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1. INTRODUCTION 

The Orchidaceae, with c. 28,000 species, is considered one of the largest and 
most widely distributed vascular plant families (Christenhusz & Byng 2016; 
Givnish et al. 2016). Recent molecular dating analyses indicated that the first 
orchids diverged in Austrialia c. 100 million years (My) ago, while most of the 
current orchid species originated in the Neotropics c. 84-64 My ago (Givnish et 
al. 2015, 2016). Orchids have unique flower morphologies and diverse set of 
lifestyles, which have enabled them to colonise a wide range of habitats from 
subarctic to tropical ecosystems. The highest number of orchid species occurs in 
the tropics and subtropics (Dressler 2005). The overall extraordinary diversi-
fication in Orchidaceae could be driven in part by the evolution of pollinia, 
epiphytism, the development of crassulacean acid metabolism photosynthesis, 
life in extensive tropical mountains and specialization on particular groups of 
pollinators (Givnish et al. 2015).  

In nature, orchids reproduce and survive only by interacting with other orga-
nisms. Interactions with pollinators are required only for sexual reproduction, 
whereas association with fungi last throughout their lives (Waterman & Bidar-
tondo 2008). More than a century ago, Bernard and Burgeff independently 
realised that fungi are essential for successful orchid seed germination (Rasmus-
sen 1995). Unlike many other plants, dust-like orchid seeds (only 0.05 – 6.0 mm 
in size) are almost devoid of food reserves (Arditti & Ghani 2000), and 
therefore completely dependent on mycorrhizal fungi for further development. 
During the early development stages, fungal partners provide carbon (C) and 
other essential nutrients to the orchid (Dearnaley et al. 2012). This kind of 
nutritional strategy is called mycoheterotrophy (MH; Leake 1994). Many 
initially mycoheterotrophic orchids develop green leaves and become auto-
trophic, yet their poorly developed roots remain colonised by mycorrhizal fungi. 
Arguably these orchids may receive C from fungal partners even during the 
adult stage. However, the amount of C seems be too small and undetectable 
(Stöckel et al. 2014). On the other hand, some autotrophic orchids obtain C 
from both autotrophic photosynthates and associated fungi and are called 
partially mycoheterotrophic or mixotrophic (PMH; Gebauer & Meyer 2003; 
Julou et al. 2005; Selosse & Roy 2009). This kind of nutritional mode was 
discovered not long time ago thanks mainly to isotopic methods. With these 
methods, it was demonstrated that for some forest orchids the natural abundance 
of stable isotopes (13C and 15N) was intermediate between MH and photo-
synthetic plants at the same site (Gebauer & Meyer 2003). More recently, it has 
been shown that PMH is more widespread among orchids than previously 
assumed (Schiebold et al. 2018). Only a minority of orchids remain achloro-
phyllous as adults and are fully mycoheterotrophic throughout their life cycles. 
These species have evolved repeatedly from photosynthetic ancestors and 
potentially PMH orchids have been the intermediate step (Julou et al. 2005). 
Mycoheterotrophy is considered a mode of parasitism in plants, as there is no 
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known reward to the fungal partner (Merckx & Freudenstein 2010). Though the 
contribution of green orchids to the relationship has been debated for many 
years, the exact nature of the fungus-orchid relationship is still unresolved due 
to technical challenges in monitoring nutrient exchange between the fungus and 
orchid in the wild. A possibility of a mutualistic relationship has been suggested 
on the basis of a couple of in vitro studies that show transport of nutrients from 
the orchid to the fungus (Cameron et al. 2006, 2008) or the expression of genes 
implicated in mutualistic relationships (Perotto et al. 2014; Fochi et al. 2017). 
Alternatively, orchids may provide other possible benefits to fungi, such as vitamins 
or protection of hyphae (Selosse 2014).  

Orchid mycorrhiza (OrM) is characterized by the formation of fungal hyphal 
coiled structures – called pelotons – inside germinating seeds, protocorms (pre-
seedling stages formed after germination), seedlings and roots of adult orchids 
(Fig. 1). Occasionally OrM fungi have also been found in rhizomes, tubers or 
corms (Rasmussen 1995). Pelotons can be found within parenchyma cells where 
they are surrounded by a plant-derived membrane and an interfacial matrix. The 
pelotons are constantly digested or collapsed and formed again either by any 
survived hyphae or by fungi penetrating from adjacent cells (Smith & Read 
2008). Digestion of pelotons is one way how nutrients flux to the host orchid 
(Bougoure et al. 2014; Kuga et al. 2014). However, it has been shown that 
nutrient transfer can occur also from fully intact, unlysed pelotons (Kuga et al. 
2014). It seems that both means of nutrient transfer can occur only in auto-
trophic orchids, as shown for protocorms of Spiranthes sinensis colonised by 
Ceratobasidium (Kuga et al. 2014). 

Historically, the identification of OrM fungi was possible when fungi from 
orchid roots were isolated in a pure culture and thereafter inspected with micro-
scopy. This method is considered to be time consuming and inefficient, mainly 
because many OrM fungi are either unculturable, grow too slowly, or rarely 
sporulate. Technical advances in molecular methods have greatly facilitated 
fungal species identification and thereby the range of OrM fungi has expanded 
(Taylor & Bruns 1997, 1999). A more recent approach, high-throughput se-
quencing methods, has allowed quick and more thorough characterization of 
fungal communities in orchid roots or in soil, and has offered new insights into 
OrM fungal community ecology (Jacquemyn et al. 2014; Ercole et al. 2015; 
McCormick et al. 2016; Waud et al. 2016a,b; Rock-Blake et al. 2017; Voyron et 
al. 2017). Although DNA sequencing based identification of fungi is highly 
appealing for studying OrM fungi, there can be several methodological compli-
cations. The most discussed question in molecular studies of OrM fungi has 
been the selection of primers (Taylor & McCormick 2008; Waud et al. 2014), 
whereas less attention has been paid to the quality of the reference database. 
The demand for high-quality reference datasets is most critical in large-scale 
sequence analyses because it is essentially impossible to evaluate each taxo-
nomic assignment manually. It is known that the public sequence repositories 
contain a non-trivial number of incorrectly identified species and lack of meta-
data (Nilsson et al. 2006). In addition, these databases contain technical arte-
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facts, such as chimeric or low read quality sequences (Nilsson et al. 2010). 
These shortcomings have been improved by regularly updated and manually 
curated databases (Abarenkov et al. 2010; Kõljalg et al. 2013).  

 

 
 

Figure 1. Morphological features of fungal structures in the roots of Platanthera 
chlorantha. a) A single coiled structure of OrM fungal hyphae or peloton outside roots. 
Scale bar = 50 µm. c) A single coiled structure of OrM fungal hyphae or peloton inside 
root tissue. Scale bar = 50 µm. b) Cross-section of a root showing fungal colonization. 
Scale bar = 100 µm. Photos by J.Oja. 
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Typically photosynthetic, autotrophic orchids associate with saprotrophic fungi 
from the Ceratobasidiaceae, Tulasnellaceae and Sebacinales (particularly Seren-
dipitaceae), whereas most fully and partially mycoheterotrophic orchids asso-
ciate with ectomycorrhizal (EcM) basidiomycetes, such as Thelephoraceae, 
Russulaceae (Dearnaley et al. 2012). Even EcM ascomycetes – related mostly to 
truffles – have been proved to form OrM associations with PMH orchids (Se-
losse et al. 2004). Associations with EcM fungi allow orchids to obtain C from 
surrounding autotrophic plants via shared fungal symbiont (McKendrick et al. 
2000). Besides these aforementioned fungal taxa, several other fungal taxa can 
form OrM. In tropical and subtropical forests litter or wood-decaying sapro-
trophic fungi are able to support many MH orchids (Yamato et al. 2005; Ogura-
Tsujita & Yukawa 2008; Martos et al. 2009; Ogura-Tsujita et al. 2009; Lee et 
al. 2015; Kinoshita et al. 2016). Often these saprotrophic fungal partners have 
been assigned to Mycenaceae (Martos et al. 2009; Ogura-Tsujita et al. 2009; 
Kinoshita et al. 2016) and Psathyrellaceae (Yamato et al. 2005; Ogura-Tsujita & 
Yukawa 2008). However, some MH orchids in tropical and subtropical forests 
have been shown to associate with EcM fungi (Roy et al. 2009; Okayama et al. 
2012). Most recently, some photosynthetic, autotrophic orchids have been 
shown to be associated with certain saprotrophic fungi, again, belonging to 
Mycenaceae and Psathyrellaceae (Zhang et al. 2012; Yagame et al. 2013; 
Bayman et al. 2016). In one case, there is speculation that the green orchid 
Cremastra appendiculata associated with saprophytic Coprinellus (Psathyrel-
laceae) is instead PMH (Yagame et al. 2013). So far, the most unexpected 
example of fungal partners has been reported from some epiphytic and ter-
restrial autotrophic orchids in the tropics. These orchids were associated with 
members of the “rust” lineage of Atractiellomycetes (Pucciniomycotina, Basi-
diomycota; Kottke et al. 2010; Martos et al. 2012; Suárez et al. 2016). Taken 
together, a wide phylogenetic range of fungi have been reported to be able to 
form orchid mycorrhizal associations (Dearnaley et al. 2012). Yet, in this thesis 
we focus on OrM fungal taxa from the Ceratobasidiaceae, Tulasnellaceae and 
Sebacinales – the main group of mycorrhizal symbionts in most orchid species. 

Seed germination and nutrition of adult plants is often facilitated by the same 
fungal taxa. However, some orchids switch or expand their OrM fungal partners 
during the development stages from seedling to adults (Rasmussen et al. 2015 
and references therein). It has been shown that the seedling stage appears to be 
the developmental step when the diversity of symbiotic fungi is smaller com-
pared to the germinating seeds and mature orchids (Bidartondo & Read 2008; 
Jacquemyn et al. 2011a; Zi et al. 2014). Changes in fungal communities as-
sociated with orchid roots have been described throughout different plant 
phenological stages, mostly from leafing to dormancy (Taylor & Bruns 1999; 
Rasmussen & Whigham 2002; Huynh et al. 2009; Kohout et al. 2013; Ercole et 
al. 2015). Most of these studies have reported a continuous presence of my-
corrhizal fungi, but in some cases the abundance of fungal colonisation and the 
composition of fungal taxa have shown variations (Taylor & Bruns 1999; 
Rasmussen & Whigham 2002; Ercole et al. 2015). Besides the phenological 
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stage of orchids, mycorrhizal infection can be linked to the age of roots (Ras-
mussen & Whigham 2002; Shefferson et al. 2005) or different environmental 
stresses (McCormick et al. 2006). For example, in stressful conditions, orchids 
switch to new fungal partners due to the disappearance of the main fungal 
partner (McCormick et al. 2006).  

Due to the crucial role of OrM fungi in plant survival, it has been constantly 
assumed that the distribution of these fungi determines the abundance and 
spatial distribution of orchid populations (McCormick & Jacquemyn 2014). 
Very little is known about the distribution and ecological requirements of OrM 
fungi, particularly those that associate with photosynthetic orchids. The bio-
geographical overview of OrM fungi suggests that OrM fungi associated with 
photosynthetic orchids are widespread and occur – like orchids – in varied 
habitats (Jacquemyn et al. 2017a). However, these fungi are independent of the 
distribution of orchids and most likely they are litter and soil saprotrophs, endo-
phytes, EcM or necrotrophic pathogens (Roberts 1999; Tedersoo et al. 2010; 
Oberwinkler et al. 2013; Veldre et al. 2013). Tracking the distribution of these 
fungal taxa in nature is challenging, as they do not form conspicuous fruit-
bodies. Nevertheless, there is some indirect evidence of their distribution and 
abundance in the soil that has been revealed by the orchid seed-sowing method. 
In this method seeds are buried and retrieved in the field inside packets which 
retain seeds, but allow fungal hyphae to pass through and promote germination 
(Rasmussen & Whigham 1993). Results of several seed-sowing studies suggest 
that the presence of OrM fungi declines with increasing distance from the 
photosynthetic adult plants (e.g. Perkins & McGee 1995; Jacquemyn et al. 
2007, 2012b; but see Masuhara & Katsuya 1994). While successful germination 
of seeds can be intertwined by abiotic and biotic factors (Batty et al. 2001; Diez 
2007), molecular techniques provide better evidence of fungal distribution and 
abundance in soil. These recent studies have also demonstrated the distance-
dependent decline in OrM fungal abundance (McCormick et al. 2016; Waud et 
al. 2016a, b; but see Voyron et al. 2017). Nonetheless, some OrM fungi are 
extremely sporadic and often even undetectable in soil adjacent to orchid roots 
(Voyron et al. 2017; Egidi et al. 2018). Within sites, orchid population dyna-
mics are driven by the abundance of OrM fungi rather than solely by their 
distribution (McCormick & Jacquemyn 2014; McCormick et al. 2018). The 
factors that affect the abundance of OrM fungi have been less studied. 
McCormick et al. (2012) showed that organic amendments affect the abundance 
of mycorrhizal fungi. 

In summary, though we are still lacking a comprehensive understanding of 
the factors shaping the fungus-ochid relationship, studying the aspects of this 
relationship using complementary methods holds the greatest promise of 
providing a better understanding of the factors that determine the occurrence 
and persistence of orchids in the wild and possible implications of their 
conservation strategies. Numerous studies have focused on finding specific 
fungus-orchid associations and their impact on orchid rarity (Bailarote et al. 
2012; Waud et al. 2017). A recent meta-analysis of data on different mycorrhi-
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zal types shows that orchids tend to display greater specialization towards their 
fungal partners (Põlme et al. 2018). Often MH orchids associate only with a 
narrow range of closely related fungal taxa (e.g. Ogura-Tsujita & Yukawa 2008; 
Barrett et al. 2010; Kennedy et al. 2011; Okayama et al. 2012), with some 
exceptions (Martos et al. 2009; Roy et al. 2009). However, in general, 
mycorrhizal specificity is unrelated to orchid rarity (McCormick & Jacquemyn 
2014). Taken together, we are starting to realize that an effective protection of 
orchids must focus not only on conserving their populations per se, but must 
also consider the ecological requirements of the organisms interacting with the 
orchids. Such a focus on the relationship of orchids with other organisms is 
exemplified in Australia where it has been shown that the presence of pollinator 
and OrM fungi determines the survival and persistence of orchids in re-
introductions (Reiter et al. 2016). A deepened understanding of the relationship 
of orchids with other organisms in turn paves the way for improving the pre-
servation of orchids in the wild.   
 
In this thesis, we focus on putative OrM fungal taxa from the Ceratobasidia-
ceae, Tulasnellaceae and Sebacinales and their association with photosynthetic 
orchids in different habitats. The main aims of this thesis were the following: 

 How does the community composition of putative OrM fungal taxa 
change over the vegetation period in relation to the developmental 
phases of host orchid species (paper I)? 

 How does the community composition of putative OrM fungal taxa 
vary across different habitats (paper I) and within the same habitat 
(paper II)?  

 How does the richness of putative OrM fungi change with the in-
creasing distance from the orchid patches (paper II)? 

 Do putative OrM fungi form spatial patterns along the distance from the 
orchid patches (paper II)? 
 

In addition, our aim was: 
 To extend annotations of publicly available OrM fungal ITS sequences 

(paper III) 
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2. MATERIALS AND METHODS 

2.1. Studied species and their mycorrhizal associations 
In total, four orchid species: Cypripedium calceolus L., Neottia ovata (L.) Bluff 
& Fingerh. (formerly known as Listera ovata), Orchis militaris L. and Pla-
tanthera chlorantha (Custer) Rchb were used as focal host species to study tem-
poral and spatial patterns of OrM fungal communities (Fig. 2; papers I and II). 
The first three species were studied in paper I and the third and fourth species in 
paper II. All these orchids grow preferably on calcareous soil but in different 
habitat types. C. calceolus has 1–2(3) large flowers with yellow, shoe-shaped 
labellum (Fig. 2A). It grows most commonly in woodlands, less frequently in 
open habitats. The distribution of C. calceolus ranges from Great Britain to 
Japan, and from Spain to Scandinavia (Kull 1999). N. ovata has 15–30(100), 
small, green or yellowish-green flowers within inflorescence (Fig. 2B). This 
species occurs in a wide range of habitats in Euro-Siberia, mostly in shaded 
places (Kotilínek et al. 2015). The plants of O. militaris have a conical inflore-
scence with 7–42 purple flowers that morphologically resemble a human figure, 
a soldier (Fig. 2C). They are widely distributed across Eurasia, growing mostly 
in grasslands and open woodlands (Farrell 1985). P. chlorantha has inflore-
scence with 8–40 white-green flowers with a slender, long nectar-filled spur 
(Fig. 2D). It occurs preferably in the same habitats as O. militaris throughout 
Europe and adjacent parts of Africa and Asia (Hultén & Fries 1986). C. calceo-
lus and N. ovata are both rhizomatous orchid species with long lasting roots, 
whereas tuberous orchids O. militaris and P. chlorantha have short-lived and 
annually renewed roots (Rasmussen 1995). 

Multiple studies have investigated OrM fungal species of C. calceolus and 
O. militaris, whereas until very recently little was known about OrM fungal 
species of N. ovata and P. chlorantha. Investigations of mycorrhizal fungi in 
both C. calceolus and O. militaris have revealed their preferential association 
with members of Tulasnella (Shefferson et al. 2005, 2007, 2008; Jacquemyn et 
al. 2010, 2011a, 2012a; Lievens et al. 2010). A few previous studies of N. ovata 
and P. chlorantha have described associations with Ceratobasidiaceae and 
Tulasnellaceae (Rasmussen 1995; Bidartondo et al. 2004). Most recent studies 
show that N. ovata and P. chlorantha associate predominantly with Sebacinales 
and Ceratobasidiaceae, respectively (Jacquemyn et al. 2015; Těšitelová et al. 
2015; Esposito et al. 2016). Besides the dominant OrM fungal taxa, other fungal 
species have been detected in the root samples of all the studied orchid species, 
except C. calceolus (Illyes et al. 2009; Jacquemyn et al. 2010, 2011a,b, 2015; 
Těšitelová et al. 2015, Esposito et al. 2016). For example, EcM fungi from 
different lineages (Jacquemyn et al. 2011b, 2015; Těšitelová et al. 2015; Espo-
sito et al. 2016) and some non-mycorrhizal fungal taxa have been reported 
(Bidartondo et al. 2004; Jacquemyn et al. 2015; Těšitelová et al. 2015; Esposito 
et al. 2016).  
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Figure 2. Photos of studied orchid species a) Cypripedium calceolus b) Neottia ovata c) 
Orchis militaris, and d) Platanthera chlorantha. Photos by J. Oja (a,b,c) and A.-R. 
Servet (d). 
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2.2. Study sites and sampling 
Sampling was conducted in forest and grassland ecosystems throughout the 
western part of Estonia, mainly on the islands of Saaremaa and Muhu (Fig. 3). 
For paper I, we sampled C. calceolus and N. ovata from two forest sites, and N. 
ovata and O. militaris from two meadow sites (Table 1 in paper I). Samples 
were collected three times (June, July and August) at four week intervals during 
the vegetation period in 2011. At each sampling time, we collected roots from 
three different orchid individuals per species and adjacent soil in each site. The 
collected plants were characteristic to each collecting time (pre-flowering, full 
bloom and post-flowering). In total we sampled 72 orchid plants and 72 soil 
samples. 

For paper II, we collected root samples of O. militaris and P. chlorantha 
from 21 semi-natural calcareous grasslands in July 2012. Additionally, at each 
site we established one transect with increasing distance from the outermost 
plant individual of a population of either focal plant species. In several sites, we 
collected additional orchid individuals of both focal orchid species from other 
parts of the population to provide additional material for identification of puta-
tive OrM fungal species (Table S1, in II). Altogether, we sampled 56 orchid 
plants and 287 soil samples from 21 transects. In the vicinity of focal plants and 
along the transect, we assessed four environmental variables: i) the level of 
grazing; ii) overgrowth by trees and shrubs; iii) the severity of periodical 
drought and waterlogging; and iv) the abundance of the host orchids (for 
detailed information see Table S2, in II).  

All root and soil samples were collected by using either a knife (I) or poly-
vinyl chloride (PVC) tubes (II). For both studies, we collected five to seven root 
fragments per plant individual and approximately the same amount of soil. For 
paper I, we sampled soil surrounding the roots of orchid plants, whereas for 
paper II soil samples were collected using a nested design with base-2-loga-
rithmically increasing distance commonly starting from beneath the orchid and 
reaching up to 32 m (Table S1 in II). All root and soil samples were placed 
immediately into plastic bags and processed on the same day. Orchid roots were 
carefully cleaned from adhering soil, followed by surface sterilisation in a 10% 
solution of commercial bleach for 1 min, and rinsed in water. Surface-sterilized 
roots were cut into 5 mm fragments with a sterilized razor blade and air-dried. 
Soil samples were either air-dried and stored in zip-lock plastic bags (I) or 
frozen for one month at -20 °C and then crushed and air-dried at 30 °C for 24 
hours (II). For molecular analyses (papers I and II), we powdered 0.02 g of 
randomly selected root fragments and 0.2 g of the finest soil particles in 2-ml 
tubes using two 3-mm tungsten carbide beads in Mixer Mill MM400 (Retsch 
GmbH, Haan, Germany). 
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Figure 3. Locations of the study sites (I–II). Symbols indicate forest and meadow sites 
where different orchid species were sampled (I) and two orchid species studied in semi-
natural grasslands (II). Due to the close spacing of some study sites, the symbols 
overlap (for coordinates of each site see Table S1 in paper II). 

 
 

2.3. Molecular analyses 
For papers I and II, the total DNA was extracted from powdered root and soil 
samples as well as from two positive (viz fruit-bodies of Peziza sp. and Hydno-
plicata whitei from Australia) and negative controls using a PowerSoil DNA 
Isolation Kit (MoBio, Carlsbad, CA, USA) according to the manufacturer’s 
instructions. Positive and negative controls were included to reduce as much 
noise (e.g. contaminant sequences, inaccurate clusters) from the datasets as pos-
sible (Nguyen et al. 2015). To identify a wide variety of fungal species in-
cluding Tulasnellaceae, the full internal transcribed spacer (ITS) region was 
amplified with primer pairs ITS1ngs-ITS4ngs and ITS1Fngs-ITS4ngs (paper I; 
Tedersoo et al. 2014, 2015a). Each of the primers was tagged with a unique 
barcode (MID, 10-12 bases) that was modified according to the recommen-
dations by Roche. A detailed description of PCR protocols and preparation for 
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pyrosequencing can be found in paper I and II. The PCR products were pyro-
sequenced using the Roche GS FLX+ platform and Titanium chemistry. For 
paper II, samples that originally retrieved <20 sequences were re-run in the 
same platform. Sequencing datasets with metadata are available in UNITE repo-
sitory in raw quality-filtered formats in order to enable further analysis of high-
throughput sequencing datasets (Tedersoo et al. 2015b). To our knowledge, this 
is the first PhD thesis at the University of Tartu which includes datasets with 
Digital Object Identifier (DOI) besides publications (dataset IV and V). In 
addition to pyrosequencing in both papers, DNA extracts from root samples 
were re-amplified with primer ITS1 in combination with ITS4-Tul2 (5´-
TTCTTTTCCTCCGCTGAWTA-3´) to identify Tulasnella species that are not 
captured with universal and other fungal-specific primers. Sequencing was per-
formed in Macrogen Inc. (Amsterdam, The Netherlands).  
 
 

2.4. Bioinformatics and statistical analyses 
The pyrosequencing data was processed using a combination of ACACIA 1.52 
(Bragg et al. 2012) and MOTHUR 1.30.2 (Schloss et al. 2009). In brief, after 
quality filtering aberrant, short or low quality sequences were excluded (more 
details in paper I and II). High-quality sequences were clustered into Operatio-
nal Taxonomic Units (OTUs) at 97% similarity using CROP 1.33 (Hao et al. 
2011). Thereafter, all singletons were omitted and remaining OTUs were taxo-
nomically assigned based on the 10 best BLAST results of their representative 
sequences using the International Nucleotide Sequence Databases Collaboration 
(INSDC) and UNITE (Abarenkov et al. 2010) databases. Identified OTUs were 
manually screened for putative OrM fungal taxa. Only OTUs from the main 
OrM fungal groups (Tulasnellaceae, Ceratobasidiaceae and Sebacinales) were 
considered potential mycorrhizal partners, because of the information from the 
roots of these focal orchid species or their congeners that was available at the 
time, and used for further analyses. For paper II, we additionally conducted in-
dicator species analysis (Dufrene & Legendre 1997) to detect characteristic fun-
gal taxa associated with studied orchid species, O. militaris and P. chlorantha. 

Multiple statistical analyses, i.e., different versions of analysis of variance 
(ANOVA), regression, were used to test the main determinants of putative OrM 
fungal richness in soil and roots (papers I and II). In both studies, we calculated 
residuals of OTU richness in relation to the square root of sequencing depth to 
account for the unequal sequencing depth across samples (Tedersoo et al. 2014). 
In addition, we analysed the relationship between the richness of putative OrM 
fungal taxa and the distance from host plant for each transect individually and 
across study sites with linear regression (paper II). This potential relationship 
was explored at two distances of transect, e.g. up to 1m and maximum distance 
of the transect.  

Multivariate permutational analysis of variance (PERMANOVA) was per-
formed to identify the main determinants of the putative OrM fungal commu-
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nity composition in soil and roots as implemented in adonis routine of the 
Vegan package of R (Oksanen et al. 2013; R Core Team 2014; papers I and II). 
Raup-Crick and Bray-Curtis indices were used to generate distance matrices for 
community composition for paper I and II, respectively. Patterns of community 
composition and the effects of significant variables were visualized using a 
Non-metric Multidimensional Scaling (NMDS) using the R software package 
Ecodist (I) or Vegan (II).  

For paper II, the community variation for putative OrM fungal taxa among 
each soil transect sample points was analysed with Mantel tests as implemented 
in Ecodist package of R (Goslee & Urban 2007). To test the spatial autocorre-
lation in OrM fungal community composition across soil samples per transect 
we calculated Mantel correlograms at nine distance classes. Bray-Curtis and 
Euclidean indices were, respectively, used to generate distance matrices for 
community composition of putative OrM fungal taxa and geographical coordi-
nates. For the study sites with significant spatial turnover, we calculated the 
slope of the relationship between the geographic distance matrix and commu-
nity dissimilarity matrix (Bahram et al. 2013).  

 
 

2.5. Sequence annotations  
In paper III, we focused on all public OrM fungal ITS sequences of the INSDC 
as mirrored in the UNITE database, available as of January 18, 2011. Only short 
sequences (<200 bp in length) and sequences derived from NGS studies were 
excluded. The annotation of sequence quality and addition of metadata to the 
existing INSDC entries were performed in two steps. The first step was based 
on taxonomic group searches and the second on scientific study searches (Fig. 1 
in paper III). In the first step, all OrM fungal taxonomic groups were retrieved 
using the names of the inclusive taxa as search strings in the organism field in 
the PlutoF workbench. In addition, several randomly selected representative se-
quences or fully identified species of OrM fungi were used as a query in 
BLASTn and emerencia searches against INSDC for retrieving potential OrM 
fungi among unnamed sequences. Subsequently, all of these sequences were 
aligned multiple times, followed by blast searches and Maximum Likelihood 
analyses. In this way, we could identify chimeras, reverse complementary se-
quences and sequences belonging to non-targeted taxa. In the second step, 
sequences of OrM fungi were downloaded by studies and provided with meta-
data on the isolation source, locality and interacting taxon (host). In addition, 
we added a remark whether or not fungus formed pelotons and/or stimulated 
germination or development of orchids. Both remarks provide considerable 
confidence to say that a fungus can form OrM. 
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3. RESULTS 

3.1. Orchid mycorrhizal fungal richness 
In total we detected 67 and 61 OTUs (species) of putative OrM fungi in tem-
poral (I) and spatial (II) variation analyses, respectively. The number of OrM 
fungal OTUs was significantly higher in forest than in meadow soil (I). Most of 
the OrM fungi in forest were OTUs of Sebacinales. Overall, Sebacinales was 
the most OTU-rich OrM fungal taxon in the soil samples (paper I and II). In 
study I, we found 46 OTUs assigned as Sebacinales (average 0.64 OTUs per 
soil sample), whereas in study II the number of OTUs of Sebacinales was 34 
(average 0.12 OTUs per soil sample). The number of OTUs of Ceratobasidia-
ceae and Tulasnellaceae in soil samples varied across studies, yet the range of 
OTUs for both was noticeably lower than OTUs of Sebacinales. In study I, 
Ceratobasidiaceae and Tulasnellaceae accounted for 10 and 5 OTUs, respecti-
vely. In study II, the respective families accounted for 9 and 13 OTUs. Across 
semi-natural grasslands, the number of OrM fungal OTUs remained unaffected 
by studied environmental variables (paper II). Similarly, the richness of puta-
tive OrM fungal OTUs was unaffected by the spatial proximity of the host 
plant. In only a few sites did we find that the richness of some OrM fungal 
OTUs declined with increasing distance from the host plants (paper II).  

In roots, we found that the richness of putative OrM fungal OTUs studied in 
semi-natural grasslands was significantly affected by host species (paper II). In 
particular, the richness of OrM fungal OTUs was higher in the roots of O. mili-
taris than in the roots of P. chlorantha. However, the number of OrM fungal 
OTUs in the roots of O. militaris did not differ substantially from the number of 
OrM fungal OTUs detected in the roots of C. calceolus and N. ovata (I).  

 
 

3.2. Orchid mycorrhizal fungal community composition 
Overall, we found some factors driving the variation in the community compo-
sition of putative OrM fungi in soil. The community composition of putative 
OrM fungi in soil samples from semi-natural grasslands were affected by 
grazing and spatial factors (paper II), whereas habitat and time played a negli-
gible role for OrM fungi in soil samples studied in meadow and forest sites 
(paper I).  

In roots, the community composition of putative OrM fungi displayed more 
distinguishable patterns. The community composition of the OrM fungi in roots 
was primarily affected by the host (papers I, II). The roots of O. militaris and C. 
calceolus were predominately associated with Tulasnellaceae OTUs, whereas 
Sebacinales and Ceratobasidiaceae colonised most commonly the roots of N. 
ovata and P. chlorantha, respectively (Table 3 in I and Fig. 2 in paper II). In 
case of the mycobionts of O. militaris, the indicator species analysis revealed 
that in addition to Tulasnellaceae, OTUs of Sebacinales were also characteristic 
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partners (Table 2 in II). In addition to the host effect, we found that habitat and 
time also affected OrM fungal community composition (Fig. 3a in I). The effect 
of these factors was particularly evident in the OrM fungal community of N. 
ovata. The composition of OrM fungal community in roots sampled across semi-
natural grasslands was not affected by local environmental conditions (paper II).  

 
 

3.3. Orchid mycorrhizal fungal spatial structure  
In paper II, Mantel tests indicated significant spatial turnover in a few study 
sites for putative OrM fungal taxa. The average slope of distance-decay of simi-
larity for putative OrM fungi was low. In only a single site did Mantel correlo-
grams reveal significant positive autocorrelation for putative OrM fungal taxa in 
soil at fine spatial scale.  

 

3.4. Annotation of orchid mycorrhizal fungal sequences  
As of January 18, 2011, INSDC comprised 183,208 fungal ITS sequences, of 
which 2,267 were recovered from the roots of orchids (III). Of these OrM 
fungal sequences, we identified and annotated 11 (0.5%) chimeric sequences 
and 121 (5.3%) sequences of potentially low quality. In the second step of anno-
tation, we supplemented sequence entries with metadata retrieved from 93 OrM 
fungal studies. The availability of metadata varied greatly among mycorrhizal 
types. We found that OrM fungal sequences were most frequently equipped 
with information on host (1608 entries), isolation source (1335) and country 
(1150), whereas information on geocode (i.e. latitude and longitude, 91) was 
particularly scarce and no information on whether or not fungus formed pelo-
tons and/or stimulated germination or development in orchids was available. 
Most of the missing information we retrieved and added to the sequence entries 
of OrM fungi was on country (903 entries), followed by information on iso-
lation source (874), geocode (605) and host (557). In addition, we obtained 
1,591 and 676 sequences originating directly from orchid roots and living cultu-
res, respectively. The majority of experimentally tested isolates stimulated seed 
germination or growth of their host plants. These annotated sequences are 
publicly available via UNITE (http://unite.ut.ee/). 
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4. DISCUSSION 

In general, our findings demonstrate that the community composition of 
OrM fungi in orchid roots is primarily host-dependent and only 
secondarily affected by other factors (I, II). All orchid species studied by us 
were associated with multiple OrM fungi, although distinctive preferences for 
fungal partners were present among species. In particular, C. calceolus and O. 
militaris associated preferentially with Tulasnellaceae, whereas P. chlorantha 
and N. ovata favoured Ceratobasidiaceae and Sebacinales, respectively. These 
results are consistent with the previous reports of respective orchid species 
(Shefferson et al. 2005, 2007, 2008; Jacquemyn et al. 2010, 2011a, 2012a, 
2015; Lievens et al. 2010; Těšitelová et al. 2015; Esposito et al. 2016). To date, 
there is a large amount of evidence from high-throughput sequencing studies 
that multiple fungal species co-occur within orchid roots, however, one or two 
fungal taxa tend to dominate over others (e.g. Jacquemyn et al. 2015; Těšitelová 
et al. 2015; Esposito et al. 2016). It has even been shown that more than one 
fungus can colonise a single peloton (Kristiansen et al. 2001). Association of an 
orchid with several OrM fungal taxa provides a wider range of nutrients via 
mycorrhizal fungi (Nurfadilah et al. 2013) and the orchid can be expected to 
have better opportunities for survival in nature, yet a single widespread fungus 
could be sufficient for the distribution and abundance of orchids (McCormick & 
Jacquemyn 2014). Therefore, the low number of OTUs found in the roots of C. 
calceolus does not necessary mean that this species is facing extinction. It has 
been shown that widely distributed C. calceolus exhibits strikingly narrow 
mycorrhizal specificity (Shefferson et al. 2007). Many studies of photosynthetic 
orchids indicate that the decline of orchids species and rarity is not necessarily 
related to mycorrhizal specificity (Shefferson et al. 2007; Bailarote et al. 2012; 
Pandey et al. 2013). Besides the main OrM fungi in roots of autotrophic 
orchids, other fungi, such as EcM, saprotrophs, endophytes and pathogens, have 
been frequently recorded (Dearnaley et al. 2012; Kohout et al. 2013), although 
their functional importance remains unclear. So far, we only know that EcM 
fungi provide nutrients to PMH and MH orchids (Gebauer & Meyer 2003). A 
recent study of stable isotopes suggests that EcM fungi in photosynthetic 
orchids are not massively contributing to the carbon budget of orchids 
(Jacquemyn et al. 2017b).  

The community composition of OrM fungi in roots was significantly 
distinct in different habitats (I). Local environmental factors showed no 
effect on OrM fungal communities of orchids across semi-natural grass-
lands (II). The effect of habitat was conspicuous in the community composition 
of OrM fungi of N. ovata. It was evident for N. ovata that the OTUs of Serendi-
pitaceae occurred equally in root samples from forest and meadow sites, 
whereas OTUs of the EcM Sebacinaceae were more frequent in forest sites. 
Two other studies of N. ovata have also shown that the most common as-
sociating partners were from the fungal family Serendipitaceae (Jacquemyn et 
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al. 2015; Těšitelová et al. 2015). However, the composition and phylogenetic 
position of Sebacinales associated with N. ovata were only little influenced by 
the habitat type (Těšitelová et al. 2015). Our results seem to be in line with 
other studies that have shown noticeable differences in the OrM fungal commu-
nities of single orchid genus as well as of single orchid species (Pandey et al. 
2013; Esposito et al. 2016; Jacquemyn et al. 2016; Waud et al. 2017). These 
findings suggest that habitat conditions can affect the occurrence of OrM fungi, 
hence the plant-fungus interaction. For example, the variation in OrM fungal 
communities can be driven by soil conditions, primarily moisture and pH 
(Jacquemyn et al. 2015). However, we found no evidence that the OrM fungal 
community composition in soil was affected by the habitat type. We can suggest 
that the plant-fungus interaction is driven by specific physiological needs of 
orchid species in the habitat. A somewhat similar conclusion can be drawn from 
stable isotope studies that have shown different carbon nutrition of N. ovata 
depending on the study site (Gebauer & Meyer 2003). Across semi-natural 
grasslands, we found that OrM fungal as well as total fungal community 
composition in soil were affected by the intensity of grazing. However, OrM 
fungal community composition in roots was not affected by the studied environ-
mental factors. 

The community composition of OrM fungi in roots changed significantly 
over time (I). However, when orchid species were analysed separately, only the 
OrM fungal communities of N. ovata showed a significant change in time, 
whereas the effect of time on OrM fungi in C. calceolus and O. militaris re-
mained non-significant. This could be due to the fact that the latter orchid 
species were less intensively colonized. Ercole et al. (2015) showed a clear 
seasonal variation in the mycorrhizal associations of adult Anacamptis morio 
plants. It was shown that Tulasnella was more common in autumn and winter, 
whereas certain ascomycete from the pezizacean clade was very frequent in 
spring, and Ceratobasidium was more frequent in the summer (Ercole et al. 
2015). A similar change of ecologically different fungal guilds has been shown 
for P. albida by Kohout et al. (2013). They found that OrM fungi (predomi-
nantly Tulasnella species) colonised orchids in the summer and endophytes 
colonised the roots in the autumn, suggesting that the OrM fungi are necessary 
at certain developmental stages of the adult plants. Huynh et al. (2009) were 
only able to isolate the main OrM fungi from prefruiting phases of Caladenia 
formosa. Throughout the vegetation period, the intensity of OrM colonisation 
may vary and lead to a minimum level at some point, i.e., at fruiting time (Ras-
mussen & Whigham 2002; Roy et al. 2013; Gonneau et al. 2014). Respectively, 
recent studies have found that the level of fungal C from OrM fungi decreases 
in above-ground organs towards the end of the growth season (Roy et al. 2013; 
Gonneau et al. 2014). We found no significant change in the richness of OrM 
fungi over the vegetative time, although the OTU richness of OrM fungal 
tended to be the lowest in August in O. militaris (annual roots), but not in C. 
calceolus and N. ovata (long-lived roots). It has been suggested that seasonal 
turnover of fungal symbionts occurs in orchids that have annual below-ground 
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structures rather than in those with perennial root systems (Taylor & Bruns 
1999). Notably, the previously studied orchids, A. morio, C. formosa and P. 
albida, that had different fungal guilds, are all tuberous (Huynh et al. 2009; 
Kohout et al. 2013; Ercole et al. 2015). Indeed, the change of symbiotic fungi 
inside roots may be dependent on the life cycle of symbiotic fungi. On the other 
hand, the putative OrM fungal community remained relatively stable in soil and 
there was negligible turnover during the vegetation period. Such different 
patterns of OrM fungal communities suggest that host plants may choose diffe-
rent mycobionts from the soil species pool over time. At the same time, we 
cannot exclude the possibility that detected OrM fungal taxa are not physio-
logically active, and thus make our assessment debatable.  

In soil, we found a few instances when the richness of OrM fungi de-
clined with distance from the adult host and limited evidence for spatial 
structure of OrM fungi (II). We found that forest soil contained more OTUs 
of OrM fungi than meadow soil (I), whereas across semi-natural grasslands, the 
number of OrM fungi remained the same and was not affected by studied 
environmental variables (II). Of all OrM fungal taxa in soil, Sebacinales was the 
most OTU-rich. The predominance of sebacinoid fungi over other OrM fungi 
has also been detected in other habitats (Voyron et al. 2017; Egidi et al. 2018). 
Fungi in the order Sebacinales are commonly present in soil samples around 
roots, although there is too little information on their life and nutrition in soil 
(Weiss et al. 2016). More information on nutritional traits could be revealed 
from genome analyses (Kohler et al. 2015). So far, it has been demonstrated 
that not all OrM fungi have the same ability to access nutrient and carbon 
sources (Kohler et al. 2015). Our data show also that OrM fungi found in roots 
were comparably well recovered from the soil adjacent to orchid roots (I). 
However, when we studied OrM fungi along transects from host plants, we 
detected only a few cases when the number of OrM fungal OTUs declined with 
the distance from the adult orchids (II). A somewhat similar result was recently 
reported by two other studies of OrM fungi in soil (Voyron et al. 2017; Egidi et 
al. 2018). One of these studies, Voyron et al. (2017), found that OrM fungal 
read numbers did not correlate with distance from adult orchid plant and Egidi 
et al. (2018) reported extremely rare occurrences of OrM fungi in soil directly 
beneath and distant from adult orchids. However, other recent studies have 
found distance-dependent declines in the abundance of certain OrM fungal taxa 
(McCormick et al. 2016; Waud et al. 2016b). This suggests that the distribution 
of some OrM fungi is dependant on their orchid host, but not for all potential 
OrM fungi in soil. OrM fungi are commonly regarded as unspecialised 
saprotrophs with independent distribution of their host plant (McCormick et al. 
2012). Distribution dependence on the host would be more expected for the 
partner for whom the association is obligatory, as it has been shown that the 
richness of obligately mutualistic EcM fungi declines with increasing distance 
from host trees (Dickie & Reich 2005). This again raises the question as to what 
kind of benefits the fungi gain from the orchids (Cameron et al. 2006, 2008) and 
whether orchids maintain the presence of OrM fungi in habitats (Selosse & 
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Martos 2014). Our spatial statistics revealed a weak spatial structuring for the 
communities of OrM fungi in soil, suggesting that they are randomly dispersed, 
like other saprotrophic fungi (Bahram et al. 2015). However, in orchid-rich 
Mediterranean grasslands in Italy, it has been shown that the distribution of 
OrM fungi in soil is similar to spatial patterns of other mycorrhizal fungi 
(Voyron et al. 2017). Some OrM fungi displayed higher frequency of spatial 
autocorrelation compared with others, which may reflect either different 
dispersal patterns or trophic strategies (Voyron et al. 2017). Taken together, it 
appears that OrM fungi regarded as saprotrophs display more complex and non-
uniform distribution patterns. Different distribution mechanisms can be 
presumed for OrM fungi that associate with fully or partially mycoheterotrophic 
orchids and at the same time form EcM with autotrophic plants (McKendrick et 
al. 2002; Těšitelová et al. 2012). 

Last but not least, we found that OrM fungal sequences deposited in 
public databases are poorly annotated with metadata and suffer from low 
read quality or chimeric sequences (III). Many other studies have claimed 
that a large proportion of fungal sequences in public databases are not fully 
identified or are misidentified, and additionally they may have technical arte-
facts or lack metadata (Ryberg et al. 2009; Kõljalg et al. 2013; Nilsson et al. 
2018). Unfortunately, third-party annotations are still not allowed in public 
databases (Bidartondo et al. 2008). However, there are several quality-filtered, 
narrow-niche fungal sequence databases and prokaryote databases (DeSantis et 
al. 2006; Pruesse et al. 2007; Le Calvez et al. 2009; Abarenkov et al. 2010). 
One of the fungal sequence datasets has been jointly annotated many times by 
fungal taxonomists (Kõljalg et al. 2013; Nilsson et al. 2018). As a part of one 
joint annotation, we have provided annotation of sequences quality and addition 
of metadata to the available OrM fungal entries in public databases. In this way, 
the sequences are more reliable and can be used in automated species identifiers 
or for large-scale studies in mycorrhizal data mining, fungal biogeography and 
phylogenetic community composition.  
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5. CONCLUSIONS  

In contrast to other mycorrhizal types, orchid mycorrhizal symbioses, which 
only include hosts from a single family, is unique anatomically, taxonomically 
as well as functionally. The main conclusions of this thesis are as follows: 
 The community composition of OrM fungi in roots was primarily host-

dependent (I, II). In some cases, the richness of OrM fungi was affected by 
host species (II). Cypripedium calceolus and Orchis militaris associated pre-
ferentially with the fungal family Tulasnellaceae, whereas Platanthera chlo-
rantha and Neottia ovata favoured fungal taxa Ceratobasidiaceae and Seba-
cinales, respectively. In particular, as shown in (II) the richness of OrM 
fungi was higher in the roots of O. militaris compared with the OrM fungi in 
the roots of P. chlorantha. 

 The community composition of OrM fungi in roots was significantly af-
fected by habitat, whereas local environmental factors showed no effect on 
OrM fungal communities of orchids (I, II).  

 The community composition of OrM fungi in roots was significantly 
affected by time (I). The effect of time and habitat was most clearly identi-
fied in the OrM fungal community of N. ovata. 

 In semi-natural grasslands, OrM fungi were randomly distributed and 
showed little evidence of a distance-dependent decline from the adult 
orchids (II). However, the richness of OrM fungi was very high in the soil 
adjacent to orchid roots (I). Mostly, the richness of OrM fungi in soil was 
affected by habitat, being the highest in forest sites (I). 

 Public databases deposited poorly annotated OrM fungal sequences and suf-
fered from low read quality sequences or chimeras (III). However, to date, 
this can be overcome with the third-party annotations. During one joint 
third-party annotation, we provided annotation of sequences quality and 
addition of metadata to the available OrM fungal entries in public databases. 
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SUMMARY IN ESTONIAN 

Orhideede mükoriisa seenekoosluste ajalised ja  
ruumilised mustrid metsa ja niidu ökosüsteemides 

Orhideelised ehk käpalised (sugukond Orchidaceae) on üks liigirikkamaid õis-
taimede sugukondi. Teadusele on kirjeldatud enam kui 28 000 liiki orhideesid, 
millest enamus levib troopikas ning lähistroopikas. Orhideed kasvavad väga eri-
nevates elupaikades (v.a kõrbetes) ja kõikjal maailmas (v.a Antarktikas). Käpa-
lised on tihedalt seotud nii putuktolmeldajate kui ka seenjuurt moodustavate 
seentega. Kuna käpaliste seemned on tolmpeened ning ilma idanemiseks piisa-
valt vajalike toitaineteta, siis sõltuvad nad idanemise faasis täielikult seene poolt 
transporditavatest toitainetest. Sellist toitumistüüpi nimetatakse mükohetero-
troofiaks. Pärast edukat seemne idanemist ja nn protokormi staadiumit (idandi 
algarengu faas) arenevad enamikul käpalistel rohelised lehed ning fotosünteesi-
võime. Samas on ka fotosünteesivate orhideede juured koloniseeritud seen-
sümbiontide poolt ning taim hangib jätkuvalt vähemalt osa toitainetest seene 
vahendusel. Mitmed eelnevad teadustööd on leidnud, et mükoriisaseente koos-
lused võivad muutuda orhideede erinevate arenguetappide jooksul ning täis-
kasvanud taimede juurtes mingil hetkel asenduda hoopis teist eluviisi seentega. 
Orhideede mükoriisaseened moodustavad taime juurerakkudes tihedaid seene-
niitide kogumikke ehk pelotone (vt Foto 1, lk 8). Viimased esinevad samuti 
orhideede idanevate seemnete, protokormi ja idandi rakkudes. Orhideedel 
mükoriisat moodustavad seeneliigid kuuluvad fülogeneetiliselt üksteisest kaugel 
asetsevatesse taksonitesse. Tavaliselt on rohelised, s.o fotosünteesivad orhideed 
seotud mullas leiduvate saproobidega sugukondadest Tulasnellaceae ja Cerato-
basidiaceae ning seltsist Sebacinales. Seevastu mükoheterotroofsed (mitte-foto-
sünteesivad) orhideed on vahetanud saproofsed seened biotroofsete vastu. 
Enamasti on tegu samal ajal puujuurtega ektomükoriisat moodustavate seentega 
sugukondadest Thelephoraceae ja Russulaceae. Tõenäoliselt on ektomükoriisa 
seened stabiilsemad ja pikaealisemad toitainetega „varustajad“ kui eelnimetatud 
saprotroofid. Viimased sõltuvad sobiva surnud orgaanilise aine olemasolust 
mullas, mis on ebastabiilsem ja lühiajalisem toitainete allikas kui puujuured. 
Mükoheterotroofsete orhideede puhul on selge, et orhideed parasiteeritavad oma 
seensümbiontidel. Selline parasitism esineb kõikidel orhideedel arengu algus-
etappidel, kui taime seeme idaneb. Fotosünteesivate orhideede puhul on aga 
siiani lahtine küsimus, mis kasu saab seensümbiont antud kooseluvormist, kuna 
tehniliselt on seda keeruline looduses uurida. Väheste tööde tulemused annavad 
alust arvata, et toitained võivad vähesel määral siiski liikuda ka orhideedelt 
seensümbiondile ning kooselu jooksul avalduvad geenid, mis viitavad mutua-
lismile. Alternatiiviks toitainetele võib orhidee pakkuda seenele hoopis vita-
miine või pakub seeneniitidele kaitset. Orhideede mükoriisaseened on looduses 
laialt levinud ning nende levikut orhideed ei mõjuta. Kuid orhidee jaoks mängib 
seenpartnerite olemasolu ja ohtrus kasvukohas olulist rolli. Seensümbiontide 
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levikut ning neid mõjutavaid, orhideedest mittesõltuvaid faktoreid on looduses 
vähe uuritud. Tänu molekulaarsetele meetoditele on võimalik neid seeni mää-
rata otse mullast. Selleks on vajalik referentsandmebaasi, mis sisaldab eksper-
tide poolt määratud seente geenijärjestusi. Määramiseks võrreldakse neid siis 
mullast, taimejuurtest või teistest bioloogilistest proovidest saadud seente geeni-
järjestustega.  

Antud doktoritöö käigus uuriti fotosünteesivate orhideeliikide mükoriisa 
seenekoosluste ajalisi ja ruumilisi mustreid. Töö eesmärgiks oli välja selgitada, 
1) kuidas muutuvad ühe vegetatsiooniperioodi vältel täiskasvanud orhideede 
seensümbiontide kooslused; 2) kas seensümbiontide kooslused on mõjutatud 
kasvukohatüübist; 3) kas seensümbiontide rohkus on mõjutatud orhidee lähe-
dusest; 4) millised on nende seenekoosluste ruumilised mustrid. Lisaks  oli ees-
märgiks arendada seente globaalse geenijärjestustel põhineva määraja UNITE 
referentsandmebaasi. Selle käigus töötati ja analüüsiti artikleid, mis kasutasid 
orhideede mükoriisaseente määramiseks molekulaarseid meetodeid. Saadud 
tulemuste põhjal annoteeriti ja täiendati rahvusvahelistes geenipankades 
olemasolevaid seente geenijärjestusi. 

Doktoritöös selgus, et orhideede mükoriisaseente kooslused on esmalt mõju-
tatud orhidee liigist ning seejärel kasvukeskkonnast ning orhidee arenguetapist 
(I). Doktoritöös leiti, et kaunis kuldking (Cypripedium calceolus) ja hall käpp 
(Orchis militaris) eelistavad seenpartneritena põhiliselt saproobseid seeni sugu-
konnast Tulasnellaceae, samas rohekas käokeel (Platanthera chlorantha) eelis-
tas saproobe sugukonnast Ceratobasidiaceae ning suur käopõll (Neottia ovata) 
seeni seltsist Sebacinales (I, II). Viimase kahe orhideeliigi seensümbionte ei 
olnud varem uuritud. Kasvukohatüübi ja orhidee arenguetapi mõjud orhideede 
mükoriisaseente kooslustele olid kõige paremini nähtavad suure käopõlle juur-
tes (I). Seevastu mullas nende seente kooslused ei olnud mõjutatud kasvukoha-
tüübist ega proovide kogumise ajast (I). Sellest lähtuvalt võib eeldada, et orhi-
dee valib seensümbiondid sõltuvalt oma füsioloogilistest vajadusest ja seene-
liikide kättesaadavusest. Ühe kasvukohatüübi piires olid orhideede mükoriisa-
seened mullas levinud juhuslikult ning üldjuhul ei mõjutanud nende seente 
esinemist mullas kaugus peremeestaimest (II). Samal ajal esines orhideede 
mükoriisaseeni ohtralt orhideede juurte vahetus läheduses ning nende liigirikkus 
oli mõjutatud kasvukohatüübist (I). Kõige rohkem leiti orhideede mükoriisa-
seeni metsa proovidest (I). UNITE andmebaasi annoteerimisel selgus, et väga 
vähesed orhideede mükoriisaseente DNA järjestused avalikes andmebaasides 
sisaldavad metaandmeid, eelkõige proovialaga seonduvaid andmeid (III). Lisaks 
selgus, et andmebaasides oli mitmeid ebakvaliteetseid orhideede mükoriisa-
seente DNA järjestusi (III). Suurte andmemahtude analüüsimisel võib see osu-
tuda tõsiseks probleemiks. Andmebaasi annoteerimise tulemused tehti ava-
andmetena kõigile kättesaadavaks. 
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