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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 

VALIDATION OF LOW VELOCITY IMPACT ON BIOCOMPOSITE FLAT 
PLATE LAMINATES  

By 

QISTINA BINTI MOHD JAMAL 

December 2016 

Chair: Dayang Laila Binti Abang Abdul Majid, PhD 
Faculty: Engineering 

Impact analysis under low velocity was carried out on flat plate structure at 
normal and oblique impact with energy level of 3J to 9J with interval of 3J. 
Utilization of natural fiber reinforced with polymer and hybridizing it with synthetic 
fiber were introduced. The aim of the study was to assess the effects of low 
velocity impact on biocomposite structure composed of chopped strand mat 
(CSM) glass fiber, kenaf fiber and hybrid of both materials and epoxy as resin 
material. Drop weight impact test of flat plate structure and determination of 
mechanical characterization were carried out with samples prepared under 
vacuum infusion method for glass/epoxy, kenaf/epoxy and hybrid composites 
composed of those two material. Glass/epoxy composites exhibit better 
mechanical properties as compared to kenaf/epoxy composites. From the 
experimental work, it was found that the impact energy level influenced the 
impact peak force proportionately. Hybrid composites generates damage 
propagation with combination of damage propagation from individual fiber of 
glass and kenaf reinforced polymer. The severity of damage was high at higher 
impact energy although significant damage at impact energy of 3J was detected 
under drop weight impact test where internal damage on all three configurations 
had occurred which further suggested reduction in residual strength. Finite 
element analysis was then carried out for flat plate model of all three 
configurations and validated against the experimental work. It was found that 
validation on all configurations meet the agreement with experimental results. 
Further finite element analysis considered all configuration based on the 
validation results for flat plate on oblique impact. The influence of impact angle 
was found to affect the maximum impact force of the impacted material where at 
higher impact energy the respond of maximum impact force was significant. 
However, there is slightly impact damage detected at lower impact energies 
under oblique impact. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Sarjana Sains 

KAJIAN ANALISIS MENGENAI PENGESAHAN IMPAK BERKELAJUAN 
RENDAH TERHADAP STRUKTUR PLAT RATA BIOKOMPOSIT 

Oleh 

QISTINA BINTI MOHD JAMAL 

Disember 2016 

Pengerusi: Dayang Laila Binti Abang Abdul Majid, PhD 
Fakulti: Kejuruteraan 

Satu kajian telah dijalanlan terhadap struktur plat rata terhadap analisis impak 
dalam kelajuan minima secara menegak dan serong berbekalkan tenaga impak 
antara 3J hingga 9J. Penggunaan campuran antara serat gentian asli dan serat 
sintetik diperkenalkan dalam penyelidikan ini. Tujuan kajian ini dijalankan bagi 
mengenalpasti kesan penggunaan gentian asli yang terdiri daripada serat kenaf 
dan serat sintektik terdiri daripada gentian kaca dengan bahan pengukuhan 
epoksi terhadap analisis impak berkadar kelajuan minima. Eksperimen impak 
dan eksperimen perincian terhadap sifat mekanikal bahan telah dijalankan 
dengan penyedian sampel seperti gentian kaca , serat kenaf dan epoksi melalui 
proses infusi vacuum. Komposit gentian kaca menunjukkan kelebihan melalui 
eksperimen perincian terhadap sifat mekanikal bahan berbanding komposit yang 
terdiri daripada serat kenaf. Kepentingan perincian terhadap sifat mekanikal 
bahan diketengahkan oleh kerana penggunaan hasil dapatan digunakan untuk 
analisis berangka. Melalui eksperimen impak, hubungan antara tahap tenaga 
impak berkadar terus dengan daya maksimum impak. Hibrid komposit 
menunjukkan tahap kerosakan terhadap sampel merangkumi gabungan gentian 
kaca dan gentian serat kenaf berikutan hybrid komposit terdiri daripada 
gabungan dua bahan tersebut. Tahap kerosakan paling tinggi adalah pada 
sampel yang memiliki jumlah impak tenaga yang tinggi walaubagaimanapun 
pada sampel yang di impak pada jumlah tenaga yang paling rendah, kerosakan 
dapat dilihat telah terhasil melalui kerosakan di dalam sampel tersebut. 

Kajian terhadap analisis impak berkelajuan rendah telah dijalankan melalui 
kaedah analisis berangka terhadap plat rata untuk ketiga-tiga konfigurasi 
komposit dan pengesahan dijalankan berdasarkan keputusan daripada hasil 
eksperimen. Hasil menunjukkan kesemua sampel memiliki keputusan yang 
hampir dengan hasil eksperimen. Kesan hasil analisis berangka dipengaruhi 
oleh ciri kerosakan yang terhasil daripada eksperimen pengenalpastian ciri 
bahan komposite yang digunakan. Evolusi kerosakan terhadap sampel 
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mengambil kira tenaga kerosakan yang diperolehi daripada hubungan antara 
ketegasan dengan sesaran dimana nilai tersebut diambik kira melalui luas 
bawah lengkung. Kajian terhadap analisis impak secara menegak dan serong 
dijalankan bagi  struktur plat rata dengan impak tenaga 3J, 6J dan 9J. Sumber 
impak serong yang berdarjah mempengaruhi nilai daya impak maksimum 
terhadap sampel. Hasil kajian mendapati, impak serong memberikan nilai daya 
impak yang rendah berbanding impak menegak terhadap sampel.  
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1 

Figure 1.1: Average aircraft composite structures 
requirements by market sector from 2011-2020.  

[Adapted from:(Red, 2012)] 

CHAPTER 1 

INTRODUCTION 

1.1  Background 

Composite materials are well established in the application of aerospace, 
automotive and marine industry. Composite materials compromise of two or 
more dissimilar components either chemical or physical properties reinforced 
with plastics and results in greater properties than the individual component. 
They provide high specific strength and stiffness properties with the direction of 
fiber can be tailored into desired design for specific application compared to 
metallic material. Recently, attention has been focusing on utilizing 
biodegradable material for commercial purposes. The advantages of using 
natural fiber composite are low density, low cost, less harmful than 
conventional material and possess comparable specific strength and stiffness. 

In aerospace, composite materials are prone to impact loading or damage due 
to low transverse and interlaminar shear strength, which may be subjected by 
dropping tools during the maintenance process or hit by the debris from a 
runaway. The low energy impact can be barely visible with naked eyes and 
potentially threatening that can induce structure failure when further loading 
applied. The damage that may be induce throughout the impact are matrix 
cracking, fibre fracture and delamination. Application of composite in aviation 
industry are widely used since 1970 based on evolution composite application 
at Airbus(Faivre & Morteau, 2011) and described forecast on annual aircraft 
composites structures requirement from 2011 till 2020(Red, 2012). An increase 
in the usage of composite in the commercial aircraft is due to high specific 
stiffness that can reduce in terms of weight of the aircraft hence saving in fuel 
consumption. An example in increase usage of composite materials in aircraft 
is the Boeing’s 787 Dreamliner that uses up to 50% composite by total weight, 
as shown in Figure1.2 
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Figure 1.2: Composite materials in Boeing 787. 

[Adapted from (Red, 2012)] 

1.2  Natural fibers 

Natural fiber composite can be defined as a component consisting either 
natural fiber as reinforcement or the usage of natural polymer or combination of 
both results in better properties than the individual material. Natural fibers can 
be classified as wood and non-wood (leaf, seed/fruits, stalk,stem and grass) 
fibers as in Table 1.1(John & Thomas, 2008; Mohanty, Misra, & Drzal, 2002) 

Table 1.1 :  Classification of natural fibers. 
[Adapted from(John & Thomas, 2008; Mohanty et al., 2002)] 

Non-
wood 

 Leaf
-Abaca
-Mauritius
hemp
-Sisal

 Grass
-Bagasse
-Bamboo

 Bast/Stem
-Jute
-Hemp
-Kenaf
-Nettle
-Roselle
-Ramie

 Stalk
-Straw(Cereal)

 Seed/Fruits
-Coir
-Kapok
-Sponge gourd
-Oil palm

Wood Soft and hardwood 

The structure of a natural fiber consists of cellulose, hemicellulose, lignin, 
pectin and waxes. Each different type of plants has its own cellulose content. 
The cellulose content for the plant determines the stiffness and tensile strength 
of the fibres(John & Thomas, 2008). (Biopolymers such as polysaccharides 
(starch,cellulose) proteins (collagen), polyesters (polyhydroxyalkanoates), 
liginin, and natural fibers are also highlighted in research as they provide as an 
alternative towards petroleum based matrix polymers. Natural fibres offer good 
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thermal insulation, better electrical resistance and improved acoustic 
insulation(John & Thomas, 2008). 

Attention towards the eco-friendly materials are due to the awareness on 
environmental problem and depletion of petroleum-based products. The 
utilization of natural resources may reduce the emission of carbon dioxide as 
the decomposition of natural fiber composite can curb greenhouse 
effects(Avella 2007; Holbery & Houston, 2006; Mohanty, Misra, & Drzal et al., 
2002; Mohanty, Misra, & Drzal, 2012). There will be no presence of excess 
carbon dioxide in the atmosphere cause by combustion or decomposition(John 
& Thomas, 2008).  A.K. Mohanty et al (2002) revised that around 10-11 million 
of vehicle which 96% are cars being scrapped in the United States. From this 
action, about 25% of the materials are from plastics waste that could not be 
decompose hence contribute to the environmental problems. The decrease of 
reliance on petroleum based products has created a demand and need for 
development of bio based composite. European legislation is enforcing law on 
employing biodegradable material to the manufacturers to reduce the 
dependency towards petroleum based products. Table 1.2 showed an example 
of implementation of natural fibers composite in the automotive 
applications(Holbery & Houston, 2006). 

Table 1.2: Application of natural fiber in automotive. 
[ Adapted from(Holbery & Houston, 2006)] 

1.3  Airborne radome 

Radomes are defined as a structure that is transparent to electromagnetic 
waves and at the same time serve to protect the antenna from damage and 
environmental conditions(Cary, 1983). Radomes are being utilize for certain 

Manufacturers Parts Material 

Honda Floor area of Pilot SUV Wood fiber 

General Motors 

Door panel Mixture of kenaf and 
flax fiber Package tray 

Seat backs 

Wood fiber Floor cargo area 

Ford Sliding door 

Findlay 
Industries 

Headliners Hemp,flax,kenaf and 
sisal mixture 

Body panels Soy-resin 
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Figure 1.4: The shipboard 
radome installation.  

[Adapted from:(Croatia, 2015)] 

application such as weather radar, air traffic control, satellite communications, 
and telemetry which can be construct into several shapes according to Figure 
1.3and Figure 1.4(Croatia, 2015; “Ground Radome,” 2014) 

The airborne radomes are usually constructed in a hemispherical shape. For 
the selection type of the radome, under reliability section in MIL-R-7705B the 
radome may provide a service life of at least 500 flight hours specific for 
disposable radome or the radome require to function at its maximum service 
life with least of maintenance. The radomes may encounter impacts from high 
velocity rain, rain erosion,freeze-thaw cycle, single/multiple impacts, lightning 
strikes and static electricity(Lang, 1994). Based on MIL-STD-7705B, under sub 
chapter ‘requirement in considering performance of the radome by the 
environment requirement’ state that the radome need to withstand 
delamination, fracture and degradation when subjected to rain impact, rain 
erosion, hail impact and atmospheric electricity as in Figure 1.6and Figure 
1.5(Alves, 2015). 

Figure 1.3: The caribou radome.  
[Adapted from:(“Ground Radome,” 2014)] 
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Figure 1.6: Rain erosion testing. 

[Adapted from:(Alves, 2015)] 

Generally, radomes are made of dielectric material and the existing material 
that made up the aircraft radome is fiberglass type-E which is classified under 
electrical insulation that is suitable for the radome application. Due to its 
concern in maintaining the electrical performance to be function efficiently, 
natural fibers show an improvement in low dielectric constant than the existing 
material. The polarizability of a material determines its dielectric constant 
especially in hydrophilic material. Upon the increase in the polarizability of a 
material, the dielectric constant will increase(Pathania & Singh, 2009). The 
importance in having a low dielectric constant is due to minimize the reflection 
so that to reduce insertion loss and the impact of radiation pattern.   

Potential of implementing natural fibers as a radome structure due to its low 
dielectric strength found by Mohd Haris(2014) encourage this research to be 
carried out in determining its sustainability to withstand impact. Hence, in 
current study, low velocity impact of biocomposite flat plate specimens will be 
carried out since considering the implementation of the material towards 
radome rather than focusing on the impact of the geometrical structure. Kenaf 
fiber will be used as the reinforcement material with combination of glass fiber 
E-type. Throughout this research, numerical analysis will be utilized in 
considering normal impact validated with experimental drop weight impact test 

Figure 1.5: Hail impact.  

[Adapted from:(Alves, 2015)] 
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1.4  Problem Statement 

Composite structures are susceptible to impact damage due to its low 
transverse strength. The factors that affecting impact resistance or impact 
damage are due to types of fibre, types of matrix, types of impactor, stacking 
sequence, fiber orientation, temperature, volume of fibre/matrix loading and 
geometry of specimen impacted(Abrate, 2005; Cantwell & Morton, 1989; 
Dhakal, Zhang, Bennett, & Reis, 2012; Gupta & Velmurugany, 2002; Reid & 
Zhou, 2000; Richardson & Wisheart, 1996). Impacted structure under low 
velocity impact may cause a reduction on the impact strength. The importance 
of determining low velocity impact was due to detect the damage tolerance of 
the composite structure.  The internal damage that is barely visible will induce 
the structure to fail with constant applied load. Implementation of natural fiber 
composite as an alternative to synthetic fibers is widely researched upon. The 
current research work is a continuation from Mohd Haris (2014) whereby the 
results showed a potential in utilizing hybrid of kenaf fiber and glass fiber 
reinforced with epoxy for aitrcraft radome considered determination its material 
characterization and impact strength under quasi static analysis. Meanwhile in 
this research, the importance of low velocity impact was considered due to 
determination on the sustainability of the materials in resisting low velocity 
impact damage.  A lot of studies have been carried out on low velocity impact 
of composite with natural fiber or conventional fiber but there is little attention 
investigating low velocity impact of natural fiber composites and hybrid with 
synthetic fiber, which is a potential material for aircraft radome. Most of the 
studies have been carried out on flat plat structures with synthetic 
fibers(Dhakal, Skrifvars, Adekunle, & Zhang, 2014; Dhakal et al., 2012; Dhakal, 
Zhang, Richardson, & Errajhi, 2006; Ismail & Hassan, 2014; Srinivasa & 
Bharath, 2011). In this research, impact energy of 3J to 9J with interval of 3J 
which are in the range of low velocity impact will be applied and kenaf fiber is 
an alternative in replacing Nomex honeycomb core which is the existing core 
material of the radome. Even though sandwich structure give good 
performance in improving stability and lightweight material but solid laminate 
provides better resistance to damage and damage tolerance(Abrate, 2005). 
Although solid laminate is heavier but then with the advantage of kenaf fiber 
which is low density may be one of the solution in providing a greener radome 
material.  

1.5  Aims and Objectives of the Study 

The objectives of the study are as follows: 

1. To investigate low velocity impact under drop weight impact
tester with energy levels of 3J, 6J and 9J for glass/epoxy,
kenaf/epoxy and hybrid kenaf-glass/epoxy laminates.

2. To carry out low velocity impact simulation under
Abaqus/Explicit with validation of experimental results with
energy levels of 3J, 6J and 9J for glass/epoxy, kenaf/epoxy
and hybrid kenaf-glass/epoxy laminates.
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3. To carry out low velocity oblique impact simulation with oblique
angles of 15°, 30° and 45° with energy levels of 3J, 6J and 9J
for glass/epoxy, kenaf/epoxy and hybrid kenaf-glass/epoxy
laminates.
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