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Abstract

Breast cancer is one of the deadliest cancer for female nowadays. Despite of the rapid advancement in medical image anal-
ysis with the rise of deep learning, development of breast cancer detection system is limited due to relatively small size of the
publicly available mammogram dataset. In this paper, we discover an effective configuration for transfer learning from Chest X-
Ray pre-trained Convolutional Neural Network to overcome the small-size mammogram dataset problem. We found that the best
configuration achieve 90.38% validation accuracy for modified.
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1. Introduction

Breast Cancer is one of the most dangerous cancer in the world. Back in 2012, at least 1.7 million cases has been
diagnosed and over 500,000 deaths were caused by cancer, with 25% of the cases are breast cancer1. Not to mention
that, while breast cancer is commonly occurs in women, the probability for it to occurs in men is not zero. Fortunately,
it has been proved that survival rate for breast cancer cases can be increased by the adoption of cancer screening as a
detection method2.

One of the tools for early detection that can be used is Chest X-ray It has been used in many surgical intensive care
units including breast cancer early detection3. In particular for screening breast cancer, a low dose X-ray can be used to
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deliver scanned image of the breast called as mammogram4. This screening method, called as mammography, played
a major role in reducing breast cancer morbidity over the years. Both American Cancer Society and WHO recommend
women to do mammogram screening start from the age 40 at least once in two years5. Despite of the importance of
early detection methods, there are still difficulties in interpreting the data given by early detection methods6.

Meanwhile in image analysis, Convolutional Neural Network (CNN) has become state-of-the-art technique
tasks7,8,9,10,11. In particular for X-ray image analysis, a CNN named CheXNet has achieved human-level performance
for chest X-ray image analysis12. This performance is possible by the use of ChestX-ray13 dataset, which contains
112,120 Chest X-ray images, as CheXNet training data.

In this paper, we report the result of our study on how to effectively transfer learning from CheXNet for CNN to
learn from DDSM dataset14,15. We see that both ChestX-ray and DDSM are X-Ray images, but taken from different
body parts. Thus, we want to find out if transfer learning from CheXNet could help CNN to learn from DDSM. This
motivation comes from the fact that CNN typically requires massive dataset to show its peak performance. On the
other hand, DDSM contains only 2,605 set of unique cases, with 4 X-ray images per case, which can be considered
small compared to ChestX-Ray. In order to develop an optimal CNN for this purpose, we conduct a preliminary
research to find the best transfer learning configuration from CheXNet to learn from DDSM. The results from this
preliminary research are reported in this paper.

2. Related Works

Recently, deep learning has become a preferred technique for mammogram data analysis16. It has been applied
in a broad aspect of mammogram data processing such as detection17,18, segmentation19, and classification20. Fur-
thermore, Wang et al. 20 has proved that the accuracy obtained by deep learning is slightly higher than SVM. Not to
mention that Becker et al. 17 even claimed that deep learning has achieved a human-level accuracy for breast cancer
detection using mammogram data. However, the size of current public dataset for mammogram is relatively small
compared to common public dataset for deep learning21,22,13. Therefore, CNN model for mammogram can potentially
perform better given more training data.

In the attempt to improve deep learning model over small-size dataset, transfer learning is currently the most
popular strategy to be employed. Transfer learning enables deep learning model to effectively learn from small dataset
by transferring learned features from other deep learning model that previously learned from similar dataset with large
size. The first effort in transfer learning is performed by Girshick et al23 that uses supervised pretraining CNN on large-
scale image classification dataset21 for learning from relatively small dataset for object detection24. Yosinski et al25

also supported the research from Girshick et al. by extensively studying the effect of transfer learning to improve deep
learning model performance.

Before 2014, the idea similar to transfer learning for deep learning is actually has been studied, which is called
as unsupervised pre-training. This method use a model which is pre-trained unsupervisedly before the weights is
transferred to the main model. This idea was popularized by Hinton et al. 26 by introducing greedy layer-wise pre-
training to train Deep Belief Network. This unsupervised pre-training strategy is generally considered inferior to its
supervised version, which popularly termed as transfer learning nowadays. However, there are numerous application
of this strategy in medical imaging27,28,29 and also in other areas of research30,31,32,33.

In a similar approach to this research, Kim et al. proves that transfer learning gives a boosted performance compared
to directly train Inception v434 with the training dataset35. They use Inception v4 which is pretrained with ImageNet
dataset to be transferred for learning DDSM dataset. The research shows that transfer learning enables Inception v4
to reach 72% of classification accuracy.

3. Research Methodology

The work in this research is divided into three main phases: Pre-Training, Transfer Learning, and Comparison, as
seen in figure 1. Firstly, in pre-training phase, we acquire a pre-trained model to be transferred for learning mammo-
gram data. Afterwards, we transfer the weights of the pre-trained model to a new model then train the new model with
mammogram dataset. Lastly, we compare several configuration of new models to determine the best configuration for
the case of transfer learning in this research.
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Fig. 1: Research Workflow

Fig. 2: Illustration of Transfer Learning Scheme

In the pre-training phase, we acquired CheXNet12 as our pre-trained deep learning model. CheXNet is a 121-layers
DenseNet model11, which layers are grouped into 4 dense blocks. This model has been pre-trained on Chest X-Ray13

dataset and was acquired from CheXNet reimplementation project of Machine Intelligence Lab, Institute of Computer
Science & Technology, Peking University36.

The weights of the pre-trained model is then transferred to a new model that learns from mammogram data, which
we call as transfer learning phase. As mammogram data consists of four images per case, we built the new model
with four parallel input paths. Each of the input path contains same dense blocks architecture from the pre-trained
model. Afterwards, the same weights of the pre-trained model blocks are transferred to all four parallel input paths.
This transfer learning scheme is illustrated in fig. 2. When the model is trained, each of the input path read one of the
four images in each case.

In the comparison phase, we conduct experiments to compare several transfer learning configurations. The con-
figuration we use is the variation in number of employed dense blocks, number of employed layers in the last dense
block, learning rate, dropout rate, and L2 regularization rate. Each configuration run for 20 epochs and the best valida-
tion accuracy is recorded for comparison. All configurations are optimized using Adam optimization method37, with
categorical cross-entropy as loss function. All configurations are run on a server with an NVIDIA Tesla P100 GPU.

For experiment in number of blocks, we try to remove the blocks one by one starting from the last blocks. This
strategy is employed because we want to find out what are the best low-level features to be transferred from CheXNet
to learn DDSM. It has been known that CNN generally learn more complex features as the layers are stacked38,
thus we can the best features complexity level for our case by using this strategy. We also apply same strategy for
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Fig. 3: Samples of Features Visualization for: (a) block 1; (b) block 2; (c) block 3; (d) block 4.

experiment in number of layers in the last block. The reason why we choose to reduce the number of blocks first
before reducing the number of layers is mainly for computational efficiency. There will be 120 different configuration
to try if we directly try to reduce the number of layers. On contrary, we only need 4 configurations plus the number of
layers in the last block in the best blocks configuration by using our strategy.

As there exist visualization techniques to see what features that are learned by CNN, it seems interesting to see the
learned features from CheXNet. By seeing the features, we can directly choose the features based on the complexity of
the features shown by the visualization. Unfortunately, this strategy is not suitable in our case, as the learned features
has no semantic meaning to be inferred by human. This is contrasted to other cases such as face recognition, which
model tends to pick semantically meaningful features like eyes, ears, and nose. Figure 3 shows the result of visualiza-
tion on CheXNet block 1 to 4 using optimization-based technique from Yosinski et al. 39. We use optimization-based
technique because the other type of techniques are not suitable in our case. We can see that CheXNet is indeed learns
more complex features as the blocks stacked, but the learned features has no semantic meaning to be inferred by
human.

For the dataset in all experiments, we use a modified DDSM dataset. DDSM originally consists of 4 classes: nor-
mal, benign-without-callbacks, benign, and malignant. The modification we make is aggregation of benign-without-
callbacks, benign, and malignant class into a single class. We do this aggregation because we find that the simple
approach we use in this research cannot perform well on fine-grained classes like benign-without-callbacks, benign,
and malignant, which conceptually can be grouped as a single class named cancer. Afterwards, we randomly split the
dataset into training, validation, and test set with the ratio of 60:20:20. During training, we augment the data using
5-crop technique which was popularized by Krizhevsky et al. 7. We only use 5-crop augmentation because this is the
only technique that is suitable given the characteristic of mammogram data and the parallel input paths we use.
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4. Results and Discussion

To determine the best number of employed dense blocks, we compare the performance of models with 4, 3, 2, and
1 dense blocks in each input paths. These 3, 2, and 1 dense blocks configurations are constructed by removing the
blocks from the original CheXNet starting from the last block. The weights of the n used dense blocks are transferred
from the corresponding dense blocks of the original CheXNet model. To keep the necessary learned features from
CheXNet, all dense blocks except the last dense block is frozen during training. We set the batch size to 24 when on
each configuration. This batch size is chosen as it is the largest batch size that could fit into the GPU for configuration
with 4 dense blocks. The experiment use learning rate of 1e-3, as recommended in Kingma et al. 37. Based on the
table 1, we can see that the best performance is achieved by the configuration with only 2 dense blocks, in terms
of both loss value and accuracy. This result indicates that it is not necessary to use all sets of dense blocks from
the original CheXNet model for transfer learning to learn mammogram data. In order to show the feasibility of our
transfer learning approach, we also show the computation time needed to train each configuration in table 1.

Table 1: The result of the experiment with blocks.

Blocks
Training Validation Running Time

Loss Accuracy Loss Accuracy (20 Epochs)

4 0.3493 96.31 % 0.4380 87.31 % 2h 38m 58s
3 0.3407 97.20 % 0.4408 87.12 % 2h 31m 56s
2 0.3960 91.68 % 0.4324 88.27 % 2h 19m 32s
1 0.4625 85.76 % 0.4588 85.77 % 2h 6m 49s

Afterwards, we conduct an experiment to try several configurations of the number of employed layers in the second
dense block. The number of layers we try is ranged from 1 to 12 layers, as the second block of original CheXNet model
consists of 12 layers. We only train the last layer and froze the rest to keep necessary learned features. The batch size
used in this experiment is 32, as it is the largest batch size to fit in the GPU if we use 12 layers. From table 2, the best
result performed by using 6 layers with 90.38% of validation accuracy and 0.4107 of loss value.

Table 2: The result of the experiment with layers.

Layers
Training Validation Running Time

Loss Accuracy Loss Accuracy (20 Epochs)

12 0.4013 91.39 % 0.4290 88.46 % 2h 11m 38s
11 0.3262 98.80 % 0.4232 88.65 % 2h 10m 41s
10 0.3293 98.47 % 0.4240 88.65 % 2h 6m 6s
9 0.3456 97.01 % 0.4250 88.46 % 2h 9m 2s
8 0.3436 97.12 % 0.4258 88.46 % 2h 6m 56s
7 0.3220 99.22 % 0.4279 88.65 % 2h 6m 7s
6 0.3345 98.02 % 0.4107 90.38 % 2h 3m 57s
5 0.3314 98.34 % 0.4258 88.85 % 2h 2m 19s
4 0.3366 97.76 % 0.4149 89.61 % 2h 2m 1s
3 0.3442 97.16 % 0.4155 89.62 % 1h 59m 48s
2 0.3392 97.60 % 0.4135 90.00 % 2h 0m 1s
1 0.3465 96.82 % 0.4263 88.85 % 1h 59m 21s

We also try a few configuration on learning rate value. In this experiment, we only try three learning rate value: 1e-
2, 1e-3, and 1e-4. As we see in table 3, the best result achieved by learning rate value 1e-3 with 90.38% of validation
accuracy and 0.4107 of loss value, which is the default learning rate we use in the previous experiments.

As we can see from table 2 and 3, the best performing configuration suffers a noticeable overfitting, which is implied
by the gap of training and validation accuracy of 7.37%. Therefore, we try several configurations of regularization. We
employ two types of regularization in the experiment: dropout40 and L2 regularization. We use three value of dropout
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Table 3: The result of the experiment with learning rates.

Learning Rate
Training Validation Running Time

Loss Accuracy Loss Accuracy (20 Epochs)

1e-2 0.4349 87.76 % 0.4523 86.35 % 2h 3m 33s
1e-3 0.3345 98.02 % 0.4107 90.38 % 2h 3m 57s
1e-4 0.3325 98.52 % 0.4284 88.46 % 2h 0m 35s

rate: 0, 0.2, and 0.5 as displayed in table 4. Dropout rate of 0.2 was employed in original DenseNet paper11, while
0.5 was the default dropout value in the original dropout paper40. For L2 regularization, we also use three rate value:
0, 1e-4, and 1e-2 as seen in table 5. These rate values are commonly used for L2 regularization. Even though we are
able to decrease the gap to 6.72% using dropout and 1.45% using L2, we cannot achieve better validation accuracy
compared to model with no regularization. To evaluate the performance of our best model over test sub-dataset, we
use Receiver Operating Characteristic (ROC) as seen in figure 4, with AUC (Area Under ROC Curve) of 0.916. The
accuracy over test sub-dataset is 89.42%.

Table 4: The result of the experiment with dropouts.

Dropout Rate
Training Validation Running Time

Loss Accuracy Loss Accuracy (20 Epochs)

0 0.3345 98.02 % 0.4107 90.38 % 2h 3m 57s
0.2 0.3392 97.51 % 0.4265 89.23 % 2h 0m 49s
0.5 0.3612 95.37 % 0.4200 88.65 % 2h 3m 37s

Table 5: The result of the experiment with L2 regularization.

L2 Regularization Rate
Training Validation Running Time

Loss Accuracy Loss Accuracy (20 Epochs)

0 0.3345 98.02 % 0.4107 90.38 % 2h 3m 57s
1e-04 0.3849 92.98 % 0.4308 88.46 % 2h 4m 6s
1e-02 0.4335 88.96 % 0.4508 87.50 % 2h 3m 36s

5. Conclusion

In this paper, we try to find the best configuration for transfer learning from CheXNet to learn mammogram data.
We find that the best configuration only employ the first two dense blocks from the original CheXNet model. The
optimal number of employed layer in the last used block is also fewer than the original model, which is 6 out of 12
layers. We also find that the best learning rate is 1e-3, which is the default learning rate of Adam optimization method.
The experiment on several regularization configuration cannot produce a better performance than the configuration
without regularization. However, regularization successfully reduce the overfitting suffered by the best performing
model. Through this research, we find that the best performing configuration achieve 90.38% of validation accuracy.

For future works, it is interesting to conduct a more extensive research in finding optimal non-architectural hyper-
parameter value. A better hyperparameter searching method such as grid search and random search might be able to
find more optimal configuration as opposed to trial-and-error approach we use in this research. It is also interesting to
develop a more complex model for transfer learning that is able to learn fine-grained classes such as benign-without-
callback, benign, and malignant.
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4. Results and Discussion

To determine the best number of employed dense blocks, we compare the performance of models with 4, 3, 2, and
1 dense blocks in each input paths. These 3, 2, and 1 dense blocks configurations are constructed by removing the
blocks from the original CheXNet starting from the last block. The weights of the n used dense blocks are transferred
from the corresponding dense blocks of the original CheXNet model. To keep the necessary learned features from
CheXNet, all dense blocks except the last dense block is frozen during training. We set the batch size to 24 when on
each configuration. This batch size is chosen as it is the largest batch size that could fit into the GPU for configuration
with 4 dense blocks. The experiment use learning rate of 1e-3, as recommended in Kingma et al. 37. Based on the
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consists of 12 layers. We only train the last layer and froze the rest to keep necessary learned features. The batch size
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10 0.3293 98.47 % 0.4240 88.65 % 2h 6m 6s
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2 0.3392 97.60 % 0.4135 90.00 % 2h 0m 1s
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We also try a few configuration on learning rate value. In this experiment, we only try three learning rate value: 1e-
2, 1e-3, and 1e-4. As we see in table 3, the best result achieved by learning rate value 1e-3 with 90.38% of validation
accuracy and 0.4107 of loss value, which is the default learning rate we use in the previous experiments.

As we can see from table 2 and 3, the best performing configuration suffers a noticeable overfitting, which is implied
by the gap of training and validation accuracy of 7.37%. Therefore, we try several configurations of regularization. We
employ two types of regularization in the experiment: dropout40 and L2 regularization. We use three value of dropout
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0, 1e-4, and 1e-2 as seen in table 5. These rate values are commonly used for L2 regularization. Even though we are
able to decrease the gap to 6.72% using dropout and 1.45% using L2, we cannot achieve better validation accuracy
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In this paper, we try to find the best configuration for transfer learning from CheXNet to learn mammogram data.
We find that the best configuration only employ the first two dense blocks from the original CheXNet model. The
optimal number of employed layer in the last used block is also fewer than the original model, which is 6 out of 12
layers. We also find that the best learning rate is 1e-3, which is the default learning rate of Adam optimization method.
The experiment on several regularization configuration cannot produce a better performance than the configuration
without regularization. However, regularization successfully reduce the overfitting suffered by the best performing
model. Through this research, we find that the best performing configuration achieve 90.38% of validation accuracy.

For future works, it is interesting to conduct a more extensive research in finding optimal non-architectural hyper-
parameter value. A better hyperparameter searching method such as grid search and random search might be able to
find more optimal configuration as opposed to trial-and-error approach we use in this research. It is also interesting to
develop a more complex model for transfer learning that is able to learn fine-grained classes such as benign-without-
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Fig. 4: ROC Curve
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