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Abstract

Past focus in the panel gravity literature has been on multidimensional fixed effects specifications
in an effort to accommodate heterogeneity. After introducing conventional multidimensional
fixed effects, we find evidence of cross-sectional dependence in flows.

We propose a simultaneous dependence gravity model that allows for network dependence
in flows, along with computationally efficient Markov Chain Monte Carlo estimation methods
that produce a Monte Carlo integration estimate of log-marginal likelihood useful for model
comparison. Application of the model to a panel of trade flows points to network spillover
effects, suggesting the presence of network dependence and biased estimates from conventional
trade flow specifications. The most important sources of network dependence were found to
be membership in trade organizations, historical colonial ties, common currency and spatial
proximity of countries.

KEYWORDS: origin-destination panel data flows, cross-sectional dependence, log-marginal like-
lihood, gravity models of trade, sociocultural distance, convex combinations of interaction ma-
trices.

JEL: C18, C33, C51

1



1 Introduction

The panel data gravity literature has focused on multi-indexed fixed effects specifications in an

effort to accommodate heterogeneity in multi-indexed data on trade, foreign direct investment,

migration, etc.1 Using multi-indexed data on international trade flows, which represents a

prominent example of such data, we show that even after introducing conventional fixed effects

for origins, destinations, origin-destination dyads, and time periods, there is strong evidence of

cross-sectional dependence in the dependent variable representing trade flows. Different sources

of cross-sectional dependence based on various sociocultural factors such as common borders,

language and currency, trade unions and colonial ties, are explored.

In a panel data model setting, distance as well as sociocultural factors (which we can view

as generalized distance variables) are generally time invariant, so they are treated as fixed

effects. Balazsi, Matyas and Wansbeek (2018) explore econometric implications of using a host

of alternative multidimensional fixed effects in panel data gravity models, but assume trade

flows to be independent. We apply two of the more widely used multidimensional fixed effects

transformations from the empirical trade literature to a panel of N = 70 countries trade flows

covering the T = 38 years from 1963 to 2000, in a model specification that allows for the presence

of simultaneous cross-sectional dependence.

One approach uses N origin and N destination country fixed effects plus T time-specific

effects proposed by Matyas (1997) as an extension of conventional fixed effects panel data model

(e.g., Baltagi, 2005) to the multidimensional situation that arises in the case of gravity models.

These models take an N2T ×1 vector of dependent variables reflecting the matrix of trade flows

between the N countries (assuming flows between all countries) at each time period, resulting

in a dummy matrix of fixed effects with column rank of 2N + T − 2. The second approach

makes use of fixed effects proposed by Cheng and Wall (2005) that introduce fixed effects for

origin-destination dyads as well as time periods, resulting in a dummy matrix with column rank

of N2 + T − 1, frequently adopted in the empirical trade literature.

Apart from accommodating heterogeneity in flows using fixed effects, the dependent variable

1Note that gravity models are at least double-indexed, indexing a country (region) of origin, and a country
(region) of destination. Pooling gravity equations across dyads of countries (regions) over time leads to a panel
data structure of the data.
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vector of N2 × 1 trade flows for each time period are assumed to be independent, so flows

between countries that have a common currency, language, border or colonial ties are no more

likely than flows between countries having nothing in common. Cross-sectional dependence in

flows suggests that flows between countries with sociocultural similarity (e.g., common language,

colonial ties, spatial neighbors, member of trade unions, etc.) are likely to exhibit dependence

as opposed to independence. We set forth a model specification that allows for this type of

dependence in flows across the N2T country-time dyads. Vasilis and Wansbeek (2012) provide

an overview of econometric specifications for dealing with cross-sectional dependence, consisting

of two main approaches, spatial econometric and common factor models.

We take the spatial econometric approach here, but note that a common factor specification

could also be employed to address the issue we raise. The nature of dependence that we model

would be better labeled network dependence rather than spatial or cross-sectional dependence,

because we introduce dependence between network nodes involving origin- and destination-dyads

as well as covariance across these.2 We use the terms network and cross-sectional dependence

interchangeably here, but note that the network dependence specification introduced here reflects

a special case of cross-sectional dependence that can arise in the case of origin-destination flows

that has not received a great deal of attention in the literature.

Estimates from the network dependence model specification suggest that sociocultural prox-

imity can reflect transmission channels that can be viewed as a source of cross-sectional depen-

dence. Model specifications that accommodate network dependence are set forth, along with

computationally efficient Markov Chain Monte Carlo (MCMC) estimation methods. Ignoring

network dependence implies biased estimates from panel trade flow models that rely on fixed

effects and the assumption of independence between flows.

An innovative aspect of our MCMC estimation approach is use of Metropolis-Hastings guided

samples from the joint posterior distribution of the dependence parameters to construct a Monte

Carlo integration estimate of the log-marginal likelihood useful for model comparison. Our

MCMC estimation approach allows for estimation and posterior inference on a vector of depen-

dence parameters that determines the relative importance of network dependence, as well as a

2Common factor cross-sectional dependence specifications would need to be extended to address the type of
dependence that we consider here. See also Baltagi and Maasoumi (2013), who provide an introductory discussion
for a series of articles in a special issue devoted to dependence in cross-section, time series and panel data models.
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Monte Carlo integration estimate of the log-marginal likelihood which can be used for model

comparison purposes.3 In our case, we rely on Markov Chain Monte Carlo sampling to estimate

the model parameters with the dependence parameters sampled using a Metropolis-Hastings

procedure. Since this approach produces draws of the dependence parameters that are steered

by Metropolis-Hastings accept/reject decisions to areas of high density of the joint posterior, we

can produce an efficient Monte Carlo integration of the log-marginal likelihood.

Another methodological innovation is use of convex combinations of network dependence

weight matrix structures (see Pace and LeSage, 2002; Debarsy and LeSage, 2017, 2018; Hazir,

LeSage and Autant-Bernard, 2018; LeSage and Fischer, 2018). The weight matrix structures

are constructed to reflect spatial proximity between countries, as well as numerous types of

sociocultural proximity such as common currency, language, colonial ties, and so on. A convex

combination of these multiple weight matrices is used to form a single weight matrix. This

approach allows us to treat sociocultural factors (for example, common currency, common lan-

guage, historical colonial relationships, trade agreements, and so on) as sources of network

dependence in the panel gravity model.

Section 2 first introduces conventional panel gravity models as used in the empirical trade

literature, along with a discussion of the two multidimensional fixed effects specifications that

we explore,4 and then discusses an extension of the conventional panel gravity model that allows

for origin- and destination-based network dependence following ideas set forth by LeSage and

Pace (2008). A computationally efficient approach to MCMC estimation is set forth. Section 3

sets forth computational challenges to estimation of the network dependence variant of the

conventional panel gravity model, along with an MCMC estimation approach that overcomes

these challenges. Section 4 applies our model to panel data on trade flows between 70 countries

covering the 38 years from 1963 to 2000. In our application of the model we introduce an

extension that allows for convex combinations of multiple sociocultural connectivity structures,

that can be used in conjunction with log-marginal likelihood estimates to determine the relative

importance of each type of connectivity. We find strong evidence of network dependence in

3Monte Carlo integration evaluates the expression to be integrated using random draws of the parameter
values, but a drawback to this approach is inefficiency because many of the random draws for the parameters are
not in areas of high density of the function being integrated.

4Choice of these two approaches from the myriad approaches available was based on their popularity in the
empirical trade literature.
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trade flows pointing to network spillover effects, and suggesting that ignoring the presence of

this type of cross-sectional dependence will result in biased estimates from conventional trade

flow specifications. Section 5 provides conclusions, and Appendix A presents information on

data used as well as sources.

2 Multi-indexed panel gravity models

2.1 Conventional models

As noted above, Matyas (1997) made an early attempt to introduce multidimensional fixed

effects for gravity model specifications such as that in (1).5 The dependent variable yijt in (1)

reflects an n2T × 1 vector of (logged) trade flows between N countries i and j at time t, so

i = 1, . . . , n, j = 1, . . . , n, and t = 1, . . . , T .

yijt = xijtβ + αi + γj + λt + εijt, (1)

where β is a 2k × 1 vector of parameters on the N2T × 2k (logged) covariates xijt, which are

usually k measures of economic size of destinations and another k measures for origins in the

country dyads (i, j) at time t. We note that distance between the countries is time-invariant

and not in the set of covariates. The fixed effects parameters αi, γj represent destination-specific

and origin-specific country effects while λt are time-period specific fixed effects. It is assumed

that εijt are normal i.i.d. (independent, identically distributed) idiosyncratic disturbances with

zero mean and scalar (σ2
ε) variance.

6

We can write the fixed effects as an N2T × (2N + T ) matrix:

D =
(

IN ⊗ ιNT , ιN ⊗ IN , ιN2 ⊗ IT

)
,

with column rank (2N + T − 2), where IN is an identity matrix of dimension N and ιN is an

N−dimensional column vector of ones. One can use a projection matrix of size N2T ×N2T to

5See Baltagi, Egger and Pfaffermayr (2015) for an explanation of theoretical models that give rise to this
log-linear specification.

6It is also assumed that the covariates and the disturbance terms are uncorrelated, ruling out endogeneity of
the measures of country size.
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eliminate the fixed effects in D, corresponding to the usual scalar transformation involving what

have been labeled “Within” transformations.

There are of course other specifications for the fixed effects. For example, Egger and Pfaf-

fermayr (2003) propose bilateral specific fixed effects γij , where D =
(

IN ⊗ IN ⊗ ιT

)
, of size

N2T × N2 with full column rank N2. A variant of this, proposed by Cheng and Wall (2005),

that is popular in the empirical trade literature is shown in (2),

yijt = xijtβ + γij + λt + εijt, (2)

where D =
(

IN ⊗ IN ⊗ ιT IN ⊗ ιN ⊗ IT

)
of size N2T × (N2 + T ), with column rank (N2 +

T − 1). Of course, there is a projection matrix and corresponding scalar “Within-type” trans-

formation that can be used to eliminate this more extensive set of fixed effects. Balazsi, Matyas

and Wansbeek (2018) point out that the model in (1) represents a special case of that in (2),

and there is an analogy of this 3D situation in (2) to 2D panel data models, where individuals in

the 2D situation are treated as (i, j) pairs in the 3D setting. In other words, individual effects

are now assigned to (i, j) dyads.

We note that the model specifications in (1) and (2) assume that the dependent variable

vector of N2 × 1 trade flows for each time period are statistically independent, so flows between

countries that have a common currency, language, border or colonial ties are no more likely

than flows between countries having nothing in common. Network dependence in flows suggests

that flows between countries with sociocultural similarity (e.g., common language, colonial ties,

spatial neighbors, member of trade unions, etc.) are likely to exhibit dependence as opposed to

independence. In the next section, we set forth a model specification that allows for this type

of dependence in flows across the N2T country-time dyads.

2.2 Extension for network dependence

We set forth an extension of the conventional panel gravity model that allows for origin- and

destination-based network dependence. The matrix expressions in (3) represent a panel data

extension of the cross-sectional gravity model for origin-destination flows introduced in LeSage
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and Pace (2008).

y = ρoIT ⊗ (W ⊗ IN )y + ρdIT ⊗ (IN ⊗W )y + ρwIT ⊗ (W ⊗W )y + Zδ + ε, (3)

where y is the N2T×1 dependent variable vector of origin-destination flows for each time period,

organized with t being the slow index for elements yijt in the vector y. The N2T × 2k matrix

Z contains covariates with the associated 2k × 1 parameter vector δ, and the N2T × 1 vector ε

represents the normally distributed i.i.d. scalar variance disturbances.7

The model in (3) indicates that flows at each time period t = 1, . . . , T exhibit dependence on

flows of countries neighboring the origin country captured by the N2T ×1 vector IT ⊗(W ⊗IN )y

with the associated scalar parameter ρo measuring the strength of that dependence. The matrix

W is an N ×N matrix that defines neighbors and for now, we define neighboring countries as

those with common borders (spatial neighbors), as in the model of LeSage and Pace (2008).8 A

neighboring country is indicated by a non-zero (i, j) element in the N ×N matrix W , which has

zeros on the main diagonal. The matrix W is normalized to have row-sums of unity, resulting in

the N2 × 1 vector (W ⊗ IN )y reflecting a linear combination of trade flow values from countries

that are neighbors to the origin country.

The model also allows for dependence of flows in each time period from countries neighboring

the destination country, captured by the vector IT ⊗(IN⊗W )y, with associated scalar parameter

ρd, and we note that this vector relies on the same matrix W used to define (spatial) neighbors.

LeSage and Pace (2008) point out that while the matrix (IN ⊗ W ) defines neighbors to the

destination, the matrix (W ⊗ IN ) identifies neighbors to the origin, when the vector of flows for

time t arises from a conventional N × N origin-destination flow matrix, organized with dyads

(i, j) representing flows from origin j to destination i.

Another type of dependence is also included in the model, reflected by the N2T × 1 vector

IT ⊗ (W ⊗W )y and associated scalar parameter ρw, which captures dependence of flows from

countries that are neighbors to both the origin and destination countries. LeSage and Pace

(2008) motivate this type of dependence using the (cross-sectional) specification in (4), where

7For notational convenience, we assume that the matrix D of fixed effects has been eliminated from the model
through the use of a scalar transformation of the type described in Balazsi, Matyas and Wansbeek (2018).

8We consider more general definitions of neighboring countries based on other connectivity constructs such as
common currency, common language, etc. later.
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they argue that the matrix A can be viewed as a spatial filter.

Ay = αιN2 + Zδ + ε, (4)

A = (IN2 − ρdWd)(IN2 − ρoWo)

= (IN2 − ρdWd − ρoWo + ρwWw),

Wd = IN ⊗W,

Wo = W ⊗ In,

Ww = Wd ⊗Wo = Wo ⊗Wd = W ⊗W.

The argument is that the existence of origin- and destination-based dependence between

trade flows (Woy,Wdy), logically implies a covariance between these two types of dependence

which is reflected in Wwy. They note that this filter implies a restriction that ρw = −ρoρd, but

argue this restriction need not be imposed during estimation, so we address the more general

case here and allow for an unrestricted parameter ρw.
9

LeSage and Pace (2008) also point out that the matrix of covariates reflecting origin-destination

dyads can be written as Z =
(

Xot Xdt

)
, where Xot = Xt ⊗ ιN and Xdt = ιN ⊗Xt with Xt

being an N × k matrix of covariates measuring the (economic) size of each country at time t.

3 Estimating the network dependence panel data gravity model

The model can be written as shown in (5).

ỹω = Zδ + ε, ε ∼ N (0, σ2IN2T ), (5)

ỹ =
[
y IT ⊗ (IN ⊗W )y IT ⊗ (W ⊗ IN )y IT ⊗ (W ⊗W )y

]
,

ω =


1

−ρo

−ρd

−ρw

 .

9Of course, given unrestricted estimates of ρo, ρd, ρw one could test if the restriction ρw = −ρoρd is consistent
with the sample data.
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A key feature of ỹ is that this expression separates dependence parameters to be estimated

from sample data describing the simultaneous dependence, with the scalar dependence param-

eters in the vector ω. We assume normally distributed, zero mean, constant variance (σ2)

disturbances.

3.1 Likelihood and priors

The likelihood is shown in (6), where |R(ω)| is the determinant that depends on the dependence

parameters in ω, as does the expression e′e(ω).

f(y;ω, σ2δ) = |R(ω)|(2πσ2)−N2T/2exp(− 1

2σ2
e′e(ω)), (6)

e = ỹω − Zβ,

R(ω) = IN2T − ρoIT ⊗ (IN ⊗W )− ρdIT ⊗ (W ⊗ IN )− ρwIT ⊗ (W ⊗W ).

To ensure that R(ω) is non-singular, restrictions need to be placed on the dependence parameters

ω to ensure that R(ω)−1 exhibits an underlying stationary process. Specifically, ρo+ρd+ρw < 1.

The parameter space for the set of parameters (ω, σ2, δ) is: ∆ := ∆ω × ∆σ2 × ∆δ = ∆−1,1 ×

(0,∞)×R2k.

Since our focus is on large samples involving N2T observations, we rely on uninformative

priors for the parameters δ and σ2, as these would not likely impact posterior estimates. Since

the dependence parameters in ω are a focus of inference, uniform priors for these dependence

parameters are used, which must obey a stability constraint.

Mathematically, the flat or uniform prior for ω, δ can be represented as p(ω) ∝ 1, p(δ) ∝ 1.

The noise variance σ2, is restricted to positive values, with a flat prior assigned to the log-

transformed value which is denoted p(σ2) ∝ 1/σ2. Given this prior information, and prior

independence, one can write: p(ω) × p(σ2) × p(δ) ∝ 1/σ2. While this flat prior is improper

since the integral over the parameter space ∆ is not finite, the joint posterior distribution for

the dependence parameters ω is proper under relatively unrestrictive assumptions. This joint

posterior is derived by analytically integrating out the parameters δ, σ2, with details regarding

this integration found in Hepple (1995a, 1995b).

To derive the joint posterior for the dependence parameters ω, begin with the full joint
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posterior p(ω, δ, σ2) and analytically integrate out δ, σ2. This relies on standard techniques from

the Bayesian regression literature (Zellner, 1971). Combining the likelihood function in (7) with

the flat priors (and ignoring the constant 2πN2T/2) leads to the joint posterior in (8), from which

σ can be integrated out, leading to (9), where Γ(.) denotes the Gamma function.

f(y;ω, σ2, δ) ∝ |R(ω)|(2πσ2)−N2T/2exp(− 1

2σ2
ω′u′uω), (7)

u = ỹ − Zδd,

δd = (Z ′Z)−1Z ′ỹ,

p(ω, δ|y) ∝ |R(ω)|
∫ ∞

0
σ−(N2T+1)exp

(
− 1

2σ2
ω′u′uω

)
dσ (8)

= 2(N
2T−2)/2Γ(N2T/2)|R(ω)|

(
ω′u′uω

)−N2T/2
. (9)

To integrate out the 2k different δ parameters, properties of the multivariate t−distribution

in conjunction with ‘completing the square’ are used (see Zellner, 1971). This leads to a joint

distribution for the dependence parameters ω shown in (10), with the term |Z ′Z|−1/2 and the

exponent −(N2T − 2k)/2 arising from this integration (see Hepple (1995a, 1995b). This expres-

sion must be numerically integrated to arrive at the log-marginal likelihood for these models.

This is accomplished using Monte Carlo integration discussed later.

p(ω|y) = 2(N
2T−2)/2Γ(N2T/2)|R(ω)||Z ′Z|−1/2(ω′u′uω)−(N2T−2k)/2. (10)

A question that has been explored in the literature is whether this conditional posterior

distribution is proper and can be integrated over the parameter space for the case of the flat

priors described here. Dittrich et al. (2017) tackle the spatial autoregressive model (SAR) for

the case of a single weight matrix W and a single cross-section consisting of N regions. Their

conclusion is that propriety of this distribution requires that: (i) N > k, (ii) (Z ′Z)−1 exists,

and (iii) (y′MWy)2 ̸= y′W ′MWyy′My, where M = IN − Z(Z ′Z)−1Z ′.

Conditions (i) and (ii) are not restrictive, and condition (iii) arises from noting that the term
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u′u in the case of the single weight matrix model can be written as in (11).10

u′u =

 e′yey e′Wyey

e′yeWy e′WyeWy

 , (11)

ey = y − Zδ,

eWy = Wy −WZδ,

|u′u| > 0 → e′yeye
′
WyeWy > (e′yeWy)

2,

|u′u| = 0 → e′yeye
′
WyeWy = (e′yeWy)

2.

This condition essentially means that a valid error covariance matrix exists for the SAR

model. This should not be an important restriction to ensure posterior propriety of the joint

distribution for the dependence parameter ρ in the case of the single weight matrix model. This

condition would be met in all cases where the single weight W is defined so that all observations

are connected and the usual normalization is applied.11

Extending this result to the multi-indexed panel gravity model considered here involving

multiple weight matrices and associated dependence parameters in the vector ω results in a

similar expression that implies the error covariance matrix of the model exists. This can be

written as shown in (12), where the definition of ỹ from (5) is used.

u′u =

 e′yey ẽ′yey

e′y ẽy ẽ′y ẽy

 , (12)

ey = y − Zβ,

ẽy = ỹ − Zδd,

δd = (Z ′Z)−1Z ′ỹ,

|u′u| > 0 → e′yey ẽ
′
y ẽy > (e′y ẽy)

2,

|u′u| = 0 → e′yey ẽ
′
y ẽy = (e′y ẽy)

2.

Again, this condition essentially means that a valid error covariance matrix exists for our

10The single matrix W is assumed symmetric for simplicity here.
11Multiple approaches to normalizing the matrix W have appeared in the spatial econometrics literature, all of

which ensure that the maximum eigenvalue of the matrix W is one.
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models. This should not be an important restriction to ensure posterior propriety of the joint

distribution in the case of the multiple dependence parameter models.

3.2 Computational challenges

One issue that arises when considering estimation of the model in (3) is that multiple depen-

dence parameters ρo, ρd, ρw would require use of a multivariate optimization routine to produce

estimates based on maximum likelihood. It is also the case that the dependence parameters

are (well) defined over the (−1, 1) interval, meaning that constrained optimization would be

required to ensure values −1 < ρo + ρd + ρw < 1.12

Another challenge to maximum likelihood estimation is the log-determinant term that arises

in the (log) likelihood function, specifically (log): |IN2T −ρoIT ⊗ (W ⊗ IN )−ρdIT ⊗ (IN ⊗W )−

ρwIT ⊗ (W ⊗W )|. In the case of conventional spatial regression models involving a single weight

matrix, there is a great deal of literature on approaches to efficiently calculating or approximating

the log-determinant term that appears in the (log) likelihood |IN − ρW |, (see LeSage and Pace,

2008, Chapter 4). These approaches are not directly applicable to the model considered here,

complicating maximum likelihood estimation, since the log-determinant expression needs to be

evaluated for multiple dependence parameter values during optimization. In the case of Markov

Chain Monte Carlo estimation, the log-determinant term appears in the conditional distribution

for the dependence parameters requiring multiple evaluations during sampling.

Because of the issues outlined above, we set forth estimation based on Markov Chain Monte

Carlo, with no prior distributions assigned to the parameters β, σ2. Parameter restrictions

are imposed on the dependence parameters during MCMC sampling using methods described

later. Since emphasis is on modeling situations involving large samples of observations, prior

information would not play a role in determining posterior estimates of the parameters, so

MCMC is used as a computational device to produce estimates that should be identical to

those from maximum likelihood estimation. MCMC estimation involves sequentially sampling

each parameter (or set of parameters) from their conditional distributions (or joint conditional

distribution in the case of a set of parameters). Expressions for the conditional distributions are

frequently easier to calculate than those required to evaluate the (log) likelihood, which is true

12The lower bound of −1 is typically used for convenience in applied practice and ensures the existence of the
matrix inverse for the reduced form of the model.
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for the models considered here.

Another aspect of this model regards proper interpretation of the partial derivative impacts on

the dependent variable vector arising from changes in the explanatory variables, e.g., ∂E(y)/∂Xr

for the rth explanatory variable. We take this issue up in a later section.

MCMC estimation proceeds by sampling sequentially from the conditional distributions of

each parameter (or set of parameters). The conditional distributions for the model parameters

δ, σ2, ω needed to implement MCMC estimation are set forth next.

3.3 Conditional distributions for the model parameters

Since our focus is on large samples N2T , we can rely on uninformative priors for the parameters

δ, as these would not likely impact posterior estimates. For the same reason, we rely on an

uninformative prior p(σ2) ∝ 1/σ2 for σ2. Since the dependence parameters in ω are at the center

of inference, we employ uniform priors for these dependence parameters which are constrained

to lie in the open interval (−1, 1). There is also the need to impose stability restrictions on these

parameters discussed later. Given the limited prior information, the conditional distribution for

the parameters δ of the model in (5) takes the form of a multivariate normal with mean and

variance-covariance shown in (13).

p(δ|σ2, ω) = N (δ̃, Σ̃δ), (13)

δ̃ = (Z ′Z)−1(Z ′ỹω),

Σ̃δ = σ2(Z ′Z)−1.

We note that (Z ′Z)−1Z ′ỹ consists of only sample data information, so this expression can be

calculated once prior to MCMC sampling, and this is true of (Z ′Z)−1 as well. This means that

sampling new values of the parameters δ (given values for the parameters σ2, ω) can take place

in a rapid, computationally efficient way.

The conditional posterior for σ2 (given δ, ω) takes the form in (14), with the uninformative
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prior.

p(σ2|δ, ω) ∝ (σ2)−(N
2
)exp

(
− 1

2σ2
(e′e)

)
, (14)

e = (ỹω − Zδ)

∼ IG(ã, b̃),

ã = N/2,

b̃ = (e′e)/2.

The joint conditional distribution for the dependence parameters in ω can be obtained by

analytically integrating out δ, σ2 leading to a (log kernel) expression for the joint posterior of

the dependence parameters in ω.

log p(ω|y, Z,W ) ∝ log[D(ω)]− (N2T/2)log(ω′Fω), (15)

F = (ỹ − Zδd)
′(ỹ − Zδd),

δd = Z(Z ′Z)−1ỹ,

where log[D(ω)] is a Taylor series approximation to the log-determinants in the model, described

in detail later. For now we note that this log-determinant term depends on the dependence

parameters in the vector ω, indicated by D(ω). We note that F consists of only sample data,

so this expression can be calculated prior to MCMC sampling, leading to a computationally

efficient expression reflecting a quadratic form: log(ω′Fω), that can be easily evaluated for any

vector of dependence parameters ω.

One motivation for working with the joint conditional posterior distribution for the depen-

dence parameters is the need to impose stability restrictions on these parameters. Specifically,

−1 < ρo+ρd+ρw < 1. Working with the joint conditional posterior distribution for these param-

eters allows us to adopt a block sampling Metropolis-Hastings (M-H) scheme for the dependence

parameters (described in detail later). Block sampling means that a vector of dependence pa-

rameters in ω are proposed and compared to the current vector of dependence parameters. The

proposed vector is either accepted or rejected. This allows proposals of dependence parameters

that obey the stability restriction, so any vectors that are accepted by the Metropolis-Hastings
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procedure will always obey the needed restrictions.

A second motivation is that having analytically integrated out the parameters δ, σ2, further

integration of the joint conditional posterior over the set of dependence parameters in ω, would

yield the log-marginal likelihood for these models. We can use Monte Carlo integration to

accomplish this task. Monte Carlo integration evaluates the expression to be integrated using

random draws of the parameter values. A drawback to this approach is inefficiency because many

of the random draws for the parameters are not in areas of high density of the function being

integrated. In our case, the Metropolis-Hastings sampling procedure used to produce draws of

the dependence parameters steers these parameter values to areas of high density of the joint

posterior. This allows us to produce an efficient Monte Carlo integration of the log-marginal

likelihood.

Given an estimate of the log-marginal likelihood for a model Mi (logMi), we can calculate:

prob(Mi) = exp(logMi)/
∑Q

i=1 exp(logMi)) (in the case of Q different models). Of course, there

is a great deal of interest in comparing alternative models, for example, models based on different

spatial weight matrices, or different fixed effects specifications.

3.4 A Taylor’s series approximation to the log-determinant term

We have motivated that (15) represents a computationally efficient expression for the joint

posterior, but this involves the log-determinant term log[D(ω)] in (16), where: W1 = IT ⊗ (W ⊗

IN ),W2 = IT ⊗ (IN ⊗W ),W3 = IT ⊗ (W ⊗W ), which could be difficult and slow to calculate.

ln|IN2×T − ρoW1 − ρdW2 − ρwW3|. (16)

An approximation to the log-determinant term works to preserve the computational effi-

ciency of the expression (15). Pace and LeSage (2002) set forth a Taylor series approxi-

mation for the log-determinant of a matrix like our expression: ln|INT − W̃ |, where W̃ =(
ρoWo + ρdWd + ρwWw

)
. They show that for a symmetric nonnegative weight matrix W̃
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with eigenvalues λmin ≥ −1, λmax ≤ 1, and tr(W̃ ) = 0 (where tr represents the trace):

ln|IN2T − ρoWo − ρdWd − ρwWW | = ln|IN2T − W̃ |,

W̃ =
(

ρoWo + ρdWd + ρwWw

)
= tr(ln(IN2T − W̃ )),

ln(IN2T − W̃ ) = −
∞∑
i=1

W̃ i/i,

ln|IN2T − W̃ | = −
∞∑
i=1

tr(W̃ i)/i (17)

≃ −
q∑

j=1

tr(W̃ j)/j,

tr(W̃ ) = tr(ρoWo + ρdWd + ρwWw)

= ρotr(Wo) + ρdtr(Wd) + ρwtr(Ww). (18)

Golub and van Loan (1996, p. 566) provide the expression in (17), while (18) arises from

linearity of the trace operator. Note that the first-order tr(W̃ ) is zero, given the definitions

of Wo,Wd,Ww. Let η =
(

ρo ρd ρw

)′
, and first consider the case of symmetric matrices

Wo,Wd,Ww, which allows the second-order trace to be expressed as a quadratic form in (20)

involving the vector of parameters η and all pairwise multiplications of the individual matrices

in W̃ as shown in (19).

tr(W̃ 2) = η′


tr(W 2

o ) tr(WoWd) tr(WoWw)

tr(WdWo) tr(W 2
d ) tr(WdWw)

tr(WwWo) tr(WwWd) tr(W 2
w)

 η (19)

= η′Q2η. (20)

LeSage and Pace (2009) point out that accelerated computation of traces can be accomplished

using sums of matrix Haddamard products, Q2
ij =

∑3
i

∑3
j Wi ⊙Wj , i = o, d, w; j = o, d, w. For

the case of asymmetric matrices, matrix products
∑3

i

∑3
j Wi ⊙W ′

j can be used, and the weight

matrices in the multi-indexed panel gravity data model would be an example of asymmetric

matrices. Note that this formulation separates the parameters in the vector η from the matrix
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of traces, which allows pre-calculation of the matrix of traces prior to MCMC sampling. A more

efficient computational expression is (η⊗ η)vec(Q2), where ⊗ is the Kronecker product and vec

the operator that stacks the columns of the matrix Q2.

Using this approach leads to a similar expression for the third-order trace, which involves

33 = 27 matrix products, and a fourth-order trace with 34 = 81 matrix products. A fourth-order

Taylor series approximation to the log-determinant ln|In − W̃ | takes the form in (21).

ln|IN2T − W̃ | ≃ −(η ⊗ η)vec(Q2))/2

−(η ⊗ η)⊗ η vec((Q3))/3

−((η ⊗ η)⊗ η)⊗ η (vec(Q4)/4. (21)

A key aspect of these calculations is that traces of products of the weight matrices can be pre-

calculated prior to MCMC sampling. This means that updating the log-determinant expression

for any set of dependence parameters (ρo, ρd, ρw) involves simple multiplications, where the

dependence parameters in η can be separated from these matrix products.

3.5 Block sampling the dependence parameters ω

As noted above, a second computational challenge for estimation of these models is the need to

impose stability restrictions on the dependence parameters (−1 < ρo+ρd+ρw < 1). Debarsy and

LeSage (2018) set forth a block-sampling approach that proposes a vector of candidate values for

a similar set of dependence parameters in the context of a model involving a convex combination

of weight matrices. Dependence parameters that do not meet the stability restriction can be

rejected, so any values accepted are consistent with stability.

The conditional distributions for the current and proposed dependence vectors that we can

label ωc, ωp are evaluated with a Metropolis-Hastings step used to either accept or reject the

newly proposed vector ωp. Block sampling the dependence parameter vector ω has the virtue

that accepted vectors will obey any restrictions and reduce autocorrelation in the MCMC draws

for these parameters. However, block sampling is known to produce lower acceptance rates

which may require more MCMC draws in order to collect a sufficiently large sample of draws

for posterior inference regarding ω. To address this issue, Debarsy and LeSage (2018) as well as
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LeSage, Chih and Vance (2018) propose a hybrid approach that begins with a reversible jump

sampling procedure and switches to a tuned random-walk proposal procedure for proposing

vectors ω after some initial number of start-up samples are drawn.

We rely on a reversible jump procedure to produce proposal values for the vector of pa-

rameters ρo, ρd, ρw. For each scalar parameter we rely on a three-headed coin flip. By this we

mean a uniform random number on the open interval coin flip = U(0, 1), with head #1 equal

to a value smaller or equal to 1/3, head #2 a value larger than 1/3, but smaller or equal to

2/3 and head #3 a value larger than 2/3 and smaller than one. Given a head #1 result, we

set a proposal ρpo using a uniform random draw on the open interval (−1 < ρpo < ρco), where

ρco is the current value. A head #2 results in setting the proposal value equal to the current

value (ρpo = ρco), while a head #3 selects a proposal value based on a uniform random draw on

the open interval (ρco < ρpo < 1). Of course, a similar approach is used to produce proposals

for the parameters ρd, ρw. Proposed vectors of these parameters inconsistent with the stability

restrictions are eliminated via rejection sampling.

The reversal jump approach to proposing the block of dependence parameters has the virtue

that accepted vectors will obey the stability restriction and will also reduce autocorrelation in

the MCMC draws for these parameters. However, proposals from the reversible jump procedure

based on the large intervals between (−1 < ρco) and (ρco < 1) will not produce candidates likely

to be accepted when these parameters are estimated with a great deal of precision, as would

be the case for problems involving large N2T . This can result in a failure to move the chain

adequately over the parameter space. To address this issue, standard deviations, σρo , σρd , σρw

for each parameter are calculated based on the first 1,000 draws (and updated thereafter using

an interval of m = 1, 000 draws). These are used in a tuned random-walk procedure to produce

candidate/proposed values. Specifically, we use a tuning scalar c for each parameter that is

adjusted based on acceptance rates for each parameter. This is used in conjunction with the

standard deviations to produce proposals: ρpo = ρco + cN (0, 1)σρo , with the same approach used

for ρd, ρw.

The proposed estimation method relies on a great many approximations, raising the issue

of whether resulting estimates have desirable properties such as small bias and mean-squared

error as well as good coverage. By coverage we mean that the (say) 2.5% and 97.5% intervals
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from the empirical distributions of the effects estimates on which practitioners base conclusions

regarding statistical significance of the effects estimates cover the true values 95% of the time.

Debarsy and LeSage (2018) present results from Monte Carlo experiments for the case of

a cross-sectional convex combination of weights SAR model that relies on the same fourth-

order Taylor series approximation to the log-determinant and the reversible-jump, hybrid tuned

random-walk procedure for estimating the spatial dependence parameters. They show small

bias and mean-squared error as well as good coverage across a range of negative and positive

dependence parameters.

LeSage, Chih and Vance (2018) show results from Monte Carlo experiments for the dynamic

space-time panel data model, which also involves three spatial weight matrices like the model

described here. They also report Monte Carlo results with small bias and mean-squared error

as well as good coverage across a range of negative and positive dependence parameters. LeSage

(2018) discusses the commonality of the cross-sectional convex combination model of Debarsy

and LeSage (2018), LeSage, Chih and Vance (2018), and the model described here, as well as

Monte Carlo results.

3.6 Interpreting the network dependence panel data gravity model

The partial derivatives used to interpret how changes in (say the rth) explanatory variable of

the model impacts changes in the dependent variable vector are non-linear matrix expressions.

The sequence of partial derivatives for this model are shown in (22), where we record the N ×N

matrices of changes in (logged) flows arising from changing the rth variable in each country i

Xr
i using Yi, i = 1, . . . , N , to denote the N ×N flow matrices associated with changing the rth

variable in each country i. We define W̃o = (W ⊗ IN ), W̃d = (IN ⊗ W ), W̃w = (W ⊗ W ) to

simplify notation in (22), and note that because the matrix W does not change over time in

our static panel data model, we have a set of N2 ×N matrices describing the partial derivative
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impacts.


∂Y1/∂X

r
1

∂Y2/∂X
r
2

...

∂YN/∂Xr
N

 = (IN2 − ρoWo − ρdWd − ρwWw)
−1


Jd1β

r
d + Jo1β

r
o

Jd2β
r
d + Jo2β

r
o

...

JdNβr
d + JoNβr

o

 . (22)

In (22), Jdi (i = 1, . . . , N) is an N×N matrix of zeros with the ith row equal to ι′Nβd, and Joi is

an N×N matrix of zeros with the ith column equal to ιNβo, where βo and βd denote parameters

associated with origin and destination size measures. We have N sets of N ×N outcomes, (one

for each change inXr
i , i = 1, . . . , N) resulting in an N2×N matrix of partial derivatives reflecting

the total effect on flows from changing the rth characteristic of all N regions, which LeSage and

Thomas-Agnan (2015) label the total effect.

These authors provide a motivation for the expression in (22), noting that changes in the

(size) characteristics of a single country i will (potentially) produce impacts on all elements of

the N × N flow matrix. Intuitively, a change in (say) income of a single country can impact

trade flows involving immediate trading partners, as well as, trade flows involving partners to

the trading partners, partners to the partners of the trading partners, and so on, potentially

impacting the entire N ×N flow matrix.

Since regression models typically consider changes in characteristics (say income) of all i =

1, . . . , N observations/countries, this produces a set of N different N × N matrices of partial

derivatives associated with changes in each explanatory variable in the model. LeSage and

Thomas-Agnan (2015) propose scalar summary measures for the various types of effects that

average over certain dimensions of the sequence of N different N × N matrices. We adopt a

simpler strategy here for producing scalar summary measures of the partial derivative impacts.

We take an average of the diagonal elements of the N different N × N matrices in (22) as a

measure of own-partial derivative impacts reflecting own-country changes in flows arising from

changes in (say) the typical country’s income. And we use an average of the cumulative off-

diagonal elements from each row of the N different N×N matrices in (22) to summarize network

effects arising from changes in (say) income in a typical country. Network effects represent a

scalar summary measure of the spillover impacts on other countries associated with changes
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in an explanatory variable in the model (say income). The scalar summary averages over all

countries, and since the model is a static panel data model, over all time periods as well. We can

delineate between origin and destination specific effects using the expressions involving βo, βd,

which allows us to determine the relative importance of changes in (say) income at origin versus

destination countries on trade flows.

In addition to point estimates of the partial derivative impacts, there might also be a

need to calculate empirical measures of dispersion for the effects that could be used for in-

ference. An empirical distribution of the scalar own- and cross-partial derivatives (labeled

direct and network effects here) can be constructed using MCMC draws for the parameters

ρo, ρd, ρw, βo, βd in expression (22). However, this would require inversion of the N2×N2 matrix

(IN2 − ρoWo − ρdWd − ρwWw) thousands of times for each set of draws for ρo, ρd, ρw, making

this computationally intensive.13

A compromise approach would be to use posterior means of the estimated parameters ρo, ρd, ρw

to calculate a single matrix inverse: (IN2 − ρoWo − ρdWd − ρwWw)
−1 in conjunction with the

MCMC draws for the parameters βo, βd. However, this would ignore stochastic variation in

the effects estimates that arise from the fact that there is uncertainty regarding the parame-

ters ρo, ρd, ρw. Ideally, we would like to use draws for these dependence parameters from their

posterior distributions when simulating the empirical distribution of effects estimates.

4 Application of the network dependence panel model

We consider panel model specifications that use a panel of trade flows as the dependent variable

vector y over the 38 years from 1963 to 2000. The (single) explanatory variable is (logged) gross

domestic product per capita (GDP) lagged one year to cover the period from 1962 to 1999.

The trade flows are from Feenstra et al. (2005), while the GDP data at market prices (current

US$) and population data come from World Bank’s (2002) World Development Indicators. A

usable sample of 70 countries (see Table A.1 in Appendix A) was constructed for which GDP,

population and trade flows were available over the 38 years.14

13Given sparse matrices W it would not be difficult to calculate the matrix inverse for situations involving the
typical sample of 100 to 200 countries used in trade flow models.

14We eliminated countries from our sample that had one or more zero rows in any of the five weight matrices.
This resulted in a few countries such as South Korea, Japan and India for which data was available to be excluded
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Given our sample of 70 countries and 38 years, this results in N2T = 186, 200; with 2N +

T − 2 = 176 fixed effects parameters for the case of the Matyas (1997) model in (1), and

N2 + T − 1 = 4, 937 fixed effects parameters in the Chen and Wall (2005) approach set forth in

the model from (2).

We used five different definitions for the matrix W describing alternative structures of net-

work dependence, specifically, Wspace based on the three nearest spatial neighboring countries,

Wlanguage based on countries sharing a common language, Wcurrency based on common currency,

Wcolony based on countries with direct historical colonial ties, and Wtrade based on membership

in the same trade union (excluding the WTO). Details regarding countries with common bor-

ders, language, currency, colonial ties and trade union membership can be found in Appendix

A.

Estimates from the model in (23) where the parameters ρo, ρd, ρw are (significantly) different

from zero point to the existence of cross-sectional dependence.

y = ρoWoy + ρdWdy + ρwWwy +GDPoβo +GDPdβd + ε, (23)

Wo = IT ⊗ (W ⊗ IN ), Wd = IT ⊗ (IN ⊗W ), Ww = IT ⊗ (W ⊗W ).

In the presence of cross-sectional dependence, estimates from conventional models that ig-

nore cross-sectional/network dependence can be shown to be biased and inconsistent (see LeSage

and Fischer, 2018). The presence of network dependence also implies spillover impacts arising

from changes in neighboring countries j ̸= i income on country i’s trade flows. In our model,

neighbors are defined to include spatial neighbors in the case where Wspace is used when es-

timating the model. More broadly, sociocultural neighbors arise when the matrix W used is

based on common language, currency, trade union membership or direct colonial ties. Specif-

ically, changes in income of countries j that have spatial, common language, currency, trade

agreements, or colonial ties with country i will impact flows in the SAR model, provided that

the scalar dependence parameters ρo, ρd, ρw are different from zero and the parameters βo, βd

are non-zero.

Table 1 shows log-marginal likelihood function values for models based on the alternative

from our sample.
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Table 1: Log-marginal likelihood estimates for alternative models

Model Matyas (1997) ρo + ρd + ρw Cheng and Wall (2005) ρo + ρd + ρw
fixed effects fixed effects

W -trade −5.1401e+05 0.8988 −5.0487e+05 0.8708
W -language −5.5419e+05 0.6597 −5.3048e+05 0.6741
W -colony −5.5610e+05 0.5726 −5.3548e+05 0.5911
W -currency −5.6827e+05 0.6091 −5.4406e+05 0.5708
W -space −5.2307e+05 0.8459 −5.0988e+05 0.8137

definitions of the weight matrix as well as the two alternative approaches to including fixed

effects. The sum of posterior means for ρo + ρd + ρw are also reported, since non-zero values of

these parameters point to significant network dependence. From the table, we see that models

using the Cheng and Wall (2005) fixed effects have higher log-marginal likelihoods than the

corresponding Matyas (1997) model based on the same weight matrix, indicating these models

are more consistent with our sample data. A second finding indicated by the estimated log-

marginal likelihoods in the table is that the rank-ordering of preferred models for the various

types of weight matrices is very similar for both types of fixed effects. Specifically, the weight

matrix based on Wtrade has the highest log-marginal likelihood, Wspace is next highest, followed

by Wlanguage. Turning to estimates for the dependence parameters, we see that the sum of these

are substantially positive, pointing to the presence of network dependence.

4.1 Estimates for the best models

Table 2 presents estimates for the best models based on Wtrade using both the Matyas (1997)

fixed effects and those of Cheng and Wall (2005). The table presents the mode of the parameter

estimates evaluated using the joint posterior distribution as well as the mean and median based

on 5,000 retained MCMC draws (with an initial 5,000 excluded for burn-in of the sampler).

Monte Carlo (MC) error estimates are reported along with Geweke’s diagnostic that compares

draws from the first ten percent of the MCMC sampling (after burn-in) and the last 50 percent

of the draws. The test is whether the batched means are equal, which indicates convergence.

From the estimates we see that the dependence parameters ρo, ρd, ρw are different from zero

based on the credible intervals calculated from the MCMC draws. As noted in the discussion

of model interpretation, the parameters βo, βd do not represent partial derivative impacts of the

elasticity response of trade flows to changes in origin and destination-country GDP. These need to
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Table 2: Estimates for the Wtrade models

Matyas (1997) fixed effects
Parameter Mode Mean Median MC error Geweke
Constant −9.0215 −9.0177 −9.0187 0.00660826 0.997389
betao 0.2863 0.2865 0.2864 0.00030498 0.997029
betad 0.3182 0.3178 0.3177 0.00024616 0.995985
ρo 0.6811 0.6815 0.6816 0.00032737 0.997605
ρd 0.6342 0.6339 0.6340 0.00045538 0.998746
ρw −0.4165 −0.4166 −0.4162 0.00061022 0.996369
Variable Lower 0.01 Lower 0.05 Mean Upper 0.95 Upper 0.99
Constant −9.3420 −9.2677 −9.0177 −8.7669 −8.6804
βo 0.2753 0.2779 0.2865 0.2949 0.2973
βd 0.3065 0.3093 0.3178 0.3266 0.3289
ρo 0.6753 0.6770 0.6815 0.6862 0.6875
ρd 0.6272 0.6287 0.6339 0.6386 0.6408
ρw −0.4248 −0.4234 −0.4166 −0.4109 −0.4097

Cheng and Wall (2005) fixed effects
Parameter Mode Mean Median MC error Geweke
Constant −12.4699 −12.5429 −12.5429 0.00780577 0.998862
βo 0.2964 0.2985 0.2985 0.00019371 0.998628
βd 0.4891 0.4920 0.4920 0.00044417 0.997119
ρo 0.4706 0.4671 0.4671 0.00055234 0.995611
ρd 0.6375 0.6347 0.6347 0.00033448 0.998707
ρw −0.2363 −0.2308 −0.2308 0.00062930 0.992945
Variable Lower 0.01 Lower 0.05 Mean Upper 0.95 Upper 0.99
Constant −13.6988 −13.3789 −12.5429 −11.6729 −11.3569
βo 0.2877 0.2901 0.2985 0.3067 0.3086
βd 0.4656 0.4727 0.4920 0.5115 0.5181
ρo 0.4584 0.4600 0.4671 0.4720 0.4748
ρd 0.6299 0.6310 0.6347 0.6382 0.6399
ρw −0.2387 −0.2370 −0.2308 −0.2236 −0.2221

be calculated using the non-linear matrix expressions for the own- and cross-partial derivatives.

The results from doing this are presented in Table 3, where we see substantial network effects.

The network effects reflect cumulated off-diagonal elements of the matrix of partial derivatives

(cross-partial derivatives) averaged over all countries as described in our discussion of model

interpretation.

These estimates show larger direct and network impacts arising from changes in destination

country than origin country income on trade flows in the case of both types of fixed effects. The

Cheng and Wall (2005) fixed effects lead to larger direct and network destination effects than

those from the Matyas (1997) fixed effects specification, but smaller origin-specific direct and

network effects than those from the Matyas (1997) fixed effects specification.

Least-squares estimates were β̂o = 0.9818, β̂d = 1.1562 for the Matyas (1997) specification,

and β̂o = 0.9822, β̂d = 1.3032 for the Cheng and Wall (2005) specification. The total effects

estimates from the cross-sectional dependence models would be comparable to the least-squares

estimates, and we see that ignoring network effects that arise from cross-sectional dependence

lead to a substantial downward bias in the least-squares estimates.
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Table 3: Partial derivative impacts for the Wtrade models

Matyas (1997) Cheng and Wall (2005)
fixed effects fixed effects

Effects GDPo GDPd GDPo GDPd

direct 0.3475 0.3855 0.3395 0.5589
network 2.3160 2.5695 1.8371 3.0240
total 2.6635 2.9550 2.1766 3.5828

Table 4: Model comparison of convex combinations of W−matrices (Matyas, 1997, fixed effects)

Models Log-marginal Model Wspace Wcurrency Wlanguage Wcolony Wtrade
likelihood probability

Model 1 −519529.635 0.000 1 1 NA NA NA
Model 2 −514041.460 0.000 1 NA 1 NA NA
Model 3 −512428.703 0.000 1 NA NA 1 NA
Model 4 −507705.640 0.000 1 NA NA NA 1
Model 5 −534178.348 0.000 NA 1 1 NA NA
Model 6 −539338.264 0.000 NA 1 NA 1 NA
Model 7 −513959.160 0.000 NA 1 NA NA 1
Model 8 −535185.602 0.000 NA NA 1 1 NA
Model 9 −512443.984 0.000 NA NA 1 NA 1
Model 10 −503071.944 0.000 NA NA NA 1 1
Model 11 −510951.761 0.000 1 1 1 NA NA
Model 12 −509278.763 0.000 1 1 NA 1 NA
Model 13 −507252.885 0.000 1 1 NA NA 1
Model 14 −511418.909 0.000 1 NA 1 1 NA
Model 15 −505617.056 0.000 1 NA 1 NA 1
Model 16 −505331.781 0.000 1 NA NA 1 1
Model 17 −521467.837 0.000 NA 1 1 1 NA
Model 18 −511281.957 0.000 NA 1 1 NA 1
Model 19 −502105.215 1.000 NA 1 NA 1 1
Model 20 −510301.764 0.000 NA NA 1 1 1
Model 21 −508705.425 0.000 1 1 1 1 NA
Model 22 −504953.579 0.000 1 1 1 NA 1
Model 23 −503487.829 0.000 1 1 NA 1 1
Model 24 −509310.719 0.000 1 NA 1 1 1
Model 25 −508467.724 0.000 NA 1 1 1 1
Model 26 −504584.898 0.000 1 1 1 1 1

4.2 Extended versions of the network dependence models

We produced estimates for models based on averages of all 26 possible combinations of two or

more weight matrices. For example, we define the combined weight matrix: Wc = Wspace +

Wtrade + Wlanguage + Wcurrency + Wcolony, where Wc is row-normalized to have row-sums of

unity. Log-marginal likelihoods are presented for these models in Table 4, for the specification

based on Matyas (1997) fixed effects, and in Table 5 for the Cheng and Wall (2005) fixed effects

specification.

In the Table 4 results, model #19 dominates all others leading to a posterior model probability

of one assigned to this specification, based on Wcurrency +Wcolony +Wtrade. We also note that a

comparison of the log-marginal likelihood for the best single weight matrix model from Table 1
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Table 5: Model comparison of convex combinations of W−matrices (Cheng and Wall, 2005, fixed effects)

Models Log-marginal Model Wspace Wcurrency Wlanguage Wcolony Wtrade
likelihood probability

Model 1 −507048.345 0.000 1 1 NA NA NA
Model 2 −503766.884 0.000 1 NA 1 NA NA
Model 3 −502532.222 0.000 1 NA NA 1 NA
Model 4 −499358.674 0.000 1 NA NA NA 1
Model 5 −518174.284 0.000 NA 1 1 NA NA
Model 6 −523989.738 0.000 NA 1 NA 1 NA
Model 7 −504428.222 0.000 NA 1 NA NA 1
Model 8 −520322.487 0.000 NA NA 1 1 NA
Model 9 −503695.091 0.000 NA NA 1 NA 1
Model 10 −497304.291 0.000 NA NA NA 1 1
Model 11 −501405.745 0.000 1 1 1 NA NA
Model 12 −500300.054 0.000 1 1 NA 1 NA
Model 13 −498846.687 0.000 1 1 NA NA 1
Model 14 −501643.920 0.000 1 NA 1 1 NA
Model 15 −498027.006 0.000 1 NA 1 NA 1
Model 16 −495841.701 0.000 1 NA NA 1 1
Model 17 −510634.416 0.000 NA 1 1 1 NA
Model 18 −502613.916 0.000 NA 1 1 NA 1
Model 19 −496487.855 0.000 NA 1 NA 1 1
Model 20 −500274.233 0.000 NA NA 1 1 1
Model 21 −499479.361 0.000 1 1 1 1 NA
Model 22 −497376.837 0.000 1 1 1 NA 1
Model 23 −495177.846 1.000 1 1 NA 1 1
Model 24 −496643.681 0.000 1 NA 1 1 1
Model 25 −499171.712 0.000 NA 1 1 1 1
Model 26 −495836.711 0.000 1 1 1 1 1

shows that combinations of weight matrices produce a specification more consistent with our

sample data. That is, the log-marginal likelihood for the model based on Wtrade alone was

−5.1401e+05, compared to that for model #19 based on three weight matrices of −5.0210e+05.

The next best model was model #10 based on Wcolony + Wtrade and the 3rd best model was

model #23 based on Wspace +Wcurrency +Wcolony +Wtrade.

The Table 5 results are based on the extended set of fixed effects from Cheng and Wall (2005)

where we see that the best model (#23) is one based on Wspace +Wcurrency +Wcolony +Wtrade,

and the next best model (#26) included all five weight matrices, with the third-best model

(#16) including Wspace +Wcolony +Wtrade. What seems clear from the results in Table 4 and

Table 5 is that membership in trade unions and historical colonial ties are an important source

of interaction between countries’ trade flows. The results from Table 5 place emphasis on Wspace

not found for the model based on simpler fixed effects. Recall that the model based on Cheng

and Wall (2005) fixed effects whose results are presented in Table 5 represents the preferred

model as it has higher log-marginal likelihood values.
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5 Conclusions

A computationally efficient approach to MCMC estimation of a network dependence gravity

model specification was set forth and used to examine the presence of a specific type of cross-

sectional dependence in trade flows. The alternative simultaneous network dependence gravity

model specification here is based on a spatial econometric specification set forth by LeSage

and Pace (2008) that allows trade flows to be dependent on flows between countries that are

spatial neighbors to the origin and destination countries. The extension set forth here allows

for more general types of network dependence such as common currency, language, colonial ties

or membership in trade unions. In cross-sectional gravity models these are typically treated

as generalized distance variables, with the interpretation being that they reflect heterogeneity

impacting the intercept term. In a panel data specification, these types of commonality between

countries reflect time-invariant factors that are thought to be modeled by fixed effects.

We show that after including commonly used fixed effects of the type suggested by Maytas

(1997) or Cheng and Wall (2005), there is evidence that network dependence in trade flows

remains. Conventional gravity models assume the variable vector of N2 × 1 trade flows for each

time period are independent, so trade flows between countries that have a common currency,

language, border, colonial ties or are members of a trade union are no more likely than flows

between countries having nothing in common.

Our specification allows these sociocultural factors to represent a basis for trade interaction

between countries, with more similar flows between countries that share common borders, cur-

rency, language etc. Application of the model to a panel of trade flows covering 38 years and 70

countries provides evidence that this is the case. Network dependence produces simultaneous

dependence, which means that flows from country dyad (i, j) depend on flows from other country

dyads (say (k, l)), where the dependence structure is based on sociocultural factors. The most

important sources of cross-sectional dependence were found to be trade organizations, historical

colonial tries, common currency and spatial proximity of countries.
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APPENDIX A

Table A.1: List of countries

Algeria Costa Rica Kenya South Africa
Australia Denmark Madagascar Spain
Austria Dominican Rep. Malaysia Sri Lanka
Bahamas Ecuador Mauritania Sudan
Belgium Fiji Mexico Suriname
Benin Finland Morocco Sweden
Bolivia France Netherlands Thailand
Brazil Gabon Nicaragua Togo
Burkina Faso Ghana Niger Trinidad and Tobago
Burundi Greece Nigeria Uganda
Cameroon Guatemala Pakistan United Kingdom
Canada Guyana Panama United States
Central African Rep. Honduras Papua New Guinea Uruguay
Chad Hong Kong Peru
Chile Ireland Philippines
China Israel Portugal
Colombia Italy Senegal
Congo, Dem. Rep. Ivory Coast Sierra Leone
Congo, Rep. Jamaica Singapore

Table A.2: Language ties: Common official and second languages
(Krisztin and Fischer 2015)

English French Spanish Arabic
Australia Algeria Bolivia Algeria
Bahamas Belgium Chile Chad
Cameroon Benin Colombia Mauritania
Canada Burkina Faso Costa Rica Morocco
Fiji Burundi Dominican Rep. Sudan
Ghana Cameroon Ecuador
Guyana Canada Guatemala Chinese
Ireland Cent. African Rep. Honduras China
Jamaica Chad Mexico Hong Kong
Kenya Congo, Dem. Rep. Nicaragua Malaysia
Nigeria Congo, Rep. Panama Singapore
Pakistan France Peru
Panama Gabon Spain Malay
Papua New Guina Ivory Coast Uruguay Malaysia
Philippines Madagascar Singapore
Sierra Leone Morocco Dutch
Singapore Niger Belgium
South Africa Rwanda Netherlands
Sri Lanka Senegal Suriname
Suriname Togo
Trinidad and Tobago
Uganda Portuguese
United Kingdom Brazil
USA Portugal
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Table A.3: Free trade and stronger forms of agreements in 2000 (Krisztin and Fischer 2015)
APTA CEMAC EU Malaysia NAFTA
Philippines Burundi Austria Mexico Canada
Sri Lanka Cameroon Belgium Morocco Mexico

Central African Rep. Demark Nicaragua USA
ASEAN [AFTA] Chad Finland Pakistan
Malaysia Congo, Rep. France Peru PATCRA
Philippines Congo. Dem. Rep. Greece Philippines Australia
Singapore Gabon Ireland Singapore Papua New Guinea
Thailand Italy Sri Lanka

COMESA Netherlands Sudan SICA
CAN Burundi Portugal Thailand Costa Rica
Bolivia Congo, Dem. Rep. Spain Trinidad and Tobago Guatemala
Colombia Kenya Sweden Honduras
Ecuador Madagascar United Kingdom LAIA Nicaragua
Peru Sudan Uruguay Bolivia

Uganda Brazil EU treaties
CACM GSTP Chile EU-Israel
Costa Rica ECOWAS Algeria Colombia EU-South Africa
Guatemala Benin Ecuador
Honduras Burkina Faso Bolivia Mexico Bilateral treaties
Nicaragua Ghana Brazil Panama Canada-Chile

Ivory Coast Cameroon Peru Canada-Israel
CARICOM Niger Chile Chile-Mexico
Bahamas Nigeria Colombia MERCOSUR Colombia-Mexico
Dominican Rep. Senegal Ecuador Bolivia Fiji-Papua New Guinea
Guyana Sierra Leone Ghana Brazil Israel-Mexico
Jamaica Togo Guyana Chile
Suriname Uruguay
Trinidad and Tobago

Note: Asia Pacific Trade Agreement (APTA), Asian Free Trade Area (AFTA), Andean Community (CAN), Central American Common
Market (CACM), Caribbean Community and Common Market (CARICOM), Economic Community of Central African States (CEMAC),
Common Market for Eastern and Southern Africa (COMESA), Economic Community of West African States (ECOWAS), Global System
of Trade Preferences among Developing Countries (GSTP), Latin American Integration Association (LAIA), Mercado Comun del Sur
(MERCOSUR), North American Free Trade Agreement (NAFTA), Agreement on Trade between Australia and New Guinea (PATCRA),
Central American Integration System (SICA) (Source: WTO (2014))
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Table A.4: Common currency ties

Euro: Austria, Belgium, France, Finland, Ireland, Italy, Netherlands, Portual, Spain

US Dollar: United States, Bahamas1, Panama

West African CFA Franc2,4: Benin, Burkina Faso, Ivory Coast, Niger, Senegal, Togo

Central African CFA Franc3,4: Cameroon, Central African Republic, Chad, Republic of Congo, Gabon

Notes: 1) The Bahamian dollar is bagged to the US dollar on a one-to one basis. 2) CFA stands for African Financial Community.
It is issued by the Central Bank of the West African States, located in Dakar, Senegal, for the countries of the West African
Economic and Monetary Union. 3) CFA stands for Financial Cooperation in Central Africa. It is issued by the Bank of Central
African States, located in Yaoundé, Cameroon, for the countries of the Economic and Monetary Union of Central Africa. 4)
The two CFA Franc currencies, although theoretically separate, are effectively interchangeable.

Table A.5: Direct colonial ties

UNITED KINGDOM Nigeria FRANCE Morocco Honduras
Australia Pakistan Algeria Niger Mexico
Bahamas Sierra Leone Benin Senegal Netherlands
Cameroon South Africa Burkina Faso Togo Nicaragua
Fiji Sri Lanka Cameroon Panama
Ghana Sudan Central African Rep. SPAIN Peru
Hong Kong Trinidad and Tobago Chad Bolivia
Ireland Uganda Congo, Dem. Rep. Chile BELGIUM
Israel United States Congo, Rep. Colombia Congo, Dem. Rep.
Jamaica Gabon Costa Rica
Kenya Madagascar Ecuador PORTUGAL
Malaysia Mauritania Guatemala Brazil

33


