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Resumo alargado

Os modelos matemáticos são ferramentas usadas no estudo das dinâmicas das doenças infec-

ciosas. Muitas vezes servem para estimar parâmetros biológicos que são dispendiosos ou dif́ıceis

de obter com a realização de experiências. No ramo das doenças infecciosas, o crescente aumento

de resistência antimicrobiana dos patogénios coloca grandes desafios à comunidade cient́ıfica e

médica. A comunidade cient́ıfica está a ficar consciente dos riscos que as prescrições longas de

antibióticos trazem não só para a infecção mas também para a criação de resistência no micro-

bioma residente no hospedeiro. Dado que o número de agentes bacterianos resistantes a um ou

mais medicamentos antimicrobianos continua a crescer anualmente e que a indústria farmaceu-

tica não consegue acompanhar com a criação de novos antibióticos, pede-se urgentemente uma

descoberta sobre como lidar e remover agentes patogénicos resistentes de forma eficaz, evitando

também o seu surgimento em novas infecções. O uso de modelos biomatemáticos nesta temática

tem permitido significativos avanços nos últimos anos. Actualmente, abordagens agressivas e

moderadas estão a ser discutidas como estratégias terapêuticas para o tratamento de infecções

bacterianas na presença de resistência a antibióticos.

Neste trabalho, estudamos as dinâmicas da infecção intracelular combinando os efeitos

do tratamento com antibióticos e respostas imunes adaptativas. Os modelos ODE são basea-

dos em processos das bactérias que causam infecções agudas como a listeriose, provocado pela

bacteria Listeria monocytogenes e crónicas, como a tuberculose provocado pela bacteria My-

cobacterium tuberculosis. Estas bactérias desenvolvem-se intracelularmente, invandindo células

do hospedeiro para a proliferação da população. Primeiro, procedemos à análise do modelo

recorrendo a duas linguagens de programação, Mathematica e MatLAB. Encontramos a com-

binação de parâmetros entre macrófagos-bactérias-imunidade que possibilitam a manutenção da

infecção no hospedeiro ou a sua remoção. Para haver sobrevivência da espécie bacteriana no

hospedeiro, a infecção não pode ser suficiente forte para matar o hospedeiro, mas também não

pode ser fraca de modo a haver proliferação da bacteria. Para tal, há uma combinação cŕıtica

nos seus parâmetros de contágio e morte que permite a manutenção no hospedeiro.

Estudamos, também, as consequências da administracção de tratamento antimicro-

biano relativo a várias medidas da infecção, incluindo duração, carga bacteriana, patologia e

resistência. Notamos que diferentes combinações de duração e dose do tratamento podem levar

a infecções bastante semelhantes e de que o mesmo tratamento tem efeitos diferentes dependente

de se a administração é realizada no ı́nicio da infecção ou no estágio final do seu desenvolvimento.

Além disso, o tratamento nem sempre é benéfico para o paciente. Por exemplo, tratamentos

v



mais longos tendem a seleccionar mais bacterias resistentes devido à maior pressão sobre as

populações susceptiveis ao medicamento, permitindo muitas vezes a recáıda da infecção com a

fixação total de populações resistentes aos medicamentos antimicrobianos.

Comparamos durações de tratamento com curta (3 dias) versus longa (7 dias) duração,

utilizando medidas mais próximas dos testes cĺınicos. Consideramos um horizonte apenas de

7 dias após a finalização do tratamento e observamos as medidas de infecção nesse ponto. Os

resultados apontam que os tratamentos mais longos são mais eficientes, com uma maior taxa de

resolução de infecção. No entanto, há regimes em que tratamentos mais curtos apresentam mel-

hores resultados, nomeadamente quando a infecção está completamente desenvolvida ou quando

se usam doses baixas. Além disso, procuramos comparar os tratamentos segundo outra hipótese:

conservando o uso total de antibiótico no paciente, isto é, quando se escolhe tratamentos mais

longos, reduz-se a dose de antibiótico e vice-versa. Os resultados foram surpreendemente difer-

entes, apesar de verificarmos uma continuação da eficiência dos tratamentos com longa duração.

Notou-se nos tratamentos de curta duração, que funcionariam melhor quando usados em in-

fecções mais desenvolvidas, uma redução de eficiência. Em contrapartida, houve um aumento

de resolução da infecção quando é administrado em estágios menos desenvolvidos. Este facto

pode explicar o resultado que se observa em testes cĺınicos.

Por fim, procuramos optimizar tratamentos antimicrobianos para diferentes pacientes.

Neste caso, deparamo-nos com a impossibilidade de diminuir simultaneamente todas as medidas

da infecção. Além disso, observamos que para o mesmo paciente, com estágios de infecção

diferentes, e para diferentes pacientes, com o mesmo estágio de infecção, o melhor tratamento

não será a mesma combinação de dose de medicamento e duração do tratamento.

No geral, os resultados destacam novos tratamentos direccionados às infecções in-

tracelulares, com o uso de menor doses de antibiótico e duracção, se combinados com acção

imunológica capaz. A partir disso, extráımos prinćıpios de optimização para vários cenários

de infecções e discutimos as direcções futuras para melhoria desta área, nomeadamente a im-

portância de biomarcadores da infecção e imunidade no ińıcio do tratamento. A quantificação

destes parâmetros de forma experimental também poderá permitir um estudo mais pormenorizado

das infecções bacterianas e desenvolvimentos na medicina personalizada.

Palavras-chave: Infecção, imunidade , modelos matemáticos, tratamento antibiótico,

interacção bactéria-macrófagos.
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Abstract

Mathematical models have been used as tools to study the dynamics of infectious diseases for

a long time and to design successful control interventions, both at within-host and at the epi-

demiological level. Models can provide estimates of biological parameters which are difficult

or expensive to obtain through experiments. Currently, in infection diseases, the growing an-

timicrobial resistance of pathogens poses great challenges. Recently, aggressive and moderate

approaches are being debated as therapeutic strategies to deal with antibiotic resistance. The

discussion is still open, as the field is becoming aware of the risks, due to higher and longer

antibiotic prescriptions, not only considering the infection pathogen but also non-target resis-

tance in resident microbiota. In this work, we study intracellular infection dynamics combining

effects of antibiotic treatment and adaptive immune responses. The ODE models are based on

infection processes for acute and chronic bacterial infections. We find the critical parameter

combination in macrophage-bacteria-immunity interaction, dividing regimes of clearance and

persistence of infection. Moreover, we study the consequences of antimicrobial treatment on

many infection measures, including duration, bacterial burden, pathology and resistance. We

notice that different combination of treatment duration and antibiotic doses can lead to the same

infection outcomes and that the same treatment can have different effects if applied early or later

during the infection course. Moreover, treatment is not always beneficial, as longer durations

often select more resistant bacteria. We compare short (3 days) versus long (7 days) treatment

duration in-depth. Long treatment duration is overall more efficient, with higher infection reso-

lution. However, there are regimes where short treatment is non-inferior or even superior. Our

results highlight the potential of new targeted treatments of intracellular infection, with lower

antibiotic doses and duration, combined with sufficient immune action. From this, we extract

optimization principles for infection over a range of scenarios and we discuss future directions

for the improvement of this area, namely the importance of infection and immunity biomarkers

at treatment onset.

Keywords: Infection, immunity, mathematical model, antibiotic treatment, bacteria-

macrophages interaction
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Chapter 1

Introduction

Infectious diseases are a hazard to the human and animal populations. They are caused by

pathogens either by disrupting the bodies normal processes and/or stimulating the defensive

response, resulting in inflammation and other symptoms. The most common pathogens are

different types of viruses and bacteria. Fungi and Protozoa are also known as pathogens and

are responsible for various diseases. Most important, these diseases are spread, directly or

indirectly, from one host to another and can lead to severe epidemics. Each human individual

is susceptible to be affected by a disease. Nowadays, infectious diseases are one of the leading

causes of death in developing countries. They are troublesome to contain especially due to

resistance to antimicrobial therapies, which is becoming more frequent. To prevent transmission

and control the diseases, there needs to be an identical pace of development of drugs/vaccines

and the evolution of the pathogens. This will be the threat of this century, and it poses a

challenge to the scientific and medical community. While drugs act on infected people, to treat

the infection and reduce symptoms, virulence or transmission, vaccines act on the susceptible

population to prevent infection by immune protection.

This thesis addresses the resistance challenge, produced by antibiotic treatments of

bacteria pathogens, and contributes for the understanding of the mechanisms of treatment suc-

cess and host infection dynamics characteristics, focusing on intracellular infections. The current

chapter provides the state of the art data about the infection mechanisms of bacteria, immunity

and the role of mathematical models in the understanding of the epidemiology of these diseases.
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1.1 Bacterial pathogens

Bacteria are single-celled organisms, and most of them are not harmful. Actually, they are

beneficial to the well-functioning of the human body present in the human intestine. This

community of bacteria is known as microbiota. However, bacteria pathogens grow, divide and

spread in the human body, causing multiple infectious diseases. Examples of these diseases are

pneumonia, tuberculosis, meningitis, listeria, among others (Shlaes and Spellberg, 2012). These

can be transmitted by aerosols (through coughing and sneezing), in the cases of Streptococcus

and tuberculosis infection. Transmission also includes skin contact for Staphylococcus, through

body fluids for meningitis and contaminated food or water for Listeria. Physicians use antibiotics

to fight these infections.

1.1.1 Host-defense and immune system

In the human species, there is a powerful defense system to protect from pathogenic infections.

It functions to protect the host from every attack. The first defense mechanisms are the natu-

ral barriers. The skin bars invading microorganisms unless it is physically disrupted. Mucous

membranes produce secretions that have antimicrobial properties. Usually local secretions con-

tain immunoglobins, mainly IgC and IgA, which prevent pathogens from docking to host cells

(Corthésy, 2010). The respiratory tract also filters the air. In GI and GU tract, harsh envi-

ronments affect pathogens survival. However, once these barriers are penetrated, the secondary

defenses come forward as immune responses. Our whole immune system is divided in two com-

ponents: innate immune system and adaptive immune system. The first is a nonspecific immune

response. It is composed by various immune cells, such as neutrophils, killer cells, monocytes

and mast cells. It is characterized by a response to the pathogen without any prior knowledge

about the intruder. This natural response takes action immediately as the pathogen enters into

the body. Cytokines are produced by macrophages and activated lymphocytes and they are

responsible for an acute-phase protection that is developed regardless of the specific microor-

ganism. This response involves increased production of neutrophils by the bone marrow. This

inflammatory response directs immune cells to the infection locations to fight the pathogens.

Immune cells also phagocyte microorganisms to prevent microbial spread. Phagocytes are drown

to microbes via chemotaxis that ingest their targets. If the neutrophils action is deficient, there

is a prolonged infection with a slower response to antibiotic drugs. The infections that are

cleared by the innate immune system or by antimicrobial drugs can return to the host, which

means the same pathogen can infect again the same host (Mantovani et al., 2011).
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On the other hand, the adaptive immune system depends on the antigen. The host

keeps memory of previous pathogens, and they prevent future infections by producing a variety

of antibodies, which are complex glycoproteins known as immunoglobins. These antibodies bind

specific microbial antigenic targets. They are responsible for the clearance of infecting organisms,

which have caused previous infections in the host. Therefore, the same pathogen cannot infect a

host for a second time, unless it evolves to evade the host’s adaptive immune defense antibodies.

The adaptive immune system is mainly composed by B cells and T cells. This complex system

is yet to be fully understood. The combination of these two systems protects our body from

pathogens. In case of failure of the immune response, the result is most likely death of the host.

In case there is a reduced response, it can origin pathogenic infections that last longer (e.g.

chronic infections, tuberculosis). For bacterial infections, the innate immune system tends to

be the main responsible for clearance, although the adaptive immune system is very important

when reencountering the same pathogen (Mercado et al., 2000a) (Kikuchi et al., 2004), which

is the basis for vaccine protection against bacteria. For viral infections, the adaptive system is

more important (Hoebe et al., 2004). Nonetheless, there is always an interaction between the

innate and adaptive arm of the host immune defense system.

1.2 Disease control

There are several strategies to control a disease. Effective ways can be reducing contacts between

people and improving food quality evaluations. Nevertheless, these contacts are inevitable, as in

third world countries food control is very limited and because, in a world of communication and

commuting, contact is inevitable. Prevention is not always possible. In this case, vaccines are

preventive tools against transmission, since they reduce the pathogen load present on infected

hosts. However, when this fails, there needs to exist efficiency in treating these diseases. In that

matter, antimicrobial drugs are one example, administered in diseases caused by bacteria.

1.2.1 Drugs and resistance

Focusing on antimicrobial drugs, management of this type of infections in ancient Egypt, Greece

and China is thoroughly documented. In the modern era, antibiotics thrived to success, after

the discovery of penicillin by Sir Alexander Fleming in 1928. They are currently used to cure

millions of people worldwide. An antibiotic, also called an antibacterial, is a type of antimicrobial

drug used in the treatment and prevention of bacterial infections. They can affect bacteria in

3



two ways: they inhibit the growth of bacteria (bacteriostatic), or they kill them (bactericidal).

However, their effectiveness has lead to their overuse and misuse, instigating bacteria to develop

resistance to these drugs. Nowadays, this resistance to antibiotics is considered a major problem,

even leading the World Health Organization to classify antimicrobial resistance as a ”serious

threat that is no longer a prediction for the future, it is happening right now in every region

of the world and has the potential to affect anyone, of any age, in any country”. This is a

worldwide problem that urges for new policies in order to reduce resistance emergence.

Only a few years after Sir Alexander Fleming discovered the first antimicrobial drug,

penicillin resistance arose. This became such a significant problem that there was a need for new

drug discoveries, in order to continue treating infections. However, we always observe a pattern

of resistance emergence. It follows shortly after the use of a new antimicrobial drug. This

means that we need to rethink the use of these drugs when treating infections, and reduce the

possibility of microbes to evolve resisting these so crucial drugs (Ventola, 2015). It is estimated

that by 2050, ten million people around the world will lose their lives to drug-resistant infections,

even more than to cancer. In summary, resistance has been observed in almost all antibiotics

developed. Increasing levels of these drugs administered in medicine and farming around the

world causes pressure for bacteria to mutate and evolve, becoming resistant to antimicrobial

treatments.

1.3 Mathematical models in infectious diseases

Epidemiology studies and analyses the distribution of health and disease conditions in defined

populations. Infectious disease epidemiology is one of the branches of science that deals with

infectious diseases. It has an impact in public health, since it shapes policy decisions by iden-

tifying risk factors for disease and targets for preventive healthcare. Epidemiologists are more

focused on transmission, outbreak analysis, disease surveillance and comparison of treatment

effects such as in clinical trials. To investigate these areas, scientists are increasingly relying on

mathematical models and statistic tools.

Mathematical models have been used as tools to study the dynamics of infectious

diseases for a long time. Recently, they increased their popularity and as a result mathematical

epidemiology has risen. With the development of rapid diagnostic tests, the availability of

clinical data and electronic surveillance, the application of these models is facilitated. This

leads to more practical strategies to help prevention and spread of infectious diseases. Models
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provide estimates of parameters of real world problems which are difficult or expensive to obtain

through experiments. Also, they may be used to predict which conditions lead to resistance

emergence and fixation in a population.

The first mathematical model was presented in the 18th century by Daniel Bernoulli

to evaluate the benefit of inoculation of non-infected people by smallpox disease. Since then,

multiple models have been created, covering numerous aspects, from spatial spread of infections

to innate and adaptive immunity (Anderson and May, 1991).

1.3.1 Within-host models

One type of mathematical model is the within-host type. These are focused on pathogen popu-

lation dynamics and have improved our understanding of the interactions between the host and

the invading species. Most importantly, they are used to estimate the efficiency of different drug

therapies as well as the strength of the immune response, both innate and adaptive. Combining

the knowledge of the different aspects of the infection, we can predict outcomes, and intervene

in a way to reduce the damage of infection to the host and population.

Depending on the pathogen studied, the basic model of pathogen dynamics includes

essential characteristics to the disease dynamics in-host. For example, cells of the pathogen that

infect host cells; life-cycle of the pathogen; time-scale of the disease; defense mechanisms of the

host, among others. In the case of most bacterial infections, pathogens contain everything they

need to reproduce themselves. Bacteria pathogens replicate through division/proliferation and

through target-cell infection. For example, the persistence of Mycobacterium tuberculosis(MTB)

inside a host depends on the infection of target host cells, essential in the production of bacterial

machinery and proliferation of the disease. In the case of lung infection, once it is populated

by the pathogen, macrophages fight the bacteria, leading to a complex and dynamic process,

followed by the granuloma formation. Granulomas are collections of cells in a spherical distri-

bution, composed by cells, bacteria and necrotic tissue. It is a physical barrier to contain Mtb

inside. On the other hand, this barrier also contributes to the maintenance of the bacteria in

the lung, sometimes during the entire lifetime of the host (Kirschner et al., 2017).

In this work, we explore the within-host dynamics of bacteria, immune response cells

and applied antibiotic treatment in the human host. This will provide new insights on treatment

application in acute and chronic infections. We look into resistance to antibiotics and how

therapies drive emergence and selection. We also compare different infection measures under
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different types of treatment. Our goal is to understand the infection processes in the context

of intracellular and extracellular bacterial growth balance and host immune mechanisms. In

addition, we want to search optimization principles for a single host and for a heterogeneous

population to shed light on the topic of personalized medicine in the current era.
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Chapter 2

Intracellular infection dynamics

There are multiple infectious diseases that threat human life. In this thesis we consider acute

and chronic infections caused by intracellular bacteria. In the acute infection, an example can

be listeriosis caused by Listeria monocytogenes. The mouse model of Listeria infection has been

long used to study response mechanisms of the immune system, mostly for intracellular bacteria

(Edelson et al., 1999). In this type of bacterial infections, after ingestion, the bacterium is capa-

ble of penetrating the first defence of the body and acquire a physiological state that improves

bacterial survival and replication in host cells. Infection progress depends on an effective host

innate immune response. In case of failure, the bacteria enter the bloodstream affecting host

organs. Consequently, bacteria invade host cells and replicate in its cytosol, with the further

possibility of spreading from cell to cell. This mechanism makes the bacteria avoid the immune

system. Within the host cell cytosol, the bacteria replicate using nutrients present in the cell.

They can be released upon burst and infect the neighbour cells, spreading in the human host

body, possibly leading to his death. The boost of immune response is typically responsible for

clearance of the infection. However, together with the rise of bacterial population there is a

risk of killing the host due to overgrowth of immunity and bacteria, as well as increasing the

pathology resulting from these processes.

On the contrary, in chronic infection the immune response is insufficient to clear

the pathogen. An example could be tuberculosis (TB) caused by Mycobacterium tuberculo-

sis (MTB). These bacteria replicate in similar way of Listeria, although they are restricted to

the alveolar air sacs of the lungs, in the case of lung infection. Moreover, they have a partic-

ularity that is related with the extension of infection. Most of the host population infected by

these bacteria is asymptomatic, which means the bacteria are in a latent state. In case of active
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tuberculosis diseases, death rates are very high without treatment (World Health Organization,

2018). This potential of change in activity between active and latent protects the bacteria from

the action of the immune system, leading to longer infections, characterized by ups and downs

of bacteria and immune population cells. This will cause a spectrum of infection scenarios, that

shift from latency to acute infection or from acute infection to latency or chronic persistence.

TB models may include systems of ordinary and partial differential equations and agent-based

models as well as hybrid and multi-scale models that are combinations of these. Host dynamics

in the lung, granuloma formation, roles of cytokine and chemokine dynamics of these bacteria

already have been explored (Kirschner et al., 2017). However, we still do not comprehend the

development of antibiotic resistance. More efforts on solving these problems are necessary in

order to take action against this global threat.

Many intracellular bacteria such as Salmonella, E.Coli, Listeria are being struck by a

rise of resistance strains. This is caused by genetic mutations conferring antibiotic resistance that

arise spontaneously during replication and may be selected during treatment. Sometimes the

resistant bacteria are pre-existent in the infection having acquired resistance through horizontal

gene transfer, other times they arise through mutation during antibiotic treatment. The longer

the antibiotic exposure these opportunist bacteria are subjected to, the greater the possibility for

resistance emergence and selection. Also, they are mostly transmitted between asymptomatic

carriers. Furthermore, many of these resistance genes are passed between different bacterial

strains or species. Thus, antibiotic selection may lead to resistant infections of various species

and antibiotics are becoming less effective, intensifying the damage caused to the human host,

leading to more deaths. This is raising questions in the research community whether we should

still prescribe long-course treatments (Llewelyn et al., 2017).

My study in this thesis intends to shed light on the infection processes in the context of

intracellular and extracellular bacterial growth balance, affected by host immune mechanisms.

Although the model is general and can encompass chronic scenarios, we will focus more on acute

infections. Moreover, we study how antibiotic treatments drive the emergence and selection of

bacterial resistance to these drugs. These are pivotal questions, since reducing the antibiotic

resistance saves millions of people. Furthermore, money spent on developing new antibiotic

compounds can be redirected for other important medical issues.
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2.1 Mathematical model

In our model of intracellular infection (see diagram 2.1), we track 5 populations: 2 extracellular

bacterial population and 3 macrophage compartments: susceptible (M) and infected by bacteria

(Is and Ir) plus an immune response. Thus, there are two distinct intracellular and extracellular

populations of bacteria(I and B respectively), susceptible to the antibiotic treatment (Is, Bs),

and fully resistant to the antibiotic treatment(Ir, Br). Extracellular bacteria infect susceptible

macrophages, reproducing intra-cellularly in macrophages, burst and generate new extracellular

infection after some time. We model the baseline dynamics of uninfected macrophages via a

logistic growth with parameters r, growth rate of uninfected macrophages, and K, carrying

capacity of macrophages. Modelling burst sizes through Ns and Ns (1 -γ) allows for a fitness

cost of resistance to be explicit. High level resistance populations will only be controlled via

resource limitation and host immunity. Sensitive bacteria Bs have the capacity to mutate with

mutation probability m per cell. The process happens in the intracellular compartment and is

manifested at burst of infected macrophages.

With regards to host immune defenses, we assume innate immune action (e.g. neu-

trophils) can be factored in the net clearance rate of extracellular bacteria, while for adaptive

immune responses (e.g. T-cell, antibody responses) are attributed to effector cell populations

E that are stimulated by extracellular bacteria and act by killing infected macrophages, at per

capita rate v (Kaufmann and Ladel, 1994) (Harty and Bevan, 1999). We assume no decay of

adaptive immunity in the time-scale of the model. E(0) = E0 fixed (initial immune level). Im-

mune competence expressed as: higher E0 or higher activation rate σ, or lower antigen threshold

required for half-maximal growth k, or higher killing rate v. Our assumptions are that the killing

rate by the action of the adaptive immune system cells (Stromberg and Antia, 2011) is the same

for Bs and Br. Model parameters are summarized in Table 2.1.
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Figure 2.1: Diagram of the model. The infection process of uninfected macrophages by extracellular
bacteria is modelled via mass-action kinetics. Once infected, macrophages become the niche for bacterial
growth. Infected macrophages can burst through necrosis and they can die via apoptosis. In the extra-
cellular environment, free bacteria die or are cleared. We consider two bacterial sub-populations: drug-
sensitive Bs and drug-resistant Br. Resistant bacteria are generated through mutation in the burst of
infected macrophages. Adaptive immunity acts on infected macrophages, antibiotic affects extracellular
sensitive bacteria population.

dM

dt
= rM(1− M

K
)− βM(Bs +Br) (2.1)

dIs
dt

= βMBs − Is[δ + a+ vE] (2.2)

dIr
dt

= βMBr − Ir[δ + a+ vE] (2.3)

dBs
dt

= Ns(1−m)Isδ − βMBs − (c+Am)Bs (2.4)

dBr
dt

= Ns(1− γ)Irδ +mNsIsδ − βMBr − cBr (2.5)

dE

dt
= σE

Bs +Br
Bs +Br + k

(2.6)
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Most simulations are based on these parameter values, likely to apply to a range of

different infections types. The initial conditions of the model are M(0) = K Is(0) = 0 Ir(0) = 0

Bs(0) = 100 Br(0) = 0 E(0) = 200.

Extinction of the bacteria populations (Is, Ir, Bs and Br) were verified by an extinction

threshold event in the simulations (Bext). This extinction level of bacteria and macrophages

population is set as 0.1, which means if the value of bacteria/macrophages get below this value,

it will be considered extinct and set to value 0. In addition, we added a generation event

which impose growth only when the extracellular or intracellular populations growth rate cause

reproduction from zero to the Bext value. Until it happens, there is no resistant strain dynamics.

First, we will consider a specific case of no antibiotic, thus Am = 0, but in the next

chapter we deal with treated infections. This chapter provides insights on the baseline dynamics

of bacterial infection that are not undergoing any treatment.

2.1.1 Typical acute infection dynamics

To illustrate the acute infection dynamics (figure 2.2), we use the parameter values described in

Table 2.1, to echo the typical dynamic infection produced by intracellular bacterial pathogens,

e.g. Listeria monocytogenes. This infection is characterized by an initial decrease of macrophages

and a replenishment of these cells when the infection is being cleared. Also, susceptible bacteria

(intracellular and extracellular) rise until immunity begins to be stimulated. In this case, this

growth of immunity causes the decrease of both populations of susceptible bacteria after a few

days. Intracellular bacteria in infected macrophages get extinct first.

Concerning resistant bacteria, they are generated from sensitive bacteria and their

population grows until a peak that is lower when compared to the peak of susceptible bacteria

due to the fitness cost. Clearance of the infection is ultimately caused by immunity, which brings

the intracellular compartment to extinction, stopping the infection proliferation.

Initially, the growth of intracellular and extracellular bacteria populations stays the

same. As the infection progresses and reaches its peak, the intracellular population, which is

affected by immunity, starts to get depleted from the host, although the extracellular population

maintains growth. Soon after the decrease of intracellular population, the extracellular presents

the same behaviour (starts to decline), but always with higher load at that time. This will cause

the intracellular population to get extinct first.
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Table 2.1: Model parameters for acute dynamics Unit of time is days.

Parameter Interpretation Acute Infection (default)

r Growth rate of uninfected
macrophages

0.09 (day−1)

K Carrying capacity of macrophages 108

β Infection rate of macrophages by
bacteria

1.2× 10−7 (day−1)

δ Necrosis rate of infected
macrophages

0.2 (day−1)

a Apoptosis rate of infected
macrophages

12 (day−1)

Ns Burst size of infected macrophages
with drug-sensitive bacteria

100

γ Fitness cost of high-level resistance,
HLR (reduction factor for burst size
in Br)

0.1

c Natural death/removal rate of bac-
teria (e.g. neutrophils)

2 (day−1)

σ Maximal growth rate of the adap-
tive immune response

2 (day−1)

k Half-saturation constant for
antigen-dependent immunity

104 (CFU)

m Mutation probability leading to
HLR per bacterial cell

10−7

Am Net action rate by antibiotic on
drug-sensitive bacteria (bacterioci-
dal/bacteriostatic)

1− 30 (day−1)

v Killing rate effected by adaptive im-
munity on infected macrophages

1× 10−5 (day−1)

Bext Pathogen extinction threshold 0.1 (Colony-forming cells, CFU)
B0 Initial inoculum 100 (Colony-forming cells, CFU)
E0 Initial immunity 200 (number of cells)
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Figure 2.2: Model dynamics of an acute infection over 30 days. Blue lines refer to susceptible
bacteria populations. Red lines refer to resistant bacteria populations. Dashed lines representing the
extracellular populations, while solid lines represent the intracellular populations (infected macrophages).
Green line reflects the population of uninfected macrophages. Black line shows the growth of immunity.
Simulation run with the default parameters from Table 2.1.

2.2 Methodology

2.2.1 Materials

Wolfram Mathematica

For conducting analysis of the mathematical model, we used Wolfram Mathematica language.

It contains multiple functions and libraries for ODE solvers as well as tools for asymptotic eval-

uation of the model. Wolfram Mathematica is a modern technical computing system spanning

most areas of technical computing such as mathematics. It was conceived by Stephen Wolfram

and is developed by Wolfram Research of Champaign, Illinois.

MATLAB

The choice of the software and programming language was based on previous work on this mat-

ter. Also, it has present scientific software packages and library for numerical computation and

data visualization and plotting. In this matter, we created tools to generate and manipulate data

for global use. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environ-
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ment and proprietary programming language developed by MathWorks. Moreover, MATLAB is

intended primarily for numerical computing, which is essential for simulating data using models.

Cleve Moler, the chairman of the computer science department at the University of New Mexico,

was responsible for the development of the first MATLAB version in the late 1970s. We use this

programming language for computing simulations and also to develop the numerical integration

of ODE’s and plotting.

2.3 Equilibria for the case of untreated infections

2.3.1 Sub-model without immunity and a single bacterial population

Fixed points

For more understanding of the model, we conduct an asymptotic analysis using Mathematica.

First, we evaluate a sub-model not taking into account the treatment (Am = 0), immunity

and resistant and susceptible strains. This means only 3 populations: an extracellular bacterial

population (B) and 2 macrophage compartments: susceptible (M) and infected by bacteria (I).

In this case, extracellular bacteria infect susceptible macrophages, reproducing intra-cellularly

in macrophages, burst and generate new extracellular infection after some time.

dM

dt
= rM(1− M

K
)− βMB (2.7)

dI

dt
= βMB − I[δ + a] (2.8)

dB

dt
= NsIδ − βMB − cB (2.9)

After, we evaluate the equilibria points from a model with 2 strains and without im-

munity. Then, we move into the full model to better understand the processes governing the

infection. We find the equilibria by solving a system of equations where all the derivatives of

the models are set to 0. Each of the equilibrium points may represent real scenarios that can

be labelled as persistence of infection or clearance. In persistence of infection, the level of bac-

terial population and macrophages remains above zero, reflecting a chronic scenario. Clearance

represents any case that leads to the absence of bacterial populations, either through immunity

or resource limitation and it can be achieved after some initial growth, or directly as a decline
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dynamics from specific initial conditions.

We find three equilibria: Ssm1 the trivial equilibrium where all populations are equal

to zero. Ssm2 the healthy (clearance) equilibrium where uninfected macrophages are at their

carrying capacity and no infection is present. Ssm3, the persistence of infection. The analytical

expressions are given below:

Ssm1 =


M∗ = 0

I∗ = 0

B∗ = 0

 Ssm2 =


M∗ = K

I∗ = 0

B∗ = 0

 (2.10)

Ssm3 =


M∗ =

−((c(a+ δ))

(β(a+ δ − δNs)))

I∗ =
−((c((a+ δ)(c+ βK)− βδKNs)r)

(β2K(a+ δ − δNs)2))

B∗ =
(((a+ δ)(c+ βK)− βδKNs)r)

(β2K(a+ δ − δNs))

(2.11)

We find this sub-model admits 3 possible infection outcomes: i) containment, when

bacteria do not grow in the host but are gradually cleared (Ssm2) ii) growth, followed by clearance

yielding acute infection (Ssm2) iii) growth, followed by persistent infection (Ssm3). The three

scenarios are illustrated in Figure 2.3.

The first scenario results when death processes dominate over infection of host cells

and replication inside macrophages is too weak. The second scenario results when growth

processes are very strong and rapid, leading to fast resource consumption and a drastic decline

of the bacterial population, such that it hits the extinction threshold before the target cells

have recovered to optimal levels. The third scenario results when growth and death within host

balance to maintain infection at intermediate levels. The macrophage-bacteria system undergo

a finely-tuned prey-predator type dynamics.

Naturally, for persistence scenario, a balance between many parameters is required,

and this is reflected in the following analytical condition for the existence of the persistence

equilibrium:

Kβ

c

(
δNs

δ + a
− 1

)
> 1,

where an obvious sub-condition is Ns >
a+δ
δ . For example, in Figure 2.4, we show how bacterial

level at the persistence equilibrium changes with the apoptosis rate of infected macrophages and

burst size of infected macrophages. There is increased severity at the peak level when decreasing
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the death rate or by increasing burst size. Moreover, we illustrate how the persistence equilibrium

depends on critical model parameters. Figure 2.4A shows the bacteria can persist only if burst

sizeNs is sufficiently big, relative to infected macrophage apoptosis rate, and that the equilibrium

level of extracellular bacteria decreases with burst size. Figure 2.4B shows how the bacterial

peak depends on burst size, for three values of apoptosis rate of infected macrophages. So far,

we looked at existence criteria for the persistence equilibrium. It is important to check also the

stability properties.
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Figure 2.3: Three scenarios of infection dynamics. A) Containment of bacteria, clearance of
infection. B) Growth and persistent infection. C. Growth and acute infection followed by clearance (B
hits the stochastic extinction threshold). In this illustration, the burst size from infected macrophages,
Ns, was varied to describe how bacterial replication capacity in host cells can produce big qualitative
changes in the dynamics. Other parameters as in Table 2.1.
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Figure 2.4: Bacterial persistence level and peak infection severity decrease with the apop-
tosis rate of infected macrophages. A) Analytical expression of the equilibrium level of extracellular
bacteria B∗ is plotted as a function of a, for three different burst size values Ns. B) Peak bacterial load
from simulations is plotted as a function of a: this corresponds to the maximum of B(t) reached in the
first growth peak.
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Stability

Equilibria can be stable or unstable. To study the stability of this equilibria, we evaluated the

Jacobian matrix 2.13 at each equilibria Ssm1, Ssm2, Ssm3 and analyzed the eigenvalues.

J1 =


−βB − Mr

K
+ (1− (

M

K
)r 0 −βM

βB −a− δ βM

βB δNs −c− βM

 (2.12)

We consider a equilibrium stable if every eigenvalue of the Jacobian matrix of that

equilibrium has a negative real part, which is equivalent to require that only the dominant

eigenvalue has negative real part:

max(Re(λi)) < 0 (2.13)

On the contrary, we consider a equilibrium unstable if any eigenvalue of the Jacobian

matrix of that equilibrium is positive:

∃is.t.Re(λi) > 0 (2.14)

The trivial equilibrium Ssm1 is unstable because it has positive eigenvalues. This can

be explain by the adding of macrophages will shift the system into a new equilibrium at the

carrying capacity K.

For the carrying capacity equilibrium Ssm2, it is stable when the burst size is not high

enough to cause an infection, therefore:

Ns <
(a+ δ)(c+ βK)

βδK
(2.15)

Since the eigenvalues for the Ssm3 were very extensive, a numerical analysis was done

to understand the stability of this equilibrium. The clearance equilibrium or carrying capac-

ity equilibrium Ssm2 always exists. When the clearance equilibrium is stable, the persistence

equilibrium does not exist, but, when the clearance equilibrium is unstable, the persistence equi-

librium exists. Nevertheless, Ssm3 is not always stable when it exists. In Figure 2.5 we show

how the persistence equilibrium varies with burst size Ns and when it is stable it is manifested
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through oscillations. We can clearly see three different possibilities for the equilibrium Sm3. In

blue, it is unstable, green means it is stable manifested through oscillations and in red it is also

stable but without oscillations.
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Figure 2.5: Numerical evaluation for the dominant eigenvalue of the Jacobian matrix asso-
ciated to Sm3 as a function of infected macrophage death rate. Representation of the stability of
equilibrium in the first line. Blue means the existence of equilibrium. Green means stable through oscilla-
tions. Red defines the regions where it is stable without oscillations. Second line represents the maximum
of the real eigenvalues for the default parameters. We may have stable and unstable equilibrium.

Even though we do not provide a full formal stability analysis of the persistence equi-

librium, numerical simulations show that it is typically reached through oscillations, indicating

complex eigenvalues of the Jacobian matrix evaluated at this equilibrium.

The amplitude of these oscillations around the equilibrium value, for some parameter

values, can be very big (e.g. when bacteria grow too fast and deplete their resource too much).

In such cases, even though theoretically we expect persistence, due to the large amplitude

oscillation, B can hit the extinction threshold, and thus numerically correspond to a clearance

scenario. These are the ”acute” infection scenarios (see Figure 2.3 C) that sometimes can drive

the system to (K,0,0) and sometimes to (0,0,0) depending on how fast the healthy macrophages

are depleted.

We have explored the criteria needed to be satisfied in this simple system for stability

of clearance and stability of persistence. Now, taking this information into account, we add more

complexity to the model, and add two bacteria strains to simulate competition in the infection.

We expect similar equilibria and principles are going to be applied. The question is now how

competition governs the infection and if there is any impact in this equilibria.
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2.3.2 Model with 2 bacterial sub-populations

Introducing the two strains (for example drug-resistance and drug-sensitive) to the sub-model

2.9, we now grow in complexity, and we can have competition between the two strains on the

course of infection. We have now 5 different populations of cells. We assume that the difference

between the two sub-populations is in the fitness cost of Br, manifested in a smaller burst size

(where γ < 1) and there is a mutation process generating Br from Bs growing intracellularly.

Again, we assume no treatment (Am = 0) for simplicity of analysis and illustration purposes.

dM

dt
= rM(1− M

K
)− βM(Bs +Br) (2.16)

dIs
dt

= βMBs − Is[δ + a] (2.17)

dIr
dt

= βMBr − Ir[δ + a] (2.18)

dBs
dt

= Ns(1−m)Isδ − βMBs − cBs (2.19)

dBr
dt

= Ns(1− γ)Irδ +mNsIsδ − βMBr − cBr (2.20)

Fixed points

We now find four equilibria similar to the sub-model 2.9 with the addition of one equilibrium with

persistence of only resistance strain, denoting possibility of out-competition of the susceptible

strain. By setting all the equations (derivatives) to zero, and solving for all variables, we find

the equilibria of the system. In this case we have 4 equilibria described as:

S1 =



M∗ = 0

I∗s = 0

I∗r = 0

B∗
s = 0

B∗
r = 0


S2 =



M∗ = K

I∗s = 0

I∗r = 0

B∗
s = 0

B∗
r = 0


(2.21)
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S3 =



M∗ =
−((c(a+ δ))

(β(a+ δ + δ(−1 + γ)Ns)))

I∗s = 0

I∗r =
−((c((a+ δ)(c+ βK) + βδ(−1 + γ)KNs)r)

(β2K(a+ δ + δ(−1 + γ)Ns)2))

B∗
s = 0

B∗
r =

(((a+ δ)(c+ βK) + βδ(−1 + γ)KNs)r)

(β2K(a+ δ + δ(−1 + γ)Ns))


(2.22)

S4 =



M∗ =
−((c(a+ δ))

(β(a+ δ + δ(−1 +m)Ns)))

I∗s =
−((c(γ −m)((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns)2))

I∗r =
−((cm((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns)2))

B∗
s =

((γ −m)((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns))

B∗
r =

m((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns))


(2.23)

The first case (S1) refers to the trivial equilibrium situation when there are no popula-

tions present in the system, which is not realistic at any point during infection, since macrophages

are always present in the healthy human host. The second case (S2) refers to a healthy or a pre-

infection situation, where macrophages are at carrying capacity or after an infection (clearance).

The third, and worst case scenario (S3), is when there is only resistant population persisting.

Finally, the last case (S4) refers to a chronic situation with both susceptible and resistant pop-

ulations coexist in the system.

Features of the persistence equilibria

The calculations for the following analysis are present in Appendix A. For both S3 (fixation of

resistance) and S4 (coexistence) equilibria to exist, they must fulfil a condition such as, for S3

equilibria to exist:

K >
c(a+ δ)

β
[
δ(Ns − γNs − 1)− a

] (2.24)

and for S4 to exist:

K >
c(a+ δ)

β
[
δ(Ns −mNs − 1)− a

] (2.25)

Starting from these inequalities, we can derive a further sub-condition (denominator

to be positive) by requiring that, in S3 and S4, burst size satisfies:
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Ns >
a+ δ

δ(1− γ)
and Ns >

a+ δ

δ(1−m)
(2.26)

Moreover, considering positive values of all variables, in order to exist equilibrium S4,

the fitness cost γ must be greater than the mutation rate m. Therefore, if the fitness cost of

the drug-resistant strain is greater than the mutation rate, we will have coexistence with both

susceptible and resistant bacteria populations. In the case of the mutation rate higher than the

fitness cost, it favours the selection of resistance and consequently, it will only be possible the

resistant equilibrium S3.

Regarding the bacterial population, susceptible and resistance strains compete each

other for the resources and proliferation. We find that in the coexistence equilibrium, susceptible

and resistant populations present the same ratio intracellularly and extracellularly:

I∗s
I∗r

=
B∗
s

B∗
r

=
γ −m
m

=
γ

m
− 1 (2.27)

Taking into account our default parameter values, the mutation rate is considerably

lower than the fitness cost. In this case, in the absence of immunity, only the coexistence

equilibrium is possible to achieve (Figure 2.7), since coexistence requires of both populations

higher fitness cost when compared to the mutation rate.

Furthermore, at the coexistence equilibrium, we can have dominance of the resistant

bacteria if:

Is∗

Ir∗
< 1⇔ γ

m
− 1 < 1⇔ γ

m
< 2 (2.28)

When the ratio
γ

m
is higher than the value 2, there will be more advantage conditions

for susceptible population to grow. The fitness cost is high enough that does not allow resistant

bacteria to win over the susceptible population. On the other hand, when the ratio
γ

m
is lower

than 2m, there will be a higher number of resistance bacteria and sensitive bacteria at persistence

equilibrium.

In summary, there will be different scenarios depending on the fitness cost γ and

mutation rate m:

• When γ < m, only the resistant equilibrium is possible. Resistant strains goes to fixation
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within host, assuming deterministic mutation constantly maintaining a flux from sensitive

to resistant bacteria.

• When γ > m, only the coexistence equilibrium is possible.

• When m < γ < 2m resistant bacteria population dominates over susceptible bacteria

population in coexistence.

• When γ > 2m susceptible bacteria population dominates over resistant bacteria population

in coexistence.

Moreover, in the persistence equilibria we can have different behaviours (Figure 2.6)

with bigger oscillations from decreasing the value of intracellular apoptosis rate, eventually

leading to extinction of the bacteria populations, as we can see in the case A of the Figure 2.6.

However, by the information retrieved from the stability analysis in Figure 2.8 C, we expect

that will be a persistent equilibrium when the intracellular death rate is 12 and we do not see

that on the simulations. We explain it by the use of the extinction threshold, which impose the

death of population when they reach that threshold value. Therefore, if we reduce the extinction

threshold we see bigger oscillations again, as expected (see Figure A.1), reaching to a persistence

equilibrium.
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Figure 2.6: Model dynamics of an infection over 200 days without immunity for three
different infected macrophage apoptosis rate values.Blue lines refer to susceptible bacteria pop-
ulations. Red lines refer to resistant bacteria populations. Dashed lines representing the extracellular
populations, while solid lines represent the intracellular populations (infected macrophages). Green line
reflects the population of uninfected macrophages. Simulations run with the default parameters from
Table 2.1. Oscillatory behaviour decreases with the increasing of infected macrophages death rate. In
A we do not observe due to a larger oscillatory behaviour which reach the Bext, imposing extinction of
bacterial populations.

22



Stability

Now, we investigate the stability again for each equilibria. 2.29 is the Jacobian matrix for the

model without immunity. We look again at the eigenvalues for each equilibrium and determine

at which conditions there may be stability.

J2 =



(−β(Br +Bs)− (Mr)

K + (1−M/K)r
0 0 −βM −βM

βBs −a− δ 0 βM 0

βBr 0 −a− δ 0 βM

−βBs δ(1−m)Ns 0 −c− βM 0

−βBr δmNs δ(1− γ)Ns 0 −c− βM


(2.29)

First equilibrium S1 is unstable. It has positive eigenvalues. The addition of macrophages

will cause the system to move into another state, namely to the S2 equilibrium with macrophages

at the carrying capacity.

Considering S2, the equilibrium where the macrophages are present at the carrying

capacity, we may have stability. This equilibrium always exists, but it is not always stable. In

this case, the condition for stability depends also on burst size as in previous sub-model, as

follows:

Ns <
(a+ δ)(c+ βK)

βδ(1− γ)K
(2.30)

We just have the introduction of fitness cost to the condition of stability described

previously. The burst size must be lower than a threshold making the infection weak enough to

cause an infection. Therefore, the introduction of bacteria will lead again to the previous state

of clearance since there is no proliferation.

For the other cases, since the eigenvalues expression for the equilibrium is too extensive,

a numerical evaluation was carried taking into account the default parameters: S3 equilibrium

is stable when the infection is strong enough to proliferate in the host, but not too strong to kill.

This means that when S3 exists it is not always stable. There are regimes when it is unstable,

namely for very slow or very fast infections. On the other hand, S4 seems to always unstable

when exists. Resistance persistence equilibrium, which is the worst scenario, is the only case

whether we can have a stable persistence equilibrium in the host. However, it is dependent on

the fitness cost being lower than the mutation rate.

Nevertheless, our analysis points that the critical condition for a persistence equilibrium
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to exist is, in fact, a relationship between multiple parameters, and not just dependent on the

carrying capacity of the system. It is also dependent on the fitness cost and mutation rate as

we saw previously at section 2.3.2. Therefore, using default parameters for the intracellular and

extracellular death rate and the burst rate, we calculated the threshold in which is possible to

observe each equilibrium, as described below. Both burst size and burst rate are related to the

proliferation of bacteria in the host’s body; fitness cost and mutation rate with the emergence

and persistence of the resistant bacteria population; intracellular and extracellular death rate

with the growth and maintenance of the populations.

Figure 2.7: How the intracellular and extracellular balance leads to different outcomes in
the absence of immunity. Asymptotic analysis shows the possibility of three equilibria: Persistence
with resistant bacteria; Persistence with sensitive and resistant bacteria and Clearance. Burst size must
counterbalance the net lifespan of infected macrophages for the infection to persist. When the fitness cost
is low enough compared to the mutation rate, there is room for resistant bacteria to dominate. There

is another condition for existence of equilibria depending on K: K >
c(a+ δ)

β
[
δ(Ns − γNs − 1)− a

] . Also,

mutation rate is set to 0.2 to better understand visually the possibility of equilibria according to their
conditions.

When the burst size Ns is too low, the infection do not progress fast enough and

infection cannot be sustained. In this case, death dominates over growth, and we achieve

clearance. When Ns is big enough to sustain an infection, there can be a persistence opportunity
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for the infection. In this case, the comparison of both the fitness cost γ and the mutation rate

m defines whether the resistant bacteria will coexist with sensitive ones, or will persist alone.

Moreover, when we alter the value of the intracellular apoptosis rate (a), we may shift the

system from a persistence equilibrium to a clearance equilibrium (see Figure 2.8 A and B).

Notice, however, that like in the previous sub-model, if the oscillations around the persistence

equilibrium are too big, bacteria may hit the extinction threshold and thus numerically we may

see effective clearance even inside the gray region above the critical line in Figure 2.7.

2.3.3 Analysis for the full model with 2 sub-populations of bacteria and im-

mune dynamics

We understood previously how the infection progresses in the absence of immunity dynamics

(no E-equation). Adding immunity to the model, we now investigate how immunity changes

the dynamics of the infection. We look into the equilibria points and its stability as previously,

although now we have the input information of what governs the infection.

We go back to the model described in section 2.1 by 2.1 to 2.6 equations. The most

important difference is that we have a non-decreasing immune response dE/dt > 0 as long as

B > 0 and E > 0. This will act as a definite negative feedback on the bacterial population

growing during infection. When we have some immunity in the system and some bacteria, the

only outcome possible will be eventual clearance.

Fixed Points

Se1 =



M∗ = 0

I∗s = 0

I∗r = 0

B∗
s = 0

B∗
r = 0

E∗ = 0


Se2 =



M∗ = K

I∗s = 0

I∗r = 0

B∗
s = 0

B∗
r = 0


(2.31)
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Se3 =



M∗ =
−((c(a+ δ))

(β(a+ δ + δ(−1 + γ)Ns)))

I∗s = 0

I∗r =
−((c((a+ δ)(c+ βK) + βδ(−1 + γ)KNs)r)

(β2K(a+ δ + δ(−1 + γ)Ns)2))

B∗
s = 0

B∗
r =

(((a+ δ)(c+ βK) + βδ(−1 + γ)KNs)r)

(β2K(a+ δ + δ(−1 + γ)Ns))

E∗ = 0


(2.32)

Se4 =



M∗ =
−((c(a+ δ))

(β(a+ δ + δ(−1 +m)Ns)))

I∗s =
−((c(γ −m)((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns)2))

I∗r =
−((cm((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns)2))

B∗
s =

((γ −m)((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns))

B∗
r =

m((a+ δ)(c+ βK) + βδK(−1 +m)Ns)r)

(β2γK(a+ δ + δ(−1 +m)Ns))

E∗ = 0



(2.33)

At first look, we observe the same equilibria points from the model without immunity.

However, we have one small difference: The carrying-capacity equilibrium now sustains any

value of immunity. The other 3 equilibria values are exactly the same as previously, with the

addition of zero immunity.

We revisit the equilibria explanation. The first case (Se1) refers to the trivial equilib-

rium situation when there are no populations present in the system, which is not realistic at

any point during infection, since macrophages are always present in the healthy human host.

The second case (Se2) refers to a healthy or a pre-infection situation, where macrophages are

at carrying capacity. Immunity can have any value for this to be true. This scenario could also

be a post-infection scenario, after immunity has grown to a very big level, E∗ sufficient to keep

bacterial death bigger than bacterial proliferation. The third, and worst case scenario (Se3), is

when there is only resistant population persisting. In this case, immunity can only assume a

value equal to zero for the system to remain equilibrium. Finally, the last case (Se4) refers to a

chronic situation with both susceptible and resistant populations are present in the system. As

in the previous case, immunity here can only assume the value zero in order for the equilibrium

to be a real equilibrium. In this case, the derivatives are zero for all equations, including
dE

dt
.

In the fixation of resistance scenario (S3), we can compare the intracellular popula-

tion with the extracellular population. Intracellular population is lower than the extracellular

population if:
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Ns >
a+ c+ δ

δ(1− γ)
⇔ I∗r < B∗

r (2.34)

and the reverse otherwise. This means that if the burst size Ns is sufficiently big,

extracellular population wins and dominates over intracellular.

Focusing now on the last case (S4), which refers to the coexistence equilibrium, the

ratio of extracellular populations and intracellular is similar to the S3, diverging only on one

parameter that conserve the same position in the equation. In the case of the S3 equilibrium, the

parameter is the fitness cost. In the case of the S4 equilibrium, the parameter is the mutation

rate as it follows:

I∗r + I∗s
B∗
r +B∗

s

=
c

Ns(1−m)δ − (a+ δ)
(2.35)

Moreover, the bacterial peak observed in the simulations (see Figure 2.8 D) is much

higher for the same parameter values than the equilibrium we expect them to reach, even with

the presence of immunity. The oscillations around the equilibrium will cause higher peaks than

the actual value expected for the bacteria to persist in the host when time goes to infinity (actual

meaning of the theoretical equilibrium). Presence of immunity in this case prevent the relapses

after the first peak, eliminating the entire bacteria present.
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Figure 2.8: Persistent infection vs clearance: role of the apoptosis rate of infected
macrophages. This follows the Figure 2.7, which describe the conditions for the existence of the
equilibria S3 and S4. Asymptotic analysis shows the possibility of three equilibria: Persistence with
resistant bacteria (dark grey); Persistence with sensitive and resistant bacteria (light grey) and Clearance
(white). A)Conditions for existence of the equilibria with the intracellular death rate with the value
12. B)Conditions for existence of the equilibria with the intracellular death rate with the value 17. C)
Value of the bacteria population in the persistence equilibrium for different values of the intracellular
apoptosis rate and burst size. No immunity present. D) Bacterial peak for acute infections with different
intracellular apoptosis rate and burst size. Immunity is activated.

Stability

To understand how immunity affects the stability of the system, we performed a last stability

analysis to the equilibria that arose from the model. Once again, the mathematica files are

presented in Appendix A with further explanations. Denoting equation 2.36, the Jacobian

matrix in its general form reads as follows:

U =
−(((Br +Bs)Eσ)

(Br +Bs + k)2)
+

(Eσ)

(Br +Bs+ k)
(2.36)
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J3 =



(−β(Br +Bs)− (Mr)

K + (1−M/K)r
0 0 −βM −βM 0

βBs −a− δ − E1v 0 βM 0 −Isv

βBr 0 −a− δ − E1v 0 βM Irv

−βBs δ(1−m)Ns 0 −c− βM 0 0

−βBr δmNs δ(1− γ)Ns 0 −c− βM 0

0 0 0 U U
((Br +Bs)σ)

(Br +Bs + k)


(2.37)

First equilibrium Se1 is unstable. It has positive eigenvalues. The addition of macrophages

will cause the system to move into another state, namely to the Se2 equilibrium with macrophages

at the carrying capacity.

Considering Se2, the equilibrium where the macrophages are present at the carrying

capacity with immunity present, but no infection, we may have neutral stability, after or before

clearance. We may have two situations: when the value of immunity is too low, addition of

bacteria will cause a acute infection followed by clearance. Another case is when the value

of immunity rises to a level high enough that any perturbation of bacteria/macrophages will

not shift the system into a different state with different levels of bacteria. However, these two

cases reflect changes in E∗ value, since there is always growth of immunity when we introduce

bacteria. This causes the appearance of zero values in eigenvalues, making it only neutrally

stable. If immunity at this equilibrium is higher than

E∗ >
1

v

[δNs(1−m)
c

Kβ
+ 1

− (δ + a)
]

we will have direct clearance of bacteria. However, if immunity is lower than this condition we

will have growth followed by decline and immunity eventually reaching a super-critical level.

We performed a numerical analysis for the other cases since the eigenvalues expression

was too extensive as in previous section. We find every numerical eigenvalue bigger than zero.

This means that all consist in unstable equilibriums. So, in theory, any perturbation will lead

the system to a new equilibrium. This can be understood because of the action of immunity.

In an only-growing immunity model (2.6), if the infection persistence equilibrium is perturbed

with any quantity of immunity and there is bacteria present,
dE

dt
will be made positive and E

will start to grow until it will be able to clear the infection. Therefore, the system will go to

clearance. In our model, the carrying capacity equilibrium remains the most plausible.
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2.3.4 Extension to chronic persistence with immunity

Until now we have seen persistence of infection to arise only in the the S3 or S4 equilibria.

Persistence of bacteria can involve coexistence of susceptible and resistant bacteria or be fully

resistant. The previous equilibria are only possible with E = 0, thus complete absence of

immunity or a immune suppressed individual. However, it is known that in real life persistence of

infection can be observed also with some level of immunity. Therefore, for this model to capture

a chronic case with immunity present, we can add a new feature to the model by restraining

the action of the immune response to a limited time-window of activation. In the acute case,

immune response will grow for an indefinite amount of time stimulated by antigen, enabling final

pathogen clearance. One way to generate a chronic infection sustained by suboptimal immunity

is to assure a limited window of time post-infection (short) [0; Tof f ] over which immunity can

grow (Mercado et al., 2000a). This limits its peak level, and thus constrain the net rate of killing

on the pathogen. In this case we could obtain (as shown in Figure 2.7) a persistent infection

maintained by sub-optimal immune levels. Obviously in any system where additional bacterial

control is coming from the immune response, the persistence level of infection will be lower.

Thus, even though immunity may not be strong enough to drive the infection to clearance, it

can still contribute to maintain infection levels below the extreme values expected under no

immunity at all.

The host immune system is able to eliminate most of the invading bacteria. However,

in certain conditions, the bacteria can evade the immune system and persist within the host,

leading to asymptomatic infections for long periods of time. During this period, they may also

reactive into clinically significant diseases. There are many factors that contribute to the ability

of bacteria to establish chronic infections, including both host and bacterial factors. These

persistent infections have typically slow-growth mechanisms when compared to acute infections.

Therefore, to illustrate an example of persistent infection, we will assume other combi-

nation of parameter values for the chronic infection pathogen, similar to what might be expected

for Mycobacterium tuberculosis (MTB), summarized in Table 2.2.

In the chronic case, the bacteria persist in the host. Immunity rises and fights the

infection. Although it is not sufficient to clear it, it still maintains at a certain level. Con-

sequently, there tends to be a equilibrium, similar to a predator-prey type of dynamics, with

oscillatory behaviour between the bacteria as the ”predator” and macrophages as the ”prey”

(see Figure 2.9). The analysis of the model for chronic persistence with static immunity (unable
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Table 2.2: Model parameters for chronic dynamics. Unit of time is days. Bold parameters changed
their values from the acute Table 2.1.

Parameter Interpretation Chronic Infection (default)

r Growth rate of uninfected
macrophages

0.09 (day−1)

K Carrying capacity of macrophages 108

β Infection rate of macrophages
by bacteria

1.2× 10−8.5 (day−1)

δ Necrosis rate of infected
macrophages

0.48 (day−1)

a Apoptosis rate of infected
macrophages

0.2 (day−1)

Ns Burst size of infected
macrophages with drug-
sensitive bacteria

35

γ Fitness cost of high-level resistance,
HLR (reduction factor for burst size
of Br)

0.1

c Natural death/removal rate of bac-
teria (e.g. neutrophils)

2 (day−1)

σ Maximal growth rate of the
adaptive immune response

1 (day−1)

k Half-saturation constant for
antigen-dependent immunity

104 (CFU)

m Mutation probability leading to
HLR per bacterial cell

10−7

Am Net action rate by antibiotic on
drug-sensitive bacteria (bacterioci-
dal/bacteriostatic)

1− 30 (day−1)

v Killing rate effected by adaptive im-
munity on infected macrophages

1× 10−5 (day−1)

Bext Pathogen extinction threshold 0.1 (CFU)
B0 Initial inoculum 100 (CFU)
E0 Initial immunity 200 (number of cells)

Tof f Window of time post-infection
over which immunity can grow

7(days( − 1))
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Figure 2.9: Dynamics of a chronic infection with sub-optimal immune stimulation. Blue
lines refer to susceptible bacteria populations. Red lines refer to resistant bacteria populations. Dashed
lines representing the extracellular populations, while solid lines represent the intracellular populations
(infected macrophages). Green line reflects the population of uninfected macrophages. Black line shows
the growth of immunity this time constrained only during a limited time window at the beginning of
infection. Simulation run with the default parameters from Table 2.2.

to grow any further) is similar to the model without immunity, although now the intracellular

death rate of infected macrophages should be higher, due to the additional marginal killing by

the immune response and becomes a+ (v ∗Ef inal). Taking this into account, we may have the

same equilibria, and the same conditions for existence and stability. For example, in order for

resistance persistence to exist:

K >
c(a+ (v ∗ Ef inal) + δ)

β
[
δ(Ns − γNs − 1)− a− (v ∗ Ef inal)

] and Ns >
a+ (v ∗ Ef inal) + δ

δ(1− γ)
(2.38)

and for S4 to exist:

K >
c(a+ (v ∗ Ef inal) + δ)

β
[
δ(Ns −mNs − 1)− a− (v ∗ Ef inal)

] and Ns >
a+ (v ∗ Ef inal) + δ

δ(1−m)
(2.39)

Regarding stability, the persistence equilibrium will not exist if:
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E∗
f inal >

1

v

[δNs(1−m)
c

Kβ
+ 1

− (δ + a)
]

(2.40)

and in that case the clearance equilibrium will be stable.

Thus, only if the immune response stops growing at a high-enough, super-critical level,

the infection will go to clearance. If immunity saturates and gets ”locked” at sub-critical levels

then, we will have the persistence equilibrium.
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2.4 Sensitivity analysis of the model

Now we go back to the full model, and and understand the transient dynamics. Since we do

not know exactly the full biological range of the parameters of the model, to increase under-

standing of the infection processes and relationships between the variables in this model, we

conducted a sensitivity analysis. This provides us more information to comprehend what fuels

the infection and what parameters impact more the infection outcomes. From this, we can infer

new therapy targets and which main process of the infection we should focus on (competition,

immune stimulation or target cell limitation) and allow us to control the infection. For this,

we used a matlab package named Global Sensitivity Analysis Toolbox (Cannavó, 2012). GSAT

package includes routines for generic global sensitivity analysis. In particular it implements

Sobol’ analysis and FAST analysis to models with up 50 different input parameters. In this

case, it was implemented with our model, using 9 model parameters to check how they differ

in magnitude of effect and to identify the ones that produce more changes in dynamics. We

use the intervals presented on Table 2.3. We note that the results may be different if we were

to choose a different range. However, in the range presented, which is biologically feasible, we

explore some interesting features. Some were transformed in log scale to improve computation

time. It simulated infections over 100 days performing 200 iterations.

Table 2.3: Model parameters and intervals used on sensitivity analysis.

Parameter Interpretation Range Scale

β Infection rate of macrophages by
bacteria

[10−9, 10−6] Log

δ Necrosis rate of infected
macrophages

[0.01, 1] Log

a Apoptosis rate of infected
macrophages

[0.1, 100] Linear

Ns Burst size of infected macrophages
with drug-sensitive bacteria

[1, 100] Log

γ Fitness cost of high-level resistance,
HLR (reduction factor for burst size
of Br)

[0, 1] Linear

c Natural death/removal rate of bac-
teria (e.g. neutrophils)

[0.1, 20] Linear

σ Maximal growth rate of the adap-
tive immune response

[0.1, 4] Linear

k Half-saturation constant for
antigen-dependent immunity

[103, 105] Log

v Killing rate effected by adaptive im-
munity on infected macrophages

[10−7, 10−4] Log
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We evaluated how important were the model parameters for four different infection

measures: duration of infection, peak of susceptible bacteria, peak of resistant bacteria and

bacterial burden. We define these four measures as follows:

• Duration of infection - Time elapsed until the extinction of the 4 different bacterial popu-

lations.

Text = mint(3 Bs, Br, Is, Ir < Bext) (2.41)

• Peak of susceptible bacteria - The maximum value that susceptible bacteria acquire during

an infection profile.

B̂s(t) = Maxt(Bs(t)) (2.42)

• Peak of resistant bacteria - The maximum value that resistant bacteria acquire during an

infection profile.

B̂s(t) = Maxt(Br(t)) (2.43)

• Pathogen/bacterial burden - Total number of bacteria present throughout the infection.

Btot =

∫ Text

0
Bs(t) +Br(t)dt (2.44)

From our sensitivity analysis (see Figure 2.10), given the ranges we assumed, we find

four parameters that stand out: infected macrophages death rate (a), extracellular bacteria

death rate (c), burst rate (δ) and burst size (Ns). We identify, i the particular ranges studied,

the death rate of infected macrophages(a) as the most disruptive parameter for all the four

outcome measures. This supports the fact that the long persistence of infected macrophages

is a very strong factor promoting bacterial proliferation. Thus, this may be a target for drugs

to control infections. The other parameter is the extracellular bacteria death rate. If bacteria

persist longer extracellularly, they can infect more macrophages, boosting infection. Ns, the

burst size and, δ, burst rate, are also critical parameters for the dynamics, because they actually

scale the contribution of the intracellular compartment to the proliferation of the infection. In

addition, for the peak of resistance bacteria, fitness cost is also important ( γ ), as expected.

The less cost resistant bacteria have, the easier they compete with susceptible bacteria and

proliferate.

This information is helpful to understand further results, especially the relevance of

intracellular and extracellular balance in the process of the infection.
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Figure 2.10: Sensitivity analysis for the model. In respect of A) Duration of infection. B) Peak of
susceptible bacteria. C) Peak of resistant bacteria. D) Bacterial load. Index used was Sfast. Combination
of 9 parameters( β , δ , a, γ , c, Ns, v, σ , k) with 200 iterations in an infection during 100 days. (Cannavó
,2012).

2.5 Simulations without treatment

2.5.1 Effects of bacterial traits on infection characteristics

For a clear picture of the outcomes of the infection using this model (equations 2.41-2.44) and

the impact of the parameters on these values, we varied model simulations across parameters,

when treatment is not applied (see Figure 2.11). This provides a general overview of the types

of infections that this model can produce, and then evaluate their biological meaning. We verify

that small changes in values of parameters produces the switch from an acute infection to a

chronic one. This was key in defining the limits to study the acute and chronic infection more

deeply.

We observe cases when there is a monotonic parameter effect on model outcome, such

as extracellular bacteria death rate c, transmission rate β, mutation rate m, fitness cost γ and

immune growth rate σ. However, there are parameters that do not show this monotonic effect.

More specifically, both burst size and burst rate, as well as the intracellular bacteria death rate

along their range of variation. They can increase infection severity and decrease it. This is

a very interesting finding,pointing to the complexity of infection feedbacks mediated by these

parameters.
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Figure 2.11: Infection outcomes dependent on one parameter. Duration of infection and Bac-
terial peak depending on the value of the parameter. The simulations ran over 100 days. Blue line
characterizes the duration of the infection, while blue dot is the parameter combination default for acute
disease (Table 2.1). Dashed red line describes the bacterial peak with the red dot representing the default
parameters for acute infection.

We find regions of chronic infection in burst size Ns and burst rate δ parameters, with

high peaks of the duration of infection. A possible explanation is that these infection profiles

do not stimulate the immunity sufficiently. In those parameter values, bacteria population is

low and does not grow sufficiently to activate the immune system. This results in a chronic

infection that lasts up until the 100 days of simulation. We observe by the peak of bacteria

that the infection does not grow from the initial conditions (100). The net growth rate of this

type of bacteria will be approximately zero, therefore, they are not growing nor being cleared.

These represent cases when the host will not feel any symptoms, although they will not clear
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the infection. Transmission potential of these cases is considerably high, being also taken into

account in the spread of infectious diseases. The fact that the behaviour of burst size and burst

rate graphs are very close to one another is explained by the role they play in the model, since

they both represent how the extracellular bacteria are generated. Mutation rate m and fitness

cost γ of these mutations, in the range considered and under other parameter values assumed,

do not shift the system into different outcome measures. Increasing the death rate of infected

macrophages a and growth rate of the immune response σ, we observe a faster clearance with

an inferior peak as expected.

Our simulations seem to indicate that burst size and burst rate must be optimal from

the point of the view of the pathogen. If there is not enough burst to fuel the infection, the

infection does not grow. However, if there is too much burst, there will be a quicker stimulation

of immunity and/or depletion of the resources (macrophages), also leading to clearance of the

infection. Therefore, there must be a balance between the infection of macrophages and the

stimulation of immunity in order to have a growing and maximally prolonged infection.
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2.6 Conclusions

The main processes responsible for the infection outcome derive from growth and death processes

of bacteria within host, where the presence and absence of immunity is important. Competition

between strains determines how much diversity can be sustained, and target cell limitation con-

strains the maximal growth potential of the microbial population. When there is no immunity

present, the main processes that control bacteria are target cell limitation, intracellular prolif-

eration and extracellular death rate. However, the presence of immunity adds a new negative

feedback that is caused by the interaction between the pathogen and the immune action which

increases the opportunity for stable clearance.

In the absence of immunity (E=0), extracellular population is higher than intracellular

population for the range of parameters chosen and it is mainly defined by the death rates of

both populations. In the absence of treatment, susceptible population will win competition over

resistant population since the fitness cost is higher than the mutation rate. Otherwise, it would

be the resistant bacteria dominating the infection, although it is a rare event.

We find that infection must satisfy critical parameter values in order to persist in the

host. Only very specific parameter combinations make the bacteria balance its transmission

potential and infection rates together with the death rates to create an optimal harmony that

allow the bacteria to remain in the host. If there is too much proliferation it will kill the host

too fast, if there is not enough it will not persist either. So an intermediate rate of growth is

optimal to prolong the chances of survival within the host.

Ultimately, target cell limitation constrains the progression of the infection, and im-

munity is responsible for bringing the infection towards final clearance. The interplay between

all these processes is expected to become even more complex under external intervention, such

as drug treatment.
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Figure 2.12: Main processes responsible for infection outcomes.
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Chapter 3

Dynamics with treatment

3.1 Introduction

In the previous chapter, we explored the model without the presence of treatment. Also, we

studied analytically the behaviour of the bacterial infections. This was important, in order to

understand the equilibria and their critical conditions. Nonetheless, this behaviour does not

reflect the short time scale dynamics of the infection, namely in the acute infection, where the

infection grows and gets cleared. Looking into the transient dynamics up to a fixed stimulation

time, we focus on the application of antimicrobial treatments to infection and its positive or

negative consequences. This knowledge is useful in the design for the best possible treatment

for bacterial infections.

After their discovery, antibiotics use in medicine and agriculture was followed by re-

sistance emergence that led to higher risks for clinical care. This still happens nowadays. It

is known that the lag time until drug-resistance evolution varies across different drugs and

pathogens, resulting in a reduced effectiveness of each drug after this event occurs. Under-

standing and preventing resistance emergence through administration of treatment is urgently

necessary. Generally, to slow the evolution of resistance, we want to reduce the global use of an-

tibiotics to reduce the selective pressure. However, it must be balanced with treatment benefits,

such as patient health and transmission potential. This creates a trade-off between treatment

doses and duration between resistance potential and patient health. The traditional way to

administer medication is to use it when the patient needs, applying antibiotics as aggressively as

possible, using the highest dose until the pathogen is eliminated (Ehrlich, 1913). Nonetheless,

there is now empirical evidence that suggests that reducing the dosage or the length of treat-
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ment may slow the spread of resistance (Huijben et al., 2013) (Geli et al., 2012). These new

insights suggest the drug therapy should aim to optimize clinical outcomes, but not necessarily

to clear the infection. The role of immunity in infection clearance and resistance management

is gaining more attention in recent years, and many studies highlight the need for a synergy

between antibiotic treatment and host natural defenses (Gjini and Brito, 2016).

3.2 Antibiotic treatment in acute infections

Extrapolating to the reality, usually there is a treatment administered in any infection that

causes severe damage to the host. This is preceded by a physician’s appointment who evaluates

the situation and proposes an adequate treatment. Thus, when the patient goes to the hospital

with an acute bacterial infection, frequently it is applied a 7-day treatment with a fixed dosage.

With this in mind, we want to study and evaluate the different treatments we can apply to

patients, as well as infection dynamics that they produce.

We implement in the model the antimicrobial treatment acting on the extracellular

bacterial population, with the parameter Am > 0, antibiotic killing rate per day. The half-life

of the bacteria, time that takes the bacteria population to become half the size, varies with the

antibiotic killing rate administered. For example, when Am = 1, the half-life of bacteria is 16.6

hours. For Am = 5 it is 3.12 hours. Consequently, for Am = 10, we have a reduction to 1.66

hours. In this calculation, it is neglected the effect of immunity and growth, so the real value

will not be as linear.

Treatment acts only against susceptible bacteria, since resistant bacteria are assumed

to have acquired full resistance against this drug (HLR). We assume that the application of

the therapy is dependent on the extracellular bacteria present. When pathogen reaches the

symptom threshold (Bs + Br = Ω) level, treatment begins. First, the duration of treatment is

fixed with 7 day treatment duration. Then, we test the impact of other treatment durations

with summary measures of infection. Dose is fixed throughout the treatment and it is set as a

parameter also. Ω in this chapter varies between 103, 104, 105, 106 or peak (
dB

dt
= 0 ).

The ultimate goal is to clear faster, reduce pathology to the patient and to use ideally

as little amount of drug as possible. The dynamics of the infection undergoing antimicrobial

treatment are described in Figure 3.1. Effective treatment reduces the bacterial population and

stops resistance emergence. Immunity is not stimulated and clearance is achieved within 8 days.
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Figure 3.1: Dynamics of a successful 7 day treatment. Blue lines refer to susceptible bacteria
populations. Red lines refer to resistant bacteria populations. Dashed lines representing the extracellular
populations, while solid lines represent the intracellular populations (infected macrophages). Green line
reflects the population of uninfected macrophages. Black line shows the growth of immunity. Grey
patch represents when the treatment was applied. Treatment was applied when extracellular populations
reached 104. Here, the antibiotic killing rate per day is 10 (Am = 10).

3.3 Treatment dynamics with 7 days using multiple doses

Typically, when treatment is used in acute infections, stimulation of immunity either is com-

pletely prevented or it takes longer to happen. This may lead to the rise of a stronger population

of resistant bacteria (both intracellular and extracellular) if the treatment is strong enough. Af-

ter a few days, immunity gets stimulated and is responsible to produce clearance of infection

of both populations. Possible relapse of the susceptible bacteria population can happen if the

treatment is not efficient. There are cases, as shown in Figure 3.2, in which antibiotic treatment

will lead to future relapses, prolonging the infection. There can still be relapses with resistance

bacteria, depending on the antibiotic killing rate and symptom threshold.

Low dose of antibiotic killing rate produces more growing of bacteria, and, therefore,

higher stimulation of immunity. Clearance happens during treatment essentially through immu-

nity activity. On the other hand, a higher dose produces less growth of bacteria. Immunity will

not have sufficient strength to clear the infection during treatment, which will cause a relapse of

sensible bacteria. Relapse can be even bigger if we increase the dose, since immunity will be less
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Figure 3.2: 7-day treatment dynamics with multiple antibiotic killing rates of an acute
infection over 30 days. Antibiotic dose is growing from top to bottom, from 4 to 20 ([A = 4, B =
8, C = 12, D = 20]). Blue lines refer to susceptible bacteria populations. Red lines refer to resistant
bacteria populations. Dashed lines representing the extracellular populations, while solid lines represent
the intracellular populations (infected macrophages). Green line reflects the population of uninfected
macrophages. Black line shows the growth of immunity. Grey patch represents when the treatment was
applied. Treatment was applied when extracellular populations reached 1000(Ω = 103). Parameters of
simulations are described in Table 2.1.

and less stimulated during treatment. This phenomenon has been investigated in other stud-

ies(Stromberg and Antia, 2011). The highest dose will be efficient, since clearance is achieved

during treatment through the application of antibiotic, although with the risk of toxicity to the

patient.

3.4 Comparison of the treatment dynamics in 3, 7 and 14 days

duration therapies

Alternative therapies to bacterial infections are starting being debated by scientists and physi-

cians together. They consist of different combinations of durations and antimicrobial concen-

trations (Onakpoya et al., 2018) (Dawson-Hahn et al., 2017). Considering this, we explored
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more thoroughly a 3 day treatment duration representing small duration therapies and 14 day

treatment duration, which represents long duration therapies options. In light of this reality, we

observe the dynamics of the distinct therapy options. We take into account real biological doses

between sub-inhibitory and supra-inhibitory for bacterial populations and we assess the diverse

outcomes they generate (Figure 3.3). To achieve bacterial decline, smaller doses are needed if

we start the treatment later. This happens due to the contribution of immune response that ac-

tively fights the infection together with the antibiotic. When the treatment onset is later, there

is more immunity built in the host. Therefore, the joint action of the antibiotic and immunity

is stronger.
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Figure 3.3: Minimum inhibitory concentration dose for the infection comparing pre and
post-treatment bacterial levels.B refers to the instantaneous bacteria when the treatment ends. A)
For a 3 day treatment duration. B) For a 7 day treatment duration. In A), the minimum inhibitory
killing rate for Ω = 10e3 is 7.8; for Ω = 10e5 it is 7.6 and for Ω = 10e6 it is 6.2. In B), the minimum
inhibitory killing rate for Ω = 10e3 the minimum inhibitory killing rate is 8.1; for Ω = 10e5 it is 7.7 and
for Ω = 10e6 it is 6.2.

Thus, we observe distinct outcomes for each combination of antibiotic killing rates and

duration. Three-day treatment duration produce worse consequences when higher antibiotic

killing rates are applied (Figure 3.4). Moving to a longer treatment duration, such as 14 days,

we see that low doses will benefit the host in reducing the infection duration and peak. However,

antibiotic concentration administered is very high considering the other therapy options and it

can be still administered during the clearance phase, possibly affecting the host microbiota. In

moderate to higher killing rates across treatment durations, we find regimes of doses that will

exhibit relapses. In longer therapies, and at later stage, we observe fully resistant relapses,

leading to infections that are harder to clear via antibiotics. Three-day treatment duration

selects considerably less resistant bacteria.

To summarize the different combinations of therapy outcomes and to quantify the dif-

ferences of treatment outcomes also according to the infection profile, we calculated the duration
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Figure 3.4: Treatment dynamics of an acute infection over 30 days for different combina-
tions of antibiotic killing rates and duration treatments. First column is a 3-day treatment.
Second column is a 7-day treatment. Third column is a 14-day treatment. Antibiotic killing rate is
growing from top to bottom, Am ∈ [0, 20] with 6 discrete values (0,4,8,12,16,20). Top row refers to a
no-treatment situation. Blue lines refer to susceptible bacteria populations. Red lines refer to resistant
bacteria populations. Dashed lines representing the extracellular populations, while solid lines represent
the intracellular populations (infected macrophages). Green line reflects the population of uninfected
macrophages. Black line shows the growth of immunity. Grey patch represents when the treatment was
applied. Treatment was applied when extracellular populations reached 100000 (Ω = 105). Parameters
of simulations are described in Table 2.1.

of infection for each combination of dose, duration and type of infection (e.g. intracellular death

rate parameter value, a). We used this parameter because it is the main driver, based on the

sensitivity results for duration of infection (section 2.4). After this, we compare infection dura-

tion to a no-treatment situation. We observe an identical infection duration for 7 day and 14

day treatment (Figure 3.5). On the contrary, there is a distinct pattern for the small duration

treatment. There is more improvement using higher durations.

We find regimes that produce better results for the 3 distinct therapies. Aggressive

dosage and low doses benefit the host. Moderate doses produce relapses and prolong the in-

fection. Taking into account the fact that the parameter value used for acute infection of
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intracellular death rate is 12, we actually find a similar pattern in the 3 different therapies.

Sub-inhibitory doses will reduce the duration, as well as aggressive doses.
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Figure 3.5: Relative duration of acute infections for different treatment-infection parameter
combinations over 30 days. A) 3 day treatment. B) 7 day treatment. C) 14 day treatment. Grey
illustrates the area where the treatment prolongs the infection when compared with the no treatment
case (Am = 0). White zones are the cases when treatment shortens infection duration. Ω = 103.

3.4.1 Treatment combinations of doses and duration

In light of these findings, we want to focus on regimes that aggravate the infection and regimes

that offer benefits to the human host. Hence, we combine possible doses and durations for acute

infection therapies (Figure 3.6). We detect fast clearance in combinations of high doses and

duration. On the other hand, using intermediate and inhibitory antibiotic killing rates (Am =

[5,10]) and long treatment durations, we notice longer infection periods, due to lack of immunity

stimulation at the end of treatment. This will cause a possible relapse.

Immunity plays an effective role in the infection dynamics, being a key element re-

garding clearance. Therefore, stimulation of immunity must be correctly balanced with ad-

ministration of different antibiotic doses and duration. In case this fails, there will be possible

relapses with susceptible or resistant bacteria, affecting the host’s health and contributing for

the generation and proliferation of resistance strains in hospitals or cities.

We notice that there are different treatments that achieve the same outcome regarding

duration of infection. That is the case of high doses and short duration, and low doses and higher

duration combinations. There is several alternatives to achieve the same duration of infection.
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Figure 3.6: Map of the duration of infection produced by antibiotic treatment. Duration of
an acute infection with different combinations of antibiotic dose and treatment duration over 30 days
observation. Ω = 104. Parameters as in Table 2.1. The worst case is when Am = Minimum inhibitory
killing rate (Figure 3.3).

3.4.2 Role of symptom threshold

Until now, we used mainly different symptom threshold for the administration of treatment.

This difference in Ω makes the figures in the previous section not comparable. When the patient

goes to the hospital, we can have multiple stages of infection. The in-host bacteria load can be

low, intermediate or high, depending on each person’s symptoms and inflammation. With this in

mind, we apply the same combinations of dose and duration of the Figure 3.6 for different Ω (103,

105, peak) and we calculate the duration of infection (3.7A) as well as resistance burden (3.7B),

which is the total number of resistant bacteria present throughout the infection, described as:

Brtot =

∫ Text

0
Br(t)dt.

We find that if we apply the treatment later (Ω = peak) the outcomes are more predictable.

Figure 3.7 shows less variation using this range of doses and durations. Additionally, when we

administer very early, we produce less resistance bacteria and, on average, reduced duration

of the infection. On the contrary, intermediate symptom thresholds (Ω = 105) produce higher

infection periods and higher resistance burden. This is provoked by the lack of synergy between

antibiotics and immunity. In these cases, the antibiotic benefits the resistance strains in the

competition with the susceptible strain. Treatment does not affect the resistant bacteria, leading
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to relapses. This produces a longer infection period and higher resistance burden, by selecting

this strain in the competition between these two populations.
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Figure 3.7: Comparison of treatments applied in different symptom thresholds. Treatment
onset threshold affects infection outcomes across [Am, duration] combinations. Am ∈ [1, 30]. Dur ∈

[1, 15]. Peak is consider when
dB

dt
= 0 Applying treatment at higher pathogen loads is more predictive

of the infection outcomes, when compared to lower loads. Maximum resistance is selected in medium
treatment onset thresholds, since immunity is not always stimulated.
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3.5 Conclusion

Intervention is essential to clear the infection faster, reducing the bacterial load and resistance.

Antibiotic treatment provides effective clearance of the infection if well administered. However,

treatment can also prolong the infection and lead to relapses.

Different combinations of therapies lead to similar infection outcomes. For example,

high antibiotic killing rates combined with low duration provides the same duration of infection

as a long duration and low antibiotic killing rate. Different strategies can be used to reach the

same outcome. In addition, the same therapy, given at different points of infection (Ω), can give

very different outcomes. Prediction of outcomes by the administration of treatment is highly

complex.

To achieve clearance, the key aspect is to maintain balance between the antibiotic

administered and stimulation of immunity. The treatment must provide effective depletion of

bacteria still leaving room for immunity to grow, preventing future relapses. Combined with

the previous study, intracellular and extracellular compartments gain an extra role in managing

and controlling infections by being the targets of both antibiotic and immune stimulation.

In the next chapter, we will focus specifically on the comparison between short and

long duration treatment and take an in-depth look in many aspects of infection outcomes.

Figure 3.8: How to achieve clearance. Collaboration of antibiotic treatment and stimulation of
immunity is crucial to fight the infection and prevent it from relapsing.
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Chapter 4

Comparing short- and long-duration

treatment

In general, antibiotic treatment regimens consist primarily of two variables: the dose and the

duration of treatment. The traditional treatment regimens usually consist of a fixed dose ad-

ministered for a specified duration. Optimization studies are used to determine the dose and

duration that produce the best infection resolution. However, one limitation of this approach is

that it depends on the infection criteria used. Nowadays, traditional treatment regimens may

be effective although they are not the optimal duration or dose combination for most of the

patients. Also, alternative therapies such as adaptive treatment have been explored (Gjini and

Brito, 2016) providing new insights on managing resistance and optimization of treatment.

Misuse of antimicrobial drugs, as well as its overuse are linked to numerous conse-

quences such as toxicity, selection of resistant bacteria, patient compliance and even financial

costs for hospitals. These issues become more pertinent if we take into account the fact that

there is a high prevalence of antibiotic prescription in hospitals that can reach up to 50% of all

hospitalized patients. Thus, reducing antimicrobial drugs prescription while obtaining optimal

results is the main goal of clinicians.

Given the pressure to reduce all these consequences of overuse of antimicrobial drugs,

short-course therapy for many infection diseases is very tempting. There all several studies

comparing single dose therapy to standard therapy, as well as short-course treatments to long

or traditional ones. All show deeply mixed results, with the general trend not finding signif-

icant differences between treatments. For pneumonia (Furlan et al., 2018), bacterial sinusitis

(Falagas et al., 2009), Pseudomonas aeruginosa lung infection in patients with cystic fibrosis
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(CF) (Elborn et al., 2016), Helicobacter pylori infection (Usta et al., 2008), urinary tract infec-

tion (Berger, 2006), acute pyelonephritis (Onakpoya et al., 2018) (Dawson-Hahn et al., 2017)

and Escherichia coli bloodstream infection (BSI) (Giannella et al., 2018) there is no significant

differences between longer treatments and short treatments, taking into account relapses or mor-

tality. These studies reinforce the need for further investigation on optimality and alternative

therapies, mainly short-courses.

Here, we focus on the detailed comparison between two different therapies duration: 3-

day treatment duration and 7-day treatment duration and we study different outcome measures

represented by pathogen and resistance burden, duration of infection and damage to the host.

We also want to answer questions on treatment optimality, for resistance, damage and duration

whenever possible. For example, it is not clear which infection and health parameters should

we optimize with treatment and if these can be optimized simultaneously (Figure 4.2).

With this in mind, we evaluate the system 7 days post-treatment (7 d.p.t.) closer

to clinical reality and compare the efficacy of the short and long treatments considering in-

stantaneous measures (Figure 4.1), cumulative measures and summary measures of the treated

infection. This is different from previous chapters where our horizon of observation was 30 days.

All parameters are assumed fixed at the values in Table 2.1, unless otherwise stated.

Figure 4.1: Diagram of the modelling framework in this chapter study. Description of the
treatment administration and effectiveness evaluation adopted in this chapter to be closer to what happens
in clinical trials.
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Figure 4.2: Possible treatment optimization measures.

4.1 Methods

4.1.1 Treatment measures and infection outcomes

Applying treatment to the infection, we are simulating data using different antibiotic killing rates

that vary from 1 to 20 (Am ∈ [1, 20]), comparing two types of treatment: 3-day duration and

7-day duration. We combine dose-duration values and we test over different symptom thresholds

Ω. They intend to represent early treatment (Ω = 103), intermediate treatment (Ω = 105) and

late treatment (Ω = 106). During the infection process, we keep track of several instantaneous

measures, such as pathogen density B(t), resistant density Br(t) and pathology due to bacteria

HB(t), immunity HE(t) and macrophages HM (t). Pathology represents the damage the host

suffers from the infection. This measure represents one way to track the health of the patient.
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HB(t) = 1−
(
Bext
B(t)

)g
, HE(t) = 1−

(
E0

E(t)

)g
, HM (t) = 1−

(
K

M(t)

)g
, (4.1)

where g is a sensitivity parameter, here chosen equal to 0.1, that scales the impor-

tance of the population for host health. The pathology is calculated from the deviation from

’homoeostasis’ of these cell populations: extinction threshold for bacteria; initial level of immu-

nity and carrying capacity for macrophages, which represent a healthy host. The instantaneous

pathology measures usually follow the dynamics of population they track (see Figure 4.3 A).

Both instantaneous and cumulative pathology caused by immunity increases with the spread of

infection, since immunity is only growing. Treatment prevents damage to the host, by affecting

directly the bacteria, and indirectly immunity and macrophages. There will be less immune

stimulation and therefore less damage. Also, there is less consumption of macrophages, leading

to reduced pathology (Figure 4.3 C). Initially, the damage caused by the infection is mainly due

to the presence of bacteria. As the infection progresses, immunity grows and starts to damage

the host. In the end, immune cells are still present on the host’s body, causing some dam-

age, while the bacteria are extinct. A successful treatment can reduce significantly the damage

caused by both bacteria and immunity.
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Figure 4.3: Pathology dynamics during an acute infection regarding bacteria (B), immunity
(E) and macrophages (M) damage to the host. A) Instantaneous pathology without treatment. B)
Cumulative pathology without treatment. C) Instantaneous pathology with treatment. D) Cumulative
pathology with treatment. A) and B) refer to the dynamics described in Figure 2.2. C) and D) refer to
the dynamics described in Figure 3.1.

We also model different infection summary measures, such as duration of infection,
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pathogen burden and resistance burden which will capture the total infection history in terms

of bacteria present from the beginning of the infection until the measure point T . Similarly,

cumulative pathology is derived as an area under the curve from the equations of the instant

pathology, given by the integrals:

HB
tot(T ) =

∫ T

0
HB(t)dt, HE

tot(T ) =

∫ T

0
HE(t)dt, HM

tot(T ) =

∫ T

0
HM (t)dt. (4.2)

4.2 3-day and 7-day mean treatment dynamics

In order to better understand the effect of duration of treatment in the infection dynamics, we

calculated the mean dynamics for a range of Am ([1,20]) by finding the mean of each population

at each point of simulation. This intends to show a typical infection dynamic under treatment

assuming that all antibiotic killing rates in this range are uniformly distributed in the population

of treated patients.

The main qualitative differences in the dynamics of treated infection with long and

short treatment are illustrated in Figure 4.4 and summary measure in Figure A.3. The mean

infection dynamics with 3 and 7 days treatment duration shows a clear sign, throughout the

different treatment onsets, that the 7-day duration treatment selects more resistance, increases

the infection duration and stimulates less immunity. We can state, on average, that we can

reduce the application of antibiotics in time (from 7 to 3 days), and still effectively clear the

infection, without selecting resistance. The contribution of immunity in this case is essential.
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Figure 4.4: Typical infection dynamics under 3-day and 7-day treatment as a function of
the symptom threshold Ω. The treatment onset and duration (denoted by the vertical gray lines)
affects in major qualitative and quantitative ways the net dynamics obtained with antibiotic treatment.
Here we illustrate the average over many simulations of treatment at doses in the range Am ∈ [1, 20].
Equivalent to assuming that all these antibiotic killing rates are uniformly distributed in the population
of treated patients. For quantitative comparison see Figure 4.6. For summary measures of these dynamics
see Figure A.3.

4.3 Quantifying differences in treatment outcomes and the im-

portance of treatment onset

We found previously that different treatment durations produce distinct treatment outcomes.

In this section, we look to quantify the differences looking at pathology, duration of infection,

resistance and pathogen burden and infection resolution.

Regarding pathology (Figure 4.5), for higher antibiotic killing rates, the pattern is con-

stant, with 3-day duration presenting less pathology overall. For lower antibiotic killing rates,
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there are regimes where 3-day treatment continues to be successful in reducing pathology. How-

ever there are also present situations where 7-day treatment works considerable better. More-

over, 3-day and 7-day treatment duration present different scenarios across different symptom

thresholds. When we increase the time we administrate the antibiotic (the symptom threshold),

we shift the system into a more predictable result, narrowing the outcomes. We end up observing

that treatment options in late treatment will mostly cause an increase in the pathology when

we consider the bacteriological measure. If we increase the symptom threshold to a very late

state, treatment may even cause more pathology than no-treatment situation. In summary, low

doses seem optimal regarding pathology overall for bacteria damage. However, if we apply the

treatment in an early stage, high doses will be more effective in both treatment regimes. Also,

7-day treatment duration is frequently able to generate more pathology when compared to a

no-treatment situation. This does not occur with 3-day treatment duration.

In terms of bacterial pathology, the reason 3-day treatment duration produces less

damage than a longer period of treatment is that for shorter treatments low doses will decrease

the growth but allow immunity to grow and high doses will effectively kill the infection fast.

However, if we apply 7-day duration in the same conditions, with low doses we also decrease the

growth but we select longer for resistance bacteria, leading to possible relapses. High doses will

have the similar effect of 3 days, but with a cost of damage to the host’s microbiota due to the

administration of higher antibiotic total killing at the end of treatment.

We also compare other measures of infection that take into account the history of all

infection from time 0 up to 30 days (Figure 4.6). We compare 3-day versus 7-day treatment in

the dimensions of infection duration (Figure 4.6A), bacterial burden (Figure 4.6B) and resistance

burden (Figure 4.6C) for different treatment onsets Ω. Each dot represents a distinct antibiotic

killing rate used between 1 and 20.

It is possible to identify statistically differences between 3-day treatment duration and

7-day treatment duration. Overall, the test showed that 7-day duration leads to more favourable

treatment outcomes. Applying a Mann-Whitney test to simulations in Figure 4.6A comparing

medians of distributions across 3-day and 7-day outcomes revealed that infection duration is

significantly lower for 3-day treatment when applied at intermediate Ω (p-value=4.7e-24), but

when applied at early onset, 7-day treatment leads to lower infection duration (p-value=2.1e-

6). The 3-day treatment led to significantly higher bacterial burden at low to intermediate Ω

(p-value= 1.1e-19 for early, p-value=2.7e-42 for intermediate), described in Figure 4.6B. For

resistance selection the Mann-Whitney test confirmed significant superiority of the 7-day treat-
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Figure 4.5: Cumulative pathology outcomes for different treatments, 7 days after the end of
therapy. The dashed line represents the pathology in the case of no-treatment. Top row: pathology due
to bacterial growth. Middle row: Pathology due to immune response activation. Bottom row: Pathology
due to macrophage depletion. (A, D, G) Ω = 103 and treatment starts at very low bacterial levels. (B, E,
H) Ω = 105 and treatment starts at higher bacterial levels. (C,F, I) Ω = 106 and treatment is triggered
at very high bacterial levels. Am = [1, 20].

ment for low Ω (early treatment) giving less resistance than 3-day duration (p-value=8.3e-29),

while for intermediate treatment timing, the superiority was reversed, making 3-day treatment

better (p-value=6.1e-12). However, if it is too late (Ω = 106), the two treatments present similar

distribution for all infection measures (Figure 4.6C).

Concerning early and intermediate applications, there are significant differences in

superiority. The 3-day treatment produces lower results on infection duration and resistance

burden when applied at intermediate stages of infection. On the other hand, the 7-day treatment

duration has better outcomes for every measure when applied earlier and for pathogen load when

applied at intermediate stages. In addition, 7-day treatment duration also produces better

outcomes for the duration of the infection when applied at late stages when compared to 3-day

treatment duration outcomes. There is an overall superiority of the longer treatment for this

wide range of antibiotic killing rates.

After comparing cumulative infection summary measures, we also consider instanta-

neous measure for comparing 3-day and 7-day treatment, namely the bacteriologic outcome at
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Figure 4.6: Summary outcomes of infection compared for 3-day and 7-day treatment at
different Ω. A) Infection duration B) Total bacterial burden C) Total resistance burden. Each dot
represent a different dose from Am ∈ [1, 20], colored by symptom threshold (blue, green, red: Ω = 103,
105, 106) for two distinct treatment durations (3 days and 7 days).

7 days post treatment (Figure 4.7). We check the bacterial load present, 7 days after the treat-

ment ends. We designate ”infection resolution” the situation when the bacteria does not exceed

the initial inoculum. Otherwise, we say treatment has failed.

Considering the bacterial load 7 days post-treatment, low antibiotic killing rates always

work for both cases (3- and 7-day treatment duration) for all symptom thresholds. When we

move to intermediate Am, there are regimes where it actually favours 7 days and where it favours

3 days. This is a blurred area, although the outcomes can be similar. This supports the idea

of reducing the treatment duration, since we are considering 4 days before in absolute terms as

described in Figure 4.1. High doses will work effectively in both cases when the treatment onset

is reduced. When we increase the time of application of treatment, high doses won’t have the

same outcome as before. They will mostly select resistance in 3 days and 7 days.

For early treatment, there is 47% clearance with 3-day treatment duration, and 83%

with 7-day treatment duration. Moving to intermediate Ω, there is a shift for both treatments.

Low treatment duration achieves a 77% clearance rate, and long treatment duration achieves

93%. When we apply the treatment at a late stage of infection (high Ω), 3-day treatment

duration produces almost the same clearance rate as before with 70% and long treatment clears

87%. We should emphasize that not all treatment failures defined by instantaneous presence of

bacteria are equivalent, some correspond to a situation that is getting better over time, infection

on the way to clearance, some correspond to a worsening situation, infection tending towards

a relapse. Once again, 7-day treatment duration shows clear advantage overall. Nonetheless,

there are regimes that 3 day treatment duration is better or leads to the same outcome. These
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are the cases of low doses to intermediate ones.

It is hard to optimize a treatment that is superior for all infection outcomes. We must

be careful in what infection outcomes we consider relevant and we have to start defining priorities

on what we should minimize.

4.4 The case of non-independence of dose and duration of treat-

ment

Until this point, we have always considered the same antibiotic killing rate for the different

treatment duration. This will cause overall less antibiotic administered in the short treatments

when compared to the longer treatments. In this section, we study an alternative case: preserving

the same intensity of antibiotic treatment when comparing long and short duration. This means

that the same total antibiotic will be administered throughout the treatments, whether is 3 or

7 days only that in 3-day treatment the per-day killing rate will be higher and 7-day treatment

relatively lower. We compare the short treatment against long treatment, but now with this

constraint.

Dose x Duration = constant(intensity) (4.3)

This constraint follows some comparative treatments in clinical trials, when higher

doses are applied in short treatments and lower doses in long treatments, to keep the total

amount of killing similar (Huttner et al., 2018). We analysed the same infection characteristics

and we produce the same figures, displayed in Appendix A. The antibiotic killing doses adopted

for the long treatment (7 days) are Am ∈ [0, 12]. For the short treatment(3 days), it was adopted

Am ∈ [0, 28].

The comparison between the two scenarios show several differences. Regarding the

mean dynamics (Figure A.4), 7-day treatment duration produce similar infection dynamics,

when keeping the intensity fixed. However, 3-day treatment duration display distinct features.

It selects more resistance, and immunity is less stimulated overall. When considering early

application of treatment, we obtained better results. Short treatment produces a smaller peak

of susceptible bacteria. Nevertheless, if we consider the later applications of treatment, we find

worse scenarios for the mean intensity dynamics. Resistance is selected, reflected in an higher

peak of resistant bacteria.
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Moving to pathology (Figure A.5), we detect that for the same intensity, pathology

produced by macrophages and immunity is higher for the longer treatment overall. This contrasts

with the pathology produced by the pathogen. In this case, we find three different scenarios

depending on the treatment onset. For early applications, long treatment is superior for low

intensities. For intermediate to higher intensities, shorter treatment is better, demonstrating

exceptional results in reducing pathology. For intermediate onsets, half of the intensities (low

to intermediate) show superiority of long treatment. The other half benefits shorter treatments.

At the end, late treatment onsets produce higher pathology in shorter treatments. In this

case, longer treatments wins overall. We observe that, although there are regimes when longer

treatment has an advantage, there are others which cause substantial damage to the host, even

higher than the no-treatment case display by the dotted line.

Relative to the outcome measures (Figure A.6), 7-day treatment duration produces

better results when comparing the means of each measure. However, if we look at the worst

possible cases, they are also produced by longer treatments. On intermediate and late onsets,

it is more beneficial if there is a longer treatment application. On early onsets there are not

significant differences between treatments. We reinforce the idea that despite 7 day treatment

duration displays better results for the means, they are also responsible for the worst cases

(higher duration of infection and pathogen burden). This has an impact on the physician’s

choice.

Finally, infection resolution 7 days post treatment change considerably. There are

meaningful changes between the dependence or independence of dose and duration combination.

When considering low treatment onsets, if we fix the total amount of drug administered, we have

similar percentage for infection resolution for both treatments. On later treatment onsets, we

see a considerable change, increasing the success of longer treatment for almost the double. On

the other hand, if we administer the same antibiotic killing rate with different durations, we see

the opposite pattern. Low treatment onsets show a clear distance between success of treatment,

while later treatment onsets bring balance to both therapy values of infection resolution (Figure

4.7).
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Figure 4.7: Infection resolution (instantaneous measure) at 7 days post-treatment for 3-day
and 7-day duration at different Ω and treatment criteria. A) and D) Ω = 103, B) and E) 105,
C)and F) 106. Diamonds and red: 7-day treatment outcome, circles and blue: 3-day treatment outcome.
Empty symbols: Bacteria population above the initial inoculum (B(t) > B(0)) at 7-day post treatment.
Filled symbols: Bacteria population below the initial inoculum (B(t) > B(0)) at 7-day post treatment.
Proportion of treatment successes across all the dose range for the three Ω values are described on bar
plots, where treatment success is defined as B(t) < B0 at observation point post-treatment. A), B) and
C) x axis define the antibiotic killing rate used as the D), E) and F) maintain the total intensity constant
on both treatments (Am x Dur).

Infection resolution is, therefore, dependent on the criteria we define, and the infection

outcome that we measure (see diagram in Figure 4.1). Scientists together with physicians

struggle to find the optimal treatment for a patient. This fact can be explained by the difficulty

on not only defining a reliable criteria but also, as we previously saw, to optimize for multiple

infection outcomes with the same treatment. New challenges on optimization of treatment or

personalized medicine emerge and models may provide answers to the current questions.
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4.5 The challenge of finding an optimal treatment

Now, starting with the basic question: is it possible to find an optimal treatment for a given

host? Until now we restricted to only 3- and 7-day duration. In this section we allow for any

combination of dose and duration to be used and compare infection outcomes. However, search-

ing for an optimal dose-duration combination is a challenging goal. The optimal treatment will

differ from host to host and what infection criteria we use. It depends also on treatment timing:

for our default parameter combinations, it seems that short and more aggressive treatment is

the best when applied early in infection, but later in infection, long and milder treatment is

preferable (Figure 4.7). However, for infection burden minimization, the best treatment does

not depend on timing, it’s usually short and aggressive. For resistance minimization, if treat-

ment is applied late, the best regime would be short duration and low dose, while if treatment

is applied earlier, the duration should be higher. In summary, treatment timing together with

the infection criteria we want to optimize are two extremely important parameters to take into

account when we choose the treatment not only for population level(Uecker and Bonhoeffer,

2018) but also for the within-host level.

Following this idea, we examine different infection criteria for the optimal treatment

given 2 different hosts: one with stronger immune activation(k = 103) and other with lower im-

mune activation (k = 104). The infection criteria were duration of infection, bacterial burden,

resistance burden and pathology. The optimal treatment for each case will be the therapy that

minimizes the infection criteria and the one that involves the least use of antibiotic administra-

tion to the patient (minimum intensity). Adding to this, we separate the time of treatment (Ω)

by early(103) and late (106) and we find distinct optimal treatments.

We find no single optimal treatment for all the criteria (Figure 4.8). Also, we do not

observe the same optimal treatments for different treatment onsets. There is always a different

optimal treatment if the timing of administration changes relative to infection course. There

is a general pattern where more developed infections tend to shift the optimal treatment into

a longer duration and reduced antibiotic killing rate, even reducing the overall used antibiotic

(intensity).

To find the optimal treatment even for a given host becomes a difficult task. Often we

are not able to optimize simultaneously for different infection outcome features. In this case,

we may follow the application of a milder and longer treatment for patients with developed

infections and more aggressive and shorter treatments for patients with recent infections.
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Figure 4.8: Optimal treatment for different parameter combination. For 2 different hosts:
one with stronger immune activation(k = 103, red) and other with lower immune activation (k = 104,
black). Infection outcome criteria: A)Duration of infection, B)Bacterial burden, C)Resistance burden and
D)Pathology. The optimal treatment minimizes the infection criteria and the total amount of the drug.
Non-filled symbols refer to early onsets (Ω = 103)) and filled symbols refer to late onsets (Ω = 106)).
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4.6 Conclusions

The optimal treatment is never easy to find. It depends on the symptom threshold (Ω), treatment

duration and antibiotic killing rate per day. Also, it depends on the host and infection profile.

We focused specifically on Ω dependence since it controls bacteria, immunity and resistance levels

at the beginning of treatment. Different patients will receive treatment at different points of

the infection. Depending on the conditions, we find through simulations that optimal treatment

varies.

Overall, 7-day treatment duration is more efficient than 3-day. However, we find many

cases when 3-day treatment is non-inferior and even superior to 7-day treatment. Therefore,

there is room for the 3-day treatment to play a role in optimizing the treatments for acute

infections. Aggressive treatment (high doses) can work effectively when applied in early stages

of the infection. In middle stages of the infection, high doses may not work, and the solution

may be low to moderate doses. We observed that 3-day duration treatment has significant lower

infection resolution in low treatment onsets when compared to the 7-day duration treatment.

However, when we increase the treatment onset, we raise the infection resolution in both cases,

producing similar success in intermediate to late treatment onsets.

When fixing the total amount of drug used, overall we find significant new results

that favour again 7-day treatment duration. Although, 3-day treatment duration continues to

be viable for early applications of treatment. Aggressive intensities still work effectively when

applied in early stages of infection, losing its effectiveness when used at later stages of infection.

Infection resolution is higher for 3-day treatment duration when we keep the intensity fixed

on early onsets. These data reinforce the idea of viable alternative therapies, namely, shorter

treatment durations.

Optimality of treatment is constrained to the criteria we choose. In addition, timing of

treatment onset is crucial. Thus, to find the best possible treatment for a given host is nowadays

a challenging task.
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Chapter 5

Discussion

Mathematical models help us understand natural phenomena and to predict them. We do have to

keep in our mind that the model is a simplification of the reality, but it gives us useful insights

on the mechanisms leading to a specific phenomenon and can guide us to put optimization

principles in practice.

In this work, we explored intracellular infection using a mathematical model with

particular features such as the existence of two compartments (intracellularly and extracellularly)

and presence of adaptive immunity. We observe that infection outcome is very sensitive to the

presence or absence of immunity. In immunodeficient patients, the infection depends on the

target cell limitation, together with the competition between strains and it is very likely to

persist. On the other hand, when immunity is active, the infection is cleared, and can only

persist if the window of activation of immunity is limited, or its final level is sub-optimal. In

acute infection scenarios, the peak and duration of infection are subject to balance between

pathogen growth and stimulation of immunity. There will be critical infection rate for each

infection persisting longer in the host.

In order to fight the bacterial infection and limit the pathology related to it, intervention

in the form of antimicrobial treatment is essential. To clear the infection and reduce the host’s

damage from the bacteria are the main goals of current therapies, aiming for the use of the

least amount of antibiotic that can be effective. We can achieve that, if the treatment is well

administered, or we can suffer from a prolonged infection with possible resistance relapses.

Nowadays, there are recommended prescriptions for bacterial infections, namely 7-day

treatment duration for acute infections, supported by several studies. However, recent clinical

trials show that we can achieve the same result while applying a shorter course antibiotic therapy.
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In chapter 3, we show that different combinations of therapies (dose-duration) may lead to

similar infection outcomes. We can use these strategies to select treatment for different hosts

with specific infections. We have to look for maximum stimulation of immunity even with

the application of treatment, since it is mainly immunity the responsible for clearance of the

infection.

Lastly, we show that shorter-course treatments are viable alternatives to longer treat-

ments. In chapter 4, we dive in a deep comparison between 7-day treatment duration and 3-day

treatment duration. We find overall superiority of 7-day duration treatment as expected. How-

ever, we also find many cases when 3-day treatment is as beneficial or even more so than 7-day

treatment. Application of a milder and longer treatment for patients with developed infections is

beneficial. Aggressive and shorter treatments for patients with recent infections are also prefer-

able. We notice that the comparison in success rate between short and long treatment depends

on when the treatment is administered and how the comparison is made, by fixing the amount

of killing per unit of time, or by fixing total killing.

As far as optimization is concerned, it is difficult (if not impossible) to minimize all

infection outcomes with a single treatment. The variance of patients characteristics does not

allow to find a single best therapy; it depends on the symptom threshold, treatment duration

and antibiotic killing rate, in addition to the hosts and infection profile. Therefore, optimizing

antimicrobial therapies for patients will require better clinical quantification of these parame-

ters, especially those related to immune response. In addition, more experimental studies on

understanding how treatments drive resistance and clearance are essential to continue to pursue

the goal of personalised medicine: to administer the best possible therapy at the lowest cost for

the patient and society.
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Appendix A
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Figure A.1: Model dynamics for very low extinction threshold in the absence of immu-
nity. Dampling oscillations tend to a persistence equilibrium. Blue lines refer to susceptible bacteria
populations. Red lines refer to resistant bacteria populations. Dashed lines representing the extracellular
populations, while solid lines represent the intracellular populations (infected macrophages). Green line
reflects the population of uninfected macrophages. Bext = 10−10 . Simulation run with the default pa-
rameters from table 2.1. Although we expected persistence analytically, real infections will not show the
same pattern, since there is immediate extinction when the bacterial population is very low. Therefore,
the clearance regime predicted from analysis in figure 2.7 is conservative (smaller than in the numerical
simulations).
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Figure A.2: Conditions for coexistence of bacteria populations in the γ vs m space. Above the
blue line we are in a zone where there is coexistence of both bacteria populations, with susceptible bacteria
dominating over the resistant bacteria. While between the two lines, there is again coexistence although
resistant population dominates. Below the yellow line, there is only existence of resistant population,
with the clearance of susceptible populations. This conditions where extracted from analysis without
immunity in a coexistence equilibrium state.
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Figure A.3: Summary measures for the average dynamics of 3 and 7 day treatment duration.
This measures are generated from the dynamics of the infections represented in the Figure 4.3 of the
main text. A) Infection duration of the mean dynamics for 3 and 7 day treatment duration. B) Pathogen
burden of the mean dynamics for the 3 and 7 day treatment duration. C) Resistance burden of the mean
dynamics for the 3 and 7 day treatment duration. D) Cumulative pathology of the mean dynamics for
the 3 and 7 day treatment duration. Second , third and fourth line are refering to only specific symptom
threshold, 10e3, 10e5 and 10e6, respectively.
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Figure A.4: Typical infection dynamics under 3-day and 7-day treatment as a function of
the symptom threshold Ω when the total amount of drug is kept fixed. The treatment onset
and duration (denoted by the vertical gray lines) affects in major qualitative and quantitative ways the
net dynamics obtained with antibiotic treatment. Here we illustrate the average over many simulations of
treatment at intensity in the range Intensity ∈ [1, 84]. Equivalent to assuming that all these intensities
are uniformly distributed in the population of treated patients.
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Figure A.5: Cumulative pathology outcomes for different treatments, 7-days after the end
of therapy keeping the total intensity fixed. The dashed line represents the pathology in the case
of no-treatment. Top row: pathology due to bacterial growth. Middle row: Pathology due to immune
response activation. Bottom row: Pathology due to macrophage depletion. (A, D, G) Ω = 103 and
treatment starts at very low bacterial levels. (B, E, H) Ω = 105 and treatment starts at higher bacterial
levels. (C,F, I) Ω = 106 and treatment is triggered at very high bacterial levels.

Figure A.6: Summary outcomes of infection compared for 3-day and 7-day treatment at
different Ω keeping the total intensity fixed. A) Infection duration B) Total bacterial burden C)
Total resistance burden. Each dot represent a different dose from Am ∈ [1, 20], coloured by symptom
threshold (blue, green, red: Ω = 103, 105, 106) for two distinct treatment durations (3 days and 7 days).
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MODEL WITH ONE TYPE OF BACTERIA AND NO IMMUNITY 
(3 EQUATIONS)

apaga

Clear[r, K, beta, delta, a, Ns, c]

ptot = Bs;

eq1 = r * M * 1 - M / K - beta * M * ptot;

eq2 = beta * M * Bs - Is * delta + a;

eq3 = Ns * Is * delta - beta * M * Bs - (c + Am) * Bs;

Am = 0;

eqlist =

simplifica compl⋯

FullSimplify[
resolve

Solve[{eq1 ⩵ 0, eq2 ⩵ 0, eq3 ⩵ 0}, {M, Is, Bs}]]

Jac1 =

derivada

D[eq1, {{M, Is, Bs}}];

Jac2 =

derivada

D[eq2, {{M, Is, Bs}}];

Jac3 =

derivada

D[eq3, {{M, Is, Bs}}];

Jac = {Jac1, Jac2, Jac3};

{M → 0, Is → 0, Bs → 0}, {M → K, Is → 0, Bs → 0}, M → -
c a + delta

beta a + delta - delta Ns
,

Is → -c a + delta c + beta K - beta delta K Ns r  beta2 K a + delta - delta Ns2,

Bs → a + delta c + beta K - beta delta K Ns r  beta2 K a + delta - delta Ns

forma de matriz

MatrixForm[Jac]

Jac1 = Jac /. eqlist[[1]];

Jac2 = Jac /. eqlist[[2]];

Jac3 = Jac /. eqlist[[3]];

FullSimplify[
autovalores

Eigenvalues[Jac1]]

-beta Bs -
M r

K
+ 1 - M

K
 r 0 -beta M

beta Bs -a - delta beta M
-beta Bs delta Ns -c - beta M

{-c, -a - delta, r}

{-c, -a - delta, r}

The trivial equilibrium is unstable because r is positive.

{-c, -a - delta, r}

eigs2 =

simplifica compl⋯

FullSimplify[
autovalores

Eigenvalues[Jac2]]


1

2
-a - c - delta - beta K -a - c + delta - beta K2 + 4 beta delta K Ns,

1

2
-a - c - delta - beta K +a - c + delta - beta K2 + 4 beta delta K Ns, -r
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reduz

Reduce[eigs2[[2]] < 0 && a > 0 && c > 0 && delta > 0 && beta > 0 && K > 0 && Ns > 0 ]

delta > 0 && a > 0 && c > 0 && K > 0 && beta > 0 && 0 < Ns <
a c + c delta + a beta K + beta delta K

beta delta K

Carrying capacity - equilibrium for macrophages,

and no infection is stable if : Ns <

((a c + c delta + a beta K + beta delta K)/(beta delta K)).

reduz

Reducea - c + delta - beta K2
+ 4 beta delta K Ns < 0 &&

a > 0 && c > 0 && delta > 0 && beta > 0 && K > 0 && Ns > 0

False
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The no - infection equilibrium is not reached through oscillations, because 
the expression inside the square root cannot be negative. Thus, this is a 
node. 

eigs3 =

simplifica compl⋯

FullSimplify[
autovalores

Eigenvalues[Jac3]]
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Roota3 c2 r + 3 a2 c2 delta r + 3 a c2 delta2 r + c2 delta3 r +

a3 beta c K r + 3 a2 beta c delta K r + 3 a beta c delta2 K r + beta c delta3 K r -

a2 c2 delta Ns r - 2 a c2 delta2 Ns r - c2 delta3 Ns r - 2 a2 beta c delta K Ns r -

4 a beta c delta2 K Ns r - 2 beta c delta3 K Ns r + a beta c delta2 K Ns2 r +

beta c delta3 K Ns2 r + -a3 c r + a2 c2 r - 3 a2 c delta r + 2 a c2 delta r -

3 a c delta2 r + c2 delta2 r - c delta3 r + a2 beta c K r + 2 a beta c delta K r +

beta c delta2 K r + a2 c delta Ns r + a c2 delta Ns r + 2 a c delta2 Ns r +

c2 delta2 Ns r + c delta3 Ns r - a beta c delta K Ns r - beta c delta2 K Ns r #1 +

a3 beta K + 3 a2 beta delta K + 3 a beta delta2 K + beta delta3 K - 2 a2 beta delta K Ns -

a beta c delta K Ns - 4 a beta delta2 K Ns - beta c delta2 K Ns -

2 beta delta3 K Ns + a beta delta2 K Ns2 + beta c delta2 K Ns2 + beta delta3 K Ns2 -

a2 c r - 2 a c delta r - c delta2 r + a c delta Ns r + c delta2 Ns r #12 +

a2 beta K + 2 a beta delta K + beta delta2 K - 2 a beta delta K Ns -

2 beta delta2 K Ns + beta delta2 K Ns2 #13 &, 1,

Roota3 c2 r + 3 a2 c2 delta r + 3 a c2 delta2 r + c2 delta3 r + a3 beta c K r +

3 a2 beta c delta K r + 3 a beta c delta2 K r + beta c delta3 K r -

a2 c2 delta Ns r - 2 a c2 delta2 Ns r - c2 delta3 Ns r -

2 a2 beta c delta K Ns r - 4 a beta c delta2 K Ns r -

2 beta c delta3 K Ns r + a beta c delta2 K Ns2 r + beta c delta3 K Ns2 r +

-a3 c r + a2 c2 r - 3 a2 c delta r + 2 a c2 delta r - 3 a c delta2 r + c2 delta2 r -

c delta3 r + a2 beta c K r + 2 a beta c delta K r + beta c delta2 K r +

a2 c delta Ns r + a c2 delta Ns r + 2 a c delta2 Ns r + c2 delta2 Ns r +

c delta3 Ns r - a beta c delta K Ns r - beta c delta2 K Ns r #1 +

a3 beta K + 3 a2 beta delta K + 3 a beta delta2 K + beta delta3 K - 2 a2 beta delta K Ns -

a beta c delta K Ns - 4 a beta delta2 K Ns - beta c delta2 K Ns -

2 beta delta3 K Ns + a beta delta2 K Ns2 + beta c delta2 K Ns2 + beta delta3 K Ns2 -

a2 c r - 2 a c delta r - c delta2 r + a c delta Ns r + c delta2 Ns r #12 +

a2 beta K + 2 a beta delta K + beta delta2 K - 2 a beta delta K Ns -

2 beta delta2 K Ns + beta delta2 K Ns2 #13 &, 2,

Roota3 c2 r + 3 a2 c2 delta r + 3 a c2 delta2 r + c2 delta3 r + a3 beta c K r +

3 a2 beta c delta K r + 3 a beta c delta2 K r + beta c delta3 K r -

a2 c2 delta Ns r - 2 a c2 delta2 Ns r - c2 delta3 Ns r -

2 a2 beta c delta K Ns r - 4 a beta c delta2 K Ns r -

2 beta c delta3 K Ns r + a beta c delta2 K Ns2 r + beta c delta3 K Ns2 r +

-a3 c r + a2 c2 r - 3 a2 c delta r + 2 a c2 delta r - 3 a c delta2 r + c2 delta2 r -

c delta3 r + a2 beta c K r + 2 a beta c delta K r + beta c delta2 K r +

a2 c delta Ns r + a c2 delta Ns r + 2 a c delta2 Ns r + c2 delta2 Ns r +

c delta3 Ns r - a beta c delta K Ns r - beta c delta2 K Ns r #1 +

a3 beta K + 3 a2 beta delta K + 3 a beta delta2 K + beta delta3 K - 2 a2 beta delta K Ns -

a beta c delta K Ns - 4 a beta delta2 K Ns - beta c delta2 K Ns -

2 beta delta3 K Ns + a beta delta2 K Ns2 + beta c delta2 K Ns2 + beta delta3 K Ns2 -

a2 c r - 2 a c delta r - c delta2 r + a c delta Ns r + c delta2 Ns r #12 +

a2 beta K + 2 a beta delta K + beta delta2 K - 2 a beta delta K Ns -

2 beta delta2 K Ns + beta delta2 K Ns2 #13 &, 3

Bs /. eqlist[[3]]

a + delta c + beta K - beta delta K Ns r

beta2 K a + delta - delta Ns
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condExist =

reduz

Reduce r > 0 && a > 0 && c > 0 && delta > 0 &&

beta > 0 && K > 0 && Ns > 0 && -
c a + delta

beta a + delta - delta Ns
> 0 &&

-c a + delta c + beta K - beta delta K Ns r  beta2 K a + delta - delta Ns2 >

0 && a + delta c + beta K - beta delta K Ns r  beta2 K a + delta - delta Ns >

0, {Ns, K, beta, delta, a, c, r}

Ns > 1 && K > 0 && beta > 0 && delta > 0 && 0 < a < -delta + delta Ns &&

0 < c <
-a beta K - beta delta K + beta delta K Ns

a + delta
&& r > 0

reduz

Reduce[condExist && eigs3[[1]] < 0 && eigs3[[2]] < 0 && eigs3[[3]] < 0]

$Aborted

reduz

ReducecondExist && Ns <
a c + c delta + a beta K + beta delta K

beta delta K


False

The clearance equilibrium always exists. When the 
clearance equilibrium is stable, the persistence 
equilibrium does not exist and, when the clearance 
equilibrium is unstable, the persistence equilibrium 
exists. 

Stability analysis at persistence equilibrium. 
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r = 0.09;

K = 10^8;

beta = 1.2 * 10^(-7);

delta = 0.2;

Ns = 50;

c = 2;

region3 = condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac3]]] < 0 &&

Max[
p⋯

Im[
autovalores

Eigenvalues[Jac3]]] > 0 && Bs /. eqlist[[3]] ;

region2 = condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac3]]] < 0 && Bs /. eqlist[[3]] ;

region1 = condExist && Bs /. eqlist[[3]] ;

g1 =

gráfico

Plot[{region1, region2, region3},

{a, 0, 30},
estilo do gráfico

PlotStyle → {

azul

Blue, {

ve⋯

Red,
espesso

Thick}, {

verde

Green,
espesso

Thick}},

coloração

Filling →

inferior

Bottom,
legenda dos eixos

AxesLabel -> {"a ", "B"},
etiqueta de gráf⋯

PlotLabel → "
valor numérico

N=50"];

g3 =

gráfico

Plot[condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac3]]], {a, 0, 30},

legenda dos eixos

AxesLabel -> {"a", "
má⋯

Max(
parte real

Re(Eig)) "},
etiqueta de gráf⋯

PlotLabel → "
valor numérico

N=50"];

r = 0.09;

K = 10^8;

beta = 1.2 * 10^(-7);

delta = 0.2;

Ns = 100;

c = 2;

g4 =

gráfico

Plot[condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac3]]],

{a, 0, 30},
legenda dos eixos

AxesLabel -> {"a", "
má⋯

Max(
parte real

Re(Eig)) "},
etiqueta de gráf⋯

PlotLabel → "
valor numérico

N=100"];

region3 = condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac3]]] < 0 &&

má⋯

Max[
p⋯

Im[
autovalores

Eigenvalues[Jac3]]] > 0 && Bs /. eqlist[[3]] ;

region2 = condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac3]]] < 0 && Bs /. eqlist[[3]] ;

region1 = condExist && Bs /. eqlist[[3]] ;

g2 =

gráfico

Plot[{region1, region2, region3},

{a, 0, 30},
estilo do gráfico

PlotStyle → {

azul

Blue, {

ve⋯

Red,
espesso

Thick}, {

verde

Green,
espesso

Thick}},

coloração

Filling →

inferior

Bottom,
legenda dos eixos

AxesLabel -> {"a ", "B"},
etiqueta de gráf⋯

PlotLabel → "
valor numérico

N=100"];

linha de gráficos

GraphicsRow[{
mostra

Show[g1],
mostra

Show[g2]}]

linha de gráficos

GraphicsRow[{
mostra

Show[g3],
mostra

Show[g4]}]

(*in blue we show the existence of the equilibrium can be stable or unstable,

in red, we show the stability of the equilibrium when it exists,

in green are those stable equilibria manifested through oscillations*)
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We can clearly see three different possibilities for the equilibrium of persistence. In blue, it is unsta-
ble, green means it is stable manifested through oscillations and in red it is also stable but without 
oscillations. 
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MODEL WITH 2 BACTERIA SUB-POPULATIONS
ptot = Bs + Br;

eq1 = r * M * 1 - M / K - beta * M * ptot;

eq2 = beta * M * Bs - Is * delta + a;

eq3 = beta * M * Br - Ir * delta + a;

eq4 = Ns * 1 - m * Is * delta - beta * M * Bs - (c ) * Bs;

eq5 = Ns * 1 - gamma * Ir * delta + m * Ns * Is * delta - beta * M * Br - (c) * Br;

eqlist =

simplifica completamente

FullSimplify[

resolve

Solve[{eq1 ⩵ 0, eq2 ⩵ 0, eq3 ⩵ 0, eq4 ⩵ 0, eq5 ⩵ 0}, {M, Is, Ir, Bs, Br}]]

{M → 0, Is → 0, Ir → 0, Bs → 0, Br → 0}, {M → K, Is → 0, Ir → 0, Bs → 0, Br → 0},

M → -
c a + delta

beta a + delta + delta -1 + gamma Ns
, Is → 0,

Ir → -c a + delta c + beta K + beta delta -1 + gamma K Ns r 

beta2 K a + delta + delta -1 + gamma Ns2
,

Bs → 0, Br →
a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns
,

M → -
c a + delta

beta a + delta + delta -1 + m Ns
,

Is → -c (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns2
,

Ir → -
c m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns2
,

Bs → (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns,

Br →
m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns

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{M → 0, Is → 0, Ir → 0, Bs → 0, Br → 0},

{M → K, Is → 0, Ir → 0, Bs → 0, Br → 0},

M → -
c a + delta

beta a + delta + delta -1 + gamma Ns
, Is → 0,

Ir → -c a + delta c + beta K + beta delta -1 + gamma K Ns r 

beta2 K a + delta + delta -1 + gamma Ns2
,

Bs → 0, Br →
a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns
,

M → -
c a + delta

beta a + delta + delta -1 + m Ns
,

Is → -c (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns2
,

Ir → -
c m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns2
,

Bs → (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns,

Br →
m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns


Jacobian Matrix

row1 =

derivada

D[eq1, {{M, Is, Ir, Bs, Br}}];

row2 =

derivada

D[eq2, {{M, Is, Ir, Bs, Br}}];

row3 =

derivada

D[eq3, {{M, Is, Ir, Bs, Br}}];

row4 =

derivada

D[eq4, {{M, Is, Ir, Bs, Br}}];

row5 =

derivada

D[eq5, {{M, Is, Ir, Bs, Br}}];

Jac = {row1, row2, row3, row4, row5};

forma de matriz

MatrixForm[Jac]

Jac1 = Jac /. eqlist[[1]]

Jac2 = Jac /. eqlist[[2]]

Jac3 = Jac /. eqlist[[3]]

Jac4 = Jac /. eqlist[[4]]

-beta (Br + Bs) -
M r

K
+ 1 - M

K
 r 0 0 -beta M -beta M

beta Bs -a - delta 0 beta M 0
beta Br 0 -a - delta 0 beta M

-beta Bs delta 1 - m Ns 0 -c - beta M 0

-beta Br delta m Ns delta 1 - gamma Ns 0 -c - beta M
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{r, 0, 0, 0, 0}, {0, -a - delta, 0, 0, 0}, {0, 0, -a - delta, 0, 0},

0, delta 1 - m Ns, 0, -c, 0, 0, delta m Ns, delta 1 - gamma Ns, 0, -c

{-r, 0, 0, -beta K, -beta K}, {0, -a - delta, 0, beta K, 0}, {0, 0, -a - delta, 0, beta K},

0, delta 1 - m Ns, 0, -c - beta K, 0, 0, delta m Ns, delta 1 - gamma Ns, 0, -c - beta K


c a + delta r

beta K a + delta + delta -1 + gamma Ns
-

a + delta c + beta K + beta delta -1 + gamma K Ns r

beta K a + delta + delta -1 + gamma Ns
+

1 +
c a + delta

beta K a + delta + delta -1 + gamma Ns
r, 0, 0,

c a + delta

a + delta + delta -1 + gamma Ns
,

c a + delta

a + delta + delta -1 + gamma Ns
,

0, -a - delta, 0, -
c a + delta

a + delta + delta -1 + gamma Ns
, 0,


a + delta c + beta K + beta delta -1 + gamma K Ns r

beta K a + delta + delta -1 + gamma Ns
,

0, -a - delta, 0, -
c a + delta

a + delta + delta -1 + gamma Ns
,

0, delta 1 - m Ns, 0, -c +
c a + delta

a + delta + delta -1 + gamma Ns
, 0,

-
a + delta c + beta K + beta delta -1 + gamma K Ns r

beta K a + delta + delta -1 + gamma Ns
, delta m Ns,

delta 1 - gamma Ns, 0, -c +
c a + delta

a + delta + delta -1 + gamma Ns

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
c a + delta r

beta K a + delta + delta -1 + m Ns
+ 1 +

c a + delta

beta K a + delta + delta -1 + m Ns
r -

beta (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns +

m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns
,

0, 0,
c a + delta

a + delta + delta -1 + m Ns
,

c a + delta

a + delta + delta -1 + m Ns
,

(gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta gamma K a + delta + delta -1 + m Ns,

-a - delta, 0, -
c a + delta

a + delta + delta -1 + m Ns
, 0,


m a + delta c + beta K + beta delta K -1 + m Ns r

beta gamma K a + delta + delta -1 + m Ns
, 0,

-a - delta, 0, -
c a + delta

a + delta + delta -1 + m Ns
,

-(gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta gamma K a + delta + delta -1 + m Ns,

delta 1 - m Ns, 0, -c +
c a + delta

a + delta + delta -1 + m Ns
, 0,

-
m a + delta c + beta K + beta delta K -1 + m Ns r

beta gamma K a + delta + delta -1 + m Ns
, delta m Ns,

delta 1 - gamma Ns, 0, -c +
c a + delta

a + delta + delta -1 + m Ns


eigenvalues at each equilibrium to determine stability
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eig1 =

autovalores

Eigenvalues[Jac1]

eig2 =

autovalores

Eigenvalues[Jac2]

eig3 =

autovalores

Eigenvalues[Jac3]

eig4 =

simplifica compl⋯

FullSimplify[
autovalores

Eigenvalues[Jac4]]


1

2
-a - c - delta - beta K -a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta gamma K Ns,

1

2
-a - c - delta - beta K +a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta gamma K Ns,

1

2
-a - c - delta - beta K -a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta K m Ns,

1

2
-a - c - delta - beta K +a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta K m Ns, -r

r = 0.09;

K = 10^8;

beta = 1.2 * 10^(-7);

delta = 0.2;

a = 12;

gamma = 0.1;(*c=2;*)

Ns = 100;

m = 10^(-7);

eig1 =

autovalores

Eigenvalues[Jac1];

eig2 =

autovalores

Eigenvalues[Jac2];

eig3 =

autovalores

Eigenvalues[Jac3];

eig4 =

simplifica compl⋯

FullSimplify[
autovalores

Eigenvalues[Jac4]];

ss = {M → 0, Is → 0, Ir → 0, Bs → 0, Br → 0},

{M → K, Is → 0, Ir → 0, Bs → 0, Br → 0},

M → -
c a + delta

beta a + delta + delta -1 + gamma Ns
, Is → 0,

Ir → -c a + delta c + beta K + beta delta -1 + gamma K Ns r 

beta2 K a + delta + delta -1 + gamma Ns2
,

Bs → 0, Br → a + delta c + beta K + beta delta -1 + gamma K Ns r 
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        

beta2 K a + delta + delta -1 + gamma Ns,

M → -
c a + delta

beta a + delta + delta -1 + m Ns
,

Is → -c (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns2
,

Ir → -c m a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns2
,

Bs → (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns,

Br →
m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns
;

(*

verifica

Check that the equilibria exist: {M/.ss[[1]]≥0,Is/.ss[[1]]≥0,

Ir/.ss[[1]]≥0,Bs/.ss[[1]]≥0,Br/.ss[[1]]≥0}...*)

(*

verifica

Check which of the equilibria is stable for that variation in a

given parameter (e.g. c), by plotting the maximum real part,

if it is negative, that equilibrium is stable*)

grá⋯

Plot[
má⋯

Max[
parte real

Re[eig2]], {c, 0.1, 10},

AxesLabel → {"c", "
má⋯

Max(
parte real

Re(eig))"},
etiqueta de gráfico

PlotLabel → "S2 equilibrium"]

Plot[
má⋯

Max[
parte real

Re[eig3]], {c, 0.1, 10},
legenda dos eixos

AxesLabel → {"c", "
má⋯

Max(
parte real

Re(eig))"},

etiqueta de gráfico

PlotLabel → "S3 equilibrium"]

Plot[
má⋯

Max[
parte real

Re[eig4]], {c, 0.1, 10},
legenda dos eixos

AxesLabel → {"c", "
má⋯

Max(
parte real

Re(eig))"},

etiqueta de gráfico

PlotLabel → "S4 equilibrium"]

2 4 6 8 10
c

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Max(Re(eig))
S2 equilibrium
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2 4 6 8 10
c

-0.05

0.05

0.10

0.15

0.20

0.25

Max(Re(eig))
S3 equilibrium

2 4 6 8 10
c

0.2

0.4

0.6

0.8

1.0
Max(Re(eig))

S4 equilibrium

eig1 =

autovalores

Eigenvalues[Jac1];

{-c, -c, -a - delta, -a - delta, r}

{-c, -c, -a - delta, -a - delta, r}

eig2 =

autovalores

Eigenvalues[Jac2]


1

2
-a - c - delta - beta K -a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta gamma K Ns,

1

2
-a - c - delta - beta K +a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta gamma K Ns,

1

2
-a - c - delta - beta K -a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta K m Ns,

1

2
-a - c - delta - beta K +a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta K m Ns, -r
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Resistance equilibrium is stable when the infection is strong enough to proliferate in the host, but 
not too strong to kill. This means that when this equilibrium exists it is not always stable. There are 
regimes when it is unstable, namely for very slow or very fast infections. On the other hand, coexis-
tence equilibrium seems to  always unstable when exists. Resistance persistence equilibrium, 
which is the worst scenario, is the only case whether we can have a stable persistence equilibrium 
in the host. However, it is dependent on the fitness cost being lower than the mutation rate.
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Analysis of the full model

apaga

Clear[r, K, beta, delta, a, Ns, c]

ptot = Bs + Br;

eq1 = r * M * 1 - M / K - beta * M * ptot;

eq2 = beta * M * Bs - Is * delta + a + v * E1;

eq3 = beta * M * Br - Ir * delta + a + v * E1;

eq4 = Ns * 1 - m * Is * delta - beta * M * Bs - (c + Am) * Bs;

Am = 0;

eq5 = Ns * 1 - gamma * Ir * delta + m * Ns * Is * delta - beta * M * Br - (c) * Br;

eq6 = sigma * E1 * ptot  ptot + k;

eqlist =

simplifica compl⋯

FullSimplify[
resolve

Solve[

{eq1 ⩵ 0, eq2 ⩵ 0, eq3 ⩵ 0, eq4 ⩵ 0, eq5 ⩵ 0, eq6 ⩵ 0}, {M, Is, Ir, Bs, Br, E1}]]

M → 0, Ir →
Is

-1 + gamma
, Bs → -

delta Is -1 + m Ns

c
,

Br →
delta Is -1 + m Ns

c
, E1 → -

a + delta

v
, {M → 0, Is → 0, Ir → 0, Bs → 0, Br → 0},

{M → K, Is → 0, Ir → 0, Bs → 0, Br → 0}, {M → 0, Is → 0, Ir → 0, Bs → 0, Br → 0, E1 → 0},

{M → K, Is → 0, Ir → 0, Bs → 0, Br → 0, E1 → 0},

M → -
c a + delta

beta a + delta + delta -1 + gamma Ns
, Is → 0,

Ir → -
c a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns2
, Bs → 0,

Br →
a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns
, E1 → 0,

M → -
c a + delta

beta a + delta + delta -1 + m Ns
,

Is → -
c (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns2
,

Ir → -
c m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns2
,

Bs →
(gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns
,

Br →
m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns
, E1 → 0

Equilibrium SOLUTIONS

M → 0, Br →
delta Is (-1+m) Ns

c
, Bs → -

delta Is (-1+m) Ns
c

, Ir →
Is

-1+gamma
, E1 → -

a+delta
v

 is 

unreal, because Immunity is below 0.
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{M→0,Br→0,Bs→0,Ir→0,Is→0} Trivial equilibrium with zero immunity and zero uninfected 
macrophages: --> It can be reached only if bacteria outgrow their resource, driving it to extinc-
tion and themselves to extinction. (DEATH of host?)

{M→K,Br→0,Bs→0,Ir→0,Is→0} -> Carrying capacity equilibrium for macrophages is possible 
without infection. The equilibrium refers to a clearance situation or a pre-infection situation, 
where the macrophages are at carrying capacity. Immunity is a free variable and can have any 
positive value for this to be true.

M → -
c a+delta

beta a+delta+delta (-1+gamma) Ns
, Br →

a+delta c+beta K+beta delta (-1+gamma) K Ns r

beta2 K a+delta+delta (-1+gamma) Ns
,

Bs → 0, Ir → -
c a+delta c+beta K+beta delta (-1+gamma) K Ns r

beta2 K a+delta+delta (-1+gamma) Ns
2 , Is → 0, E1 → 0

 -> 

Resistant only population persists [Worst case scenario], with Immunity = 0. This is basically a 
consumer-resource dynamics, maintained at a balance: not too much consumption of M, and 
sufficiently low mortality to keep both populations going --> chronic infection!

In this equilibrium, the ratio of intracellular vs. extracellular bacteria is given by: 

Ir
Br

= -c
a+delta+delta (-1+gamma) Ns

,  Death of the extracellular B vs generation poten-

tial
We can have 2 cases:
- First, intracellular population is smaller, when  c < delta(1-gamma)Ns-(a+delta)
-Second, intracellular population is higher, when c > delta(1-gamma)Ns-(a+delta) 

M → -
c a+delta

beta a+delta+delta (-1+m) Ns
, Br →

m a+delta c+beta K+beta delta K (-1+m) Ns r

beta2 gamma K a+delta+delta (-1+m) Ns
,

Bs →
(gamma-m) a+delta c+beta K+beta delta K (-1+m) Ns r

beta2 gamma K a+delta+delta (-1+m) Ns
,

Ir → -
c m a+delta c+beta K+beta delta K (-1+m) Ns r

beta2 gamma K a+delta+delta (-1+m) Ns
2 ,

Is → -
c (gamma-m) a+delta c+beta K+beta delta K (-1+m) Ns r

beta2 gamma K a+delta+delta (-1+m) Ns
2 , E1 → 0

   -> Coexis-

tence of bacteria population equilibrium again without immunity

In this equilibrium, Ir
Br

= Ir + Is
Br + Bs

= -c
a+delta+delta (-1+m) Ns

, 

Is
Ir

=
Bs
Br

=
gamma - m

m
,  which means that the ratio of extracellular populations and intracellu-

lar is mantained at the same level, depending only on the cost of fitness by mutations and the 
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mutation rate itself. 
In addition, susceptible populations will always be higher than the resistant ones because the 
fitnes cost of resistance gamma is typically higher than the mutation probability. Another 
important information is that the rate of intracellular bacteria should be lower in this equilib-
rium than in Resistant-Only equilibrium, when comparing with extracellular populations, 
because m < gamma. 

Conditions for Coexistance to exist:
1)gamma > m ,  for the rate to be bigger than zero and positive!

2) gamma
m

 < 2  Br > Bs

3) gamma
m

 > 2, Bs > Br

gamma is responsible for the cost of fitness, so if it is high enough, resistant won’t be 
able to grow larger than the susceptible population. This has an inverse relation with muta-
tion, the higher the mutation rate, the higher capacity of resistant to compete with suscepti-
ble.
----------
M* in resistance
M* in coexistance

=
a+delta+delta (-1+gamma) Ns
a+delta+delta (-1+m) Ns

M* = ( a+delta
beta

)* Ir*
Br*

Ir* in resistance
Is* + Ir* in coexistance

= 

((a + delta) (c + beta K) +

beta delta (-1 + gamma) K Ns)

(a + delta + delta (-1 + m) Ns)2

(a + delta + delta (-1 + gamma) Ns)2

((a + delta) (c + beta K) +

beta delta K (-1 + m) Ns)

Br* in resistance
Bs* + Br* in coexistance

 =  
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(((a + delta) (c + beta K) +

beta delta (-1 + gamma) K Ns)

(a + delta + delta (-1 + m) Ns))/

((a + delta + delta (-1 + gamma) Ns)

((a + delta) (c + beta K) +

beta delta K (-1 + m) Ns))

Values that variables assume in equilibrium

{Br, Bs, E1, Ir, Is, M} /. eqlist


delta Is -1 + m Ns

c
, -

delta Is -1 + m Ns

c
, -

a + delta

v
,

Is

-1 + gamma
, Is, 0,

{0, 0, E1, 0, 0, 0}, {0, 0, E1, 0, 0, K}, {0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, K}, 
a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns
,

0, 0, -
c a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns2
,

0, -
c a + delta

beta a + delta + delta -1 + gamma Ns
,


m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns
,

(gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns, 0,

-
c m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns2
,

-c (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns2
, -

c a + delta

beta a + delta + delta -1 + m Ns


Jacobian Matrix
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Jac1 =

derivada

D[eq1, {{M, Is, Ir, Bs, Br, E1}}];

Jac2 =

derivada

D[eq2, {{M, Is, Ir, Bs, Br, E1}}];

Jac3 =

derivada

D[eq3, {{M, Is, Ir, Bs, Br, E1}}];

Jac4 =

derivada

D[eq4, {{M, Is, Ir, Bs, Br, E1}}];

Jac5 =

derivada

D[eq5, {{M, Is, Ir, Bs, Br, E1}}];

Jac6 =

derivada

D[eq6, {{M, Is, Ir, Bs, Br, E1}}];

Jac = {Jac1, Jac2, Jac3, Jac4, Jac5, Jac6};

forma de matriz

MatrixForm[Jac]

Jac1 = Jac /. eqlist[[1]];

Jac2 = Jac /. eqlist[[2]];

Jac3 = Jac /. eqlist[[3]];

Jac4 = Jac /. eqlist[[4]];

Jac5 = Jac /. eqlist[[5]];

Jac6 = Jac /. eqlist[[6]];

-beta (Br + Bs) -
M r

K
+ 1 - M

K
 r 0 0 -beta M

beta Bs -a - delta - E1 v 0 beta M
beta Br 0 -a - delta - E1 v 0

-beta Bs delta 1 - m Ns 0 -c - beta M

-beta Br delta m Ns delta 1 - gamma Ns 0

0 0 0 -
(Br+Bs) E1 sigma

(Br+Bs+k)2
+

E1 sigma

Br+Bs+k

forma de tabela

TableForm[%14]

-beta (Br + Bs) -
M r

K
+ 1 - M

K
 r 0 0 -beta M

beta Bs -a - delta - E1 v 0 beta M
beta Br 0 -a - delta - E1 v 0

-beta Bs delta 1 - m Ns 0 -c - beta M

-beta Br delta m Ns delta 1 - gamma Ns 0

0 0 0 -
(Br+Bs) E1 sigma

(Br+Bs+k)2
+

E1

Br

Eigenvalues at each equilibrium
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autovalores

Eigenvalues[Jac1]

autovalores

Eigenvalues[Jac2]

autovalores

Eigenvalues[Jac3]

autovalores

Eigenvalues[Jac4]

autovalores

Eigenvalues[Jac5]

autovalores

Eigenvalues[Jac6]

0, 0, 0, r,
c3 k v - c3 gamma k v

c2 -1 + gamma k v
,
c3 k v - c3 gamma k v

c2 -1 + gamma k v


{0, -c, -c, r, -a - delta - E1 v, -a - delta - E1 v}

0, -r,
1

2 k
-a k - c k - delta k - beta k K - E1 k v -

a k + c k + delta k + beta k K + E1 k v2
- 4 a c k2 + c delta k2 + a beta k2 K + beta delta k2

K - beta delta k2 K Ns + beta delta gamma k2 K Ns + c E1 k2 v + beta E1 k2 K v,

1

2 k
-a k - c k - delta k - beta k K - E1 k v +a k + c k + delta k + beta k K + E1 k v2

-

4 a c k2 + c delta k2 + a beta k2 K + beta delta k2 K - beta delta k2 K Ns +

beta delta gamma k2 K Ns + c E1 k2 v + beta E1 k2 K v,

1

2 k
-a k - c k - delta k - beta k K - E1 k v -a k + c k + delta k + beta k K + E1 k v2

-

4 a c k2 + c delta k2 + a beta k2 K + beta delta k2 K -

beta delta k2 K Ns + beta delta k2 K m Ns + c E1 k2 v + beta E1 k2 K v,

1

2 k
-a k - c k - delta k - beta k K - E1 k v +a k + c k + delta k + beta k K + E1 k v2

-

4 a c k2 + c delta k2 + a beta k2 K + beta delta k2 K -

beta delta k2 K Ns + beta delta k2 K m Ns + c E1 k2 v + beta E1 k2 K v

{0, -c, -c, -a - delta, -a - delta, r}
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0,
1

2
-a - c - delta - beta K -a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta gamma K Ns,

1

2
-a - c - delta - beta K +a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta gamma K Ns,

1

2
-a - c - delta - beta K -a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta K m Ns,

1

2
-a - c - delta - beta K +a + c + delta + beta K2 -

4 a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta K m Ns, -r

⋯ 1⋯

large output show less show more show all set size limit...

 Conditions for variable to be positive - Resistant-Only Equilibrium

condExist =

reduz

Reduce-
c a + delta

beta a + delta + delta -1 + gamma Ns
> 0 &&

-
c a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns2
> 0 &&

a + delta c + beta K + beta delta -1 + gamma K Ns r

beta2 K a + delta + delta -1 + gamma Ns
> 0 &&

c > 0 && a > 0 && beta > 0 && K > 0 && delta > 0 && 0 < m < 1 &&

0 < gamma < 1 && sigma > 0 && r > 0 && Ns > 0 && k > 0 && v > 0,

{c, a, beta, delta, m, gamma, sigma, r, Ns, K, k, v}

c > 0 && a > 0 && beta > 0 && delta > 0 && 0 < m < 1 &&

0 < gamma < 1 && sigma > 0 && r > 0 && Ns >
-a - delta

-delta + delta gamma
&&

K >
-a c - c delta

a beta + beta delta - beta delta Ns + beta delta gamma Ns
&& k > 0 && v > 0

For resistant-only equilibrium to exist , Ns > -a-delta
-delta+delta gamma

 and K 

> -a c-c delta
a beta+beta delta-beta delta Ns+beta delta gamma Ns

Conditions for variables to be positive - Coexistance Equilibrium
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condExistC =

reduz

Reduce-
c a + delta

beta a + delta + delta -1 + m Ns
> 0 &&

-c (gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns2
 > 0 &&

-
c m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns2
> 0 &&

(gamma - m) a + delta c + beta K + beta delta K -1 + m Ns r 

beta2 gamma K a + delta + delta -1 + m Ns > 0 &&

m a + delta c + beta K + beta delta K -1 + m Ns r

beta2 gamma K a + delta + delta -1 + m Ns
> 0 && c > 0 &&

a > 0 && beta > 0 && K > 0 && delta > 0 && 0 < m < 1 &&

0 < gamma < 1 && sigma > 0 && r > 0 && Ns > 0 && k > 0 && v > 0,

{c, a, beta, delta, m, gamma, sigma, r, Ns, K, k, v}

c > 0 && a > 0 && beta > 0 && delta > 0 && 0 < m < 1 &&

m < gamma < 1 && sigma > 0 && r > 0 && Ns >
-a - delta

-delta + delta m
&&

K >
-a c - c delta

a beta + beta delta - beta delta Ns + beta delta m Ns
&& k > 0 && v > 0

For the coexistance equilibrium to exist , Ns > -a-delta
-delta+delta m

 and K 

> -a c-c delta
a beta+beta delta-beta delta Ns+beta delta m Ns

Stability Analysis

Resistant-Only Equilibrium - Stability

eigs5 =

simplifica

Simplify[
autovalores

Eigenvalues[Jac5]];

reduz

Reduce[eigs5[[1]] < 0 && eigs5[[2]] < 0 && eigs5[[3]] < 0 &&

eigs5[[4]] < 0 && eigs5[[5]] < 0 && eigs5[[6]] < 0 && a > 0 &&

c > 0 && delta > 0 && beta > 0 && K > 0 && Ns > 0 && m > 0 && gamma > 0]

False

Resistant equilibrium is not stable.
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reduz

Reduce[eigs5[[1]] <= 0 && eigs5[[2]] <= 0 && eigs5[[3]] <= 0 &&

eigs5[[4]] <= 0 && eigs5[[5]] <= 0 && eigs5[[6]] <= 0 && a > 0 &&

c > 0 && delta > 0 && beta > 0 && K > 0 && Ns > 0 && m > 0 && gamma > 0]

r ≥ 0 && delta > 0 && a > 0 && c > 0 && K > 0 &&

beta > 0 && 0 < Ns ≤
a c + c delta + a beta K + beta delta K

beta delta K
&&

0 < m ≤
1

4 beta delta K Ns
a2 - 2 a c + c2 + 2 a delta - 2 c delta + delta2 -

2 a beta K + 2 beta c K - 2 beta delta K + beta2 K2 + 4 beta delta K Ns &&

0 < gamma ≤
1

4 beta delta K Ns
a2 - 2 a c + c2 + 2 a delta - 2 c delta + delta2 -

2 a beta K + 2 beta c K - 2 beta delta K + beta2 K2 + 4 beta delta K Ns ||

Ns >
a c + c delta + a beta K + beta delta K

beta delta K
&&

-a c - c delta - a beta K - beta delta K + beta delta K Ns

beta delta K Ns
≤ m ≤

1

4 beta delta K Ns
a2 - 2 a c + c2 + 2 a delta - 2 c delta + delta2 -

2 a beta K + 2 beta c K - 2 beta delta K + beta2 K2 + 4 beta delta K Ns &&

-a c - c delta - a beta K - beta delta K + beta delta K Ns

beta delta K Ns
≤ gamma ≤

1

4 beta delta K Ns
a2 - 2 a c + c2 + 2 a delta - 2 c delta + delta2 -

2 a beta K + 2 beta c K - 2 beta delta K + beta2 K2 + 4 beta delta K Ns

reduz

Reduce

√(a + c + delta + beta K)2 - 4 (a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta gamma K Ns) + -a -

c - delta - beta K  < 0 && -a - c - delta - beta K +

√(a + c + delta + beta K)2 - 4 (a c + c delta + a beta K + beta delta K - beta delta K Ns + beta delta K m Ns) < 0 

beta gamma K m Ns ∈  && a ≤ 0 &&  ⋯ 1⋯  || a > 0 &&  ⋯ 1⋯ 

large output show less show more show all set size limit...
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r = 0.09;

K = 10^8;

beta = 1.2 * 10^(-7);

delta = 0.2;

gamma = 0.1;

Ns = 100;

Bext = 0.1;

v = 1 * 10^(-5);

sigma = 2;

k = 10^4;

m = 10^(-7);

c = 2;

Tmax = 100;

region2 = condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac5]]] < 0 && Ir /. eqlist[[6]] ;

region1 = condExist && Ir /. eqlist[[6]] ;

g1 =

gráfico

Plot[{region1, region2}, {a, 0, 30},

estilo do gráfico

PlotStyle → {

azul

Blue, {

ve⋯

Red,
espesso

Thick}},
coloração

Filling →

inferior

Bottom];

mostra

Show[

g1]
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region3 = condExist &&
má⋯

Max[
p⋯

Re[
autovalores

Eigenvalues[Jac5]]] < 0 &&

Max[
p⋯

Im[
autovalores

Eigenvalues[Jac5]]] > 0 && Ir /. eqlist[[6]] ;

g2 =

gráfico

Plot[{region1, region2, region3}, {a, 0, 30},
estilo do gráfico

PlotStyle →

{

azul

Blue, {

ve⋯

Red,
espesso

Thick}, {

verde

Green,
espesso

Thick}},
coloração

Filling →

inferior

Bottom,
legenda dos eixos

AxesLabel -> {"a ", "
unidade imaginária

I"}];

linha de gráficos

GraphicsRow[{
mostra

Show[g1],
mostra

Show[g2]}]
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Coexistance Equilibrium - Stability

eigs6 =

autovalores

Eigenvalues[Jac6];

reduz

Reduce[eigs6[[1]] < 0 && eigs6[[2]] < 0 &&

eigs6[[3]] < 0 && eigs6[[4]] < 0 && eigs6[[5]] < 0 && eigs6[[6]] < 0 ]
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