P. Cerone, S. S. Dragomir, J. Roumeliotis J. Šunde

A NEW GENERALIZATION OF THE TRAPEZOID FORMULA FOR n-TIME DIFFERENTIABLE MAPPINGS AND APPLICATIONS

Abstract

A new generalization of the trapezoid formula for n-time differentiable mappings and applications in Numerical Analysis are given.

1. Introduction

In the recent paper [1], P. Cerone, S.S. Dragomir and J. Roumeliotis proved the following generalization of the trapezoid rule.

Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping such that $f^{(n-1)}$ is absolutely continuous on $[a, b]$. Then we have the equality

$$
\begin{align*}
& \int_{a}^{b} f(t) d t \tag{1.1}\\
= & \sum_{k=0}^{n-1} \frac{(b-a)^{k+1}}{(k+1)!}\left[\frac{f^{(k)}(a)+(-1)^{k} f^{(k)}(b)}{2}\right]+\int_{a}^{b} T_{n}(t) f^{(n)}(t) d t,
\end{align*}
$$

where

$$
\begin{equation*}
T_{n}(t):=\frac{1}{n!}\left[\frac{(b-t)^{n}+(-1)^{n}(t-a)^{n}}{2}\right], \quad t \in[a, b] . \tag{1.2}
\end{equation*}
$$

In the same paper, the authors pointed out the following inequality which provides an approximation formula for the integral $\int_{a}^{b} f(t) d t$ whose error can be estimated in terms of the sup-norm of $f^{(n)}(t)$.

[^0]Corollary 1. Under the above assumptions, we have the inequality

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{(b-a)^{k+1}}{(k+1)!}\left[\frac{f^{(k)}(a)+(-1)^{k} f^{(k)}(b)}{2}\right]\right| \tag{1.3}\\
\leq & \frac{(b-a)^{n+1}}{(n+1)!}\left\|f^{(n)}\right\|_{\infty} \times \begin{cases}1 & \text { if } n=2 r \\
\frac{2^{n}-1}{2^{n}} & \text { if } n=2 r+1 .\end{cases}
\end{align*}
$$

If, in the above corollary, we consider $n=1$, then we get the known inequality [2]

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-\frac{f(a)+f(b)}{2}(b-a)\right| \leq \frac{1}{4}(b-a)^{2}\left\|f^{\prime}\right\|_{\infty} \tag{1.4}
\end{equation*}
$$

For $n=2$, we obtain

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-\frac{f(a)+f(b)}{2}(b-a)-\frac{(b-a)^{2}}{2} \cdot \frac{f^{\prime}(a)+f^{\prime}(b)}{2}\right| \tag{1.5}\\
\leq & \frac{(b-a)^{3}}{6}\left\|f^{\prime \prime}\right\|_{\infty}
\end{align*}
$$

For other recent results concerning the trapezoid formula, see the book [9] and the recent papers [1]-[8] and [10]-[11], where further references are given.

The main aim of this paper is to point out a generalization of the trapezoid rule and inequality in a different way. Applications in Numerical Analysis for quadrature formulae will also be provided. A perturbed trapezoidal type rule is presented in Section 4 in which a number of premature results are given that provide tighter bounds than the traditional Grüss, Chebychev and Lupaş inequalities.

2. Integral identities

We start with the following result:
THEOREM 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping such that the derivative $f^{(n-1)}$ $(n \geq 1)$ is absolutely continuous on $[a, b]$. Then

$$
\begin{align*}
& \int_{a}^{b} f(t) d t \tag{2.1}\\
= & \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(x-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-x)^{k+1} f^{(k)}(b)\right] \\
& +\frac{1}{n!} \int_{a}^{b}(x-t)^{n} f^{(n)}(t) d t
\end{align*}
$$

for all $x \in[a, b]$.

Proof. The proof is by mathematical induction.
For $n=1$, we have to prove that

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=(x-a) f(a)+(b-x) f(b)+\int_{a}^{b}(x-t) f^{(1)}(t) d t \tag{2.2}
\end{equation*}
$$

which is straightforward as it may be seen by the integration by parts formula applied for the integral

$$
\begin{equation*}
\int_{a}^{b}(x-t) f^{(1)}(t) d t \tag{2.3}
\end{equation*}
$$

Assume that (2.1) holds for " n " and let us prove it for " $n+1$ ". That is, we wish to show that

$$
\begin{align*}
& \int_{a}^{b} f(t) d t \tag{2.4}\\
= & \sum_{k=0}^{n} \frac{1}{(k+1)!}\left[(x-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-x)^{k+1} f^{(k)}(b)\right] \\
& +\frac{1}{(n+1)!} \int_{a}^{b}(x-t)^{n+1} f^{(n+1)}(t) d t .
\end{align*}
$$

For this purpose, we apply formula (2.2) for the mapping $g(t):=$ $(x-t)^{n} f^{(n)}(t)$, which is absolutely continuous on $[a, b]$, and then, we can write

$$
\begin{align*}
& \int_{a}^{b}(x-t)^{n} f^{(n)}(t) d t \tag{2.5}\\
= & (x-a)(x-a)^{n} f^{(n)}(a)+(b-x)(x-b)^{n} f^{(n)}(b) \\
& +\int_{a}^{b}(x-t) \frac{d}{d t}\left[(x-t)^{n} f^{(n)}(t)\right] d t \\
= & \int_{a}^{b}(x-t)\left[-n(x-t)^{n-1} f^{(n)}(t)+(x-t)^{n} f^{(n+1)}(t)\right] d t \\
& +(x-a)^{n+1} f^{(n)}(a)+(-1)^{n}(b-x)^{n+1} f^{(n)}(b) \\
= & -n \int_{a}^{b}(x-t)^{n} f^{(n)}(t) d t+\int_{a}^{b}(x-t)^{n+1} f^{(n+1)}(t) d t \\
& +(x-a)^{n+1} f^{(n)}(a)+(-1)^{n}(b-x)^{n+1} f^{(n+1)}(t) d t .
\end{align*}
$$

From (24) we can get

$$
\begin{aligned}
& \int_{a}^{b}(x-t)^{n} f^{(n)}(t) d t \\
= & \frac{1}{n+1} \int_{a}^{b}(x-t)^{n+1} f^{(n+1)}(t) d t \\
& +\frac{1}{n+1}\left[(x-a)^{n+1} f^{(n)}(a)+(-1)^{n}(b-x)^{n+1} f^{(n)}(b)\right]
\end{aligned}
$$

Now, using the induction hypothesis, we have

$$
\begin{aligned}
\int_{a}^{b} f(t) d t & =\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(x-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-x)^{k+1} f^{(k)}(b)\right] \\
& +\frac{1}{n!}\left[\frac{1}{n+1} \int_{a}^{b}(x-t)^{n+1} f^{(n+1)}(t) d t\right. \\
& \left.+\frac{1}{n+1}\left[(x-a)^{n+1} f^{(n)}(a)+(b-x)^{n+1} f^{(n)}(b)\right]\right] \\
= & \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(x-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-x)^{k+1} f^{(k)}(b)\right] \\
& +\frac{1}{(n+1)!} \int_{a}^{b}(x-t)^{n+1} f^{(n+1)}(t) d t
\end{aligned}
$$

and the identity (2.4) is proved. This completes the proof.
The following corollary is useful in practice.
Corollary 2. With the above assumptions for f and R, we have the particular identities (which can also be obtained by using Taylor's formula with the integral remainder)

$$
\begin{align*}
& \int_{a}^{b} f(t) d t=\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(k+1)!}(b-a)^{k+1} f^{(k)}(b)+\frac{(-1)^{n}}{n!} \int_{a}^{b}(t-a)^{n} f^{(n)}(t) d t \tag{2.6}\\
& \int_{a}^{b} f(t) d t=\sum_{k=0}^{n-1} \frac{1}{(k+1)!}(b-a)^{k+1} f^{(k)}(a)+\frac{1}{n!} \int_{a}^{b}(b-t)^{n} f^{(n)}(t) d t \tag{2.7}
\end{align*}
$$

and the identity (see also [11])

$$
\begin{align*}
\int_{a}^{b} f(t) d t= & \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left(\frac{b-a}{2}\right)^{k+1}\left[f^{(k)}(a)+(-1)^{k} f^{(k)}(b)\right] \tag{2.8}\\
& +\frac{(-1)^{n}}{n!} \int_{a}^{b}\left(t-\frac{a+b}{2}\right)^{n} f^{(n)}(t) d t
\end{align*}
$$

REMARK 1. a) For $n=1$, we get the identity (2.2) which is a generalization of the trapezoid rule.
i) For $x=a$ in (2.2), we capture the "right rectangle rule"

$$
\int_{a}^{b} f(t) d t=(b-a) f(b)-\int_{a}^{b}(t-a) f^{\prime}(t) d t
$$

ii) For $x=b$ in (2.2), we obtain the "left rectangle rule"

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=(b-a) f(a)-\int_{a}^{b}(b-t) f^{\prime}(t) d t \tag{2.9}
\end{equation*}
$$

iii) Finally, for $x=\frac{a+b}{2}$, we get [2]

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\frac{f(a)+f(b)}{2}(b-a)-\int_{a}^{b}\left(t-\frac{a+b}{2}\right) f^{\prime}(t) d t \tag{2.10}
\end{equation*}
$$

which is the "trapezoid rule".
b) For $n=2$, we get the identity:

$$
\begin{align*}
& \int_{a}^{b} f(t) d t \tag{2.11}\\
= & (x-a) f(a)+(b-x) f(b) \\
& +\frac{1}{2}\left[(x-a)^{2} f^{\prime}(a)-(b-x)^{2} f^{\prime}(b)\right]+\frac{1}{2} \int_{a}^{b}(x-t)^{2} f^{\prime \prime}(t) d t
\end{align*}
$$

i) If in (2.11) we choose $x=b$, then we obtain the "perturbed left rectangle rule"

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=(b-a) f(a)+\frac{1}{2}(b-a)^{2} f^{\prime}(a)+\frac{1}{2} \int_{a}^{b}(t-a)^{2} f^{\prime \prime}(t) d t \tag{2.12}
\end{equation*}
$$

which can also be obtained by using Taylor's formula with the integral remainder.
ii) If in (2.11) we choose $x=a$, we can write the "perturbed right rectangle rule"

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=(b-a) f(b)-\frac{1}{2}(b-a)^{2} f^{\prime}(b)+\frac{1}{2} \int_{a}^{b}(t-b)^{2} f^{\prime \prime}(t) d t \tag{2.13}
\end{equation*}
$$

iii) Finally, for $x=\frac{a+b}{2}$, we capture the "perturbed trapezoid rule" [11]

$$
\begin{align*}
\int_{a}^{b} f(t) d t= & \frac{f(a)+f(b)}{2}(b-a)+\frac{(b-a)^{2}}{8}\left(f^{\prime}(a)-f^{\prime}(b)\right) \tag{2.14}\\
& +\frac{1}{2} \int_{a}^{b}\left(t-\frac{a+b}{2}\right)^{2} f^{\prime \prime}(t) d t
\end{align*}
$$

3. Integral inequalities

Using the integral representation of Theorem 1, we can prove the following inequality
Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping such that the derivative $f^{(n-1)}$ ($n \geq 1$) is absolutely continuous on $[a, b]$. Then

$$
\begin{align*}
& \text { 1) } \left\lvert\, \begin{array}{ll}
\left.\int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(x-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-x)^{k+1} f^{(k)}(b)\right] \right\rvert\, \\
\leq \begin{cases}\frac{\left\|f^{(n)}\right\|_{\infty}}{(n+1)!}\left[(x-a)^{n+1}+(b-x)^{n+1}\right] & \text { if } f^{(n)} \in L_{\infty}[a, b] ; \\
\frac{\left\|f^{(n)}\right\|_{p}}{n!}\left[\frac{(x-a)^{n q+1}+(b-x)^{n q+1}}{n q+1}\right]^{\frac{1}{q}} & \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\frac{\left\|f^{(n)}\right\|_{1}}{n!}\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{n} & \text { and } f^{(n)} \in L_{p}[a, b] ;\end{cases}
\end{array}\right. \tag{3.1}
\end{align*}
$$

for all $x \in[a, b]$.
Proof. Using the representation (2.1) and the properties of the modulus, we have

$$
\begin{aligned}
& \left|\int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[(x-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-x)^{k+1} f^{(k)}(b)\right]\right| \\
& \leq \frac{1}{n!} \int_{a}^{b}|x-t|^{n}\left|f^{(n)}(t)\right| d t=: R .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
R & \leq\left[\frac{1}{n!} \int_{a}^{b}|x-t|^{n} d t\right]\left\|f^{(n)}\right\|_{\infty} \\
& =\frac{\left\|f^{(n)}\right\|_{\infty}}{n!}\left[\int_{a}^{b}(x-t)^{n} d t+\int_{a}^{b}(t-x)^{n} d t\right] \\
& =\frac{\left\|f^{(n)}\right\|_{\infty}}{n!}\left[\frac{(x-a)^{n+1}+(b-x)^{n+1}}{n+1}\right]
\end{aligned}
$$

and the first inequality in (3.1) is proved.

Using Hölder's integral inequality, we also have

$$
\begin{aligned}
R & \leq \frac{1}{n!}\left(\int_{a}^{b}\left|f^{(n)}(t)\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|x-t|^{n q} d t\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}\left\|f^{(n)}\right\|_{p}\left[\frac{(x-a)^{n q+1}+(b-x)^{n q+1}}{n q+1}\right]^{\frac{1}{q}}
\end{aligned}
$$

which proves the second inequality in (3.1).
Finally, let us observe that

$$
\begin{aligned}
R & \leq \frac{1}{n!} \sup _{t \in[a, b]}|x-t|^{n} \int_{a}^{b}\left|f^{(n)}(t)\right| d t \\
& =\frac{1}{n!}\left[\sup _{t \in[a, b]}|x-t|\right]^{n}\left\|f^{(n)}\right\|_{1} \\
& =\frac{1}{n!}[\max (x-a, b-x)]^{n}\left\|f^{(n)}\right\|_{1} \\
& =\frac{1}{n!}\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{n}\left\|f^{(n)}\right\|_{1}
\end{aligned}
$$

and the theorem is completely proved.
The following corollary is useful in practice.
Corollary 3. With the above assumptions for f and n, we have the particular inequalities

$$
\begin{aligned}
& \left|\int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{(-1)^{k}}{(k+1)!}(b-a)^{k+1} f^{(k)}(b)\right| \\
& \leq M:= \begin{cases}\frac{\left\|f^{(n)}\right\|_{\infty}}{(n+1)!}(b-a)^{n+1} & \text { if } f^{(n)} \in L_{\infty}[a, b] ; \\
\frac{\left\|f^{(n)}\right\|_{p}}{n!} \frac{(b-a)^{n+\frac{1}{q}}}{(n q+1)^{1 / q}} & \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\frac{\left\|f^{(n)}\right\|_{1}}{n!}(b-a)^{n}, & \text { and } f^{(n)} \in L_{p}[a, b]\end{cases}
\end{aligned}
$$

and

$$
\left|\int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{1}{(k+1)!}(b-a)^{k+1} f^{(k)}(b)\right| \leq M
$$

and (see also [11])

$$
\begin{align*}
& \left.\quad \left\lvert\, \begin{array}{ll}
\left.\int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left(\frac{b-a}{2}\right)^{k+1}\left[f^{(k)}(a)+(-1)^{k} f^{(k)}(b)\right] \right\rvert\, \\
\leq & \begin{cases}\frac{\left\|f^{(n)}\right\|_{\infty}}{2^{n}(n+1)!}(b-a)^{n+1} & \text { if } f^{(n)} \in L_{\infty}[a, b] \\
\frac{\left\|f^{(n)}\right\|_{p}}{2^{n} n!(n q+1)^{1 / q}}(b-a)^{n+\frac{1}{q}} & \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\frac{\left\|f^{(n)}\right\|_{1}}{2^{n} n!}(b-a)^{n} ; & \text { and } f^{(n)} \in L_{p}[a, b]\end{cases}
\end{array}\right.\right) \tag{3.2}
\end{align*}
$$

respectively.
REMARK 2. If we put $n=1$ in (3.1), we capture the inequality

$$
\begin{align*}
& \left\lvert\, \begin{array}{ll}
\int_{a}^{b} f(t) d t-(x-a) f(a)-(b-x) f(b) \mid \\
\leq & \begin{cases}{\left[\frac{1}{4}(b-a)^{2}+\left(x-\frac{a+b}{2}\right)^{2}\right]\left\|f^{(1)}\right\|_{\infty}} & \text { if } f^{\prime} \in L_{\infty}[a, b] ; \\
\left\|f^{\prime}\right\|_{p}\left[\frac{(x-a)^{q+1}+(b-x)^{q+1}}{q+1}\right]^{\frac{1}{q}} & \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
{\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]\left\|f^{\prime}\right\|_{1} ;} & \text { and } f^{\prime} \in L_{p}[a, b] ;\end{cases}
\end{array}\right. \tag{3.3}
\end{align*}
$$

for all $x \in[a, b]$, and, in particular,
a) the "left rectangle" inequality

$$
\left|\int_{a}^{b} f(t) d t-(b-a) f(a)\right| \leq \begin{cases}\frac{\left\|f^{\prime}\right\|_{\infty}}{2}(b-a)^{2} & \text { if } f^{\prime} \in L_{\infty}[a, b] \\ \frac{\left\|f^{\prime}\right\|_{p}}{(q+1)^{1 / q}}(b-a)^{1+\frac{1}{q}} & \text { if } f^{\prime} \in L_{p}[a, b] \\ \left\|f^{\prime}\right\|_{1}(b-a) & \end{cases}
$$

b) the "right rectangle" inequality

$$
\left|\int_{a}^{b} f(t) d t-(b-a) f(b)\right| \leq \begin{cases}\frac{\left\|f^{\prime}\right\|_{\infty}}{2}(b-a)^{2} & \text { if } f^{\prime} \in L_{\infty}[a, b] \\ \frac{\left\|f^{\prime}\right\|_{p}}{(q+1)^{1 / q}}(b-a)^{1+\frac{1}{q}} & \text { if } f^{\prime} \in L_{p}[a, b] \\ \left\|f^{\prime}\right\|_{1}(b-a) . & \end{cases}
$$

c) the "trapezoid" inequality

$$
\begin{align*}
& \left|\begin{array}{ll}
\int_{a}^{b} f(t) d t-\frac{f(a)+f(b)}{2}(b-a)
\end{array}\right| \tag{3.4}\\
\leq & \begin{cases}\frac{\left\|f^{\prime}\right\|_{\infty}}{4}(b-a)^{2} & \text { if } f^{\prime} \in L_{\infty}[a, b] ; \\
\frac{\left\|f^{\prime}\right\|_{p}}{2(q+1)^{1 / q}}(b-a)^{1+\frac{1}{q}} & \text { if } f^{\prime} \in L_{p}[a, b] ; \\
\frac{\left\|f^{\prime}\right\|_{1}}{2}(b-a) .\end{cases}
\end{align*}
$$

Remark 3. If we put $n=2$ in (3.1), we get the inequality

$$
\begin{align*}
& \mid \int_{a}^{b} f(t) d t-(x-a) f(a)-(b-x) f(b) \tag{3.5}\\
& \left.\quad-\frac{1}{2}\left[(x-a)^{2} f^{\prime}(a)-(b-x)^{2} f^{\prime}(b)\right] \right\rvert\, \\
& \leq \begin{cases}\frac{\left\|f^{\prime \prime}\right\|_{\infty}}{6}\left[(b-a)^{3}+(b-x)^{3}\right] & \text { if } f^{\prime \prime} \in L_{\infty}[a, b] \\
\frac{\left\|f^{\prime \prime}\right\|_{p}}{2}\left[\frac{(x-a)^{2 q+1}+(b-x)^{2 q+1}}{2 q+1}\right]^{\frac{1}{q}} & \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\frac{\left\|f^{\prime \prime}\right\|_{1}}{2}\left[\frac{1}{2}(b-a)+\left\lvert\, x-\frac{a+b}{2}\right.\right]^{2} ; & \text { and } f^{\prime \prime} \in L_{p}[a, b]\end{cases}
\end{align*}
$$

for all $x \in[a, b]$, and, in particular:
a) the "perturbed left rectangle" inequality

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-(b-a) f(a)-\frac{1}{2}(b-a)^{2} f^{\prime}(a)\right| \tag{3.6}\\
& \leq M_{2}:= \begin{cases}\frac{\left\|f^{\prime \prime}\right\|_{\infty}}{6}(b-a)^{3} & \text { if } f^{\prime \prime} \in L_{\infty}[a, b] \\
\frac{\left\|f^{\prime \prime}\right\|_{p}}{2(2 q+1)^{1 / q}}(b-a)^{2+\frac{1}{q}} & \text { if } f^{\prime \prime} \in L_{p}[a, b] ; \\
\frac{\left\|f^{\prime \prime}\right\|_{1}}{2}(b-a)^{2}\end{cases}
\end{align*}
$$

b) the "perturbed right rectangle" inequality

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d t-(b-a) f(b)+\frac{1}{2}(b-a)^{2} f^{\prime}(b)\right| \leq M_{2} \tag{3.7}
\end{equation*}
$$

c) the "perturbed trapezoid" inequality

$$
\begin{align*}
& \left\lvert\, \begin{array}{ll}
\left.\int_{a}^{b} f(t) d t-\frac{f(a)+f(b)}{2}(b-a)+\frac{(b-a)^{2}}{8}\left(f^{\prime}(b)-f^{\prime}(a)\right) \right\rvert\, \\
\leq & \begin{cases}\frac{\left\|f^{\prime \prime}\right\|_{\infty}}{24}(b-a)^{3} & \text { if } f^{\prime \prime} \in L_{\infty}[a, b] ; \\
\frac{\left\|f^{\prime \prime}\right\|_{p}}{8(2 q+1)^{1 / q}}(b-a)^{2+\frac{1}{q}} & \text { if } f^{\prime \prime} \in L_{p}[a, b] ; \\
\frac{\left\|f^{\prime \prime}\right\|_{1}}{8}(b-a)^{2} .\end{cases}
\end{array} .\right. \tag{3.8}
\end{align*}
$$

4. A perturbed version

A premature Grüss inequality is embodied in the following lemma (see papers [12] or [14] for a proof).

Lemma 1. Let f, g be integrable functions defined on $[a, b]$ and let $d \leq g(t)$ $\leq D$. Then

$$
\begin{equation*}
|T(f, g)| \leq \frac{D-d}{2}[T(f, f)]^{\frac{1}{2}}, \tag{4.1}
\end{equation*}
$$

where

$$
T(f, g)=\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t-\frac{1}{b-a} \int_{a}^{b} f(t) d t \cdot \frac{1}{b-a} \int_{a}^{b} g(t) d t .
$$

Using the above lemma, the following result may be stated.
Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the derivative $f^{(n-1)}, n \geq 1$ is absolutely continuous on $[a, b]$. Assume that there exist constants $\gamma, \Gamma \in \mathbb{R}$ such that $\gamma \leq f^{(n)}(t) \leq \Gamma$ a.e on $[a, b]$. Then, the following inequality holds

$$
\begin{align*}
& \left|P_{T}(x)\right|:=\mid \int_{a}^{b} f(t) d t \tag{4.2}\\
& -\sum_{k=0}^{n-1}\left(\frac{1}{(k+1)!} \times\left[(x-a)^{k+1} f^{(k)}(a)+(-1)^{k}(b-x)^{k+1} f^{(k)}(b)\right]\right) \\
& \left.-\frac{(x-a)^{n+1}+(-1)^{n}(b-x)^{n+1}}{(n+1)!}\left[\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}\right] \right\rvert\, \\
& \leq \frac{\Gamma-\gamma}{2} \cdot \frac{1}{n!} I(x, n) \\
& \leq \frac{\Gamma-\gamma}{2} \cdot \frac{n}{(n+1)!} \cdot \frac{(b-a)^{n+1}}{\sqrt{2 n+1}}
\end{align*}
$$

where

$$
\begin{align*}
I(x, n)= & \frac{1}{(n+1) \sqrt{2 n+1}}\left\{n^{2}(b-a)\left[(x-a)^{2 n+1}+(b-x)^{2 n+1}\right]\right. \tag{4.3}\\
& \left.+(2 n+1)(x-a)(b-x)\left[(x-a)^{n}-(x-b)^{n}\right]^{2}\right\}^{\frac{1}{2}}
\end{align*}
$$

Proof. Applying the premature Grüss result (4.1) on $(x-t)^{n}$ and $f^{(n)}(t)$, we have

$$
\begin{aligned}
& \left|\frac{1}{b-a} \int_{a}^{b}(x-t)^{n} f^{(n)}(t) d t-\frac{1}{b-a} \int_{a}^{b}(x-t)^{n} d t \cdot \frac{1}{b-a} \int_{a}^{b} f^{(n)}(t) d t\right| \\
\leq & \frac{\Gamma-\gamma}{2}\left\{\frac{1}{b-a} \int_{a}^{b}(x-t)^{2 n} d t-\left[\frac{1}{b-a} \int_{a}^{b}(x-t)^{n} d t\right]^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left\lvert\, \frac{1}{b-a} \int_{a}^{b}(x-t)^{n} f^{(n)}(t) d t\right. \\
& \left.-\frac{(x-a)^{n+1}+(-1)^{n}(b-x)^{n+1}}{(n+1)(b-a)} \cdot \frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a} \right\rvert\, \\
\leq & \frac{\Gamma-\gamma}{2}\left\{\frac{(x-a)^{2 n+1}+(b-x)^{2 n+1}}{(2 n+1)(b-a)}-\left[\frac{(x-a)^{n+1}+(-1)^{n}(b-x)^{n+1}}{(b-a)(n+1)}\right]^{2}\right\}^{\frac{1}{2}} .
\end{aligned}
$$

We get further simplification of the above result by multiplying throughout by $\frac{b-a}{n!}$. This gives

$$
\begin{align*}
& \left\lvert\, \frac{1}{n!} \int_{a}^{b}(x-t)^{n} f^{(n)}(t) d t\right. \tag{4.4}\\
& -\frac{(x-a)^{n+1}+(-1)^{n}(b-x)^{n+1}}{(n+1)!} \cdot\left[\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}\right] \\
\leq & \frac{\Gamma-\gamma}{2} \cdot \frac{1}{n!} J(x, n)
\end{align*}
$$

where
(4.5) $\quad J^{2}(x, n)=\frac{1}{(2 n+1)(n+1)^{2}}\left\{(n+1)^{2}(A+B)\left(A^{2 n+1}+B^{2 n+1}\right)\right.$

$$
\left.-(2 n+1)\left(A^{n+1}+(-1)^{n} B^{n+1}\right)^{2}\right\}
$$

with $A=x-a, B=b-x$.
Now, from (4.5),

$$
\begin{aligned}
& (2 n+1)(n+1)^{2} J^{2}(x, n) \\
= & n^{2}(A+B)\left(A^{2 n+1}+B^{2 n+1}\right) \\
& +(2 n+1)\left[(A+B)\left(A^{2 n+1}+B^{2 n+1}\right)-\left(A^{n+1}+(-1)^{n} B^{n+1}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & n^{2}(A+B)\left(A^{2 n+1}+B^{2 n+1}\right) \\
& +(2 n+1)\left[A B\left(A^{2 n}+B^{2 n}\right)-2 A^{n+1} \cdot(-1)^{n} B^{n+1}\right] \\
= & n^{2}(A+B)\left[A^{2 n+1}+B^{2 n+1}\right]+(2 n+1) A B\left[A^{n}-(-B)^{n}\right]^{2}
\end{aligned}
$$

Now, substitution of $A=x-a, B=b-x$ and the fact that $A+B=b-a$ gives $I(x, n)=\frac{J(x, n)}{(n+1) \sqrt{2 n+1}}$, as presented in (4.3). Substitution of identity (2.1) into (4.4) gives (4.2) and thus the first part of the theorem is proved.

The upper bound is obtained by taking either $I(a, n)$ or $I(b, n)$ since $I(x, n)$ is convex. Hence the theorem is completely proved.

Corollary 4. Let the conditions of Theorem 4 hold. Then the following result holds

$$
\begin{align*}
& \left\lvert\, \frac{1}{b-a} \int_{a}^{b} f(t) d t-\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left(\frac{b-a}{2}\right)^{k+1}\left[f^{(k)}(a)+(-1)^{k} f^{(k)}(b)\right]\right. \tag{4.6}\\
& \left.-\left(\frac{b-a}{2}\right)^{n} \frac{\left[1+(-1)^{n}\right]}{(n+1)!}\left[\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a}\right] \right\rvert\, \\
& \leq \frac{\Gamma-\gamma}{2} \cdot \frac{1}{n!}\left(\frac{b-a}{2}\right)^{n+1} \cdot \frac{1}{\sqrt{2 n+1}} \cdot \begin{cases}\frac{2 n}{n+1}, & n \text { even } \\
2, & n \text { odd. }\end{cases}
\end{align*}
$$

Proof. Taking $x=\frac{a+b}{2}$ in (4.2) gives (4.2), where

$$
I\left(\frac{a+b}{2}, n\right)=\frac{1}{(n+1) \sqrt{2 n+1}}\left(\frac{b-a}{2}\right)^{n+1}\left\{4 n^{2}+(2 n+1)\left[1+(-1)^{n}\right]^{2}\right\}^{\frac{1}{2}} .
$$

Examining the above expression for n even or n odd readily gives the result (4.6).

Remark 4. For n even, the third term in the modulus sign vanishes and thus there is no perturbation to the trapezoidal rule (4.6).

Theorem 5. Let the conditions of Theorem 4 be satisfied. Further, suppose that $f^{(n)}$ is differentiable and be such that

$$
\left\|f^{(n+1)}\right\|_{\infty}:=\sup _{t \in[a, b]}\left|f^{n+1}(t)\right|<\infty .
$$

Then

$$
\begin{equation*}
\left|P_{T}(x)\right| \leq \frac{b-a}{\sqrt{12}}\left\|f^{(n+1)}\right\|_{\infty} \cdot \frac{1}{n!} I(x, n), \tag{4.7}
\end{equation*}
$$

where $P_{T}(x)$ is the perturbed trapezoidal type rule given by the left hand side of (4.2) and $I(x, n)$ is as given by (4.3).

Proof. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be absolutely continuous and f^{\prime}, g^{\prime} be bounded. Then Chebychev's inequality holds (see [13, p. 207])

$$
|T(f, g)| \leq \frac{(b-a)^{2}}{12} \sup _{t \in[a, b]}\left|f^{\prime}(t)\right| \cdot \sup _{t \in[a, b]}\left|g^{\prime}(t)\right|
$$

In [14] Matić, Pečarić and Ujević, using a premature Grüss type argument, proved that

$$
\begin{equation*}
|T(f, g)| \leq \frac{(b-a)}{\sqrt{12}} \sup _{t \in[a, b]}\left|g^{\prime}(t)\right| \sqrt{T(f, f)} \tag{4.8}
\end{equation*}
$$

Thus, associating $f^{(n)}(\cdot)$ with $g(\cdot)$ and $(x-t)^{n}$ with f in (4.8) readily produces (4.7) where $I(x, n)$ is as given by (4.3).
Theorem 6. Let the conditions of Theorem 4 be satisfied. Further, suppose that $f^{(n)}$ is locally absolutely continuous on (a, b) and let $f^{(n+1)} \in L_{2}(a, b)$. Then

$$
\begin{equation*}
\left|P_{T}(x)\right| \leq \frac{b-a}{\pi}\left\|f^{(n+1)}\right\|_{2} \cdot \frac{1}{n!} I(x, n) \tag{4.9}
\end{equation*}
$$

where $P_{T}(x)$ is the perturbed trapezoidal type rule given by the left hand side of (4.2) and $I(x, n)$ is as given in (4.3).
Proof. The following result was obtained by Lupaş (see [13, p. 210]). For $f, g:(a, b) \rightarrow \mathbb{R}$ being locally absolutely continuous on (a, b) and $f^{\prime}, g^{\prime} \in$ $L_{2}(a, b)$, then

$$
|T(f, g)| \leq \frac{(b-a)^{2}}{\pi^{2}}\left\|f^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2}
$$

where

$$
\|h\|_{2}:=\left(\frac{1}{b-a} \int_{a}^{b}|h(t)|^{2}\right)^{\frac{1}{2}} \text { for } h \in L_{2}(a, b)
$$

In [14] Matić, Pečarić and Ujević further show that

$$
\begin{equation*}
|T(f, g)| \leq \frac{(b-a)}{\pi}\left\|g^{\prime}\right\|_{2} \sqrt{T(f, f)} \tag{4.10}
\end{equation*}
$$

Now, associating $f^{(n)}(\cdot)$ with $g(\cdot)$ and $(x-t)^{n}$ with f in (4.10) gives (4.9), where $I(x, n)$ is found in (4.3).
REMARK 5. Results (4.7) and (4.9) are not readily comparable to that obtained in Theorem 4 since the bound now involves the behaviour of $f^{(n+1)}(\cdot)$ rather than $f^{(n)}(\cdot)$.

5. Application in numerical integration

Consider the partition $I_{m}: a=x_{0}<x_{1}<\ldots<x_{m-1}<x_{m}=b$ of the interval $[a, b]$ and the intermediate points $\xi=\left(\xi_{0}, \ldots, \xi_{m-1}\right)$, where $\xi_{j} \in\left[x_{j}, x_{j+1}\right](j=0, \ldots, m-1)$. Put $h_{j}:=x_{j+1}-x_{j}$ and $\vartheta(h)=$ $\max \left\{h_{j} \mid j=0, \ldots, m-1\right\}$.

In [1], the authors considered the following generalization of the trapezoid formula

$$
\begin{equation*}
T_{m, n}\left(f, I_{m}\right):=\sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \frac{h_{j}^{k+1}}{(k+1)!}\left[\frac{f^{(k)}\left(x_{j}\right)+(-1)^{k} f^{(k)}\left(x_{j+1}\right)}{2}\right] \tag{5.1}
\end{equation*}
$$

and proved the following theorem:
Theorem 7. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that it's derivative $f^{(n-1)}$ is absolutely continuous on $[a, b]$. Then we have

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=T_{m, n}\left(f, I_{m}\right)+R_{m, n}\left(f, I_{m}\right), \tag{5.2}
\end{equation*}
$$

where the reminder $R_{m, n}\left(f, I_{m}\right)$ satisfies the estimate

$$
\begin{equation*}
\left|R_{m, n}\left(f, I_{m}\right)\right| \leq \frac{C_{n}}{(n+1)!}\left\|f^{(n)}\right\|_{\infty} \sum_{j=0}^{m-1} h_{j}^{n+1}, \tag{5.3}
\end{equation*}
$$

and

$$
C_{n}:= \begin{cases}1 & \text { if } n=2 r \\ \frac{2^{2 r+1}-1}{2^{2 r+1}} & \text { if } n=2 r+1\end{cases}
$$

Now, let us define the even more generalized quadrature formula

$$
\begin{aligned}
\widetilde{T}_{m, n}\left(f, \xi, I_{m}\right):= & \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \frac{1}{(k+1)!}\left[\left(\xi_{j}-x_{j}\right)^{k+1} f^{(k)}\left(x_{j}\right)\right. \\
& \left.+(-1)^{k}\left(x_{j+1}-\xi_{j}\right)^{k+1} f^{(k)}\left(x_{j+1}\right)\right],
\end{aligned}
$$

where $x_{j}, \xi_{j}(j=0, \ldots, m-1)$ are as above.
The following theorem holds.
Theorem 8. Let f be as in Theorem 7. Then we have the formula

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\widetilde{T}_{m, n}\left(f, \xi, I_{m}\right)+\widetilde{R}_{m, n}\left(f, \xi, I_{m}\right) \tag{5.4}
\end{equation*}
$$

where the reminder satisfies the estimate
(5.5) $\left|\widetilde{R}_{m, n}\left(f, \xi, I_{m}\right)\right|$

$$
:=\left\{\begin{array}{l}
\frac{1}{(n+1)!}\left\|f^{(n)}\right\|_{\infty} \sum_{j=0}^{m-1}\left[\left(\xi_{j}-x_{j}\right)^{n+1}+\left(x_{j+1}-\xi_{j}\right)^{n+1}\right] \\
\frac{1}{n!(n q+1)^{1 / q}}\left\|f^{(n)}\right\|_{p}\left[\sum_{j=0}^{m-1}\left(\xi_{j}-x_{j}\right)^{n q+1}+\sum_{j=0}^{m-1}\left(x_{j+1}-\xi_{j}\right)^{n q+1}\right]^{\frac{1}{q}} \\
\frac{1}{n!}\left\|f^{(n)}\right\|_{1}\left[\left.\frac{1}{2} \vartheta(h)+\max _{j=0, \ldots, m-1} \right\rvert\, \xi_{j}-\frac{x_{j}+x_{j+1}}{2} \|^{n}\right.
\end{array}\right.
$$

Proof. Apply the inequality (3.1) on the subinterval $\left[x_{j}, x_{j+1}\right]$ to get

$$
\begin{aligned}
& \left\lvert\, \int_{x_{j}}^{x_{j+1}} f(t) d t-\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\right. \\
& \times\left[\left(\xi_{j}-x_{j}\right)^{k+1} f^{(k)}\left(x_{j}\right)+(-1)^{k}\left(x_{j+1}-\xi_{j}\right)^{k+1} f^{(k)}\left(x_{j+1}\right)\right] \mid \\
\leq & \left\{\begin{array}{l}
\frac{1}{(n+1)!} \sup _{t \in\left[x_{j}, x_{j+1}\right]}\left|f^{(n)}(t)\right|\left[\left(\xi_{j}-x_{j}\right)^{n+1}+\left(x_{j+1}-\xi_{j}\right)^{n+1}\right] \\
\frac{1}{n!}\left(\int_{x_{j}}^{x_{j+1}}\left|f^{(n)}(s)\right|^{p} d s\right)^{\frac{1}{p}}\left[\frac{\left(\xi_{j}-x_{j}\right)^{n q+1}+\left(x_{j+1}-\xi_{j}\right)^{n q+1}}{n q+1}\right]^{\frac{1}{q}} \\
\frac{1}{n!}\left(\int_{x_{j}}^{x_{j+1}}\left|f^{(n)}(s)\right| d s\right)\left[\frac{1}{2} h_{j}+\left|\xi_{j}-\frac{x_{j}+x_{j+1}}{2}\right|\right]^{n} .
\end{array}\right.
\end{aligned}
$$

Summing over j from 0 to $m-1$ and using the generalized triangle inequality, we have

$$
\begin{aligned}
& \left|\tilde{R}_{m, n}\left(f, \xi, I_{m}\right)\right| \\
\leq & \left\lvert\, \sum_{j=0}^{m-1} \int_{x_{j}}^{x_{j+1}} f(t) d t-\sum_{k=0}^{n-1} \frac{1}{(k+1)!}\right. \\
& \times\left[\left(\xi_{j}-x_{j}\right)^{k+1} f^{(k)}\left(x_{j}\right)+(-1)^{k}\left(x_{j+1}-\xi_{j}\right)^{k+1} f^{(k)}\left(x_{j+1}\right)\right] \mid \\
: & \left\{\begin{array}{l}
\frac{1}{(n+1)!} \sum_{j=0}^{m-1} \sup _{t \in\left[x_{j}, x_{j+1}\right]}\left|f^{(n)}(t)\right|\left[\left(\xi_{j}-x_{j}\right)^{n+1}+\left(x_{j+1}-\xi_{j}\right)^{n+1}\right], \\
\frac{1}{n!} \sum_{j=0}^{m-1}\left(\int_{x_{j}}^{x_{j+1}}\left|f^{(n)}(s)\right|^{p} d s\right)^{\frac{1}{p}}\left[\frac{\left(\xi_{j}-x_{j}\right)^{n q+1}+\left(x_{j+1}-\xi_{j}\right)^{n q+1}}{n q+1}\right]^{\frac{1}{q}}, \\
\frac{1}{n!} \sum_{j=0}^{m-1}\left(\int_{x_{j}}^{x_{j+1}}\left|f^{(n)}(s)\right| d s\right)\left[\frac{1}{2} h_{j}+\left|\xi_{j}-\frac{x_{j}-x_{j+1}}{2}\right|\right]^{n} .
\end{array}\right.
\end{aligned}
$$

Since $\sup \left|f^{(n)}(t)\right| \leq\left\|f^{(n)}\right\|_{\infty}$, the first inequality is obvious.

$$
t \in\left[x_{j}, x_{j+1}\right]
$$

Using the discrete Hölder inequality, we have

$$
\begin{aligned}
& \frac{1}{(n q+1)^{1 / q}} \sum_{j=0}^{m-1}\left(\int_{x_{j}}^{x_{j+1}}\left|f^{(n)}(s)\right|^{p} d s\right)^{\frac{1}{p}}\left[\left(\xi_{j}-x_{j}\right)^{n q+1}+\left(x_{j+1}-\xi_{j}\right)^{n q+1}\right]^{\frac{1}{q}} \\
\leq & \frac{1}{(n q+1)^{1 / q}}\left[\sum_{j=0}^{m-1}\left[\left(\int_{x_{j}}^{x_{j+1}}\left|f^{(n)}(s)\right|^{p} d s\right)^{\frac{1}{p}}\right]^{p}\right]^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\sum_{j=0}^{m-1}\left[\left[\left(\xi_{j}-x_{j}\right)^{n q+1}+\left(x_{j+1}-\xi_{j}\right)^{n q+1}\right]^{\frac{1}{q}}\right]^{q}\right]^{\frac{1}{q}} \\
= & \frac{1}{(n q+1)^{1 / q}}\left\|f^{(n)}\right\|_{p}\left[\sum_{j=0}^{m-1}\left(\xi_{j}-x_{j}\right)^{n q+1}+\sum_{j=0}^{m-1}\left(x_{j+1}-\xi_{j}\right)^{n q+1}\right]^{\frac{1}{q}}
\end{aligned}
$$

and the second inequality in (5.5) is proved.
Finally, let us observe that

$$
\begin{aligned}
& \frac{1}{n!} \sum_{j=0}^{m-1}\left(\int_{x_{j}}^{x_{j+1}}\left|f^{(n)}(s)\right| d s\right)\left[\frac{1}{2} h_{j}+\left|\xi_{j}-\frac{x_{j}+x_{j+1}}{2}\right|\right]^{n} \leq \\
\leq & \max _{j=0, \ldots, m-1}\left[\frac{1}{2} h_{j}+\left|\xi_{j}-\frac{x_{j}+x_{j+1}}{2}\right|\right] \sum_{j=0}^{n}\left(\int_{x_{j}}^{m-1}\left|f^{(n)}(s)\right| d s\right) \\
\leq & {\left[\frac{1}{2} h_{j}+\max _{j=0, \ldots, m-1}\left|\xi_{j}-\frac{x_{j}+x_{j+1}}{2}\right|\right]^{n}\left\|f^{(n)}\right\|_{1} }
\end{aligned}
$$

and the last part of (5.5) is proved.
REMARK 6. Since $(x-a)^{\alpha}+(b-x)^{\alpha} \leq(b-a)^{\alpha}$ for $\alpha \geq 1, x \in[a, b]$, then we can remark that the first branch of (5.5) can be bounded by

$$
\begin{equation*}
\frac{1}{(n+1)!}\left\|f^{(n)}\right\|_{\infty} \sum_{j=0}^{m-1} h_{j}^{n+1} \tag{5.6}
\end{equation*}
$$

The second branch can be upper bounded by

$$
\begin{equation*}
\frac{1}{n!(n q+1)^{1 / q}}\left\|f^{(n)}\right\|_{p}\left[\sum_{j=0}^{m-1} h_{j}^{n q+1}\right]^{\frac{1}{q}} \tag{5.7}
\end{equation*}
$$

and finally, the last branch in (5.5) can be upper bounded by

$$
\begin{equation*}
\frac{1}{n!}[\vartheta(h)]^{n}\left\|f^{(n)}\right\|_{1} . \tag{5.8}
\end{equation*}
$$

Note that all the bounds provided by (5.6)-(5.8) are uniform bounds for $\widetilde{R}_{m, n}\left(f, \xi, I_{m}\right)$ in terms of the intermediate points ξ.

The last inequality we can get from (5.5) is that one for which we have $\xi_{j}=\frac{x_{j}+x_{j+1}}{2}$. Consequently, we can state the following corollary (see also [11]):

Corollary 5. Let f be as in Theorem 8. Then we have the formula

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\widetilde{T}_{m, n}\left(f, I_{m}\right)+\widetilde{R}_{m, n}\left(f, I_{m}\right) \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{T}_{m, n}\left(f, I_{m}\right)=\sum_{j=0}^{m-1} \sum_{k=0}^{n-1} \frac{1}{2^{k+1}(k+1)!}\left[f^{(k)}\left(x_{j}\right)+(-1)^{k} f^{(k)}\left(x_{j+1}\right)\right] h_{j}^{n+1} \tag{5.10}
\end{equation*}
$$

and the remainder \widetilde{R} satisfies the estimate

$$
\left|\widetilde{R}_{m, n}\left(f, I_{m}\right)\right| \leq\left\{\begin{array}{l}
\frac{1}{2^{n}(n+1)!}\left\|f^{(n)}\right\|_{\infty} \sum_{j=0}^{m-1} h_{j}^{n+1} \\
\frac{1}{2^{n} n!(n q+1)^{1 / q}}\left\|f^{(n)}\right\|_{p}\left[\sum_{j=0}^{m-1} h_{j}^{n+1}\right]^{\frac{1}{q}} \\
\frac{1}{2^{n} n!}[\vartheta(h)]^{n}\left\|f^{(n)}\right\|_{1} .
\end{array}\right.
$$

Remark 7. Similar results can be stated by using the "perturbed" versions embodied in Theorems 4, 5 and 6, but we omit the details.

References

[1] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32(4) (1999), 697-712.
[2] S. S. Dragomir, On the trapezoid formula for Lipschitzian mappings and applications, Tamkang J. Math., 30(2) (1999), 133-138.
[3] S. S. Dragomir, P. Cerone and A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. Pure Appl. Math., 31(5) (2000), 415-494.
[4] S. S. Dragomir and T. C. Peachey, New estimation of the remainder in the trapezoidal formula with applications, accepted Studia Math. Babes-Bolyai Univ.
[5] P. Cerone, S. S. Dragomir and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turkish. J. Math. 24 (2000), 1-17.
[6] N. S. Barnett, S. S. Dragomir and C. E. M. Pearce, A quasi-trapezoid inequality for double integrals, submitted J. Austral. Math. Sec. (B).
[7] S. S. Dragomir and A. McAndrew, On trapezoid inequality via a Grüss type result and applications, accepted in Tamkang J. Math.
[8] S. S. Dragomir, J. E. Pečarić and S. Wang, The unified treatment of trapezoid, Simpson and Ostrowski type inequality for monotonic mappings and applications, Math. Comput. Modelling, 31 (2000), 61-70.
[9] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
[10] V. Čuljak, C.E.M. Pearce and J. P. Pečarić, The unified treatment of some inequalities of Ostrowski and Simpson's type, submitted.
[11] S. S. Dragomir, A Taylor like formula and application in numerical integration, submitted.
[12] P. Cerone and S. S. Dragomir, Three point quadrature rules involving, at most, a first derivative, Preprint. RGMIA Res. Rep. Coll., 2(4) (1999), Article 8.
[13] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Presss, 1992.
[14] M. Matić, J. E. Pec̆arić and N. Ujević, On New estimation of the remainder in Generalised Taylor's Formula, M.I.A., Vol. 2 No. 3 (1999), 343-361.

DEPARTMENT OF COMPUTER AND MATHEMATICAL SCIENCES
VICTORIA UNIVERSITY OF TECHNOLOGY
PO Box 14428
MCMC, MELBOURNE, VICTORIA 8001
E-mail: $\{p c$, sever, johnr $\} @ m a t i l d a . v u t . e d u . a u$
COMMUNICATION DIVISION, DSTO
PO BOX 1500
SALISBURY, SA 5108
E-mail: Jadranka.Sunde@dsto.defence.gov.au

Received December 13, 1999.

[^0]: 1991 Mathematics Subject Classification: Primary 26D15, 26D20. Secondary 41A55.
 Key words and phrases: trapezoid inequality, trapezoid quadrature formula. Thanks for DSTO TSS funding support.

