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On the Expressive Power of Collective

Attacks
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b IRIT, Université de Toulouse, CNRS, Toulouse, France

Abstract. In this paper, we consider SETAFs due to Nielsen and Parsons, an exten-

sion of Dung’s abstract argumentation frameworks that allow for collective attacks.

We first provide a comprehensive analysis of the expressiveness of SETAFs un-

der conflict-free, naive, stable, complete, admissible and preferred semantics. Our

analysis shows that SETAFs are strictly more expressive than Dung AFs. Towards

a uniform characterization of SETAFs and Dung AFs we provide general results

on expressiveness which take the maximum degree of the collective attacks into

account. Our results show that, for each k > 0, SETAFs that allow for collective

attacks of k+ 1 arguments are more expressive than SETAFs that only allow for

collective attacks of at most k arguments.
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1. Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung in his seminal pa-

per [2] are a core formalism in formal argumentation and have been extensively studied

in the literature. A popular line of research investigates extensions of Dung AFs that al-

low for a richer syntax (see, e.g. [1]). In this work we consider SETAFs as introduced by

Nielsen and Parsons [5] which generalize the binary attacks in Dung AFs to collective

attacks such that a set of arguments B attacks another argument a but no subset of B

attacks a. The semantics as proposed in [5], make SETAFs a conservative generalization

of Dung AFs in the sense that a SETAF that has only simple attacks is evaluated the same

way as the corresponding Dung AF.

As illustrated in [5], there are several scenarios where arguments interact and can

constitute an attack on another argument only if these arguments are jointly taken into

account. Representing such a situation in Dung AFs often requires additional artificial

arguments that “encode” the conjunction of arguments. This is also observed in a re-

cent comprehensive investigation on translations between different abstract argumenta-

tion formalisms [6]. There, it is shown that SETAFs allow for more straightforward and

compact encodings of support between arguments than AFs do. However, to the best of

our knowledge, there has not been a thorough investigation to which extent the concept

of collective attacks increases the expressiveness of SETAFs compared to Dung AFs.

Characterizations and comparisons of the expressiveness of argumentation for-

malisms (and non-monotonic formalisms in general) have been identified as a fundamen-



tal basis in order to understand the different capabilities of formalisms [3,8,9]. A suc-

cessful notion to compare the expressiveness of argumentation formalisms is the notion

of the signature [3] of a formalism w.r.t. a semantics, that is the collection of all sets of

extensions that can be expressed with at least one argumentation framework. There exist

exact characterizations for most of the semantics for Dung AFs [3] and Abstract Dialec-

tical Frameworks (ADFs) [7,8,9]. As already observed by Polberg [6] collective attacks

allow to enforce certain sets of extensions that cannot be obtained with Dung AFs. How-

ever, there are no characterizations of the signatures for SETAFs and thus the precise

differences in expressiveness to Dung AFs and ADFs are still unclear. In this work we

investigate the signatures of SETAFs for conflict-free, naive, stable, complete, admissi-

ble and preferred semantics. Moreover, we investigate whether the maximum degree of

joint attacks affects the expressiveness of SETAFs.

Contributions. The main contributions of our work are as follows.

• In Section 3 we provide full characterizations of the extension-based signatures

of SETAFs for conflict-free, naive, stable, complete, admissible and preferred

semantics. By that we characterize the exact difference in expressiveness between

Dung AFs and SETAFs when considering extension-based semantics.

• In Section 4 we study k-SETAF where attacks are restricted to at most k arguments

attacking another argument. Our characterizations of signatures for k-SETAFs

for conflict-free, naive, stable, admissible and preferred semantics show that the

degree of the allowed attacks is crucial for the expressiveness. That is, k-SETAFs

form a strict hierarchy of expressiveness when considering different values for k.

Due to the lack of space some proofs are omitted and provided in a full version at

www.dbai.tuwien.ac.at/research/report/dbai-tr-2018-111.pdf.

2. Preliminaries

We first introduce formal definitions of argumentation frameworks following [2,5] and

then recall the relevant work on signatures.

2.1. Argumentation Frameworks with collective attacks

Throughout the paper, we assume a countably infinite domain A of possible arguments.

Definition 1. A SETAF is a pair F = (A,R) where A ⊆ A is finite, and R ⊆ (2A \ /0)×A

is the attack relation. A k-SETAF is a SETAF where for all (S,a) ∈ R we have |S| ≤ k.

The collection of all SETAFs (k-SETAFs) over A is given as AFA (AFk
A

).

We will call 1-SETAFs, i.e. SETAFs that only allow for binary attacks, Dung ar-

gumentation frameworks (AFs) as they are equivalent to the AFs introduced in [2]. We

write S 7→R b if there is a set S′ ⊆ S with (S′,b) ∈ R. Moreover, we write S′ 7→R S if

S′ 7→R b for some b ∈ S. We drop subscript R in 7→R if there is no ambiguity.

Definition 2. Given a SETAF F = (A,R), an argument a ∈ A is defended (in F) by a set

S ⊆ A if for each B ⊆ A, such that B 7→R a, also S 7→R B. A set T of arguments is defended

(in F) by S if each a ∈ T is defended by S (in F).



Next, we introduce the semantics we study in this work. These are the naive, sta-

ble, preferred, complete, and grounded semantics, which we will abbreviate by naive,

stb, pref, com, and grd, respectively. For a given semantics σ , σ(F) denotes the set of

extensions of F under σ .

Definition 3. Given a SETAF F =(A,R), a set S⊆A is conflict-free (in F), if S′∪{a} 6⊆ S

for each (S′,a) ∈ R. We denote the set of all conflict-free sets in F as cf(F). S ∈ cf(F) is

called admissible (in F) if S defends itself. We denote the set of admissible sets in F as

adm(F). For a conflict-free set S ∈ cf(F), we say that

• S ∈ naive(F), if there is no T ∈ cf(F) with T ⊃ S,

• S ∈ stb(F), if S 7→ a for all a ∈ A\S,

• S ∈ pref(F), if S ∈ adm(F) and there is no T ∈ adm(F) such that T ⊃ S,

• S ∈ com(F), if S ∈ adm(F) and a ∈ S for all a ∈ A defended by S,

• S ∈ grd(F), if S =
⋂

T∈com(F) T .

As shown in [5], most of the fundamental properties of Dung AFs extend to SETAFs.

We have the same relations between the semantics, i.e. stb(F) ⊆ pref(F) ⊆ com(F) ⊆
adm(F) ⊆ cf(F) and the grounded extension is the unique minimal complete extension

for any SETAF F . Moreover, Dung’s fundamental lemma generalizes to SETAFs.

Lemma 1 ([5]). Given a SETAF F = (A,R), a set B ⊂ A, and arguments a,b ∈ A that

are defended by B. Then (a) B∪{a} is admissible in F and (b) B∪{a} defends b in F.

The following result is in the spirit of Dung’s fundamental lemma and is used later.

Lemma 2. Given a SETAF F = (A,R) and two sets S,T ⊆ A. If both S and T defend

itself in F, then S∪T defends itself in F.

Proof. Towards a contradiction assume that S∪T does not defend itself, i.e. there exists

a set B ⊆ A with B 7→ (S∪T ) such that (S∪T ) 67→ B. Consider B 7→ S. Since (S∪T ) 67→
B also S 67→ B and thus S does not defend itself in F which is a contradiction to the

assumption. The case where B 7→ T behaves symmetrically.

2.2. Signatures

The concept of signatures of argumentation semantics was introduced in [3] to charac-

terize the expressiveness of Dung AFs and has been extended to other argumentation

frameworks [8,9]. Signatures characterize all possible sets of extensions, argumentation

frameworks can provide for a given semantics.

Definition 4. The SETAF signature Σ
k
σ of a semantics σ is defined as

Σ
k
σ =

{

σ(F) | F ∈ AFk
A

}

.

For unrestricted SETAFs we use Σ
∞
σ = {σ(F) | F ∈ AFA}.

For characterizing the signatures we make frequent use of the following concepts.



Definition 5. Given S ⊆ 2A, we use (a) ArgsS to denote
⋃

S∈S S; (b) dcl(S) to denote

the downward-closure {S′ ⊆ S | S ∈ S} of S; and (c) PAttS to denote the set of potential

conflicts {S ⊆ ArgsS | S 6∈ dcl(S)} in S.

We call S ⊆ 2A an extension-set (over A) if ArgsS is finite. The completion-sets

CS(E) of E ⊆ ArgsS are given by CS(E) = {S ∈ S | E ⊆ S,∄S′ ∈ S,E ⊆ S′ ⊂ S}.

As only extension-sets can appear in the signature of a semantics we will tacitly

assume that all sets S in our characterizations are extension-sets.

Definition 6. Let S⊆ 2A. We call S

• downward-closed if S= dcl(S);
• incomparable if all elements S ∈ S are pairwise incomparable, i.e. for each S,S′ ∈

S, S ⊆ S′ implies S = S′;

• tight if for all S ∈ S and a ∈ ArgsS it holds that if S∪{a} /∈ S then there exists an

s ∈ S such that {a,s} ∈ PAttS;

• conflict-sensitive if for each A,B ∈ S such that A∪ B /∈ S it holds that ∃a,b ∈
A∪B : {a,b} ∈ PAttS;

• com-closed if for each T⊆ S: if {a,b} 6∈ PAttS for each a,b ∈ ArgsT, then ArgsT
has a unique completion-set in S , i.e. |CS(ArgsT)|= 1.

The main results for Dung AFs are summarized in the following theorem.

Theorem 1 ([3]). Characterizations of the signatures for Dung AFs are as follows:

• Σ
1
cf = {S 6= /0 | S is downward-closed and tight}

• Σ
1
naive = {S 6= /0 | S is incomparable and dcl(S) is tight}

• Σ
1
stb = {S | S is incomparable and tight}

• Σ
1
adm = {S 6= /0 | S is conflict-sensitive and contains /0}

• Σ
1
pref = {S 6= /0 | S is incomparable and conflict-sensitive}

• Σ
1
com ⊆ {S 6= /0 | S is com-closed and

⋂

S ∈ S}

3. Signatures of SETAFs with unrestricted collective attacks

In this section we give full characterizations of the SETAF signatures for the semantics

under consideration. We start with the signatures of stable and preferred semantics. For

both semantics we have that an extension cannot be a subset of another extension and thus

the extension-sets of these semantics are incomparable. With the following construction

we show that, in turn, each incomparable extension-set S can be realized under stable

and preferred semantics.

Definition 7. Given an incomparable extension-set S containing at least one non-empty

set we define the SETAF Fstb
S = (ArgsS,R

stb
S ) with Rstb

S = {(S,a) | S ∈ S,a ∈ ArgsS \S}.

Theorem 2. We have Σ
∞

stb = {S | S is incomparable} and Σ
∞

pref = Σ
∞

stb \{ /0}.

Proof Sketch (for stable). First, as stb(F) ⊆ pref(F) and the latter is incomparable by

definition we have that also stb(F) is incomparable for any SETAF F .

For S= /0 we can just consider the SETAF F/0 = ({a},{({a},a)}) with stb(F/0) = /0.

For S = { /0} we can just consider the empty SETAF F{ /0} = ({},{}) with stb(F{ /0}) =



{ /0}. Given an incomparable set S containing at least one non-empty set we, show that

stb(Fstb
S ) = S. stb(Fstb

S ) ⊇ S: Consider S ∈ S. For each a ∈ ArgsS \ S we have S 7→ a

by construction. Moreover, as S is incomparable the set S is conflict-free and thus S ∈
stb(Fstb

S ). stb(Fstb
S ) ⊆ S: Consider S ⊆ ArgsS,S 6∈ S. First, if there is an E ∈ S such that

E ⊂ S then for each argument a ∈ S \E we have E 7→ a in Fstb
S and thus S attacks itself.

Hence, such an S is not stable. Alternatively, if there is no E ∈ S such that E ⊆ S then (a)

S does not attack any argument and (b) there is an argument a ∈ E that is not contained

in S. Hence, S is not stable in Fstb
S .

By the above characterizations we can see that SETAFs are strictly more expressible

than AFs for preferred and stable semantics. While for AFs we require the extension-

set S to be tight in order to be realizable under stb and conflict-sensitive to be realizable

under pref, we can realize any extension-set S that is just incomparable with SETAFs.

We borrow an example from [6,8] to illustrate this difference in expressiveness.

Example 1. Consider the extension-set S= {{a,b},{b,c},{a,c}}. As S is neither tight

nor conflict-sensitive there is no AF F with stb(F) = S or pref(F) = S [3]. Now con-

sider the SETAF G = ({a,b,c},(({a,b},c),({a,c},b),({b,c},a)). It is easy to verify

that stb(G) = pref(G) = S. ♦

Remark 1. Interestingly Σ
∞

stb coincides with the stable signature for bipolar abstract di-

alectical frameworks (BADF) [8, Thm. 22]. That is, although BADFs allow for strictly

more notions of attacks and even allows for support it does not provide more expressive-

ness than SETAFs when using stable semantics. It is worth to mention that when real-

izing an extension-set with the construction of [8, Thm. 22] one obtains a BADF whose

acceptance conditions are all anti-monotonic, i.e., when the condition holds for a model

S ⊆ A then it holds for each model S′ ⊂ S as well, and one can show that such an BADF

can always be transformed into an equivalent SETAF.

We next consider conflict-free and naive semantics. The characteristics of conflict-

free sets is that each subset is again conflict-free. We will show that this property of being

downward-closed is also sufficient to realize an extension-set with a SETAF.

Definition 8. Given a non-empty extension-set S we define the SETAF F
cf
S =(ArgsS,R

cf
S )

with R
cf
S = {(S,a) | S ∈ S, a ∈ ArgsS, S∪{a} ∈ PAttS}.

Lemma 3. For each extension-set S we have cf(Fcf
S ) = dcl(S).

With the above result we obtain characterizations for the signatures of cf and naive.

Theorem 3. We have Σ
∞

cf = {S 6= /0 | S is downward-closed} and Σ
∞

naive = {S 6= /0 |
S is incomparable}.

In contrast, for realization with AFs and cf we require S to be tight and downward-

closed and for naive we require that S is incomparable and that dcl(S) is tight.

Example 2. Consider the extension-set S = { /0,{a},{b},{c},{a,b},{b,c},{a,c}}. As

S is not tight there is no AF F with cf(F) = S. Now consider the SETAF G =
({a,b,c},(({a,b},c),({a,c},b),({b,c},a)). It is easy to verify that cf(G) = S. ♦



In order the characterize the signature of admissible semantics in SETAFs we first

generalize the notion of an extension-set being conflict-sensitive to SETAFs. That is,

instead of requiring that if two sets A,B in the extension-set S whose union A∪B does not

appear in S allow for a binary conflict, we now only require that they allow for conflicts

(A,b), (B,a) with a ∈ A,b ∈ B.

Definition 9. A set S ⊆ 2A is called set-conflict-sensitive if for each A,B ∈ S such that

A∪B /∈ S it holds that ∃b ∈ B : A∪{b} ∈ PAttS. Furthermore, S is said to be union-closed

if /0 ∈ S and each pair A,B ∈ S satisfies A∪ B ∈ S. Let us also denote by ucl(S) the

⊆-minimal union-closed extension-set such that S⊆ ucl(S).

By Lemma 2, we have that all extension-sets realizable with the admissible seman-

tics are set-conflict-sensitive.

Lemma 4. For any SETAF F, adm(F) is set-conflict-sensitive and contains /0.

Furthermore, it turns out that S being set-conflict-sensitive (and containing the

empty set) is also sufficient for being realizable in SETAFs under admissible semantics.

The following two propositions give us some hint how to prove this claim: we reuse the

conflict-free framework of Definition 8 and combine it with a framework that realizes

the union-closure of the extension-set.

Proposition 1. Let S be a set-conflict-sensitive extension-set that contains /0. Then, we

have that S= dcl(S)∩ucl(S).

Proposition 2. Let F1 = (A1,R1) and F2 = (A2,R2) be two argumentation frameworks

and let S ⊆ (A1 ∩A2) be a set of arguments. Then, (1) S is conflict-free w.r.t. F1 ∪F2 =
(A1 ∪A2,R1 ∪R2) iff S is conflict-free w.r.t. both F1 and F2; and (2) if S is admissible

w.r.t. both F1 and F2, then S is admissible w.r.t. F1 ∪F2 = (A1 ∪A2,R1 ∪R2).

The next two lemmas analyze the SETAF Fcf w.r.t. admissible semantics.

Lemma 5. Let S be a set-conflict-sensitive extension-set that contains /0 and S ⊆ ArgsS
be some set of arguments such that S =

⋃

T for some subset T ⊆ S. Then, we have that

S ∈ cf(Fcf
S ) implies S ∈ S.

Lemma 6. Let S be a set-conflict-sensitive extension-set that contains /0. Then, we have

that S⊆ dcl(S)⊆ adm(Fcf
S ).

Finally, we expand F
cf
S by additional arguments and attacks that ensure that only sets

S ∈ S are admissible in the resulting SETAF Fadm
S . In particular, for each argument a we

add an argument xa that attacks a and itself, and is only attacked by sets S ∈ S.

Definition 10. Given an extension S set we define Fucl
S = (Aucl

S ,Rucl
S ) with Aucl

S = ArgsS∪
{xa | a∈ArgsS} and Rucl

S = {({xa},a) | a∈ArgsS}∪{({xa},xa) | a∈ArgsS}∪{(S,{xa}) |

S ∈ S and a ∈ S}. We then define Fadm
S = (Aadm

S ,Radm
S ) = (Fcf

S ∪Fucl
S ).

With the following lemma we show that Fucl
S can realize ucl(S).

Lemma 7. For every extension-set S that is set-conflict-sensitive and contains /0, we have

that ucl(S)⊆ adm(Fucl
S ).



Next we combine the results for the SETAFs F
cf
S , Fucl

S to obtain that their union Fadm
S

realizes admissible extension-sets S.

Lemma 8. For every extension-set S that is set-conflict-sensitive and contains /0, we have

that adm(Fadm
S ) = S.

Proof. From Proposition 1, we have that S = dcl(S)∩ ucl(S). Then, from Lemmas 6

and 7, we get that S ⊆ adm(Fcf
S )∩ adm(Fucl

S ). Furthermore, from Proposition 2, this

implies that S⊆ adm(Fadm
S ).

Let us show that adm(Fadm) ⊆ S also holds. Pick any A ∈ adm(Fadm). Then, for every

argument a ∈ A (there is an attack ({xa},a) ∈ Radm and, so) there must be an attack

(Ta,{xa}) ∈ Radm with Ta ⊆ A. Furthermore, by construction, we also have that Ta ∈ S
and a ∈ Ta. Let T = {Ta ⊆ A | a ∈ A} ⊆ S and C =

⋃

T. Then, we have that that C = A

and, from Lemma 5 and the fact that A ∈ adm(Fadm
S ) ⊆ cf(Fadm

S ) ⊆ cf(Fcf
S ), it follows

that, A ∈ S.

Now we can give an exact characterization of Σ
∞

adm.

Theorem 4. Σ
∞

adm = {S 6= /0 | S is set-conflict-sensitive and contains /0}.

AFs require that an extension-set S is conflict-sensitive in order to be realizable

under admissible semantics. Being set-conflict-sensitive is a strictly weaker condition as

illustrated in the following example.

Example 3. Consider the extension-set S = { /0,{a,b},{b,c},{a,c}}. As {a,b,c} 6∈ S
but {a,b},{b,c},∈ S and both {a,c} 6∈ PAttS and {b,c} 6∈ PAttS the set S is not conflict-

sensitive. Thus, there is no AF F with adm(F) = S. Now consider the SETAF G =
({a,b,c},(({a,b},c),({a,c},b),({b,c},a)). It is easy to verify that adm(G) = S. ♦

Note also that the converse of Proposition 1 does not hold and that satisfying S =
dcl(S)∩ ucl(S) is a necessary, but not a sufficient condition. The following example

illustrates this fact.

Example 4. Consider the extension-set S= { /0,{a},{a,b},{b,c},{a,c}}. Then, we

have that dcl(S) = S∪{{b},{c}} and ucl(S) = S∪{{a,b,c}}. It is easy to see that

S= dcl(S)∩ucl(S), but that S is not set-conflict-sensitive: pick A = {a} and B = {b,c}.

Hence, S does not belong to the signature of the admissible semantics. ♦

Finally, we consider the signature of complete semantics. First, recall that the

completion-sets CS(E) of a set E ⊆ ArgsS are the ⊆-minimal sets S ∈ S with E ⊆ S. Next

we introduce the notion of an extension-set to be set-com-closed which generalizes the

concept of being com-closed and allows for an exact characterization of the signature of

complete semantics. The intuition is that if we pick some elements from S then either the

union of these sets has a unique completion or we can draw an attack within this set.

Definition 11. A set S⊆ 2A is called set-com-closed iff for each T,U⊆ S with T =
⋃

T,

U =
⋃

U the following holds: If T,U ∈ dcl(S) and |CS(T ∪U)| 6= 1 then there is an

argument u ∈U such that T ∪{u} ∈ PAttS.



Intuitively the set of complete extensions is set-com-closed because whenever the

union of some complete extension has no conflict, by Lemma 2, then this union is ad-

missible and there is a unique minimal complete extensions containing this admissible

set. Moreover, the grounded extensions is the intersection of all complete extensions and

complete as well.

Lemma 9. For every SETAF F we have that (a) the extension-set com(F) is set-comp-

closed and (b)
⋂

com(F) ∈ com(F).

Our realization for complete semantics is based on the construction for the admis-

sible semantics given in Definition 10. First, given an extension-set S, by reduced(S) =
{S\

⋂

S | S ∈ S}, we denote a reduced extension-set whose corresponding ground exten-

sion is empty. Let S′ = reduced(S). We then realize S∗ = dcl(S′)∩ucl(S′) = {
⋃

T | T⊆
S,

⋃

T∈ dcl(S′) } and add further attacks such that each set E ∈ S∗ defends all arguments

of the unique set in CS(E). In the following we use CS(E) to denote the unique element

of CS(E) iff |CS(E)|= 1 and the empty set otherwise.

Definition 12. Given an extension-set S, let S′ = reduced(S) and S∗ = dcl(S′)∩ucl(S′).
Then, by Fcom

S = (Aadm
S ,Rcom

S ) we denote a SETAF with Rcom
S = Radm

S∗ ∪R′ and where

R′ = {(A∪B,xa) | A,B ∈ S′ \{ /0},a ∈ CS′(A∪B)}.

One can show that this construction realizes extension-sets with complete semantics

whenever possible.

Lemma 10. For every extension-set S that is set-comp-closed and satisfies
⋂

S ∈ S, we

have that com(Fcom
S ) = S.

This now gives a complete characterization of the signature for complete semantics.

Theorem 5. Σ
∞
com = {S 6= /0 | S is set-comp-closed and

⋂

S ∈ S}.

Notice that when considering AFs not all extension-sets that are com-closed and

satisfy
⋂

S ∈ S are realizable with the complete semantics and a full characterization of

complete semantics is an open problem [3]. This is in contrast to the above result which

provides a full characterizations for SETAFs.

Example 5. Consider the extension-set S={ /0,{a},{b},{c},{a,b,c},{a,d,e},{b,d, f},
{x,c},{x,d}} which cannot be realized with AFs [3, Example 8]. It is easy to verify that

S set-comp-closed and thus com(Fcom
S ) = S. ♦

4. Signatures of SETAFs with Bounded Degree Collective Attacks

We now investigate how the degree of collective attacks affects the expressiveness, i.e. we

study k-SETAFs. Notice that in all the constructions of the last section we used attacks of

unbounded degree, i.e. the actual degree typically depended on the size of the extensions.

We first generalize the properties used in our signatures by adding a parameter k.

Definition 13. The possible conflicts in a k-SETAF w.r.t. an extension-set S are defined

as PAttkS = {S ⊆ ArgsS | |S| ≤ k+1 and S 6∈ dcl(S)}. An extension-set S⊆ 2A is k-tight

if for all S ∈ S and a ∈ ArgsS it holds that if S∪{a} /∈ S then there exists a set S′ ⊆ S,

such that S′∪{a} ∈ PAttkS.



For k = 1 the notion of k-tight corresponds to the notion of tight on Dung AFs (see

Definition 6) while for k ≥ ArgsS the notion of k-tight simplifies to: for all S ∈ S and

a ∈ ArgsS either S∪{a} ∈ S or there is no S′ ∈ S with S∪{a} ⊆ S′. Thus, S being ∞-tight

is implied by both S being incomparable or S being downward-closed.

We start with presenting our results for the signatures for conflict-free and naive

semantics. We already know that conflict-free extension-sets must be downward-closed.

In k-SETAFs we additionally have that they must be k-tight which reflects that if S∪{a}
is not conflict-free there must be an attack in the set of degree at most k. The following

construction allows us to also realize such extension-sets.

Definition 14. For downward-closed and k-tight extension-sets S, let F
cf,k
S =(ArgsS,R

cf,k
S )

be the k-SETAF with R
cf,k
S = {(S,a) | S ⊆ ArgsS,a ∈ ArgsS,S∪{a} ∈ PAttkS}.

One can show that (a) for each S that is downward-closed and k-tight we have that

cf(Fcf,k
S ) = S and (b) for each S that is incomparable and whose downward-closure is

k-tight we have that naive(Fcf,k
S ) = S.

Theorem 6. Σ
k
cf = {S 6= /0 | S is downward-closed and k-tight} and Σ

k
naive = {S 6= /0 |

S is incomparable and dcl(S) is k-tight}.

The following example shows that the expressiveness of conflict-free and naive se-

mantics strictly increases with the degree k of the attacks.

Example 6. Consider the argument set A = {a1,a2, . . . ,ak+1,ak+2} and the extension-

sets S= {S⊆A | |S| ≤ k+1} and T= {S⊆A | |S|= k+1}. We have that S is not k-tight,

as A 6∈ S, but for S = {a1,a2, . . . ,ak+1} we have that every S′ ⊂ {a1,a2, . . . ,ak+1} satis-

fies S′∪{ak+2} ∈ S and thus S′∪{ak+2} 6∈ PAttkS. Note that S∪{ak+2} /∈ PAttkS because

|S∪{al+2}| > k+ 1. Hence, S cannot be realized as conflict-free sets of any k-SETAF.

However, one can easily verify that S is (k+1)-tight and thus can be realized as conflict-

free sets of some (k+ 1)-SETAF. Moreover, as dcl(T) = S we have that dcl(T) is not

k-tight, i.e. T cannot be realized as naive sets of a k-SETAF, and dcl(T) is (k+1)-tight,

i.e. T can be realized as naive sets of a (k+1)-SETAF. ♦

Next we consider the stable signature for k-SETAFs. Again, the set of stable exten-

sions of a k-SETAF must be k-tight reflecting the fact that each argument which is not in

an extension S must be attacked by S via a degree k attack. The following construction

expands F
cf,k
S by arguments xs that eliminate unwanted naive extensions of F

cf,k
S .

Definition 15. When given an extension-set S that is incomparable and k-tight we can

construct the k-SETAF Fstb
k = (A,R) based on F

cf,k
S as follows:

A = ArgsS∪{xS | S 6∈ S and S ∈ naive(Fcf,k
S )}

R = R
cf,k
S ∪{({a},xS),({xS},xS) | a ∈ ArgsS \S}

One can show that for each S that is incomparable and k-tight we have that stb(Fstb,k
S ) = S

by building on Theorem 6 and using similar arguments as in [3, Prop. 7].

Theorem 7. Σ
k
stb = {S | S is incomparable and k-tight}.



The above theorem gives a strict hierarchy of signatures Σ
k
stb which is illustrated in

the following example.

Example 7. Consider the argument set A= {a1,a2, . . . ,ak+1,ak+2} and the extension-set

T= {S ⊆ A | |S|= k+1} as in Example 6. Recall that T was not realizable by the naive

semantics because dcl(T) was not k-tight. It results that T is itself not k-tight either. Note

that A 6∈T, but for {a1,a2, . . . ,ak+1} ∈ S we have that any S ⊂ {a1,a2, . . . ,ak+1} satisfies

S∪{ak+2} ∈ dcl(T) and thus S∪{ak+2} 6∈ PAttkT. Hence, T cannot be realized as stable

extensions of a k-SETAF. However, one can easily verify that T is (k+1)-tight and thus

can be realized as stable extensions of a (k+1)-SETAF. ♦

Note that, for incomparable S, whenever dcl(S) is k-tight, also S is k-tight. Hence,

for k-SETAFs, the stable semantics is more expressible than the naive semantics. We

next show that stable semantics is indeed strictly more expressive than naive semantics.

Example 8. Consider the sets of arguments X = {x1, . . .xk+1}, Y = {y1, . . .yk+1} ad-

ditional arguments a,b and the extension-set S = {X ∪{a}}∪{{b,y j}∪X \ {x j} | 1 ≤
j ≤ k+ 1}. The set S is k-tight as {a,b},{a,yi},{yi,y j},{xi,yi} ∈ PAttkS. On the other

hand, dcl(S) is not k-tight as for the set X ∈ dcl(S) there is no X ′ ⊆ X such that |X ′| ≤ k

and X ′∪{b} ∈ PAttkS. That is, the extension-set S can be realized with a k-SETAF under

stable semantics but not with a k-SETAF under the naive semantics. ♦

Finally, we consider the signatures of the admissible and preferred semantics for

k-SETAFs. It turns out that a simple generalization of set-conflict-sensitive is not

sufficient to characterize admissible extension-sets. We thus introduce the more in-

volved notion of k-defensive, which simplifies to set-conflict-sensitive for k = ∞ and to

conflict-sensitive for k = 1.

Definition 16. A set S ⊆ 2A is called k-defensive if there exists a set P of pairs (Ai
S,b)

with Ai
S ⊆ S ∈ S and b ∈ ArgsS \ S and Ai

S ∪{b} ∈ PAttkS, such that (i) for S,S′ ∈ S with

S∪S′ 6∈ S there is a pair (Ai
S,b) ∈ P with b ∈ S′, and (ii) for each (Ai

S,b) ∈ P with b ∈ S′

there is (A j

S′
,a) ∈ P with a ∈ Ai

S.

Whenever the union of two admissible sets is not admissible then there (i) must be an

attack of degree ≤ k in this union and (ii) each admissible set must defend itself against

all attacks we introduce to establish (i), again using only attacks of degree ≤ k.

Lemma 11. For any SETAF F we have that adm(F) is k-defensive and contains /0.

Remark 2. For k = 1, we can make all the elements of P symmetric and thus the second

condition of the above definition holds trivially true. That is, the notion of 1-defensive

reduces to being conflict-sensitive, cf. Definition 6. For unbounded k, each set (Ai
S,b)

can be replaced by (S,b) without violating either of the two conditions in the above

definition. Condition (i) then simplifies to for S,S′ ∈ S with S∪ S′ 6∈ S there is a b ∈ S′

with (S,b). Then condition (ii) is trivially satisfied and set-defensive reduces to being

set-conflict-sensitive.

Similarly as done in Section 3 for SETAFs of unbounded attack degree, we build the

k-SETAF for the admissible semantics with several modules, starting with the module

that exploits conflict-freeness.



Definition 17. When given a k-defensive extension-set S and a set P that meets the

conditions of Definition 16 we define the k-SETAF F
cf,k
S,P = (ArgsS,P).

We are now able to obtain similar results for this module as for the corresponding

module in general SETAFs.

Lemma 12. Let S be a k-defensive signature that contains /0, P be some set that meets the

conditions of Definition 16 and S ⊆ ArgsS be some set of arguments such that S =
⋃

T

for some subset T⊆ S. Then, we have that S ∈ cf(Fcf,k
S,P ) implies S ∈ S.

Lemma 13. Let S be a k-defensive signature with /0 ∈ S. Then, S⊆ dcl(S)⊆ adm(Fcf,k
S,P ).

Towards our defense module we recall the notion of defense-formulas from [3].

Definition 18 ([3]). Given an extension-set S, the defense-formula DS
a of an argument

a ∈ ArgsS in S is defined as
∨

S∈S s.t.a∈S

∧

s∈S\{a} s.

DS
a given as (a logically equivalent) CNF is called CNF-defense-formula CD

S
a of a in S.

The defense formula DS
a tells us which arguments must be in the extension in order

to defend the argument a. We can exploit this by using the following technical lemma.

Lemma 14 ([3]). Given an extension-set S and an argument a ∈ ArgsS, then for each

S ⊆ ArgsS with a ∈ S: (S \ {a}) is a model of DS
a (resp. CD

S
a) iff there exists an S′ ⊆ S

with a ∈ S′ such that S′ ∈ S.

For our defense module we adjust the corresponding parts from the canonical

defense-argumentation-framework in [3] to our setting with k-SETAFs.

Definition 19. Given an extension-set S, we call F
def
S = (Adef

S ,Rdef
S ) with A

def
S = ArgsS∪

⋃

a∈ArgsS
{αaγ | γ ∈ CD

S
a} and R

def
S =

⋃

a∈ArgsS
{({b},αaγ), ({αaγ},αaγ),({αaγ},a) | γ ∈

CD
S
a ,b ∈ γ} the defense-argumentation-framework of S, and let F

adm,k
S,P = F

cf,k
S,P ∪F

def
S .

We next show that this defense framework ensures that only sets in S or the union of

such sets are admissible.

Lemma 15. For every extension-set S that contains /0, we have that S ∈ adm(Fdef
S ) iff

S =
⋃

T for some T⊆ S.

When combining the two modules to a SETAF F
adm,k
S,P by the Lemmas 12, 13 and

Lemma 15 we get a SETAF that realizes admissible extension-sets.

Lemma 16. For every extension-set S that is k-defensive and contains /0, adm(Fadm
S,P )= S.

We now can state the exact characterization of the admissible signature in k-SETAFs.

Theorem 8. Σ
k
adm = {S 6= /0 | S is k-defensive and contains /0} and Σ

k
pref = {S 6= /0 |

S is incomparable and k-defensive}.

Notice that we omitted complete semantics for k-SETAFs. This is due to the fact

that finding an exact characterization is a hard problem (open even for Dung AFs) and

our under-/over-approximations are rather tedious.



5. Discussion and Related Work

Discussion of our Results. In this work we characterized the signatures of SETAFs

and SETAFs with bounded degree attacks. We highlight some interesting findings: (1)

For all the semantics SETAFs are strictly more expressive than AFs (even for degree 2

attacks). (2) For SETAFs the signatures of stable, preferred and naive coincide which

is in contrast to Dung AFs and k-SETAFs where we have strict subset relations, i.e.

Σ
k
naive ⊂ Σ

k
stb \ { /0} ⊂ Σ

k
pref for 1 ≤ k < ∞. (3) When considering the signatures of k-

SETAFs the expressiveness strictly increases with k for all of the semantics. (4) For stable

semantics the signature of SETAFs coincides with the signature of Abstract Dialectical

Frameworks, which allow for way more complex relations between arguments.

Related Work. The work closest to ours is by Linsbichler et al. [4] and by Polberg [6].

The former studies SETAFs as a sub-class of ADFs with 3-valued semantics. In order

to meet the 3-valued setting the extension-based semantics of SETAFs are redefined as

3-valued semantics. They then provide an algorithmic framework that tests whether a

given set of 3-valued extensions can be realized as SETAF. Their results allow to com-

pare the expressiveness of admissible, complete, preferred, and stable semantics in AFs,

SETAFs, and ADFs, but do not provide an explicit characterization of the sets that can

be realized as SETAFs. Moreover, the setting with 3-valued semantics is more restrictive

than the extension-based view and thus these results do not translate to the original defi-

nition of Dung AF and SETAF semantics. The work of Polberg [6, Section 4.4.1] studies

translations between different abstract argumentation formalisms in the extension-based

setting. It already shows that there are certain sets of extensions that can be realized by

SETAFs but cannot be realized with AFs, in order to show that certain translations are

impossible. However, the exact expressiveness of SETAFs is not investigated any further.
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