 

al., 2015; 

Fabbri, et al., 

2012) 

(He, et al., 

2016) 

Huh-7 HCV core proteins expression 

Sorafenib 

upregulation 

upregulation 

(K. Li, et al., 

2002) 

(Houessinon, 

et al., 2016) 

MT-1DP Hep G2 Mutant thyroid hormone receptor 

Cd2+ 

downregulation 

upregulation 

(Rosen, Chan, 

& Privalsky, 

2011) 

(Cartularo, et 

al., 2015) 

Huh-7 

 

MT-1DP overexpression 

MT-1DP knock-down 

tumour suppression 

FoxA1 downregulation 

(Yu, et al., 

2014)  

Bel-7402 YAP or RunX2 overexpression 

MT-1DP overexpression 

MT-1DP knock-down 

downregulation 

tumour suppression 

FoxA1 downregulation 

(Yu, et al., 

2014)  

 

SMMC-7721 MT-1DP overexpression 

MT-1DP knock-down 

tumour suppression 

FoxA1 downregulation 

(Yu, et al., 

2014)  

MT-1E Hep G2 Mutant thyroid hormone receptor 

Cd2+  

Genistin and its glycosides 

downregulation  

upregulation 

upregulation 

(Rosen, et al., 

2011) 

(Fabbri, et al., 

2012) 

(Chung, et al., 

2006) 

Huh-7 HCV core proteins expression 

Sorafenib 

upregulation 

upregulation 

(K. Li, et al., 

2002) 

(Houessinon, 

et al., 2016) 

MT-1F Hep G2 Cd2+ 

SPIONs 

upregulation 

upregulation 

(Cartularo, et 

al., 2015; 

Fabbri, et al., 

2012) 

(He, et al., 

2016) 

Huh-7 HCV core proteins expression upregulation (K. Li, et al., 

2002) 
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MT-1G Hep G2 Mutant thyroid hormone receptor 

SM22 alpha-transfection 

Cd2+ 

Sorafenib 

downregulation 

upregulation 

upregulation 

upregulation 

(Rosen, et al., 

2011) 

(T. R. Kim, et 

al., 2010) 

(Cartularo, et 

al., 2015; 

Fabbri, et al., 

2012) 

(X. F. Sun, et 

al., 2016) 

Huh-7 HCV core proteins expression 

Sorafenib 

upregulation 

upregulation 

(K. Li, et al., 

2002) 

(Houessinon, 

et al., 2016; 

X. F. Sun, et 

al., 2016) 

Hep 3B Sorafenib  

no treatment 

upregulation 

downregulation, allelic lost 

(X. F. Sun, et 

al., 2016) 

(K. Y. Y. 

Chan, et al., 

2006) 

HLE 

PLC/PRF/5 

Huh2 

no treatment  downregulation, 

methylation 

(Kanda, et al., 

2009) 

PLC/PRF/5 

SNU-387 

SNU-389 

SNU-423 

SNU-449 

SNU-475 

no treatment downregulation, allelic lost (K. Y. Y. 

Chan, et al., 

2006) 

MT-1H Hep G2 Cd2+ 

MT-1H overexpression 

upregulation 

decrease of viability and 

invasivity via regulating 

Wnt pathway 

(Cartularo, et 

al., 2015; 

Fabbri, et al., 

2012) 

(Y. L. Zheng, 

et al., 2017) 

Huh-7 

 

Hep 3B 

HCV core proteins expression 

Sorafenib 

MT-1H overexpression 

upregulation 

upregulation 

decrease of viability and 

invasivity via regulating 

Wnt pathway 

(K. Li, et al., 

2002) 

(Houessinon, 

et al., 2016) 

(Y. L. Zheng, 

et al., 2017) 

MT-1HL1 Hep G2 Cd2+ 

SPIONs 

upregulation 

upregulation 

(Cartularo, et 

al., 2015) 

(He, et al., 

2016) 

MT-1JP Hep G2 Cd2+ upregulation (Fabbri, et al., 

2012) 

MT-1L Hep G2 Mutant thyroid hormone receptor 

Cd2+ 

downregulation 

upregulation 

(Rosen, et al., 

2011) 

(Fabbri, et al., 

2012) 

Huh-7 Sorafenib upregulation (Houessinon, 

et al., 2016) 

MT-1M Hep G2 no treatment 

Cd2+ 

SPIONs 

MT-1M overexpression  

MT-1M knock-down 

hypermethylation 

downregulation 

upregulation 

tumour growth inhibition 

stimulation of tumour 

growth 

(J. Mao, et al., 

2012) 

(Cartularo, et 

al., 2015; 

Fabbri, et al., 

2012) 

(He, et al., 

2016) 

(C. L. Fu, et 

al., 2017) 

Huh-7 Sorafenib 

MT-1M overexpression  

hypermethylation 

tumour growth inhibition 

(Houessinon, 

et al., 2016) 
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MT-1M knock-down stimulation of tumour 

growth 

(C. L. Fu, et 

al., 2017) 

Bel-7402 

Bel-7404 

QGY-7701 

QGY-7703 

SMMC-7721 

Focus 

Hep3B 

HepG2 

PLC 

SKHep-1 

YY-8103 

no treatment 

 

 

downregulation, 

hypermethylation 

 

 

(J. Mao, et al., 

2012) 

 

 

MT-1P3 Hep G2 Cd2+ upregulation (Cartularo, et 

al., 2015) 

MT-1X Hep G2 Cd2+ 

MT-1X knock-out  

Genistin and its glycosides 

SPIONs) 

upregulation 

FHL3-dependent growth 

inhibition 

upregulation 

upregulation 

(Cartularo, et 

al., 2015; 

Fabbri, et al., 

2012) 

(Cai, et al., 

2014) 

(Chung, et al., 

2006) 

(He, et al., 

2016) 

MT-2A Hep G2 Pb2+ 

Cd2+ 

Genistin and its glycosides 

SPIONs 

upregulation 

upregulation 

upregulation 

upregulation 

(Tchounwou, 

Yedjou, Foxx, 

Ishaque, & 

Shen, 2004) 

(Fabbri, et al., 

2012) 

(Chung, et al., 

2006) 

(He, et al., 

2016) 

VL17A Ethanol and/or Zn2+ upregulation (Liuzzi & 

Yoo, 2013) 

MT-3 Huh-7 HCV core proteins expression upregulation (K. Li, et al., 

2002) 

Abbreviations: SPIONs – superparamagnetic iron oxide nanoparticles, HCV – hepatitis C 

virus, SMM22 alpha - Smooth muscle protein 22-alpha, Yap - Yes associated protein, RunX2 

- Runt related transcription factor 2  
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Table 8. Summary of MTs (sub)isoforms expression studies in human head and neck cancer 

cell lines. Up- and down regulation is related to non-treated cells, if not mentioned otherwise.   

Gene Cell line Treatment Observation Citation 

MT-1A CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

 

OE33 HNF1A-AS1-knock-down downregulated (Rosen, 

et al., 

2011) 

MT-1B CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

  

(O. J. K. 

Tan, et 

al., 

2005) 

 

Tca8113 Pingyangmycin resistance upregulation (G. P. 

Zheng, 

et al., 

2010) 

MT-1E CNE-2 no treatment no expression (O. J. K. 

Tan, et 

al., 

2005) 

HK1 

TW01 

HEp-2 

no treatment 

 

expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

 

OE33 HNF1A-AS1-knock-down downregulated (X. 

Yang, et 

al., 

2014) 

HK1 NPC Hypericin upregulation (Du, Li, 

Olivo, 

Yip, & 

Bay, 

2006) 

SCC25 cisPt resistance upregulation (Y. Y. 

Yang, et 

al., 

1994) 

Eca-109 

TE-13 

MT-1E-transfection no apoptosis/ proliferation effect (Tian, et 

al., 

2013) 

MT-1F CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

 

HepG2 Mutant thyroid receptor downregulated (Rosen, 

et al., 

2011) 

MT-1G CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

 

HepG2 Mutant thyroid receptor downregulated (Rosen, 

et al., 

2011) 

Tca8113 Pingyangmycin resistance upregulation (G. P. 

Zheng, 
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et al., 

2010) 

MT-1H CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

(O. J. K. 

Tan, et 

al., 

2005) 

(O. J. K. 

Tan, et 

al., 

2005) 

(O. J. K. 

Tan, et 

al., 

2005) 

MT-1M KYSE30 

KYSE220 

KYSE270 

no treatment 

 

downregulated, methylated (Oka, et 

al., 

2009) 

MT-1X CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

 

Tca8113 TCRP-1 knock-down 

Pingyangmycin resistance 

downregulation (B. 

Peng, 

Gu, 

Xiong, 

Zheng, 

& He, 

2012) 

MT-2A CNE-2 

HK1 

TW01 

HEp-2 

no treatment expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

 

OE33 HNF1A-AS1-knock-down  downregulated (X. 

Yang, et 

al., 

2014) 

Tca8113 Pingyangmycin resistance upregulation (G. P. 

Zheng, 

et al., 

2010) 

HK1 NPC Hypericin upregulation (Du, et 

al., 

2006) 

SCC-25 cisPt resistance upregulation (Y. Y. 

Yang, et 

al., 

1994) 

MT-3 CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

  

(O. J. K. 

Tan, et 

al., 

2005) 

 

OE19 

OE21 

OE33 

TE-7 

no treatment 

 

promoter methylation, no 

expression 

(E. 

Smith, et 

al., 

2005) 

OE19 

OE21 

TE-7 

no treatment 

 

downregulation (E. 

Smith, et 

al., 

2005) 
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SCC-25 EGCG no change in regulation (L. Tao, 

Forester, 

& 

Lambert, 

2014) 

NGF-1 (EGCG  upregulation (L. Tao, 

et al., 

2014) 

Eca-109 

TE-13 

MT-3-transfection inhibited proliferation, apoptosis (Tian, et 

al., 

2013) 

MT4 CNE-2 

HK1 

TW01 

HEp-2 

no treatment 

 

no expression 

 

(O. J. K. 

Tan, et 

al., 

2005) 

 

Abbreviations: HNF1A-AS1 - HNF1A antisense RNA 1, TCRP-1 - tongue cancer resistance-

associated protein 1, EGCG - (-)-epigallocatechin-3-gallate, green tea catechin 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

65 
 

Table 9. Summary of MTs (sub)isoforms expression studies in human haematological cancer 

cell lines. Up- and down regulation is related to non-treated cells, if not mentioned otherwise.   

Gene Cell line Treatment Observation Citation 

MT-1A K-562 

DAMI 

MEG-01 

ELF-153 

Zn2+ 

 

 

 

upregulation 

 

 

 

(Bagheri, 

Rahman, 

Van Soest, 

& De Ley, 

2009) 

 

 

 

K-562 PMA downregulation (Bagheri, et 

al., 2009) 

NB4 Nucleostemin knock-out downregulation (Sun, Jia, 

Wei, Liu, & 

Yue, 2016) 

DoHH-2 

TMD8 

ITF-A 

 

upregulation 

 

(Mensah, et 

al., 2015) 

MT-1B K-562 

DAMI 

MEG-01 

Zn2+ 
 

 

upregulation 

 

 

(Bagheri, et 

al., 2009) 

 

 

K-562 PMA downregulation (Bagheri, et 

al., 2009) 

NB4 Nucleostemin knock-out downregulation (X. L. Sun, 

et al., 2016) 

MT-1E K-562 

DAMI 

MEG-01 

Zn2+ 

 

 

upregulation 

 

 

(Bagheri, et 

al., 2009) 

 

 

K-562 PMA upregulation (Bagheri, et 

al., 2009) 

NB4 Nucleostemin knock-out downregulation (X. L. Sun, 

et al., 2016) 

DoHH-2 

TMD8 

ITF-A 
 

upregulation 

 

(Mensah, et 

al., 2015) 

 

MT-1F K-562 

DAMI 

MEG-01 

ELF-153 

Zn2+ 

 

upregulation (Bagheri, et 

al., 2009) 

K-562 PMA downregulation (Bagheri, et 

al., 2009) 

NB4 Nucleostemin knock-out downregulation (X. L. Sun, 

et al., 2016) 

DoHH-2 

TMD8 

ITF-A 

 

upregulation 

 

(Mensah, et 

al., 2015) 

 

MT-1G K-562 

DAMI 

MEG-01 

ELF-153 

Zn2+ 

 

upregulation (Bagheri, et 

al., 2009) 

K-562 PMA downregulation (Bagheri, et 

al., 2009) 

DoHH-2 

TMD8 

ITF-A 

 

upregulation 

 

(Mensah, et 

al., 2015) 

 

MT-1H K-562 

DAMI 

MEG-01 

Zn2+ 

 

 

upregulation 

 

 

(Bagheri, et 

al., 2009) 

 

 

K-562 PMA downregulation (Bagheri, et 
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al., 2009) 

NB4 Nucleostemin knock-out downregulation (X. L. Sun, 

et al., 2016) 

DoHH-2 

TMD8 

ITF-A 
 

upregulation (Mensah, et 

al., 2015) 

MT-1L NB4 Nucleostemin knock-out downregulation (X. L. Sun, 

et al., 2016) 

MT-1X K-562 

DAMI 

MEG-01 

ELF-153 

Zn2+ 

 

upregulation (Bagheri, et 

al., 2009) 

K-562 PMA upregulation (Bagheri, et 

al., 2009) 

NB4 Nucleostemin knock-out downregulation (X. L. Sun, 

et al., 2016) 

DoHH-2 

TMD8 

ITF-A upregulation (Mensah, et 

al., 2015) 

MT-2A K-562 

DAMI 

MEG-01 

ELF-153 

Zn2+ 

 

upregulation (Bagheri, et 

al., 2009) 

K-562 PMA upregulation (Bagheri, et 

al., 2009) 

NB4 Nucleostemin knock-out downregulation (X. L. Sun, 

et al., 2016) 

DoHH-2 

TMD8 

ITF-A 

 

upregulation 

 

(Mensah, et 

al., 2015) 

 

MT-3 HL-60 

MV4-11 

697 

SHI1 

K-562 

U-937 

THP-1 

Raji 

NB-4 

Jurkat 

Daudi 

no treatment methylation, 

downregulation 

(Y. F. Tao, 

et al., 2014) 

Abbreviations: PMA - phorbol-12 myristate-13 acetate, ITF-A – histone deacetylase inhibitor,  
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Table 10. Summary of MTs (sub)isoforms expression studies in other human cancer cell 

lines. Up- and down regulation is related to non-treated cells, if not mentioned otherwise. 

Diagnosis Gene Cell line Treatment Observation Citation 

CNS 

cancer 

MT-1A U-87 As2O3 for 48 h 

As2O3 for 48 h after 48 h recovery 

downregulation 

upregulation 

(Falnog

a, et al., 

2012)  

 U-251 miR340-transfection 

miR1293-transfection 

upregulation 

downregulation 

(Cosset, 

et al., 

2016)  

 D-341 BCNU-resistance upregulation (Bacolo

d, et al., 

2002) 

MT-1E U-87 As2O3 for 48 h 

As2O3 for 48 h after 48 h recovery  

MT-1E knock-down 

downregulation 

upregulation 

decreased motility and invasivity 

(Falnog

a, et al., 

2012) 

(Falnog

a, et al., 

2012) 

(Ryu, et 

al., 

2012) 

 U-251 miR340-transfection 

miR1293-transfection 

upregulation 

downregulation 

(Cosset, 

et al., 

2016)  

 D-341 BCNU-resistance upregulation  (Bacolo

d, et al., 

2002) 

 U-343 MT-1E knock-in increased motility and invasivity (Ryu, et 

al., 

2012) 

MT-1F U-87 As2O3 for 48 h 

As2O3 for 48 h after 48 h recovery 

upregulation 

upregulation 

(Falnog

a, et al., 

2012)  

 U-251 miR340-transfection upregulation (Cosset, 

et al., 

2016) 

 D-341 BCNU-resistance upregulation (Bacolo

d, et al., 

2002) 

MT-1H U-251 miR340-transfection upregulation (Cosset, 

et al., 

2016) 

 SKNBE(2) Hypoxia upregulation (Jogi, et 

al., 

2004) 

MT-1L D-341 BCNU-resistance upregulation (Bacolo

d, et al., 

2002) 

MT-1X U-87 As2O3 for 48 h 

As2O3 for 48 h after 48 h recovery 

upregulation 

upregulation 

(Falnog

a, et al., 

2012)  

 U-251 miR340-transfection 

miR1293-transfection 

upregulation 

downregulation 

(Cosset, 

et al., 

2016)  

MT-2A U-87 As2O3 for 48 h 

As2O3 for 48 h after 48 h recovery 

upregulation 

upregulation 

(Falnog

a, et al., 

2012)  

 U-251 miR340-transfection 

miR1293-transfection 

upregulation 

downregulation 

(Cosset, 

et al., 

2016)  

 D-341 BCNU-resistance upregulation (Bacolo

d, et al., 
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2002) 

 SKNBE(2) Hypoxia upregulation (Jogi, et 

al., 

2004) 

MT-3 U-87 

 

SKNSH 

As2O3 for 48 h 

As2O3 for 48 h after 48 h recovery 

MT-3 overexpression, γ-irradiation 

upregulation 

no change 

8-oxoG suppression 

(Falnog

a, et al., 

2012)  

 

(Jeong, 

et al., 

2004) 

Thyroid 

cancer 

MT-1A KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor 

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

MT-1B KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor 

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

MT-1E KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor  

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

MT-1F KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor 

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

MT-1G KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor  

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

 NPA-87 

K1 

K2 

no treatment 

 

 

methylation 

 

 

(Huang, 

et al., 

2003) 

 

 

 BCPAP 

FTC-133 

 IHH4 

K1 

8305C 

C643 

MT-1G transfection 

 

hypermethylation 

tumour suppression via 

downregulation 

 

(J. Fu, et 

al., 

2013) 

 K1 MT-1G transfection increased growth and 

tumorigenicity 

(Ferrari

o, et al., 

2008) 

MT-1H KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor 

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

MT-1X KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor  

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

 FTC-133 wtTSHR expressinon, TSH 

stimulation  

upregulation (Back, 

et al., 

2013) 

MT-2A KAT-5 Cd2+ 

Ca2+ or ERK1/2 inhibitor 

upregulation 

downregulation 

(Z. M. 

Liu, et 

al., 

2009)  

Renal 

cancer 

MT-1E HEK-293 As3+ upregulation (X. H. 

Zheng, 

Watts, 

Vaught, 

& 

Gandolf
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i, 2003) 

 A-498 DNA methylation inhibitor upregulation (Alkama

l, et al., 

2015) 

MT-1G HEK-293 As3+ upregulation (X. H. 

Zheng, 

et al., 

2003) 

 A-498 DNA methylation inhibitor upregulation (Alkama

l, et al., 

2015) 

MT-1H HEK-293 As3+ upregulation (X. H. 

Zheng, 

et al., 

2003) 

 A-498 DNA methylation inhibitor upregulation (Alkama

l, et al., 

2015) 

MT-1L HEK-293 As3+ upregulation (X. H. 

Zheng, 

et al., 

2003) 

MT-1M A-498 DNA methylation inhibitor upregulation (Alkama

l, et al., 

2015) 

MT-1X A-498 DNA methylation inhibitor upregulation (Alkama

l, et al., 

2015) 

MT-2A HEK-293 As3+ upregulation (X. H. 

Zheng, 

et al., 

2003) 

 A-498 DNA methylation inhibitor upregulation (Alkama

l, et al., 

2015) 

MT-3 H295R angiotensin II and forskolin upregulation (Felizol

a, et al., 

2014) 

Stomach 

cancer 

MT-1F MKN-28 no treatment expression (Soo, et 

al., 

2011) 

MT-1X MKN-28 no treatment expression (Soo, et 

al., 

2011) 

MT-2A MKN-28 no treatment expression (Soo, et 

al., 

2011) 

 BGC-823 

SGC-7901 

MGC-803 

AGS 

SNU-1 

RF-1 

RF-48 

no treatment downregulation (Pan, 

Xing, et 

al., 

2013) 

 BGC-823 

SGC-7901 

AGS 

MT-2A-BGC-

823 

DATS and/or DOC  upregulation 

 

(Pan, et 

al., 

2016) 

 

 SNU-1, -16, -

216,-484, -

601, -638, -

668, -719  

no treatment downregulation (J. M. 

Kim, et 

al., 

2005) 

 BGC-823 

MGC-803 

AGS 

miR-23a transfection downregulation (An, et 

al., 

2013) 
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GES-1 

MT-3 AGS 

MKN-45 

no treatment hypermethylation (Deng, 

et al., 

2003) 

Bladder 

cancer 

MT-1A 5637  DBC1 expression upregulation (Louhel

ainen, et 

al., 

2006) 

HTB-1 

HTB-2 

HTB-5 

CRL-1472 

no treatment expression (Garrett, 

Somji, 

et al., 

1999) 

MT-1B 5637  DBC1 expression upregulation (Louhel

ainen, et 

al., 

2006) 

MT-1E SLT4 MT-1E overexpression  increased migration (Wu, et 

al., 

2008) 

HTB-5 no treatment expression (Garrett, 

Somji, 

et al., 

1999) 

MT-1F 

MT-1L 

MT-1M 

5637 

5637 

5637 

 DBC1 expression 

 DBC1 expression 

 DBC1 expression 

upregulation 

upregulation 

upregulation 

(Louhel

ainen, et 

al., 

2006)  

 

MT-1X HTB-1 

HTB-2 

HTB-5 

CRL-1472 

no treatment expression (Garrett, 

Somji, 

et al., 

1999) 

MT-3 5637    DBC1 expression  upregulation (Louhel

ainen, et 

al., 

2006) 

HTB-1 

HTB-2 

HTB-5 

CRL-1472 

no treatment expression (Garrett, 

Somji, 

et al., 

1999) 

MT4 CRL-1472 no treatment expression (Garrett, 

Somji, 

et al., 

1999) 

Cervical 

cancer 

MT-1A HeLa Zn2+, Cd2+, As3+ upregulation (Miura 

& 

Koizumi

, 2007) 

 MT-1B HeLa Zn2+, Cd2+, As3+ upregulation (Miura 

& 

Koizumi

, 2007) 

 MT-1E HeLa Cd2+ 

Melatonin 

Cd2+ and melatonin 

Zn2+, Cd2+, As3+ 

upregulation 

downregulation 

upregulation 

upregulation 

(Alonso

-

Gonzale

z, et al., 

2008) 

 

 

(Miura 

& 

Koizumi

, 2007) 
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 MT-1F HeLa Cd2+ 

Melatonin 

Cd2+ and melatonin 

Zn2+, Cd2+, As3+ 

upregulation 

downregulation 

upregulation 

upregulation 

(Alonso

-

Gonzale

z, et al., 

2008)  

 

 

(Miura 

& 

Koizumi

, 2007) 

Ecto1/E6E7 NKK upregulation (Prokop

czyk, 

Sinha, 

Trushin, 

Freeman

, & El-

Bayoum

y, 2009) 

 MT-1G HeLa Zn2+, Cd2+, As3+ upregulation (Miura 

& 

Koizumi

, 2007) 

 MT-1H HeLa Zn2+, Cd2+, As3+ upregulation (Miura 

& 

Koizumi

, 2007) 

 MT-1X HeLa Cd2+ 

Melatonin 

Cd2+ and melatonin 

Zn2+, Cd2+, As3+ 

upregulation 

downregulation 

upregulation 

upregulation 

(Alonso

-

Gonzale

z, et al., 

2008) 

 

 

(Miura 

& 

Koizumi

, 2007) 

 MT-2A HeLa Cd2+ 

Melatonin 

Cd2+ and melatonin 

zinc-pyrithione 

Zn2+, Cd2+, As3+ 

upregulation 

downregulation 

upregulation 

upregulation 

upregulation 

(Alonso

-

Gonzale

z, et al., 

2008) 

 

 

(Rudolf 

& 

Cervink

a, 2010) 

(Miura 

& 

Koizumi

, 2007) 

Hep2 MT-2A knock-out, zinc-pyrithione lysosomal disruption, apoptosis (Rudolf 

& 

Cervink

a, 2010) 

 MT-3 HeLa Zn2+, Cd2+, As3+ upregulation (Miura 

& 

Koizumi

, 2007) 

 MT4 HeLa Zn2+, Cd2+, As3+ upregulation (Miura 

& 

Koizumi

, 2007) 

Testicula

r cancer 

MT-1H NT2/D1 STK17A knock-down upregulation (P. Mao, 

et al., 
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2011) 

 MT-1M NT2/D1 STK17A knock-down upregulation (P. Mao, 

et al., 

2011) 

 MT-1X NT2/D1 STK17A knock-down upregulation (P. Mao, 

et al., 

2011) 

Endomet

rial 

cancer 

MT-1A Ishikawa Progesterone upregulation (Paulsse

n, Moe, 

Gronaas

, & 

Orbo, 

2008) 

MT-1B Ishikawa Progesterone 

RU486 

upregulation 

upregulation 

(Paulsse

n, et al., 

2008) 

(Orbo, 

Moe, 

Gronaas

, & 

Paulssen

, 2009) 

MT-1E Ishikawa RU486 upregulation (Orbo, 

et al., 

2009) 

 Non-specified no treatment 

5-azacytidine 

downregulation 

restoring the normal regulation 

(Tse, et 

al., 

2009)  

MT-1F 

MT-1G 

MT-1H 

Ishikawa 

Ishikawa 

Ishikawa 

Progesterone 

Progesterone 

Progesterone 

upregulation 

upregulation 

upregulation 

(Paulsse

n, et al., 

2008)  

 

MT-1L Ishikawa Progesterone 

Progesterone, PRA/B expression 

upregulation 

upregulation 

(Paulsse

n, et al., 

2008) 

(Smid-

Koopma

n, et al., 

2005) 

MT-2A Ishikawa Progesterone upregulation (Paulsse

n, et al., 

2008) 

Ovarian 

cancer 

MT-2A 2008 

A2780 

HEY 

IGROV1 

KF 

UCI 

cisPt resistance 

 

upregulation 

upregulation 

downregulation 

upregulation 

upregulation 

upregulation 

(Cheng, 

et al., 

2006) 

 

 SKOV3 

OVCA432 

OVCA433 

MT-2A knock-down  proliferation inhibition (Tarapor

e, et al., 

2011) 

Sarcona MT-2A SaOS2 

SaOS2 

U0OS 

Atorvastatin 

MT-2A transfection 

 

upregulation 

decreased viability  (Zn chelation) 

increased cytostatics resistance 

(Habel, 

et al., 

2013)  

SaOS2 

U0OS 

MT-2A silencing decreased differentiation (Habel, 

et al., 

2013) 

Melanom

a and 

non-

melanom

a skin 

cancers 

MT-1E WM-793 No treatment gene methylation (Faller, 

et al., 

2010) 

MT-1G 1205Lu irradiation upregulation (Sokolo

v, 

Panyuti

n, 

Panyuti

n, & 
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Abbreviations: BCNU - 1,3-bis(2-chloroethyl)-1-nitrosourea, ERK1/2 - extracellular signal-

regulated kinase 1, TSHR - thyroid stimulating hormone receptor, TSH - thyroid stimulating 

hormone, DATS – diallyl trisulphide, DOC – docetaxel, DBC1 - deleted in bladder cancer 

protein 1, NKK - 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, tobacco carcinogen, 

STK17A - Serine/Threonine Kinase 17a, RU486 – mifepristone, PRA/B – Progesterone 

receptor isoform A, CT16 - cancer-testis antigen 16, 8-oxoG – 8-oxoguanine  

 

  

Neuman

n, 2011) 

MT-1H hESCs H9 irradiation upregulation (Sokolo

v, et al., 

2011) 

MT-1L 

MT-1M 

    

MT-2A A2058 CT16 knock-down  upregulation (Nylund

, et al., 

2012) 
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