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Abstract 

Glioblastoma is the most aggressive and lethal tumour of the central nervous system and as 

such the identification of reliable prognostic and predictive biomarkers for patient survival 

and tumour recurrence is paramount. MicroRNA detection has rapidly emerged as potential 

biomarkers, in patients with Glioblastoma. Over the last decade, analysis of miRNA in 

laboratory based studies have yielded several candidates as potential biomarkers however, the 

accepted use of these candidates in the clinic is yet to be validated.  Here we will examine the 

use of miRNA signatures to improve glioblastoma stratification into subgroups and 

summarise recent advances made in miRNA examination as potential biomarkers for 

glioblastoma progression and recurrence.  
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1. Introduction 

Gliomas are tumours that arise from glial cells and account for approximately 30% of all 

CNS and brain tumours and 70-80% of all malignant brain tumours (1, 2). Gliomas include 

oligodendroglioma, mixed oliogoastrocytoma, ependymoma and astrocytoma; the latter can 

be further graded into diffuse astrocytoma (WHO Grade I), anaplastic astrocytoma (Grade 

III) and glioblastoma (Grade IV).  

   Glioblastoma, also known as glioblastoma multiforme (GBM), is the most common 

primary tumour of the central nervous system accounting for over 80% of malignant gliomas 

and is one of the most aggressive (3-5). It is estimated that over 10000 patients will be 

diagnosed with glioblastoma in the United States annually (6). Maximal safe tumour 

resection through surgery is beneficial, although microscopic disease is inevitably present, 

making surgical cure impossible (7). Mortality from glioblastoma is attributed to its invasive 

nature and destruction of surrounding brain tissue (8). Therefore, a greater understanding of 

the molecular processes that promote glioblastoma invasion is required to overcome 

glioblastoma cell infiltration. Surgical resection, followed by concurrent post-operative 

radiotherapy and temozolomide is now the standard of care for glioblastoma patients (9-11). 

However, despite this slightly improved survival due to radiotherapy and temozolomide 

treatment post-surgery, 72% of patients develop tumour recurrence within 17 months post 

diagnosis (12), and only 9.8% of patients are still alive after 5 years of diagnosis (13).  

GBM can be classified as two distinct subtypes: primary and secondary glioblastoma based 

on clinical presentation and other features.  The majority of glioblastomas are primary de 

novo glioblastomas accounting for more than 90% of total cases (14). Primary glioblastomas 

are identified without clinical, radiological or histopathological evidence of a precursor lesion 

(15). In contrast, secondary glioblastomas arise from lower grades of astrocytomas and 

anaplastic astrocytomas of WHO grade II and III respectively (16). However, identifying 
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histopathological differences between primary and secondary glioblastomas is extremely 

difficult (17). Furthermore, classification of WHO grade by microscopic histology is 

subjective, often lacks reproducibility and cannot confidently predict individual outcomes 

(18). Therefore, major efforts have been made to identify a molecular classification of 

glioblastomas and isolate relevant prognostic and predictive biomarkers (16, 19, 20). A 

Comprehensive study utilizing the Cancer Genome Atlas (TCGA) project examining the 

molecular characteristics of glioblastomas analysing copy number variations, acquired DNA 

sequence alterations, gene and miRNA expression and DNA methylation has been reported 

(4, 21, 22). The extensive TCGA study demonstrated that glioblastomas frequently acquire 

chromosomes 7 and 19, loss of chromosomes 10 and 13, and contain MDM2 and EGFR 

amplification (and expression of EGFRvIII (23)), PTEN, NFI and TP53 mutations and 

CDKN2A/B deletion (21). Genome-wide expression analysis and whole-genome methylation 

has now further classified glioblastoma into 4 distinct subgroups (classical, mesenchymal, 

pro-neural and neural), each characterised with distinct genetic mutations and deletions (24, 

25). Moreover, the pro-neural subgroup is further divided into 2 groups: neural-CpG island 

methylator phenotype (G-CIMP) and neural-non-G-CIMP (26, 27). 

   MicroRNAs (miRNAs) are a group of small (20-25 nucleotides) non-coding RNA 

fragments that bind to messenger mRNA and stop translation of the corresponding protein 

leading to mRNA degradation. MiRNAs have been implicated in the initiation and 

progression of many cancers and therefore hold great potential as diagnostic and therapeutic 

tools. More than 1500 human miRNAs have been identified and many are now known to be 

up- or down-regulated in various cancers. Indeed, several miRNA have been implicated in 

glioblastoma development, progression and as a potential prognostic biomarker (28-30). 

Several recent reviews have examined the advances made in the role of miRNA in 

glioblastoma development and progression and hence we will not review this area of research 
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here (31-34). In particular, the outstanding 2013 review by Hermansen and Kristensen 

outlined the overall biogenesis, function and discovery of miRNA and clearly described the 

methodology used to evaluate miRNA expression, incorporated both findings in laboratory 

and clinical research into their discussions (34).  Differing from the review by Hermansen 

and Kristensen, in this current review, we will focus specifically on research from patient 

specimens summarising the current literature on the use of miRNA detection in molecular 

classification of glioblastoma. We will also focus on the validity of using intra-tumoral or 

circulating miRNA as both prognostic and predictive biomarkers for glioblastoma detection, 

diagnosis, recurrence and treatment with temozolomide and radiotherapy.  

 

2. Classifying Glioma grade and Glioblastoma sub-groups by differential miRNA 

expression profiles. 

   The isolation of specific molecular signatures across glioma grades and sub-groups of 

glioblastoma may potentially allow for more reliable and consistent diagnosis, staging, 

prognosis and response to standard and novel therapies.   In this section we review the 

advances made in identifying specific miRNA expression profiles in a glioma setting. A 

substantial number of studies have performed large-scale miRNA expression analyses 

reporting both the up-regulation and down-regulation of several miRNAs in patient 

glioblastoma tumour tissue compared to normal brain tissue (Summarised in Table 1). 

However, due to inconsistencies in the reported subset of miRNAs that are either up or down-

regulated in glioblastoma, a specific glioblastoma miRNA expression signature is not yet 

well established. Only one miRNA (miR-21) was identified to be up-regulated in 

glioblastoma versus control brain tissue across all 13 studies listed in Table 1, while another 

18 were recognised to be up-regulated in at least 3 of the 13 reports (Table 2). Likewise, 22 

miRNA were regularly identified to be down-regulated in glioblastoma compared to normal 
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or adjacent brain tissue in at least 3 studies, with miR-132 the most consistent (8 out of 13 

studies; Table 2). Potential discrepancies between these studies are mainly due to several 

reasons including: the quality of initial tumour tissue, small samples sizes in some studies, 

differences in commercial miRNA array profile sets, variation in miRNA extraction 

techniques, contrasting methods for statistical analysis and the appropriateness of the 

“control” brain tissue. Nonetheless, many of these initial studies and subsequent 

investigations have extended the preliminary observations to provide important translational 

knowledge, identifying critical miRNA signatures distinguishing gliomas of various grades. 

Meta-analysis performed by other groups examining miRNA expression across several 

studies may also aid in critically identifying a definitive miRNA gene profile for improved 

glioma diagnosis and prognosis (35-38). Furthermore, several studies in addition to the high-

throughput screens performed above have evaluated individual miRNA as prognostic 

biomarkers of glioblastoma patient tissue. These include the expression of miR-10b (39) 

which was shown to be up-regulated and miR-7 (40), miR-34a (41), miR-128 (42), miR-218 

(43) and miR-873 (44) which were down-regulated in glioblastoma tissue compared to 

adjacent or normal brain tissue. 

   Several studies have examined differences in miRNA expression levels between 

glioblastoma and anaplastic astrocytoma (AA) tissue samples. Rao and colleagues used a 

predictive analytical approach of their genome-wide microarray data to distinguish miRNA 

expression between AA’s and glioblastoma (45). Their predictive analysis discovered a 23-

miRNA gene signature that could discriminate AA from glioblastoma with 95% accuracy. 

However, this signature was not impeccable as two glioblastomas out of the 26 examined 

displayed a miRNA expression profiles more akin to the expression profiles seen in AA’s, 

while 2 of the 13 AA’s displayed miRNA signatures more closely resembling the 

glioblastoma miRNA expression profiles. Similarly, Guan and colleagues identified a 16-
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miRNA signature that they believed could be utilized to clearly distinguish AA’s from 

glioblastomas with miR-196a showing the greatest significant difference of approximately 

105-fold greater expression in glioblastomas compared to AA’s (46). However, once more 

this signature was not completely robust as two glioblastomas out of the eight examined 

displayed similar miRNA expression profiles to AA’s than to other glioblastomas (46). 

Further larger-scale studies will be required to validate these current studies. Whether 

molecular biomarkers such as the miRNA signatures discovered by these reports eventually 

complement or supersede the currently accepted stratification of grade by tumour 

histopathological assessment is unclear.  

   Other researchers have observed differences in a set of miRNA between Grade I, Grade II 

and Grade III gliomas compared to commercially available or epileptic control brains (47). In 

addition, they also detected differential expression in several miRNA that distinguish low 

grade gliomas (Grade I and II) from high grade gliomas (Grade III and IV).  Similarly, a 

report by Zhi et al, found that miR-137 expression was significantly lower in high grade (III 

and IV) versus low grade (I and II) gliomas (48). Rivera-Diaz and colleagues identified 

several miRNAs that were associated with grade II, III and IV gliomas (49), whilst another 

study showed that miR-21 is up-regulated and miR-200a is down-regulated in glioblastomas 

compared to grade II and III gliomas (50). Finally, a more recent paper identified a 13-

miRNA signature distinguishing WHO grade II glioma to high-grade glioma of grade III and 

IV after large scale assessment of 848 human miRNA (51).  

   Meanwhile, Lages and co-workers identified 7 miRNA (6 over-expressed and 1 under-

expressed) in glioblastoma tumour tissue compared to oligodendrogliomas (52). Interestingly, 

a total of 26 miRNA was found to be differentially expressed in these glioblastomas and 

oligodendrogliomas compared to control brain tissue and thus the authors’ hypothesis that 

many miRNA may be regulated by similar pathways in both glioblastoma and 
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oligodendrogliomas as 19 miRNA (from this set of 26) were found to be similarly expressed 

in both types of glioma (52). Meanwhile, miR-221 expression has been shown to be 

significantly higher in gliomas of grade II, III and IV compared to normal brain tissue, with 

increasing expression correlating to grade (highest levels observed in grade IV glioblastoma 

tumours) (53).  

   Several studies have also aimed to differentiate primary and secondary glioblastoma (that 

are largely indistinguishable histologically) through differential miRNA expression profiles. 

A study by Rao and colleagues isolated 7 miRNA which were differentially expressed in 

primary versus secondary glioblastoma samples (45). Likewise, another group identified a set 

of miRNA with differential expression in diffuse astrocytomas (Grade II) compared to patient 

matched corresponding recurrent secondary glioblastomas (grade IV) (29). However the 

diagnostic significance of identifying additional molecular biomarkers including miRNA 

expression to the existing genetic and epigenetic differences currently identified in primary 

versus secondary glioblastomas is yet to be determined. Indeed, mutations in IDH1 are 

observed in greater than 80% of secondary glioblastoma but in less than 5% of  primary 

glioblastomas (14, 54, 55), and thus IDH1 mutations are recognised as a definitive diagnostic 

genetic marker of secondary glioblastomas with more reliable than clinical and pathological  

assessment (17). 

   Finally, separate investigations have determined miRNA profiles that distinguish glioma 

stem cells from non-stem glioma cells and non-neoplastic stem cells. One study used a 

combined microarray and deep sequencing approach to identify miRNA gene signature 

differentiating glioblastoma stem cells from normal neural stem cells (56). Similarly, another 

study identified differential miRNA profiles in CD133
+
 versus CD133

-
 glioblastoma cell 

lines (57). Another study compared the miRNA profiles of human glioma tissue, embryonic 

stem cells, neural precursor cells and normal brain tissue (58).  In this study, Lavon and 
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colleagues identified 15 miRNA that showed differential expression in glioma compared to 

stem cells (58).  In summary, large scale assessment and validation of miRNA expression 

signatures has advanced the understanding of critical molecular mediators and regulatory 

pathways within all tumours including glioma. Over time it is hoped that these insights will 

lead to a more accurate and stratified diagnosis of all grades of glioma. 

 

3. Predicting Glioblastoma Patient Outcome by differential miRNA expression profiles. 

   The identification of miRNA profiles that aid in elucidating glioma grade has been 

achieved as reviewed here in our previous section. Here we summarise the current literature 

evaluating miRNA expression signatures or individual miRNA that can predict clinical 

outcome of glioblastoma patients. Several papers have identified specific miRNA or miRNA 

profiles that predict survival in glioblastoma. Srinivasan et al, utilized the TCGA database to 

correlate miRNA expression profiles with survival in 222 glioblastoma patients (59). Their 

analysis identified a 10-miRNA expression signature that could independently predict 

survival. The 10 miRNA signature was made up of 7 miRNA that was over-expressed (miR-

31, miR-146b, miR-148a, miR-193a, miR-200, miR-221, miR-222) and 3 miRNA that were 

under-expressed (miR-17-5p, miR-20a, miR-106a) in tumours from glioblastoma patients 

with shorter median survival. A similar study identified a 5-miRNA gene signature (miR-

181d, miR-518b, miR-524-5p, miR-566, miR-1227) that independently predicted survival in 

both a Chinese cohort of 82 glioblastoma patients and from glioblastoma patients in the 

TCGA dataset (60). More recently, high-throughput microarray analysis was performed to 

measure the expression of 1146 miRNA in various grades of glioma (61). In this study, the 

authors determined that a 5-miRNA signature could distinguish a greater risk of poor 

outcome for patients with anaplastic gliomas, secondary and pro-neural glioblastomas (61). 

Finally, another study examined the predictive value of a set of 8 miRNAs which had showed 
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a differential expression between glioblastoma and control brain tissue (62). They determined 

that miR-181c and miR-21 expression both individually and in combination was associated 

with short-term progression of less than 6 months while miR-195 and miR-196b expression 

correlated with longer overall survival. Disappointingly, these four studies however, did not 

produce any over-lapping miRNA across the 4 “predictive” signatures and thus isolating a 

conclusive candidate miRNA expression profile either individually or as a clustered set that 

predicts patient outcomes for primary glioblastomas still requires further investigation. 

Furthermore, 2 studies published contradictory findings to those of Lakomy’s investigation. 

Guan and colleagues reported that miR-196a and miR-196b expression were independent and 

significant predictors of poorer overall survival of glioblastoma patients, which is in direct 

contrast to Lakomy’s study proposing that miR-196b correlated with longer overall survival 

(46, 62). In addition, Ma et al, showed that the expression levels of miR-196b were inversely 

correlated with overall survival in GBM patients again in contrast to Lakomy’s report (63). 

Concurring with Lakomy’s study however was the correlation of miR-21 expression with 

poorer survival in astrocytoma patients across all 4 grades (48). Finally, another study 

showed that high levels of miR-326 and miR130a and low levels of miR-323, miR-329, miR-

155 and miR-210 were all significantly associated with better overall survival in 

Glioblastoma patients (64). 

   A number of investigations have identified individual miRNA associations with poor 

survival outcomes in glioblastoma patients. Increased expression of miR-17 (65), miRNA-

132 (30), miR-210 (66), miR-224 (67) and miR-155 (68) were significantly associated with 

low Karnofsky performance score, poor progression-free survival and overall survival rates in 

high-grade glioma patients. In addition, reduced expression of miR-200b (69), miR-205 (70), 

miR-326 (71), miR-340 (72) and miR-504 (73) correlated with poor overall survival in high 

grade glioma patients, whilst reduced miR-375 expression was a predictor of poor overall 
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survival in glioma patients across all 4 grades (74). Barbano and colleagues showed that 

over-expression of miR-21, miR-210, miR-22 and miR-155 in glioblastoma all individually 

associated with a higher risk of death (51). Furthermore, reduced tumour expression of miR-

106a and miR-181b in patients with gliomas (across all 4 grades) also correlated to poorer 

overall survival (48). The study by Men et al (69) demonstrating decreased miR-200b 

expression correlated with tumour progression and poor prognosis is highly relevant. A 

genome-wide identification of the miR-200 family revealed a regulatory network that 

controls cell invasion (75). One of the hallmarks of glioma is their highly invasive and 

infiltrative nature and Bracken et al (75), showed that the miR-200 family plays a significant 

role in coordinating actin cytoskeleton dynamics. This is highly pertinent as glioma cells have 

been shown to possess cell membrane structures known as invadopodia which facilitate the 

invasion process (76) and an invadopodia related protein known as Tks5 has been 

demonstrated to be of prognostic importance in glioma patients (77). Thus, one could 

speculate that miRNA signatures outlining a highly invasive glioma may also show a 

significant association with miRNA signatures for poorer survival outcome. 

  Moreover, a clear classification of the various sub-groups of glioblastoma (classical, 

mesenchymal, pro-neural-G-CIMP, pro-neural non-G-CIMP and neural), may also aid in 

personalized and improved patient care. It is now becoming evident that each sub-group of 

glioblastoma has varying, distinguishable genetic and molecular mRNA profiles and may 

have differing response to therapy and overall survival rates (78). However, some dispute 

remains regarding the relationship between glioblastoma subclasses and clinical outcome (24, 

25, 27, 33). Recently, an important study analysed the TCGA based on miRNA expression 

profiles and found that these classifications predicted patient outcome far greater than 

previously reported mRNA expression profiles (79). Their study detected 5 differentially 

expressed miRNA clusters in 5 distinct glioblastoma sub-classes designated as Oligoneural, 
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Radial glial, Neural, neuro-mesenchymal and astrocytic glioblastoma based on each type 

arising from a specific neural precursor cell type. Importantly, they assessed the overall 

survival rates in each of these sub-groups and found that patients with Oligoneural 

glioblastomas had significantly better overall survival than patients with radial glial, neural or 

astrocytic glioblastomas (79). Another group also isolated differences in miRNA profiles 

between the same 5 glioblastoma subgroups utilising the TCGA database (80). Importantly, 

they identified a specific miRNA gene signature that correlated with patient clinical outcomes 

for all 5 glioblastoma sub-groups. Finally, a very recent report used LASSO regression 

models to identify a 9-miRNA prognostic signature that significantly correlated with survival 

in all glioblastoma subtypes except the non-G-CIMP pro-neural group (81). Collectively, 

these reports suggest that stratifying each individual patient based on their differential 

miRNA expression signatures may result in personalized sub-class specific treatment 

strategies in the future. 

 

4. Predicting Glioblastoma Patient Response to Therapy by differential miRNA 

expression profiles. 

  Despite only offering modest increases in patient survival, the accepted treatment for 

glioblastoma patients is surgical resection, followed by radiotherapy and adjuvant 

temozolomide. However, the mechanisms driving glioblastoma resistance to this treatment at 

a molecular level are not completely understood. Research identifying critical differential 

miRNA expression profiles between good and poor response may offer greater insight into 

predicting treatment outcomes and provide increased confidence for therapeutic decision 

making in the future. Many reports have examined miRNA expression as potential 

biomarkers in response to the drug treatment of glioblastoma cell lines in laboratory studies. 

However, in this review we summarize the limited current literature examining miRNA as 
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possible mediators of resistance to therapy in glioblastoma patients. A recent paper examined 

the expression levels of miR-125b in 60 glioblastoma patients that were treated with 

temozolomide and radiotherapy (82). They found that miR-125b expression significantly 

correlated with survival outcomes for patients treated with temozolomide in combination 

with radiotherapy. Glioblastoma patients with high miR-125b expression had a median 

survival of 9 months compared to 18 months for patients low miR-125b expression levels 

(82). Likewise, another group showed that reduced expression of miR-181b and miR-181c 

significantly correlated with an improved patient response to temozolomide and radiotherapy 

(83).  

   In addition, other studies have examined miRNA profiles in retrospective studies 

comparing glioblastoma patients treated with or without temozolomide. Zhang and 

colleagues identified a 5-miRNA gene signature, which they had shown to predict patient 

survival outcome, to also predict response to temozolomide (60).  Patients were grouped 

based on their expression levels of the 5-miRNA signature (miR-181d, miR-518b, miR-524-

5p, miR-566 and miR-1227) into high-risk and low-risk using a risk-score statistical method. 

Patients that were treated with temozolomide with a low-risk score (n=19) had a significantly 

better temozolomide response and overall survival versus those that were treated with 

temozolomide and had high-risks scores (n=21) (60).  Similarly, risk-score analysis of a 9-

miRNA gene signature established by another group was also associated with temozolomide 

response in patients with glioblastoma (81). 

   Conclusive studies verifying these miRNA signatures that facilitate confidence in their 

predictive biomarker status await further investigation. Importantly, however, these 

signatures show clear clinical relevance, allowing for the stratification of patients into 

optimal treatment options that may best improve overall outcomes. 
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5. Predicting Survival Outcome by differential miRNA expression profiles in patient 

peripheral blood. 

   The identification of miRNA gene signatures within patient tumour tissue may potentially 

assist in predicting progression-free and overall survival of glioblastoma patients and should 

aid in selecting the most appropriate and effective treatment for each patient. However, 

identifying miRNA profiles in patient peripheral bodily fluids without the requirement of 

surgery or biopsy may be more suitable for predicting patient relapse or disease recurrence. 

Indeed, Baraniskin evaluated differential miRNA expression in the cerebrospinal fluid (CSF) 

of glioma patients and found that miR-21 and miR-15b were significantly enhanced in CSF 

samples from patients with gliomas compared to control subjects (84). Similarly, CSF from 

patients with non-neoplastic neurological conditions (used as controls), glioblastoma and 

brain tumour metastasis (originating from breast and lung primary tumours) was assessed for 

the expression of several miRNA known to be strongly associated with glioblastoma 

development (85).  This study found that miR-10b and miR-21 expression were both 

significantly increased in the CSF of most glioblastoma and metastatic brain tumour patients 

compared to their levels in the CSF of non-neoplastic patients.  Interestingly, the expression 

of the miRNA 200 family (miR-200a, miR-200b, miR-200c and miR-141) were highly 

expressed in CSF of most metastatic brain tumour patients but not in primary glioblastoma 

patients indicating that these miRNA may be a potential biomarker to differentiate between 

primary brain tumours and tumours that have metastasised to the brain. This is consistent 

with the studies showing that the miRNA 200 family are linked to tumour invasion and 

metastasis as we noted earlier in section 3. In addition, Teplyuk and colleagues went on to 

evaluate whether miRNA levels in patient CSF correlated with remission of disease. 

Importantly, neither miR-10b nor the miR-200 family of miRNA (and only low levels of 

miR-21) were detectable in the CSF of patients who were in remission (as defined by no 
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evidence of tumour by MRI and if CSF cytological analysis was negative) (85).  Further work 

is required however, to determine whether the detection of miRNA in CSF is a better clinical 

diagnostic tool to establish disease remission (or relapse) compared to the currently used 

MRI.  

   Recent studies have demonstrated that glioblastoma exosomes contain similar material to 

that of their corresponding intracellular tumour mass including miRNA profiles (86, 87) and 

thus the expression of miRNA in CSF exosomes may make promising biomarkers in 

glioblastoma patients. Indeed, a large panel of over 50 miRNAs were detected in the CSF 

exosomes of glioblastoma patients (86). Whether these miRNA can be used as prognostic or 

predictive biomarkers is yet to be clearly determined. In addition, the use of peripheral blood 

over CSF for miRNA profiling may be more suitable due to the non-invasive nature, 

repeatability and ease of blood collection. Studies characterising miRNA expression 

signatures in serum and peripheral blood from patients with other neurological diseases such 

as schizophrenia and cerebral ischemic injury have been performed (88, 89), and is therefore 

also feasible for glioma patients. Here we will review the current knowledge in assessing 

miRNA expression in glioma patient serum/plasma and discuss the potential of these findings 

in utilising miRNA expression as prognostic and predictive biomarkers. These studies are 

summarised in Table 3. 

   A recent study examined the expression of 752 miRNA by microarray analysis in 

glioblastoma patient and control sera (90). Following data validation, they identified that 3 

miRNA (miR-576-5p, miR-340 and miR-626) were significantly over-expressed and 3 

miRNA (miR-320, Let-7g-5p and miR-7) were significantly under-expressed in glioblastoma 

patient serum compared to normal control serum. Likewise, another group reported a 

significant differential expression of 2 miRNA (miR-128 and miR-342-3p) from a total of 

1158 miRNA tested in glioblastoma patient peripheral blood compared to normal control 
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blood (91). In addition, Wang and colleagues examined the expression of a small set of 

miRNA that have been associated with deregulation in glioblastoma tissue and identified 3 

miRNA (miR-21, miR-128 and miR-342-3p) that were significantly altered in expression in 

glioblastoma patient plasma versus health control plasma (92). Interestingly, reduced miR-

342-3p expression in glioblastoma patient sera versus control sera was observed in both this 

study and the study by Roth et al, suggesting that this miRNA may indeed be a suitable 

biomarker for glioblastoma diagnosis. However, although miR-128 was also reduced in 

expression in the study by Wang and colleagues, Roth et al, found that miR-128 was 

conversely up-regulated in glioblastoma patient peripheral blood versus control blood (91, 

92). This discrepancy may be attributed somewhat to the use of peripheral blood versus 

plasma, as it has been suggested that miRNA from blood cells may provide misleading 

miRNA profiles differing to those seen in patient serum or plasma (92). Nonetheless, these 

papers offer proof-of-principle support that miRNA expression in patient blood can 

potentially act as non-invasive biomarkers for disease diagnosis and prognosis.   

   Two other reports have examined large-scale screening of differential miRNA expression 

across various grades of glioma (93, 94).  An initial screen of 739 miRNA found that 107 

miRNA were over-expressed by at least 200-fold in glioma patient serum compared to serum 

from healthy controls (94). Subsequent qRT-PCR validation in a larger set of serum 

identified a 9-miRNA signature that were significantly over-expressed in pre-operative serum 

from patients with Grade II, III and IV glioma (n=90) compared to serum from health 

controls (n=110). Importantly the expression levels of these 9 miRNA were markedly 

reduced when comparing patient matched serum pre- and post-surgical resection (n=73), 

indicating that these miRNA may be suitable serum biomarkers for glioma diagnosis and 

predicting tumour recurrence. Another study utilized genome-wide solexa sequencing to 

evaluate the levels of 904 miRNA in the serum of 44 grade III and IV glioma patients and 43 



17 

 

controls (93). A total of 50 miRNA were found to be differentially expressed in patient versus 

normal control sera. Subsequent validation by qRT-PCR ultimately found the expression 

levels of 7 miRNA were significantly different in patient versus normal control sera. 

However, whether this 7-miRNA gene signature in serum also predicted patient outcome 

across various malignant astrocytomas was not presented in this report (93).  

   Many other studies have identified individual miRNA as potential diagnostic and 

prognostic serum or plasma biomarkers for glioma patients. The expression of miR-454-3p in 

glioma patient plasma was significantly higher than in plasma from normal controls and its 

expression also correlated with the overall outcomes of glioma patients (95).  Importantly, the 

expression of miR-454-3p was also significantly higher in pre-operative plasma compared to 

plasma from matched patients 14 days post-surgical resection. Likewise, miR-21 was 

elevated in glioblastoma patient plasma compared to controls and was enhanced in the pre-

operative versus post-operative plasma from matched patients (96). These results suggest that 

plasma levels of miR-21 and miR-454-3p (and possibly others miRNA) could potentially be 

used to detect early glioma development or tumour recurrence.  Similarly, expression of miR-

210 (97), miR-221 and miR-222 (98) were significantly higher in glioma patient serum and 

plasma compared to normal controls and expression of miR-29 (99) and miR-125b (100) 

were significantly lower in glioma patient serum compared to normal controls. Finally, others 

have also reported that miRNA found in circulating exosomes in patient serum may also be 

utilized as potential diagnostic biomarkers for glioblastoma (101, 102). 

 

6. Conclusions 

   Currently, gene expression profiles, gene mutational analysis, post-transcriptional 

epigenetic changes and chromosomal alterations are proposed for clinical practice as 

biomarkers for patient outcomes and response to treatment. In glioblastoma, these 
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specifically include isocitrate dehydrogenase 1 and 2 gene mutations and MGMT promoter 

methylation (103). However, miRNA biomarkers do not currently provide a sufficient degree 

of prognostic (pre-treatment) or predictive (on treatment) accuracy to guide clinical decision 

making. Nonetheless, as molecular grading of gliomas is continually improving, traditional 

histopathological assessment for diagnosis of varying glioma grades may be phased out. The 

ultimate aim clinically is to characterise and stratify a patient’s glioma based on individual 

genetic profile allowing for a personalized treatment that is based on this classification. The 

use of reliable miRNA expression signatures should give rise to further confidence for 

establishing universal molecular signatures for glioma classification and treatment 

stratification. Indeed the ideal genetic signature that has the greatest diagnostic and 

prognostic value may involve a combination of current molecular biomarkers and novel 

miRNA expression profiles in both tumour tissue and more importantly peripheral blood 

samples. As further advances occur in understanding the role of miRNA expression in glioma 

development and progression, differential miRNA expression profiles have the capacity to 

improve glioblastoma sub-type classification, delineate a pattern of disease progression and 

ultimately improve response to therapy leading to increased patient survival.       
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Table 1: Differential miRNA expression in Glioblastoma versus normal brain tissue 

No of 

miRNA 

tested 

Clinical Comparison 

(Sample size) 

No of over-

expressed 

miRNA vs 

control brain 

No of under-

expressed 

miRNA vs 

control brain 

Method Used (Ref) 

245 Glioblastoma (9) vs 

matched peripheral 

brain tissue (9) 

9 4 Microarray (104) 

180 Glioblastoma (3) vs 

control brain tissue (8) 

5 3 Membrane array 

hybridisation 

(105) 

192 Glioblastoma (4) vs 

control brain tissue (4) 

3 13 RT-PCR (106) 

282 Glioblastoma (12) vs 

control brain tissue (4) 

15 11 Membrane array 

hybridisation 

and RT-PCR 

(52) 

245 Glioblastoma (x
a
) vs 

matched peripheral 

brain tissue (x
a
) 

8 11 Microarray (42) 

x
b 

Glioblastoma (3) vs 

control brain tissue (3) 

5 5 RT-PCR  (107) 

875 Glioblastoma (3) vs 

control brain tissue (3) 

33 40 Deep 

Sequencing 

(108) 

484 Glioblastoma (6) vs 

control brain tissue (3) 

18 38 Deep 

Sequencing 

(109) 

756 Glioblastoma (26)
c
 

and Anaplastic 

astrocytomas (13) vs 

control brain tissue (7) 

55 29 Microarray (45) 

754 Glioblastoma (58) vs 

control brain tissue 

(10) 

108 108 Microarray (110) 

200 Glioblastoma (21), 

Anaplastic 

astrocytomas (31), 

diffuse astrocytoma 

(26) and  pilocytic 

astrocytoma (6) vs 

normal adjacent tissue 

(20) 

2 10 RT-PCR (48) 
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534 Glioblastoma (156) vs 

control brain tissue 

(10) 

19 19 Microarray (64) 

534 Glioblastoma (490) vs 

healthy controls (10)  

20
d 

20
d 

Microarray (111) 

aThe number of glioblastoma patient samples nor adjacent non-neoplastic tissue was not stated in this report. 
bThe number of miRNA assessed was not stated in this report. 
cThe 26 patient samples are made up of 13 primary and 13 secondary glioblastoma. 
d
miRNA with greatest/lowest contribution to glioblastoma phenotypic state. 

 

 

 

Table 2: Consistent miRNA expression across at least 3 independent studies from Table 1  

miRNA Identified Expression vs control brain No of studies identified 

miR-21 Up-regulated 13 out of 13 

miR-10b Up-regulated 7 out of 13 

miR-25 Up-regulated 7 out of 13 

MiR-106b Up-regulated 6 out of 13 

miR-155 Up-regulated 6 out of 13 

miR-210 Up-regulated 5 out of 13 

miR-15b Up-regulated 4 out of 13 

miR-92a Up-regulated 4 out of 13 

miR-92b Up-regulated 4 out of 13 

miR-93 Up-regulated 4 out of 13 

miR-9 Up-regulated 3 out of 13 

miR-10b* Up-regulated 3 out of 13 

miR-15a Up-regulated 3 out of 13 

miR-16 Up-regulated 3 out of 13 

miR-17 Up-regulated 3 out of 13 

miR-21* Up-regulated 3 out of 13 

miR-27a Up-regulated 3 out of 13 

miR-130b Up-regulated 3 out of 13 

miR-142-3p Up-regulated 3 out of 13 

   

miR-132 Down-regulated 8 out of 13 

miR-218 Down-regulated 6 out of 13 

miR-124 Down-regulated 5 out of 13 

miR-128a Down-regulated 5 out of 13 

miR-138 Down-regulated 5 out of 13 

miR-7 Down-regulated 4 out of 13 

miR-128 Down-regulated 4 out of 13 

miR-149 Down-regulated 4 out of 13 

miR-124 Down-regulated 3 out of 13 

miR-129* Down-regulated 3 out of 13 

miR-129 Down-regulated 3 out of 13 

miR-137 Down-regulated 3 out of 13 

miR-203 Down-regulated 3 out of 13 

miR-323 Down-regulated 3 out of 13 

miR-323-3p Down-regulated 3 out of 13 

miR-329 Down-regulated 3 out of 13 
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miR-330 Down-regulated 3 out of 13 

miR-379 Down-regulated 3 out of 13 

miR-410 Down-regulated 3 out of 13 

miR-432 Down-regulated 3 out of 13 

miR-433 Down-regulated 3 out of 13 

miR-485p Down-regulated 3 out of 13 

 

  

 

 

 

Table 3: Differential miRNA expression in patient versus normal control serum/plasma 

Clinical 

Comparison 

(Sample size) 

Over-expressed miRNA  

vs control  

Under-expressed miRNA 

vs control  

Source (Ref) 

Glioblastoma 

(20) vs 

controls (20) 

miR-128 miR-342-3p Peripheral 

blood 

(91) 

Glioblastoma 

(10) vs 

controls (10) 

miR-21 miR-128, miR-342-3p Plasma (92) 

Glioma (122) 

vs controls 

(123) 

 miR-15b, miR-23a, miR-

133a, miR-150*, miR-197, 

miR-497,  miR-548b-5p 

 

Serum 

 

(93) 

Glioma (90) 

vs controls 

(110) 

miR-15b-5p, miR-16-5p, 

miR-19a-5p, miR-19b-3p, 

miR-20a-5p, miR-106a-

5p,  miR-130a-3p, miR-

181b-5p, miR-208a-3p 

    

 Serum (94) 

Glioma (70) 

vs controls 

(70) 

miR-454-3p  Plasma (95) 

Glioblastoma 

(10) vs 

controls (10) 

miR-21  Plasma (96) 

Glioblastoma 

(42) and AA 

(46) vs 

controls (50) 

miR-210  Serum (97) 

Glioma (50) 

vs controls 

(51) 

miR-221, miR-222  Plasma (98) 

Glioma (83) 

vs controls 

(69) 

 miRNA-29 Serum (99) 

Glioma (33)  miRNA-125b Serum (100) 
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vs controls 

(33) 
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