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A N E W G E N E R A L I Z A T I O N OF T H E T R A P E Z O I D 
F O R M U L A F O R n - T I M E D I F F E R E N T I A B L E M A P P I N G S 

A N D A P P L I C A T I O N S 

Abstract . A new generalization of the trapezoid formula for n-time differentiable 
mappings and applications in Numerical Analysis are given. 

1. Introduct ion 
In the recent paper [1], P. Cerone, S.S. Dragomir and J. Roumeliotis 

proved the following generalization of the trapezoid rule. 

THEOREM 1. Let f : [A, 6] —> R be a mapping such that /(n_1) is absolutely 
continuous on [a, 6]. Then we have the equality 

(1.1) \f(t)dt 
a 
n - 1 

= £ 

(b-a) fc+i 

where 

(1 .2 ) 

/ W ( o ) + ( - 1 )kfW(b) 

(b — t)n + (—l)n(i — a)r 

+ \Tn(t)fW(t)dt, 

t G [a, 6]. 

In the same paper, the authors pointed out the following inequality which 
b 

provides an approximation formula for the integral J f ( t ) dt whose error can 
a 

be estimated in terms of the sup-norm of f(n\t). 
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720 P. Cerone , S. S. D r a g o m i r , J. Roume l io t i s , J. Sunde 

COROLLARY 1. Under the above assumptions, we have the inequality 
n_1 (b - a)k+1 [/(*)(«) + ( - 1 )kf(k\b)-

(1.3) 

< M h i / < » > X < 2n — 
L 2n 

if n = 2r 
1 if n = 2r + 1. (n + 1)! , 2„ 

If, in the above corollary, we consider n = 1, then we get the known 
inequality [2] 

b 
(1.4) S m d t . M ± m ( i . a ) 

For n = 2, we obtain 

(1.5) 

< 

\ f ( t ) d t -

b^wf" 

m+m (b-a) 

<-A{b-af\\f\ 

(b-a)2 f'(a) + f'(b) 

For other recent results concerning the trapezoid formula, see the book [9] 
and the recent papers [l]-[8] and [10]-[11], where further references are given. 

The main aim of this paper is to point out a generalization of the trape-
zoid rule and inequality in a different way. Applications in Numerical Anal-
ysis for quadrature formulae will also be provided. A perturbed trapezoidal 
type rule is presented in Section 4 in which a number of premature results 
are given that provide tighter bounds than the traditional Griiss, Chebychev 
and Lupa§ inequalities. 

2. Integral identities 
We start with the following result: 

THEOREM 2. Let f : [a, 6] —> R be a mapping such that the derivative /(n-1) 
(n > 1) is absolutely continuous on [a, b]. Then 

b 
(2.1) \f(t)dt 

a 
n—1 

= £ 
¿ 0 + 

[(z - a) f e+1/ ( f c )(a) + ( - 1 )k(b - x)k+1fW(b)} 

+-A(x-t)nf^(t)dt, 
n\ i 

for all x G [a, 6]. 
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Generalization of the trapezoid formula 721 

Proo f . The proof is by mathematical induction. 
For n = 1, we have to prove that 

b b 

(2 .2 ) J f ( t ) d t = ( x - a)f(a) + (b - x)f(b) + ¡ ( x - t ) f ^ { t ) dt, 

a a 

which is straightforward as it may be seen by the integration by parts for-
mula applied for the integral 

b 

(2 .3 ) \ ( x - t ) f W ( t ) d t . 

a 

Assume that (2.1) holds for "n" and let us prove it for "n + 1". That is, we 
wish to show that 

b 

(2 .4 ) \f(t)dt 

a 

= P ( f c T l ) ! - a)k+1fW(a) + ( - 1 )k(b - x)k+1fW(b)} 

+ 

For this purpose, we apply formula (2.2) for the mapping g(t) := 

(x — t ) n f ( n \ t ) , which is absolutely continuous on [a, 6], and then, we can 
write 

b 

(2 .5 ) \ ( x - t ) n f ^ ( t ) d t 

a 

= (x - a)(x - a ) n/W(a ) + (6 - x)(x - 6)n/ (n )(6) 

+ \ ( x - t ) j t [ ( x - t r f ^ ( t ) ] d t 
a 

b 

= ¡ ( x - t)[—n{x - i)n_1/(n)(i) + (s - t)nf{n+1\t)} dt 

a 

+ (x - a ) n + 1/ ( n ) (a ) + ( - 1 )n(b ~ x)n + 1/ ( n ) (&) 
b b 

= -n ¡ (x - i ) n / ( n ) ( i ) dt + j (x - i )n + 1/(n + 1 ) ( t ) dt 
a a 

+ (x - a )n + 1/ ( n ) (a ) + (—l)n(6 - x ) n + 1 / ( n + 1 ) ( i ) dt. 

From (24) we can get 
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722 P. Cerone, S. S. Dragomir , J . Roumeliotis , J . Sunde 

b 
\(x-t)nfW(t)dt 
a 

1 b 
= — - - j (x - i ) n + 1 /( n + 1 ) ( i ) dt 

71 + 1 a 

+ - a ) " + 1 / ( n ) (a ) + ( - l ) n ( 6 - x)n+1f^(b)]. 
n + 1 

Now, using the induction hypothesis, we have 

J f(t) dt = Tr^TTiKx " a) fc+1/ ( fc )(a) + ( - 1 )k(b - x)k+1f^(b)} a k=0 L 

1 

+ 

-±-\(x-t)n+1f(n+l\t)dt 
n + 1 

-[(x - a)n+1/(n)(a) + (b ~ x)n+1fW(b)) 
n + 1 

= £ ( F T ! ) ! [ ( x " a ) f c + 1 / ( f c ) ( f l ) + (-Vk(b - x)k+1f(k}(b)l 

(n + 1)! ̂  

and the identity (2.4) is proved. This completes the proof. • 

The following corollary is useful in practice. 

COROLLARY 2. With the above assumptions for f and R, we have the par-
ticular identities (which can also be obtained by using Taylor's formula with 
the integral remainder) 

(2.6) J f(t) dt = E 7TXW(6 - *)k+1f{k)(b) + ^ J(t - a) n / ( n ) ( i ) dt, 
a fc=0 >• U• a 

(2.7) j m dt = J2 7 7 ^ ( 0 - a ) f c + 1 / W (a ) + ^ ¡(6 - t)nf^(t) dt, 
a fc=0 * ' n ' 

and the identity (see also [11]) 

b n _ 1 1 /A — n \ k + 1 

(2.8) J Ht) dt = £ ^ ^ [¡""(a, + !-l)lf'k<(b)] 

n! 
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Generalization of the trapezoid formula 723 

REMARK 1. a) Forn = 1, we get the identity (2.2) which is a generalization 
of the trapezoid rule. 

i) For x = a in (2.2), we capture the "right rectangle rule" 

b b 
i f{t) dt = {b- a)f{b) -\(t - a)f'(t) dt. 
a a 

ii) For x — b in (2.2), we obtain the "left rectangle rule" 

b b 
(2.9) J f(t) dt = (b- a)f(a) - j (b - <)/'(<) dt. 

a a 

iii) Finally, for x = we get [2] 

(2.10) j m dt = M ± M ( „ _ o ) _ I _ 2 + » ) n t ) i t 

which is the "trapezoid rule". 

b) For n = 2, we get the identity: 

b 
(2.11) \f(t)dt 

a 
= (x-a)f(a) + (b-x)f(b) 

+±[{x - a)2f'(a) - (b - x)2f'(b)] + l\(x- t?f"{t) dt. 
a 

i) If in (2.11) we choose x — b, then we obtain the "perturbed left 
rectangle rule" 

(2.12) j f(t) dt=(b- a)f(a) + \{b - a)2/(a) + \\{t- a)2f"(t) dt, 
a a 

which can also be obtained by using Taylor's formula with the integral re-
mainder. 

ii) If in (2.11) we choose x = a, we can write the "perturbed right 
rectangle rule" 

(2.13) \ f(t) di = (6 - a)f(b) - h b - a)2f'(b) + J J(i - b)2f"(t) dt. 
a Z Z a 

iii) Finally, forx = we capture the "perturbed trapezoid rule" [11] 
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724 P. Cerone, S. S. Dragomir , J. Roumel io t i s , J. Sunde 

(2-14) $ / ( . ) * = M ± M ( b _ „ , + ( ^ ( / ( a ) - / ( » ) , 
a 

3. Integral inequalities 
Using the integral representation of Theorem 1, we can prove the follow-

ing inequality 

THEOREM 3. Let f : [a, 6] —• R be a mapping such that the derivative /(n_1) 
(n > 1) is absolutely continuous on [a, 6]. Then 

b n-1 
(3.1) ! m d t - t [ ( s _ °) f c + 1 ' ( f c )( f l) + i - 1 ) ^ 6 - x)k+1f{k)w 

< 

f ll/(n)lloc 

( n + 1 ) ! 

ll/ (n)llP 

,[{x _ a ) n+l + (b _ x)n+i] if f(n) £ ^ 

n! 
(s - a) n«+ 1 + {b- x ) n 9 + 1 

ng + 1 

ll/ (n )lb 

if p > 1, - + - = 1 
P 9 

and 6 Lp[a,b]\ 

n\ 
-(b-a) + 

a + b 

for all x G [a, 6]. 

P r o o f . Using the representation (2.1) and the properties of the modulus, 
we have 

' b 
J f(t) dt - J ) [(X - a ) f c + 1 / W W + ( - 1 )k(b - x ) f c + 1 / W (6 ) ] 
a fe=o V >' 
1 b 

<-\\x-t\n\fW(t)\dt=:R. 
n\ 

Observe that 

R < 
n\ i 

ll/(n) | |c 
n! 

o o 
[\(x-t)ndt + \(t-x)ndt\ 

| | / < n > | | o o r ( z - a ) n + 1 + ( & - * ) n + l 

n! L n + l 
and the first inequality in (3.1) is proved. 
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Generalization of the trapezoid formula 725 

Using Holder's integral inequality, we also have 

b i b 

R < ^ ( j |/(n)(t)|p dt) * ( j' |x - t r dt) ' 

= rrll f { % 
n! 

(x - a ) n « + 1 + (6 - x)n"+1 

nq + l 

which proves the second inequality in (3.1). 
Finally, let us observe that 

1 6 

R< — sup \x-t\n\ \f{n){t)\dt 
n ! t£[a,6] i 

= -Asnp Ix-iini/HUi 
n ! i£[a,6] 

= ^ [max ( x - a , 6 - x )N|/ ( n ) | | i 
n! 
1 

n\ 
-(b-a) + 

a + b 
ll/(n)lb 

and the theorem is completely proved. • 

The following corollary is useful in practice. 

COROLLARY 3. With the above assumptions for f and n, we have the par-

ticular inequalities 

n—1 

ll/W l l 

< M := 

(~ l ) f c 

e + 1 

f M^6-fl)n+1 if f{n) e L^b}-, 
(n + 1J! 

n! (nq +l)1/? p q 

and /W € Lp[a,b]\ 

ll/(n)ll 

and 

n\ 

n-1 

Hb-ar, 

! ^ ) Â - £ ( r h ) î ( 6 ~ a ) f c + 1 / i f c > ( 6 ) 
< M 

and (see also [11]) 
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1 fb-a\ 
(3 .2 ) S m * - £ ( j f e ^ î ( V J [ / ( f c ) ( û ) + 

r i i / ( n ) n 

< 

(b-a) n+1 if / ( n ) G L o o [a, 6 ] ; 

\ n + ; . . - 1 1 

2 n ( n + 1 ) ! 

(b - a ) n + ? i / p > 1 , - + - = 1 
2 n n ! ( n q + 1 ) 1 / ? ; J y ' p q 

and / M G L p [ a , 6 ] ; 

l l / ( n ) l l i (b — a)n; 
2 nn\ 

respectively. 

REMARK 2. If we put n = 1 in (3 .1) , WE capture the inequality 
b 

( 3 . 3 ) | j / ( i ) d i - ( z - a ) / ( a ) - ( & - * ) / ( & ) 

< 

-Ab-a)2+ Ix-
2-i a + b\ 

2 J . 
oo if f e l oo [a , b]\ 

(;x - a ) " + 1 + (b - x)9+1 

2 ( 6 - 0 ) + 

9 + 1 

a + 6 

* / p > 1 , - + - = 1 p q 
and f G L p [ a , 6 ] ; 

a; — l l / ' l l i ; 

/o r all x e [a, 6], and, m particular, 

a) the "left rectangle" inequality 

< \\f(t)dt-(b-a)f(a) 
( ç + l ) 1 / ? ' 

l | | / ' | | i ( 6 - o ) . 

b) the "right rectangle" inequality 

~(b — a)2 if f G ¿ o o [ a , 6 ] ; 

| ¡ / ( í ) d í - ( 6 - o ) / ( 6 ) < 

'•(b -a)2 i f f e ¿00(0,6]; 

( ç + l ) 1 / ? 

U l / ' l l i ( 6 - o ) . 
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Generalization of the trapezoid formula 

c) the "trapezoid" inequality 
b 

( 3 . 4 ) S m d t . M ± M ^ a ) 

< 

•(b-af i f f e A» M; 

(b-a)1+ï if f E Lp[a,b\-
2(q + l)1/« 

Wfh ( 6 - 0 ) . 

R E M A R K 3 . If we put n — 2 in ( 3 . 1 ) , we get the inequality 

( 3 . 5 ) \f(t)dt-(x-a)f(a)-(b-x)f(b) 

--[(x-a)2f'(a)-(b-x)2f'(b)] 

l [ { b _ a ) 3 + ( 6 _ x )S] 

(x - a)2q+1 + {b- x)2q+1 

< 2q + l 

if f" e Loo[a,b]] , 1 1 

»/ p > 1, - + -
P G 

and / 6 lip [a, 6] 

- ( 6 — a) + a; — 
0 + 6 

/or all x G [0,6], and, in particular: 
a) the "perturbed left rectangle" inequality 

( 3 . 6 ) \f(t)dt-(b-a)f(a)-±(b-a)2f'(a) 

I I / " 

< M 2 := 

i f f eL 00 [a, 6]; 

b) the "perturbed right rectangle" inequality 

( 3 . 7 ) \f(t)dt-(b-a)f(b) + ^(b-a)2f'(b) < M2 
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728 P. Cerone, S. S. Dragomir, J. Roumeliotis, J. Sunde 

c) the "perturbed trapezoid" inequality 

(3 .8 ) 
a 

í II/" 

< 

2 4 

\\f"\\P 

(b - ay i f f E LOO [A, 6]; 

(6-a)2+* if f" eLp[a,b}; 8(29 + l)V? 

4. A perturbed version 
A premature Griiss inequality is embodied in the following lemma (see 

papers [12] or [14] for a proof). 

LEMMA 1. Let f,g be integrable functions defined on [a,b] and let d < g(t) 
< D. Then 

( 4 . 1 ) 

where 

\T(f,g)\<^—-[T(f,f)}K 

9) = ^ S /(*)$(*)dt ~ ^ S /Wdt • S b — a b — a 

Using the above lemma, the following result may be stated. 

THEOREM 4 . Let f : [a, b] R be such that the derivative f (-n~1\ n > 1 is 
absolutely continuous on [a, 6]. Assume that there exist constants 7, T 6 R 
such that 7 < f(n\t) < r a.e on [a, £>]. Then, the following inequality holds 

( 4 . 2 ) | P T ( * ) | : = 

n—1 

\f(t)dt 
a 

x [(x - a)fc+1/(fc)(a) + ( - 1 )k(b ~ x) k + 1 

(x — a)n+1 + (—l)n(b — x)n+l 

(n + 1)! 
R - 7 1 r, 

¿ n\ 
r - 7 w (b - a ) n + 1 

2 ' ( n + 1 ) ! ' v/2^TT ' 

/ (n-D( i ) -/(» - i ) (o ) 

b — a 

< 
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Generalization of the trapezoid formula 729 

where 

( 4 . 3 ) I{x,n) = ,{n'(b - a)[(x - a)2n+1 + (b - x) \2n+li 
(n + l)y/2n + l 

+(2n + 1)(® - a)(b - x)[{x - a)n - (x - 6 ) n ] 2 } i 

P r o o f . Applying the premature Griiss result (4.1) on ( ; x - t ) n and f{n)(t), 
we have 

^ \(x - t)nfW(t) dt - j(x - t)n d t - j ^ l fM(t) dt 

< 

b — a 

r - 7 

b — a 

2> 1 
2 r i r i r i 

{b — a „ i b — a „ J J 

Therefore, 
i b 
— \(x-t)nf^(t)dt 

b — a 

(x - a ) n + 1 + (—l)n(6 - x)n+1 f(n~l\b) - / ( " " ^ ( a ) 

< 

(n + l)(ò — a) b - a 

r - 7 f (a;—a)2 n + 1 + ( & - x ) 2 n + 1 [ (x—a) n + 1 + ( - l ) n ( ò - x ) n + 1 l 2 

2 I (2n + l ) ( 6 - o ) (b-a)(n+1) 
We get further simplification of the above result by multiplying throughout 

b—a 
n\ by M . This gives 

(4.4) ±\(x-t)nfW(t)dt 
a 

(x - a)n+1 + (—l)n(6 - x)n+1 ïf^-^ib) - /("-^(o) 

(n + 1)! 
r - 7 l 

Z n\ 

b — a 

where 

( 4 . 5 ) J2(x,n) = 

—(2n + l ) ( A n + 1 + ( - l ) " ^ 1 ) 2 } 

with A = x — a, B = b — x. 
Now, from (4.5), 

(2n + l )(n + l ) 2 J 2 ( x , n ) 

= n 2 ( ^ + J B)(A 2 n + 1 + B 2 n + 1 ) 

+ (2n + 1)[(A + B ) ( A 2 n + 1 + B2n+1) - {An+1 + ( - l ) 7 1 ^ 1 ) 2 ] 
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730 P. Cerone, S. S. Dragomir, J. Roumel iot i s , J. Sunde 

= n2(A + B)(A2n+1+ B2n+1) 

+(2n + l)[AB{A2n + B2n) - 2An+1 • ( - 1 )nBn+l] 

= n2(A + B)[A2n+l + B2n+l\ + (2n + 1 )AB[An - (-B)n]2 

Now, substitution oiA = x — a, B = b — x and the fact that A + B = b — a 
gives I(x,n) = , as presented in (4.3). Substitution of identity 
(2.1) into (4.4) gives (4.2) and thus the first part of the theorem is proved. 

The upper bound is obtained by taking either I(a, n) or I(b, n) since 
I(x, n) is convex. Hence the theorem is completely proved. • 

COROLLARY 4. Let the conditions of Theorem 4 hold. Then the following 
result holds 

( 4 . 6 ) | _ i _ j f ( t ) d t _ + ( - 1 ) l / " ) ( 6 ) 1 

6 — o \ n [1 + (—l)n] / ( n - l ) ( 6 ) _ / ( n - l ) ( a ) 

b — a 

n even 

2 J (n + 1)! 

~ 2 n! V 2 J v / 2 n T T 12, n odd. 

P r o o f . Taking x = ^ in (4.2) gives (4.2), where 

^ J^mi^r^+<2"+w+<-1)"'2>è-
Examining the above expression for n even or n odd readily gives the result 
(4 .6) . . 

REMARK 4. For n even, the third term in the modulus sign vanishes and 
thus there is no perturbation to the trapezoidal rule (4.6). 

THEOREM 5. Let the conditions of Theorem 4 be satisfied. Further, suppose 
that /(") is differentiate and be such that 

| | / ( n + 1 ) | |oo := Sup | r + 1 ( i ) | < o o . 
te [a,6] 

Then 

(4.7) |PT (z) | < ^ H / ^ I U • ¿ / ( x , n ) , 

where PT{X) is the perturbed trapezoidal type rule given by the left hand side 
of (4.2) and I(x,n) is as given by (4.3). 
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Generalization of the trapezoid formula 731 

Proo f . Let /,g : [a,b] - » R b e absolutely continuous and /',g' be bounded. 
Then Chebychev's inequality holds (see [13, p. 207]) 

\T(f,g)\<{±-^ sup \f'(t)\. sup |5'(i)|. 

In [14] Matic, Pecaric and Ujevic, using a premature Griiss type argument, 
proved that 

(4.8) \T(f,g)\ < sup \g'(t)\YJT(f, /). 
V12 i6[o,6] 

Thus, associating with g(-) and (x — t)n with / in (4.8) readily pro-
duces (4.7) where I(x,n) is as given by (4.3). • 

THEOREM 6. Let the conditions of Theorem 4 be satisfied. Further, suppose 

that is locally absolutely continuous on (a,b) and let /(n+1) g ¿2(0, b). 

Then 

(4.9) \Pr(x)\ < — ||/(n+1)||2 • ~J(x,n), 

7T n! 
where PT(X) is the perturbed trapezoidal type rule given by the left hand side 

of (4.2) and I(x,n) is as given in (4.3). 
P r oo f . The following result was obtained by Lupa§ (see [13, p. 210]). For 
/, g : (a,b) —> R being locally absolutely continuous on (a,b) and f',g' € 

L2(a, b), then 

where 1 

11^2:= for heL2(a,b). 

In [14] Matic, Pecaric and Ujevic further show that 

(4-10) \T(f,g)\<{^-\\g'h^T(fJ). 

Now, associating with <?(•) and (a; - t)n with / in (4.10) gives (4.9), 
where I(x,n) is found in (4.3). • 

REMARK 5. Results (4.7) and (4.9) are not readily comparable to that ob-
tained in Theorem 4 since the bound now involves the behaviour of /(n+1)(-) 
rather than /(n)(-)-

5. Application in numerical integration 
Consider the partition Im : a — x0 < x± < ... < xm-i < xm = b of the 

interval [a, b] and the intermediate points £ = (Co, •••! £m-i)j 
where 6 [xj,xj+1] ( j = 0, ...,m — 1). Put hj := Xj+1 — Xj and i9(/i) = 
max{hj\j = 0, ...,m — 1}. 
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732 P. Cerone, S. S. Dragomir, J. Roumeliotis, J. Sunde 

In [1], the authors considered the following generalization of the trape-
zoid formula 

m"ln"1 \fW(xj)+ (-!)" fW(xj+1y 
V 3=0 k=0 

and proved the following theorem: 

THEOREM 7. Let / : [a, 6] —• R be such that it's derivative /(n_1) is abso-
lutely continuous on [a, b]. Then we have 

b 
(5.2) \f(t)dt 

a 
where the reminder Rm,n(f, Im) satisfies the estimate 

(5 .3 ) 

and 

a m—1 
|i^n(/,/m)| < TTTWH/^IIOO £ ^ 

7 = 0 

1 if n — 2r 
Cn :={ 2 2 r + 1 - l 

i/n = 2r + l . 22r+l 

Now, let us define the even more generalized quadrature formula 
m— In— 1 1 

^ ¿ S i f c + i)«' 

+ ( - l ) * ( x J + 1 - & ) f c + 1 / ( f c W ) l . 
where Xj, ( j = 0, . . . ,m — 1) are as above. 

The following theorem holds. 
THEOREM 8. Let f be as in Theorem 7. Then we have the formula 

b 
(5-4) \f(t)dt — ^m,n(/i £> L-rn ) + Rrn > Im)> 

a 
where the reminder satisfies the estimate 

(5 .5) \ R m M , t J m ) \ 

1 m—1 

(n + 1)! l l / ^ l l o o E ^ - ^ ' + ^ + l - ^ ) 
n+li 

j=0 
m—1 m—1 

n\(nq + l)1/? ii/
(n)nP[ £ & - + £ te+i - ^ ) n 9 + 1 ] % 

j=0 

-rll/ (n)lli n\ 
-d{h) + . max 
I j=0,...,m—1 

j=0 
Xj 
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Generalization of the trapezoid formula 733 

P r o o f . Apply the inequality (3.1) oil the subinterval [xj, x^+i] to get 
Xj+1 n—1 , 

x[(ti - ® j ) f c + 1 / W ( « i ) + (-l)fc(*i+i - ^)k+1fik\xj+1)] 

sup |/W(t)|[(fc - ®,-)B+1 + (®i+i -

< 

x j+ i 

n<? + 1 

¿ ( T I ^ M H Î ^ + I * - * ^ 1 " 
Summing over j from 0 to m — 1 and using the generalized triangle 

inequality, we have 

I Rm > Im) I 
m—1 ®>+i 

< 
n—1 1 

E S / ( ^ - £ ( j t + 1 ) 1 

- ®i) f c + 1 / W (®i) + ( - l ) f c ( * ; + i - & ) f c + 1 / ( f c W 0 ] 

m—1 
E sup i / ^ w i i ^ - x ^ + i x i + i - ^ 1 ] , 

( n + 1 ) ! J = 0 ¿e[x^xJ+1] 

- i E ( Î 1 + ( X j f + 1 • -
n ' J=0 
^ m—1 ij+i 

r r E ( S i ^ - ' i -
i=0 

nq + 1 

Xj Xj+i 

Since sup < ||/̂ ||oo> the first inequality is obvious. 
te[xj,xj+1] 

Using the discrete Holder inequality, we have 
, m-1 i j 

( B g + l ) i / , E ( j l/ (n) W l * * ) P - *i)nq+1 + te+1 - ti)1"*1]'' 

•t m—1 xj+1 i n i 

j=0 Xj 

Brought to you by | Victoria University Australia
Authenticated

Download Date | 2/27/19 5:11 AM



734 P. Cerone, S. S. Dragomir, J. Roumeliotis, J. Sunde 

m - 1 j j. 

x [ E [[&• - x j ) n q + 1 + (®i+i - t j )n q + 1}<}q] ~q 

j=0 
1 m—1 m— 1 i 

and the second inequality in (5.5) is proved. 
Finally, let us observe that 

m-l xi+1 
¿ E C ! |/<»>Wl<fe) 

j=0 Xj 

' l t 

2 
Xj -(- Xj x ] 

< max 
j=0,...,m—1 

< - h i + max 
2 ^ j=0 , . . . ,m-l 

0 
Xj Xj-\-\ n m—1 

< 

Xj Xjjf-\ 

E ( i l / ( n ) t o l * ) 
j=o Xj 

V ( n ) i i i ^ 2 
and the last part of (5.5) is proved. • 

REMARK 6. Since (x - a)a + (b - x)a < (b - a)a for a > 1, x £ [a, 6], then 
we can remark that the first branch of (5.5) can be bounded by 

m— 1 
(5.6) 

(n + 

-i 111— 1 

r >' j=0 
The second branch can be upper bounded by 

771 — 1 
nq+l 

n\(nq + l)1/«? _ ,=Q 

and finally, the last branch in (5.5) can be upper bounded by 

(5.8) h m ] n y ( n ) h . 
n\ 

Note that all the bounds provided by ( 5 . 6 ) - ( 5 . 8 ) are uniform bounds for 
Rm,n(f,£,Im) in terms of the intermediate points 

The last inequality we can get from (5.5) is that one for which we have 
( j = 5ii|z±I, Consequently, we can state the following corollary (see also 
[11]): 

COROLLARY 5. Let f be as in Theorem 8 . Then we have the formula 
b 

(5.9) \f(t)dt — Tjn,n(f>Im) "I" Rm,n{f> ^m)> 
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Generalization of the trapezoid formula 735 

771—1 n—1 
where 

(5-10) f m M J r n ) = Y , E 2 k + l { l + 1 ) ] 

and the remainder R satisfies the estimate 

: | | / ( n ) 

71+1 

IRm,n(f,Im)\ < < 

2 n ( n + 1) ! 

1 

2nn\(nq + l)1/? 

771—1 

I - e ^ 
J=0 

771—1 

¿=0 

REMARK 7. Similar results can be stated by using the "perturbed" versions 
embodied in Theorems 4, 5 and 6, but we omit the details. 
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