
entropy

Article

Compressed kNN: K-Nearest Neighbors with
Data Compression

Jaime Salvador–Meneses 1,* , Zoila Ruiz–Chavez 1 and Jose Garcia–Rodriguez 2

1 Facultad de Ingeniería, Ciencias Físicas y Matemática, Universidad Central del Ecuador,
Quito 170129, Ecuador; zruiz@uce.edu.ec

2 Computer Technology Department, University of Alicante, 03080 Alicante, Spain; jgarcia@dtic.ua.es
* Correspondence: jsalvador@uce.edu.ec; Tel.: +593-098-728-5748

Received: 27 December 2018; Accepted: 22 February 2019; Published: 28 February 2019
����������
�������

Abstract: The kNN (k-nearest neighbors) classification algorithm is one of the most widely used
non-parametric classification methods, however it is limited due to memory consumption related to
the size of the dataset, which makes them impractical to apply to large volumes of data. Variations of
this method have been proposed, such as condensed KNN which divides the training dataset into
clusters to be classified, other variations reduce the input dataset in order to apply the algorithm.
This paper presents a variation of the kNN algorithm, of the type structure less NN, to work with
categorical data. Categorical data, due to their nature, can be compressed in order to decrease the
memory requirements at the time of executing the classification. The method proposes a previous
phase of compression of the data to then apply the algorithm on the compressed data. This allows us
to maintain the whole dataset in memory which leads to a considerable reduction of the amount of
memory required. Experiments and tests carried out on known datasets show the reduction in the
volume of information stored in memory and maintain the accuracy of the classification. They also
show a slight decrease in processing time because the information is decompressed in real time
(on-the-fly) while the algorithm is running.

Keywords: classification; KNN; compression; categorical data; feature pre-processing

1. Introduction

Discrete data compression is an interesting problem especially when compressed data is required
to maintain the characteristics of the original data [1]. Most of the state-of-the-art classification
methods require a large amount of memory and time making them unfeasible options for some
practical applications in the real world [2].

In many datasets, the number of attributes (also called the dimension) is large, and many
algorithms do not work well with datasets that have a high dimension because they require all
information to be stored in memory prior to processing. Nowadays, it is a challenge to process datasets
with a high dimensionality such as censuses carried out in different countries [3]. A census is a
particularly relevant process and a vital source of information for a country [4]. The predominant
characteristic of this type of information is that most of the data is of categorical type.

The problem of assigning a class to a dataset is a basic action in data analysis and pattern
recognition, the task consists labeling an observation from a set of known variables [5].

Entropy 2019, 21, 234; doi:10.3390/e21030234 www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/187734735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3564-8929
https://orcid.org/0000-0002-6808-4648
https://orcid.org/0000-0002-7798-3055
http://www.mdpi.com/1099-4300/21/3/234?type=check_update&version=1
http://dx.doi.org/10.3390/e21030234
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 234 2 of 20

Supervised learning is a part of machine learning (ML) which tries to model the behavior of some
system. The supervised models are created from observations which consist of a set of input and
output data. A supervised model describes the function which associates inputs with output [6].

In many cases, k-nearest neighbors (kNN) is a simple and effective classification method [7].
However, it presents two major problems when it comes to implementation: (1) it is a lazy learning
method and (2) it depends on the selection of the value of k [8]. Other limitations present in this
method corresponds to the high memory consumption which limits its application [9].

In this work a new method to classify information, using the kNN algorithm, on a compressed
dataset is proposed. The method proposes to compress observations into packets of a certain number
of bits, in each packet a certain number of attributes are stored (compressed) through operations at the
bit level. This avoids having to reduce the size of the dataset [9,10] to avoid the memory problem.

An interesting feature of the proposed method is that the information can be decompressed,
observation by observation in real time (on-the-fly), without the need to decompress all the dataset
and carry out it into the memory.

As an application of the compression mechanism, this work proposed the implementation of the
kNN algorithm that works with compressed data, we call this method “Compressed kNN algorithm”.

The rest of this document is organized as follows: Section 2 shows a brief introduction to data
classification techniques focusing on the kNN algorithm, in Section 3 the datasets used in this work are
described, in Section 4 a variation of the algorithm for working with compressed data is presented,
in Section 5 some results obtained with the execution of the proposed algorithm are presented,
and finally, Section 6 shows some conclusions and future work.

2. Background

This section describes, in general, the process of data classification focusing on the kNN method
(the algorithm is also presented). In addition, some compression/encoding techniques are described,
as well as the metrics used for categorical, numerical or mixed information.

2.1. KNN

The kNN algorithm belongs to the family of methods known as instance based methods.
These methods are based on the principle that observations (instances) within a dataset are usually
placed close to other observations that have similar attributes [11].

Given an observation from which you want to predict the class to which it belongs, this method
selects the closest observations from the dataset in such a way to minimize the distance [12]. There are
two types of kNN algorithms [10]:

• Structure less NN
• Structure based NN

Algorithm 1 defines the basic scheme of the kNN classification method (structure less NN) on a
dataset with m observations.

There are variations of this algorithm in order to reduce the input dataset size [13]. For example
we can cite stochastic neighbor compression (SNN) [14] that tries to compress the input dataset in
order to obtain a sample of the data, or ProtoNN—compressed and accurate kNN for resource-scarce
devices [15] that generates a subset of small number of prototypes to represent the input dataset.

Entropy 2019, 21, 234 3 of 20

Algorithm 1: The k-nearest neighbors (KNN) algorithm.

Data: D = {(xi, ci) , f or i = 1 to m}, where xi = (vi
1, vi

2, ..., vi
n) is an observation that belongs to

class ci
Data: x = (v1, v2, ..., vn) data to be classified
Result: class to which x belongs

distances← ∅;

for yi in D do
di ← d(yi, x);
distances← distances ∪ {di};

end
Sort distances = {di , f or i = 1 to m} in ascending order;
Get the first K cases closer to x, DK

x ;
class←most frequent class in DK

x

From the algorithm definition, it is necessary to define the concept of distance between observations.

2.1.1. Categorical Data

In data mining there are several types of data, including numerical, categorical, text, images,
audio, etc. Current methods that work with this type of information generally convert these types of
data into numerical or categorical data [16].

Categorical or nominal data (also known as qualitative variables) have been the subject of studies
in several contexts [17]. Data mining from categorical data is an important research topic in which
several methods have been developed to work with this type of information such as decision trees,
rough sets and others [16].

2.1.2. Metrics

The similarity or distance between two objects (observations in our case) plays an important role
in many tasks of classification or grouping of data [18].

In this study, the concept of similarity between two observations composed of categorical variables
is considered.

The recommended distance function is the heterogeneous euclidean-overlap metric (HEOM) [19]
which is defined as [20]:

d(X, Y) =

√
n

∑
i=1

di(xi, yi), (1)

where di(xi, xi) is the distance between two observations in the i-th attribute.
In case that the i-th attribute has categorical values, it is recommended to use the Hamming

distance [21], which is defined as:

d0(xi, yi) =


1 i f xi = yi

0 i f xi 6= yi

. (2)

In case that the i-th attribute has numerical values, it is recommended to use the range normalized
difference distance, which is defined as:

dN(xi, yi) =
|xi − yi|

max({xi})−min({xi})
. (3)

Entropy 2019, 21, 234 4 of 20

The above allows working with hybrid datasets, i.e., datasets composed of categorical and
numerical variables.

In case the dataset only contains categorical variables, the Hamming distance is applied
(see Equation (2)). If the dataset only contains numerical variables, it is possible to apply traditional
distances such as Euclidean, Manhattan or Minkowski [21].

2.2. Data Compression

In database theory, a record R is a set of attributes (f1, f2, .., fn). An instance r, is a set of values
associated with each attribute fi, this is (v1, v2, ..., vn) (values for each attribute). Each attribute fi has
an associated Di set of possible values called the domain. Table 1 describes the above.

The main objective of this work is the classification of categorical data. Categorical data are stored
in one-dimensional vectors (by rows or by columns) or in matrices depending on the information type.

Table 1. Dataset representation.

Observation f1 f2 f3 ... fn

1 v1
1 v1

2 v1
3 ... v1

n
2 v2

1 v2
2 v2

3 ... v2
n

3 v3
1 v3

2 v3
3 ... v3

n
...

m− 1 vm−1
1 vm−1

2 vm−1
3 ... vm−1

n
m vm

1 vm
2 vm

3 ... vm
n

From now on we will name Vi to the set of values of the attribute fi, that is:

Vi =



v1
i

v2
i

v3
i
.
.
.

vm−1
i
vm

i


We will name Rj to the set of values of the j-th observation, this is:

Rj = (vj
1, vj

2, ..., vj
n).

Among the methods of compression/encoding of categorical data we can find [22]:

• Run-length encoding
• Offset-list encoding
• GNU ZIP (GZIP)
• Bit level compression

Each of these methods has advantages and disadvantages. In this work, the last option bit level
compression is used, applied to the compression of observations Rj.

2.3. Bit Level Compression

In this section we review the mechanism for compressing categorical data, the compression
method corresponds to a variation of the bit level compression used by the REDATAM software
(http://www.redatam.org). This method doesn’t use all available bits because the block size may not

http://www.redatam.org

Entropy 2019, 21, 234 5 of 20

be a multiple of the number of bits needed to represent the categories. Each data block stores one or
more values depending of the maximum size in bits required to store the values [23].

Categorical data is represented as signed integer values of 32, 16 or 8 bits (4, 2, 1 bytes).
This implies that to store a numerical value it is necessary to use 32 bits (or its equivalent in 2
or 1 byte). As an example, we will consider the case in which the information is represented as a set of
four-bytes integer values (some frameworks use this representation [24]).

Figure 1 represents the bit distribution of a integer value composed of 4 bytes.

Figure 1. Representation of an integer value—4 bytes [22].

Figure 2 shows a set of four values {3, 4, 1, 8}, the gray area corresponds to space that is not used.
Out of a total of 4× 32 = 128 bits, only 16 are used, which represents 12.5% of the total storage used.
We can make a similar representation using different block sizes.

Figure 2. Example representation of four values [22].

The bit level compression can be implemented using 64, 32, 16 or 8 bits per block, these sizes
correspond to the computer internal representation of integer values. Figure 2 shows the storage using
32 bits per block, the gray areas (unused bits of Figure 2) are used to store additional values. In one
32-bit block, we can store the four values {3, 4, 1, 8} reducing the memory consumption to 12.4% of the
original size. Figure 3 shows one 32-bit block that store all the four values.

Figure 3. Compressed representation of four values.

Table 2 shows the number of bits used to represent a group of categorical values. First column
shows the number of categories to represent (two, between three and four, between five and eight, etc.),
the second column shows the number of bits needed to represent the categories mentioned, the third
and fifth columns show the total number of elements that can be stored within 32 or 64 bits per block
and, finally, the fourth and sixth columns show the number of bits that we lose using 32 or 64 bits
per block.

The compression implemented use a fixed number of bits for all the data in order to reduce the
number of operations, this may cause that a group ob bits may be lost (in the case that the number of
bits is not a divisor of 64, 32, 16 or eight).

For example, if we need to compress eight categories using a 64-bit block, we lose 64− 3× 21 = 1
bit in each block. So, in order to get a better compression ratio and avoid as much as possible the lost
bits, we should choose the biggest block size.

Entropy 2019, 21, 234 6 of 20

Table 2. Amount of elements to represent.

Total Categories Total Bits Total Elements (32-Bits) Lost Bits Total Elements (64 Bits) Lost Bits

2 1 32 0 64 0
3–4 2 16 0 32 0
5–8 3 10 2 21 1
9–16 4 8 0 16 0

17–32 5 6 2 12 4
33–64 6 5 2 10 4

65–128 7 4 4 9 1
129–256 8 4 0 8 0
257–512 9 3 5 7 1

3. Datasets

This section describes the datasets used in this work as well as some of their characteristics.
Datasets are generally stored as flat files. Rows represent objects (also called records, observations,

points) and columns represent attributes (features) [25]. Two test datasets were used in the
experiments:

• Census income data set (CIDS), which represents a mixed dataset containing both categorical
and numeric variables.

• Wisconsin breast cancer (original) (WBC-original) which represents a dataset containing only
categorical variables.

Table 3 shows a brief description of the two datasets.

Table 3. Datasets description.

Dataset No. Attributes No. Observations No. Classes

Census Income Data Set 15 32,561 2
Wisconsin Breast Cancer (original) 11 699 2

Dataset selection was made to show how the algorithm works with a dataset containing only
categorical variables and with a mixed dataset (categorical and numeric variables).

Each of the datasets used is described below.

3.1. Census Income Data Set

The Census Income Data Set (https://archive.ics.uci.edu/ml/datasets/census+income) is used
to test classification algorithms. The purpose is to predict whether a person earns more than $50,000
a year.

Table 4 describes the type and range of each variable.
The dataset contains 32,561 observations of which 2399 observations contain missing values (NA).

In order to simplify the process, all observations containing at least one NA value were deleted, so that
the resulting dataset contains 30,162 observations.

As can be seen in the table above, there are variables that are originally considered continuous.
However, they can be treated as categorical because they take integer values within a small range.
These variables are considered categorical in the tests performed.

https://archive.ics.uci.edu/ml/datasets/census+income

Entropy 2019, 21, 234 7 of 20

Table 4. Census income data set.

No. Attribute Original Type Range Type Used

1 age continuous 17–90 categorical
2 workclassge categorical 1–8 categorical
3 final weight (fnlwgt) continuous 12,285–1,484,705 numeric
4 education categorical 1–16 categorical
5 education-num continuous 1–16 categorical
6 marital-status categorical 1–7 categorical
7 occupation categorical 1–14 categorical
8 relationship categorical 1–6 categorical
9 race categorical 1–5 categorical

10 sex categorical 1–2 categorical
11 capital-gain continuous 0–99,999 numeric
12 capital-loss continuous 0–4356 numeric
13 hours-per-week continuous 1–99 categorical
14 native-country continuous 1–41 categorical
15 class categorical 1–2 categorical

3.2. Wisconsin Breast Cancer (Original)

The Wisconsin breast cancer (original) (https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)) dataset is used to test classification algorithms. The purpose is to predict
malignant (carcinogenic) observations of benign (non-cancerous) observations [26].

Table 5 describes the type and range of each variable.

Table 5. Wisconsin breast cancer (original).

No. Attribute Type Range

1 Sample code number id
2 Clump Thickness categorical 1–10
3 Uniformity of Cell Size categorical 1–10
4 Uniformity of Cell Shape categorical 1–10
5 Marginal Adhesion categorical 1–10
6 Single Epithelial Cell Size categorical 1–10
7 Bare Nuclei categorical 1–10
8 Bland Chromatin categorical 1–10
9 Normal Nucleoli categorical 1–10
10 Mitoses categorical 1–10
11 Class categorical 2 = benign, 4 = malignant

The dataset contains 699 observations of which 16 observations contain missing values (NA).
In order to simplify the process, all observations containing at least one NA value were deleted, so that
the resulting dataset contains 683 observations.

As seen in Table 5, the sample code number variable corresponds to the identifier of the
observation so it can be discarded. The rest of the attributes are all categorical in the range of one to 10,
with the exception of the class variable that has two possible values; 2 or 4.

4. Compressed kNN

This section proposes a variation of the kNN algorithm to work with compressed categorical
data. The proposed compression method uses a variation of the method described in [22] for which
it is proposed to compress each observation Rj with a bit schema. Similar to the scheme used by the
REDATAM 7 V3 software [23], each block stores the values corresponding to vj

1, vj
2, ..., vj

n.
To apply the proposed scheme, it is necessary to determine the maximum number of bits to

represent all possible bits of each observation. This imposes that, prior to the process, the maximum

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

Entropy 2019, 21, 234 8 of 20

number of bits needed to represent each attribute (fi) is determined to finally define the maximum of
these values.

If we define Ni as the number of bits necessary to represent the attribute (variable) fi, the number
of bits necessary to represent an observation would be given by:

N = n ∗M, where M = max {Ni; i = 1, 2, ..., n}. (4)

Also note that we use the same Ni value, defined as Ni = M, for all variables in order to avoid
additional operations in the decompression/decoding phase.

The proposed method uses bit-wise operations (AND, OR, etc.) which are an important part of
modern programming languages. These operations are widely used because they allow arithmetic
operations to be replaced by more efficient operations [27].

Figure 4 describes the phases of the proposed method that can be summarized as:

1. Preprocess: In this phase, starting from the original dataset, the possible categorical and numerical
variables are determined, as well as the ranges of each categorical variable.

2. Feature compression: In this phase, the compression algorithm is applied to the original dataset.
3. kNN Classification: In this phase the classification is applied on the compressed dataset.

Figure 4. Proposed compression and classification schema.

4.1. Preprocess

This phase determines the number of bits needed to represent each categorical variable and then
determine the value of N given by Equation (4). Let’s take the WBC dataset as an example, in a first
step the sample code number (v1, see Table 5) variable was eliminated.

Records containing missing values were then deleted, resulting in a dataset of 683 observations.
Two datasets were generated, one for training (80% of the data) and one for testing (20% of the data).
These two datasets constitute the input data for compression and then for classification (see Table 6).

Table 6. Wisconsin breast cancer (WBC) input dataset.

v2 v3 v4 v5 v6 v7 v8 v9 v10

.

.

.

.

Entropy 2019, 21, 234 9 of 20

The minimum amount of bits used to represent a range of categories (Ni) and the elements per
block (NV) can be obtained using:

Ni =
⌈ ln(xk)

ln(2)

⌉
, NV =

⌊BlockSize
M

⌋
, (5)

where BlockSize represents the size of the block and can be eight, 16, 32 or 64, d·e represents the
smallest integer greater than or equal to its argument and is defined by dxe = min{p ∈ Z|p > x}
and b·c represents the biggest integer smaller than or equal to its argument and is defined by
bxc = max{p ∈ Z|p 6 x} [22].

In the rest of this document, as an example, we use a block size equal to 32, that is BlockSize = 32.
All variables have a range from one to 10 (10 categories), so the number of bits needed for

compression corresponds to Ni = 4 (4 bits) and the number of elements per block corresponds to
NV = 32/4 = 8 (with a 32-bit block), which in this case indicates that eight values can be stored in a
block, which corresponds to the values of variables two through nine, the remaining variable (variable
number 10) must be stored in an additional block.

A similar process was made with the census income data set. All categorical variables have a
range from one to 128, so the number of bits needed for compression correspond to N = 7 (7 bits).
After the elimination of the NA values, the final dataset has 30,162 observations. The final dataset was
split in two; 80% for training and 20% for testing.

4.2. Feature Compression

In this phase we proceed to compress each observation using a total number of bits equal to
M (see Equation (4)), with this, in 32 bits block it is possible to store the values of 32/M variables
(attributes). The process start with the original dataset to generate a compressed/encoded dataset
(see Figure 5).

Figure 5. Proposed compression and classification schema.

If n is the total number of attributes (see Table 1), the number of blocks needed to represent all the
attributes corresponds to [22]:

total =
⌈

n ∗M/BlockSize
⌉

. (6)

If we use a BlockSize equals to 32, Equation (7) can be written as:

total =
⌈

n ∗M/32
⌉

. (7)

In the case of the WBC dataset, total =
⌈

9 ∗ 4/32
⌉
= 2. This means that the original dataset can

be represented by two one-dimensional vectors, the first containing the information of eight variables
and the second containing the information of the remaining variable.

The blocks w1 and w2 are defined in such a way that w1 contains the compressed/encoded
information of the variables {v2, v3, v4, v5, v6, v7, v8, v9} and w2 contains the compressed/encoded
information of the variables {v10}. The new generated dataset is called WBC encoded dataset
(see Table 7).

Entropy 2019, 21, 234 10 of 20

Table 7. WBC encoded dataset.

w1 w2

. .

. .

. .

. .

In the case of the CID dataset, total =
⌈
(14− 3) ∗ 7/32

⌉
= 3. This means that the original dataset

can be represented by six one-dimensional vectors, the first three contains the information of the
variables {v1, v2, v4, v5, v6, v7, v8, v9, v10, v13, v14} and the rest of the vectors (the last three) contains the
information of the remaining uncompressed variables {v3, v11, v12}.

The blocks w1, w2 and w3 are defined in such a way that w1 contains the compressed/encoded
information of the variables {v1, v2, v4, v5}, w2 contains the compressed/encoded information of
the variables {v6, v7, v8, v9} and w3 contains the compressed/encoded information of the variables
{v10, v13, v14}. The new generated dataset is called CID encoded dataset (see Table 8).

Table 8. Census income dataset (CID) encoded dataset.

w1 w2 w3 v3 v11 v12

.

.

.

.

In [22] the compression algorithm was applied to the columns of the dataset, in this work we
apply the algorithm to the rows (observations) of the dataset. Figure 6 describes the compression of
w1 in the WBC dataset.

Figure 6. Compression schema.

4.3. kNN Classification

The classification process uses the compressed dataset obtained by applying the compression
of the data over the original dataset as the input dataset. Figure 7 shows the implemented
classification process.

Figure 7. The k-nearest neighbours (kNN) classification.

Entropy 2019, 21, 234 11 of 20

The process uses custom metrics to work with the compressed data, and in this case the HEOM
and Hamming metric are used. At the classification stage, it is necessary to decompress the information
and calculate the distances between observations.

The distance calculation uses the algorithm described in [28] for the calculation of the L2 norm
modified to decompress two vectors at a time (the observations from which the distance is calculated).

Because the execution of the kNN algorithm compares an observation with all other observations,
a local cache is used to avoid repeated decompression of the first vector (vec1). Algorithms 2 and 3
describes the calculation of Euclidean and Hamming distances with on-the-fly decompression.

Algorithm 2: Euclidean compressed_distance: distance between two compressed vectors.
Data: vec1, vec2
Result: dist

/* decompress vectors */
if vec1 not cached then

x ← decompress(vec1);
cache x;

end

y← decompress(vec2);

sum← 0;
for i← 0 to size− 1 do

sum← sum + (xi − yi)
2;

end
dist←

√
sum

Algorithm 3: Hamming compressed_distance: distance between two compressed vectors.
Data: vec1, vec2
Result: dist

/* decompress vectors */
if vec1 not cached then

x ← decompress(vec1);
cache x;

end

y← decompress(vec2);

sum← 0;
for i← 0 to size− 1 do

if xi 6= yi then
sum← sum + 1;

end
end
dist← sum

Algorithm 4 describes the calculation of Hamming distances without decompression using
bit-wise operations.

Entropy 2019, 21, 234 12 of 20

Algorithm 4: Hamming compressed_distance without decompression: distance between two
compressed vectors.

Data: vec1, vec2, numBits
Result: dist

elementsPerBlock← BlockSize/numBits;

sum← 0;

for i← 0 to size− 1 do
z← xi ⊕ yi;
mask← seq(1, numBits);

for j← 1 to elementsPerBlock do
if (z & mask) 6= 0 then

sum← sum + 1;
end
mask� numBits;

end
end
dist← sum

Similarly, it is possible to define algorithms to calculate other metrics.
After defining the metric we proceed to define the kNN algorithm on compressed data.

Algorithm 5 describes the Compressed-kNN algorithm.

Algorithm 5: Compressed kNN.

Data: D = {(xi, ci) , f or i = 1 to m}, where xi = (vi
1, vi

2, ..., vi
n) is an observation that belongs to

class ci
Data: x = (v1, v2, ..., vn) data to be classified
Result: class to which x belongs

/* compress original data */
Dcompressed ← compress_vectors{x1, x2, ..., xn};
distances← ∅;

for yi in Dcompressed do
di ← compressed_distance(yi, x);
distances← distances ∪ {di};

end
Sort distances = {di , f or i = 1 to m} in ascending order;
Get the first K cases closer to x, DK

x ;
class←most frequent class in DK

x

The first step is to compress the original dataset, then iterate over the compressed dataset and
calculate the distances between the observation to be classified and the dataset elements. Finally,
the set of distances di is ordered in ascending order and the most repeated class of the K-first elements
is selected.

The algorithm can be generalized to work with other kNN implementations, the paper presents
results obtained from two variations of the algorithm:

• Linear search: brute force linear nearest neighbor search.
• Cover search: a tree data structure for fast nearest neighbor operations in general n- point metric

spaces [29].

Entropy 2019, 21, 234 13 of 20

In both cases, we use the distance described in Section 2.1.2.
As we can see, the principal advantage of the proposed algorithm is the reduction of the dataset

size. The result of the compression phase is a dataset that can be fully loaded into memory thus
reducing the memory limitations described in Section 1 without sampling or dimension reduction.
If we combine compression with sampling or dimension reduction, we can obtain a better algorithm
than the described in Algorithm 5 (this is proposed as a future work in Section 6).

Limitations

There are some limitations related to distance calculation. Prior to calculating the distance,
the entire observation must be decompressed. If we use a dataset only with categorical variables,
we can use Algorithm 4 in order to calculate the Hamming distance without decompression.

If we try to classify a group of data (test dataset), for each test observation, we need to decompress
the train observations, so if we have a t observations in test dataset, we need to decompress t—times
each train observation. If the test dataset is also compressed, to avoid the limitation showed above,
Algorithms 2 and 3 use a local cache to store the uncompressed test observation. We can extend the
cache idea to the training dataset and use a small local-cache of uncompressed training data.

Another limitation is related with the range that categorical variables may have. If the range is
big, we can only compress a few values inside of a block, so the calculations needed to decompress
may lift up the processing time.

5. Experimental Results

This section presents some results obtained by applying the kNN algorithm on the original and on
the compressed dataset. Similarly, the tests were performed using two metrics: Hamming and HEOM
(for uncompressed and compressed values).

All tests were performed using the statistical machine intelligence and learning engine (SMILE)
framework (https://haifengl.github.io/smile/) modified to work with compressed data according to
the algorithm described in Section 2.3. See the source code in the Supplementary. The algorithm used
corresponds to kNN with a value of k between five to 20 (k = 5, 10, 15, 20), which by default uses an
Euclidean metric EuclideanDistance that operates with real (double) numbers.

The WBC dataset was compressed using a number of bits equal to four (see Equation (4)). The CID
dataset was compressed with a mixed schema using a number of bits equal to seven (see Equation (4)).

Table 9 shows the execution times of the classification and cross validation (k- f old = 10) for
different values of k with linear search. In the case of WBC dataset, the Hamming metric is used.

Table 9. WBC—processing speed (linear search).

Compressed Dataset Uncompressed Dataset

k Time (ms) Accuracy (%) Time (ms) Accuracy (%)

5 30 95.404 18 95.386
10 40 94.669 19 94.301
15 42 94.118 19 94.136
20 50 93.934 18 93.548

As can be seen, the accuracy of the classification is the same in both cases (uncompressed dataset
and compressed dataset) as expected. The classification time is slightly shorter when working with the
compressed dataset (see Table 9).

Table 10 shows the execution times of the classification and cross validation (k- f old = 10) for
different values of k with linear search. In the case of CID dataset, the HEOM metric is used.

As can be seen, the accuracy of the classification is the same in both cases (uncompressed dataset
and compressed dataset). The classification time is slightly shorter when working with the compressed
dataset (see Table 10).

https://haifengl.github.io/smile/

Entropy 2019, 21, 234 14 of 20

Table 10. CID—processing speed (linear search).

Compressed Dataset Uncompressed Dataset

k Time (ms) Accuracy (%) Time (ms) Accuracy (%)

5 36.42 81.712 26.93 81.712
10 40.92 82.528 29.37 82.528
15 39.12 82.902 27.49 82.902
20 40.26 82.955 27.16 82.955

5.1. Test Platform

The platform on which the tests were carried out corresponds to:

• Processor: Intel(R) Core(TM) i5-5200 CPU
• Processor speed: 2.20 GHz
• RAM Memory: 16.0 GB
• Operating System: Windows 10 Pro 64 bits
• Compiler: JDK 1.8.0.144 64-Bit Server VM
• Machine Learning Framework: SMILE 1.5.2

5.2. Memory Consumption

The memory consumption represents the amount of memory required to represent the complete
dataset. Table 11 shows a summary of the datasets used in the experiments carried on.

Table 11. Dataset summary

Datset Obervations Attributes Bits for Compression

WBC 683 9 4
CID 30,162 14 7

Table 12 shows the amount of memory used to represent both datasets (WBC and CID) using
a traditional vector representation using int, short and byte as element type. Column % Memory is
calculated using the int representation as 100%. Due to final weight variable has values between 12, 285
and 1, 484, 705 (see Table 4), CID datasets only are represented as a vector of integer values.

Table 12. Dataset representation with different vector types.

Vector Type
WBC CID

Memory (bytes) % Memory Memory (bytes) % Memory

int 24,588 100.0 1,689,072 100.0
short 12,294 50.0 - -
byte 6147 25.0 - -

Table 13 shows the amount of memory used to represent WBC dataset using different block sizes.
Column % Memory is calculated using the int vector size as 100% (see Table 12).

Table 13. WBC dataset compression with different block size.

Block Size (bits) Total Blocks Memory (bytes) % Memory

64 1 5464 22.2
32 2 5464 22.2
16 3 4098 16.7
8 5 3415 13.9

Entropy 2019, 21, 234 15 of 20

Table 14 shows the amount of memory used to represent CID dataset using different block sizes.
Column % Memory is calculated using the int vector size as 100% (see Table 12). Due to final weight
variable has values between 12, 285 and 1, 484, 705 (see Table 4), CID datasets only are compressed
with 32 and 64 bits.

Table 14. CID dataset compression with different block size.

Block Size (bits) Total Blocks Memory (bytes) % Memory

64 5 1,206,480 71.4
32 6 723,888 42.9

The WBC dataset contains nine valid variables and 683 observations. Since four bits are used for
compression, this means that a 32-bit block compresses four attributes, so two 32-bit blocks are needed
to represent the 9 categorical attributes.

With this data, the memory size to represent the complete dataset corresponds to the product of
the total number of elements of the dataset by the number of attributes by the size of the representation
of an integer value (sizeof(int)):

Num bytes = 683 ∗ 9 ∗ 4 = 24, 588 bytes (f or WBC dataset) (8)

While the value of the representation in the compressed format corresponds to the product
of the total number of elements of the compressed dataset by the number of attributes (blocks,
see Equation (6)) resulting from the compression by the size of the representation of an integer
value (sizeof(int)):

Num bytes = 683 ∗ 2 ∗ 4 = 5464 bytes (f or WBC dataset) (9)

Taking as 100% the value of the uncompressed representation (Equation (8)), Figures 8 and 9
show the memory consumption for the datasets using different vector representations and block sizes
(for compression).

13.9%Compressed (8 bits)

16.7%Compressed (16 bits)

22.2%Compressed (32 bits)

22.2%Compressed (64 bits)

25%Byte vector

50%Short vector
100%Integer vector

0% 25% 50% 75% 100%

Figure 8. Wisconsin breast cancer (WBC)—dataset size by memory consumption.

42.9%Compressed (32 bits)

71.4%Compressed (64 bits)

100%Integer vector

0% 25% 50% 75% 100%

Figure 9. Census income dataset (CID)—dataset size by memory consumption.

Entropy 2019, 21, 234 16 of 20

As can be seen, the memory consumption for WBC dataset is slower using any compressed
representation (8, 16, 32 or 64 bits). The best compression ratio can be obtained using a 8-bit block size,
this represent the 13.9% of the integer vector representation and a 55.6% of the byte vector representation.

In the case of CID dataset, the compressed representation is slower than the traditional
representation. Using 32-bit block, the compressed format represents the 42.9% of the
vector representation.

Tables 15 and 16, and Figure 10 show the compression of a real world census data taken from
Base de Datos-Censo de Población y Vivienda 2010 (http://www.ecuadorencifras.gob.ec/base-de-
datos-censo-de-poblacion-y-vivienda-2010/). The dataset is a subset of the original census used for
imputation of missing data [30].

Table 15. Base de Datos-Censo de Población y Vivienda 2010.

Observations Attributes Bits for Compression Memory (GBytes) (Integer Vector)

14,483,499 21 6 1.2166

Table 16. Censo de Población y Vivienda 2010—compression with different block size.

Block Size (bits) Total Blocks Memory (GBytes) % Memory

64 3 0.3476 28.6
32 5 0.2897 23.8
16 11 0.3186 26.2
8 21 0.3042 25.0

25.0%Compressed (8 bits)

26.2%Compressed (16 bits)

23.8%Compressed (32 bits)

28.6%Compressed (64 bits)

25%Byte vector

50%Short vector
100%Integer vector

0% 25% 50% 75% 100%

Figure 10. Base de Datos-Censo de Población y Vivienda 2010—Dataset size by memory consumption.

The compressed representation uses 6 bits to represent the data, so we can compress/encoded
5 values in each 32-bit block, this lead to have a new dataset (compressed) with 5 columns instead of
21 (the original).

As can be seen, the total memory used to represent the original dataset is 1.2166 GBytes (using a
vector that contains integer values) and the compressed representation is equivalent to 32.81% of the
original dataset. The compression using 32-bit block is slower than any vector representation.

5.3. Accuracy

Figures 11 and 12 show the accuracy comparison for the classification using the following metrics:

• Euclidean metric, observations with integer values.
• HEOM metric, observations with integer values (see Section 2.1.2).

http://www.ecuadorencifras.gob.ec/base-de-datos-censo-de-poblacion-y-vivienda-2010/
http://www.ecuadorencifras.gob.ec/base-de-datos-censo-de-poblacion-y-vivienda-2010/

Entropy 2019, 21, 234 17 of 20

In all cases the version of the compressed datasets was used with a k = 5. In the case of the WBC
dataset, the HEOM metric corresponds to the Hamming metric since all variables are categorical.

97.842%Euclidean int values
97.842%Hamming int values

0% 25% 50% 75% 100%

Figure 11. WBC—precision by metric.

76.777%Euclidean int values
81.249%HEOM int values

0% 25% 50% 75% 100%

Figure 12. Census income dataset—precision by metric.

As can be seen in the figure, the HEOM metric provides a better result. The result for execution
with compression is the same for execution without compression since the same metric is used,
what varies is the processing speed.

5.4. Processing Speed

Figures 13 and 14 show the comparison in the cross-validation speed. The kNN algorithm
was executed with both uncompressed and compressed datasets (using a 32-bit block) a value of
k- f old = 10 and k = 5.

20 msecWithout compression
30 msecWith compression

0 msec 10 msec 20 msec 30 msec

Figure 13. WBC—Time for cross-validation k- f old = 10.

26.93 secWithout compression
36.42 secWith compression

0 sec 10 sec 20 sec 30 sec

Figure 14. CID—Time for cross-validation k- f old = 10.

As can be seen in the figures, the use of compression show an increase in the processing time.

5.5. kNN Variations

This section presents some results obtained by applying the kNN algorithm on the compressed
dataset with a Cover Tree search algorithm.

Table 17 shows the execution times of the classification for different values of k using a linear
search and a cover tree search. In the case of WBC dataset, the Hamming metric was used.

Entropy 2019, 21, 234 18 of 20

Table 17. WBC—Processing speed.

Classification Linear Search Classification Cover Tree Search

k Time (ms) Accuracy (%) Time (ms) Accuracy (%)

5 30 95.404 120 95.315
10 40 94.669 150 94.143
15 42 94.118 175 93.997
20 50 93.937 180 93.119

Table 18 shows the execution times of the classification for different values of k using a linear
search and a cover tree search. In the case of CID dataset, the HEOM metric was used.

Table 18. CID—Processing speed.

Classification Linear Search Classification Cover Tree Search

k Time (ms) Accuracy (%) Time (ms) Accuracy (%)

5 36.42 81.712 40.81 81.500
10 40.92 82.528 44.20 82.541
15 39.12 82.902 50.36 82.717
20 40.26 82.955 51.97 82.823

6. Conclusions

In this paper we reviewed one of the most widely used classification algorithms, the kNN.
Along with some traditional methods of compression/encoding of categorical data a model called
“compressed kNN” was proposed to work directly on compressed categorical data. After performing
some tests on known datasets (WBC and CID) we can conclude that the proposed method considerably
reduces the amount of memory used by the kNN algorithm and in turn maintains the same percentage
of error classification made with the original method.

The inclusion of the compression stage prior to the execution of the algorithm guarantees a
decrease in the percentage of memory needed to represent the whole dataset (see Figures 8 and 9).
The inclusion of the distance calculation for compressed categorical data (see Algorithm 2) slightly
increases the classification time because it is necessary to decompress the observations prior to the
distance calculation to determine the nearest neighbors. This paper also provides an algorithm for
Hamming Distance without decompression.

Future works include (1) the implementation of variations of the kNN algorithm of the type
structure less NN and structure based NN, (2) extending the concepts of compression to cluster
algorithms, (3) the implementation of hybrid algorithms that uses sampling with compression, and (4)
reordering attributes before compression.

Supplementary Materials: The source code is available online at https://github.com/jsalvador2k14/knn.

Author Contributions: Conceptualization and first draft, J.S.–M.; Resources and data curation, Z.R.–C. and J.G.–R.
supervisor of my PhD thesis defined the structure and methodology of the work, reviewed the work and gave
helpful improvement suggestions.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank to Universidad Central del Ecuador and its initiative called
Programa de Doctorado en Informática for the support during the writing of this paper. This work has been
supported with Universidad Central del Ecuador funds.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/jsalvador2k14/knn

Entropy 2019, 21, 234 19 of 20

Abbreviations

The following abbreviations are used in this manuscript:

CID Census income dataset
CIDS Census income data set
GZIP GNU ZIP
KNN, kNN K-nearest neighbors
HEOM Heterogeneous euclidean-overlap metric
ML Machine learning
NA Not applicable
NN Nearest neighbors
RAM Random access memory
SMILE Statistical machine intelligence and learning engine
WBC-original Wisconsin breast cancer (original)

References

1. Grama, A.; Ramakrishnan, N. Compression, Clustering and Pattern Discovery in Very High Dimensional
Discrete-Attribute Datasets. Techniques 2005, 17, 447–461.

2. Ahmadi, Z.; Kramer, S. A Label Compression Method for Online Multi-Label Classification.
Pattern Recognit. Lett. 2018, 111, 64–71. [CrossRef]

3. Rai, P.; Singh, S. A Survey of Clustering Techniques. Int. J. Comput. Appl. 2010, 7, 1–5. [CrossRef]
4. Bruni, R. Discrete models for data imputation. Discret. Appl. Math. 2004, 144, 59–69. [CrossRef]
5. Duan, Z.; Wang, L. K-dependence Bayesian classifier ensemble. Entropy 2017, 19, 651. [CrossRef]
6. Jiménez, F.; Martínez, C.; Miralles-Pechuán, L.; Sánchez, G.; Sciavicco, G. Multi-Objective Evolutionary

Rule-Based Classification with Categorical Data. Entropy 2018, 20, 684. [CrossRef]
7. Hand, D.J. Principles of Data Mining. Drug Saf. 2007, 30, 621–622. [CrossRef] [PubMed]
8. Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. In On the Move

to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE; Springer: Berlin/Heidelberg, Germany,
2003; pp. 986–996.

9. Ouyang, J.; Luo, H.; Wang, Z.; Tian, J.; Liu, C.; Sheng, K. FPGA implementation of GZIP compression
and decompression for IDC services. In Proceedings of the 2010 International Conference on
Field-Programmable Technology, FPT’10, Beijing, China, 8–10 December 2010; pp. 265–268.

10. Bhatia, N.; Author, C. Survey of Nearest Neighbor techniques. Int. J. Comput. Sci. Inf. Sec. 2010, 8, 302–305.
11. García-Laencina, P.J.; Sancho-Gómez, J.L.; Figueiras-Vidal, A.R.; Verleysen, M. K nearest neighbours with

mutual information for simultaneous classification and missing data imputation. Neurocomputing 2009,
72, 1483–1493. [CrossRef]

12. Jerez, J.M.; Molina, I.; García-Laencina, P.J.; Alba, E.; Ribelles, N.; Martín, M.; Franco, L. Missing data
imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med.
2010, 50, 105–115. [CrossRef] [PubMed]

13. James, T.O.; Onwuka, G.I.; Babayemi, W.; Etuk, I.E.; Gulumbe, S.U. Comparison Classifier of Condensed
KNN and K-Nearest Neighborhood Error Rate Method. Comput. Sci. Technol. Int. J. 2012, 2, 44–46.

14. Kusner, M.J.; Tyree, S.; Weinberger, K.; Agrawal, K. Stochastic Neighbor Compression. J. Mach. Learn. Res.
2014, 32, 622–630.

15. Gupta, C.; Sai, A.; Ankit, S.; Harsha, G.; Simhadri, V. ProtoNN: Compressed and Accurate kNN for
Resource-scarce Devices. Icml2017 2017, 70, 1331–1340.

16. Qian, Y.; Li, F.; Liang, J.; Liu, B.; Dang, C. Space Structure and Clustering of Categorical Data. IEEE Trans.
Neural Netw. Learn. Syst. 2016, 27, 2047–2059. [CrossRef] [PubMed]

17. Boriah, S.; Chandola, V.; Kumar, V. Similarity Measures for Categorical Data: A Comparative
Evaluation. In Proceedings of the 2008 SIAM International Conference on Data Mining, Atlanta, GA, USA,
24–26 Apri 2008; pp. 243–254.

18. Alamuri, M.; Surampudi, B.R.; Negi, A. A survey of distance/similarity measures for categorical data.
In Proceedings of the International Joint Conference on Neural Networks, BeiJing, China, 6–11 July 2014;
pp. 1907–1914.

http://dx.doi.org/10.1016/j.patrec.2018.04.015
http://dx.doi.org/10.5120/1326-1808
http://dx.doi.org/10.1016/j.dam.2004.04.004
http://dx.doi.org/10.3390/e19120651
http://dx.doi.org/10.3390/e20090684
http://dx.doi.org/10.2165/00002018-200730070-00010
http://www.ncbi.nlm.nih.gov/pubmed/17604416
http://dx.doi.org/10.1016/j.neucom.2008.11.026
http://dx.doi.org/10.1016/j.artmed.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20638252
http://dx.doi.org/10.1109/TNNLS.2015.2451151
http://www.ncbi.nlm.nih.gov/pubmed/26441455

Entropy 2019, 21, 234 20 of 20

19. Batista, G.E.A.P.A.; Monard, M.C. An analysis of four missing data treatment methods for supervised
learning. Appl. Artif. Intell. 2003, 17, 519–533. [CrossRef]

20. García-Laencina, P.J.; Abreu, P.H.; Abreu, M.H.; Afonoso, N. Missing data imputation on the 5-year
survival prediction of breast cancer patients with unknown discrete values. Comput. Biol. Med. 2015,
59, 125–133. [CrossRef] [PubMed]

21. Nikam, V.B.; Meshram, B.B. Parallel KNN on GPU Architecture Using OpenCL. Int. J. Res. Eng. Technol.
2014, 3, 367–372.

22. Salvador-Meneses, J.; Ruiz-Chavez, Z.; Garcia-Rodriguez, J. Low Level Big Data Compression.
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management, Seville, Spain, 18–20 September 2018; Volume 1, pp. 353–358.

23. De Grande, P. El formato Redatam. Estud. Demogr. Urbanos 2016, 31, 811–832. [CrossRef]
24. Salvador-Meneses, J.; Ruiz-Chavez, Z.; Garcia-Rodriguez, J. Low Level Big Data Processing. In Proceedings

of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management, Seville, Spain, 18–20 September 2018; Volume 1, pp. 347–352.

25. Suarez-Alvarez, M.M.; Pham, D.T.; Prostov, M.Y.; Prostov, Y.I. Statistical approach to normalization of
feature vectors and clustering of mixed datasets. Proc. R. Soc. A 2012, 468, 2630–2651. [CrossRef]

26. Salama, G.I.; Abdelhalim, M.; Zeid, M.A. Breast Cancer Diagnosis on Three Different Datasets Using
Multi-Classifiers Gouda. Int. J. Comput. Inf. Technol. 2012, 1, 236–241.

27. Seshadri, V.; Hsieh, K.; Boroumand, A.; Lee, D.; Kozuch, M.A.; Mutlu, O.; Gibbons, P.B.; Mowry, T.C.
Fast Bulk Bitwise and and or in DRAM. IEEE Comput. Archit. Lett. 2015, 14, 127–131. [CrossRef]

28. Salvador-Meneses, J.; Ruiz-Chavez, Z.; Garcia-Rodriguez, J. Categorical Big Data Processing.
In Intelligent Data Engineering and Automated Learning—IDEAL 2018; Yin, H., Camacho, D., Novais, P.,
Tallón-Ballesteros, A.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 245–252.

29. Beygelzimer, A.; Kakade, S.; Langford, J. Cover trees for nearest neighbor. In Proceedings of the
23rd International Conference on Machine Learning—ICML ’06, Pittsburgh, PA, USA, 25–29 June 2006;
pp. 97–104.

30. Ruiz-Chavez, Z.; Salvador-Meneses, J.; Garcia-Rodriguez, J. Machine Learning Methods Based
Preprocessing to Improve Categorical Data Classification. In Intelligent Data Engineering and Automated
Learning—IDEAL 2018; Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A.J., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 297–304.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/713827181
http://dx.doi.org/10.1016/j.compbiomed.2015.02.006
http://www.ncbi.nlm.nih.gov/pubmed/25725446
http://dx.doi.org/10.24201/edu.v31i3.15
http://dx.doi.org/10.1098/rspa.2011.0704
http://dx.doi.org/10.1109/LCA.2015.2434872
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	KNN
	Categorical Data
	Metrics

	Data Compression
	Bit Level Compression

	Datasets
	Census Income Data Set
	Wisconsin Breast Cancer (Original)

	Compressed kNN
	Preprocess
	Feature Compression
	kNN Classification

	Experimental Results
	Test Platform
	Memory Consumption
	Accuracy
	Processing Speed
	kNN Variations

	Conclusions
	References

