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ON SEVERAL INEQUALITIES IN AN INNER PRODUCT SPACE
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Abstract

The aim of this article is to establish some identity in an inner product space
and to prove new results related to several inequalities in an inner product space.
Also, we obtain some applications of these equalities and inequalities.
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1 Introduction

The many inequalities in inner product spaces have important applications in Mathe-
matics in various fields, as: Linear Operators Theory, Nonlinear Analysis, Approximation
Theory, Optimization Theory, Geometry, Probability Theory, Statistics and other fields.
An important inequality is the triangle inequality,

2+ yll < [l + [lyll

forall z,y € X, where X is a complex normed space. Several refinements of this
inequality can be find in [6] and [13].

Another inequality which plays the central role in an inner product space is the in-
equality of Cauchy-Schwarz [3], namely:

(@, y) < Nzl lyll,

forall z,y € X, where X is a complex inner product space.

A proof of the Cauchy-Schwarz inequality is given by Aldaz in [1]. Dragomir [5,8]
studied the Cauchy-Schwarz inequality in the complex case. Many other proofs in the
real case and in the complex case can be found in [2],[6], [7] and [12], [15]. Several
improvements of this inequality can be found in [6] and [18].
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We obtained some reverses of the Cauchy-Schwarz inequality from [6], [13], [14] and
[19].
Clarkson [4] gives the notion the angular distance « [z, y] between nonzero vectors

xandyin X, by alx,y] = HH";—” — IIT?jHH A simple norm inequality related to « [z, y]

can be seen in [9]. The Cauchy-Schwarz inequality can be deducted from the following
equality, asin Aldaz [1] and Niculescu [17], in terms of the angular distance between two
1

vectors, thus
2
(@, y) =z lyl {1 -5 :
20zl vl

forallz,y € X, x,y # 0. Kirk and Smiley in [12] gave another characterization of
inner product spaces by the angular distance between two vectors and improved a result
from [14].

In [10], llisevi¢ and Varosane¢ showed the Cauchy-Schwarz inequality and its reverse
in semi-inner product C*—modules.

The Schwarz, triangle, Bessel, Gram and most recently, Griiss type inequalities have
been frequently used as powerful tools in obtaining bounds or estimating the errors for
various approximation formulae [7].

L Y

2 Main results

In this section of the article we obtain several results related to the identities for com-
plex inner product spaces, and thus we obtain a proof of the Cauchy-Schwarz inequality
in the complex case.

Let X beaninner product space over the field of real numbers R or complex numbers
C. The inner product (-, -) induces an associated norm, given by ||z|| = /< =,z >, for
all z € X, thus X is a normed vector space.

Theorem 1. In an inner product space X over the field of complex numbers C, we
have

L S N 2% /A W (Y7 N NS O
AR ( ||y|2><||y||2 6) lyl?

forallz,y € X,y # 0, and for every o, 5 € C.

2

(z,y) )

5 Y
Iyl

Proof. Using the axioms: conjugate symmetry, (z,y) = (y, x), and linearity in the first

argument, (az,y) = a (z,y), (x + y,2) = (z,2)+{y, =), we obtain (z, By) = B (z,y),
and

1 T,Y) | STy = =)?
i ( 2>+ﬁ< 2)_(w_ll H2:
Iyl [yl [yl [yl

e [y g\ _ 1 xz_\(fv,yH?)
( ryu2)<||yrﬁ 0 ) o’ (” =" )

<C¥y—$,ﬂ?—ﬂy>:a
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But, it is easy to see that Hx — Ti{ﬁ@y” z)? — H H2 Therefore, we obtain the
relation of the statement. O

Corollary 1. In an inner product space X over the field of real numbers R, we have

”Jz@y_%x_gw:(: j@f}(fﬁﬁ—ﬂ)—”Jz

forall x,y € X,y # 0, and for every o, 5 € R.

2

~ (zy) @

Iyl

Proof. Since (x,y) = (z,y) and B = 3, we apply Theorem 1 and we deduce equality
(2). ]

Corollary 2. Let E3 be the Euclidean punctual space. Then

A N 28 ) AW ALY
PR < |mﬁ><mw ?)- pplle . @

forall x,y € Es3,y # 0, and for every o, 5 € R.

Proof. Inrelation (2), we use the relation

(z.y), (2 )
R o (LI
ol*” lyl*  lly ||
and the Lagrange identity, ||| ||| — (x,3)* = ||z x y||?, and we obtain the rela-
tion of the statement. U

Corollary 3. In an inner product space X over the field of complex numbers C, we
have

(,y) | (.9 |
|z — ayl* = | |lyll — aall [y (4)
lyll 1yl
forallx,y € X,y # 0, and for every o € C.
Proof. We apply Theorem 1 for o = 3, and we deduce
1 2 <xay> 2 1 <$7y> ?
ol = al = e - 2
[l [yl [yl lyll
Consequently, we deduce the statement. O

Remark 1. It is easy to see that

H H \/” " H H |2'

N _
;gcl\x oyl
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Corollary 4. In an inner product space X over the field of complex numbers C, we
have

(z,y)
and
T,y
e - ayll > |yl - <||y||> , 6)

forall x,y € X,y # 0, and for every o € C.

@), ||?
T — QyH > 0, we

2
> 0 and L
llyll

2
llll

Proof. Using relation (4) and that ‘a — %

obtain the relations of the statement.

Remark 2. From relation (6), for &« = 0, we obtain the inequality of Cauchy-Schwarz:

] lyll = [z, y)].
Corollary 5. In an inner product space X over the field of complex numbers C, we

have

2

(z,y) ’ )

[yl

a2 [ = [{ ) + Huyn .

2

x Y 2 2 2 2
= [zl Iyl = (=, 01" + [I=]I” |lyI” = Kz, 917, (8)

I 11
]l [yl

forallz,y € X,y # 0, and

(1 + 1 = e = 1) )

N

Re <$,y> =

im (z,y) = 5 (Il + Iyl = 1o = iy]*) . (10)

DN | =

forallz,y € X.

Proof. From relation (4), for o« = 0, we obtain relation (7).

From relation (4), for a = H%”, we obtain

)

(z,y) ‘2
Iyl

2 2
[yl = Tzl yll™ = Hzl lyll = Gz, 91" + H lyll = —

which is equivalent to

2 2

(z,y)
[yl

x oy
]l [yl

2 2
[ [yl

— lall Iyl - (o) + Huyux -
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(z,y)
Tyl

2
But, we have the equality H||y|| yll” = 12l 9% = |(x, y)|% Therefore, we

deduce the equality of the statement.
For y = 0, equality (9) is true. In the case y # 0, from relation (4), fora = 1, we
obtain

2 2

,Y) (z,y)
e —yl? = Mmr . _
Il PR
2 2 2
Re (x,y Im~(x,y T,y
_ (mn— < >) n <2>+Hx—< ﬁﬂ'
ol Iyl vl
But, we have
Im? (z,y) v Re (z,9)\*  Im?(z,y) Re? (z,y) _
(\ ol - ) Iyl — 2Re (o) +
vl y T Tl
Re? (z,y) + Im? (x, z,y)|?
yl2 = 2Re (a,y) + REDUH T Y) 2 ope gy o KD
vl vl
and [z — 2y | = o) — K8 it follows that [z — > = [l + ly|* -

2Re (z, y), which prove relation (9).
For y = 0, equality (10) is true. Now, for y # 0, using relation (4), for & = 7, we
obtain

2 2

lz — iyl = ‘Hy! <||y?yJ> *H‘”‘WQ - ,
“ﬁﬁf>+<wnmﬁmw>%Pjg$4"

Similarly as above, we have

Re2 <I’, y> Im <.CIZ', y> 2 ReZ <$7 y> 2 <£L‘ y)
— + ||y|!—ﬁ =———+ |yl —2|m<fﬁ,y>+

]| Y [y Iyl
Re?2 T,y + Im? T,y z,y

= ol — 2im G,y + BB @) o iy 4 K
lyll lyll

and H ™ szH |z H H ” . It follows that ||z — zyH Ha:HQ + HyH2

2Im (z, y), which implies relation (10). O

Remark 3. From relation (8) applied in an inner product space X over the field of
real numbers IR, this becomes
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2
T W = llzI Iyl = (2, 9) (11)

forallz,y € X,z,y 7é 0. This |mpl|es the identity given in [1].
Remark 4. Inrelations (9) and (10), we make the substitutions t — ” Y Tl
and, we deduce the relations, given by Aldaz in [1]:
2
) ) (12)

ael) e
Hyll
for all non-zero vectors z,y € X.
Remark 5. Adding equalities (9) and (10), and using the parallelogram identity, ||z + yH2+

|z —y|*> =2 (Hxll2 + ||yH2), we deduce

1
Re (2,5} = o] 1y (1 -5 \

x Y

=l vl

Im (z,y) = |lz| |yl (1

2(Re (,y) +Im (z,y)) = llz +y|I* — | — iyl (14)

forallz,y € X.

Finally, we present several applications of these identities and inequalities.

Theorem 2. In an inner product space X over the field of complex numbers C, we
have

o= (@) el® = (@ = (@ €)) ((@,e] = B) = (ae — 2,2 = fe),  (15)
forall z,e € X, ||e|]| = 1, and for every a, 5 € C.
Proof. If we take y = e, with |le|| = 1, then (1), becomes
(ae — 2 — fe) = (a = (z,)) ({5, ) = B) — |l = (,¢) ]
which implies the statement. ]

If we take Re in relation (15), we get the well known identity:
|z]1* = [(z,e)* = & — (z,e) e]® = (16)

— Re [(a —(z,¢€)) (m—ﬁﬂ —Re[{ae — z,z — Be)]

which was used to prove various Griss type inequalities (see [6]).
Remark 6. From a different perspective, if we take the modulus in relation (15), we
have

|

lo = (@,ehel® = |(a= (@) ({w.e) = B) = (ac — 2,2~ Be)| =

)|~ ae a2 - ge)l,

£}

|
=
o
N~—

—

&
L

|
iy
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which implies that

; (17)

o= (2. e)ell® + [ae — 2,2 = Be)| > |(a = (@,¢)) ({w,] - B)
or
o= (@) el +|(a— (z.e)) ({w.e) = B)| > [lae —a,a = Be)] . (18)

Theorem 3. In an inner product space X over the field of complex numbers C, we
have

2

a+ﬂe

5 (19)

1

2 2 2

ol = Itz )" < gl = 87+ o -
forallz,e € X, ||e]| = 1, and for every a, € C.

Proof. From (16) we also get

Jall” = (@, e} = Re [(a = (2,€)) ({&,¢) = B)| + Rel(ae —, e — )] (20)
But

la + 6]2 ,foranya,b € C,

N

Re (ab) <
and
1 2
Re (u,v) < 1 |lu+v|*,forany u,v € X.

So, we obtain

Re [(a— (z,¢)) (Troe] ~ B)] < { lo— 5P 1)
and
2
Re [(ae — x, Be — x)] < i”ae—l—ﬁe—Q:pHZ = #e—m (22)

Taking into account relations (20), (21) and (22), we get the relation of the statement.
O

Remark 7. Inequality (19) is of interest since if we take,
o+
R
then we have the reverse inequality for Cauchy-Schwarz’s inequality

] = [z, e)* < 7 | — B + 6%

P
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Theorem 4. In an inner product space X over the field of complex numbers C, we
have

’<ZL’,y> - <ZL',6> <€,y>‘ < (23)
Lo gt Jom S8 ) T (L - 2t
1l x e 1 I Y 5 ¢

2
forall z,y,e € X, |le|| = 1, and for every o, 3, A\, u € C.

Proof. Itis well known [6] that forall z,y € X, and e € X, ||e|| = 1 we have

1/2

1/2
@,9) = () el < (2l = 1@ eP) " (Il = 1we) ) . @4
Combining inequality (24) with inequality (19), we deduce inequality (23). O

Remark 8. In particular, z,y,e € X, ||e|]| = 1, and for every «, 3, \, u € C, if

A
—a;rﬁe < ¢ and Hy— +Me <e,
with 6, > 0, then we have the Griss type inequality
1 . 12 /¢ . 1/2
o)~ ) el < (Jla- 24 6) (Ga-ufee) .
3 Applications
1. If ’ H“’x"—” — ﬁ” = /2 and using relation (12),
1) = Y 2
ve o) = lell ol (15 5= 2] )
2=l [yl

which is equivalent to

e wl) (i mal):

”iin - ﬁ” S \/i, then Re <(L‘,y> 2 Oand

then we deduce Re (x,y) = 0, and if ’
’—-zﬁ@-mmﬂ. (26)
=l vl [yl
2. We present some applications of the above theorems to S;,, numbers. Recall that
if (X;(-,)) is a inner product space and {ej, e2, ..., e, } is an orthonormal system of
vectors of X, then for any vectors z,y € X, we define asin [6, 11]:

Ruaw=wﬂmw<1—jJ

£ Y
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n

S (l'ay) = <$ay> - Z (xa€k> <€k,y> :

k=1
Kechriniotis and Delibasis [11] gave a generalization of Griiss inequality in inner prod-
uct spaces.
Forall z,y € X, and forevery o, 5, A\, u € C, if

H a+
r—
2

A+ p

< § and H)\—

ek er|| <egk=1,n

with §, & > 0, then from relation (25), we have the Griss type inequality

1/2

1 2 2\ (1 2
o) = foen) (el < (gla=pP+22)  (FA-nP +22)

But, we see that

3

S (x,y)—(n—l) <m,y> - (<1‘,y>—<1‘,6k> <ekay>)’
k=1

which implies

3

1S (2,y) = (n = 1) (@, ) < Y[z, y) — (2, ex) (en, y)| <
k=1

1 1/2 1 1/2

Therefore, we obtain

1 12 /q 1/2
S, (o)~ (=D Gl <n (Gl g2+ 6) (Fa-aPee) . @

3. If we take the vectors z = /ﬁ, Yy = 1@ in relation (3), we obtain the following
inequality:

Hf%HQ (aAC — AB, AB - pAC) =
()| (@)
[ )\ [l

which implies the relation

2
)

|48« ac

(28)

o1
? 1
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<a@—ﬁ E—B@>:
= (o[ - 2] os 4) (|43 cosa - 5 |4C]) - = (29

where A is the area of the triangle ABC.
If « = (3, then equality (29) becomes

2
H,ﬁ_aﬁH - (Hﬂiucom HBH) e (30)
HﬁH
For a = 1 in equality (30), we deduce
2
Bl = (a8 osa - 2]+ = ()
H@H
If we take HEH =c, @H =0, HB?H = a in relation (31), we deduce
4A?
2:(ccosA—b)2—|—b—2. (32)
Therefore, we use the cosine law, cosAzl’QJFQ‘zsc_“‘2 and we find the relation
4620% = (A — a® — b?)? + 16A2. (33)
From relation (33), we find two relations for the area of the triangle ABC.
First, by squared, we deduce the following formula [16]:
16A? = 2a20* 4 2b%¢* + 2c%a® — a* — b* — . (34)
Second, equality (33) can be written as 4a?b* — (c* — a® — b2)2 = 16A2, which
means that (2ab— c? +a? +b?) (2ab+ ¢ —a? — b?) = 16A% It follows that
((a +b)* - c2> <c2 —(a— b)2) = 16A2, and if s is the semi-perimeter, then
A=\/s(s—a)(s—b)(s—c), (35)

which is the well known Heron formula( see e.g. [13], p.54).
Equality (30) becomes, for &« = —1, thus,

28+ 2 = (23] cosa + [2C])"+ (9
H@H

If we take HEH = ¢, ﬁ” = b and mg, the length of the median from A4, in

relation (36), we obtain

4A2

4m? = (ccos A +b)? + -

(37)
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