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We have studied experimentally the formation and evolution of sand ripples under water shear flow
in a narrow annular channel. The amplitude of the sediment ripples vanishes at a critical value of the
shear rate. Near this onset, a band of Fourier modes can be described by exponential growth functions.
The growth rates vary linearly with the shear rate. On longer times the sand ripples display complex
dynamics.

PACS numbers: 47.54.+r, 45.70.–n, 92.10.Wa
One of the most conspicuous examples of pattern forma-
tion in nature is the ripples and dunes formed in sand, either
by wind, flowing water, or surface waves on water [1,2].
In particular, ripple formation induced by water shear flow
is well known: everybody is familiar with ripples in mud-
flats or on riverbeds. To describe pattern-forming systems
like these near onset the normal procedure is to linearize
the governing equations [3]. However, for sand there are
no well-established equations to start from. In order to
make progress, one has to rely on experiments carried out
near the onset of pattern formation.

To evade the lack of fundamental equations for sand,
two main approaches have been followed in theoretical
work. The first consists of various continuum descriptions,
which can be valid only on length scales significantly
larger than the grain size. Under some model assumptions
it has then been possible to treat ripple formation driven by
water shear flow in terms of linear stability theory [4–8].
In the second approach, one attempts to model explicitly
the grain-level events: the formation and motion of ripples
or dunes result from grains that are set in motion by the
water, follow some trajectories, and come to rest further
downstream. To mimic this motion, cellular automata are
employed, which seem to catch many of the qualitative
features of bedform formation [9–11].

Most experimental studies have focused on questions
of importance in engineering [12,13] or on the longtime
behavior [14]. In Refs. [15,16], the early stages of ripple
formation were considered. They determined the most
unstable mode, and the ripple length was found to be
consistent with estimates from linear stability analysis [7].
However, by merely determining the most unstable mode,
one cannot deduce whether linearized theories apply.

Furthermore, all these experiments were performed in
long and wide rectangular channels. A serious limitation
of these setups is that the system must be fed with both
water and sand. This might disturb the ripple dynamics,
especially close to the threshold where the system is very
susceptible.

We have built an experimental setup that has sev-
eral advantages compared to previous work: strict mass
conservation, rotational symmetry that allows unrestricted
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use of Fourier techniques, quasi-one-dimensional geome-
try, as well as high spatial and temporal resolution. We
find that a linear description indeed is possible near on-
set. While the ripple formation in this respect resembles
other pattern-forming systems, there are also striking dif-
ferences that originate from the unusual properties of the
sand: the ripple pattern does not disappear as the driving
is reduced, and more complex behavior arises when the
amplitude is comparable to the grain size. Finally, we
find a series of intriguing features in the dynamics as the
ripples are driven into the strongly nonlinear regime.

Our experimental setup [see Fig. 1(a)] consists of a
15 mm wide and 58 mm high annular channel of 292 mm
diameter formed by a solid inner cylinder and an outer
cylinder. The channel is filled with glass beads 280–
300 mm in diameter to a height of 38 mm. It is lowered
into an aquarium that is filled with water to a height of
14 cm. The shear flow is generated with a rotor disc that
extends 4 mm from the top into the channel. The typical
roughness of the sand surface before the start of a run is
about 3 d, where d � 290 mm is the mean grain diameter.
Six cameras, controlled by a single frame grabber card,

FIG. 1. (a) Side view of the experimental setup; (b) the six
camera images of the sand-water interface are separated by
vertical white lines. The images have been expanded in the
vertical direction.
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are placed at angular distances of 60± and cover the entire
circumference of the channel. The spatial resolution is
about 0.7 d.

At a constant sampling rate fs � 1�Ts the images of
all six cameras are stored. The boundary between bright
sand and darker water is detected, rescaled to account for
the geometrical aberration, and the six pieces are matched
together. An example is shown in Fig. 1(b). The link
between two images is indicated by white vertical lines.
The water is flowing from the left to the right.

The boundary curve h�x, nTs�, where x is the spatial
position and nTs with n [ � the elapsed time, is Fourier
decomposed,
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where L is the circumference of the channel and 2N �
4112 the number of data points in the boundary curve.
The mean ripple amplitude Aay is given by the square
root of the sum of all Fourier amplitudes as Aay �qPN

m�1�a2
m 1 b2

m�.
Following earlier work on bedform formation (see, e.g.,

Refs. [15,17]) we quantify the applied shear stress by the
particle Reynolds number Re� � dut�n. This implies
that the relevant length scale is given by the mean grain
diameter d, n is the kinematic viscosity of water at room
temperature, and ut � �n ≠U

≠y �1�2 is the unperturbed shear

velocity acting on the particles. ≠U
≠y was estimated by

assuming a linear profile for the fluid velocity U�y� in
the middle of the channel.

The left-hand part of Fig. 2 shows the typical longtime
evolution of the boundary curve. The abscissa gives the
position along the channel. In the right-hand part of Fig. 2
the first 25 Fourier intensities �a2

m 1 b2
m� are plotted.

On the horizontal axis of the right-hand part the modes
of the Fourier series are given. The shear stress was
Re� � 2.40. The sampling time was Ts � 400 s, but only
every eighth curve is plotted. Between two consecutive
boundary curves an offset of 8 mm is added; the offset
between two consecutive spectra is 2.5 mm2. After the
nucleation of one ripple at a specific position there is a
fast generation of more ripples downstream of the first
one. This rather rapid dynamics can be observed until
the whole system is filled with ripples. After about 6 h
the pattern reaches an “equilibrium state” with a rather
narrow spectrum. The ripples drift with a velocity of
approximately 9 cm�d, corresponding to an oscillation
period of 27 h, in the downstream direction. As is shown in
Fig. 3, the mean ripple amplitude saturates upon reaching
this state. Interesting and worth noting is the breakup of a
seemingly “stable” state after an elapsed time of about 50 h
as can be seen in Fig. 2(b): m � 9 as the dominant mode
splits into m � 10 and m � 6. As shown in the inset of
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FIG. 2. Temporal evolution of the sand-water interface along
the circumference of the channel (left) and of the intensities of
the first 25 modes of the Fourier series (right) for Re� � 2.40.
Consecutive data sets are separated 3200 s in time and are
plotted above each other with a certain offset. The scale is
given at the left side of each part of the figure.

Fig. 3, a relatively rapid change in the mean amplitude is
associated with this event. The observation of an initial
regime of rapid growth followed by a saturation of the
mean amplitude is in qualitative agreement with previous
work [14,15]. The time needed to reach the equilibrium
state becomes progressively longer as the shear rate is
reduced towards threshold.

To get deeper insight into the transient state before the
mean amplitude reaches the plateau we reduced the sam-
pling time to Ts � 14 s, the highest temporal resolution
we are able to achieve. The early evolution of the ampli-
tudes of three different Fourier modes is shown in Fig. 4.
The experiment was performed at Re� � 2.40, the same
shear stress as for the experiment in Fig. 2. Figures 4(a)
and 4(b) correspond to modes in the vicinity of the fastest
growing mode, which was determined to be m � 10, cor-
responding to a wave number k � 0.69 cm21 (see Fig. 5
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FIG. 3. Evolution of the mean amplitude of the sand-water
interface for Re� � 2.40. The inset is a partial enlargement.
The solid line denotes the mean value obtained by neglecting
the first 12 h.
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FIG. 4. Three examples for the temporal evolution of the
amplitude of a certain mode. The subscripts of each ordinate
label denote the mode m in the Fourier decomposition [Eq. (1)].
The arrows indicate the upper boundary for the exponential fits,
which are given by the solid lines. Each figure refers to the
same value of the shear stress, Re� � 2.40.

below). For Figs. 4(a) and 4(b) the amplitude could be
well adapted to an exponential growth function of the form
A0 exp�st�, and the growth rates s could be extracted.
However, this procedure does not work well for Fig. 4(c).
This might either be due to a limited temporal resolution or
a systematic deviation from exponential growth for modes
too far above or below the fastest growing mode. Nev-
ertheless, we find the exponential growth with time for
a band of Fourier modes, as was theoretically predicted
[7,18], can be experimentally verified for particle Reynolds
numbers near threshold, and for modes near the fastest
growing mode.

Figure 5 shows the growth rates obtained for five
values of the particle Reynolds number. To compare
the data to the results of linearized theories, we fitted
each set of growth rates for the lower four values of Re�

to a parabola s�k, e� � t
21
0 �e 2 j

2
0�k 2 kc�2�, where

e � �Re� 2 Re�c��Re�c and Re�c is the critical particle
Reynolds number for the onset of ripple formation. We
found Re�c � 2.18 6 0.04, kc � �0.69 6 0.06� cm21,
t0 � �22 6 3� s, and j0 � �0.16 6 0.09� cm. The solid
lines in Fig. 5 are the result of the fit. The data for
Re� � 2.52 cannot be fitted using those values. This
indicates that for e � 0.16 one is outside of the linear
regime. The normalized wavelength l�d � 300 of the
fastest growing mode is in line with the measurements
given in Ref. [16].
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FIG. 5. The growth rates as a function of the wave number for
five different values of the particle Reynolds number. On the
lower horizontal axis the wave number k � 2pm�L is given,
on the upper one the corresponding wavelength l � L�m. The
experiments were performed at a shear stress of Re� � 2.28
(�), 2.30 (�), 2.34 (�), 2.40 ( ), and 2.52 ( ). The solid
lines are parabolic fits to the lower four data sets. The dotted
line is the extrapolation for Re� � 2.52, while the dashed line
indicates an independent parabolic fit to the upper data.

Figure 6 shows the characteristic behavior of the equi-
librium state mean amplitude (the plateau in Fig. 3) as a
function of Re�. The error bars give the standard devia-
tion of the temporal fluctuations. For the lowest three val-
ues of Re� the mean amplitudes are significantly reduced.
Note that these values are in the order of a grain size, as
can be seen in Fig. 6 using the right ordinate. An evolu-
tion towards a plateau similar to the one shown in Fig. 3
is not observed here; instead we observe irregular fluctua-
tions. In our interpretation these experiments were below
the threshold for ripple formation.
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FIG. 6. The mean amplitude (left ordinate in millimeters,
right ordinate in units of the grain size) as a function of the
shear stress. The error bars denote the standard deviation. The
inset shows the behavior of the growth rates for modes 8 (�),
10 ( ), and 13 (�). The arrow indicates the upper data points
included in the linear fit.
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In the inset of Fig. 6 the growth rates of modes 8, 10,
and 13 are given for a subrange 2.1–2.6 in the particle
Reynolds number. The solid lines represent linear fits
to these growth rates. The point of intersection with
the abscissa is interpreted as the instability threshold
for the specific Fourier mode. The onset of instability
for the fastest growing mode (mode 10) is Re� � 2.17.
Assuming that the lowest three values in Fig. 6 are below
the threshold the onset must be in the range Re� � 2.14–
2.18. Based on this agreement between values for the
onset determined in two different ways we believe that
the initiation of sand ripples can be described in terms of
a linearized theory. Additional experiments with different
grain sizes indicate that the critical Reynolds number
increases linearly with grain diameter. These results will
be published elsewhere [19].

The breakdown of a linear description is evident for
Re� . 2.40 (arrow in the inset of Fig. 6), corresponding
to e � 0.11. Above this value there is a more pronounced
increase in the mean amplitude, an indication that one can
no longer neglect nonlinear contributions. From Re� �
2.65 (e � 0.22) the curve again flattens. This might be
caused by the finite height of the channel. Alternatively,
this might be the beginning of the restabilization of the
unstructured sandbed, which from previous experiments
was found to occur for high values of the Reynolds
number.

When comparing our results to related studies, it should
be noted that both the theoretical predictions of Ref. [7]
and the experimental results given in [16] apply to a
tiltable channel with an open water surface, and that there
is clear evidence that the situation for closed conduits is
different from the one observed in open channels [8].

In conclusion, the evolution of sand ripples follows the
behavior seen for a wide class of pattern-forming systems.
For the early stages in the evolution the ripple amplitude
is sufficiently small that single Fourier modes can be
treated as noninteracting, which allows a description in
terms of linear stability theory. As the ripple amplitude
increases one observes nonlinear effects, like saturation
of the mean amplitude, “birth” and “death” of ripples,
nonmonotonic and correlated evolution of the Fourier
modes. These phenomena will be discussed in more detail
elsewhere. Thus, despite the striking similarity with better
understood pattern-forming systems [3], an approach using
a continuum theory is questionable: There must be a
crossover for length scales comparable to the grain size.
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