
B Methodological details

B.1 NMIG prior

In order to perform variable selection in regression models, Ishwaran and Rao (2005) proposed

the normal-mixture of inverse Gamma (NMIG) prior for the linear regression coefficients:

βk ∼ NMIG(v0, w, aτ , bτ ), k = 1, . . . ,K,

with an additional prior on the sizes of the two-component mixture (w, 1− w) given by

w ∼ Beta(a, b). (B.1)

The NMIG prior can be defined using a hierarchical representation where latent allocation

variables γk are introduced for the mixture to indicate if the coefficients are assigned to the

spike or the slab:

βk|γk, τ2
k ∼ N(0, ((1− v0)γk + v0)τ2

k ), k = 1, . . . ,K,

γk ∼ Bernoulli(w), k = 1, . . . ,K,

τ2
k ∼ Gamma−1(aτ , bτ ), k = 1, . . . ,K.

The NMIG prior uses a non-degenerate spike distribution which is a re-scaled version of the

slab distribution, i.e., the slab variance is multiplied by a small fixed constant v0. For the

slab a hierarchical prior distribution is used consisting of a normal distribution with variance

τ2
k and an inverse Gamma distribution for the variance τ2

k .

B.2 peNMIG prior

Scheipl et al. (2012) propose the parameter expanded NMIG (peNMIG) prior as an extension

to the NMIG prior which is particularly suitable to simultaneously assign all coefficients δk

corresponding to the non-linear term of variable k jointly to the spike or slab component. The

peNMIG prior is based on a multiplicative parameter expansion strategy which introduces

only partially identifiable working parameters to enable simultaneous selection or deselection

of large coefficient batches. In this way a good mixing behaviour of the MCMC sampler is

retained. This would not be achieved if the NMIG prior were directly used as a multivariate

prior for simultaneous inclusion and exclusion of a set of coefficient values. In the peNMIG

prior a scalar parameter is used to decide if all coefficients δk corresponding to the same linear

or non-linear effect are assigned to the spike or slab.
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In SSG the peNMIG prior is specified for both sets of regression coefficients:

βk ∼ peNMIG(v0, w, aτ , bτ ), k = 1, . . . ,K,

δk ∼ peNMIG(v0, w, aτ , bτ ), k = 1, . . . ,K,

with w drawn as for the NMIG prior given in Equation (B.1).

The hierarchical representation of the peNMIG prior for δk is given by

δk = ζkξk, k = 1, . . . ,K,

ζk ∼ N(0, ((1− v0)γsmooth
k + v0)τ2

k ), k = 1, . . . ,K,

ξlk ∼ N(mlk, 1), l = 1, . . . , Lk; k = 1, . . . ,K,

mlk ∼
1

2
δ1(mlk) +

1

2
δ−1(mli), l = 1, . . . , Lk; k = 1, . . . ,K,

γsmooth
k ∼ Bernoulli(w), k = 1, . . . ,K,

τ2
k ∼ Gamma−1(aτ , bτ ), k = 1, . . . ,K,

The univariate variable ζk is used for updating γsmooth
k and τ2

k . The vector ξk has the absolute

values of its entries shrunken towards one through the mixture prior with means at ±1 in order

to ensure that in fact ζk captures the “importance” of δk. The hierarchical representation of

the peNMIG prior for βk is analogous to the one of δk with γlin
k representing the inclusion

indicator for the linear term of the kth covariate.

The peNMIG prior shows desirable shrinkage properties if the marginal priors on the regres-

sion coefficients are analysed. The marginal peNMIG prior has a spike at zero and heavy tails

which imply redescending score functions. This ensures Bayesian robustness of the resulting

shrinkage estimators. This desirable combination is similar to other shrinkage priors, includ-

ing the horseshoe prior (Carvalho et al. 2009). A detailed analysis of the shrinkage properties

is given in Scheipl et al. (2012). In addition the marginal prior has been shown to be rather

insensitive to the specific choice of the prior parameter values v0, aτ and bτ .

B.3 Inference and hyper-parameter values

For model fitting the R package BMS (Zeugner and Feldkircher 2015) is used for BMA and

the R package spikeSlabGAM (Scheipl 2011) for SSG. SSG is used to fit two different model

classes: (1) a model class including only linear terms (“SSG-linear”) and (2) a model class

including linear and non-linear terms (“SSG-smooth”).

For both packages the default settings for the prior specifications are used. That is, for

BMA the hyper-parameters are set to a = b = 1 and g = n in the g-prior for the regression

coefficients. This implies that a uniform prior is used for the prior inclusion probabilities of the
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single covariates and that the unit information prior is used for the g-prior as recommended

by Eicher et al. (2011). In addition an improper prior corresponding to the Jeffreys prior is

used for σ2.

For SSG the hyper-parameters for w are also set to a = b = 1. Thus the same prior setting is

used for the variable inclusion parameter for both approaches. In addition the scaling factor

for the spike is set to v0 = 0.00025 and the hyper-parameters for τ2
k to aτ = 5, bτ = 25.

Scheipl (2011) suggests these values based on validations made in many simulations and data

examples. The shrinkage properties of the peNMIG prior have been shown to be fairly robust

to the specific choice of v0, aτ , and bτ (Scheipl et al. 2012). Spline basis expansions for the non-

linear terms are used with 20 cubic B-spline basis functions with equidistant knots across the

covariates’ ranges in the original basis. Non-linear terms are only included for variables with

at least 3 unique different values, i.e., binary variables are excluded. The hyper-parameters

for σ2 are set to aσ = bσ = 0.0001 implying that a proper prior distribution is used for σ2

which approximates p(σ2) ∝ σ2 (Lunn et al. 2012, p. 87). Hence the prior for σ2 is close to

the improper prior used in BMA.

B.4 A joint framework for BMA and SSG-linear

In the following a prior specification for the regression coefficients β = (β1, . . . , βK) and the

other parameters is considered which represents a general framework encompassing BMA and

SSG as special cases:

β ∼ N (0,diag(ν)Adiag(ν)) ,

νk =
√

((1− v0)γk + v0τk, k = 1, . . . ,K,

γk ∼ Bernoulli(w), k = 1, . . . ,K,

w ∼ Beta(a, b),

τ2
k ∼ Gamma−1(aτ , bτ ), k = 1, . . . ,K,

α, σ2 ∝ Gamma−1(aσ, bσ).

where ν = (ν1, . . . , νK) and diag(·) creates a diagonal matrix.

In BMA the following specifications are used:

A =

(
1

g
X>X

)−1

, v0 = 0, g = n, τ2
k ≡ τ2 = σ2 ∝ 1

σ2

for all k = 1, . . . ,K. The variance of the regression coefficients τ2
k is assumed to be equal for

all k = 1, . . . ,K and coupled with the variance of the noise σ2. In addition a fixed value for

g corresponding to the unit information prior is used.
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In SSG the specifications used are:

A = I, v0 = 0.00025, aτ = 5, bτ = 25, aσ = bσ = 0.0001.

where I is the identity matrix of dimension K.

The following differences between BMA and SSG can be observed:

(1) The spike distribution corresponds to a degenerate Dirac distribution in BMA, whereas

SSG uses a continuous non-degenerate distribution. This corresponds to a different choice

of the parameter v0 which is set to zero for BMA and equal to 0.00025 in SSG. As a conse-

quence, regressors where coefficients are assigned to the spike, are actually excluded from

the model in BMA, whereas in SSG they are always included in the model. Coefficients

assigned to the spike have values which are different from zero, but are very small.

(2) The slab distributions are g-priors in BMA. In BMA the variance of the slab distribution

is scaled by the residual variance and the parameter g. The value of g in BMA influences

the posterior inclusion probabilities and thus the posterior model sizes. In SSG the

variance is scaled by a separate parameter specific to each linear or non-linear term.

These parameters are adaptively determined in a data-driven way by imposing a hyper-

prior on them. This adaptivity is important to select a suitable smoothness for the non-

linear terms. It also increases the complexity of the model fitted with SSG compared to

BMA. In SSG for each linear and non-linear term a suitable shrinkage value is adaptively

determined. In BMA the same amount of shrinkage is applied to all regression coefficients

using the fixed parameter g.

(3) The different values for A induce a different shrinkage behaviour. In case of BMA each

OLS regression coefficient is shrunken proportionally, whereas in SSG the OLS regression

coefficients are shrunken along the principal components with coefficients contributing to

low-variance principal components being shrunken more.

(4) An improper prior on σ2 is used in BMA. For SSG an inverse Gamma prior is used

with very small values (i.e., 0.0001) for the hyper-parameters inducing a proper prior.

The inverse Gamma prior used in SSG converges to the improper prior of BMA if both

hyper-parameter values go to zero.

In BMA and SSG the same prior structure is employed for the variable/term inclusion indica-

tors γ. Despite the matching of the prior inclusion probabilities, differences in the posterior

inclusion probabilities might occur due to the lack of matching of the slab distributions as

well as their different shrinkage behaviour. A careful matching of the slab priors would be

required to at least induce the same mean posterior model size.
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BMA has the advantage that the marginal likelihoods are analytically given. Thus, the

indicator vector for variable inclusion γ can be directly sampled without conditioning on

the regression coefficients using a collapsed Gibbs sampler. The posterior distributions for

the regression coefficients are determined in a separate step and can be calculated in closed

form given the posterior distribution of γ. In SSG an expanded Gibbs sampling scheme

is employed where the indicator vector for variable inclusion γ is sampled along with the

regression coefficients and the penalty parameters which have hierarchical priors.

B.5 DIC calculation for BMA

The DIC is given by

DIC = D(θ) + pD = 2D(θ)−D(θ),

whereD(·) is the deviance andD(θ) is the mean posterior deviance, whileD(θ) is the deviance

at the posterior mean of the full parameter vector θ. The DIC can easily be calculated if

posterior draws from the full parameter vector are available.

For BMA collapsed Gibbs sampling is performed for posterior inference. Thus no posterior

draws of the regression coefficients and the error variance are available. In this case the DIC

value can be obtained for BMA in the following way. According to Spiegelhalter et al. (2002)

the effective number of parameters pD of a single linear model are given by

pD ≈
g

1 + g
K + 2 +

1

3n
,

where K denotes the number of covariates in the linear model (without the intercept). The

mean posterior deviance of a single linear model is equal to

D(θ) = n log(2π) + pD + κ̄(y −Xβ̄)>(y −Xβ̄)− n log(κ̄)

with

κ̄ = n

(
y>y − 1 + g

g
β̄>X>Xβ̄

)−1

,

β̄ the posterior mean estimate of the regression coefficients and σ2 = 1
κ̄

n
n−1 . The DIC for BMA

is then calculated by using the weighted mean of the average deviances for each linear model

to obtain the posterior mean deviance. For the deviance at the posterior mean the posterior

mean estimates are determined by the weighted means of the posterior mean coefficients and

of the posterior mean error variance estimates of the single linear models.
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