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Principal-agent models with multiple agents typically assume that the principal wishes to

maximize the sum of the agents' achievements (net of the rewards paid to them). But in many

settings, like R&D, all that the principal ‘‘needs’’ is that at least one agent will be ‘‘successful.’’ We

identify settings where the principal actually wants agents to refrain from exerting high effort

in order to save expected compensation. We show that the number of agents can decrease in

the project's value for the principal. We also consider sequential efforts and investigate settings

where the principal can provide support to agents.

1 INTRODUCTION

In many human undertakings, the only result that really matters

is whether the activity ended in success or failure; the definition

of which is often quite clear. In such environments, the cardinal

value of the achievement, beyond constituting a success or not, is

immaterial. Sometimes, success is the achievement of some predeter-

mined threshold. Examples include many types of R&D undertakings,

which attempt to develop a device or procedure that will achieve

a certain performance level (see, e.g., Abernathy & Rosenbloom,

1969; Gerchak & Kilgour, 1999, 2014). In such settings, the task

is completed as soon as at least one of multiple attempts is suc-

cessful. The objective of achieving success is related to, but distinct

from, settings where only the highest achievement of multiple par-

ties matters (Nelson, 1961; Dasgupta & Maskin, 1987; Bard, 1985;

Terwiesch & Xu, 2008).

In agency settings where a principal deploys several ‘‘parallel’’

agents, she may also only be interested whether any of them will

succeed (referred to as ‘‘OR’’ in the computer science literature, e.g.,

Babaioff, Feldman, Nisan, & Winter, 2012) as opposed to a principal

wanting the number of successful agents to be as large as possible, in

line with the common ‘‘sum of outputs’’ objective. Many organizations

make use of several agents in parallel (e.g., R&D teams and athletes

attempting to achieve certain thresholds). These agents sometimes

cannot cooperate due to geographic and/or cultural barriers and

competition within the organization (and they also do not report

partial results to others). Of multiple parallel R&D teams that a firm

(or country) engages, it may only matter whether at least one of

them achieves the goal. For instance, Gerchak and Kilgour (1999)

provide real-world examples of firms employing independent parallel

R&D teams. That is also the motivation for our model. The endeavor

is successful if at least one of the agents succeeds. However, the

principal will have to reward all successful agents.

Our agents do not compete with each other, as the reward depends

on their individual achievement. Thus, our setting is not a contest

(Glazer & Hassin, 1988; Lazear & Rosen, 1981; Canbolat, Golany,

Mund, & Rothblum, 2012; Moldovanu & Sela, 2001). The occasional

practice of firms employing more than one auditor to examine its

entire books instead of dividing their books among auditors (‘‘dual

audits’’) is also an example of a parallel strategy where it is sufficient

that at least one auditor detects relevant irregularities.

Several articles have investigated moral hazard situations (where the

principal cannot observe the agents' effort) in multiagent settings to

enhance our understanding of collective effort (e.g., Che & Yoo, 2001;

Baldenius, Glover, & Xue, 2016) or relative performance evaluation

(e.g., Bartling, 2012; Glover, 2012). Sometimes, it is assumed that

agents work ‘‘together’’ to achieve an output. For instance, Itoh (1991)

provides arguments for teamwork. He shows that it can be optimal for
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a principal to incentivize agents to help other agents in accomplishing

their tasks. In contrast to settings with collective effort as in Che and

Yoo (2001) and Baldenius et al. (2016), we consider agents who are

hired to work independently.

Gerchak and Schmid (2016) consider a principal who is only inter-

ested in the highest (or lowest - ‘‘AND’’) achievement of any agent but

on a continuous scale. Here, it is assumed that there exists a thresh-

old, such that only the probability of achieving that threshold matters

to the principal.

Typically, multiagent models with binary effort levels assume that

a principal always wants all agents to provide high effort (e.g., Che

& Yoo, 2001; Glover, 2012). We derive explicit conditions when the

principal prefers agents to refrain from exerting high effort in order to

save expected compensation. In that sense, we enlarge the outcome

space for possible equilibria as compared with previous literature on

multiagent settings.

Besides designing the incentive system, principals often decide how

many parallel agents to engage in a specific task. More agents will

increase administration costs of employment. However, this might not

be the only downside of a greater workforce. Although employing

more agents increases the probability of success, the number of

potential rewards is increasing.

The work of Babaioff et al. (2012), in combinatorial economics,

investigates a setting similar to ours with their nonobservable ‘‘OR’’

technology. Their focus is on how many (and which) agents, of an

available group, should be contracted to exert high effort. In their ‘‘OR’’

setting, the number of agents that should be hired increases one by

one as a principal's profit in case of success increases. We characterize

in detail when two agents, and of what type, are superior/inferior to

a single agent, as a function of the administration cost. We show that

if hiring an agent induces additional administration costs, the number

of agents does not necessarily grow ‘‘smoothly’’ with the project's

value for the principal. For example, it might be favorable to switch

from two low-effort agents (e.g., part-time workers) to one high-effort

worker (e.g., full-time worker) as the project's value increases. A

‘‘follow-up’’ article, Babaioff, Feldman, and Nisan (2010), deals with

mixed strategies. They do not specifically consider a principal who can

provide additional support to the agents.

Levitt (1995) examines a LEN framework where only the best

outcome of multiple agents matters to the principal. He shows that it

can be optimal to pay asymmetric wages for identical agents assigned

to the same task and investigates under what conditions a principal

prefers to employ a single agent rather than two symmetric agents.

As Levitt's model does not provide a closed-form solution of the

optimal asymmetric incentive scheme, however, he has to limit the

latter investigation to some special cases. Our simpler model (without

common production shocks and with binary outcomes) allows for a

general analysis of whether to hire one or two agents.

When success by one of multiple agents is sufficient for a princi-

pal, she might prefer to hire and incentivize independent agents in

sequence. The principal then faces a simple trade-off. If the first agent

was successful, no other agent has to be hired and rewarded for possi-

ble (unnecessary) success subsequently. Yet success at a later point in

time typically reduces the benefits for a firm. In Section 5, we extend

our basic model by allowing engaging agents sequentially. We show

that the discount factor for later revenues always critically affects

the principal's decision whether to employ agents simultaneously or

sequentially. The issue of parallel versus sequential hiring especially

relates to parallel and sequential R&D strategies as discussed, for

instance, by Abernathy and Rosenbloom (1968) and Loch, Terwiesch,

and Thomke (2001). In our model, we abstract from learning effects

that typically promote sequential R&D strategies. Alternatively, Bose,

Pal, and Sappington (2010) show that sequential efforts are beneficial

for the principal if the agents' contributions serve as complements in

their joint performance. The first mover anticipates that high effort

increases the second agent's productivity and thereby the contribu-

tion to the joint performance. Hence, the first mover experiences

an additional motivation to work hard, which allows the principal to

save compensation costs. In contrast, in our setting, all performance

measures are individual and the agents' efforts always constitute

substitutes. Hence, without learning effects, the benefit of sequen-

tial efforts arises by the real option of saving compensation because

already one agent's success is sufficient for the principal.

Section 2 introduces our basic model of success and failure

and explores the optimal reward structure when only one agent is

employed, as a reference point to multiagent models. In Section 3,

we investigate the multiagent environment with a given number of

parallel agents. In Section 4, we investigate how many homogeneous

agents the principal prefers to hire and identify conditions where the

principal refrains from employing additional agents. In Section 5, we

allow agents to deliver effort sequentially and explore when the real

option of not hiring a second agent after prior success outweighs the

expected reduction in the project's value due to discounting. Section

6 extends our analysis of a setting with a fixed number of agents by

allowing for asymmetric agents that differ in their ability. In Sections 7,

we extend our analysis by allowing the principal to support agents. We

focus on situations where the principal has the opportunity to ‘‘help’’

the agents, rather than on cooperation among agents. The support

is assumed to have a similar effect when the agent exerts low effort

to when he exerts high effort. The costs associated with support are

increasing and convex, which seems realistic. In Section 7.1, the prob-

ability of success is assumed to be proportional to the level of support,

possibly with asymmetric agents. Laux (2017) uses a similar concept

of support but assumes that the effectiveness of support depends on

the agents' (unequal) abilities.
1

In Section 7.2, we assume decreas-

ing returns to the principal's level of support. Section 8 concludes

and suggests avenues for future research. The Appendix provides all

proofs.

2 BASIC SET-UP

Any agent (A) employed by a principal (P) makes an unobservable

choice between two types of effort a ∈ {L,H}. A's private costs

of effort are c(L) and c(H), respectively, where high effort is more

costly to A. For the most part of the analysis, we set c(L) = 0 and

c(H) = 1; only in Section 6, we consider heterogeneous agents that

differ in their costs of effort. The outcome of A's effort can either be

success or failure. An agent choosing high (low) effort will succeed

with probability pH (pL), and with probability 1 − pH (1 − pL), the

agent will fail, where pH > pL. In case of success, A is rewarded
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by P with a prize wS ≥ 0, whereas he receives wF ≥ 0 in case of

failure. When A fails, he cannot be fined and made liable. One can

view wF as a ‘‘basic’’ wage and (wS − wF) as a bonus for success.

We assume that wF and wS correspond to the agents' respective

utilities of the prizes. When the agents' preferences are represented

by von Neumann-Morgenstern utilities, these utilities are invariant

with respect to linear transformations. Thus, one can assign arbitrary

utilities to two prize values, and thus, risk attitude does not play a

role here. Although P cannot observe the agents' effort choice, all

parameters are common knowledge.

Let DS > 0 denote P's value from the project in case of at least one

agent's success, whereas P receives zero if all agents fail. If multiple

agents participate in the project and some succeed, P's value remains

DS regardless of whether one or several agents were successful. Still,

P has to compensate every agent who succeeds.

Additionally, P incurs administration costs of d > 0, which comprise

recruitment and training costs, for every agent employed, independent

of the agent's effort. As A's personal cost of providing low effort is

zero, this assumption guarantees that P does not want to employ

infinitely many low-effort workers. In practice, administration costs are

commonly observed and comprise recruitment costs, nonwage labor

costs, lump-sum taxes, and basic working equipment, or office space.

The administration costs can be ignored whenever we investigate the

reward structure of a fixed number of agents, as the administration

costs are sunk at that point. Only if P has to decide on the optimal

workforce size must she incorporate d into her decision making.

2.1 Single agent

First, we will investigate the reward structure in a basic model with a

single agent. The participation constraints (PCs) for an agent supplying

high or low effort are,

pHwS + (1 − pH)wF ≥ 1 and (PCH)

pLwS + (1 − pL)wF ≥ 0, (PCL)

respectively. The (ex ante) PC guarantees that, in expectation,

the agent receives at least his reservation utility, which is equal

to zero.

As the agent's costs of low effort are zero, an agent providing low

effort does not have to be compensated. Thus, P will set wS = wF = 0

and P's expected profit is pLDS − d. In order for A to exert high effort,

(PCH) must hold and A must be better off by exerting high effort; thus,

P faces an additional incentive compatibility constraint:

pHwS + (1 − pH)wF − 1 ≥ pLwS + (1 − pL)wF . (IC1)

Because prizes have to be nonnegative, the (IC1) constraint guar-

antees that (PCH) holds. P's optimization problem is then to minimize

expected rewards paid to the agent. P will optimally set wF = 0 and the

prize for success as small as possible, that is, wS = 1∕(pH − pL) = ∶ W.

P's expected profit in this equilibrium is then pH (DS − W) −d. Compar-

ing the equilibrium outcomes, we see that P will prefer the agent to

exert high effort if and only if

DS >
pH

(pH − pL)2
∶= DS(1). (1)

3 MULTIPLE HOMOGENEOUS AGENTS

Next, we consider the basic model with a fixed number of multiple

symmetric agents who choose their effort level simultaneously. We

do not restrict our analysis to symmetric contracts, so agents can be

rewarded differently. If two agents can be treated differently, in our

model, P offers Agent 1 rewards w1
S

and w1
F

, whereas Agent 2 receives

w2
S

and w2
F

. Missing superscripts indicate that agents receive the same

contracts.

As P observes the agents' individual success, the reward for each

agent could depend on both agents' outcomes and thus their peers'

performances. However, in absence of a common shock, P cannot

benefit from relative performance evaluation (see Glover, 2012). Con-

sequently, our setting allows us to restrict attention to rewards wi
S

and

wi
F

, i ∈ {1,2}, which reflect individual performance evaluation.

Any agent i who is successful will be rewarded with wi
S

, and with wi
F

if the agent fails. The other agents' effort and success do not influence

agent i's optimization problem and the reward structure will depend

on whether P wants agents to exert high effort or not. If P prefers

agents to exert high effort, (IC1) must hold and thus the prizes will be

wi
F
= 0 and wi

S
= W. If, in contrast, agents should provide low effort, P

only has to make sure that the participation constraint for low effort

will hold. Consequently, P will optimally set wi
S
= wi

F
= 0.

Suppose first that P has to write symmetric contracts for all agents.

Then, when two agents participate, comparing P's expected profits,

we find that high effort is desirable if and only if

𝜋(H,H) > 𝜋(L, L) ⇐⇒ DS > DS(2) ∶=
2pH

(pH − pL)2 (2 − pH − pL)
, (2)

where 𝜋(a1, a2) denotes P's expected profit when Agent 1 (2) provides

effort a1 (a2) with (a1, a2) ∈ {L,H} × {L,H}, and DS(2) = DS(1) ·
2∕(2 − pH − pL) > DS(1). Both profits 𝜋(H,H) = pH(2 − pH)DS −
2pH∕(pH − pL) − 2d and 𝜋(L, L) = pL(2 − pL)DS − 2d show a linear

increase in DS , but 𝜋(H,H) with a steeper slope. Also, 𝜕𝜋(H,H)∕𝜕pH =
2DS(1 − pH) + 2pL∕(pH − pL)2 > 0, whereas an increase in pH does

not change P's expected profit in case of two low-effort agents.

Generally, P prefers n agents to exert high rather than low effort if

and only if

DS > DS(n) ∶=
npH

(pH − pL)
(
(1 − pL)n − (1 − pH)n) . (3)

So, as in the single-agent setting, only if the principal's value from

the project is sufficiently high will she incentivize agents to provide

high effort.

Lemma 1. The principal's value from the project required to prefer

agents to exert high effort is increasing with the number of agents

employed.

Lemma 1 indicates that when the number of agents employed at a

project increases, the parameter region where P wants all agents to

exert high effort becomes smaller.

Now, we allow that Agent 1 receives a different contract than Agent

2 (even though all agents are equally skilled). Without loss of generality,

P wants Agent 1 to exert high effort, whereas Agent 2 should provide

low effort. Employing a low-effort (for example, part-time) worker
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still causes administration costs of d. As a low-effort worker does

not have to be compensated, P will set w2
S

= w2
F

= 0, whereas

w1
F
= 0 and w1

S
= W, to incentivize Agent 1 to provide high effort.

Proposition 1 establishes that P will not always treat symmetric agents

equally.

Proposition 1. There exists a nonempty region where the principal

prefers asymmetric contracts for two symmetric agents, that is,

𝜋(H, L) > max{𝜋(H,H), 𝜋(L, L)} for DS ∈ (A1,A2) where A1 and A2

are values such that A1 < DS(2) < A2. The Appendix provides the

values for A1 and A2.

4 ONE VERSUS TWO AGENTS

In the previous section, we assumed that the number of agents

employed is fixed. In practice, however, P is often not only responsible

for designing the incentive systems but also decides how many agents

are hired in the first place. The trade-off is between the positive

contribution of additional agents to the probability of at least one

success, and the need to reward (possibly) more successful agents and

pay additional administration costs. We will restrict our investigations

to scenarios with two symmetric agents and compare it with employing

a single agent. For simplicity, we will focus on equilibria in pure

strategies but allow for asymmetric contracts. As hiring takes place

before P sets prizes, we solve for the optimal employment decision

by backward induction, where optimal incentives have already been

established in the previous sections.

In the single agent case, we have already established that 𝜋(H) >

𝜋(L) if DS > DS(1) = pH∕(pH − pL)2. For two agents, we have already

shown that𝜋(H,H) > 𝜋(L, L) if DS > DS(2), where DS(2) = 2pH∕[(pH −
pL)2(2 − pH − pL)], and similarly, 𝜋(H, L) > 𝜋(L, L) if DS > A1 and

𝜋(H,H) > 𝜋(H, L) if DS > A2, where D(1) < A1 < D(2) < A2.

However, we also have to compare when P prefers to hire a single

agent to the scenarios of hiring two agents. P's preferred number of

agents will depend on the administration costs d. To avoid numerous

case distinctions, we will assume, in the sequel, that

pH > 2pL − p2
L . (4)

This condition assures that the probability of success of one

high-effort agent is larger than the joint probability of success of two

low-effort agents.
2

While agents providing low effort do not have to be compensated,

every agent causes administration cost of d. Thus, P prefers to employ

two low-effort agents instead of one if d is sufficiently small. Formally,

𝜋(L, L) > 𝜋(L) if d < DS(pL −p2
L
), or equivalently, DS > d∕(pL −p2

L
) =∶ V1.

Similarly, P prefers two high-effort agents to one high-effort agent,

that is 𝜋(H,H) > 𝜋(H), if DS > (pH − d(pH − pL))∕[(pH − pL)pH(1 −
pH)] = ∶ V5. Similar calculations show that 𝜋(L, L) > 𝜋(H) if DS >

(pH −d(pH −pL))∕[(pH −pL)(pH −2pL +p2
L
)] =∶ V2. Finally, 𝜋(H,H) > 𝜋(L)

if DS > (d(pH − pL) + 2pH)∕[(pH − pL)(2pH − p2
H
− pL)] (> DS(1)).

Comparing a single agent to asymmetric contracts for two agents

shows that 𝜋(H, L) > 𝜋(L) if DS > (pH + d(pH − pL))∕[(pH − pL)pH(1 −
pL)] = ∶ V3, and 𝜋(H, L) > 𝜋(H) if DS > d∕[(1 − pH)pL] = ∶ V4.

Some calculations show that A1 = V2 if d = pH(1 − pH)pL∕[(pH −
pL)2(1 − pL)] = ∶ d1, D(1) = V2 if d = pH(1 − pL)pL∕(pH − pL)2 =∶ d2,

and A2 = V5 if d = pHpL∕(pH − pL)2 =∶ d3, where condition (4)

guarantees that 0 < d1 < d2 < d3.

In order for P to hire any agent, her expected profit has to be

positive. In particular, P prefers hiring one low-effort agent rather than

not if DS > d∕pL. Similarly, P prefers one high-effort agent over not

hiring this agent if DS > W + d∕pH . Comparing these two thresholds

for the project's value, we find that the latter is smaller if and only if

d > d3.

Dependent on the level of the administration costs, P's optimal

choice of the number of agents and the preferred level of effort(s)

vary significantly. For instance, if d is sufficiently small, that is, if

d < d1 holds, we find that V1 has the smallest value of all thresholds

for possible regime changes.
3

Thus, P prefers a single agent exerting

low effort if DS < V1. Because P's profits are positive if DS > d∕pL,

she will hire a single agent providing low effort if DS ∈ [d∕pL,V1]. If

DS increases above V1, P will hire an additional agent, but both will

provide low effort. Because for d < d1, V2 > A1 holds, this strategy

is dominant for DS ∈ [V1,A1]. For DS ∈ [A1,A2], P prefers different

contracts if two agents are hired. As D(1) < A1 and V4 < A1 hold

in this scenario, P also prefers asymmetric contracts over hiring a

single agent. Because V3,V4 < A2, P will change to employing two

high-effort agents if DS increases further such that DS > A2.

Proposition 2 describes P's preferred workforce and effort levels

for all possible values of the administration costs.

Proposition 2. If pH > 2pL −p2
L

holds, P's choice between one versus

two agents is as follows.

(i) If d < d1, (L) is optimal for d∕pL < DS < V1, (L, L) for DS ∈
[V1,A1], (H, L) for DS ∈ [A1,A2], and (H,H) for DS > A2.

(ii) If d ∈ [d1, d2], (L) is optimal for d∕pL < DS < V1, (L, L) for

DS ∈ [V1,V2], (H) for DS ∈ [V2,V4], (H, L) for DS ∈ [V4,A2],
and (H,H) for DS > A2.

(iii) If d ∈ [d2, d3], (L) is optimal for d∕pL < DS < DS(1), (H)
for DS ∈ [DS(1),V4], (H, L) for DS ∈ [V4,A2], and (H,H) for

DS > A2.

(iv) If d > d3, (H) is optimal for DS ∈ [W + d∕pH,V5], and (H,H) for

DS > V5.

We see that, dependent on the administration costs, P's preferred

workforce and types of effort vary significantly. For instance, for

d ∈ [d1, d2], as DS increases, P will change from hiring one low-effort

agent to two low-effort agents at V1, to a single high-effort agent

at the threshold V2, to two differently rewarded agents at V4 and

two high-effort agents at A2. Hence, Proposition 2 establishes that

P's hiring decision does not necessarily follow a monotone pattern.

Rather, it is possible that the number of agents decreases as the

project's value increases.

For the specific probabilities of success pH = 0.4 and pL = 0.1,

we have d1 = 8∕27 ≈ 0.30, d2 = 0.40, d3 = 4∕9 ≈ 0.44, A1 =
400∕81 ≈ 4.9, A2 = 200∕27 ≈ 7.4, V1 = 100d∕9 ≈ 11.1d, V2 =
(400 − 300d)∕63, V3 = (100 + 75d)∕27, V4 = 50d∕3 ≈ 16.7d

and V5 = (100 − 75d)∕18. P's expected profit 𝜋(L) is positive for

DS > 0.4d, and 𝜋(H) > 0 if DS > (20 + 15d)∕6 ≈ 3.33 + 2.5d. For
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FIGURE 1 Employment of one versus two agents for varying
magnitudes of the project's value DS and administration costs d. The
parameters are pH = 4∕10 and pL = 1∕10

this example, the regions of optimality of the various hiring options

from Proposition 2 are depicted in Figure 1.

5 SEQUENTIAL EFFORTS

Up to now, we only considered agents that deliver their efforts

simultaneously. Alternatively, a firm can induce independent agents to

work sequentially. For two agents, Section 3 shows the solution to the

principal's problem for simultaneous effort. If the principal employs

agents in series, the principal will employ a second agent (i.e., Agent

2) only if the first agent (Agent 1) failed because in our setting, it is

sufficient that one agent succeeds. Hence, the principal can benefit

from the real option of not employing the second agent after observing

the first agent's success. Yet sequential efforts come at a cost for the

principal reflected by the discounting of the project's value realized

at a later point in time. Specifically, P's expected profit of employing

agents sequentially is

max{0, p1(DS − w1
S ) − d} + (1 − p1)𝛿 max{0, p2(DS − w2

S ) − d}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶Π2

, (5)

where p1 ∈ {pL, pH} and p2 ∈ {pL, pH} depict the probability of

success of Agents 1 and 2, respectively, and 𝛿 ∈ [0,1] is the discount

factor.

In order to incentivize Agent 2 to exert high effort, after observing

the first agent's success, the principal sets w2
S
= W, and w2

S
= 0,

to induce low effort. Solving by backward induction (at the end of

the first period, the second period becomes the current period, so

no discounting is needed here), the principal generally employs the

second agent if and only if

d < max{pLDS, pH(DS − W)} =∶ d0, (6)

and the principal will induce high effort by Agent 2 if

DS >
pHW

pH − pL
. (7)

Let Π∗
2
≥ 0 denote the maximized expected profit generated by the

second agent. In particular, Π∗
2
> 0 if d < d0. For d ≥ d0, P does not

hire a second agent, so Π∗
2
= 0. Consequently, for d ≥ d0, the second

agent is irrelevant and P's decision whether to hire the first agent

is also determined by condition (6). If this condition holds, P hires

two agents sequentially, if not, no agent is hired. Hence, sequential

employment of two agents always dominates committing to employ a

single agent.

To motivate high effort by the first agent the principal sets w1
S
= W,

and w1
S
= 0 else. Inducing high effort by Agent 1 is optimal if

Π∗
2 <

1
𝛿

(
DS −

pHW
pH − pL

)
. (8)

The discount factor critically affects whether the principal prefers

simultaneous or sequential efforts, and sequential efforts become

more favorable for increasing values of 𝛿. Consider the case when

the principal prefers two high-effort agents under both regimes

and let 𝛱(H,H)seq and 𝛱(H,H)sim denote the principal's expected

profits of agents working sequentially, or simultaneously, respec-

tively. Comparing the expected profits yields that the decision

whether high-effort agents should work simultaneously or in series

always depends on the discount factor, as captured in the fol-

lowing Proposition 3. Similar comparisons can be made for the

whole parameter region, with agents not necessarily providing high

effort.

FIGURE 2 Optimal strategy with two agents for varying magnitudes
of the project's value DS and the discount factor 𝛿. The parameters
are pL = 1∕10, pH = 3∕10, and d = 1∕3
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Proposition 3. For high-effort agents, the discount factor that deter-

mines whether the principal prefers agents to work simultaneously or

sequentially has always an interior solution. Particularly,

Π(H,H)seq > Π(H,H)sim ⇐⇒ 𝛿 >
pH[(1 − pH)DS − W] − d

(1 − pH)(pHDS − pHW − d)
=∶ 𝛿,

(9)

where 0 < 𝛿 < 1.

Figure 2 presents an example of the principal's preferred strategy

for two agents for varying magnitudes of the project's value and the

discount factor.

6 ASYMMETRIC AGENTS

In our analysis above, all agents are homogeneous. In this section, we

allow agents to differ in their ability. More specifically, let us denote

a ‘‘good' agent by G and a ‘‘bad’’ agent by B. When P hires agents,

she does not know the agents' type. However, the fraction of good

agents, q, is public knowledge.

Both types of agents can either exert high (H) or low (L) effort, and

their effort can result in success or failure. The respective probabilities

of success are 0 ≤ pGL < pGH ≤ 1 for G, and 0 ≤ pBL < pBH ≤ 1 for

B, where pBL < pGL and pBH < pGH . Additionally, we assume that

pGH − pGL ≥ pBH − pBL (i.e., pGH − pBH ≥ pGL − pBL), (10)

which expresses that G benefits more from high effort than B4
.

Additionally, exerting high effort can be more costly for a bad agent.

Although, as in the previous sections, the costs of providing high effort

are c(H) = 1 for a good agent, b ≥ 1 captures the monetized value of

effort for a bad-type agent.
5

In this section, the agents are risk neutral.

6.1 Single agent of unknown type

The incentive constraints for the two types of agents are

G ∶ pGHwS − 1 ≥ pGLwS ⇒ wS ≥
1

pGH − pGL
∶= MG, (11)

B ∶ pBHwS − b ≥ pBLwS ⇒ wS ≥
b

pBH − pBL
∶= MB, (12)

where we already incorporated that wF = 0 in equilibrium. Assumption

(10) and b ≥ 1 guarantee that MG
≤ MB . Hence, P finds it easier to

motivate G to exert high effort. In fact, if wS ≥ MB holds, both types

select H, but if MG
≤ wS < MB , only G selects H and B selects L.

Alternatively, if rewards are too low, that is, wS < MG , both types

select L.

Consequently, P has three options:

(i) wS = MB . Then P's expected profit is

qpGH(DS − MB) + (1 − q)pBH(DS − MB) − d

= [qpGH + (1 − q)pBH]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶pH

(DS − MB) − d. (13)

(ii) wS = MG . Then P's expected profit is

qpGH(DS − MG) + (1 − q)pBL(DS − MG) − d

= [qpGH + (1 − q)pBL]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶p

(DS − MG) − d. (14)

(iii) wS = 0. Then P's expected profit is

qpGL(DS − 0) + (1 − q)pBL(DS − 0) − d

= [qpGL + (1 − q)pBL]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶pL

DS − d, (15)

where pH > p > pL.

Comparing P's expected profits reveals

(i) > (ii) ⇐⇒ DS >
pHMB − pMG

pH − p
∶= D1, (16)

(i) > (iii) ⇐⇒ DS >
pHMB

pH − pL

∶= D2, (17)

(ii) > (iii) ⇐⇒ DS >
pMG

p − pL

∶= D3. (18)

It is easy to show that D1 ≥ D2 ≥ D3 if and only if b is sufficiently

large, that is,

b >
p

pH

· (pBH − pBL)
(pGH − pGL)

·
pH − pL

p − pL

. (19)

In that case, if DS ≥ D1, (i) is best; if D3 ≤ DS ≤ D1, (ii) is best; and

if DS ≤ D3, (iii) is best. If b is sufficiently small so that (19) does not

hold, (iii) is best if DS < D2 and (i) is best if DS > D2. Condition (19),

however, is only informative if the rhs is larger than 1.

6.2 Two agents of unknown type

When P employs two agents, she has the same three options of setting

the prizes:

(i) wS = MB , so that both types select H and P's expected profit is

�̃�(H,H) = pH

{
DS(2 − pH) − 2MB

}
− 2d, (20)

where �̃�(aG, aB) denotes P's expected profit with two agents if

any G-type agent provides aG and any B-type agent provides aB ,

with aG , aB ∈ {L,H}.

(ii) wS = MG , so that G selects H and B selects L. Then P's expected

profit is

�̃�(H, L) = p
{

DS(2 − p) − 2MG
}
− 2d. (21)

(iii) wS = 0, so that both types select L.

�̃�(L, L) = pLDS(2 − pL) − 2d. (22)

Comparing expected profits of the three options, we find

�̃�(H, L) > �̃�(L, L) ⇐⇒ DS >
2pMG

p(2 − p) − pL(2 − pL)
∶= D̃3, (23)

�̃�(H,H) > �̃�(L, L) ⇐⇒ DS >
2pHMB

pH(2 − pH) − pL(2 − pL)
∶= D̃2, (24)

�̃�(H,H) > �̃�(H, L) ⇐⇒ DS >
2pHMB − 2pMG

pH(2 − pH) − p(2 − p)
∶= D̃1, (25)

where

D̃1 > D̃2 > D̃3 if b >
p

pH

(pBH − pBL)
(pGH − pGL)

[pH(2 − pH) − pL(2 − pL)]
[p(2 − p) − pL(2 − pL)]

=∶ b̃.

(26)
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If b̃ ≤ 1, (26) holds, as b > 1 per assumption. If DS = 0, we

find �̃�(L, L) > �̃�(H, L) > �̃�(H,H) because MB
≥ MG and pH > p.

However, all three expected profits are linearly increasing in DS ,

where 𝜕�̃�(H,H)∕𝜕DS > 𝜕�̃�(H, L)∕𝜕DS > 𝜕�̃�(L, L)∕𝜕DS for all DS > 0.

Consequently, if DS is sufficiently high, �̃�(H,H) is best for P.

More specifically, if the bad agent's costs of high effort are moder-

ate, that is, 1 ≤ b ≤ b̃, P will want both agents to exert the same level

of effort, because for DS ∈ [0, D̃2], �̃�(L, L) is best, and �̃�(H,H) is best

for DS ≥ D̃2. Else, if b is sufficiently high, that is, b > b̃, there exists a

region where asymmetric contracts are preferred by P, in the sense

that a G-type agent exerts high effort, whereas a B-type agent exerts

low effort. That is, for b > b̃, �̃�(L, L) is best for DS ∈ [0, D̃3], �̃�(H, L) for

DS ∈ [D̃3, D̃1], and �̃�(H,H) for DS ≥ D̃1.

As a consequence of the result above, we can conclude that

for increasing b, which can be interpreted as an indicator for the

agents' heterogeneity, asymmetric contracts are more likely to appear.

Formally, if b > b̃, D̃1 is increasing in b, so the interval for DS ,

where �̃�(H, L) is best, becomes larger. Intuitively, as it becomes more

expensive to motivate a B-type agent to exert high effort, the (H,H)
equilibrium becomes less attractive.

7 SUPPORT BY THE PRINCIPAL

7.1 Support with two homogeneous agents

In the basic model, the agents' effort choice determines the proba-

bility of success. However, in many situations, P has an opportunity

to support agents in order to be successful, for example, by provid-

ing guidance, expertise, information, or better working conditions. For

example, a university provides its faculty members with an office, fur-

niture, equipment, and other help in research. To induce a researcher

to publish more and more, however, increasing increments of support

will be needed. Because P cannot observe whether agents provided

high or low effort, support will influence the probability of success

associated with both types of effort. We first model support in a simple

manner, such that both probabilities are multiplied by a factor denoted

by z. Consequently, an agent exerting high effort will be successful

with probability z · pH , and the low-effort agent with probability z · pL.

If P selects z = 1, the agents receive no support from the principal.

More specifically, we extend the basic model so that P can influence

the probability of success by a factor z ∈ [1, z̄] with 1 < z̄ < 1∕pH. Pro-

viding support will usually induce costs for P. Let C(z) denote direct

costs P has to bear for maintaining support at level z, where C(1) = 0

and C(z) is increasing and convex in z (see also Laux, 2017). In this

section, we will restrict our attention to equilibria in pure strategies

with symmetric contracts. Before the agents choose their effort, they

are assumed to know the level of support P will provide.

The PCs for agents supplying high or low effort are

zpHwS + (1 − zpH)wF ≥ 1 and (PCz
H

)

zpLwS + (1 − zpL)wF ≥ 0, (PCz
L
)

respectively.

If two agents exert low effort, P does not have to compensate the

agents, that is, wF = wS = 0, and P's expected profit is 𝜋(L, L) =

(2zpL − z2p2
L
)DS − C(z) − 2d. Thus, the optimal level of support z∗ will

solve the FOC

2pL(1 − z∗pL)DS = C′(z∗). (27)

At the optimum, the marginal increase in the expected profit by

providing support equals the marginal cost of support.

If P wants the agents to exert high effort, P's optimization problem

is subject to the additional incentive constraint,

zpHwS + (1 − zpH)wF − 1 ≥ zpLwS + (1 − zpL)wF . (ICz)

If (ICz) holds, this implies that (PCz
H

) holds. As P will set wF = 0 at

the optimum, the optimization can be stated as

max
wS ,z

(2zpH − z2p2
H)DS − 2zpHwS − C(z) (28)

s.t. (ICz) ⇐⇒ zpHwS − 1 ≥ zpLwS ⇐⇒ wS ≥
W
z
. (29)

P will optimally set wS to its lower bound, wS = W∕z. The first

derivative of (28) with respect to z then yields

2pH(1 − zpH)DS − 2pHwS − 2zpH
𝜕wS

𝜕z
− C′(z). (30)

Apparently, increasing support affects P in various ways. The first

term accounts for the higher probability of success and, thus, higher

expected profits. The second term, however, indicates that support

also increases the probability that P has to pay compensation, which

reduces her expected profits. On the other hand, the prize P has to

award for success, wS = W∕z, which becomes smaller as support

increases, so that the partial derivative is negative and thus the

third term positive. Finally, the last term depicts the marginal cost of

support. Substituting the optimal prize, we find that the second and

third terms cancel each other out, and so, the FOC with respect to

support simplifies to

2pH(1 − zpH)DS = C′(z). (31)

Again, the marginal increase in expected profits equals the marginal

cost of providing support.

If both As had to be successful in order to constitute a project's

success, the likelihood ratio would be

Pr(both agents succeed|(L, L))
Pr(both agents succeed|(H,H))

= (zpL)2

(zpH)2
=

p2
L

p2
H

, (32)

which is independent of z. However, in our setting,

Pr(at least one agent succeeds|(L, L))
Pr(at least one agent succeeds|(H,H))

= 1 − (1 − zpL)2

1 − (1 − zpH)2

= pL(2 − zpL)
pH(2 − zpH)

,

(33)

which does depend on z.

7.2 Diminishing returns of support

We now model P's influence on the probabilities of success via a

concave power function. P can choose support u ∈ [0,1] such that an

agent exerting high effort will be successful with probability 1+pH−pu
H

.
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Low values of u therefore indicate a low level of support, whereas

high levels of u indicate high support. For instance, if P selects u = 0,

the probability of success for an agent exerting high effort remains

pH; that means that the agent does not receive any ‘‘help’’ from P. In

contrast, u = 1 indicates full support. In that case, an agent exerting

high effort will certainly be successful.

Because P cannot observe whether agents provided high or low

effort, support will influence both types of agents. More precisely,

when P chooses support u, a low-effort agent will achieve success

with probability k(1+ p̂L − p̂u
L
) with k < 1, where in case of no support,

that is, u = 0, kp̂L = pL. Even if P decides to fully support the agents,

so u = 1, an agent exerting low effort will not always be successful

because k ·1 < 1. Also, kp̂L < pH for all k < 1, and thus, kp̂u
L
< pu

H
for all

k < 1 and all 0 ≤ u ≤ 1. Again, in our setting, support influences the

likelihood ratio of success, which, in consequence, leads to different

incentives as compared with the basic model in Section 2. We will

later refrain from assuming costly support, that is, we shall assume

C(u) = 0∀ u, in order to highlight potential negative consequences of

supporting that can arise even without any direct costs.

The participation constraints for a single agent supplying high or

low effort are

(1 + pH − pu
H)wS + (pu

H − pH)wF ≥ 1 and (PCu
H

)

k(1 + p̂L − p̂u
L)wS + (1 − k(1 + p̂L − p̂u

L))wF ≥ 0, (PCu
L

)

respectively. If P cannot observe the agent's action and wants the

agent to exert high effort, P's optimization problem is subject to the

additional incentive constraint,

(1 + pH − pu
H)wS + (pu

H − pH)wF − 1 ≥ (k + kp̂L − kp̂u
L)wS

+ (1 − k − kp̂L + kp̂u
L)wF . (ICu)

If (ICu) holds, this implies that (PCu
H

) holds. So, if P wants the agent

to exert high effort, she solves the optimization problem

max
wS ,wF ,u

{
(1 + pH − pu

H)(DS − wS) − (pu
H − pH)wF − C(u)

}
(34)

s.t. (1 + pH − pu
H − k − kp̂L + kp̂u

L)wS (35)

≥ (1 + pH − pu
H − k − kp̂L + kp̂u

L)wF + 1.

Because (1 + pH − pu
H
− k − kp̂L + kp̂u

L
) > 0, we can infer that P will

optimally set wF = 0. Consequently, the optimization problem can be

rewritten as

max
wS ,u

{
(1 + pH − pu

H)(DS − wS) − C(u)
}

(36)

s.t. (1 + pH − pu
H − k − kp̂L + kp̂u

L)wS ≥ 1 ⇐⇒ (37)

wS ≥
1

1 + pH − pu
H
− k − kp̂L + kp̂u

L

.

P will optimally set wS to its minimum, wS = 1∕(1 + pH − pu
H
− k −

kp̂L + kp̂u
L
).

In order to highlight negative consequences of support, we now

assume that support is free, C(u) = 0 ∀u. Substituting the prizes into

(36), the problem becomes

max
u

{
(1 + pH − pu

H)
(

DS −
1

Q(u)

)}
, (38)

where Q(u) ∶= 1 + pH − pu
H
−
(

k + kp̂L − kp̂u
L

)
> 0. Thus, the derivative

with respect to u is

−pu
H ln(pH)

(
DS −

1
Q(u)

)
+
(1 + pH − pu

H
)(−pu

H
ln(pH) + kp̂u

L
ln(p̂L))

Q(u)2
. (39)

So, for the derivative to be positive, we need that

(1 + pH − pu
H)

[
kp̂u

L ln(p̂L) − pu
H ln(pH)DS

(
1 + pH − pu

H − 2(k + kp̂L + kp̂u
L)
)]

− pu
H ln(pH)(k + kp̂L − kp̂u

L)
(

DS(k + kp̂L − kp̂u
L) + 1

)
> 0.

(40)

Condition (40) holds for k sufficiently small or DS sufficiently large.

Only then will P optimally set u = 1, that is, P will choose full support.

However, if, for instance, DS is sufficiently small, P will optimally

refrain from providing support. From the basic model in Section 2.1,

we know that if P wants the single agent to exert low effort, she will

set wF = wS = 0. In that case, maximum support is optimal, so that

u = 1 and P's expected profit is k(1 + p̂L − p̂1
L
)DS = kDS.

8 CONCLUDING REMARKS

We analyze a multiagent model where it only matters to P whether

at least one A was successful. If P can also decide on the size of the

workforce, she faces a trade-off employing an additional agent. Every

additional agent increases the probability that at least one agent is

successful. However, besides additional administration costs P has

to bear, as the number of agents increases, the number of potential

rewards P has to pay increases too. We identify conditions when P

refrains from employing additional agents but would rather employ a

single agent that exerts high effort. Also, we show that the number of

agents preferably employed by P is not necessarily monotone in the

project's value for the principal. Usually, higher project values increase

the principal's demand for additional agents. However, depending on

the administration costs, it is possible that when the principal's value

from the project increases, she prefers a single (high-effort) agent over

two (low-effort) agents. As an extension, we then consider sequential

efforts by agents. We further allow for asymmetric agents, where

P ex ante does not know the agents' abilities. We then allow P to

support (help) the agents by increasing their success probability. We

consider support that multiplies the probabilities, as well as one that

exponentializes them.

We believe that our analysis provides various avenues for further

extensions and future research. In one such scenario, P may know the

agents' types, reflected in their probabilities of success and/or their

costs of exerting high effort, but be required (by law) to offer all an

identical contract.

Although we assumed that the agents work on the same

task/project independently, one can conceive of situations where the

agents' achievements are positively correlated (either due to common

external factors or due to some degree of team work). In contrast

to our setting, a principal can then benefit from relative performance

evaluation. There are also scenarios where, instead of asking all agents

to try to (successfully) complete the entire task, the principal splits it

and gives each agent a different subtask. That will require all agents
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to be successful, but if so, the project can be completed faster. This is

the motivation behind outsourcing, subcontracting, division of labor,

and specialization.

ENDNOTES
1 The principal's main goal in Laux (2017) is to use support to supplement

monitoring to make inferences about the agents' abilities so as to
decide who to retain employed.

2 If, in contrast, pH < pL(2 − pL), the joint probability of success of
two low-effort agents is larger than the probability of success of one
high-effort agent. Because P does not need to compensate agents
providing low effort, incentivizing one agent to work hard is always a
dominated strategy.

3 That is, V1 = min{A1,A2,V1,V2,V3,V4,V5}.
4 Presumably, relative to the probabilities of success with symmetric

agents, pBH ≤ pH ≤ pGH and pBL ≤ pL ≤ pGL .
5 Hence, if pGH = pH , all agents in earlier sections were G-type agents.
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APPENDIX

Proof of Lemma 1. The rhs of (3) is increasing in the number of

agents if(
1 − pL

1 − pH

)n

≥
1 + npH

1 + npL
⇐⇒ (1 − pL)n(1 + npL)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶f(pL ,n)

≥ (1 − pH)n(1 + npH)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶f(pH ,n)

.

(A1)

Calculating the first derivative of f(p, n) with respect to its first

argument yields

𝜕f(p, n)
𝜕p

= −n(1 + n)(1 − p)n−1p. (A2)

Thus, for p ∈ (0,1) and n ≥ 1, this derivative will always be

negative, and f(p, n) is decreasing in p. Because 0 < pL < pH < 1,

that means that f(pL, n) > f(pH, n) for all n ≥ 1, and consequently,

the rhs of (3) is increasing in the number of agents employed.

Proof of Proposition 1. P's expected profit in case of asymmetric

contracts for two symmetric agents is

𝜋(H, L) = pH

[
DS − W

]
+ (1 − pH)pLDS − 2d, (A3)

= (pH + pL − pHpL)DS − pHW − 2d, (A4)

where

𝜋(H, L) > 𝜋(L, L) ⇐⇒ DS >
pH

(pH − pL)2(1 − pL)
∶= A1 and (A5)

𝜋(H,H) > 𝜋(H, L) ⇐⇒ DS >
pH

(pH − pL)2(1 − pH)
∶= A2. (A6)

For 0 < pL < pH < 1, there exists a nonempty region, that

is, DS ∈ [A1,A2], with A1 < DS(2) < A2, where P prefers

asymmetric contracts for two symmetric agents.

https://orcid.org/0000-0002-2189-9268
https://orcid.org/0000-0002-2189-9268
https://ssrn.com/abstract=3327799
https://doi.org/10.1002/mde.3006
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Proof of Proposition 2. Part (i) in text. The proofs for the other

parts work analogously. For (iv), the threshold that 𝜋(H) is positive

is DS > W + d∕pH . However, for d > d3, we find DS(1) <

W + d∕pH . Hence, both a low-effort and a high-effort single agent

yield negative profits for DS < DS(1).

Proof of Proposition 3. Inspecting the threshold in (9), on the one

hand, 𝛿 < 1 if pH(DS − W) > d, which must hold because else hir-

ing a high-effort agent would result in negative expected profits.

Hence, the denominator in (9) is positive, and 𝛿 > 0 if DS >

(pHW + d)∕[pH(1 − pH)]. This condition is necessary for P ex ante

to prefer high effort by two simultaneous agents over a single

high-effort agent. Because we only consider scenarios where

(H,H)sim is P's preferred strategy in the simultaneous efforts

setting, we conclude that 0 < 𝛿 < 1.
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