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ABSTRACT
Genome-wide association studies in the fields of reproductive medicine and endocrinology are yielding
robust genetic variants associated with disease. Integrated genomic, transcriptomic, and epigenomic
molecular profiling studies are common methodologies used to understand the biologic pathways
perturbed by these variants. However, molecular profiling resources do not include the tissue most
relevant to many female reproductive traits, the endometrium, while the parameters influencing variability
of results from its molecular profiling are unclear. We investigated the sources of DNA methylation and
RNA expression profile variability in endometrium (n D 135), endometriotic disease tissue (endometriosis),
and subcutaneous abdominal fat samples from 24 women, quantifying between-individual, within-tissue
(cellular heterogeneity), and technical variation. DNA samples (n D 96) were analyzed using Illumina
HumanMethlylation450 BeadChip arrays; RNA samples (n D 39) were analyzed using H12-expression
arrays. Variance-component analyses showed that, for the top 10–50% variable DNA methylation/RNA
expression sites, between-individual variation far exceeded within-tissue and technical variation.
Menstrual-phase accounted for most variability in methylation/expression patterns in endometrium
(Pm D 7.8 £ 10¡3, Pe D 8.4 £ 10¡5) but not in fat and endometriotic tissue; age was significantly
associated with DNA methylation profile of endometrium (Pm D 9 £ 10¡5) and endometriotic disease
tissue (Pm D 2.4 £ 10¡5); and smoking was significantly associated with DNA methylation in adipose tissue
(Pm D 1.8 £ 10¡3). Hierarchical cluster analysis showed significantly different methylation signatures
between endometrium and endometriotic tissue enriched for WNT signaling, angiogenesis, cadherin
signaling, and gonadotropin-releasing-hormone-receptor pathways. Differential DNA methylation/
expression analyses suggested detection of a limited number of sites with large fold changes (FC > 4), but
power calculations accounting for different sources of variability showed that for robust detection >500
tissue samples are required. These results enable appropriate study design for large-scale expression and
methylation tissue-based profiling relevant to many reproductive and endocrine traits.
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Introduction

Genome-wide association studies (GWAS) are uncovering genetic
variants involved in the pathogenesis of female reproductive disor-
ders and traits.1,2 For instance, for endometriosis—a complex dis-
ease defined by the presence of endometriotic tissue outside the
uterus associated with pelvic pain and sub-fertility—3 recent large-
scale GWAS have identified 15 genetic loci robustly associated with
the disease.4–10 Subsequent analyses demonstrating effects of endo-
metriosis-associated variants on fat distribution (waist-to-hip ratio
adjusted for body mass index, WHRadjBMI) indicate that many of
these variants are likely also to impact the regulation of endocrine
and metabolic processes.11,12 Typically, GWAS variants are located

in inter-genic regions, and understanding their functional role
requires molecular profiling (e.g., gene-expression assays) of tissues
relevant to the conditions.13,14 Such integrated analysis of genomic,
transcriptomic, and epigenomic data form the premise of large-
scale tissue-based molecular profiling initiatives, such as GTEx,15,16

and the NIH Epigenome Roadmap.17 Endometrium is not
included in these genomic profiling initiatives, an omission that
prevents translation of genetic findings into results that could
inform biomarker and drug target discovery programs for many
common endometrium-related disorders, including endometriosis,
infertility and recurrent miscarriage, abnormal bleeding, and endo-
metrial cancer.
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Endometrium is a heterogeneous and dynamic tissue com-
posed mainly of glandular and luminal epithelial and stromal
cells that are under strong cyclic endocrine influences,18 posing
important questions regarding the possible variability of molecu-
lar profiling data generated. To date, 18 studies have investigated
genome-wide mRNA expression in endometrium (11 in women
with endometriosis), including samples from a range of 4 to 75
cases;19–36 only one recent study of 123 endometrium samples
from healthy women assessed genome-wide expression quantita-
tive trait loci (eQTL).25 There have been 5 genome-wide DNA
methylation analyses (4 in women with endometriosis), includ-
ing samples from 7 to 31 women.37–41 There is little overlap
between differentially expressed transcripts/methylated genes
identified in these studies, possibly due to: (1) variability in
expression/DNA methylation patterns due to cellular heteroge-
neity inherent to whole-tissue analysis; (2) confounding variables
unaccounted for that affect endometrial expression/DNA meth-
ylation profiles such as menstrual phase; (3) insufficient sample
sizes that result in spurious or chance findings; (4) variation in
tissue collection procedures and case/control definitions.

We aimed to investigate individual, tissue-derived and
experimental variability of genome-wide DNA methylation
and mRNA gene-expression profiles, and their implications for
study design, contrasting 3 tissues: eutopic endometrium, endo-
metriotic disease tissue (peritoneal disease, peritoneal lesions

and ovarian disease, endometriomas) and subcutaneous
abdominal fat. In addition, we determined sample sizes
required to detect robust and biologically meaningful results
from genome-wide whole-tissue expression and DNA methyla-
tion profiles for these 3 tissues, relevant to a broad range of
reproductive, endocrine, and metabolic traits.

Results

DNA and RNA Quality

The experimental design included splits and replicates of endo-
metrium, subcutaneous abdominal fat tissues collected from 8
endometriosis cases, and 8 controls and endometriotic disease
tissue from 16 cases, which were used for DNA extraction; the
same endometrium tissue samples were also used for RNA
extraction (Fig. 1) (See Materials and Methods). All tissues pro-
vided good yields of DNA and RNA, with fat tissue providing
the lowest yields [DNA mean D 533 ng, Standard Deviation
(SD) D 344] and endometrium the highest (DNA mean D
4245 ng, SD D 1942; RNA mean D 4516 ng, SD D 3100)
(Fig. S1). DNA quality was modestly associated with the initial
yield (P D 0.03) and menstrual cycle day (P D 0.05), but not
with tissue type (P D 0.38) or tissue weight (P D 0.99). A total
of 94/96 (98%) of DNA samples passed quality control

Figure 1. Experimental study design. Endometrium and subcutaneous abdominal fat from 8 cases and 8 controls, and endometriotic disease tissue from 16 cases (8 of
which also contributed fat and endometrium) were used for DNA methylation analyses; the same endometrium tissue samples (n D 8) were also used for mRNA analyses.
(A) Number of tissue samples from cases and controls processed for DNA and RNA extraction. (B) Tissue processing steps illustrating sample splits and technical replicates.
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(>1000 ng DNA, >98% call rate), with probe intensities uni-
formly distributed for all 94 samples (Fig. S2).

RNA RIN-scores from endometrium did not correlate with
initial tissue weight (P D 0.47) but did with RNA yield (P D
2.0 £ 10¡3), and cycle day on which the sample was collected
(P D 1.2 £ 10¡3). Fourteen samples had RIN scores <7, indi-
cating reduced quality; 10 of these (71%) were collected during
the menstrual phase. These samples did not perform well in the
microarray experiment (housekeeping gene signals <10,000,
Fig. S3) and were excluded. The remaining 25 samples were of
good quality (RIN > 7) with uniform distribution of probe
intensities (Fig. S4).

Variability in DNA methylation profiles

Variability in DNA methylation was investigated between-tis-
sues using hierarchical cluster analysis and within-tissue vari-
ability was investigated using the DNA methylation profiles
from each split and technical replicate of the tissues, through
principal component analysis (PCA) for each tissue type sepa-
rately (see Materials and Methods).

Between-tissue variability
Genome-wide DNA methylation profiles for 94 DNA samples
passing quality control (QC; see Materials and Methods) from
endometrium and subcutaneous abdominal fat (cases and con-
trols) and endometriotic disease tissue (cases) were analyzed.
Clear clustering of DNA methylation profiles by tissue type was

observed (Fig. 2A). Peritoneal disease tissue and endometrioma
samples formed 2 distinct clusters.

Within-tissue variability
We investigated within-tissue (cellular heterogeneity) variabil-
ity, using DNA methylation profiles of same-sample splits, and
contrasted replicates of splits to detect contribution of technical
(experimental) variation (see Materials and Methods). The
PCA of DNA methylation profiles for each tissue showed close
clustering of splits and replicates of the same sample, demon-
strating that between-individual variation was greater than
within-tissue (cellular heterogeneity variation and technical
variation). Within endometriotic disease tissue samples, perito-
neal disease and endometrioma samples again clustered sepa-
rately—mainly on principal component 1 (PC1) explaining
35% of the DNA methylation variance (Fig. 2B.iii)—suggesting
distinctive DNA methylation signatures (see below).

Effect of covariates
We investigated the effect of specific covariates on DNA methyl-
ation profiles averaged across splits and replicates by testing for
their association with the first 2 principal components that cap-
ture most of the variation in DNA methylation profiles
(Table S1): age (mean D 34.8 years, range D 25–47), menstrual
phase (7 proliferative, 9 secretory, 6 menstrual phase),33 smoking
(33.3% current smokers), BMI (mean D 25.4, range D 20.2–34),
WHR (mean D 0.80, range D 0.72–0.89), and weight of the orig-
inal tissue sample (mean D 0.39 g, range D 0.09–0.65).

Figure 2. Variability in DNA methylation profiles from all 3 tissues. (A) Hierarchical clustering of DNA methylation profiles based on average methylation levels across
splits and replicates for each sample (see Materials and Methods). Colors correspond to tissue type. (B) Principal component analysis (PCA) of genome-wide DNA methyla-
tion profiles derived from: i. endometrium; ii. subcutaneous abdominal fat; iii. endometriotic disease tissue. Each circle represents a sample; color coding designates differ-
ent individuals. Same color circles designate sample splits; crosses (x) indicate technical replicates.
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Menstrual phase was significantly associated with DNA methyla-
tion profiles in endometrium (P D 7.8 £ 10¡3), and in perito-
neal lesions (P D 1.3 £ 10¡6) but not with endometriomas or
fat (Table S1; Fig. S5). Age was also significantly associated with
DNA methylation profiles in endometrium (P D 9 £ 10¡5), as
well as in endometriotic disease tissue (P D 2.4 £ 10¡5). Smok-
ing was significantly associated with DNA methylation in fat
(P D 2 £ 10¡3). Notably, case/control status was only signifi-
cantly associated with variability of global DNA methylation
profiles in fat (P D 4 £ 10¡3).

Exploratory differential methylation analysis
We investigated if specific differentially DNA methylated sites
of large effect were driving the tissue-based clustering for endo-
metrium and endometriotic disease tissue observed in Fig. 2.
We first compared DNA methylation profiles for all 14 endo-
metriotic disease tissue and 16 endometrium samples from
cases, adjusting for menstrual phase and age (see Materials and
Methods), revealing 27,493 significantly differentially methyl-
ated probes, after Bonferroni multiple-testing correction, corre-
sponding to 8,133 independent genes. The differentially
methylated probes were concentrated within gene bodies
(41%), inter-genic regions (31%), and regulatory regions (28%);
in the context of CpG islands, they were mostly in open sea
(58%) followed by shores (21%), CpG islands (10%), and
shelves (11%) (Fig. S6). When we restricted the analysis to 8
paired eutopic and endometriotic disease tissue samples (linear
model) from the same cases, after multiple-testing correction,
3,915 significantly differentially methylated probes in 1,860
independent genes were identified. Of the 3,915 significant
probes, 3,858 were also significantly differentially methylated in
the unpaired analysis. The top 30 differentially methylated
probes are given in Table S4.

Pathway analysis using PANTHER42 on the 8,133 genes
from the unpaired results showed significant enrichment in: (1)
WNT signaling pathway (Bonferroni P adj D 7.49 £ 10¡8); (2)
Angiogenesis (P adj D 4.12 £ 10¡4); (3) Alzheimer disease pre-
senilin pathway (P adj D 4.79 £ 10¡4); (4) Cadherin signaling
(P adj D 9.29 £ 10¡4); (5) Integrin signaling (P adj D
2.09 £ 10¡3); (6) Gonadotropin-releasing-hormone-receptor
pathway (P adj D 3.65 £ 10¡3); (7) CCKR signaling (P adj D
6.22 £ 10¡3) (Table S5). PANTHER analysis on the paired
results confirmed significant enrichment in WNT signaling
(P adj D 2.14 £ 10¡3), Gonadotropin-releasing-hormone-
receptor pathway (P adj D 1.75 £ 10¡3) and CCKR signaling
(P adj D 4.82 £ 10¡2) (Table S6). We also tested the 27,493 dif-
ferentially methylated probes for enrichment in histone modifi-
cation ChIP peaks (H3K4me1, H3K4me3, and H3K27Ac,
marks of open chromatin) and DNase I hypersensitivity sites in
127 different cell types in the Roadmap release 9 data sets.17

The probes were significantly enriched for H3K4me1 histone
modification sites in 97 out of 127 cells types, but no other sig-
nificant enrichment was observed for the other sites (Fig. S7).

Differential DNA methylation analysis of peritoneal lesions
vs. endometriomas, adjusting for age (see Materials and Meth-
ods), revealed 31 differentially methylated probes significant
after multiple-testing correction, 27 hypomethylated and 4
hypermethylated. Most (19/31) were located within gene bodies
or regulatory regions of MN1, SLC1A7, MYH7, DACT2,

DHRS7, EPS8L1, ADHFE1, NFYB, FOXD2, CACNA1H,
NCOR2, ZBTB7A, LAMB3, AGRN, UBE2CBP, BCAR1, CMIP
(Table S7).

Unsurprisingly, given the sample size, differential DNA
methylation analysis of endometrium between cases and con-
trols did not show any differentially methylated probes after
multiple-testing correction.

Quantification of DNA methylation variability using variance
component analysis
For each tissue type, the proportion of different sources of var-
iances contributing to total phenotypic variance was estimated
using variance component analysis (See Materials and Meth-
ods). When considering all CpG methylation probes in endo-
metrium (Fig. S8a), irrespective of their variability, the
distribution of technical variance (between replicates) was the
main source of variation; similar results were observed for fat
and endometriotic disease tissue (Figs. S9 and S10). However,
these results included many probes with no or very low vari-
ability. When we considered the 50% and 10% most variable
probes, a reverse pattern was observed, with between-individual
variance explaining a high percentage of the overall variance,
and a low within-tissue (split) variance, suggesting a low tissue-
based heterogeneity of DNA methylation profiles (Fig. S8c).
Mean variance estimates for the top 10% vs. 50% most variable
probes were 0.84 (SD D 0.18) vs. 0.65 (SD D 0.29) for between-
individual variance; 0.18 (SD D 0.14) vs. 0.23 (SD D 0.22) for
within-tissue (tissue heterogeneity); and 0.06 (SD D 0.09) vs.
0.19 (SD D 0.23) for technical variation, respectively. Patterns
for endometriotic disease tissue and fat were similar (Table S8).

Variability in RNA expression profiles of endometrium

We similarly investigated tissue heterogeneity and technical
variation in RNA expression profiles from 25 endometrium
samples passing QC (12 individuals: 5 cases and 7 controls).
Close clustering of splits and replicates of samples from the
same individual was clearly observed (Fig. 3A), illustrating that
between-individual variation exceeded within-tissue and tech-
nical variation.

Effects of potential covariates

Fig. 3 shows clustering of samples by the first 2 principal com-
ponents, PC1 (21.4% of variation) and PC2 (15.8% of varia-
tion), color coded by covariate status. Menstrual phase
clustered mainly on PC1 (P D 8.4 £ 10¡5) (Fig. 3B; Table S1),
with samples from the secretory (cycle day 15C) and prolifer-
ative phases (cycle day 8–14) forming 2 distinct clusters. Clus-
tering was also observed on the basis of case/control status on
PC2 (P D 7.4 £ 10¡5) (Fig. 3C; Table S1). No other covariates
were associated with RNA expression profiles (Table S1).

Differential expression analysis between endometriosis
cases and controls

We performed differential expression analysis between cases
and controls accounting for menstrual phase (see Materials and
Methods), to identify the top contributing genes. After
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multiple-testing correction, 32 probes were significantly differ-
entially expressed (Table S9), 28 upregulated and 4 downregu-
lated. The fold-change (FC) in expression was >4 in 3 loci:
CYP26A1 (FC D 5.63, P D 5.8 £ 10¡6, P adj D 0.025), LRRC26
(FC D 4.49, P D 6.6 £ 10¡6, P adj D 0.026), LOC389816
(FC D 4.48, P D 5.6 £ 10¡6, P adj D 0.025).

Quantification of RNA expression variability using
variance component analysis

Similar to DNA methylation variance component analyses,
when considering all genes probed by the RNA expression
array irrespective of probe variability, the main source of varia-
tion was technical (Fig. S11a). However, when we considered
the 50% vs. 10% most variable expression sites (Figs. S11b and
S11c), the between-individual variance became the dominating
component, although technical and within-tissue variation was
larger than observed for DNA methylation patterns. Mean

proportion of variance estimates for the top 10% vs. 50% most
variable probes (Table S10) were 0.48 (SD D 0.39) vs. 0.40
(0.37) for between-individual variance, 0.27 (SD D 0.24) vs.
0.25 (SD D 0.25) for within-tissue variance, and 0.30
(SD D 0.25) vs. 0.40 (SD D 0.29) for technical variation,
respectively.

Power calculations

To determine the sample size needed to detect biologically rele-
vant differential DNA methylation and expression between
cases and controls, we conducted power calculations based on
the 222,456 CpG-sites (80% power, a D 0.05/222,456 D
»2 £ 10¡7) and 11,464 expression-probes (80% power,
a D 0.05/11,464 D »4 £ 10¡6) for endometrium, where
between-individual variance of DNA methylation/RNA expres-
sion exceeded within-tissue and technical variance (see Materi-
als and Methods). Fig. 5A-C shows the results for power curves

Figure 3. PCA analysis of RNA profiles in endometrium, showing total variation in profiles explained between PC1 and PC2. Each circle represents a sample; color coding
designates (A) individual woman [same color circles represent the sample splits and crosses (x) indicate technical replicates]; (B) menstrual phase according to calculated
cycle day based on self-reported LMP; (C) case/control status.
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of 3 sample sizes for differential DNA methylation in endome-
trium and fat, and expression in endometrium between cases
and controls, and Fig. 5D for detection of differential DNA
methylation between paired endometriotic lesion tissue and
endometrium from cases. For example, a 2% (b D 0.02) differ-
ence in DNA methylation with 80% power between cases and
controls in endometrium can be detected with a sample size of
100 in 67,968/222,456 (30%) probes, with a sample size of 500
in 172,947/222,456 (78%) probes, and with a sample size of
1000 in 204,720/222,456 (92%) probes in endometrium
(Fig. 5A). Most common effect sizes observed in DNA methyla-
tion studies of complex disease/traits range between 0.01–0.10
b value differences and gene expression ranges between 1–3-
fold-change.13,16,17,43,44

Discussion

This is the first study that systematically investigated the differ-
ent sources of variability influencing DNA methylation and
RNA expression profiles in tissues relevant to many reproduc-
tive, endocrine, as well as metabolic traits. The results have
direct implications for studies including these profiles in terms
of experimental design and sample size requirements.

We showed that in DNA methylation profiles from endome-
trium, endometriotic disease tissue, and subcutaneous abdomi-
nal fat, and in RNA expression profiles from endometrium, the
between-individual variation is greater than within-tissue varia-
tion (tissue heterogeneity) and experimental (technical) varia-
tion when considering moderate to highly variable sites. This is
reassuring for tissue-based profiling studies, given that most
disease-association studies are focused on DNA methylation or
RNA expression sites that at least show moderate variability
across individuals in a population. Limiting to the top 10%
most variable probes, the between-individual variation was
84.2% for endometrium, 84.2% for endometriotic disease tissue,
and 79% for abdominal fat tissue. In expression profiles from
endometrium, the between-individual variation (47.6%) also
dominated over within-tissue (27%) and experimental (30%)
variation in the top 10% most variable probes, although experi-
mental variability was clearly more pronounced in expression
profiling. This difference in contribution of experimental vari-
ability (6% vs. 29%) is probably expected because of the less sta-
ble nature of RNA compared with DNA, but it highlights the
importance of using standardized protocols for sample collec-
tion and tissue processing, as well as adopting good experimen-
tal design in gene expression experiments.45

Overall, these results underline the application of whole-tis-
sue profiling in these tissues to detect robust DNA methylation
and expression differences between individuals, but they do not
negate the importance of research focusing on profiling of dis-
tinct subcellular components, e.g., stromal and glandular epi-
thelial cells in endometrium. Indeed, comparison of tissue-
based with cell-specific profiles is crucial to understanding
underlying regulatory biologic mechanisms. However, cell-type
specific profiling is not without its own limitations (including
potential for disturbance of expression profiles caused by the
isolation protocols, and lack of scalability to larger studies).
Our results suggest that for low-variability DNA methylation
and RNA expression sites, cell-specific studies of sufficient size

are particularly important, because tissue-based (cellular) het-
erogeneity and technical variability are likely to hinder the
detection of biologically interesting variability.

Our results showed that menstrual phase is an important
covariate and potential confounder in the analysis of differential
DNA methylation and RNA expression in endometrium, as pre-
viously reported,33,39,41 and also in DNA methylation of perito-
neal lesions—a novel finding. However, its effect on variability of
DNA methylation in endometriomas and fat is much less pro-
nounced. A recent study including 17 endometriosis cases (4 pro-
liferative, 7 early secretory, 6 mid-secretory phases) and 16
controls (6 proliferative, 5 early secretory, 5 mid-secretory phases)
suggested that DNA methylation changes across the menstrual
cycle are associated with changes in gene expression for many
loci associated with endometriosis, and that the greatest DNA
methylation differences were observed in the mid-secretory
phase.38 It is therefore important to investigate: (1) expression
and DNA methylation profiles of endometrium in cases vs. con-
trols; (2) DNA methylation profiles of peritoneal lesion vs. other
tissues, adjusted or matched for menstrual cycle phase.

Age was a factor strongly influencing DNAmethylation profiles
in both endometrium and endometriotic disease tissue. There is
abundant literature on DNA methylation differences associated
with age, and the importance of age-related environmental influen-
ces.46–49 The age effect we observed could signify either population-
based differences in exposures between women of different ages or
the cumulative effects of lifetime exposures on DNA methylation
sites. This highlights the need to ascertain in a larger study what
these age-related differences constitute and how they might relate
to endometrial biology and disease processes. Interestingly, smok-
ing was an important factor influencing variability of DNAmethyl-
ation in fat tissue—a novel finding. It is well established that
smoking affects DNA methylation50 and many epigenetic markers
related to smoking have been identified in blood including in
inflammatory diseases, such as rheumatoid arthritis.49,51–54 More-
over, there is some evidence, which suggest smoking as a protective
factor for endometriosis55 and endometrial cancer;56 however, the
evidence is conflicting57 and requires further investigation. Intrigu-
ingly, endometriosis case/control status also influenced variability
of DNA methylation profiles in fat tissue. We showed previously
that there is significant sharing in the genetic etiology of endometri-
osis and fat distribution.12 Our findings suggest differential gene
regulation in fat tissue between endometriosis cases and controls
that warrants follow-up in a larger study.

We have shown that DNA methylation profiles of endome-
trium, endometriotic disease tissue, and abdominal fat are dis-
tinctly different, and that 2 different endometriosis tissue
types—endometriomas and peritoneal lesions—have different
DNA methylation signatures. Despite the relatively small sample
size, differential DNA methylation analysis between endome-
trium and endometriotic disease tissue identified a set of differ-
entially methylated genes, which were significantly enriched for
7 pathways, the top being WNT signaling—a pathway involved
in sex-hormone homeostasis and reproductive tract development
previously associated in genome-wide association analyses with
endometriosis and in shared genetic regulation between endo-
metriosis and fat distribution.12 Other pathways enriched for dif-
ferential DNA methylation between endometrium and
endometriotic disease tissue were angiogenesis, cadherin
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signaling (involved in cell adhesion and inflammation), and
gonadotropin-releasing-hormone-receptor pathway. This sug-
gests that genetic pathways perturbed by genetic variation in
endometriosis are also dysregulated in terms of DNA methyla-
tion profiles. To what extent these DNA methylation differences
are genetically driven or reflect differences in extra-uterine
milieus, and how these might influence disease processes, needs
to be explored in an adequately powered study. Differential
DNA methylation analysis between endometriomas and perito-
neal lesions identified 31 significantly differential methylated
sites, though a limitation here is the potential for peritoneal cel-
lular contamination driving some of these differences. All our
differential DNA methylation analyses were exploratory and
findings need to be replicated in larger studies.

We observed 32 differentially expressed RNA probes com-
paring endometrium between endometriosis cases and controls,
after multiple testing correction. CYP26A1 was upregulated
>5-fold in cases compared with controls and is of particular
interest since it is a progesterone-regulated gene 58,59 that has
been found also to be upregulated in the proliferative phase for
rAFS stage III/IV cases vs. stage I/II 19, while it was found to be
nominally downregulated in endometriosis cases vs. controls in
the secretory phase.22 The limited number of cases and controls
within each cycle phase in this study prohibited us from per-
forming between-phases or within-phase differential expression
analyses. CYP26A1 encodes for a retinoic acid metabolizing
enzyme, and maps close to a region of the genome identified to
be significantly linked to endometriosis in family-based analy-
ses.60 Follow-up of the role of this locus in endometriosis is
warranted in a larger study, in the context of menstrual phase.

A major limitation in deciphering the epigenomic and tran-
scriptomic landscape of endometrium is that this tissue is not
part of any large-scale genomic annotation projects such as
ENCODE 61 and NIH Epigenome Roadmap.17 For example,
histone modification sites and DNase I hypersensitivity sites
provide information regarding enhancer regions in the genome.
Enhancer regions play a central role in driving cell type-specific
gene expression and enrichment of DNA methylation marks in
these regions informs us about their potential functional role.
We conducted our DNA methylation marks enrichment analy-
sis in 127 different cell types (none relevant to endometrium).
H3K4me1 histone modification was enriched across the major-
ity of cell types, suggesting this as an enriched mark that is rela-
tively non-specific to cell type. H3K4me1 histone modification
is globally linked to distal regulatory regions.62 Genomic anno-
tation data for endometrium and its constituting cell types is
needed to allow a more informative exploration of these results.

Our power calculations show that tissue-based differential
DNA methylation and expression studies require sample sizes
of at least 500 tissues to detect the most common effect sizes
expected for complex disease in these tissue types. For example,
with sample size of 500 tissues, we can detect 2% DNA methyl-
ation difference between cases and controls in 172,947/222,456
(78%) CpG-sites in endometrium, 209,480/255,402 (82%) sites
in fat, and between endometrium and endometriotic disease
tissue in 393,584/483,422 (82%) sites. Most common effect sizes
observed in large-scale complex traits DNA methylation studies
range between 1–10%.17,43,44 This sample size also allows for
detection of 1.5-fold change in gene expression of 9,500/11,464

(83%) expression-probes in endometrium. Large effect sizes
could be detectable with sample sizes >100; however, this is
unlikely to allow the discovery of most common mechanisms
robustly. Reaching these samples sizes requires collaboration
between centers that collect phenotypic data and biologic sam-
ples in a standardized manner. The WERF Endometriosis Phe-
nome and Biobanking Harmonisation Project (EPHect) has
provided standard operating protocols for collection, prepro-
cessing and storage of tissues including endometrium, along
with standardized questionnaires for phenotypic data collec-
tion,45,63–65 which allows such data to be generated and robust
studies to be performed.

In summary, our study has identified parameters affecting
DNA methylation and RNA expression variability in tissues rele-
vant to many reproductive and endocrine research studies. It
provides essential guidance for studies aimed at integrated analy-
sis of genomic, transcriptomic, and epigenomic data in endome-
trium, which have become staple approaches for other tissues in
different diseases and will aid further understanding of the bio-
logic mechanisms underlying endometrium-related disorders.

Materials and methods

Recruitment, tissue, and data collection

Samples and data were derived from ENDOX, a prospective study
focused on endometriosis and endometrium-related conditions, in
which women undergoing a laparoscopy at the Endometriosis
CaRe Center, John Radcliffe Hospital, Oxford (UK), are recruited.
All data collection instruments and standard operating procedures
(SOPs) used in ENDOX are in accordance with WERF EPHect
standards45,63–65 (See Supplementary Note). Ethics approval for
ENDOX was obtained from the NRES Committee South Central-
Oxford Research Ethics Committee (09/H0604/58).

We selected 16 endometriosis patients and 8 healthy con-
trols with regular menstrual cycles (predictable within 1 week),
who had not used hormones at least 3 months before recruit-
ment (Table S2). Controls were symptomatic [i.e., undergoing
laparoscopy either for pelvic pain (n D 4), or subfertility
(n D 4)] but no endometriosis was found during laparoscopy.
Four controls were diagnosed with non-endometriotic adhe-
sions, one with a non-endometriotic cyst, and 3 had no obvious
pathology. Controls were frequency-matched to cases on men-
strual phase (Table S3). Menstrual cycle was categorized based
on self-reported last menstrual period (LMP) and cycle day at
time of surgery, adjusted for cycle length,33 into menstrual
phase (1–7 days), proliferative phase (8–14 days), secretory
phase (15C days); the menstrual phase was confirmed by RNA
expression profiles (See Statistical analysis section).

Experimental design

Figure. 1 shows the experimental design. A 100–120 mg section
of endometrium and subcutaneous abdominal fat from 8 cases
and 8 controls, and endometriotic disease tissue from 16 cases
(8 of which also contributed fat and endometrium) were used
for DNA methylation analyses; the same endometrium tissue
samples (n D 8) were also used for mRNA analyses (Fig. 1A).
To investigate within-tissue (cellular heterogeneity) variability
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of DNA methylation and RNA expression profiles, each of the
16 endometriotic disease tissue and endometrium samples and
8 of the 16 fat samples were split in random order before
extraction (Fig. 1b). DNA and RNA extractions were conducted
again in random order. To further allow for investigation of
technical (array-related) variability, 8 replicates of the same
DNA and 7 replicates of the same RNA sample were included
on the arrays. Samples were run on arrays in random order.

DNA extraction and methylation analysis

Genomic DNA was extracted from 88 samples (Fig. 1) using
Qiagen DNeasy Kits and quantified by PicoGreen. Six samples

with a yield >1 mg but concentrations lower than 16.5 ng/ml
were concentrated by SpeedVacTM (Thermo Scientific). Whole-
genome DNA methylation analysis was performed for 96 sam-
ples (including 8 replicates) using Illumina Infinium Human-
Methylation450 BeadChip arrays, following the Illumina
HumanMethylation450 protocol;66 and arrays were imaged
using an Illumina HiScanTM scanner.

RNA extraction and expression analysis

RNA was extracted from 32 endometrium samples (Fig. 1)
using Qiagen RNeasy Kit and quantified using Nanodrop. RNA
integrity (RIN) scores were obtained for each sample using

Figure 4. Power curves (80%) for 3 sample sizes (using the estimated between-individual variances) to determine the detectable (A) number of methylation probes with a
difference in methylation values (b range 0–0.2) between cases and controls in endometrium; (B) number of methylation probes with a difference in methylation values
(b range 0–0.2) between cases and controls in fat tissue; (C) number of expression probes with fold change in mean expression levels ranging between 1 and 6, between
cases and controls in endometrium; (D) number of methylation probes with a difference in methylation values (b range 0–0.2) in cases, between endometriotic disease
tissue and endometrium.
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Agilent Bioanalyser, before whole genome gene-expression
analyses (39 samples, including 7 replicates) using Illumina
Human HT12v4.0 Expression Bead arrays; arrays were imaged
using an Illumina iScan Scanner.

Statistical analyses

DNA and RNA Quality
DNA quality was measured as %CpG-sites detected at the 1%
detection P value cut-off; RNA quality was assessed using RIN-
scores. DNA/RNA quality was correlated with initial yield, men-
strual cycle day, and tissue weight using Pearson’s correlations,
and with tissue type using one-way ANOVA linear models.

Principal component analysis (PCA) and hierarchical
clustering
To investigate clustering of samples based on DNAmethylation or
expression profiles, PCA was performed for each tissue type sepa-
rately, using the prcomp package with default settings in R (3.2.5).
Hierarchical clustering based on DNA methylation profiles was
performed using the hclust package in R. Similarly, the hierarchical
cluster analysis (complete linkage based on Euclidean distance)
identified 2 sample outliers (X_14, X_15), which are likely tissue
sample swaps that were excluded from any downstream analyses.
The univariate association between the PCs explaining most of the
variance and different parameters (e.g., menstrual phase, age,
smoking, BMI,WHR) was assessed using Pearson correlations and
linear models. For 3 individuals with self-reported cycle days that
were close to cycle categorization cut-offs (Table S1), cycle phase
was re-classified via PC-based expression profile clustering.

Variance component analysis
For each tissue type, the proportion of different sources of var-
iances contributing to total phenotypic variance was estimated
for each probe using a linear mixed-effects model fitted by
maximum likelihood. The estimated variances were extracted
with the VarCorr function implemented in lmer in the R pack-
age lme4, and were decomposed into between-individual,
within-tissue, and residual (technical) variance. More detailed
methods are provided in Supplementary Note 1.

Differential DNA methylation analysis
Differential DNA methylation analysis was performed on the
average of probe intensities across splits and replicates of 46
independent samples (16 endometrium; 16 fat; 14 endometri-
otic disease tissue) at each single CpG-site (483,422 total) by fit-
ting linear models to all DNA methylation probes in R. We
have conducted the following differential DNA methylation
analyses using linear regression: (1) Endometrium from cases
(n D 16) vs. all endometriotic disease tissues (n D 14) adjusting
for age and menstrual phase (Unpaired analysis); (2) Endome-
trium from cases (n D 8) vs. all endometriotic disease tissues
(n D 8) (Paired analysis); (3) Ovarian (endometriomas)
(n D 8) vs. peritoneal disease tissues (n D 6) adjusting for age;
(4) Endometrium from cases (n D 8) vs. controls (n D 8)
adjusted for menstrual phase and age; (5) Fat from cases (n D
8) vs. controls (n D 8) adjusted for menstrual phase and age.
P values were adjusted for multiple-testing using Bonferroni
correction. The significantly differentially methylated genes

were followed-up by PANTHER pathway analysis 42 and
enrichment analysis in histone modification sites and DNaseI
hypersensitivity sites from NIH Epigenome Roadmap R9 data
set17 (See Supplementary note).

Differential expression analysis
Differential expression analysis was performed on the average of
the probe intensities across splits and replicates of the 12 indepen-
dent samples. We investigated differentially expressed genes in
endometrium between cases and controls through linear model fit-
ting adjusting for menstrual cycle phase, using limma in R.67 P val-
ues were adjusted for multiple-testing using Benjamini and
Hochberg’s method at the 5% false discovery rate (FDR) level.68

Power calculations
Power to detect differential expression or DNA methylation
was assessed using pwr.t.test in R for 3 example sample sizes:
n D 100; n D 500; n D 1000. The significance level (a D 0.05)
was adjusted for the number of genes and DNA methylation
sites found exhibiting differential expression/DNA methylation
between individuals as defined percentage change in methyla-
tion mean (b value), and the fold change in expression mean
(See Supplementary Note).
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