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Département de la Physique d’etat solide

de l’Université de  Lódź
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SUBMITTING THE PAPERS FOR BULLETIN

Summary
Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,
scientific significance of the paper and conclusions should be emphasized.
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The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES

DE  LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the

file bull.cls).
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2.1. Example of a figure
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2.3. “Ghostwriting” and “guest authorship” are strictly forbiden
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Table 1. The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4

Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as attach-

ment files sent to the address walewska@math.uni.lodz.pl. If a whole manuscript

exceeds 2 MB composed of more than one file, all parts of the manuscript, i.e. the text

(including equations, tables, acknowledgements and references) and figures, should

be ZIP-compressed to one file prior to transfer. If authors are unable to send their

manuscript electronically, it should be provided on a disk (DOS format floppy or

CD-ROM), containing the text and all electronic figures, and may be sent by reg-

ular mail to the address: Department of Solid State Physics, University of

Lodz, Bulletin de la Société des Sciences et des Lettres de  Lódź, Pomorska

149/153, 90-236  Lódź, Poland.
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OUR FRIEND PROFESSOR YURII B. ZELINSKII

Professor Yurii Borysovych Zelinskii is a renowned Ukrainian mathematician who

developed topological and geometrical methods for solving analytical problems of

complex analysis and the theory of mappings.

Yu. B. Zelinskii was born on 22 February 1947 in Borschiv, Ternopil region. His

mathematical abilities were displayed when Zelinskii was a schoolboy. He several

times won the city and regional mathematical competition, three times participated

in the All-Ukranian mathematical competitions, and was a winner of the All-Union

competition in Physics by the postal correspondence. In 1965 he graduated from

school with a gold medal and joined the Faculty of Mechanics and Mathematics of

Taras Shevchenko Kiev State University. In the university Zelinskii was an active

participant of the seminar on topological methods of analysis organized by Professor

Yu. Yu. Trokhimchuk.

After graduating with honours in 1970 Zelinskii continued his postgraduate stud-

ies at the Institute of Mathematics of the Academy of Sciences of Ukraine under

the supervision of Professor Trokhimchuk. In 1973 Zelinskii defended his PhD thesis

Continuous mappings of manifolds and principles of boundary correspondence (the

official classification of the USSR Highest Attestation Committee is Geometry and

Topology). The same year he began to work at the Institute of Mathematics of the

National Academy of Sciences of Ukraine and in 1989 he defended his Doctorate The-

sis “Multivalued mappings in complex analysis”. In 2004-2017 Yurii Borysovych was

the head of Department of Complex Analysis and Potential Theory of the Institute

of Mathematics of the National Academy of Sciences of Ukraine. Zelinskii originated

the theory of strongly linear convex sets, which is a complex analogy of real convex

analysis. Developing this theory he obtained generalizations of the classical Helly,

Caratheodory, Krein-Milman, and some other theorems of classical complex analysis

for complex spaces. He also found an approach to investigate generalized convex sets

on Grassmanian manifolds.

Yurii Borysovych applied the notion of the local degree of mappings to multi-

valued mappings of topological manifolds. Using this idea he solved problems posed

by Steinhaus and Kosinski in 1950-s on the estimations of dimensions of subsets

with fixed multiplicity for mappings of domains on manifolds by known boundary

properties of these mappings. Zelinskii also established sufficient conditions for the

existence of solutions of multivalued inclusions in Euclidean domains. Special cases

of these results are fixed point theorems for multivalued mappings that based on the

generalization of the so called acute angle condition. He weakened some conditions

of the classical Mobius theorem and obtained new criterions of affinity for mappings

of real multidimensional spaces that is strongly invariant on the sets of vertices of

rectangular parallelepipeds and the set of vertices of suspensions.

[11]



Zelinskii investigated the Ulam problem in the complex case and proved the com-

plex convexity of a compact set in a multidimensional complex space if each inter-

section of this set with complex hyperplane of a fixed dimension is acyclic in the

sense of the triviality of the Cech cogomology groups. The Ulam problem is closely

connected with the Mizel-Zamfirescu problem on geometric characterization of the

circle. Yurii Borysovych and his postgraduate students obtained some results related

to the Mizel-Zamfirescu problem. In particular, it was proved that each convex curve

of fixed width satisfying the infinitesimal rectangle condition is a circle.

Applying geometric methods and the theory of multidimensional methods to ana-

lytic problems of complex analysis Zelinskii obtained complete topological classifica-

tion of linearly convex and strongly linear convex domains with smooth boundaries

and estimated their cohomology groups.

Scientific contribution of Professor Zelinskii was awarded in 2015 by the Ostro-

gradskii prize of the National Academy of Sciences of Ukraine. He was a member of

the Editorial Boards of the following journals: “Bulletin de la Societe des sciences

et des letters de Lodz” (Poland), “International Journal on Engineering Sciences”

(India), “Analysis and Applications” (Petrozavodsk, Russia), “Bukovyna Mathemat-

ical Journal”, “Bulletin of the Taras Shevchenko Scientific Society. Mathematics”

(Ukraine). Many years Zelinskii was a member of the dissertation councils at the

Institute of Mathematics of the National Academy of Sciences of Ukraine and Fed-

kovych Chernivtsy National University.

Professor Zelinskii died unexpectedly on 22 July 2017 at the Ukrainain-Polish

border. We shall remember him as a gentle cultured men of high quality with fine

sense of humour.

Julian  Lawrynowicz, Yurii. Yu. Trokhimchuk

Julian  Lawrynowicz
Department of Solid State Physics
University of  Lódź
Pomorska 149/153, PL-90-236  Lódź

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8, P.O. Box 21
PL-00-956 Warszawa
Poland
E-mail: jlawryno@uni.lodz.pl

Yurii. Yu. Trokhimchuk
Institute of Mathematics
National Academy of Sciences of Ukraine
Tereshchenkivska st. 3, UA-01004, Kyiv
Ukraine
E-mail: yu.trokhimchuk@imath.kiev.ua
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MEAN VALUE THEOREMS FOR SOLUTIONS OF LINEAR

PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT

COEFFICIENTS

Summary

We prove a mean value theorem that characterizes continuous weak solutions of homoge-

neous linear partial differential equations with constant coefficients in Euclidean domains. In

this theorem the mean value of a smooth function with respect to a complex Borel measure

on an ellipsoid of special form is equal to some linear combination of its partial derivatives at

the center of this ellipsoid. The main result of the paper generalizes a well-known Zalcman’s

theorem.

Keywords and phrases: mean value, linear partial differential operator, weak solution,

Fourier-Laplace transform, distribution

1. Introduction

Let P (D) be a linear partial differential operator with constant coefficients in the

Euclidean space Rn, n ≥ 1, and let µ be a complex Borel measure supported in

the closed unit ball B of Rn. Zalcman [1] proved the equivalence of the following

assertions: (a) for any domain G ⊂ Rn and for any complex-valued function u ∈
C(G), ∫

u(x + rt) dµ(t) = 0

[13]



14 A. V. Pokrovskii and O. D. Trofymenko

for all x ∈ G and r ∈ (0, dist(x, ∂G)) if and only if u is a weak solution of the

equation P (D)f = 0 in G; (b) the operator P (D) is homogeneous and the functional

Fµ(ϕ) :=
∫
ϕ(t) dµ(t), ϕ ∈ C∞0 (Rn), in the space E ′(Rn) is represented in the form

Fµ = P (D)T for some distribution T ∈ E ′(Rn) supported in B with T̂ (0) 6= 0,

where T̂ is the Fourier–Laplace transform of T . This result was the first general

mean value theorem for solutions of linear partial differential equations, which con-

tains the classical Gauss characterization of harmonic functions by spherical means,

the Morera–Carleman characterization of analytic functions of a complex variable

by zero integrals
∫
f(z) dz over circles, and some other concrete mean value theo-

rems as special cases. The first author [2] generalized Zalcman’s result for the case of

quasihomogeneous operators and applied this generalization to the study of remov-

able singularities of solutions of the equation P (D)f = 0 with quasihomogeneous

semielliptic operator P (D) [3].

On the other hand, the second author studied classes of smooth functions defined

in a disk B(0, R) := {z ∈ C : |z| < R} that satisfy the condition

m−1∑

p=s

r2p+2

(2p+ 2)(p− s)!p!∂
p−s∂̄pf(z) =

1

2π

∫∫

|ζ−z|≤r

f(ζ)(ζ − z)sdξdη, (1)

where R > 0, s ∈ N0, m ∈ N, s < m, z = x + iy, ζ = ξ + iη (x, y, ξ, η ∈ R), i is the

imaginary unit,

∂f =
∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
, ∂̄f =

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

She proved [4] as a special case of more general result that each function f ∈
C2(m−1)−s(B(0, R)) satisfying this condition for all r ∈ (0, R) and z ∈ B(0, R − r)
is a solution of the equation ∂m−s∂̄mf = 0.

In the present paper we prove a mean value theorem of Zalcman type that contains

all the mentioned results as special cases.

2. Formulation of the main result

Let n ∈ N := {1, 2, . . .} and let M = (M1, . . . ,Mn) be a vector with positive in-

teger components, |M| = M1 + . . . + Mn. To each polynomial P = P (z), z =

(z1, . . . , zn) ∈ Cn, with complex-valued coefficients and to each r > 0 we assign the

differential operator P (rMD), in which zk, k = 1, . . . , n, is replaced by −irMk∂/∂xk.

If M = (1, . . . , 1), then P (rMD) =: P (rD). A polynomial P (z) (an operator P (D) :=

P (1MD)) is said to be M-homogeneous if there is an l ∈ N0 := {0, 1, 2, . . .} such that

P (z) ≡∑k akzk, where zk := zk11 . . . zknn and the sum is taken over the set of all mul-

tiindices k = (k1, . . . , kn) ∈ Nn0 with |kM| := k1M1+. . .+knMn = l. For any polyno-

mial P (z) ≡∑k akzk we denote by degM P the number sup |kM|, where the supre-

mum is taken over all multiindices k ∈ N0 with ak 6= 0. For x = (x1, . . . , xn) ∈ Rn
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and r > 0 we use the following notation: rMx := (rM1x1, . . . .r
Mnxn), BM(x, r) :=

{x + rMt : t ∈ Rn, |t| ≤ 1}. If M = (1, . . . , 1), then degM P =: degP , BM(x, r) =:

B(x, r). Recall that the Fourier–Laplace transform of a distribution f ∈ E ′(Rn)

is defined by the formula f̂(z) := f(e−i(x·z)), where z = (z1, . . . , zn) ∈ Cn, x =

(x1, . . . , xn) ∈ Rn, x · z = x1z1 + . . .+ xnzn, and the distribution f acts on the func-

tion e−i(x·z) in x. As usual, δ is the Dirac measure, i.e., the unit measure concentrated

at the origin.

Let µ be a complex Borel measure supported in B := B(0, 1) and let P = P (z)

and Q = Q(z) be polynomials with complex-valued coefficients (z ∈ Cn). Denote by

Fµ the functional corresponding to the measure µ in the space E ′(Rn), i.e., Fµ(ϕ) :=∫
ϕ(t) dµ(t) for all ϕ ∈ C∞0 (Rn), µ̂(z) := F̂µ(z).

Definition 1. We say that a triple (M, µ,Q) characterizes continuous weak so-

lutions of the equation P (D)f = 0 if for any domain G ⊂ Rn and for any function

u ∈ C(G) the following conditions are equivalent:

(a) u is a weak solution of the equation P (D)f = 0 in G;

(b) for all ϕ ∈ C∞0 (G) and r > 0 such that suppϕ+BM(0, r) ⊂ G we have
∫

G

u(x)
(∫

ϕ(x− rMt) dµ(t)−Q(−rMD)ϕ(x)
)
dx = 0.

Here, as usual,

suppϕ+BM(0, r) := {x + y : x ∈ suppϕ, y ∈ BM(0, r)}.
The main result of this paper is the following theorem.

Theorem 1. A triple (M, µ,Q) characterizes continuous weak solutions of the

equation P (D)f = 0 if and only if the polynomial P is M-homogeneous and there is

a distribution T ∈ E ′(Rn) supported in B such that T̂ (0) 6= 0 and Fµ = P (−D)T +

Q(−D)Fδ.

3. Auxiliary results

The proof of Theorem 1 is essentially based on Zalcman’s arguments [1] and uses the

following lemmas.

Lemma 1 [5, Theorem 7.3.2]. Suppose that f ∈ E ′(Rn) and P (D) is a linear

differential operator with constant coefficients. The equation P (D)u = f has a dis-

tributional solution u ∈ E ′(Rn) if and only if f̂(z)/P (z) is an entire function. In this

case the solution is determined uniquely, and the closure of the convex hull of the

support of the distribution u coincides with that of the distribution f .

Suppose that polynomials Pk, k ∈ N0, are given. If a function u satisfies the
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equalities Pk(D)u = 0 in Rn for each k ∈ N0 and

u(x) ≡ g(x)e−i(z·x) (2)

for some polynomial g(x) and z ∈ Cn, then we say that u is an exponential solution

of the system Pk(D)f = 0, k ∈ N0.

Lemma 2 [5, Lemma 7.3.7]. Suppose that P (D) is a linear differential operator

with constant coefficients. If ν ∈ E ′(Rn) is a distribution such that ν(u) = 0 for each

exponential solution u of the equation P (D)f = 0, then ν̂(z)/P (−z) is an entire

function.

Lemma 3 [6, Theorem 7.6.14]. Suppose that G is a convex domain in Rn, q ∈ N0,

and Pk(D), k = 0, . . . , q, is a finite set of linear differential operators with constant

coefficients. Then each continuous weak solution of the system Pk(D)f = 0, k =

0, . . . , q, in G can be represented in the form of the limit of some sequence of finite

linear combinations of exponential solutions of this system, uniformly converging on

compact subsets of G.

Lemma 4 [1, Theorem 3], [2, Lemma 1]. Suppose that polynomials P (z) and

Pj(z), j ∈ N0, are such that, for each j ∈ N0, either Pj(z) is an M-homogeneous

polynomial with degM Pj = j or Pj(z) ≡ 0 (z ∈ Cn). Moreover, let Pj(z) 6≡ 0

for at least one j ∈ N0. The system of differential equations Pj(D)f = 0, j ∈ N0,

is equivalent to the equation P (D)f = 0 is and only if each of the polynomials

Pj(z), j ∈ N0, is divisible by the polynomial P (z) and for some number k ∈ N0 the

polynomial Pk(z) coincides with the polynomial P (z) up to a nonzero constant factor.

4. Proof of Theorem 1

Suppose that M = (M1, . . . ,Mn) (n ≥ 1) is a vector with positive integer compo-

nents, µ is a complex Borel measure supported in B, Q(z) (z ∈ Cn) is a polynomial,

and u is a function of the form (2) in Rn satisfying the condition
∫
u(x + rMt) dµ(t) = Q(rMD)u(x) (3)

for all x ∈ Rn and r > 0. Let us choose a point x ∈ Rn and expand the function u

in the Taylor series around x. Collecting M-homogeneous polynomials in this series,

we obtain

u(x + y) =
∞∑

j=0

Uj(y), (4)

where

Uj(y) :=
∑

|kM|=j
(k!)−1∂ku(x)yk,
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k! := k1! . . . kn!, yk := yk11 . . . yknn , ∂k :=
∂|k|

∂xk11 . . . ∂xknn
.

Similarly, we represent the polynomial Q in the form of the finite sum of M-homoge-

neous polynomials:

Q(y) =

d∑

j=0

Qj(y), (5)

where d = degMQ, Qj(z) is either an M-homogeneous polynomial with degMQj = j

or Qj(z) ≡ 0, Qj(z) ≡ 0 for all j > d (z ∈ Cn). The series in (4) converges to u(x+y)

uniformly on compact sets in Rn. Let us choose an arbitrary r > 0 and set y = rMt,

where t ∈ B. Since the series in (4) converges uniformly, we can integrate both sides

of the resultant relation with respect to the measure µ term by term. This yields
∫
u(x + rMt) dµ(t) =

∞∑

j=0

Uj(r
Mt) dµ(t) =

∞∑

j=0

rj(Rj(D)u)(x), (6)

where

Rj(z) =
∑

|kM|=j
(k!)−1(iz)k

∫
tkdµ(t), j ∈ N0, z ∈ Cn. (7)

Let Pj(z) := Rj(z)−Qj(z), j ∈ N0. Then it follows from (4)-(6) that
∫
u(x + rMt) dµ(t)−Q(rMD)u(x) =

∞∑

j=0

rj(Pj(D)u)(x). (8)

Since the condition (3) holds for any x ∈ Rn and r > 0, we have Pj(D)u(x) = 0 for

all x ∈ Rn and j ∈ N0.

Let G be a domain in Rn and let ϕ ∈ C∞0 (G). Take x ∈ G and r > 0 such that

BM(x, r) ⊂ G. By the Taylor formula with reminder in integral form, for each l ∈ N
and for all y ∈ BM(0, r), we have

ϕ(x + y) =
∑

|k|<l
(k!)−1∂kϕ(x)yk

+ l

∫ 1

0

(1− s)l−1
(∑

|k|=l
(k!)−1∂kϕ(x + sy)yk

)
ds.

By setting y = −rMt, t ∈ B, and rearranging the terms, we obtain

ϕ(x− rMt) =

p∑

j=0

rj
( ∑

|kM|=j
(−1)|k|(k!)−1∂kϕ(x)tk

)
+ Vp(r,x, t), (9)

where p = p(l) is the largest of numbers such that |kM| ≤ p implies |k| < l for any

multiindex k; Vp(r,x, t) = o(rp) as r → 0 uniformly in x ∈ suppϕ and t ∈ B. It is

clear that (9) holds for each p ∈ N0. Integrating both sides of (9) with respect to the
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measure µ, we obtain
∫
ϕ(x− rMt) dµ(t)

=

p∑

j=0

rj
( ∑

|kM|=j
(−1)|k|(k!)−1∂kϕ(x)

∫
tkdµ(t)

)
+Wp(r,x),

or ∫
ϕ(x− rMt) dµ(t) =

p∑

j=0

rj(Rj(−D)ϕ)(x) +Wp(r,x), (10)

where

(Rj(−D)ϕ)(x) =
∑

|kM|=j
(−1)|k|(k!)−1(−1)|k|∂kϕ(x)

∫
tkdµ(t), j ∈ N0.

Wp(r,x) = o(rp) as r → 0 uniformly in x ∈ suppϕ.

Now we assume that a function u ∈ C(G) satisfies the condition (b) of Definition

1. Then we have from (10) (for sufficiently small r > 0)

0 =

∫

G

u(x)
(∫

ϕ(x− rMt) dµ(t)−Q(−rMD)ϕ(x)
)
dx

=

p∑

j=0

rj
∫

G

u(x)((Rj −Qj)(−D)ϕ)(x) dx + o(rp),

or

0 =

p∑

j=0

rj
∫

G

u(x)(Pj(−D)ϕ)(x) dx + o(rp) as r → 0, (11)

where Pj(−D) = Rj(−D) − Qj(−D), j ∈ N0. Suppose that at least one of the

polynomials {Pj(z)}j∈N0
does not vanish identically and p is the least number such

that Pp(z) 6≡ 0. Dividing both side of (11) by rp and letting r → 0, we obtain∫
G
u(x)(Pp(−D)ϕ)(x) dx = 0. Then, proceeding by induction, we have

∫

G

u(x)(Pj(−D)ϕ)(x) dx = 0 ∀j ∈ N0.

If all the polynomials {Pj(z)}j∈N0 are identically zero, then the last assertion is

obvious.

Since the function ϕ was an arbitrary function from C∞0 (G) in our arguments,

we have that u is a weak solution of the system

Pj(D)f = 0, j ∈ N0. (12)

Conversely, if u is a weak solution of the system (12) in G, then u satisfies the

condition (b) of Definition 1. For exponential solutions this was justified by formula

(8). The general case follows from Lemma 3 and the Hilbert Basis Theorem [7], which
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implies that there is a j0 ∈ N0 such that the system (12) is equivalent to the finite

system of differential equations Pj(D)f = 0, j = 0, 1, . . . , j0.

To complete the proof of Theorem 1 we should investigate conditions of equiva-

lence of the system (12) and the equation P (D)f = 0. The Fourier–Laplace transform

µ̂(z) of the measure µ is an entire function and its Taylor series around the point

z = 0 converges absolutely and uniformly on each compact set in Cn. Therefore, by

arranging of M-homogeneous polynomials Rj(−z) in this series, we obtain a series

that uniformly converges to µ̂(z) on compact sets in Cn as follows:

µ̂(z) =

∫
e−i(z·t)dµ(t) =

∞∑

j=0

Rj(−z),

where the sequence of polynomials {Rj(z)}j∈N0
is defined by (7). Suppose that the

triple (M, µ,Q) characterizes continuous weak solutions of the equation P (D)f = 0.

Then this equation is equivalent to the system (12). If P (z) ≡ 0, then Rj(z) ≡ Qj(z)

for all j ∈ N0 and consequently

µ̂(z) ≡
∞∑

j=0

Qj(−z) = Q(−z).

Hence Fµ = Q(−D)Fδ, which is possible if only if degQ = 0. Now consider the case

P (z) 6≡ 0. Then there is a number p ∈ N0 such that Pp(z) 6≡ 0. Since the divisors of

an M-homogeneous polynomial are also M-homogeneous polynomials, then we have

from Lemma 4 that the polynomial P (z) is M-homogeneous. It follows from the fact

that the triple (M, µ,Q) characterizes continuous weak solutions of the equation

P (D)f = 0 and from Lemma 2 that S(z) := (µ̂(z) − Q(−z))/P (−z) is an entire

function whence Lemma 1 implies that there is a distribution T ∈ E ′(Rn) supported

in B such that

Fµ = P (−D)T +Q(−D)Fδ. (13)

By applying the Fourier–Laplace transform to both sides of (13), we have µ̂(z) ≡
P (−z)T̂ (z) + Q(−z). This means that S(z) ≡ T (z) and we derive the condition

T̂ (0) 6= 0 from the fact that an entire function can be uniquely represented by a

series of M-homogeneous polynomials uniformly convergent on compact subsets of

Cn.

Thus we justify the ’only if’ part in Theorem 1. To prove the ’if’ part of this

theorem suppose that P (z) is an M-homogeneous polynomial, m = degM P , and

T is a distribution supported in B satisfying (13). In this case T̂ (0) 6= 0 need not

hold. Let u be an exponential solution of the equation P (D)f = 0 in Rn. If T̂ (z) =∑∞
j=0 Tj(−z) is the Taylor series of the entire function T̂ around the point z = 0

arranged in M-homogeneous polynomials (degM Tj = j or Tj(z) ≡ 0), then, by
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comparing the equalities

µ̂(z)−Q(−z) = P (−z)T (z), µ̂(z)−Q(−z) =
∞∑

j=0

Pj(−z),

and (8), we see that Pj(z) ≡ 0 for all j < m, Pj+m(z) ≡ P (z)Tj(z) for all j ∈ N0,

and
∫
u(x + rMt) dµ(t)−Q(rMD)u(x) =

∞∑

j=0

rj+m(P (D)Tj(D)u(x) = 0

for all x ∈ Rn. The case of arbitrary continuous weak solutions of the equation

P (D)f = 0 is reduced to the case of exponential solutions by applying Lemma 3,

the Hilbert Basis Theorem, and integration by parts. The proof of Theorem 1 is

completed.

5. Discussion of Theorem 1

Let Q(z) ≡ 0 in Theorem 1. Then the condition (b) of Definition 1 is rewritten in

the form ∫

G

u(x)
(∫

ϕ(x− rMt) dµ(t)
)
dx = 0

for all ϕ ∈ C∞0 (G) and r > 0 such that suppϕ+BM(0, r) ⊂ G whence
∫

G

(∫
u((x + rMt)ϕ(x) dµ(t)

)
dx = 0

for all such ϕ and r. It follows from the Fubini theorem that∫
u(x + rMt) dµ(t) = 0. (14)

This means that the condition (b) of Theorem 1 is satisfied if and only if (14) holds

for all x ∈ Rn and r > 0 such that BM(x, r) ⊂ G. Hence, for Q(z) ≡ 0, Theorem

1 coincides with Theorem 2 from [2], which generalizes the mentioned Zalcman’s

result [1, Theorem 4] corresponding to the case Q(z) ≡ 0 and M = (1, . . . , 1) in

Theorem 1.

Now consider the case n = 2, M = (1, 1), and rewrite (1) in the form

Q(rD) =

∫

B

f(z + rt) dµ(t), (15)

where G is a domain in C, f ∈ C2m−2−s(G), z ∈ G, r > 0, B(z, r) ⊂ G,

Q(z1, z2) =
m−1∑

p=s

(22p−sπ(p+ 1)(p− s)!p!)−1(iz1 + z2)p−s(iz1 − z2)p,

dµ(t) = tsdt1dt2, t = t1 + it2, t1, t2 ∈ R. Introduce the variables w1 = iz1 + z2 and

w2 = iz1− z2. Then z1 = −i(w1 +w2)/2, z2 = (w1−w2)/2, and the Fourier–Laplace
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transform of µ can be expressed as follows:

µ̂(z1, z2) =

∫

B

e−i(z1t1+z2t2)tsdt1dt2

=

∫

B

e−(w1+w2)t1/2−i(w1−w2)t2/2tsdt1dt2

=

∫

B

e−w1(t1−it2)/2−w2(t1+it2)/2tsdt1dt2

=
∞∑

k,l=0

(−2)k+l(k!l!)−1wk1w
l
1

∫

B

(t1 − it2)k(t1 + it2)l+sdt1dt2

=
∞∑

p=s

(−2)2p−ss((p− s)!p!)−1(iz1 + z2)p−s(iz1 − z2)p
∫

B

|t|2pdt1dt2

=
∞∑

p=s

(−2)2p−s((p− s)!p!)−1(iz1 + z2)p−s(iz1 − z2)p2π(2p+ 2)−1.

This chain of equalities shows that there is a distribution T ∈ E ′(Rn) supported in

B such that T̂ (0, 0) 6= 0 and

µ̂(z1, z2)−Q(−z1,−z2) ≡ (−2)−(2m−s)(iz1 + z2)m−s(iz1 − z2)mT̂ (z1, z2).

Theorem 1 implies that the triple (M, µ,Q) characterizes continuous weak solutions

of the equation ∂m−s∂̄mf = 0. Since the differential operator ∂m−s∂̄m is elliptic

and consequently its distributional and classical solutions coincide, then we show

that a function f ∈ C2(m−1)−s(G) satisfies the condition (15) for all z ∈ G and

r ∈ (0, dist(z, ∂G)) if and only if f is a solution of the equation ∂m−s∂̄mf = 0 in G.

Note that the conditions in the ’only if’ part of the last assertion can be essentially

weakened. Namely, let m ∈ N, s ∈ N0, s < m, and let

Js+1(z) :=
(z

2

)s+1 ∞∑

p=0

(−1)p

p!Γ(s+ p+ 2)

(z
2

)2p
(z ∈ C)

be the Bessel function. For r > 0 denote by Zr the set of all zeros of the entire

function

gs,m,r(z) :=
Js+1(zr)

(zr)s+1
−
m−1∑

p=s

(zr)2(p−s)(−1)p−s

(p+ 1)!(p− s)!22p−s+1

belonging to C \ {0}. Let r1, r2, R be positive numbers. The following result was

proved in [4]: (a) if R > r1 + r2, Zr1 ∩ Zr2 = ∅, f ∈ C2m−2−s(B(0, R)), and the

condition (1) holds for all r ∈ {r1, r2} and z ∈ B(0, R − r), then f belongs to

the class C∞(B(0, R)) and satisfies the differential equation ∂m−s∂̄mf = 0; (b) if

max{r1, r2} < R < r1 + r2 or Zr1 ∩ Zr2 6= ∅, then there exists a function f ∈
C∞(B(0, R)) satisfying the condition (1) for all r ∈ {r1, r2} and z ∈ B(0, R−r) that

is not a solution of this equation in B(0, R).
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In the case m = 1 and s = 0 assertions (a) and (b) coincide with assertions (1)

and (4) of Theorem 5.4 from [8, p. 399] for n = 2, respectively, where the local version

of the classical Delsarte’s two-radii theorem [9] characterizing harmonic functions in

Rn is presented.
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TWIERDZENIE O WARTOŚCI ŚREDNIEJ DLA ROZWIA̧ZAŃ

LINIOWYCH RÓWNAŃ RÓŻNICZKOWYCH O POCHODNYCH

CZA̧STKOWYCH O STA LYCH WSPÓ LCZYNNIKACH

S t r e s z c z e n i e
Wykazujemy twierdzenie o wartości średniej, które charakteryzuje cia̧g le s labe rozwia̧za-

nia jednorodnych liniowych równań różniczkowych cza̧stkowych o sta lych wspó lczynnikach
w obszarach euklidesowych. W twierdzeniu tym wartość średnia funkcji g ladkiej wzglȩdem
zespolonej miary borelowskiej na pewnej elipsoidzie specjalnej postaci jest równa pewnej
kombinacji liniowej jej pochodnych cza̧stkowych w środku tej elipsoidy. G lówny wynik pracy
uogólnia znane twierdzenie Zalcmana

S lowa kluczowe: wartość średnia liniowego operatora różniczkowego cza̧stkowego, s labe roz-

wia̧zanie, transformata Fouriera-Laplace’a, dystrybucja
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Summary

We consider monogenic functions taking values in a topological vector space being an

expansion of a certain infinite-dimensional commutative Banach algebra associated with

the three-dimensional Laplace equation. We establish also integral theorems for monogenic

functions taking values in the mentioned algebra and the mentioned topological vector
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1. Introduction

A commutative algebra A with unit is called harmonic (see [1, 2, 3, 4]) if in A there

exists a triad of linearly independent vectors e1, e2, e3 satisfying the relations

e2
1 + e2

2 + e2
3 = 0, e2

k 6= 0, k = 1, 2, 3 .

Such a triad e1, e2, e3 is also called harmonic.

In the papers [1, 2, 3, 4, 5, 6, 7, 8] harmonic algebras are used for constructions of

spatial harmonic functions, i.e. doubly continuously differentiable functions u(x, y, z)

[25]
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satisfying the three-dimensional Laplace equation

∆3u(x, y, z) :=

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
u(x, y, z) = 0 . (1)

I. Mel’nichenko [3, 4] found all three-dimensional harmonic algebras and devel-

oped a method for finding all harmonic bases in these algebras. But it is impossible

to obtain all solutions of equation (1) in the form of components of differentiable

in the sense of Gâteaux functions taking values in finite-dimensional commutative

algebras (see, e.g., [4, p. 43]).

In the papers [4, 6] spherical functions are obtained as the first components

of decompositions of corresponding analytic functions with respect to the basis of

an infinite-dimensional commutative Banach algebra F. To obtain all solutions of

equation (1) in the form of components of differentiable in the sense of Gâteaux

functions, in the papers [7] we included corresponding algebras in topological vector

spaces.

In the paper [8] we constructed spatial harmonic functions in the form of principal

extensions of analytic functions of a complex variable into a complexification FC
of the algebra F. We considered special extensions of differentiable in the sense of

Gâteaux functions with values in a topological vector space F̃C being an expansion

of the algebra FC. Moreover, we considered also relations between the mentioned

extensions and spatial potentials, in particular, axial-symmetric potentials.

For monogenic functions given in an infinite-dimensional algebra or a topolog-

ical vector space associated with axial-symmetric potentials, analogues of classical

integral theorems of complex analysis was proved in the paper [9].

In the present paper, using ideas of the paper [9], we prove integral theorems

for monogenic functions taking values in an infinite-dimensional algebra FC and a

topological vector space F̃C.

2. An infinite-dimensional algebra FC

Consider an infinite-dimensional commutative associative Banach algebra over the

field of real numbers R, namely:

F :=
{
a =

∞∑

k=1

akek : ak ∈ R,
∞∑

k=1

|ak| <∞
}

with the norm ‖a‖F :=
∞∑
k=1

|ak| and the basis {ek}∞k=1 , where the multiplication table

for the basis elements is of the following form:

ene1 = en, e2n+1e2n =
1

2
e4n ∀n ≥ 1 ,

e2n+1e2m =
1

2

(
e2n+2m − (−1)me2n−2m

)
∀n > m ≥ 1 ,
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e2n+1e2m =
1

2

(
e2n+2m + (−1)ne2m−2n

)
∀m > n ≥ 1 ,

e2n+1e2m+1 =
1

2

(
e2n+2m+1 + (−1)me2n−2m+1

)
∀n ≥ m ≥ 1 ,

e2ne2m =
1

2

(
−e2n+2m+1 + (−1)me2n−2m+1

)
∀n ≥ m ≥ 1 .

This algebra was proposed in the paper [4] (see also [7]). Inasmuch as e2
1 +e2

2 +e2
3 = 0,

the algebra F is harmonic and the vectors e1, e2, e3 form a harmonic triad.

Now, consider a complexification FC := F ⊕ iF ≡ {a + ib : a, b ∈ F} of the

algebra F such that the norm in FC is given as ‖c‖ :=
∞∑
k=1

|ck|, where c =
∞∑
k=1

ckek,

ck ∈ C, and C is the field of complex numbers.

Note that the algebra FC is isomorphic to the algebra FC of absolutely convergent

trigonometric Fourier series

c(θ) = c0 +
∞∑

k=1

(
ak i

k cos kθ + bk i
k sin kθ

)

with c0, ak, bk ∈ C and the norm ‖c‖FC := |c0| +
∞∑
k=1

(
|ak| + |bk|

)
. In this case, we

have the isomorphism e2k−1 ↔ ik−1 cos (k − 1)θ, e2k ↔ ik sin kθ between elements

of bases.

3. Monogenic and analytic functions taking values in the alge-
bra FC

Below, we shall consider functions given in subsets of the linear manifold E4 := {ξ =

xe1 + s ie1 + ye2 + ze3 : x, s, y, z ∈ R} containing the complex plane C. With a set

Q ⊂ R4 we associate the set Qξ := {ξ = xe1 + s ie1 + ye2 + ze3 : (x, s, y, z) ∈ Q} in

E4. In what follows, ξ = xe1 + s ie1 + ye2 + ze3.

A function Ψ : Qξ → FC is called analytic in a domain Qξ if in a certain neighbor-

hood of each point ξ0 ∈ Qξ it can be represented in the form of the sum of convergent

power series

Ψ(ξ) =

∞∑

k=1

ck(ξ − ξ0)k, ck ∈ FC. (2)

A continuous function Φ : Qξ → FC is called monogenic in a domain Qξ ⊂ E4

if Φ is differentiable in the sense of Gâteaux in every point of Qξ, i. e., if for every

ξ ∈ Qξ there exists an element Φ′(ξ) ∈ FC such that

lim
ε→0+0

(Φ(ξ + εh)− Φ(ξ)) ε−1 = hΦ′(ξ) ∀h ∈ E4 . (3)
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It is obvious that an analytic function Φ : Qξ → FC is monogenic in the domain

Qξ and its derivative Φ′(ξ) is also monogenic in Qξ.

Below, we establish sufficient conditions for a monogenic function Φ : Qξ → FC
to be analytic in a domain Qξ ⊂ E4.

Let us emphasize that in the case where a monogenic function Φ : Qξ → FC
has the continuous Gâteaux derivatives Φ′, Φ′′, it satisfies the identity ∆3Φ(ξ) ≡ 0

because

∆3Φ(ξ) ≡ Φ′′(ξ) (e2
1 + e2

2 + e2
3) ≡ 0 .

Thus, for every component Uk : Q→ C of the decomposition

Φ(ξ) =
∞∑

k=1

Uk(x, s, y, z) ek (4)

of such a function Φ, the functions ReUk(x, s, y, z), ImUk(x, s, y, z) are spatial har-

monic functions for every fixed s.

We say that the functions Uk : Q→ C of the decomposition (4) are R-differentia-

ble in Q if for all points (x, s, y, z) ∈ Q the following relations are true:

Uk(x+ ∆x, s+ ∆s, y + ∆y, z + ∆z)− Uk(x, s, y, z) =

=
∂Uk
∂x

∆x+
∂Uk
∂s

∆s+
∂Uk
∂y

∆y +
∂Uk
∂z

∆z + o(‖∆ξ‖) ,

∆ξ := e1∆x+ ie1∆s+ e2∆y + e3∆z → 0.

The following theorem can be proved similarly to Theorem 4.1 [6].

Theorem 1. Let a function Φ : Qξ → FC be continuous in a domain Qξ ⊂ E4 and

the functions Uk : Q → C from the decomposition (4) be R-differentiable in Q. In

order the function Φ be monogenic in the domain Qξ, it is necessary and sufficient

that the conditions
∂Φ

∂s
=
∂Φ

∂x
i ,

∂Φ

∂y
=
∂Φ

∂x
e2 ,

∂Φ

∂z
=
∂Φ

∂x
e3 (5)

be satisfied in Qξ and the following relations be fulfilled in Q:
∞∑

k=1

∣∣∣∣
∂Uk(x, s, y, r)

∂x

∣∣∣∣ <∞, (6)

lim
ε→0+0

∞∑

k=1

∣∣∣∣∣ Uk(x+ εh1, s+ εh2, y + εh3, r + εh4)− Uk(x, s, y, r)−

−∂Uk(x, s, y, r)

∂x
εh1 −

∂Uk(x, s, y, r)

∂s
εh2 −

∂Uk(x, s, y, r)

∂y
εh3−

−∂Uk(x, s, y, r)

∂r
εh4

∣∣∣∣∣ ε
−1 = 0 ∀h1 , h2 , h3 , h4 ∈ R . (7)
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Note that the first of conditions (5) means that every function Uk from the

equality (4) is holomorphic with respect to the variable x + is for each fixed pair

(y, z).

4. Integral theorems for monogenic functions taking values in
the algebra FC

In the paper [10] for functions differentiable in the sense of Lorch in an arbitrary

convex domain of commutative associative Banach algebra, some properties similar

to properties of holomorphic functions of complex variable (in particular, the integral

Cauchy theorem and the integral Cauchy formula, the Taylor expansion and the

Morera theorem) are established. The convexity of the domain in the mentioned

results from [10] is withdrawn by E. K. Blum [11].

Below we establish similar results for monogenic functions Φ : Qξ → FC given

only in a domain Qξ of the linear manifold E4 instead of domain of whole algebra. Let

us note that a priori the differentiability of the function Φ in the sense of Gâteaux is

a restriction weaker than the differentiability of this function in the sense of Lorch.

Let us also note that in the paper [9] similar results were established for monogenic

functions in an other infinite-dimensional algebra associated with axial-symmetric

potentials.

In the case where Γ is a Jordan rectifiable curve in R4 we shall say that Γξ is also

a Jordan rectifiable curve. For a continuous function Φ : Γξ → FC of the form (4),

where (x, s, y, r) ∈ Γ and Uk : Γ→ C, we define an integral along the curve Γξ with

dξ := e1 dx+ ie1 ds+ e2 dy + e3 dz by the equality
∫

Γξ

Φ(ξ)dξ :=

∞∑

k=1

ek

∫

Γ

Uk(x, s, y, z)dx+ i

∞∑

k=1

ek

∫

Γ

Uk(x, s, y, z)ds+

+
∞∑

k=1

e2ek

∫

Γ

Uk(x, s, y, z)dy +
∞∑

k=1

e3ek

∫

Γ

Uk(x, s, y, z)dz (8)

in the case where the series on the right-hand side of the equality are elements of the

algebra FC.

Theorem 2. Let Φ : Qξ → FC be a monogenic function in a domain Qξ and the

functions Uk : Q→ C from the decomposition (4) have continuous partial derivatives

in Q. Then for every closed Jordan rectifiable curve Γξ ⊂ Qξ homotopic to a point

in Qξ, the following equality holds:
∫

Γξ

Φ(ξ)dξ = 0 . (9)
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Proof. Using the Stokes formula and the equalities (5), we obtain the equality
∫

∂4ξ

Φ(ξ)dξ = 0 (10)

for the boundary ∂4ξ of every triangle4ξ such that4ξ ⊂ Qξ . Now, we can complete

the proof similarly to the proof of Theorem 3.2 [11]. The theorem is proved. �
For functions Φ : Qξ → FC the following Morera theorem can be established in

the usual way.

Theorem 3. If a function Φ : Qξ → FC is continuous in a domain Qξ and satisfies

the equality (10) for every triangle 4ξ such that 4ξ ⊂ Qξ , then the function Φ is

monogenic in the domain Qξ.

Let τ := we1 + ŷe2 + ẑe3 where w ∈ C and ŷ , ẑ ∈ R. Generalizing a resolvent

resolution (cf. the equality (5) in [8]), we obtain

(τ − ξ)−1 =
1√

(w − τ1)(w − τ2)

(
e1 +

∞∑

k=1

ik
(
u−k2 + uk1

)
e2k+1+

+
∞∑

k=1

ik−1
(
u−k2 − uk1

)
e2k

)
, w 6∈ s[τ1, τ2], (11)

where

τ1 := x+ is− i
√

(y − ŷ)2 + (z − ẑ)2, τ2 := x+ is+ i
√

(y − ŷ)2 + (z − ẑ)2,

u1 :=
(w − x− is)−

√
(w − τ1)(w − τ2)

(y − ŷ) + i(z − ẑ) ,

u2 :=
(w − x− is) +

√
(w − τ1)(w − τ2)

(y − ŷ) + i(z − ẑ) ,

s[τ1, τ2] is the segment connecting the points τ1, τ2, and
√

(w − τ1)(w − τ2) is that

continuous branch of the function

G(w) =
√

(w − τ1)(w − τ2)

analytic outside of the cut along the segment s[τ1, τ2] for which G(w) > 0 for any

w > x. Let us note that one should to set uk1 = 0 and u−k2 = 0 by continuity in the

equality (11) for that w 6∈ s[τ1, τ2] for which ŷ = y and ẑ = z.

Thus, for every ξ the element
(
τ − ξ

)−1
exists for all

τ 6∈ S(ξ) :=
{
τ = we1 + ŷe2 + ẑe3 :

Rew = x, |Imw − s| ≤
√

(y − ŷ)2 + (z − ẑ)2
}
.

Now, the next theorem can be proved similarly to Theorem 5 [12].
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Theorem 4. Suppose that Q is a domain convex in the direction of the axes Oy, Oz.

Suppose also that Φ : Qξ → FC is a monogenic function in the domain Qξ and the

functions Uk : Q→ C from the decomposition (4) have continuous partial derivatives

in Q. Then for every point ξ ∈ Qξ the following equality is true:

Φ(ξ) =
1

2πi

∫

Γξ

Φ(τ)
(
τ − ξ

)−1
dτ , (12)

where Γξ is an arbitrary closed Jordan rectifiable curve in Qξ, which surrounds once

the set S(ξ) and is homotopic to the circle {τ = we1 + ŷe2 + ẑe3 : |w − x − is| =

R, ŷ = y, ẑ = z} contained completely in Ωξ.

Using the formula (12), we obtain the Taylor expansion of monogenic function

Φ : Qξ → FC in the usual way (see., for example, [13, p. 107]) in the case where the

conditions of Theorem 4 are satisfied. Thus, in this case, Φ : Qξ → FC is an analytic

function. In addition, in this case, an uniqueness theorem for monogenic functions

can also be proved in the same way as for holomorphic functions of the complex

variable (cf. [13, p. 110]).

Thus, the following theorem is true:

Theorem 5. Let Φ : Qξ → FC be a continuous function in a domain Qξ and the

functions Uk : Q→ C from the decomposition (4) have continuous partial derivatives

in Q. Then the function Φ is monogenic in Qξ if and only if one of the following

conditions is satisfied:

(I) the conditions (5) are satisfied in Qξ and the relations (6), (7) are fulfilled in

Q;

(II) the function Φ satisfies the equality (10) for every triangle 4ξ such that

4ξ ⊂ Qξ ;

(III) the function Φ is analytic in the domain Qξ .

5. Monogenic functions with values in a topological vector

space F̃C containing the algebra FC

Let us insert the algebra FC in the topological vector space

F̃C :=
{
g =

∞∑

k=1

ckek : ck ∈ C
}

with the topology of coordinate-wise convergence. Note that F̃C is not an algebra

because the product of elements g1, g2 ∈ F̃C is defined not always. At the same time,

for each g =
∞∑
k=1

ckek ∈ F̃C and ξ = (x+ is)e1 +ye2 + ze3 with x, s, y, z ∈ R it is easy
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to define the product

g ξ ≡ ξ g := (x+ is)
∞∑

k=1

ckek + y

(
−c2

2
e1 +

(
c1 −

c5
2

)
e2 −

c4
2
e3+

+
1

2

∞∑

k=2

(c2k−1 − c2k+3) e2k −
1

2

∞∑

k=2

(c2k−2 + c2k+2) e2k+1

)
+

+z

(
−c3

2
e1 −

c4
2
e2 +

(
c1 −

c5
2

)
e3 +

1

2

∞∑

k=4

(ck−2 − ck+2) ek

)
.

In the paper [8], we proved that monogenic functions given in domains of the

linear manifold {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} and taking values in the space

F̃C can be extended to monogenic functions given in domains of the linear manifold

E4.

We shall consider functions Φ : Qξ → F̃C for which the functions Uk : Q → C
in the decomposition (4) are R-differentiable in the domain Q. Such a function Φ is

continuous in Qξ and, therefore, we call Φ a monogenic function in Qξ if Φ′(ξ) ∈ F̃C
in the equality (3).

The next theorem is similar to Theorem 1, where the necessary and sufficient

conditions for a function Φ : Qξ → FC to be monogenic include additional relations

(6), (7) conditioned by the norm of absolute convergence in the algebra FC.

Theorem 6. Let a function Φ : Qξ → F̃C be of the form (4) and the functions

Uk : Q → C be R-differentiable in Q. In order the function Φ be monogenic in the

domain Qξ, it is necessary and sufficient that the conditions (5) be satisfied in Qξ.

For a continuous function Φ : Γξ → F̃C of the form (4), we define an integral

along a Jordan rectifiable curve Γξ by the equality (8) in the case where the series

on the right-hand side of this equality are elements of the space F̃C.

In the next theorem, for the sake of simplicity, we suppose that the curve Γξ is

the piece-smooth edge of a piece-smooth surface. In this case the following statement

is a result of the Stokes formula and the equalities (5).

Theorem 7. Suppose that Φ : Qξ → F̃C is a monogenic function in a domain Qξ
and the functions Uk : Q → C from the decomposition (4) have continuous partial

derivatives in Q. Suppose also that Σ is a piece-smooth surface in Q with the piece-

smooth edge Γ. Then the equality (9) holds.

Let us define the product gh ≡ hg for each g =
∞∑
k=1

ckek ∈ F̃C and h =
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∞∑
k=1

tkek ∈ FC in the case where the sequence {ck}∞k=1 is bounded:

gh ≡ hg :=

(
c1t1 +

1

2

∞∑

k=2

(−1)[k/2]cktk

)
e1+

+

(
c2t1 +

(
c1 +

c5
2

)
t2 +

−c4
2

t3 +
1

2

∞∑

k=4

(−1)[
k−1
2 ]
(
ck−2+(−1)k + ck+2+(−1)k

))
e2+

+

(
c3t1 +

−c4
2

t2 +
(
c1 −

c5
2

)
t3 +

1

2

∞∑

k=4

(−1)[
k−2
2 ]
(
ck−2 − ck+2

))
e3+

+

∞∑

m=4

Υm em ,

where the constants Υm are defined by the next relations in four following cases:

1) if m is of the form m = 4r with natural r, then

Υm = cmt1 +
1

2

m−1∑

k=2

(
cm−k+1 + (−1)[

k−1
2 ]cm+k+(−1)k

)
tk+

+
(
c1 −

c2m+1

2

)
tm +

c2m
2

tm+1+

+
1

2

∞∑

k=m+2

(−1)[
k+1
2 ] (ck−m+(−1)k − ck+m+(−1)k

)
tk ;

2) if m is of the form m = 4r − 1 with natural r, then

Υm = cmt1 +
1

2

m−2∑

k=2

(
(−1)k−1cm−k−(−1)k + (−1)[

k
2 ]cm+k−1

)
tk−

−c2m−2

2
tm−1 +

(
c1 −

c2m−1

2

)
tm+

+
1

2

∞∑

k=m+1

(−1)[
k−2
2 ] (ck−m+1 − ck+m−1) tk ;

3) if m is of the form m = 4r − 2 with natural r, then

Υm = cmt1 +
1

2

m−1∑

k=2

(
cm−k+1 + (−1)[

k−1
2 ]cm+k+(−1)k

)
tk+

+
(
c1 +

c2m+1

2

)
tm −

c2m
2

tm+1+

+
1

2

∞∑

k=m+2

(−1)[
k−1
2 ] (ck−m+(−1)k + ck+m+(−1)k

)
tk ;
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4) if m is of the form m = 4r − 3 with natural r, then

Υm = cmt1 +
1

2

m−2∑

k=2

(
(−1)k−1cm−k−(−1)k + (−1)[

k
2 ]cm+k−1

)
tk+

+
c2m−2

2
tm−1 +

(
c1 +

c2m−1

2

)
tm +

1

2

∞∑

k=m+1

(−1)[
k
2 ] (ck−m+1 + ck+m−1) tk .

In the case where Γ is a piece-smooth curve (or Σ is a piece-smooth surface) in

R4 we shall say that Γξ is also a piece-smooth curve (or Σξ is also a piece-smooth

surface, respectively). We say that a domain Q ⊂ R4 is convex in the direction of the

plane {(x̂, ŝ, ŷ, ẑ) : x̂, ŝ ∈ R, ŷ = y, ẑ = z} if Q contains any segment that is parallel

to the mentioned plane and connects two points of the domain Q.

The next theorem can be proved similarly to Theorem 5 in [12].

Theorem 8. Suppose that Q is a domain convex in the direction of the plane

{(x̂, ŝ, ŷ, ẑ) : x̂, ŝ ∈ R, ŷ = y, ẑ = z}. Suppose also that Φ : Qξ → F̃C is a monogenic

function in the domain Qξ , and the functions Uk : Q → C from the decomposi-

tion (4) form an uniformly bounded family and have continuous partial derivatives

in Q. Then for every point ξ ∈ Qξ the equality (12) holds, where Γξ is a piece-

smooth curve that surrounds once the set S(ξ) and, in addition, Γξ and the circle

{τ = we1 + ŷe2 + ẑe3 : |w − x − is| = R, ŷ = y, ẑ = z} are edges of a piece-smooth

surface Σξ contained completely in Ωξ .
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TWIERDZENIA CA LKOWE DLA FUNKCJI MONOGENICZNYCH W

PRZESTRZENI NIESKOŃCZENIE-WYMIAROWEJ Z MNOŻENIEM

PRZEMIENNYM

S t r e s z c z e n i e

Rozpatrujemy funkcje o wartościach w wektorowej przestrzeni topologicznej bȩda̧cej
rozszerzeniem pewnej nieskończenie-wymiarowej przemiennej algebry Banacha stowarzy-
szonej z trójwymiarowym równaniem Laplace’a. Uzyskujemy twierdenia ca lkowe dla funkcji
monogenicznych o wartościach we wspomnianej algebrze i we wspomnianej wektorowej
przestrzeni topologicznej.
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S lowa kluczowe: równanie Laplace’a, potencjaly przestrzenne, algebra harmoniczna, przes-

trzeń wektorowa topologiczna, różniczkowalność w sensie Gâteaux, funkcja monogeniczna,

warunki Cauchy’ego-Riemanna
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INEQUALITY FOR THE INNER RADII OF SYMMETRIC

NON-OVERLAPPING DOMAINS

Summary

The paper deals with the following problem stated in [1] by V.N. Dubinin and earlier in

different form by G.P. Bakhtina [2]. Let a0 = 0, |a1| = . . . = |an| = 1, ak ∈ Bk ⊂ C, where

B0, . . . , Bn are non-overlapping domains, and B1, . . . , Bn are symmetric domains about the

unit circle. Find the exact upper bound for rγ(B0, 0)
n∏
k=1

r(Bk, ak), where r(Bk, ak) is the

inner radius of Bk with respect to ak. For γ = 1 and n ≥ 2 this problem was solved by

L.V. Kovalev [3, 4]. In the present paper it is solved for γn = 0, 25n2 and n ≥ 4 under

the additional assumption that the angles between neighboring line segments [0, ak] do not

exceed 2π/
√

2γ.

Keywords and phrases: inner radius of domain, non-overlapping domains, radial system of

points, separating transformation, quadratic differential, Green’s function

In geometric function theory of a complex variable problems maximizing the

product of inner radii of non-overlapping domains are well known [1–10]. One of the

such problems is considered in the article.

Let N, R be a sets of natural and real numbers, respectively, C be a complex plane,

C = C
⋃{∞} be an expanded complex plain or a sphere of Riemann, R+ = (0,∞).

Let r(B, a) be the inner radius of the domain B ⊂ C with respect to the point a ∈ B
(see, f.e. [1–5]). The inner radius of the domain B is associated with the generalized

[37]
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Green function gB(z, a) of the domain B by the relations

gB(z, a) = − ln |z − a|+ ln r(B, a) + o(1), z → a,

gB(z,∞) = ln |z|+ ln r(B, a) + o(1), z →∞.
Let U1 be a unit circle |w| ≤ 1.

The system of non-overlapping domains is called a finite set of arbitrary domains

{Bk}nk=0, n ∈ N, n ≥ 2 such that Bk ⊂ C, Bk ∩Bm = ∅, k 6= m, k,m = 0, n.

Further we consider the following system of points An := {ak ∈ C, k = 1, n},
n ∈ N, n ≥ 2, satisfying the conditions |ak| ∈ R+, k = 1, n and 0 = arg a1 < arg a2 <

· · · < arg an < 2π. Denote by

Pk = Pk(An) := {w : arg ak < argw < arg ak+1}, an+1 := a1,

αk :=
1

π
arg

ak+1

ak
, αn+1 := α1, k = 1, n,

n∑

k=1

αk = 2.

Consider the following problem.

Problem. Let a0 = 0, |a1| = . . . = |an| = 1, ak ∈ Bk ⊂ C, k = 0, n, where

B0, . . . , Bn are pairwise non-overlapping domains and B1, . . . , Bn are symmetric do-

mains with respect to the unit circle. Find the exact upper bound of the product

In(γ) = rγ(B0, 0)
n∏

k=1

r(Bk, ak).

For γ = 1 the problem was formulated as an open problem in the paper [1].

L.V. Kovalev solved the problem for n ≥ 2 and γ = 1 [3, 4]. The following theorem

substantially complements the results of the papers [2, 3, 4].

Theorem 1. Let n ∈ N, n ≥ 2, γ ∈ (0, γn], γ2 = 1, 49, γ3 = 3, 01, γn = 0, 25n2,

n ≥ 4. Then for any different points of a unit circle |w| = 1 such that 0 < αk ≤
2/
√

2γ, k = 1, n and for any different system of non-overlapping domains Bk, a0 =

0 ∈ B0 ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, where the domains Bk, k = 1, n, have symmetry

with respect to the unit circle |w| = 1, the following inequality holds

rγ (B0, 0)

n∏

k=1

r (Bk, ak) ≤
(

4

n

)n (
2γ
n2

) γ
n

∣∣1− 2γ
n2

∣∣n2 + γ
n

∣∣∣∣
n−√2γ

n+
√

2γ

∣∣∣∣

√
2γ

. (1)

Equality in this inequality is achieved when ak and Bk, k = 0, n, are, respectively,

poles and circular domains of the quadratic differential

Q(w)dw2 = −γw
2n + 2(n2 − γ)wn + γ

w2(wn − 1)2
dw2. (2)
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Proving the theorem 1. Consider the system of functions

πk(w) =
(
e−i arg akw

) 1
αk , k = 1, n.

The family of functions {πk(w)}nk=1 is called admissible for separating transformation

of domains Bk, k = 0, n with respect to angles {Pk}nk=1.

Let Ω
(1)
k , k = 1, n, denote the domain of the plane Cζ , obtained as a result of

the union of the connected component of the set πk(Bk
⋂
P k), containing the point

πk(ak) with the own symmetric reflection with respect to the real axis. In turn, by

Ω
(2)
k , k = 1, n, one denotes the domain of the plain Cζ , which are obtained as a

result of the union of the connected component of the set πk(Bk+1

⋂
P k), containing

the point πk(ak+1) with the own symmetric reflection with respect to the real axis,

Bn+1 := B1, πn(an+1) := πn(a1). Moreover, we denote Ω
(0)
k as the domain of the

plane Cζ , obtained as a result of the union of the connected component of the set

πk(B0

⋂
P k) containing the point ζ = 0 with the own symmetric reflection with

respect to the real axis. Denote by

πk(ak) := ω
(1)
k = 1, πk(ak+1) := ω

(2)
k = −1, k = 1, n.

From the definition of the function πk, it follows that

|πk(w)− 1| ∼ 1

αk
· |w − ak|, w → ak, w ∈ Pk,

|πk(w) + 1| ∼ 1

αk
· |w − ak+1|, w → ak+1, w ∈ Pk,

|πk(w)| ∼ |w|
1
αk , w → 0, w ∈ Pk.

Further, using the result of the papers [1, 2], we obtain the inequalities

r (Bk, ak) ≤
[
αkr

(
Ω

(1)
k , 1

)
· αk−1r

(
Ω

(2)
k ,−1

)] 1
2

, k = 1, n, (3)

r (B0, 0) ≤
[

n∏

k=1

rα
2
k

(
Ω

(0)
k , 0

)] 1
2

. (4)

From inequalities (3) and (4), and using the technique developed in [5, p. 269–274],

we obtain

In(γ) ≤
n∏

k=1

[
r
(

Ω
(0)
k , 0

)] γα2
k

2
n∏

k=1

[
αk−1r

(
Ω

(2)
k ,−1

)
αkr

(
Ω

(1)
k , 1

)] 1
2

=

=

(
n∏

k=1

αk

)[
n∏

k=1

rγα
2
k

(
Ω

(0)
k , 0

)
r
(

Ω
(1)
k , 1

)
r
(

Ω
(2)
k ,−1

)] 1
2

. (5)

Further, consider the product of three domains

rγα
2
k(G0, 0)r(G1, 1)r(G2,−1).
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To the domains G0, G1, G2 we again apply separating transformation. Let

Tk := {z : (−1)k+1Imz > 0}, k ∈ {1, 2},
D1 = T1 ∩ U1, D2 = C\U1 ∩ T1, D3 = T2 ∩ U1, D4 = C\U1 ∩ T2,

β(z) =
2z

1 + z2
.

From the definition of the function β(z), it follows that

|β(z)| ∼ 2|z|, z → 0, z ∈ Tk,

|β(z)− 1| ∼ 1

2
|z − 1|2 , z → 1, z ∈ Tk,

|β(z) + 1| ∼ 1

2
|z + 1|2 , z → −1, z ∈ Tk.

The result of separating transformation the domain G0 with respect to the function

β(z) and the system of domains {Dk}4k=1 denote by G
(k)
0 , k = 1, 4; besides, the result

of separating transformation the domain Gj , j ∈ {1, 2}, with respect to the function

2z/(1 + z2) and the system of domains {Dk}4k=1 denote by G
(k)
1 , G

(k)
2 , k = 1, 4.

Further, we obtain the inequalities

r (G0, 0) ≤
[

1

2
r
(
G

(1)
0 , 0

)
· 1

2
r
(
G

(2)
0 , 0

)] 1
2

,

r (G1, 1) ≤
[
2r
(
G

(1)
1 , 1

)
2r
(
G

(2)
1 , 1

)
2r
(
G

(3)
1 , 1

)
2r
(
G

(4)
1 , 1

)] 1
8

,

r (G2,−1) ≤
[
2r
(
G

(1)
2 ,−1

)
2r
(
G

(2)
2 ,−1

)
2r
(
G

(3)
2 ,−1

)
2r
(
G

(4)
2 ,−1

)] 1
8

.

Since the domains G1, G2, have symmetry with respect to the unit circle, then

rα
2
kγ (G0, 0) r (G1, 1) r (G2,−1) ≤

≤ 21−α
2
kγ
[
r2α

2
kγ
(
G

(1)
0 , 0

)
r
(
G

(1)
1 , 1

)
r
(
G

(1)
2 ,−1

)] 1
2 ×

×
[
r2α

2
kγ
(
G

(3)
0 , 0

)
r
(
G

(3)
1 , 1

)
r
(
G

(3)
2 ,−1

)] 1
2

.

In case 2α2
kγ ≤ 4, using paper [1], we obtain

r2α
2
kγ
(
G

(s)
0 , 0

)
r
(
G

(s)
1 , 1

)
r
(
G

(s)
2 ,−1

)
≤

≤ 22γα
2
k+6(αk

√
2γ)2γα

2
k

(2− αk
√

2γ)
1
2 (2−αk

√
2γ)2(2 + αk

√
2γ)

1
2 (2+αk

√
2γ)2

, s ∈ {1, 3}.

Equality in this inequality is achieved when G
(s)
0 , G

(s)
1 , G

(s)
2 are circular domains of

the quadratic differential

Q(z)dz2 = − (4− 2α2
kγ)z2 + 2α2

kγ

z2(z2 − 1)2
dz2 (6)
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(0 ∈ G(s)
0 , 1 ∈ G(s)

1 , −1 ∈ G(s)
2 , s ∈ {1, 3}). Since α2

kγ ≤ 2, then according to the

papers [1, 6], the inequality holds

rγ(B0, 0)
n∏

k=1

r(Bk, ak) ≤
(

1√
2γ

)n n∏

k=1

(
αk
√

2γ
)

2
1−α2

kγ

2 ×

×
[

22γα
2
k+6(αk

√
2γ)2γα

2
k

(2− αk
√

2γ)
1
2 (2−αk

√
2γ)2(2 + αk

√
2γ)

1
2 (2+αk

√
2γ)2

] 1
4

=

=

(
1√
2γ

)n n∏

k=1

[
28 (αk

√
2γ)2γα

2
k+4

(2− αk
√

2γ)
1
2 (2−αk

√
2γ)2(2 + αk

√
2γ)

1
2 (2+αk

√
2γ)2

] 1
4

.

Consider the function

Ψ(x) = 28 · xx2+4 · (2− x)−
1
2 (2−x)2 · (2 + x)−

1
2 (2+x)

2

,

where x = αk
√

2γ, x ∈ (0, 2].

Consider the extremal problem
n∏

k=1

Ψ(xk) −→ max,
n∑

k=1

xk = 2
√

2γ,

xk = αk
√

2γ, 0 < xk ≤ 2.

Let F (x) = ln (Ψ(x)) and X(0) =
{
x
(0)
k

}n
k=1

is any extremal point above the

indicated problem. Repeating the arguments of [6], we obtain the statement: if

0 < x
(0)
k < x

(0)
j < 2, then the following equalities hold F ′(x(0)k ) = F ′(x(0)j ), and

when some x
(0)
j = 2, then for any x

(0)
k < 2, F ′(x(0)k ) ≤ F ′(2), where k, j = 1, n,

k 6= j,

F ′(x) = 2x lnx+ (2− x) ln(2− x)− (2 + x) ln(2 + x) +
4

x

(see. Fig. 1).

We verify that assertion is correct: if the function Z(x1, . . . , xn) =
n∑
k=1

F (xk)

reaches a maximum at the point (x
(0)
1 , . . . , x

(0)
n ) with conditions 0 < x

(0)
k ≤ 2, k =

1, n,
n∑
k=1

x
(0)
k = 2

√
2γ, then

x
(0)
1 = x

(0)
2 = . . . = x(0)n .

For the simplicity, let x
(0)
1 ≤ x(0)2 ≤ . . . ≤ x(0)n . The function

F ′′(x) = ln

(
x2

4− x2
)
− 4

x2

strictly ascending by (0, 2) and exist x0 ≈ 1, 768828 such that

signF ′′(x) ≡ sign(x− x0).
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Fig. 1. Graph of the function y = F ′(x)

Taking into consideration properties of the function F ′(x), the condition of theorem

and relying on the method developed in [6], we obtain that for F ′(x) the inequality

(x1 − 1, 45)n+(x2−x1) > 0 always holds for n ≥ 4. Hence nx1 +(x2−x1) > 1, 45n.

And, finally, we get

(n− 1)x1 + x2 > 1, 45n = 2
√

2γn, γn = 0, 25n2, n ≥ 4.

So, in the case n ≥ 4 the set of points
{
x
(0)
k

}n
k=1

can not be extreme under the

condition x
(0)
n ∈ (x0, 2]. Thus, for an extreme set

{
x
(0)
k

}n
k=1

is possible only the case

when x
(0)
k ∈ (0, x0], k = 1, n, and x

(0)
1 = x

(0)
2 = . . . = x

(0)
n . For any γ < γn, n ≥ 4,

all previous arguments remain.

Further, let F ′(x) = t, y0 ≤ t ≤ −0, 78, y0 ≈ −1, 059. Consider the following

values t: t1 = −0, 78, t2 = −0, 80, t3 = −0, 85, t4 = −0, 90, · · · , t11 = −1, 05,

t12 = −1, 059. One finds the solution of equation F ′(x) = tk, k = 1, 12. For any

tk ∈ [y0,−0, 78) the equation has two solutions: x1(t) ∈ (0, x0], x2(t) ∈ (x0, 2],

x0 ≈ 1, 768828. Direct calculations are presented in the table below.

Taking into consideration properties of the function F ′(x) and the condition of

theorem, we obtain the following inequality
n∑

k=1

xk(t) > (n− 1)x1(tk) + x2(tk+1) ≥

≥ min
1≤k≤11

((n− 1)x1(tk) + x2(tk+1)) = 2
√

2γn,

where tk ≤ t ≤ tk+1, k = 1, 11. So, we have that for the extremal set X(0) the

only case is possible where
{
x
(0)
k

}n
k=1

∈ (0, x0], x0 ≈ 1, 7688283, and therefore

x
(0)
1 = x

(0)
2 = · · · = x

(0)
n .
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k tk x1(tk) x2(tk) x1(tk) + x2(tk+1) 2x1(tk) + x2(tk+1)

1 -0,78 1,458417 1,998914

2 -0,80 1,470034 1,994779 3,453196 4,911613

3 -0,85 1,501193 1,980165 3,450199 4,920233

4 -0,90 1,536275 1,959964 3,461157 4,962350

5 -0,95 1,577242 1,932788 3,469063 5,005338

6 -1,00 1,628755 1,894239 3,471481 5,048723

7 -1,01 1,641325 1,884177 3,512932 5,141687

8 -1,02 1,655169 1,872815 3,514140 5,155465

9 -1,03 1,670801 1,859641 3,514810 5,169979

10 -1,04 1,689217 1,843656 3,514457 5,185258

11 -1,05 1,712998 1,822285 3,511502 5,200719

12 -1,059 1,768589 1,769066 3,482064 5,195062

Finally, we have the relation

rγ(B0, 0)
n∏

k=1

r(Bk, ak) ≤
(

1√
2γ

)n [
Ψ

(
2

n

√
2γ

)]n
4

.

Using the specific expression for Ψ (x) and simple transformations, we obtain the

inequality (1). In this way, the main inequality of theorem 1 is proved. Realizing in

(6) the change of variable by the formula z = 2w
n
2 /(1+wn), we obtain the quadratic

differential (2). The equality sign is verified directly. The theorem 1 is proved.
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NIERÓWNOŚĆ NA WEWNȨTRZNE PROMIENIE

SYMETRYCZNYCH NIE ZACHODZA̧CYCH NA SIEBIE

OBSZARÓW

S t r e s z c z e n i e
Praca dotyczy zagadnienia postawionego przez V. N. Dubinina [1], a przedtem w innej

postaci przez G. P. Bakhtina [2]. Niech a0 = 0, |a1| = . . . = |an| = 1, ak ∈ Bk ⊂ C, gdzie
B0, . . . , Bn sa̧ nie zachodza̧cymi na siebie obszarami, przy czym obszary B1, . . . , Bn sa̧
symetryczne wzglȩdem okrȩgu jednostkowego. Problem polega na znalezieniu dok ladnego

kresu górnego dla rγ(B0, 0)
n∏
k=1

r(Bk, ak), gdzie r(Bk, ak) jest promieniem wewnȩtrznym

obszaru Bk wzglȩdem punktu ak. Dla γ = 1 i n ≥ 2 problem zosta l rozwia̧zany przez
L.V. Kovaleva [3, 4]. W obecnej pracy problem zosta l rozwia̧zany dla γn = 0, 25n2 i n ≥ 4
przy dodatkowym za lożeniu, że ka̧ty miȩdzy sa̧siednimi odcinkami [0, ak] nie przekraczaja̧
2π/
√

2γ.

S lowa kluczowe: promień wewnȩtrzny obszaru, obszary nie zachodza̧ce na siebie, promienisty

uk lad punktów, transformacja rozdzielaja̧ca, różniczka kwadratowa, funkcja Greena
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2018 Vol. LXVIII

Recherches sur les déformations no. 2
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LEBESGUE-TYPE INEQUALITIES

FOR THE FOURIER SUMS ON CLASSES OF

GENERALIZED POISSON INTEGRALS

Summary

For functions from the set of generalized Poisson integrals Cα,rβ Lp, 1 ≤ p <∞, we obtain

upper estimates for the deviations of Fourier sums in the uniform metric in terms of the best

approximations of the generalized derivatives fα,rβ of functions of this kind by trigonometric

polynomials in the metric of the spaces Lp. Obtained estimates are asymptotically best

possible.

Keywords and phrases: Lebesgue-type inequalities, Fourier sums, generalized Poisson inte-
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Let Lp, 1 ≤ p < ∞, be the space of 2π–periodic functions f summable to the

power p on [0, 2π), in which the norm is given by the formula ‖f‖p =
( 2π∫

0

|f(t)|pdt
) 1
p

;

L∞ be the space of measurable and essentially bounded 2π–periodic functions f with

the norm ‖f‖∞ = ess sup
t
|f(t)|; C be the space of continuous 2π–periodic functions

f , in which the norm is specified by the equality ‖f‖C = max
t
|f(t)|.

Denote by Cα,rβ Lp, α > 0, r > 0, β ∈ R, 1 ≤ p ≤ ∞, the set of all 2π–periodic

[45]
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functions, representable for all x ∈ R as convolutions of the form (see, e.g., [1, p. 133])

f(x) =
a0
2

+
1

π

π∫

−π

Pα,r,β(x− t)ϕ(t)dt, a0 ∈ R, ϕ ⊥ 1, (1)

where ϕ ∈ Lp and Pα,r,β(t) are fixed generated kernels

Pα,r,β(t) =
∞∑

k=1

e−αk
r

cos
(
kt− βπ

2

)
, α, r > 0, β ∈ R. (2)

The kernels Pα,r,β of the form (2) are called generalized Poisson kernels. For r = 1

and β = 0 the kernels Pα,r,β are usual Poisson kernels of harmonic functions.

If the functions f and ϕ are related by the equality (1), then function f in this

equality is called generalized Poisson integral of the function ϕ. The function ϕ in

equality (1) is called as generalixed derivative of the function f and is denoted by

fα,rβ .

The set of functions f from Cα,tβ Lp, 1 ≤ p ≤ ∞, such that fα,rβ ∈ B0
p , where

B0
p = {ϕ : ||ϕ||p ≤ 1, ϕ ⊥ 1} , 1 ≤ p ≤ ∞,

we will denote by Cα,rβ,p .

Let En(f)Lp be the best approximation of the function f ∈ Lp in the metric of

space Lp, 1 ≤ p ≤ ∞, by the trigonometric polynomials tn−1 of degree n− 1, i.e.,

En(f)Lp = inf
tn−1

‖f − tn−1‖Lp .

Let ρn(f ;x) be the following quantity

ρn(f ;x) := f(x)− Sn−1(f ;x), (3)

where Sn−1(f ; ·) are the partial Fourier sums of order n− 1 for a function f .

Least upper bounds of the quantity ‖ρn(f ; ·)‖C over the classes Cα,rβ,p , we denote

by En(Cα,rβ,p )C , i.e.,

En(Cα,rβ,p )C = sup
f∈Cα,rβ,p

‖f(·)− Sn−1(f ; ·)‖C , r > 0, α > 0, 1 ≤ p ≤ ∞. (4)

Asymptotic behaviour of the quantities En(Cα,rβ,p )C of the form (4) was studied in

[2]–[10].

In [11]–[13] it was found the analogs of the Lebesgue inequalities for functions

f ∈ Cα,rβ Lp in the case r ∈ (0, 1) and p = ∞, and also in the case r ≥ 1 and

1 ≤ p ≤ ∞, where the estimates for the deviations ‖f(·)−Sn−1(f ; ·)‖C are expressed

in terms of the best approximations En(fα,rβ )Lp . Namely, in [11] it is proved that the

following best possible inequalitiy holds

‖f(·)− Sn−1(f ; ·)‖C ≤
( 4

π2
lnn1−r +O(1)

)
e−αn

r

En(fα,rβ )L∞ , (5)

where O(1) is a quantity uniformly bounded with respect to n, β and f ∈ Cα,rβ L∞.
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The present paper is a continuation of [11], [12], and is devoted to getting asymp-

totically best possible analogs of Lebesgue-type inequalities on the sets Cα,rβ Lp,

r ∈ (0, 1) and p ∈ [1,∞). This case was not considered yet. Let formulate the

results of the paper.

By F (a, b; c; d) we denote Gauss hypergeometric function

F (a, b; c; z) = 1 +
∞∑

k=1

(a)k(b)k
(c)k

zk

k!
,

(x)k :=
x

2

(x
2

+ 1
)(x

2
+ 2
)
...
(x

2
+ k − 1

)
.

For arbitrary α > 0, r ∈ (0, 1) and 1 ≤ p ≤ ∞ we denote by n0 = n0(α, r, p) the

smallest integer n such that

1

αr

1

nr
+
αrχ(p)

n1−r
≤





1
14 , p = 1,

1
(3π)3 ·

p−1
p , 1 < p <∞,

1
(3π)3 , p =∞,

(6)

where χ(p) = p for 1 ≤ p <∞ and χ(p) = 1 for p =∞.

The following statement holds.

Theorem 1. Let 0 < r < 1, α > 0, β ∈ R and n ∈ N. Then in the case 1 < p <∞
for any function f ∈ Cα,rβ Lp and n ≥ n0(α, r, p), fthe following inequality is true:

‖f(·)− Sn−1(f ; ·)‖C ≤ e−αn
r

n
1−r
p

( ‖ cos t‖p′
π
1+ 1

p′ (αr)
1
p

F
1
p′
(1

2
,

3− p′
2

;
3

2
; 1
)

+

+γn,p

((
1 +

(αr)
p′−1
p

p′ − 1

) 1

n
1−r
p

+
(p)

1
p′

(αr)1+
1
p

1

nr

))
En(fα,rβ )Lp ,

1

p
+

1

p′
= 1, (7)

where F (a, b; c; d) is Gauss hypergeometric function, and in the case p = 1 for any

function f ∈ Cα,rβ L1 and n ≥ n0(α, r, 1), the following inequality is true:

‖f(·)−Sn−1(f ; ·)‖C ≤ e−αn
r

n1−r
( 1

παr
+γn,1

( 1

(αr)2
1

nr
+

1

n1−r

))
En(fα,rβ )L1 . (8)

In (7) and (8), the quantity γn,p = γn,p(α, r, β) is such that |γn,p| ≤ (14π)2.

Proof of Theorem 1. Let f ∈ Cα,rβ Lp, 1 ≤ p ≤ ∞. Then, at every point x ∈ R the

following integral representation is true:

ρn(f ;x) = f(x)− Sn−1(f ;x) =
1

π

π∫

−π

fα,rβ (t)P
(n)
α,r,β(x− t))dt, (9)

where

P
(n)
α,r,β(t) :=

∞∑

k=n

e−αk
r

cos
(
kt− βπ

2

)
, 0 < r < 1, α > 0, β ∈ R. (10)
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The function P
(n)
α,r,β(t) is orthogonal to any trigonometric polynomial tn−1 of

degree not greater than n− 1. Hence, for any polynomial tn−1 from we obtain

ρn(f ;x) =
1

π

π∫

−π

δn(t)P
(n)
α,r,β(x− t)dt, (11)

where

δn(x) = δn(α, r, β, n;x) := fα,rβ (x)− tn−1(x). (12)

Further we choose the polynomial t∗n−1 of the best approximation of the function

fα,rβ in the space Lp, i.e., such that

‖fα,rβ − t∗n−1‖p = En(fα,rβ )Lp , 1 ≤ p ≤ ∞,
to play role of tn−1 in (11). Thus, by using the inequality

∥∥∥∥
π∫

−π

K(t− u)ϕ(u)du

∥∥∥∥
C

≤ ‖K‖p′‖ϕ‖p, (13)

ϕ ∈ Lp, K ∈ Lp′ , 1 ≤ p ≤ ∞, 1

p
+

1

p′
= 1

(see, e.g., [14, p. 43]), we get

‖f(·)− Sn−1(f ; ·)‖C ≤
1

π
‖P (n)

α,r,β‖p′En(fα,rβ )Lp . (14)

For arbitrary υ > 0 and 1 ≤ s ≤ ∞ assume

Is(υ) :=
∥∥ 1√

t2 + 1

∥∥
Ls[0,υ]

, (15)

where

‖f‖Ls[a,b] =





(
b∫
a

|f(t)|sdt
) 1
s

, 1 ≤ s <∞,
ess sup
t∈[a,b]

|f(t)|, s =∞.

It follows from the paper [9] for arbitrary r ∈ (0, 1), α > 0, β ∈ R, 1 ≤ s ≤ ∞,
1
s + 1

s′ = 1, n ∈ N and n ≥ n0(α, r, s′) the following estimate holds

1

π
‖P (n)

α,r,β‖s =e−αn
r

n
1−r
s′

( ‖ cos t‖s
π1+ 1

s (αr)
1
s′
Is
(πn1−r

αr

)
+

+δ(1)n,s

( 1

(αr)1+
1
s′
Is
(πn1−r

αr

) 1

nr
+

1

n
1−r
s′

))
, (16)

where the quantity δ
(1)
n,s = δ

(1)
n,s(α, r, β), satisfies the inequality |δ(1)n,s| ≤ (14π)2.

Substituting s = p′ =∞, from 14 and (16) we get (8).
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Further, according to [9] for n ≥ n0(α, r, s′), 1 < s <∞, 1
s + 1

s′ = 1, the following

equality takes place

Is
(πn1−r

αr

)
= F

1
s

(1

2
,

3− s
2

;
3

2
; 1
)

+
Θ

(1)
α,r,s′,n

s− 1

( αr

πn1−r

)s−1
, (17)

where |Θ(1)
α,r,s′,n| < 2.

Let now consider the case 1 < p <∞.

Formulas (16) and (17) for s = p′ and n ≥ n0(α, r, p) imply

1

π

∥∥Pα,r,n
∥∥
p′

= e−αn
r

n
1−r
p

( ‖ cos t‖p′
π
1+ 1

p′ (αr)
1
p

F
1
p′
(1

2
,

3− p′
2

;
3

2
; 1
)

+

+γ(1)n,p

( 1

p′ − 1

(αr)
p′−1
p

n(1−r)(p′−1)
+

p
1
p′

(αr)1+
1
p

1

nr
+

1

n
1−r
p

))
=

= e−αn
r

n
1−r
p

( ‖ cos t‖p′
π
1+ 1

p′ (αr)
1
p

F
1
p′
(1

2
,

3− p′
2

;
3

2
; 1
)

+

+γ(2)n,p

((
1 +

(αr)
p′−1
p

p′ − 1

) 1

n(1−r)(p′−1)
+

p
1
p′

(αr)1+
1
p

1

nr

))
, (18)

where the quantities δ
(i)
n,p = δ

(i)
n,p(α, r, β), satisfiy the inequality |δ(i)n,p| ≤ (14π)2, i =

1, 2. Estimate (7) follows from (14) and (18). Theorem 1 is proved. �

It should be noticed, that estimates (7) and (8) are asymptotically best possible

on the classes Cα,rβ,p , 1 ≤ p <∞.

If f ∈ Cα,rβ,p , then ‖fα,rβ ‖p ≤ 1, and En(fα,rβ )Lp ≤ 1, 1 ≤ p <∞. Considering the

least upper bounds of both sides of inequality (7) over the classes Cα,rβ,p , 1 < p <∞,

we arrive at the inequality

En(Cα,rβ,p )C ≤ e−αn
r

n
1−r
p

( ‖ cos t‖p′
π
1+ 1

p′ (αr)
1
p

F
1
p′
(1

2
,

3− p′
2

;
3

2
; 1
)

+

+γn,p

((
1 +

(αr)
p′−1
p

p′ − 1

) 1

n
1−r
p

+
(p)

1
p′

(αr)1+
1
p

1

nr

))
En(fα,rβ )Lp ,

1

p
+

1

p′
= 1. (19)

Comparing this relation with the estimate of Theorem 4 from [9] (see also [10]),

we conclude that inequality (7) on the classes Cα,rβ,p , 1 < p < ∞, is asymptotically

best possible.

In the same way, the asymptotical sharpness of the estimate (8) on the class Cα,rβ,1

follows from comparing inequality

En(Cα,rβ,p )C ≤ e−αn
r

n1−r
( 1

παr
+ γn,1

( 1

(αr)2
1

nr
+

1

n1−r

))
En(fα,rβ )L1

(20)

and formula (9) from [8].
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NIERÓWNOŚĆ TYPU LEBESGUE’A DLA SUM FOURIERA

NA KLASACH UOGÓLNIONYCH CA LEK POISSONA

S t r e s z c z e n i e
Dla funkcji ze zbioru uogólnionych ca lek Poissona Cα,rβ Lp, 1 ≤ p <∞, otrzymujemy

górne oszacownie dla odchyleń sum Fouriera w jednostajnej metryce w terminach najlepszej
aproksymacji uogólnionych pochodnych fα,rβ funkcji tego typu w metryce przestrzeni Lp.
Uzyskane oszacowania sa̧ asymptotycznie najlepsze z możliwych.

S lowa kluczowe: nierówności typu Lebesgue’a, sumy Fouriera, uogólnione ca lki Poissona,

najlepsze przybliżenia
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WEAKLY m-CONVEX SETS AND THE SHADOW PROBLEM

Summary

In this paper we study some properties of weakly m-convex sets in n-dimensional Eu-

clidean space. We obtain estimates for different variants of the shadow problem at a fixed

point. We discuss unsolved questions related to this problem.

Keywords and phrases: m-convex set, weakly m-convex set, Grassmann manifold, conjugate

set, shadow problem, 1-hull of family of sets

1. Introduction

The purpose of this paper is to study different variants of a problem which can be

called the shadow problem at a fixed point. We construct an example giving a lower

estimate to create a shadow at a point tangent to the sphere S2 in the space R3.

Further, under m-dimensional planes we mean m-dimensional affine subspaces of

the Euclidean space Rn.

Definition 1.1. We say that the set E ⊂ Rn is m-convex with respect to the point

x ∈ Rn\E if there exists an m-dimensional plane L such that x ∈ L and L∩E = ∅.

Definition 1.2. We say that the open set G ⊂ Rn is weakly m-convex if it is

m-convex with respect to each point x ∈ ∂G belonging to the boundary of the set

G. Any set E ⊂ Rn is weakly m-convex if it can be approximated from outside by

the family of open weakly m-convex sets.

It is easy to construct examples of weakly m-convex set which is not m-convex.

[53]
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Example 1.1. Let D = {(x, y) | (|x| < 3, 3 < |y| < 9) ∨ (3 < |x| < 9, |y| < 3)}
be a set consisting of four open squares. This set is weakly 1-convex, but is not an

1-convex set.

Example 1.2. Let B = {(x, y) | x2 + y2 < 1} be an open circle in the plane. We

choose three points of a circle S1 = {(x, y) | x2 + y2 = 1} and consider a simplex σ

with vertices at these points. It is easy to see that a set E = B \ σ is also weakly

1-convex set, but it is not an 1-convex.

2. Properties of weakly m-convex sets

In this section we study properties of m-convex sets. The next proposition was proved

by Yu. Zelinskii in [5].

Proposition 2.1. If E1 and E2 is weakly k-convex and weakly m-convex set respec-

tively, k 6 m, then a set E = E1 ∩ E2 is weakly k-convex set.

Let G(n,m) be Grassmann manifold of m-dimensional planes in Rn[2].

Definition 2.1. A set E∗ is called conjugate to a set E if E∗ is a subset of a set

consisting of m-dimensional planes in G(n,m) that don’t intersect the set E.

Now we prove the following theorem.

Theorem 2.1. If K is weakly m-convex compact set and a set K∗ is connected then

for the section of K by arbitrary (n −m)-dimensional plane L the set L\K ∩ L is

connected.

Proof. As was proved in the proposition 2 [5] the set K∗ is an open set, so any two

of its points can be connected by a continuous arc in K∗. Suppose that there exists

an (n −m)-dimensional plane L for which the set L\K ∩ L is not connected. Thus

the intersection K ∩ L is a carrier of some non-zero (n −m − 1)-dimensional chain

z [2].

Let a point x belong to a bounded component of the set L\K ∩ L. Such points

exist because of the compactness of K. From the weak m-convexity of K it follows

that an m-dimensional plane l1 which does not intersect K passes through the point

x. Now we take other m-dimensional plane l2 outside of some sufficiently large ball

containing the compact K.

If we compactificate the space Rn to a sphere Sn by an infinitely remote point

then we obtain two m-dimensional chains w1 = l1 ∪ (∞) and w2 = l2 ∪ (∞) from

which the first chain is affected by the chain z and the second is not. On the one

hand, these chains can not be translated into one another by homotopy which would

not intersect a chain z and therefore a set K ∩ L.

On the other hand, from the fact that the set K∗ is connected follows the existence
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in K∗ of pairs of points y1, y2 which define the planes l1 and l2 respectively and

connected by an arc in K∗. The points of this arc define the homotopy of the plane

l1 in l2 that has no common points with the set K ∩ L. The resulting contradiction

completes the proof of our theorem. �

3. The shadow problem

Now we study different variants of the shadow problem in n-dimensional Euclidean

space.

For every set E ⊂ Rn we can consider the minimal m-convex set containing E

and call it m-convex hull of a set E.

Introducing the concept of m-convex hull of a set E, we obtain the next problem:

to find the criterion that the point x ∈ Rn \ E belongs to the m-convex hull of the

set E. For a case of 1-convex hull of a set that is a union of some set of balls the

problem was formulated by G. Khudaiberganov and named the shadow problem [1].

The shadow problem. What is the minimum number of mutually disjoint closed

or open balls in the space Rn with centers on the sphere Sn−1 and of radii smaller

than the radius of the sphere with condition that any straight line passing through

the center of the sphere intersects at least one of these balls?

In other words, this problem can be formulated as follows. What is the minimum

number of mutually disjoint closed or open balls in the space Rn with centers on the

sphere Sn−1 and of radii smaller than the radius of the sphere with condition that

the center of the sphere belongs to an 1-convex hull of the family of these balls?

G. Khudaiberganov proved that in the case n = 2 two discs are sufficient to create

a shadow in the center of a circle. He assumed that for n > 2 the minimum number

of such balls equals n. Subsequently, professor Yu. Zelinskii [8] proved that in the

case n = 3 three balls are not enough to create a shadow for the center of the sphere.

At the same time the four balls create the shadow. In the general case it is sufficient

n+ 1 balls.

Theorem 3.1. There exist two closed (open) balls with centers on the unit circle

and of radii smaller than one with condition that the center of the circle belongs to

an 1-hull of these balls.

Theorem 3.2. In order that the center of a sphere Sn−1 in the n-dimensional Eu-

clidean space Rn (n > 2) belongs to an 1-convex hull of a family of mutually disjoint

open (closed) balls of radii whose values do not exceed (smaller than) of the radius of

the sphere and with centers on the sphere it is necessary and sufficient (n+ 1) balls.

Note that professor Yu. Zelinskii generalized the shadow problem for an arbitrary

point inside the sphere.
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Problem 3.1. What is the minimum number of mutually disjoint closed or open

balls in the space Rn with centers on the sphere Sn−1 and of radii smaller than

the radius of the sphere with condition that the interior of the sphere belongs to an

1-convex hull of the family of these balls?

He obtained [9] the solution of this problem in a case n = 2.

Theorem 3.3. In order that an interior of a circle belongs to an 1-convex hull of a

family of mutuall disjoint open or closed discs with centers on the circle and of radii

smaller than the radius of the circle it is sufficient 3 discs.

In a case where the point doesn’t necessarily belong to some sphere, the following

theorem obtained by Yu. Zelinskii is true [7].

Theorem 3.4. In order that a chosen point in the n-dimensional Euclidean space Rn
for n > 2 belongs to an 1-hull of a family of open (closed) balls that do not contain

this point and do not intersect pairwise it is necessary and sufficient n balls.

Note that where balls are of the same radius we have the next result[10].

Theorem 3.5. Any set consisting of three balls of the same radius which do not

intersect pairwise forms an 1-convex set in the three-dimensional Euclidean space

R3.

Now we consider a set consisting of three balls in the space Rn. The following

statement is true.

Theorem 3.6. For an arbitrary point of the space Rn \
3⋃
i=1

Bi, where B1, B2, B3 are

three balls of the same radius that do not intersect pairwise and do not pass through

this point, there exists an (n − 2)-dimensional plane containing this point and does

not intersect any of the balls.

Proof. Let B1, B2, B3 be three balls of the same radius that do not intersect pairwise

and do not pass through some point x ∈ Rn. Let us construct a three-dimensional

plane L passing through three centers of the balls and a point x. The intersections

of the selected balls with the plane L are three three-dimensional balls B′1, B′2, B′3.

Then according to Theorem 3.5, in the plane L there exists a straight line l which

does not intersect any of these balls.

Now we consider the orthogonal complement L1 of a plane L in the space Rn.

This is an (n− 3)-dimensional plane. Obviously, the Cartesian product l × L1 is an

(n− 2)-dimensional plane passing through the point x and does not intersect any of

the balls B1, B2, B3. The proof is completed. �

Definition 3.1. We say that a family of sets = = {Fα} creates a shadow tangent to

the manifold M at the point x ∈M if every straight line tangent to the manifold M
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at the point x ∈M \⋃
α
Fα has a non-empty intersection at least with one of the sets

Fα belonging to the family =.

Now we formulate the shadow problem for points of the sphere Sn−1 which don’t

belong to the union of the balls with respect to the straight lines tangent to the

sphere.

Problem 3.2. What is the minimum number of mutually disjoint closed or open

balls {Bi} in the space Rn with centers on the sphere Sn−1 and of radii smaller than

the radius of the sphere which provide a shadow tangent to the sphere Sn−1 at each

point x ∈ Sn−1 \⋃
i

Bi?

Lemma 3.1. We consider an equilateral triangle in the Euclidean plane R2. If we

choose three circles Bi, i = 1, 2, 3, with centers at the vertices of this triangle and of

a radius equals to half of the height of the triangle then every straight line passing

through an arbitrary point x ∈ (
3⋃
i=1

Bi)
∗ \

3⋃
i=1

Bi, where (
3⋃
i=1

Bi)
∗ is a convex hull of

the set
3⋃
i=1

Bi, intersects at least one of the selected circles.

Proof. Without loss of generality we take an unit circle with the center at the ori-

gin and consider an equilateral triangle with vertices in points (0, 1), (
√
3
2 ,− 1

2 ),

(−
√
3
2 ,− 1

2 ) inscribed in the circle. Now we take discs B1, B2, B3 of a radius 3
4

in each vertex of the triangle. We note that the circumscribed circle of this triangle

lies in a convex hull of these three circles.

It is easy to see that any straight line passing through a point x ∈ (
3⋃
i=1

Bi)
∗\

3⋃
i=1

Bi,

where (
3⋃
i=1

Bi)
∗ is a convex hull of the set

3⋃
i=1

Bi, intersects at least one of the three

selected discs. By increasing the radii of the selected discs, we obtain that the lemma

is true for three open circles of a fixed radius.

Lemma 3.1 gives an answer on the problem 3.2 in the case n = 2. �

This result shows that in a three-dimensional case for an arbitrary point of a

sphere it is possible to select three balls touching pairwise and creating a shadow

at all points of a curvilinear triangle created on the sphere by these balls. Note

that the harmonization of such construction for the whole sphere requires additional

considerations. This is shown in the following example.

Example 3.1. There exists a set consisting of 14 open (closed) balls that do not

intersect pairwise with centers on a sphere S2 ⊂ R3 that can not provide a shadow

tangent to the sphere S2 at each point x ∈ S2 \
14⋃
i=1

Bi.

Without loss of generality we can assume that the chosen sphere S2 has center
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at the origin and its radius equals 1. We take a cube with vertices in points (x =

±1/
√

3, y = ±1/
√

3, z = ±1/
√

3) inscribed in this sphere. The length of an edge of

the cube is equal to a = 2/
√

3.

Now we choose eight open balls with centers at the vertices of the cube and radius

r = 1/
√

3 ≈ 0.577 which equals to half of the cube’s edge. We add to this collection

six new open balls with centers at an intersection of the rays going from the origin

and passing through the center of the face of the cube with the sphere S2. Radii

of these balls equal r =
√

2− 2/
√

3 − 1/
√

3. Each of them touches exactly up to

four previously selected balls. This collection of balls of two different radii covers the

sphere. As the calculations show, this set of balls is not sufficient to create a shadow

tangent to the sphere S2 at each point x ∈ S2 \
14⋃
i=1

Bi.

Note that the constructed set of balls gives a lower estimate of the required

number of balls. The question on an upper estimate remains open.

4. Open problems

Unfortunately, Theorem 3.3 gives the solution of the problem 3.1 only in the case

n = 2. The question on the solution of this problem in higher dimensions remains

open.

Question 4.1. What is the minimum number of mutually disjoint closed or open

balls in n-dimensional Euclidean space with centers on the sphere Sn−1 and of radii

smaller than the radius of the sphere with condition that the interior of the sphere

belongs to an 1-convex hull of the family of these balls?

Finally, Lemma 3.1 gives the answer on the Problem 3.2 for n = 2. At the same

time, Example 3.1 gives a lower estimate in the case n = 3. The questions on an

upper estimate for n = 3 and solution of the problem in the case n > 3 are open.

Question 4.2. What is the minimum number of mutually disjoint closed or open balls

Bi in the space Rn (n > 3) with centers on the sphere Sn−1 and of radii smaller than

the radius of the sphere which provide a shadow tangent to the sphere Sn−1 at each

point x ∈ Sn−1 \⋃
i

Bi?
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S t r e s z c z e n i e
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CONVERGENCE OF DIRICHLET SERIES
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Summary

We consider conditions for convergence of Dirichlet series on a finite-dimensional space

in Stepanov’s metric. Also, we obtain some applications for Stepanov’s and Besicovitch’s

almost periodic functions.
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Consider a Dirichlet series
∑
k

ake
λkz, ak ∈ C, λk ∈ R. In the paper [4] and [5],

V. Stepanov obtained the following result:

Theorem S. Suppose that
∞∑

k=−∞
|ak|2 < ∞. If λk+1 − λk > α > 0, k ∈ Z, α does

not depend on n, then the sums SN (x) =
N∑

k=−N
ake

iλkx form a Cauchy sequence with

respect to the integral metric, namely

sup
y∈R




y+1∫

y

|SM − SN |2dx




1
2

→ 0 M,N →∞.

[61]
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The quantity

DSp
l
[f(x), g(x)] = sup

x∈R
[
1

l

x+l∫

x

|f(y)− g(y)|pdy]
1
p , p ≥ 1,

is called Stepanov’s distance of order p (p ≥ 1) associated with length l (l > 0). The

corresponding metric is called Stepanov’s one.

Here we assume that functions f(x), g(x) are pth power integrable on each seg-

ment. Note that Stepanov’s distances are equivalent for various l > 0; the space of

functions with finite Stepanov’s norm DSp
l
[f(x), 0] is complete (see [4]).

In our paper we prove an analogue of Theorem S on the space Rd. In one-

dimensional case our result is stronger than Theorem S.

We need some definitions and notations.

Let B(x0, r) be the open ball with center at the point x0 ∈ Rd and radius r > 0,

〈t, x〉 be the scalar product on Rd, and ωd be the volume of a unit ball in Rd.
Suppose that f : Rd → C, g : Rd → C are measurable and Lp-integrable functions

on each compact set.

Definition 1.

DSp
l
[f(x), g(x)] = sup

x∈Rd


 1

ωdld

∫

B(x,l)

|f(y)− g(y)|pdy




1
p

, p ≥ 1.

The metrics generating by these distances with different l > 0 are equivalent and

complete, therefore we will take l = 1 and write DSp instead of DSp
1
. Such distance

is called Stepanov’s metric.

By SH(Rd) denote the Schwartz space of smooth functions f(x), x ∈ Rd, with

the following property: for any m = (m1,m2, ...,md) ∈ (N∪ {0})d and for any k ∈ N
the equality

(
∂m1+m2+...+md

∂xm1∂xm2 ...∂xmd
f
)

(x) = o
(

1
|x|k
)
, x→∞ holds true.

Definition 2. (see [6]) The function f̂(t) =
∫
Rd

f(x)e−i〈t,x〉dx, t ∈ Rd, is called the

Fourier transform of f(x) ∈ L1(Rd).

It is known (see, for example, [6], [8]), that the Fourier transform is the automor-

phism on SH(Rd).

Let {(an, λn)}∞n=1 be a set of pairs where an ∈ C, λn ∈ Rd. Let Λ =
∞⊔
j=1

Λj be

a partition of the set Λ = {λn}∞n=1 with the property diam Λj < 1, j = 1, 2, ....

Denote SN (x) =
N∑
k=1

ake
i〈λk,x〉.
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Theorem 1. Suppose an > 0, 0 < r <∞. Then

∞∑

j=1


 ∑

λn∈Λj

an




2

≤ C1 sup
N

∫

B(0;r)

|SN (x)|2dx,

where C1 = C1(r, d).

Proof. Let ϕ(x) ∈ SH(Rd) be an even nonnegative function such that suppϕ(x) ⊂
B(0, r2 ). Put ψ(x) = 1

δd
(ϕ ∗ ϕ)(xδ ) for δ ∈ (0, 1). Clearly, suppψ(x) ⊂ B(0, δr) and

ψ̂(t) = |ϕ̂(δt)|2 ≥ 0, ψ̂(0) > 0 and

ψ̂(t) ≥ ε > 0, t ∈ B(0, 1) (1)

for appropriate δ.

Let M = sup
Rd

ψ(x). We have the following sequence of inequalities:

∫

B(0;r)

|SN (x)|2dx ≥

≥M−1

∫

Rd

ψ(x)|SN (x)|2dx = M−1

∫

Rd

ψ(x)
N∑

n=1

N∑

l=1

anale
i〈λn−λl, x〉dx =

= M−1
N∑

n=1

N∑

l=1

anal

∫

Rd

ψ(x)ei〈λn−λl, x〉dx = M−1
N∑

n=1

N∑

l=1

analψ̂(λl − λn).

Since ψ̂(t) ≥ 0 we omit all the terms where the elements λn, λk belong to different

sets Λj and get the following inequalities:

M−1
N∑

n=1

N∑

l=1

analψ̂(λl − λn) ≥M−1
∑

j

∑

1≤n,l≤N
λn,λk∈Λj

analψ̂(λl − λn) ≥

≥M−1ε
∑

j

∑

1≤n,l≤N
λn,λl∈Λj

anal = M−1ε
∑

j



∑

1≤n≤N
λn∈Λj

an




2

.

Thus,

∑

j


 ∑

λn∈Λj

an




2

≤ C1 sup
N

∫

B(0,r)

|SN (x)|2dx.

This completes the proof of the Theorem. �
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Define Tm = {(j, l) : m ≤ dist(Λj , Λl) < m+ 1}. Note that N2 =
∞⊔
m=0

Tm.

Let {B(xj , 1)} be a set of balls such that multiplicities of their intersections do

not exceed h and Λj ⊂ B(xj , 1) for all j ∈ N. Note that for a fixed k and any j

such that B(xk, 2) ∩ B(xj , 2) 6= ∅ we have |xj − xk| < 4 and B(xj , 1) ⊂ B(xk, 5).

Let M be a number of such balls B(xj , 1). The sum of volumes of these balls is at

most Mωd. Clearly, Mωd ≤ h5dωd, therefore multiplicities of the system of the balls

B(xj , 2) bound by H = h5d. Replace each ball B(xj , 1) by some ball B(x′j , 1) with

x′j ∈ Λj ⊂ B(xj , 1). Note that Λj ⊂ B(x′j , 1). Since B(x′j , 1) ⊂ B(xj , 2), we see that

multiplicities of intersections of the system {B(x′j , 1)} are bounded by H. Hence we

may suppose that xj ∈ Λj .

Lemma. For any l,m ∈ N the number of elements of the set {k ∈ N : (k, l) ∈ Tm}
does not exceed C2Hm

d−1, C2 = C2(d).

Proof. Let (k, l) ∈ Tm. We have m ≤ dist(Λk,Λl) ≤ |xk − xl| ≤ dist(Λk,Λl) + 2 ≤
m + 3. Therefore, all balls B(xk, 1) with (k, l) ∈ Tm are contained in the spherical

layer {x : m− 1 ≤ |x− xl| ≤ m+ 4}. The volume of this spherical layer is ωd((m+

4)d − (m− 1)d) ≤ C2ωdm
d−1, where C2 depends on d only.

Hence a common value of the set Tm of balls B(xk, 1) with (l, k) ∈ Tm does not

exceed C2Hm
d−1. �

Theorem 2. Let Λ = {λn}∞n=1, Λ =
∞⊔
j=1

Λj , diam Λj < 1, j = 1, 2, . . . . Suppose that

Λj ⊂ B(xj , 1), xj ∈ Λj and the multiplicities of intersections of the balls B(xj , 1) do

not exceed h, also suppose that
∞∑
j=1

(
∑

λn∈Λj

|an|
)2

= K2 <∞ for some an ∈ C.

Then the following conditions are fulfilled:

a) DS2 [SN (x), 0] ≤ C3K,

where SN (x) =
N∑
k=1

ake
i〈λk,x〉, C3 does not depend on N.

b) lim
M,N→∞

DS2 [SN (x), SM (x)] = 0,

therefore the series
∑
k

ake
i〈λk,x〉 converges in the metric DS2 .

Proof. Let ϕ(x) ∈ SH(Rd) be a function such that ϕ(x) = 1, x ∈ B(0; 1) and

suppϕ(x) ⊂ B(0, 2), 0 ≤ ϕ(x) ≤ 1.

Then ∫

B(y;1)

|SN (x)|2dx ≤
∫

Rd

ϕ(x− y)
∑

1≤k≤N

∑

1≤l≤N
akale

i〈λk−λl, x〉dx =
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=
∑

1≤k≤N

∑

1≤l≤N
akal

∫

Rd

ϕ(x)ei〈λk−λl, x+y〉dx ≤

≤
∑

1≤k≤N

∑

1≤l≤N
|ak||al|

∣∣∣∣∣∣

∫

Rd

ϕ(x)ei〈λk−λl, x+y〉dx

∣∣∣∣∣∣
=

=
∑

1≤k≤N

∑

1≤l≤N
|ak||al||ϕ̂(λl − λk)|.

Since ϕ̂ ∈ SH(Rd), we get |ϕ̂(x)| ≤ C4min{1, 1
|x|d+1 }. After appropriate rear-

rangement of the summands

∑

1≤k≤N

∑

1≤l≤N
|ak||al||ϕ̂(λk − λl)|

we get:

∑

1≤k≤N

∑

1≤l≤N
|ak||al||ϕ̂(λk − λl)| =

=
∑

j

∑

1≤k, l≤N
λk, λl∈Λj

|ak||al||ϕ̂(λk − λl)|+

+
∞∑

m=1

∑

(j, p)∈Tm

∑

1≤k, l≤N
λk∈Λj , λl∈Λp

|ak||al||ϕ̂(λk − λl)| = Σ1 + Σ2.

We estimate the sums Σ1 and Σ2 separately.

We have |ϕ̂(λk − λl)| ≤ C4 for any j under the condition λk, λl ∈ Λj . Hence the

next bound for Σ1 holds:

∑

1<k,l<N
λk,λl∈Λj

|ak||al||ϕ̂(λk − λl)| ≤ C4

∑

λk∈Λj

|ak|
∑

λl∈Λj

|al| = C4


 ∑

λk∈Λj

|ak|




2

,

Therefore,

Σ1 ≤ C4K
2. (2)

Further, for each fixed m ≥ 1 :

∑

(j,p)∈Tm

∑

1≤k, l≤N
λk∈Λj , λl∈Λp

|ak||al||ϕ̂(λk − λl)| ≤ C4
1

md+1

∑

(j,p)∈Tm

∑

1≤k≤N
λk∈Λj

|ak|
∑

1≤l≤N
λl∈Λp

|al| ≤
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≤ 1

2
C4

1

md+1

∑

(j,p)∈Tm





 ∑

λk∈Λj

|ak|




2

+


 ∑

λl∈Λp

|al|




2

 (3)

Using Lemma and replacing the summation over p such that (j, p) ∈ Tm by the

summation over all s ∈ N, we obtain the following estimate for (3):

C2C4

2

md−1

md+1

∑

s



( ∑

λk∈Λs

|ak|
)2

+

( ∑

λl∈Λs

|al|
)2

 =

C2C4

m2

∑

s

( ∑

λl∈Λs

|al|
)2

.

Therefore,

Σ2 ≤ C5K
2. (4)

Finally, taking into account (2) and (4), we obtain

∫

B(y;1)

|SN (x)|2dx ≤ C6 ·K2,

where C6 does not depend on N. Hence, DS2 [SN (x)] ≤ C3 ·K, where C3 does not

depend on N, so the proposition a) is proved.

Prove the proposition b). Let K2
N =

∑
j




∑
1≤k≤N
λk∈Λj

|ak|




2

. Actually we have just

proved the inequality

sup
y

∫

B(y,1)

|SN (x)|2dx ≤ (C3KN )2. (5)

Substituting the sum SN (x)− SM (x) for SN (x) in inequality (5), we get

DS2 [SN (x), SM (x)] ≤ C2
3 (K2

N −K2
M ),

here K2
N −K2

M =
∑
j

(
∑

M≤n≤N
λn∈Λj

|ak|)2.

Prove that (K2
N −K2

M )→ 0 as N,M →∞. Assume that M is sufficiently large.

By the condition
∑
j

(
∑

λn∈Λj

|an|
)2

= K2, for each ε > 0 there exists q ∈ N (q does

not depend on M and on N ) such that
∞∑

j=q+1




∑
M≤n≤N
λn∈Λj

|an|




2

≤ ε
2 .
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Next, for each fixed 1 ≤ j ≤ q there exists M such that the inequality

 ∑

λn∈Λj

|an|




2

≤ ε

2q

is satisfied for n > M . Then
q∑
j=1




∑
M≤n≤N
λn∈Λj

|an|




2

≤ q · ε2q = ε
2 . Hence, for each ε > 0

we obtain (K2
N −K2

M ) ≤ ε. This completes the proof. �
Remark 1. Theorem 2 is true for diam Λj ≤ r, j = 1, 2, ..., and for the balls of

radius R ≥ r.
Suppose that there exists a set of balls {B(xj , R)} such that multiplicities of

intersections of the balls do not exceed h, and the numbers of points λ ∈ Λ contained

in B(xj , R) are uniformly bounded.

Put Λ1 = Λ ∩ B(x1, R), Λ2 = Λ ∩ B(x1, R) \ Λ1, Λj = (Λ ∩ B(x1, R)) \
j−1⋃
k=1

Λk.

The sets Λj satisfy all the conditions of Theorem 2 and for any j the number of

elements Λj does not exceed some bound s <∞.

Clearly,
∞∑
n=1
|an|2 <∞ implies

∑
j=1

(
∑

λn∈Λj

|an|
)2

≤ ∑
j=1

s
∑

λn∈Λj

|an|2 <∞.

We get the following consequence of Theorem 2:

Theorem 3. Let Λ = {λn}∞n=1 and {B(xj , R)} be a set of balls such that multiplic-

ities of intersections of the balls do not exceed h. Suppose that numbers of elements

of the sets Λ ∩ B(xj , R) are uniformly bounded for all j ∈ N. If for some an ∈ C
∞∑
n=1
|an|2 <∞, then the following conditions are fulfilled:

a) sup
N
SN (x) <∞,

here SN (x) =
N∑
k=1

ake
i〈λk,x〉.

b) lim
M,N→∞

DS2 [SN (x), SM (x)] = 0.

Consider some applications of the obtained results.

Definition 3. (see [2] for the case d=1). Function f(x) : Rd → C is called Stepanov’s

almost periodic function of order p (Sp-almost periodic function) if there exists a

sequence of finite exponential sums Sn(x) =
∑
j

cje
i〈λj ,x〉, cj ∈ C, λj ∈ Rd, such that

lim
n→∞

DSp [f(x), Sn(x)] = 0.
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To each Sp-almost periodic function f(x), x ∈ Rd, we associate the Fourier series

f(x) ∼
∑

λ∈Rd

a(λ, f)ei〈λ,x〉,

where a(λ, f) = lim
T→∞

1
ωdTd

∫
B(0, T )

f(x)e−i〈λ,x〉dx.

Definition 4. (see [2] for the case d = 1 and [3] for the case d > 1) The spectrum

of function f(x) is the set spf = {λ ∈ Rd : a(λ, f) 6= 0}.
It is well known (for the case d = 1 see [2], the proof for the case d > 1 can be

treated in the same way) that spectrum of Sp-a.p.function is at most countable. The

properties of the spectrum of the almost periodic functions in various metrics were

considered in [7]. There were considered Stepanov’s, Weil’s and Besicovitch’s almost

periodic functions on Rd.

Theorem 4. For any set of pairs {(an, λn)}∞n=1 that satisfy the conditions of Theo-

rem 2 there exists S2– almost periodic function f(x) with Fourier series
∑
n
ane

i〈λn,x〉.

Proof. It follows from the completeness of the metric DS2 and Theorem 2 that the

sums
∑
n≤N

ane
i〈λn,x〉 converge to f(x) with respect to the metric DS2 . �

Also we get

Theorem 5. For any set of pairs {(an, λn)}∞n=1 that satisfy the conditions of Theo-

rem 3 there exists S2– almost periodic function f(x) with Fourier series
∑
n
ane

i〈λn,x〉.

Let the functions f : Rd → C, g : Rd → C be measurable and Lp-integrable on

each compact in Rd.
Generalizing the definition of Besikovitch’s distance ( see [1]) for the function on

Rd we have the following definition.

Definition 5. Put

DBp [f(x), g(x)] =





lim
T→∞

1

ωdTn

∫

B(0,T )

|f(y)− g(y)|pdy





1
p

, p ≥ 1,

the metric generated by this distance is called Besicovitch’s distance of order p.

Definition 6. (see [1] for the case d=1) Function f(x) : Rd → C is called Besi-

covitch’s almost periodic function of order p (Bp–almost periodic function) if there

exists a sequence of finite exponential sums Sn(x) =
∑
j

cje
i〈λj ,x〉, cj ∈ C, λj ∈ Rd,

such that

lim
n→∞

DBp [f(x), Sn(x)] = 0.
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Each Bp–almost periodic function f(x), x ∈ Rd, has at most countable spectrum

spf = {λ : a(λ, f) = lim
T→∞

1

ωdT d

∫

B(0, T )

f(x)e−i〈λ,x〉dx 6= 0}.

Moreover, for each B2 – almost periodic function f we have
∑

λn∈spf

|a(λn, f)|2 <∞.

The proof is similarly to the case d = 1.

Hence we obtain

Theorem 6. Let f(x), x ∈ Rd, be B2– almost periodic function with the spectrum

Λ = {λk}∞k=1. Suppose that there exists a set of balls {B(xj , R)} such that the multi-

plicities of intersections do not exceed h, and numbers of elements λ ∈ Λ ∩B(xj , R)

is uniformly bounded. Then the function f(x) is S2 – almost periodic.

References

[1] A. S. Besicovitch, Almost periodic functions. Cambridge University Press, 1932, 253

p.

[2] B. M. Levitan, Almost periodic functions. Gostehizdat, Moskow, 1953, 396 p. (In

Russian)

[3] L. I. Ronkin, Almost periodic distributions and divisors in tube domains. Zap. Nauchn.

Sem. POMI 247 (1997), 210–236. (In Russian).

[4] V. V. Stepanov, About metric in S2–almost periodic function’s space. DAN USSR,

(1949) V.LXIV. No 3., P. 171. (In Russian)

[5] V. V. Stepanov, One class of almost periodic function. DAN USSR. (1949). V.LXIV.

No 3.- -P. 297. (In Russian)

[6] W. Rudin, Functional analysis. – 2nd ed., New York: McGraw-Hill. ISBN 0-07-

100944-2. (1991), 424 p.

[7] S. Yu. Favorov, N. P. Girya, Various definitions of spectrum of almost periodic

functions. Ufa Mathematical Journal. Vol. 7. No 4. (2015), 58–70.

[8] V. S. Vladimirov, Equations of mathematical physics. New York: M. Dekker (1971),

VI. 418 p.

Karazin’s Kharkiv National University

Svobody sq., 4, UA-61022, Kharkiv

Ukraine

E-mail: sfavorov@gmail.com



70 S. Yu. Favorov and N. P. Girya

National Technical University

Kharkiv Polytechnic Institute

Ukraine

E-mail: n82girya@gmail.com
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O ZBIEŻNOŚCI SZEREGU DIRICHLETA W PRZESTRZENI

SKOŃCZENIE WYMIAROWEJ

S t r e s z c z e n i e
Rozważamy warunki zbieżności szeregów Dirichleta w przestrzeni skończenie wymiaro-

wej przy metryce Stepanova. Uzyskujemy też pewne zastosowania dla funkcji prawie okre-
sowych Stepanova i Besicovitcha.

S lowa kluczowe: szereg Dirichleta, wyk ladniki w szeregu Dirichleta, szereg Fouriera, metryka

Stepanova, metryka Besicovitcha, funkcje prawie okresowe
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ON SOME CASES OF PLANE ORTHOTROPY

Summary

There are considered some cases of plane orthotropy in the absence of body forces. Then

every function from a pair-solution of the equilibrium system of equations with respect to

displacements satisfies the elliptic fouth-order equation of the type:
(
α1

∂4

∂x4
+ α2

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0,

with certain real αk 6= 0, k = 1, 2.

Keywords and phrases: the generalized Hook’s law, a plane orthotropy, the equilibrium

system

1. Introduction

As well-known (cf., e.g., [1, 2, 3]), in the case of isotropic plane deformations with

the absence of body forces a function (displacement) u or v from a pair-solution

(u(x, y), v(x, y)) of the equilibrium system of equations in displacements




(λ+ µ)
(

∂2u(x,y)
∂x2 + ∂2v(x,y)

∂x∂y

)
+ µ∆2u(x, y) = 0,

(λ+ µ)
(

∂2u(x,y)
∂x∂y + ∂2v(x,y)

∂y2

)
+ µ∆2v(x, y) = 0∀(x, y) ∈ D,

(1)

as well as the stress Airy’s function, satisfies the biharmonic equation: (∆2)2w(x, y) =

0, where ∆2 := ∂2

∂x2 + ∂2

∂y2 is the 2-D Laplasian, D is a domain of the Cartesian plane

xOy, λ and µ are the Lamé constants.

[71]
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Similar results for anisotrophic solid body are not well-known. One of the reason

of this fact is a difficulty (due to a variety of cofficients) of the generalized Hooke’s

law expressing strains via stresses in a linear form.

The aim of this paper is to prove analogous (to the isotropic case) statements

for some cases of an elastic anisotrophic homogeneous plane solid body — a plane

orthotropic body, or briefly, a plane orthotropy. We will restrict our attention on

some simple but interesting cases of orthotropy.

2. Notations and preliminaries

Let R3×3 be a set of all real 3× 3 matrices, A ∈ R3×3, detA is a determinant of A.

If detA 6= 0 then there exists the inverse matrix B = A−1 such that AB = BA = 1,

where 1 is the unity matrix. By R3×3
+ we define all matrices of R3×3 which are

symmetric and positive defined. A symbol
←−
ϑ defines a vector-column having three

real coordinates ϑk, k = 1, 2, 3.

Let a model of an elastic anisotropic medium occupied a domain D of the Carte-

sian plane xOy be a homogeneous (cf., e.g., [4, p. 25]) plane orthotropic (cf., e.g., [4,

p. 35]) body.

Let ←−ε has coordinates equal to strains (cf., e.g., [4, p. 18]):

ε1 := εx, ε2 := εx, ε3 = γxy.

Let ←−σ has coordinates equal to stresses (cf., e.g., [4, p. 16]):

σ1 := σx, σ2 := σy, σ3 := τxy.

The generalized Hooke’s law for our model has two equivalent forms (cf., e.g., [4,

§ 3], [5, § 4.1.3]):
←−ε = A←−σ , ←−σ = A−1←−ε , (2)

with A ∈ R3×3
+ of the form

A =



a11 a12 0

a12 a22 0

0 0 a66


 , (3)

where

a11 > 0, a11a22 − (a12)2 > 0, a66 > 0. (4)

Unequalities (4) follows from the Sylvester’s criterion of positive definiteness of the

matrix (3).

A numbers aij and Aij , k ≤ m, k,m = 1, 2, 6, are called elastic constants ([4,

p. 27]). They are constants in D due to the homogeneity of the solid body.
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Consider notations for elements of A−1:

A−1 =:



A11 A12 0

A12 A22 0

0 0 A66


 , (5)

where Akm satisfy (4) with akm := Akm, k ≤ m, k,m = 1, 2, 6.

A stress function ([6, p. 21] with U ≡ 0) is a function w satisfying relations:

σx(x0, y0) =
∂2w

∂y2
(x0, y0), σy(x0, y0) =

∂2w

∂x2
(x0, y0),

τxy(x0, y0) = − ∂2w

∂x∂y
(x0, y0)∀(x0, y0) ∈ D.

In the absence of body forces, the stress function w(x, y) satisfies the elliptic fouth-

order equation (“ the stress equation”, cf., e.g., [6, p. 27] with a16 = a26 = 0):
(
a22

∂4

∂x2
+ (2a12 + a66)

∂4

∂x2∂y2
+ a11

∂4

∂y4

)
w(x, y) = 0. (6)

The equilibrium system of equations with respect to the displacement vector

(u(x, y), v(x, y)) has a form (cf., e.g., [4, p. 75]):



(
A11

∂2

∂x2 +A66
∂2

∂y2

)
u(x, y) + (A12 +A66) ∂2v(x,y)

∂x∂y = 0,

(
A66

∂2

∂x2 +A22
∂2

∂y2

)
v(x, y) + (A12 +A66) ∂2u(x,y)

∂x∂y = 0,
(7)

where all (x, y) ∈ D; Akm, k ≤ m, k,m = 1, 2, 6, are defined in (5).

3. Cases of orthotropy and solutions of their equilibrium sys-
tems and stress equation

Consider the following equation (particular case of (6)):

l0,pw(x, y) ≡

≡
(

(2p− 1)
∂4

∂x4
+ 2p

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0 ∀(x, y) ∈ D, (8)

where p 6= 1 is a real parameter.

Consider an orthotropy with

a11 = a12 = 1, a22 = 2p− 1, a16 = a26 = 0, a66 = 2(p− 1). (9)

Then the equation (8) is a stress equation. It is easy to check that the matrix (3)

is positive defened only for p > 1. So a case p < 1 has no elastic meaning and we are

to investigate a case p > 1. Calculating the inverse matrix A−1 we find:

A11 =
2p− 1

2(p− 1)
, A12 = − 1

2(p− 1)
, A22 = A66 = −A12. (10)

Since A12 +A66 = 0 a system (7) takes a form
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1
2(p−1) l1,pu(x, y) = 0,

1
2(p−1) ∆2v(x, y) = 0∀(x, y) ∈ D,

(11)

where l1,p := (2p− 1) ∂2

∂x2 + ∂2

∂y2 .

Taking into account that the operator (8) can be factorisated in the form:

l1,p = l1,p ◦∆2 = ∆2 ◦ l1,p
(l1 ◦ l2 is a symbol of composition of operators l1 and l2), we see that if a pair (u, v)

is a solution of (11) then w := u or w := v is a solution of the equation (8). So we

proved the following theorem.

Theorem 1. Let p > 1, an orthotropy is defined by (2), (9). Then every displace-

ment-function from a pair of solution of the eqilibrium system (11) satisfies the equa-

tion (8).

Now consider another cases of orthotropy for which an equilibrium equation splits

onto two equations containing except of operators of the type l1,p an extra term-

operator ∂2

∂x∂y acted to another unknown function and has a non-zero coefficient.

Let p be an arbitrary fixed number: 0 < p < 1.

Take into consideration the plane orthotropy:

a11 = a22 = 1, a16 = a26 = 0, a66 = 2(p− a12), −1 < a12 < p. (12)

An a12 belongs to such measures due to the positiveness of the matrix (3). Therefore,

we have:

A11 = A22 =
1

1− a212
, A21 = A12 = − a12

1− a212
, A66 =

1

2(p− a12)
.

The equilibrium system (7) gets a form:




1
1−a2

12

∂2

∂x2u(x, y) + 1
2(p−a12)

∂2

∂y2u(x, y)+

+
(
− a12

1−a2
12

+ 1
2(p−a12)

)
∂2v(x,y)
∂x∂y = 0,

1
2(p−a12)

∂2

∂x2u(x, y) + 1
1−a2

12

∂2

∂y2 v(x, y)+

+
(
− a12

1−a2
12

+ 1
2(p−a12)

)
∂2u(x,y)
∂x∂y = 0,

(13)

where all (x, y) ∈ D.

Consider the following (“stress”) equation:

l2,pw(x, y) ≡

≡
(
∂4

∂x4
+ 2p

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0∀(x, y) ∈ D. (14)
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The system (13) is equivalent to the following system:




B11
∂2u(x,y)

∂x2 +B12
∂2u(x,y)

∂y2 + ∂2v(x,y)
∂x∂y = 0,

B21
∂2v(x,y)

∂x2 +B22
∂2v(x,y)

∂y2 + ∂2u(x,y)
∂x∂y = 0∀(x, y) ∈ D.

(15)

where

B11 = B22 :=
2 (p− a12)

(a12 − p)2 + 1− p2 ,

B12 = B21 :=
1− (a12)2

(a12 − p)2 + 1− p2 .

Theorem 2. Let 0 < p < 1, an orthotropy is defined by (2), (12). Then every

displacement-function from a pair of solution of the eqilibrium system (15) satisfies

the equation (14).

Proof. Acting by the differential operator ∂2

∂x∂y on the second equation of (15) and

substituting to the obtained equation an expression of ∂2v
∂x∂y , we arrive at the equation:

∂4u(x, u)

∂x4
+ C2

∂4u(x, y)

∂x2∂y2
+ C3

∂4u(x, y)

∂y4
∀(x, y) ∈ D, (16)

where

C3 =
B22B12

B11B21
≡ 1, C2 :=

B11B22 +B12B21 − 1

B11B21
.

So, to prove Theorem we need to check the equality C2 = 2p. In terms of p and

a12 the relation C2 = 2p can be rewritten in the form:

α2 + β2 + 2pαβ = (α+ a12β)
2
,

where α := 1 − a212, β := 2(a12 − p). By doing simple algebraic transformation, the

last one is equivalent to the relation

1− a212 = 2(a12 − p)
α

β
,

which with use of the definitions of α and β is an identity. So, we proved that if (u, v)

is a solution of (15) then v satisfies the equation (14).

A similar statement for v can be proved analogously. The theorem is proved. �

Acknowlegements

The research is partically supported by the Polish-Ukrainain grant No. 39/2014

Topological-analytical methods in complex and hypercomplex analysis of the Polish

Academy of Sciences and the National Academy of Sciences of Ukraine and by the

Fundamental Research Programme funded by the Ministry of Education and Science

of Ukraine (project No. 0116U001528).



76 S. V. Gryshchuk

References

[1] S. G. Mikhlin, The plane problem of the theory of elasticity, Trans. Inst. of seismology,

Acad. Sci. USSR, No. 65, Acad. Sci. USSR Publ. House, Moscow–Leningrad, 1935 (in

Russian).

[2] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity.

Fundamental equations, plane theory of elasticity, torsion and bending, Springer Sci-

ence+Business Media Dordrecht, Originally published by Noordhoff International

Publishing in 1977, 1977.

[3] J. Lu, Complex Variable Methods in Plane Elasticity /Series in Pure Mathematics.

Vol. 22/, World Scientific, Singapore, 1995.

[4] S. G. Lekhnitskii, Theory of Elastisity of an Anisotropic Body (Engl. transl. from the

revised 1977 Russian edition), “MIR” Publ., 1981.

[5] P. P. Teodorescu, Treatise on Classical Elasticity Theory and Related Problems

/Mathematical and Analytical Techniques with Applications to Engineering/ (Ed.

A. Jeffrey), Springer, Berlin, 2010.

[6] S. G. Lekhnitskii, Anisotropic Plates (Engl. transl. from the 2nd Russ. edition by

S. W. Tsai, T. Cheron), Gordon and Breach, New York, 1984.

Institute of Mathematics

National Academy of Sciences of Ukraine

Tereshchenkivska str. 3, UA-01004, Kyiv

Ukraine

E-mail: serhii.gryshchuk@gmail.com

Presented by Julian  Lawrynowicz at the Session of the Mathematical-Physical Com-
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O PEWNYCH PRZYPADKACH P LASKIEJ ORTHOTROPII

S t r e s z c z e n i e
Rozpatrywane sa̧ pewne przypadki p laskiej orthotropii przy za lożeniu braku oddzia-

 lywania si l cia la. Wówczas każda funkcja z pary rozwia̧zań uk ladu równowagi równań ze
wzglȩdu na przemieszczenia spe lnia równanie eliptyczne czwartego rzȩdu typu:

(
α1

∂4

∂x4
+ α2

∂4

∂x2∂y2
+

∂4

∂y4

)
w(x, y) = 0,

z pewnymi rzeczywistymi sta lymi αk 6= 0, k = 1, 2.

S lowa kluczowe: uogólnione prawo Hooke’a, orthotropia p laska, uk lad równowagi
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Summary

Problems related to the determination of the minimal number of balls that generate a

shadow at a fixed point in the multi-dimensional Euclidean space Rn are considered in the

present work. Here, the statement ”a system of balls generate shadow at a point” means that

any line passing through the point intersects at least one ball of the system. The minimal

number of pairwise-disjoint balls with equal radii in Rn which do not contain a fixed point

of the space and generate shadow at the point is indicated in the work.

Keywords and phrases: convex set, problem of shadow, system of balls, sphere, multi-

dimensional real Euclidean space

1. Introduction

In 1982 G. Khudaiberganov [1] proposed the problem of shadow.

Let us consider n-dimensional real Euclidean space Rn and an open (closed) ball

B(x0, r) ⊂ Rn with radius r and center x as the set of all points of distance less than

(less than or equal to) r away from x ([2]). It is also called an n-dimensional ball. A

set of all points in Rn of the same distance is a sphere Sn−1 ([2]).

Let x be a fixed point in the real multi-dimensional Euclidean space Rn. We say

that a system of balls {Bi : i ∈ N} ⊂ Rn not containing x generates a shadow at

this point if any straight line passing through x intersects at least one ball of the

system. So, the problem of shadow can be formulated as follows: To find the minimal

[77]
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number of pairwise disjoint, open (closed) balls in Rn centered on a sphere Sn−1, not

containing the sphere center, and generating shadow at the sphere center.

This problem was solved by G. Khudaiberganov for the case n = 2: it was proved

that two balls are sufficient for a circumference on the plane. For all that, it was also

made the assumption that for the case n > 2 the minimal number of such balls is

exactly equal to n.

Twenty years passed and Yu. Zelinskii became interested in this problem. In [3],

he and his students proved that three balls are not sufficient for the case n = 3,

but it is possible to generate a shadow at the center of a sphere with four balls. In

their work it is also proved that for the general case the minimal number is n + 1

balls, so the complete answer to this problem for a collection of closed and open balls

was obtained. Thus, G. Khudaiberganov’s assumption was wrong. In [3], it is also

proposed another method of solving the problem for the case n = 2 which gives some

numerical estimates.

Since 2015, a group of mathematicians leading by Yu. Zelinskii has been working

on a series of problems similar to the problem of shadow and their generalizations in

the Institute of Mathematics of the National Academy of Sciences of Ukraine. In [4],

[5], [9] one can find the review of problems and their solutions related to the problem

of shadow. One of these problems is the following:

Problem 1. ([6]) Let x be a fixed point of the space Rn, n ≥ 2. What is the minimal

number m(n) of pairwise disjoint, open (closed) balls with equal radii in Rn not

containing x and generating shadow at x?

It is not difficult to show that the minimal number of the balls in the plane is

two. In [6], an example of four pairwise disjoint, open (closed) balls with equal radii

in space R3 not containing a fixed point of the space and generating shadow at this

point is constructed. In [7] it is proved that non three of such balls in R3 generate

shadow at a fixed point of space. Thus, Problem 1 is solved for space R3, and the

answer is m(3) = 4.

Moreover, in [6] it is proved that there does not exist a system of pairwise disjoint,

open (closed) balls with equal radii in space R3 centered on a fixed sphere, not

containing the sphere center, and generating shadow at the sphere center.

In the present work, Problem 1 is solved as n ≥ 3. The following section holds

auxiliary results concerning the problem.

The author expresses gratitude to her teacher Professor Yurii Zelinskii for the

setting of interesting problems and maintaining author’s interest in mathematics

through scientific discussions and advices. This work is dedicated to the memory of

Professor Yurii Zelinskii.



On system of balls with equal radii generating shadow 79

2. Auxiliary results

The results of this section are formulated as lemmas since they are auxiliary within

the scope of this paper.

As it was mentioned in the Introduction, the following lemma is true.

Lemma 1. ([7]) Let n = 3; then m(n) = 4 for any fixed point x ∈ R3.

In [8] a shadow problem for a system of balls with centers freely placed in Rn

without restrictions on their radii is considered. So, the following lemma gives lower

estimate for the number of non-overlapping balls that do not contain a fixed point

in the space and generate shadow at this point.

Lemma 2. ([8]) The minimal number of open (closed) non-overlapping balls not

containing a fixed point in the space Rn, n ≥ 2, and generating shadow at this point

is equal to n.

The following lemma will be frequently used.

Lemma 3. ([9]) Let two open (closed) non-overlapping balls {Bi = B(ri) : i =

1, 2} ⊂ Rn with centers on a sphere Sn−1(r) and with radii r1, r2 such that r >

r1 ≥ r2 be given. Then every ball homothetic to B1 relative to the sphere center with

coefficient of homothety k1 does not intersect every ball homothetic to B2 relative to

the sphere center with coefficient of homothety k2, if k1 ≤ k2.

In [3], the following example of system of n+1 balls in Rn satisfying the conditions

of Khudaiberganov’s shadow problem is given.

Example 1. ([3]) Suppose a is the half-length of the edge of an n-dimensional

regular simplex (see [2]). Let us consider a system of n + 1 open balls {Bi : i =

1, . . . n+ 1} ⊂ Rn with correspondent radii r1 = a+ ε, r2 = a− ε/2, r3 = a− ε/22,

r4 = a− ε/23, . . ., rn+1 = a− ε/2n, where ε is sufficiently small. Let us place centers

of the balls at the vertexes of a simplex such that the balls touch each other. This

simplex is slightly different from the regular one and can be inscribed into a sphere.

Thus, the system of open balls generate shadow at the sphere center. Let us consider

the closures of the balls {Bi : i = 1, . . . n+1}. If we slightly reduce these closed balls,

then new system of closed balls generates shadow at the sphere center by continuity.

Using Example 1, in [10] an example of system of n+ 1 balls in Rn satisfying the

conditions of Problem 1 is built as follows.

Let us fix a point x ∈ Rn and let us consider open (closed) balls {Bi : i = 1, . . . n+

1}, of Example 1, placed on the sphere with the sphere center at x. Let us apply

homothety to each open (closed) ball Bi with respective coefficient of homothety

ki = r1/ri, i = 1, . . . n + 1. Then k1 < . . . < ki < ki+1 < . . . < kn+1 and the

obtained system consists of n+1 balls with the same radii that are equal to r1. Since

r1 > . . . > ri > ri+1 > . . . > rn+1, new balls are pairwise disjoint by Lemma 3,
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do not contain x and generate shadow at x by the constructions. So, the following

lemma is true.

Lemma 4. ([10]) Let n ≥ 2; then m(n) ≤ n+ 1 for any fixed point x ∈ Rn.

3. Main results

We need the following definitions for this section.

Any m-dimensional affine subspace of the space Rn, m < n, is called an m-

dimensional plane. An (n− 1)-dimensional plane is called a hyperplane.

Theorem 1. Let n ≥ 3; then m(n) > n for any fixed point x ∈ Rn.

Proof. The case as n = 3 holds by Lemma 1. Let us prove this theorem for n > 3

using the method of mathematical induction. We consider the space R4 with points

x = (x1, x2, x3, x4). Let us fix a point x0 ∈ R4. By Lemma 2, the number of non-

overlapping, open (closed) balls generating shadow at x is not less than four. Suppose

there exists a system of four non-overlapping four-dimensional open (closed) balls

{Bi(r, a
i) : i = 1, 4} with the same radii equal to r which does not contain point x0

and generates shadow at x0 (see Fig. 1).

Fig. 1

Then let us draw a three-dimensional plane H (hyperplane) through the point

x and the centers of balls B1, B2, B3. Without loss of generality, we can choose

a coordinate system such that H is the coordinate hyperplane x4 = 0. Then open

(closed) balls Bi, i = 1, 2, 3, can be described as follows:

Bi :=
{
x ∈ R4 : (x1 − ai1)2 + (x2 − ai2)2 + (x3 − ai3)2 + x24 < r2

}
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(
Bi :=

{
x ∈ R4 : (x1 − ai1)2 + (x2 − ai2)2 + (x3 − ai3)2 + x24 ≤ r2

})
,

for i = 1, 3. The intersection of hyperplane H and balls B1, B2, B3 gives three-

dimensional balls with the same radii that are equal to r. By Lemma 1 none three

non-overlapping open (closed) balls with equal radii in space R3 generate shadow at

point x0. Thus, there exists a straight line L (1-dimensional plain) in hyperplane H

passing through x0 and not intersecting any of the three-dimensional balls. Without

loss of generality, suppose L coincides with the coordinate axis x1, i.e

L :=



x ∈ R4 :





x2 = 0,

x3 = 0,

x4 = 0.





Then L ∩Bi = ∅, i = 1, 3, i.e

Bi : (x1 − ai1)2 ≥ r2 − ai2 − ai3, i = 1, 3
(
Bi : (x1 − ai1)2 > r2 − ai2 − ai3, i = 1, 3

)
.

We claim that the two-dimensional plane

P :=

{
x ∈ R4 :

{
x2 = 0,

x3 = 0

}

does not intersect any of the initial four-dimensional balls B1, B2, B3. Indeed,

Bi : (x1 − ai1)2 + x24 ≥ (x1 − ai1)2 ≥ r2 − ai2 − ai3, i = 1, 3.
(
Bi : (x1 − ai1)2 + x24 ≥ (x1 − ai1)2 > r2 − ai2 − ai3, i = 1, 3

)
.

The intersection P ∩B4 is a disk. By Lemma 2, one disk does not generate shadow at

x0 in the two-dimensional plane P . Thus, in the space R4 four non-overlapping open

(closed) balls with equal radii not containing a point of the space do not generate

shadow at the point.

Suppose none n − 1 non-overlapping, open (closed) balls with equal radii in the

space Rn−1 not containing a fixed point of the space generate shadow at the point.

Let us consider the space Rn, n > 4, and any fixed point x0 ∈ Rn. By Lemma

2, the number of non-overlapping, open (closed) balls generating shadow at x0 is

not less than n. Suppose there exist such n non-overlapping, open (closed) balls

{Bi(r) : i = 1, n} ⊂ Rn with the same radii equal to r that generate shadow at x0.

Then let us draw an (n−1)-dimensional plane H through the point x0 and the centers

of balls B1, . . ., Bn−1. The intersection of the hyperplane H ((n − 1)-dimensional

plane) and balls B1, . . ., Bn−1 gives (n − 1)-dimensional balls with the same radii

that are equal to r. By the assumption these balls do not generate shadow at point

x0 in the hyperplane H. Thus, there exists a straight line L in H passing through x0
and not intersecting any of the (n− 1)-dimensional balls. Then, the two-dimensional

plane P passing through the straight line L perpendicular to the hyperplane H in Rn

does not intersect any of the initial n-dimensional balls B1, . . ., Bn−1. We claim that
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the ball Bn does not overlap the two-dimensional plane P in the space Rn. Indeed,

by Lemma 2, one disk does not generate shadow at x0 in the two-dimensional plane.

Thus, in the space Rn any n non-overlapping, open (closed) balls with equal radii

not containing a fixed point of the space do not generate shadow at the point. �
Combining Lemma 4 and Theorem 1, we get the solution of Problem 1, as n ≥ 3.

Theorem 2. Let n ≥ 3; then m(n) = n+ 1 for any fixed point x ∈ Rn.

Remark 1. Let n = 2; then m(n) = 2 for any fixed point x ∈ R2.

Proof. Let us consider a circle with center at a fixed point of the plane and two

pairwise disjoint, open (closed) disks in the plane with centers on a circle and radii

r1, r2 less than the circle radius generating shadow in the circle center. It is obvious

that r1 6= r2. Let r1 > r2 for definiteness. Let us apply homothety to each ball with

respective coefficient of homothety ki = r1/ri, i = 1, 2. Since k1 < k2, we conclude

that obtained balls are pairwise disjoint by Lemma 3, do not contain the sphere

center and generate shadow at the sphere center by the constructions. The number

of disks is minimal by Lemma 2. �
Remark 2. None n pairwise disjoint, open (closed) balls in Rn centered on a sphere

Sn−1 and not containing the sphere center generate shadow at the sphere center.

Proof. This result particular solves Khudaiberganov’s shadow problem and is a gen-

eralization of well known result for R3 (see [3], [11]). But, since it is not used in the

proof of Theorem 2, we can prove it as follows.

Suppose n pairwise disjoint, open (closed) balls {Bi : i = 1, . . . n} ⊂ Rn centered

on a sphere Sn−1 with radii r1 ≥ . . . ≥ ri ≥ ri+1 ≥ . . . ≥ rn generate shadow at

the sphere center. Let us apply homothety to each ball with respective coefficient

of homothety ki = r1/ri, i = 1, . . . n. Thus, the obtained system consists of n balls

with the same radii that are equal to r1. Since k1 ≤ . . . ≤ ki ≤ ki+1 ≤ . . . ≤ kn, new

balls are pairwise disjoint by Lemma 3, do not contain the sphere center and generate

shadow at the sphere center by the constructions. But this contradicts Theorem 2. �
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CIEŃ W PUNKCIE

S t r e s z c z e n i e
Problemy zwia̧zane z ustaleniem minimalnej liczby kul generuja̧cych cień w ustalonym

punkcie w wielowymiarowej przestrzeni euklidesowej Rn sa̧ rozpatrywane przyjmuja̧c, że
każda prosta przechodza̧ca przez dany punkt przecina jedna̧ z kul uk ladu. Wyznaczona jest
minimalna liczba parami roz la̧cznych kul o równych promieniach w Rn, ktre nie zawieraja̧
ustalonego punktu przestrzeni i generuja̧ cień w tym punkcie.

S lowa kluczowe: zbiór wypuk ly, problem cienia, uk lad kul, sfera, wielowymiarowa przestrzeń
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GENERALIZATION OF THE CONCEPT OF CONVEXITY

IN A HYPERCOMPLEX SPACE

Summary

Extremal elements and a h-hull of sets in the n-dimensional hypercomplex space Hn

are investigated. The class of H-quasiconvex sets including strongly hypercomplexly convex

sets and closed relatively to intersections is introduced. Some results concerning multivalued

functions in the complex space were generalized into the n-dimensional hypercomplex space:

there was proved the hypercomplex analogue of the Fenchel-Moreau theorem and some

properties of functions that are conjugate to functions f : Hn \Θ −→ H.
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1. Introduction

The natural analogue of complex analysis is a hypercomplex analysis. Therefore,

there is a need to transfer a series of results of a convex analysis known in n-

dimensional real and complex spaces, on the n-dimensional hypercomplex space Hn,

n ∈ N , which is a direct product of n-copies of the body of quaternions H [1].

G. Mkrtchyan worked on these problems [2, 3]. He introduced the concepts of hy-

percomplexly convex, strongly hypercomplexly convex sets and transfered a series

of results of linearly convex analysis on hypercomplex space Hn. Yu. Zelinskii [4]

and his students (M. Tkachuk, T. Osipchuk, B. Klishchuk) continued to develop this

direction.

[85]
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Let E ⊂ Hn be an arbitrary set of the space Hn containing the origin of co-

ordinates Θ = (0, 0, . . . , 0). We put x = (x1, x2, . . . , xn), h = (h1, h2, . . . , hn),

〈x, h〉 = x1h1 + x2h2 + · · · + xnhn. The set E∗ = {h|〈x, h〉 6= 1, ∀x ∈ E} is called

the conjugate set to the set E [2].

A hyperplane is called a set L ⊂ Hn that satisfies one of the conditions 〈x, a〉 = w,

〈x − x0, a〉 = 0, where x is an arbitrary point of the set L, x0 is a fixed vector, w

is a fixed scalar with H, and a is a fixed covector. We call the covector a a normal.

Accordingly, affine we will call only the functions of the species l(x) = 〈x, a〉 + b,

b ∈ H.

Definition 1 [2]. The set E ⊂ Hn is called a hypercomplexly convex if for any point

x0 ∈ Hn \E there exists a hyperplane that passes through the point x0 and does not

intersect E.

Definition 2 [2]. The set E ⊂ Hn is called a strongly hypercomplexly convex if

its arbitrary intersection with the hypercomplex straight line γ is acyclic, that is

H̃i(γ∩E) = 0, ∀i ≥ 0, where H̃i(γ∩E) is a consolidated group of Aleksandrov-Cech

cohomology sets γ ∩ E with coefficients in the set of integers.

2. Extremal elements

Let E ⊂ H be an arbitrary set. The complement to the union of the unbounded

components of the set H \ E is called the h-combination of the points of the set E

and is denoted by [E]. If E is an arbitrary set in the space Hn, n > 1, then we say

that the point x belongs to the h-combination of points from E if there exists an

intersection of the set E with a hypercomplex straight line γ such that x ∈ [E∩γ]. The

set of such points with Hn is called the h-combination of the points E and denoted

[E]; the m-multiple h-combination is determined by the induction [E]m = [[E]m−1]

[4].

Definition 3 [2]. The set Ê = ∩ππ−1[π(E)] is called the h-hull of the set E ⊂ Hn,

where π : Hn −→ λ — all possible linear projections of the set on the hypercom-

plex straight lines, [π(E)] is the h-combination of the points of the set π(E), and

π−1[π(E)] = {x ∈ Hn| π(x) ∈ π(E)} is its complete preimage.

The following theorem [5] asserts that for an arbitrary set of the space Hn the

set of points of its h-hull coincides with the h-combination of the points of this set.

Theorem 1. If the set E ⊂ Hn is an h-hull, then E = [E].

Proof. Let x ∈ [λ ∩ E] for some hypercomplex plane λ. Then, the inclusion π(x) ∈
[π(λ∩E)] for all projections π is obviously true, since the restriction of any projection

π to each straight line is either homeomorphism or projection into a point. �
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Definition 4 [2]. The h-interval with center at the point x of radius r is the inter-

section of an open ball of radius r with center at the point x with a hypercomplex

straight line, which passes through the point x.

Definition 5 [2]. A point x ∈ E ⊂ Hn is called the h-extremal point of the set E if

E has no h-intervals containing x.

We extend the Klee’s theorem of a convex analysis [6] to a hypercomplex case.

Definition 6 [5]. The h-ray is called a closed unbounded acyclic subset of a hyper-

complex straight line with a non-empty boundary.

Definition 7 [5]. The extremal h-ray of the set E ⊂ Hn is called the h-ray H

belonging to the set E if the set E \ H is hypercomplexly convex and each point

of the boundary of the ray H will be an h-extremal point for the set E. (This is

equivalent to that no point of the ray H will be internal to the arbitrary h-interval

that belongs to the set E and has at least one point outside H).

For the set E ⊂ Hn we denote: hextE is the set of its h-extremal points, rhextE

is the set of h-extremal rays, hconvE is the h-hull of the set E.

Lemma 1. Let E ⊂ Hn be a closed strongly hypercomplexly convex body (intE 6= ∅)
with a non-empty strongly hypercomplexly convex boundary ∂E, then E has the form

E = E1 × Hn−1, where E1 is an acyclic subset of straight line H with non-empty

interior relative to this straight line.

Proof. Since the boundary ∂E is strongly hypercomplexly convex, then for an arbi-

trary point x ∈ intE there exists a hyperplane that does not intersect ∂E. Therefore,

the set E contains a hyperplane. Consequently, by theorem 3 [4], the set E can be

depicted in the form of Cartesian product E = E1 × Hn−1. The set E1 will be

acyclic, because there are intersections E be hypercomplex straight lines that are

homeomorphic to E1. �

Definition 8. An affine subset L is called a tangent to the set E if L ∩ E ⊂ ∂E,

L ∩ E 6= ∅.

Lemma 2. If E ⊂ Hn is a strongly hypercomplexly convex closed set and L is its

tangent hypercomplex straight line, then hext(E ∩ L) = (hextE) ∩ L.

Proof. Since the inclusion of sets E ∩ L ⊂ E is fair, then by the definition of h-

extremal points we have hext(E ∩ L) ⊃ (hextE) ∩ L. Let x ∈ hext(E ∩ L). Then,

inclusion x ∈ [K] \ K, where K ⊂ E, can not be performed, because otherwise

K ⊂ E ∩ L (since x ∈ L and L is a hypercomplex straight line, tangent to E). This

contradicts the fact that x ∈ hext(E ∩ L). Consequently, the inverse inclusion of

hext(E ∩ L) ⊂ (hextE) ∩ L is correct and the lemma is proved. �
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Remark 1. Analogically, we can prove the equality rhext(E ∩ L) = (rhextE) ∩ L
for h-extremal rays.

Theorem 2. Each closed strongly hypercomplexly convex set E ⊂ Hn, which does

not contain a hypercomplex straight line, will be the h-hull of its h-extremal points

and h-extremal rays E = hconv(hextE ∪ rhextE).

Proof. The proof is carried out by induction according to the hypercomplex dimen-

sion of the set E. For dimHE = 0 and dimHE = 1, the theorem is obvious. Assume

that the theorem is valid for all hypercomplex dimensions of the set E, which are

less than m (1 < m ≤ n). Let us prove it for dimHE = m.

By the condition of the theorem, the set E does not contain a hypercomplex

straight line, therefore it can not coincide neither with its affine hull, nor with the

Cartesian product E1×Hn−1. Therefore, it follows from lemma 1 that the non-empty

boundary ∂E will not be strongly hypercomplexly convex set.

By the definition of a strong hypercomplex convexity, the intersection of the set

E with an arbitrary hypercomplex straight line will also be strongly hypercomplexly

convex. Let x be an arbitrary point of the set E. If x belongs to a certain tangent

straight line L to E, then by the hypothesis of induction we have the inclusion

x ∈ hconv((hextE ∩ L) ∪ rhext(E ∩ L)).

If there are points of the set E, through which there is no hypercomplex straight line

tangent to E, then there is a point x ∈ intE.

In this case, we draw a hypercomplex straight line l through the point x. The

intersection of l ∩ E is a strongly hypercomplexly convex set and does not coincide

with l. Therefore, x /∈ [∂(l ∩E)]. Now let y be an arbitrary point of the boundary of

intersection ∂(l∩E). Taking into account the strong hypercomplex convexity through

the point y, one can draw a straight line T tangent to the set E. By the hypothesis of

induction, we obtain y ∈ hconv((hextE∩T )∪rhext(E∩T )). We note that this is fair

for every point y ∈ ∂(l∩E). Then, taking into account the lemma 2 and the remark

1, we obtain x ∈ hconv(hextE∪ rhextE). As a result of arbitrariness of choice of the

point x we obtain the inclusion E ⊂ hconv(hextE ∪ rhextE). The inverse inclusion

is trivial. The theorem is proved. �

3. H-quasiconvex sets

The class of strongly hypercomplexly convex sets is non-closed relatively to the inter-

section [3]. Therefore, the main axiom of the convexity is not fulfilled: the intersection

of any number of convex sets must be convex. We denote the class of sets, which

includes strongly hypercomplexly convex sets and is closed relatively to intersections.

Definition 9 [5]. A hypercomplexly convex set E ⊂ Hn is called H-quasiconvex set
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if its intersection with an arbitrary hypercomplex straight line γ does not contain a

three-dimensional cocycle, i.e. H3(γ ∩ E) = 0.

It is obvious that the class of H-quasiconvex sets includes a strongly hypercom-

plexly convex domains and compacts.

Let us show the closure of a class of H-quasiconvex sets in the sense that the

intersection of an arbitrary family of compact H-quasiconvex sets will be an H-

quasiconvex set.

Theorem 3. The intersection of an arbitrary family of H-quasiconvex compacts will

be an H-quasiconvex compact.

Proof. It is enough to do the proof for two compacts. Let K1, K2 be two arbitrary

H-quasiconvex compacts, γ is an arbitrary hypercomplex straight line that intersects

the set K1 ∩K2. We use the exact cohomological sequence of Mayer-Vietoris [7]

H3(γ ∩K1)⊕H3(γ ∩K2)→
→ H3(γ ∩K1 ∩K2)→ H4(γ ∩ (K1 ∪K2)).

Since the compacts K1 and K2 are H-quasiconvex, then H3(γ ∩ K1) = 0 and

H3(γ ∩K2) = 0. Therefore

H3(γ ∩K1)⊕H3(γ ∩K2) = 0.

On the other hand, a compact intersection

γ ∩ (K1 ∪K2) = (γ ∩K1) ∪ (γ ∩K2)

can not hold the entire hypercomplex straight line γ, which is a four-dimensional

real manifold, therefore H4(γ ∩ (K1 ∪K2)) = 0.

From the accuracy of the cohomological sequence it follows thatH3(γ∩K1∩K2) =

0. This is equivalent to the assertion, that the intersection of the set K1∩K2 with an

arbitrary hypercomplex straight line does not contain a three-dimensional cocycle.

From the previous follows the H-quasiconvexity of the compact K1∩K2. The theorem

is proved. �

4. Linearly convex functions

Definition 10 [8]. The function f : Hn −→ H is called multivalued if the image of

the point x ∈ Hn is a set of f(x) ∈ H.

The domain of definition of such a function will be denoted by Ef := {x ∈ Hn :

y ∈ H, y = f(x)}.
Definition 11. The function l : Hn −→ H is called affine if its graph is a hyperplane.

Definition 12 [8, 9]. A multivalued function f : Hn −→ H is called a linearly convex

if there exists an affine function l : Hn −→ H for an arbitrary pair of points (x0, y0) ∈
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(Hn ×H) \ Γ(f) such that y0 = l(x0) and Γ(l) ∩ Γ(f) = ∅ for all x ∈ Hn, where the

graphs of functions l and f , respectively, are denoted by Γ(l) and Γ(f).

Definition 13. A linearly concave function is called a multivalued function f for

which the function ϕ = H \ f is linearly convex.

This means that Hn+1 \Γ(f) is a graph of a linearly convex function, i.e. through

each point (x0, y0) ∈ Γ(f) the graph of the affine function passes, which is completely

contained in Γ(f).

Definition 14 [8, 9]. A multivalued affine function is called a function that is linearly

convex and linearly concave simultaneously, and for which there is at least one point

x ∈ Hn, in which each of the sets (f(x) ∩H) and (H \ f(x)) is non-empty.

The definition of a linearly convex function can be extended to multivalued func-

tions that take values in an expanded hypercomplex plane Ho = H∪(∞), compacted

by one point.

Here are some examples of linearly convex functions.

Definition 15. A function

WE(y) = Ho \ ∪x∈E〈x, y〉

is called the reference function of the set E ⊂ Hn.

Definition 16. If E ⊂ Hn is a linearly convex set, then the function

δE(x) =

{
0, if x ∈ E,

∞, if x /∈ E,

is called its indicator function.

It is easy to verify that the reference and indicator functions are linearly convex.

Theorem 5. If fα, α ∈ A, is a family of linearly convex functions, where A is an

arbitrary set of indices, then the function f = ∩α∈Afα is linearly convex.

Proof. We have Γ(f) = ∩α∈AΓ(fα). Let us take an arbitrary point

(x0, y0) ∈ (Hn ×H) \ Γ(f) = (Hn ×H) \ ∩α∈AΓ(fα).

Then

(x0, y0) ∈ (Hn ×H) \ Γ(fα)

for some α, and therefore there is an affine function l : Hn −→ H whose graph does

not intersect Γ(fα). Therefore, it does not intersect Γ(f). Consequently, the function

f is linearly convex. The theorem is proved. �
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5. Conjugate functions

Definition 17. A function conjugated to f is called a function given by the equality

f∗(y) = Ho \ ∪x(〈x, y〉 − f(x)). (1)

From the definition of conjugate function follows a hypercomplex analogue of

Jung-Fenhel’s inequality [10]:

〈x, y〉 /∈ f(x) + f∗(y). (2)

The correlation (2) can be rewritten in the form

〈x, y〉 ∈ H \ (f(x) + f∗(y)),

or

f(x) ∩ (〈x, y〉 − f∗(y)) = ∅
with all x ∈ Hn, y ∈ Hn.

We find a function conjugate to a function f∗:

f∗∗(x) = (f∗)∗(x) = Ho \ ∪y(〈x, y〉 − f∗(y)).

Example 1. Conjugate with a multivalued affine function f(x) = 〈x, y0〉 + f(Θ),

where f(Θ) ⊂ H is the set which is the image of the point Θ = (0, 0, ..., 0) ∈ Hn, is

the function

f∗(y) = Ho \ ∪x(〈x, y〉 − 〈x, y0〉 − f(Θ)) = Ho \ ∪x(〈x, y − y0〉 − f(Θ)) =

=

{
Ho \ (−f(Θ)), if y = y0,

∞, if y 6= y0.

Example 2. Let E ⊂ Hn, Hn \ E 6= ∅, f(x) = δE(x). Then

f∗(y) = Ho \ ∪x(〈x, y〉 − δE(x)) = Ho \ ∪x⊂E〈x, y〉,
that is, conjugate with the indicator function of its own subset E will be the reference

function of this set.

Theorem 6. For each multivalued function f : Hn −→ H the inclusion f ⊂ f∗∗ is

valid.

Proof. Let us take an arbitrary pair of points

x = (x1, . . . , xn) ∈ Hn, y = (y1, . . . , yn) ∈ Hn.

We obtain from the inequality 2

〈x, y〉 − f∗(y) ∩ f(x) = ∅, 〈x, y〉 − f∗(y) ⊂ Ho \ f(x),

i.e.

Ho \ (〈x, y〉 − f∗(y)) ⊃ f(x).
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Taking in the last inclusion the intersection of all y ∈ Hn, we will obtain such

inclusions

∩y[Ho \ (〈x, y〉 − f∗(y))] ⊃ f(x),

Ho \ ∪y(〈x, y〉 − f∗(y)) ⊃ f(x), f ⊂ f∗∗.
The theorem is proved. �
Definition 18. A multivalued function f : Hn −→ H is called an open (respectively,

closed or compact) function when its graph is open (respectively, closed or compact)

set in Hn+1.

Theorem 7. Let f : Hn −→ H be a multivalued function. Then the function f∗

conjugate to it is linearly convex. If f is open then f∗ is closed.

Proof. The value of the conjugate function can be written as

f∗(y) = ∩x(Ho \ (〈x, y〉 − f(x))).

For a fixed x the function y 7→ Ho \ (〈x, y〉 − f(x)) is a multivalued affine function

in y, and therefore it can be presented in the form

y 7→ 〈x, y〉+ [H0 \ (−f(x))]. (3)

The function f∗ is the intersection of linearly convex functions of the form (3), and

hence by the Theorem 5 f∗ is a linearly convex function. Moreover, if f is open, then

each of the functions (3) is closed, and therefore f∗ is also closed. The theorem is

proved. �
The following theorem is a hypercomplex analogue of the Fenhel-Moro theorem.

Theorem 8. Let the multivalued function f : Hn −→ H be such that H \ f(x) 6= ∅
for all x ∈ Hn. Then f∗∗ = f if and only if when f is linearly convex.

Proof. We shall show that the equality f∗∗ = f is equivalent to the linear convexity

of the function f .

If f∗∗ = f , then, according to the Theorem 7, a function conjugate to an arbitrary

function will be linearly convex. If f(Hn) ≡ ∞, then the equality f∗∗ = f is obtained

from formulas 1 and 2. We have f∗(y) = H for all y ∈ Hn∗ and f∗∗ = ∞. Since

f ⊂ f∗∗ by Theorem 6, it suffices to show that the inverse inclusion f ⊇ f∗∗ is valid

for a linearly convex function.

Let there be inequality f(x0) 6= f∗∗(x0) at some point x0. Then there is an affine

function l(x) = 〈x, y0〉 + α, such that Γ(l) ∩ Γ(f) = ∅ and w0 = 〈x0, y0〉 + α, where

w0 ∈ f∗∗(x0) \ f(x0). Then

f∗(y0) = Ho \ ∪x(〈x, y0〉 − f(x)) = ∩x[Ho \ (〈x, y0〉 − f(x))] ) (−α),

because [〈x, y0〉−f(x)] 6= −α for all x ∈ Hn. For the function f∗∗ valid is an inclusion

f∗∗(x0) = ∩y[Ho \ (〈x0, y〉 − f∗(y))] ⊂
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⊂ Ho \ (〈x0, y0〉 − f∗(y0)) ⊂ Ho \ (〈x0, y0〉+ α) = Ho \ w0.

Therefore, w0 /∈ f∗∗(x0), which contradicts the choice of the point w0 ∈ f∗∗(x0) \
f(x0). The theorem is proved. �
Definition 19. Let fα : Hn −→ H, α ∈ A, be multivalued functions. The func-

tion (∪αfα)(x) := ∪αfα(x) we call the union of functions fα, and the function

(∩αfα)(x) := ∩αfα(x) we call their intersection.

For the conjugate functions, there is the theorem of duality.

Theorem 9. Let fα : Hn −→ H, α ∈ A, be multivalued functions. Then equality holds

(∪αfα)∗ = ∩αf∗α.

Proof. From expression 1 we obtain for conjugate functions

(∪αfα)∗(y) = Ho \ ∪x(〈x, y〉 − ∪αfα(x)) =

= Ho \ ∪x ∪α (〈x, y〉 − fα(x)) = Ho \ ∪α ∪x (〈x, y〉 − fα(x)) =

= ∩α(Ho \ ∪x(〈x, y〉 − fα(x))) = ∩αf∗α(y).

The theorem is proved. �
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UOGÓLNIENIE IDEI WYPUK LOŚCI NA PRZESTRZENIE

HIPERZESPOLONE

S t r e s z c z e n i e
Badamy ekstremalne elementy i h-otoczki zbiorów z n-wymiarowej przestrzeni hiperze-

spolonej Hn. Wprowadzana jest klasa zbiorów H-quasi-wypuk lych w la̧czaja̧c zbiory silnie
hiperzespolenie wypuk le, domkniȩte w odniesieniu do przeciȩć. Pewne wyniki dotycza̧ce
funkcji wielowartościowych w przestrzeniach zespolonych sa̧ uogólnione na przestrzenie
hiperzespolone. Dotyczy to twierdzenia Fenchela-Moreau i pewnych w lasności funkcji sprzȩ-
żonych do funkcji f : Hn \Θ −→ H.

S lowa kluczowe: zbiór hiperzespolenie wypuk ly, h-otoczka zbioru, punkt h-ekstremalny,

zbiór H-guasi-wypuk ly, funkcja liniowo wypuk la, funkcja sprzȩżona
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THE SCHWARZ TYPE INEQUALITY FOR HARMONIC

FUNCTIONS OF THE UNIT DISC SATISFYING

A SECTORIAL CONDITION

Summary

Let T1, T2 and T3 be closed arcs contained in the unit circle T with the same length 2π/3

and covering T. In the paper [3] D. Partyka and J. Zaja̧c obtained the sharp estimation of

the module |F (z)| for z ∈ D where D is the unit disc and F is a complex-valued harmonic

function of D into itself satisfying the following sectorial condition: For each k ∈ {1, 2, 3}
and for almost every z ∈ Tk the radial limit of the function F at the point z belongs to

the angular sector determined by the convex hull spanned by the origin and arc Tk. In this

article a more general situation is considered where the three arcs are replaced by a finite

collection T1, T2, . . . , Tn of closed arcs contained in T with positive length, total length 2π

and covering T.

Keywords and phrases: harmonic functions, Harmonic mappings, Poisson integral, Schwarz

Lemma

1. Introduction

Throughout the paper we always assume that all topological notions and operations

are understood in the complex plane E(C) := (C, ρe), where ρe is the standard

euclidean metric. We will use the notations cl(A) and fr(A) for the closure and

boundary of a set A ⊂ C in E(C), respectively. By Har(Ω) we denote the class of

all complex-valued harmonic functions in a domain Ω, i.e., the class of all twice

[95]
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continuously differentiable functions F in Ω satisfying the Laplace equation

∂2F (z)

∂x2
+
∂2F (z)

∂y2
= 0, z = x+ iy ∈ Ω.

The sets D := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1} are the unit disc and

unit circle, respectively. The standard measure of a Lebesgue measurable set A ⊂ T
will be denoted by |A|1. In particular, if A is an arc then |A|1 means its length. Set

Zp,q := {k ∈ Z : p ≤ k ≤ q} for any p, q ∈ Z.

Definition 1.1. For every n ∈ N a sequence Z1,n 3 k 7→ Tk ⊂ T is said to be a

partition of the unit circle provided Tk is a closed arc of length |Tk|1 > 0 for k ∈ Z1,n

as well as
n⋃

k=1

Tk = T and

n∑

k=1

|Tk|1 = 2π. (1.1)

For any function F : D→ C and z ∈ T we define the set F ∗∗(z) of all w ∈ C such

that there exists a sequence N 3 n 7→ rn ∈ [0; 1) satisfying the equalities

lim
n→+∞

rn = 1 and lim
n→+∞

F (rnz) = w.

Definition 1.2. By the sectorial boundary normalization given by a partition Z1,n 3
k 7→ Tk ⊂ T of the unit circle we mean the class N (T1, T2, . . . , Tn) of all functions

F : D→ D such that for every k ∈ Z1,n and almost every (a.e. in abbr.) z ∈ Tk,

F ∗∗(z) ⊂ Dk := {ru : 0 ≤ r ≤ 1 , u ∈ Tk} = conv(Tk ∪ {0}). (1.2)

Given n ∈ N and a partition Z1,n 3 k 7→ Tk ⊂ T of the unit circle we will study

the Schwarz type inequality for the class

F := Har(D) ∩N (T1, T2, . . . , Tn).

If n ≤ 2 then we have a trivial sharp estimation |F (z)| ≤ 1 for F ∈ F and z ∈ D,

where the equality is attained for a constant function. Therefore, from now on we

always assume that n ≥ 3.

In Section 2 we prove a few useful properties of the class F . Most essential

here is Theorem 2.3. We use it to show in Section 3 Theorem 3.1, which is our

main result. Then we apply the last theorem in specific cases; cf. Examples 3.4 and

3.5. In particular, we derive the estimation (3.13), obtained by D. Partyka and J.

Zaja̧c in [3, Corollary 2.2]. Thus the estimation (3.1), valid for an arbitrary partition

of T, generalizes the one (3.13), which holds only in the case where n = 3 and

the arcs T1, T2 and T3 have the same length. Note that the estimation (3.12) is a

directional improvement of the radial one (3.13). In Example 3.5 we study a general

case of an arbitrary partition of the unit circle. As a result, we derive reasonable

estimations (3.23) and (3.24), which depend on the largest length among the ones

|Tk|1 for k ∈ Z1,n.
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2. Auxiliary results

Let P[f ] stand for the Poisson integral of an integrable function f : T → C, i.e.,

P[f ] : D→ C is the function given by the following formula

P[f ](z) :=
1

2π

∫

T
f(u)

1− |z|2
|u− z|2 |du| =

1

2π

∫

T
f(u) Re

u+ z

u− z |du|, z ∈ D. (2.1)

The Poisson integral provides the unique solution to the Dirichlet problem in the

unit disc D provided that the boundary function f is continuous. It means that P[f ]

is a harmonic function in D, which has a continuous extension to the closed disc cl(D)

and its boundary values function coincides with f . For any function F : D → C we

define the radial limit function of F by the formula

T 3 z 7→ F ∗(z) :=





lim
r→1−

F (rz), if the limit exists,

0, otherwise.

Since a real-valued harmonic and bounded function in D has the radial limit for a.e.

point of T (see e.g. [2, Cor. 1, Sect. 1.2]), it follows that F ∗ = (ReF )∗ + i(ImF )∗

almost everywhere on T provided F ∈ Har(D) is bounded in D. Therefore,

F ∗∗(z) = {F ∗(z)} for every F ∈ F and a.e. z ∈ T. (2.2)

In particular, for each function F : D → D, F ∈ F if and only if F ∈ Har(D) and

F ∗(z) ∈ Dk for k ∈ Z1,n and a.e. z ∈ Tk. From the property (2.2) it follows that for

each F ∈ F the sequence N 3 m 7→ fm, where

T 3 u 7→ fm(u) := F ((1− 1
m )u), m ∈ N,

is convergent to F ∗ almost everywhere on T. Then applying the dominated conver-

gence theorem we see that for every z ∈ D,

F ((1− 1
m )z) = P[fm](z)→ P[F ∗](z) as m→ +∞,

which yields

F = P[F ∗], F ∈ F . (2.3)

Let χI be the characteristic function of a set I ∈ T, i.e., χI(t) := 1 for t ∈ I and
χ
I(t) := 0 for t ∈ T \ I.

Lemma 2.1. For all F ∈ F and z ∈ D there exists a sequence Z1,n 3 k 7→ ck ∈ Dk

such that the following equality holds

F (z) =
n∑

k=1

ck P[χTk ](z). (2.4)

Proof. Fix F ∈ F and z ∈ D. Since |Tk|1 > 0 for k ∈ Z1,n, it follows that

0 < pk := P[χTk ](z) < 1, k ∈ Z1,n. (2.5)
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By (1.2) each sector Dk, k ∈ Z1,n, is closed and convex. Moreover, from (1.2) and

(2.2) we see that F ∗(z) ∈ Dk for k ∈ Z1,n and a.e. z ∈ Tk. Then applying the integral

mean value theorem for complex-valued functions we deduce from (2.5) that

ck := P
[ 1

pk
· F ∗ · χTk

]
(z) ∈ Dk, k ∈ Z1,n.

Hence and by (2.3),

F (z) = P[F ∗](z) = P
[ n∑

k=1

F ∗ · χTk
]
(z) =

n∑

k=1

P
[
F ∗ · χTk

]
(z)

=
n∑

k=1

pk P
[ 1

pk
· F ∗ · χTk

]
(z) =

n∑

k=1

pkck,

which implies the equality (2.4). �

Lemma 2.2. For every sequence Z1,n 3 k 7→ ck ∈ Dk,

F :=
n∑

k=1

ck P[χTk ] ∈ F . (2.6)

Proof. Given a sequence Z1,n 3 k 7→ ck ∈ Dk consider the function F defined by

the formula (2.6). Since P[χTk ] ∈ Har(D) for k ∈ Z1,n, we see that F ∈ Har(D).

Furthermore, for each z ∈ D,
n∑

k=1

P[χTk ](z) = P
[ n∑

k=1

χ
Tk

]
(z) = P[χT](z) = 1,

whence

|F (z)| ≤
n∑

k=1

|ck|P[χTk ](z) ≤
n∑

k=1

P[χTk ](z) = 1.

By the definition of the function F we have

F ∗(z) =

n∑

k=1

ckχTk(z), z ∈ T \ E, (2.7)

where E is the set of all u ∈ T such that u is an endpoint of a certain arc among the

arcs Tk for k ∈ Z1,n.

Assume that |F (z0)| = 1 for some z0 ∈ D. By the maximum modulus principle

for complex-valued harmonic functions (cf. [1, Corollary 1.11, p. 8]) there exists

w ∈ T such that F (z) = w for z ∈ D, and so F ∗(z) = w for z ∈ T. By (2.7),

F ∗(z) = ck for k ∈ Z1,n and z ∈ Tk \E. Therefore w = ck ∈ Dk for k ∈ Z1,n, and so

w ∈ D1 ∩D2 ∩D3 = {0}. Hence w = 0, which contradicts the equality |w| = 1. Thus

F (z) < 1 for z ∈ D, and so F : D → D. Furthermore, from (2.7) it follows that for

all k ∈ Z1,n and z ∈ Tk \ E, F ∗(z) = ck ∈ Dk. Thus F ∈ N (T1, T2, . . . , Tn), which

implies (2.6). �
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Theorem 2.3. For every compact set K ⊂ D there exist a sequence Z1,n 3 k 7→
ck ∈ Dk and zK ∈ fr(K) such that

FK :=
n∑

k=1

ck P[χTk ] ∈ F (2.8)

and

|F (z)| ≤ |FK(zK)| =
∣∣∣
n∑

k=1

ck P[χTk ](zK)
∣∣∣, F ∈ F , z ∈ K. (2.9)

In particular,

max({|F (z)| : F ∈ F , z ∈ K}) = |FK(zK)|. (2.10)

Proof. Fix a compact set K ⊂ D. Since F (K) ⊂ F (D) ⊂ D for F ∈ F ,

MK := sup({|F (z)| : F ∈ F , z ∈ K}) ≤ 1. (2.11)

Hence, there exist sequences N 3 m 7→ Fm ∈ F and N 3 m 7→ zm ∈ K such that

lim
m→+∞

|Fm(zm)| = MK . (2.12)

From Lemma 2.1 it follows that for each m ∈ N there exists a sequence Z1,n 3 k 7→
cm,k ∈ Dk such that

Fm(zm) =
n∑

k=1

cm,k P[χTk ](zm). (2.13)

Since the set Dk is compact for k ∈ Z1,n we see, using the standard technique of

choosing a convergent subsequence from a sequence in a compact set, that there

exists an increasing sequence N 3 l 7→ ml ∈ N, a sequence Z1,n 3 k 7→ ck ∈ Dk and

z′K ∈ K such that

cml,k → ck as l→ +∞ for k ∈ Z1,n (2.14)

and

zml → z′K as l→ +∞. (2.15)

By Lemma 2.2, the property (2.8) holds. From (2.13) we conclude that for every

m ∈ N,

|FK(zm)− Fm(zm)| =
∣∣∣
n∑

k=1

ck P[χTk ](zm)−
n∑

k=1

cm,k P[χTk ](zm)
∣∣∣

≤
n∑

k=1

|ck − cm,k|P[χTk ](zm)

≤
n∑

k=1

|ck − cm,k|,

which together with (2.14) leads to

lim
l→+∞

|FK(zml)− Fml(zml)| = 0. (2.16)
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Since |ck| ≤ 1 for k ∈ Z1,n, it follows that

|FK(z′K)− FK(zm)| ≤
∣∣∣
n∑

k=1

ck P[χTk ](z′K)−
n∑

k=1

ck P[χTk ](zm)
∣∣∣

≤
n∑

k=1

|ck| · |P[χTk ](z′K)− P[χTk ](zm)|

≤
n∑

k=1

|P[χTk ](z′K)− P[χTk ](zm)|, m ∈ N.

This together with (2.15) yields

lim
l→+∞

|FK(z′K)− FK(zml)| = 0. (2.17)

Since for every l ∈ N,

|FK(z′K)− Fml(zml)| ≤ |FK(z′K)− FK(zml)|+ |FK(zml)− Fml(zml)|,
we deduce from (2.17) and (2.16) that

lim
l→+∞

|Fml(zml)| = |FK(z′K)|.

Hence and by (2.12), |FK(z′K)| = MK . Since FK ∈ Har(D), the maximum modulus

principle for complex-valued harmonic function (cf. [1, Corollary 1.11, p. 8]) implies

that there exists zK ∈ fr(K) such that |FK(z)| ≤ |FK(zK)| for z ∈ K. In particular,

MK = |FK(z′K)| ≤ |FK(zK)|. On the other hand, by (2.8) and (2.11), |FK(zK)| ≤
MK . Eventually, |FK(zK)| = MK . This implies (2.10), and thereby, the inequality

(2.9) holds, which is the desired conclusion. �

3. Estimations

As an application of Theorem 2.3 we shall prove the following result.

Theorem 3.1. For every z ∈ D the following inequality holds

|F (z)| ≤ 1− (n− S)p(z), F ∈ F , (3.1)

where

S := sup
({

Re
(
u

n∑

k=1

vk

)
: u ∈ T , Z1,n 3 k 7→ vk ∈ Dk

})
(3.2)

and

p(z) := min({P[χTk ](z) : k ∈ Z1,n}). (3.3)

Proof. It is clear that K := {z} is a compact set for a given z ∈ D. By Theorem 2.3

there exists a sequence Z1,n 3 k 7→ ck ∈ Dk such that

FK :=
n∑

k=1

ck P[χTk ] ∈ F
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and

|F (z)| ≤ |FK(z)|, F ∈ F . (3.4)

Setting u := FK(z)/|FK(z)| if FK(z) 6= 0 and u := 1 if FK(z) = 0, we see that u ∈ T
and FK(z) = u|FK(z)|. Hence

|FK(z)| = uFK(z) = Re(uFK(z)) = Re
(
u

n∑

k=1

ckpk

)
=

n∑

k=1

Re(uck)pk, (3.5)

where pk := P[χTk ](z) for k ∈ Z1,n. Since

n∑

k=1

pk = 1 and Re(uck) ≤M := max({Re(ucl) : l ∈ Z1,n}) ≤ 1, k ∈ Z1,n,

we deduce from the formula (3.3) that
n∑

k=1

Re(uck)pk =

n∑

k=1

(Re(uck)−M +M)pk

= M
n∑

k=1

pk +
n∑

k=1

(Re(uck)−M)pk

≤M
n∑

k=1

pk +
n∑

k=1

(Re(uck)−M)p(z)

= M

n∑

k=1

(pk − p(z)) + p(z)

n∑

k=1

Re(uck)

≤
n∑

k=1

(pk − p(z)) + p(z)
n∑

k=1

Re(uck)

= 1− np(z) + p(z)

n∑

k=1

Re(uck).

This together with (3.5) and (3.2) yields

|FK(z)| ≤ 1− np(z) + p(z)
n∑

k=1

Re(uck)

≤ 1− np(z) + p(z)S

= 1− (n− S)p(z).

Hence and by (3.4) we obtain the estimation (3.1), which proves the theorem. �

The estimation (3.1) is useful provided we can estimate p(z) from below and S

from above. The first task is easy and depends on the following quantity

δ :=
1

2
min({|Tk|1 : k ∈ Z1,n}). (3.6)
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Lemma 3.2. For every α ∈ (0;π/2] the following estimation holds

P[χIα ](z) ≥ P[χIα ](|z|) =
2

π
arctan

(
sin(α)

|z|+ cos(α)

)
− α

π
, z ∈ D, (3.7)

where Iα := {eit : |t− π| ≤ α}.
Proof. Given α ∈ (0;π/2] we see that e1 := ei(π−α) = −e−iα and e2 := ei(π+α) = −eiα

are the endpoints of the arc Iα. Let z ∈ D be arbitrarily fixed. Since Iα ⊂ Ωz :=

C \ {z + t : t > 0}, the function Ωz 3 ζ 7→ log(z − ζ) is holomorphic and

d

dt
log(z − eit) =

ieit

eit − z , t ∈ [π − α;π + α].

Here we understand the function log as the inverse of the function exp|Ω, where

Ω := {ζ ∈ C : | Im ζ| < π}. By (2.1) we have

P[χIα ](z) =
1

2π

∫

T
χ
Iα(u) Re

u+ z

u− z |du|

=
1

2π

∫ π+α

π−α
Re

eit + z

eit − zdt

=
1

2π

∫ π+α

π−α
Re
( 2eit

eit − z − 1
)

dt

=
1

π

∫ π+α

π−α
Im
( ieit

eit − z
)

dt− α

π

=
1

π

∫ π+α

π−α
Im

d

dt
log(z − eit)dt− α

π

=
1

π
Im
[
log(z − e2)− log(z − e1)

]
− α

π
.

Therefore, for an arbitrarily fixed r ∈ [0; 1),

P[χIα ](reiθ) =
1

π
Im
[
log(reiθ + eiα)− log(reiθ + e−iα)

]
− α

π
, θ ∈ R. (3.8)

Consequently,

d

dθ
P[χIα ](reiθ) =

1

π
Im
[ ireiθ

reiθ + eiα
− ireiθ

reiθ + e−iα

]

=
r

π
Im
[ ieiθ(−eiα + e−iα)

(reiθ + eiα)(reiθ + e−iα)

]

=
2r sin(α)

π

Im[eiθ(re−iθ + e−iα)(re−iθ + eiα)]

|reiθ + eiα|2|reiθ + e−iα|2

=
2r sin(α)

π

Im[r2e−iθ + re−iα + reiα + eiθ]

|reiθ + eiα|2|reiθ + e−iα|2

=
2r(1− r2) sin(α) sin(θ)

π|reiθ + eiα|2|reiθ + e−iα|2 , θ ∈ R.
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Combining this with (3.8) we derive the estimation (3.7), which proves the lemma. �
Corollary 3.3. The following estimation holds

p(z) ≥ P[χIδ ](|z|) =
2

π
arctan

(
sin(δ)

|z|+ cos(δ)

)
− δ

π
, z ∈ D, (3.9)

where p(z) and δ are defined by the formulas (3.3) and (3.6), respectively.

Proof. Let Z1,n 3 k 7→ ak ∈ T be the sequence of midpoints of the partition Z1,n 3
k 7→ Tk ⊂ T, i.e.,

Tk := {akeit : |t| ≤ αk}, (3.10)

where αk := 1
2 |Tk|1 for k ∈ Z1,n. Hence and by (3.6) we obtain Iδ ⊂ Iαk for k ∈ Z1,n,

where Iα := {eit : |t− π| ≤ α} for α ∈ (0;π]. Then applying the formula (2.1) we see

that for an arbitrarily fixed z ∈ D,

P[χIαk ](|z|) = P[χIδ ](|z|) + P[χIαk\Iδ ](|z|) ≥ P[χIδ ](|z|), k ∈ Z1,n.

Therefore

min({P[χIαk ](|z|) : k ∈ Z1,n}) = P[χIδ ](|z|), (3.11)

because δ = αk′ for some k′ ∈ Z1,n. Fix k ∈ Z1,n. Using the rotation mapping

C 3 ζ 7→ ϕ(ζ) := −a−1
k ζ we have ϕ(Tk) = Iαk . Then integrating by substitution we

deduce from the formula (2.1) that

P[χTk ](z) = P[χϕ(Tk)](ϕ(z)) = P[χIαk ](ϕ(z)).

On the other hand, by Lemma 3.2,

P[χIαk ](ϕ(z)) ≥ P[χIαk ](|ϕ(z)|) = P[χIαk ](|z|).
Thus

P[χTk ](z) ≥ P[χIαk ](|z|), k ∈ Z1,n.

Combining this with (3.3) and (3.11) we derive the estimation (3.9), which completes

the proof. �
A more difficult problem is to estimate from above the quantity S given by the

formula (3.2). It will be studied elsewhere. Now we present two examples.

Example 3.4. Suppose that Z1,3 3 k 7→ Tk ⊂ T is a partition of T such that

|T1|1 = |T2|1 = |T3|1. As in the proof of [3, Theorem 2.1] we can show that S ≤ 2.

Hence and by Theorem 3.1 we obtain

|F (z)| ≤ 1− p(z) = 1−min({P[χTk ](z) : k ∈ Z1,3}), F ∈ F , z ∈ D. (3.12)

Corollary 3.3 now implies the estimation

|F (z)| ≤ 4

3
− 2

π
arctan

( √
3

1 + 2|z|

)
, F ∈ F , z ∈ D; (3.13)

cf. [3, Corollary 2.2]. Therefore, the estimation (3.12) is a directional type enhance-

ment of the radial one (3.13) for the class F .
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Example 3.5. Suppose that Z1,n 3 k 7→ Tk ⊂ T is a partition of T such that

∆ := max({|Tk|1 : k ∈ Z1,n}) ≤
π

2
. (3.14)

Then

N := Ent
( π

2∆

)
≥ 1. (3.15)

Fix u ∈ T and a sequence Z1,n 3 k 7→ vk ∈ Dk. There exist a bijective function σ

of the set Z1,n onto itself and an increasing sequence Z1,n 3 k 7→ αk ∈ R such that

αn = 2π + α0, u ∈ Tσ(1) and

Tσ(k) = {eit : αk−1 ≤ t ≤ αk}, k ∈ Z1,n.

Hence there exist θ ∈ [α0;α1] and a sequence Z1,n 3 k 7→ (rk, θk) ∈ [0; 1] × R such

that u = eiθ, vk = rkeiθk for k ∈ Z1,n and

αk−1 ≤ θσ(k) ≤ αk, k ∈ Z1,n. (3.16)

Since for each k ∈ Z1,n,

Re(uvk) = Re
(
rkeiθke−iθ

)
= Re

(
rkei(θk−θ)

)
= rk cos(θk − θ),

we conclude that

Re(uvk) ≤ max({0 , cos(θk − θ)}), k ∈ Z1,n. (3.17)

From (3.14) it follows that

αj − αi =

j∑

l=i+1

(αl − αl−1) ≤ (j − i)∆, i, j ∈ Z0,n , i < j. (3.18)

Setting

p := min({k ∈ Z1,n : αk ≥
π

2
+ θ}) and q := max({k ∈ Z1,n : αk <

3π

2
+ θ})

we conclude from (3.15) and (3.18) that

N∆ ≤ π

2
≤ αp − θ ≤ αp − α0 ≤ p∆

as well as

N∆ ≤ π

2
= αq +

π

2
− αq < 2π + θ − αq ≤ αn − αq + α1 − α0 ≤ (n− q + 1)∆.

Therefore N ≤ p and q+N ≤ n. Given k ∈ Z1,n the following four cases can appear.

If p+ 1−N ≤ k ≤ p then by (3.16) and (3.18),

π

2
+ θ − θσ(k) ≤ αp − αk−1 ≤ (p+ 1− k)∆ ≤ N∆ ≤ π

2

as well as

π

2
+ θ − θσ(k) > αp−1 − αp ≥ −∆ ≥ −π

2
,
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which gives

cos(θσ(k) − θ) = sin(π/2 + θ − θσ(k)) ≤ sin((p+ 1− k)∆).

Hence and by (3.17) we obtain

Re(uvσ(k)) ≤ sin((p+ 1− k)∆), k ∈ Zp+1−N,p . (3.19)

If p+ 1 ≤ k ≤ q then by (3.16),

π

2
+ θ ≤ αk−1 ≤ θσ(k) ≤ αk <

3π

2
+ θ,

and so cos(θσ(k) − θ) ≤ 0. This together with (3.17) leads to

Re(uvσ(k)) ≤ 0, k ∈ Zp+1,q . (3.20)

If q + 1 ≤ k ≤ q +N then by (3.16) and (3.18),

θσ(k) −
3π

2
− θ ≤ αk −

3π

2
− θ < αk − αq ≤ (k − q)∆ ≤ N∆ ≤ π

2

as well as

θσ(k) −
3π

2
− θ ≥ αq − αq+1 ≥ −∆ ≥ −π

2
,

and consequently,

cos(θσ(k) − θ) = sin(θσ(k) − 3π/2− θ) ≤ sin((k − q)∆).

Hence and by (3.17) we obtain

Re(uvσ(k)) ≤ sin((k − q)∆), k ∈ Zq+1,q+N . (3.21)

If 1 ≤ k ≤ p−N or q+N + 1 ≤ k ≤ n, then clearly Re(uvσ(k)) ≤ 1. Combining this

with (3.19), (3.20) and (3.21) we see that

n∑

k=1

Re(uvσ(k)) ≤
p∑

k=p+1−N
sin((p+ 1− k)∆) +

q+N∑

k=q+1

sin((k − q)∆) (3.22)

+ (p−N) + (n− q −N)

= 2
N∑

k=1

sin(k∆) + n− 2N − (q − p).

Since π < αq+1 − αp−1 ≤ (q − p+ 2)∆, we deduce from (3.15) that 2N ≤ q − p+ 1.

Combining this with (3.22) we get

n∑

k=1

Re(uvσ(k)) ≤ 2
N∑

k=1

sin(k∆) + n− 2N − (2N − 1)

= n+ 1− 4N + 2
sin
( (N+1)∆

2

)
sin
(
N∆

2

)

sin
(

∆
2

) .
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Hence and by (3.2),

S ≤ n+ 1− 4N + 2
sin
( (N+1)∆

2

)
sin
(
N∆

2

)

sin
(

∆
2

) .

Theorem 3.1 now shows that

|F (z)| ≤ 1−
(

4N − 1− 2
sin
( (N+1)∆

2

)
sin
(
N∆

2

)

sin
(

∆
2

)
)
p(z), F ∈ F , z ∈ D, (3.23)

where N and p(z) are defined by (3.15) and (3.3), respectively. Applying now Corol-

lary 3.3 we derive from (3.23) the following estimation of radial type

|F (z)| ≤ 1−
(

4N − 1− 2
sin
( (N+1)∆

2

)
sin
(
N∆

2

)

sin
(

∆
2

)
)

P[χIδ ](|z|),

F ∈ F , z ∈ D, (3.24)

where δ is given by the formula (3.6).
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Presented by Zbigniew Jakubowski at the Session of the Mathematical-Physical Com-

mission of the  Lódź Society of Sciences and Arts on April 16, 2018.

NIERÓWNOŚCI TYPU SCHWARZA DLA FUNKCJI

HARMONICZNYCH W KOLE JEDNOSTKOWYM SPE lNIAJA̧CYCH

PEWIEN WARUNEK SEKTOROWY

S t r e s z c z e n i e
Niech T1, T2 i T3 bȩda̧  lukami domkniȩtymi, zawartymi w okrȩgu jednostkowym T, o

tej samej dlugości 2π/3 i pokrywaja̧cymi T. W pracy [3] D. Partyka and J. Zaja̧c otrzymali
dok ladne oszacowanie modu lu |F (z)| dla z ∈ D, gdzie D jest ko lem jednostkowym, zaś F jest
funkcja̧ harmoniczna̧ o wartościach zespolonych ko la D w siebie, spe lniaja̧cych nastȩpuja̧cy
warunek sektorowy: dla każdego k ∈ {1, 2, 3} i prawie każdego z ∈ Tk granica radialna
funkcji F w punkcie z należy do sektora ka̧towego bȩda̧cego otoczka̧ wypuk la̧ zbioru {0} ∪
Tk. W tym artykule rozważamy ogólniejszy przypadek, gdzie trzy  luki sa̧ zasta̧pione przez
skończony uk lad  luków domkniȩtych T1, T2, . . . , Tn zawartych w T, o dodatniej d lugości,
ca lkowitej d lugości 2π i pokrywaja̧cych T.

S lowa kluczowe: ca lka Poissona, funkcje harmoniczne, lemat Schwarza, odwzorowania har-

moniczne
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Summary

It is observed that quinary and senary structures like in pentacene and several other

polymers may be composed from binary and ternary structures in the sense of differential-

equational and geometrical description. In the case of pentacene its leaves are attached to

the silicon background and have the form of five connected carbon-hydrogen hexagons; in

total they do not form the precisely planar structure but a slightly wavy structure which

minimizes total energy. In the case of a quinary structure the leaves form solitary, nearly

periodical zigzags and meanders.

Keywords and phrases: finite-dimensional algebras, associative rings and algebras, binary

physical structure, ternary physical structure, quinary physical structure, senary physical

structure, pentacene, polymer

Contents and introduction

1. Quinary and senary structures in pentacene and several other polymers

2. The role of total energy maxima for the infrared and Raman activity energy

spectra

3. Decomposition of a quinary structure to binary structures

4. Decomposition of a senary structure to ternary structures

[109]
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5. Slightly wavy behaviour of the system of hexagons in a pentacene leaf

6. Zigzag or meander soliton behaviour of a twisted structure of pentagons in a

pentacene leaf. The sine-like case

7. An analogue of a pentacene structure in the cosine-like case

8. Pentacene as a foliated manifold with a soliton behaviour of leaves

This paper in some sense is a continuation of the paper [3] by E. Z. Fra̧tczak,

J.  Lawrynowicz, M. Nowak-Kȩpczyk, H. Polatoglou, L. Wojtczak and [7] by J.

 Lawrynowicz, M. Nowak-Kȩpczyk, and O. Suzuki.

1. Quinary and senary structures in pentacene
and several other polymers

When looking at formulae for chromophore P in the elongated form (A, B) and

the cyclic form (C, D): A,C – Pr, B,D–Pfr, where Pr and Pfr are red-absorbing

(infra-red-absorbing) forms of phytochrome, respectively (Fig. 1, cf. [1, 2, 6, 10]) we

can see a quinary structure together with a senary structure.

In the case of pentacene in the usual form C22H14 (Fig. 2) where C stands for the

carbon atom, H for hydrogen atom, a thin film of pentacene forms almost co-planar

leaves consisting of five pentagons with each pair having one side of the vertices of

hexagons in common, attached as the whole structure to the silicone SiO2 substrate.

An example of a quinary structure in principle possible for pentacene is shown in

Fig. 3. There are two basic forms of position of pentacene leaves with respect to

substrate, as shown in the figure.

2. The role of total energy maxima for the infrared and Raman
activity energy spectra

When changing the wave number we meet two sharp energy maxima (Fig. 4) which

may serve for the corresponding nanomolecule as the nanomotor where the origi-

nal energy structure is changed to a quinary structure (cf. J. -P. Sauvage, Sir J.

Fraser Stoddart, and B. L. Feringa [11]), more precisely, for a structure of leaves

corresponding to Fig. 3.

Looking more carefully, when changing the wave number in both infrared and

Raman activity energy spectra (Figs 5 and 6) we meet again two sharp maxima which

may serve for the corresponding nanomolecule as nanomotors where the original

senary structure has changed into a quinary structure according to the formulae [3]:

xC22H14 + zH2 ↔ yCξHη, (1)

where x, y, ξ, η are positive integers and z is an integer.
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Fig. 1. Structural formula for chromophore P.

More precisely, in the case of leaves consisting of six pentagons, with help of the

urn model of Gaveau and Schulmann [5] (cf. also [4]) it is possible to calculate the

probability of the occurence of the transformation (1) for definite (ξ, η). For our

calculations we take ξ = 22, η = 16,

c ≡ 11
η

ξ
− 7 = 0. (2)
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Fig. 2. The pentacene molecule C22H14 in the usual form.

3. Decomposition of a quinary structure to binary structures

The carbon atom C has four 3-hands of electrons whereas the hydrogen atom H has

one hand. Therefore the corresponding binary extension leading to a polymer may

be proposed as shown in Fig. 7 (cf. [13]).

4. Decomposition of a senary structure to ternary structures

In analogy to the previous Section the corresponding ternary extension leading to a

polymer may be proposed as shown in Fig. 8.

It is possible (cf. Section 1) to have polymer involving both pentagons and

hexagons, for instance five pentagons and one hexagon with carbon atoms in the

edges. At the moment we are leaving aside the question of composing it from the

binaries only or the ternaries only (cf. [8, 9]).
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Fig. 3. A candidate for the pentacene molecule C22H16 in the form of six pentagons (c.f.
the next Section).

Fig. 4. The total energy (absorbance) maxima.

5. Slightly wavy behaviour of the system of hexagons in a pen-
tacene leaf

The distance between the usual pentacene C22H14 leaves (having five carbon-atomic

hexagons) amount ca. at d ≈1.6 nm. It appears that the leaves of pentacene are not
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Fig. 5. Infrared activity spectrum.

Fig. 6. Raman activity spectrum.

precisely co-planar; they meet optimal global energetic conditions when they have a

slightly wavy behaviour:

Theorem 1. A section of the pentacene C22H14 orthogonal to the silicone SiO2
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Fig. 7. The binary extension type leading to a polymer related to C and H.

Fig. 8. The ternary extension type leading to a polymer related to C and H.

substrate is a sine-like soliton curve with maxima at δ ∈ (0.013 nm; 0.014 nm)

(cf. Figs 2, 8, 9).
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Fig. 9. The pentacene C22H14 molecule leaf with the sine-like soliton sections.

6. Zigzag or meander soliton behaviour of a twisted structure
of pentagons in a pentacene leaf. The sine-like case

In this case again, the distance between the consecutive leaves of the modified pen-

tacene (leaves being six carbon-atomic pentagons) CξHη, in our case C22H16 (Figs 3

and 9) amounts at d=1.6 nm. We suppose that the leaves of pentacene are far from

being co-planar; they meet optimal energetic conditions when they form solitary

zigzags and meanders.

If we concentrate on the sine-like case (Figs 11 and 12) we get:

Theorem 2. A section of the pentacene C22H16 leaf orthogonal to the silicone SiO2

substrate, in the sine-like case is a sine-like soliton curve with maxima at h ∈ (0.139

nm, 0.140 nm) (cf. Figs 3, 9, 10, 11, and 12).
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Fig. 10. Some candidate C22H16 for a pentacene molecule in the form of six pentagons. A
twisted sine-like soliton structure.

Fig. 11. The pentacene molecule structure in the form of six pentagons. Form in the sine
case. The right screw-twisted structure.

Fig. 12. The pentacene molecule structure, the left cosine twisted case.
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7. Zigzag or meander soliton behaviour of a twisted structure
of pentagons in a pentacene leaf. The cosine-like case

In this case again, the distance between the consecutive leaves of the modified pen-

tacene (leaves being carbon atomic pentagons) CξHη, in our case C22H16 (Figs 3

and 10) amounts at d≈1.6 nm. It appears that the leaves on the pentacene are far

from being co-planar: they have optimal global energetic conditions having the form

of soliton zigzags or meanders. We are concentrated on the cosine-like case (Figs 14

nad 15) and arrive at:

Theorem 3. A section of the pentacene C22H16 leaf orthogonal to the silicone SiO2

substrate, in the cosine-like case is a cosine-like soliton curve with maxima at h ∈
(0.139 nm, 0.140 nm) (cf. Figs 3, 11, 14 and 15).

Fig. 13. Some candidate C22H16 for a pentacene molecule in the form of six pentagons.
Another twisted cosine-like structure.

Fig. 14. The pentacene structure in the right-cosine twisted case.
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Fig. 15. The pentacene structure in the left-cosine twisted case.

Fig. 16. A section of the pentacene C22H16 leaf orthogonal to the silicone SiO2 substrate,
in the sine-like twisted case.

Fig. 17. A section of the pentacene C22H16 leaf orthogonal to the silicone SiO2 substrate,
in the cosine-like twisted case.
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8. Conclusions. Pentacene as a foliated manifold with a soliton
behaviour of leaves

Summing up we may consider pentacene, both in the form C22H14 and C22H16

as a foliated manifold with a soliton behaviour. In the senary case the system is

quite close to a system of parallel planes because of considerable difference between

distance d≈1.6nm and the maximal deviation δ=0.013nm of surfaces forming the

system of leaves.

The whole configuration may have several mathematical and physical properties

worth further investigation.
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[7] J.  Lawrynowicz, M. Nowak-Kȩpczyk, and O. Suzuki, Fractals and chaos related to

Ising-Onsager-Zhang lattices vs. the Jordan-von Neumann-Wigner procedures. Qua-

ternary approach, Internat. J. of Bifurcations and Chaos 22, no. 1 (2012), 1230003

(19 pages).

[8] J.  Lawrynowicz, O. Suzuki, and A. Niemczynowicz, On the ternary approach to Clif-

ford structures and Ising lattices, Advances Appl. Clifford Algebras 22, no. 3 (2012),

757–769.

[9] J.  Lawrynowicz, O. Suzuki, and A. Niemczynowicz, Fractals and chaos related

to Ising-Onsager-Zhang lattices vs. the Jordan-von Neumann-Wigner procedures.

Ternary Approach, Internat. J. of Nonlinear Sci. and Numer. Simul. 14, no. 34 (2013),

211–215.



Some geometrical aspects of binary, ternary,. . . , senary structure in physics 121

[10] Y. Nosoch and T. Sekiguchi, Protein Stability and Stabilization Through Protein

Engineering, Ellis Harwood, New York-London-Toronto-Sydney-Singapore 1991.

[11] J. -P. Sauvage, Sir J. Fraser Stoddart, and B. L. Feringa, Nobel Prize Lecture in

Chemistry 2016, Swedish Academy of Sciences, Stockholm 2016, 12pp.

[12] O. Suzuki, Binary and ternary structures in physics I. The hierarchy structure of

Turing machine in physics, Bull. Soc. Sci. Lettres  Lódź Sér. Rech. Déform. 66 no. 2,
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GEOMETRYCZNE ASPEKTY BINARNYCH, TERNARNYCH,

KWATERNARNYCH I SENARNYCH STRUKTUR W FIZYCE

S t r e s z c z e n i e
Obserwujemy, że struktury kwinarne i senarne, zarówno w przypadku pentacenu, jak

i innych polimerów, można utworzyć ze struktur binarnych i senarnych w sensie równań
różniczkowych i opisu geometrycznego. Líscie pentacenu umieszczone na silikonowym pod lo-
żu maja̧ postać piȩciu po la̧czonych wȩglowo-wodorowych sześcioka̧tów; w ca lości nie tworza̧
dok ladnie struktury planarnej lecz lekko faluja̧ca̧, która minimalizuje energiȩ ca lkowita̧. W
przypadku struktury kwinarnej líscie tworza̧ odosobnione, niemal periodyczne zygzaki i
meandry.

S lowa kluczowe: algebry skończenie wymiarowe, pierścienie i algebry  la̧czne, binarne struk-

tury fizyczne, ternarne struktury fizyczne, kwinarne struktury fizyczne, senarne struktury

fizyczne, pentacen, polimer
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[123]



CONTENU DU VOLUME LXVIII, no. 3

1. A. Chojnowska-Michalik and A. Paszkiewicz, On condi-

tionings of tending to zero sequences of random vectors in Ba-

nach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ca. 10 pp.

2. A. Szumera, Probabilistic regression structures . . . . . . . . . . . . . . ca. 14 pp.

3. J. Grzybowski and R. Urbański, Modeling crystal growth:
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