
 
 

 

 

 

 

 

 

 

 

 

Systems of Transition Metal Dichalcogenides  :  Controlling Applied Strain and Defect Density 

With Direct Impact on Material Properties    

 

Drew Edelberg 

 

 

 

 

 

 

 

 

 
Submitted in partial fulfillment of the  

requirements for the degree of  
Doctor of Philosophy 

 in the Graduate School of Arts and Sciences  
 
 
 

COLUMBIA UNIVERSITY 
 

2019 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2019 
Drew Edelberg 

All rights reserved 
  



 
 

ABSTRACT  
 

Systems of Transition Metal Dichalcogenides  :  Controlling Applied Strain and Defect Density 

With Direct Impact on Material Properties    

 
Drew Edelberg 

 
 
 

Transition metal dichalcogenides (TMDs) are crystalline layered materials that have significantly impacted 

the field of condensed matter physics. These materials were the first exfoliatable semiconductors to be 

discovered after the advent of graphene. The focus of this dissertation is utilizing multiple imaging and 

characterization techniques to improve and understand the impact of strain and lattice defects in these 

materials.  These inclusions to the lattice, alter the semiconducting performance in controllable ways. A 

comprehensive study using scanning tunneling spectroscopy (STM), spectroscopy (STS), scanning 

transmission electron microscopy (STEM), and photoluminescence (PL) in this work will provide a breadth 

of ways to pinpoint and cross-examine the impact of these factors on these materials. In the first half of 

this work we focus on the control of lattice defects through two growth processes: chemical vapor 

transport (CVT) and self-flux. By fine tuning the growth procedure we are both able to determine the 

intrinsic defects of the material, their electronics, and consistently diminish their density. The second half 

uses an in-situ strain device to reversibly control and examine the effects of applied strain on transition 

metal dichalcogenide layers. Utilizing the scanning tunneling microscope to image the lattice, we 

characterize the change of lattice parameters and observe the formation of strain solitons within the 

lattice. Measuring these solitons directly we look at the dynamics of a special class of line defects, folds 

within the top layer of the material, that occur naturally as strain is relieved within the monolayer. With the 

available imaging techniques and theoretical models we uncover a host of properties of these materials 

that are only accessible within the high strain regime
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Chapter 1 : Introduction to Scanning Tunneling Microscopy 

Introduction to Scanning Tunneling Microscopy 

1.1 Principles of Scanning Tunneling Microscopy 

 

Scanning tunneling microscopy (STM) is a microscopy technique which utilizes the quantum 

nature of electrons to visualize a surface1-5. This technique has many wide reaching applications in 

condensed matter physics, and has been used to locally map the atomic structure and electronic 

properties of many metals, semiconductors, and superconductors. With many more materials being 

discovered each year, this has become a core technique to understand new and emergent physics. Since 

this probe is low energy in nature, an STM can be built easily at low cost to fit many specifications 

allowing for custom tailoring to almost any research project 6. 

Before getting too far into material studies we first focus on how the scanning probe system 

works and how it can be tailored to our needs. STM is able to work thanks to a process known as 

quantum tunneling 7. This takes place when an electron or other particle with quantum nature crosses a 

barrier which is forbidden classically. Quantum tunneling is thanks to an overlap of the wave function of 

the electron and therefore only occurs at very short distances. In order to use this in an application we 

first envision two metallic surfaces separated by a vacuum barrier. Since the electron has a large swath of 

states in either metal it can move freely within them. However in vacuum there are no states for the 

electron, so this acts as an edge which stops it from leaving the material. In the special instance where 

the two metals become close enough together (roughly the distance of 1 atom) however the electrons in 

one metal are able to pass through this barrier with a probability that is exponential with distance between 

the surfaces. This is known as a tunneling current and is very sensitive to small changes in the vacuum 

barrier. 

To utilize quantum tunneling, the STM is a system that pairs an atomically sharp metallic tip with 

a surface of interest. From this, we setup a feedback loop on the tunneling current. Here the measured 

current will be proportional to the integrated states in the material 4. This means that for a typical surface 
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we can detect variations in electronic density in a controllable way. As a consequence, STM is a way to 

directly probe the wavefunctions of the material. With this simple basis to start our surface study, the STM 

can measure individual atoms and the interplay they have within a larger electronic structure.    

The typical method by which we can see simple lattices is shown in Figure 1. This shows an STM 

tip made of a platinum-iridium blend scanning over a surface of gold. We see that in this is very similar to 

reading brail, our feedback system is able to travel over this surface and map the change in density. STM 

is governed by utilizing the tunneling equation; a cartoon explaining this equation is shown in Figure 1b. 

𝐼(𝑑) ∝ eV ∗ 𝑒−
2𝑑√2𝑚 ΔΦ

ℏ  

This graphic shows the current 𝐼 as a function of distance 𝑑. We find that the tunneling current is 

proportional to the exponent of the distance between the surface and tip, and multiplied by the applied 

bias offset between them V, with other prefactors that are constant (such as the workfunctions ΔΦ of the 

materials and mass of the electron 𝑚). This governing equation is central to scanning tunneling 

microscopy, and as such, all further parts of this chapter deal with how we can realize this in a 

controllable way. 

 

Figure 1.1 : Cartoon Model of Scanning Tunneling Microscopy 

 
a) A cartoon model of the scanning tunneling system b) The tunneling equation which governs STM feedback 

a) b) 
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1.2 Building the Scanning Probe System 

 

In order to control the distance between the surface and the tip with atomic precision a typical 

STM is built off of another discovery of condensed matter physics, piezoelectricity 5,8. This phenomenon 

links physical motions to applied voltage. To get motions of less than an atom, we use piezoelectric 

crystals which can expand or contract with the application of an electric field. This occurs because the 

material is made of linked polar molecules which experience a small distortion in the presence of an 

electric field. This distortion allows the material to set up a counter propagating electric field to cancel the 

applied voltage. Since this is an electronic property it can be tuned easily and has a high degree of 

precision. Shown in Figure 1.2 is a piezoelectric scan tube. This cylindrical piezoelectric has four 

quadrant electrodes which oppose a central grounded core. When the STM is in operation we can apply 

separate voltages to each of these quadrants to bend the tube resulting in a raster scan of the surface 9,10. 

In the quadrant geometry the application of a voltage to all the electrodes simultaneously results in a full 

expansion or contraction of the cylinder so in addition to X-Y motion the scanner has access to the Z axis. 

This simple crystal allots the system to all three degrees of atomic motion. We can see the physical 

scanner used in our STM construction mounted in Figure 1.2b. From this picture the wires used to control 

the quadrants are visible passing through access holes from the top of the image. Affixed to this scan 

tube is the electrical contact for the current which we will receive from a mounted platinum-iridium wire 11-

13, or STM tip (not pictured). 
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Figure 1.2: Piezoelectric Scan Tube 

 

With a piezoelectric scan tube we have a method for fine control on the atomic scale, however 

since this object is stationary we have not yet described how we can manipulate the system to reliably 

move the scanner both across the crystal of interest and towards and away from a sample plate. Again 

for the coarse motion we chose to use piezoelectric crystals 14, however we machine a clever geometry 

which utilizes differences in static versus kinetic friction. 

In order to translate over large distances using a voltage it is impossible to use a single stroke, 

which is limited to a full range voltage pulse from our amplifier, since the piezos maximum response 

under these conditions is on the order of microns. However we can utilize the difference between a fast 

motion and a slow one. For a slow motion ramp the piezoelectric that is in contact with the object which 

we want to push, can move slowly enough that it retains its static friction with the surface. This allows it to 

move the sample slider unhindered and smoothly. Alternatively for a fast motion the inertia of the slider 

changes very little because the contact surface experiences a kinetic friction. So instead for a full stroke 

in a unipolar or bipolar set of slow and fast motions we can engineer the force transfer mechanism to be 

unidirectional.  Pictured in  Figure 1.3 is the fully assembled coarse mover for the planar motion of 

a) A 3D rendered model of a four quadrant scanning tube for STM b) The STM assembly after wiring before inserting 

into the coarse system Z mover  

a) b) 
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the sample. Glued inside of identically machined clamshells are four sets of shear piezo stacks each of 

these can be seen in  Figure 1.3. This assembly has wires for electrical contact to each stack and 

stainless steel tabs which allow for the application of voltage. When working properly these 4 stacks work 

in tandem to propel the sample stage in a jellyfish like motion, as pictured in  Figure 1.3. We see that 

the four stacks shift the bar over in the direction of the red arrow, and then slip back into place for the next 

stroke 15,16. Our full motion for this assembly is 7 mm along both the X and Y axis of the system. 

 

 Figure 1.3: The Coarse X-Y Mover  

 

For the Z motion we can create a similar geometry, however Z motion is more complicated 

because we need high precision to combat hysteresis and gravity. To meet these constraints the Z – 

mover utilizes three sets of piezo stacks which surround a triangular prism core.  Pictured in Figure 1.4 is 

the completed Z mover where the triangular prism can be seen protruding from the top of its titanium 

frame. A sapphire ball and spring system is used to directly tune the normal force applied to each piezo 

stack, allowing for mechanical control of the frictional parameters. Additional sapphire is placed on the 

cap of each stack making the prism run smoothly for its full range. Pictured in Figure 1.4b is the view 

a) The fully assembled X-Y mover for sample translation in the STM b) A single mover clamshell for translating the STM 

stage c) The working principle of the piezoelectric motion a slider bar is pushed by four sets of shear piezos   

a) b) 

c) 



6 
 
 

inside of the STM system where we can see the Z – mover holding the scanning tip at a constant position 

over the crystal.  

 

Figure 1.4: The Coarse Z-Mover and STM Tip 

 

Piezoelectric crystals along with precision machining, compose a completed method for motion in 

the STM system.  We placed STM into ultra-high vacuum (UHV) where voltage control allows us to scan 

systems without exposing them to atmosphere. As another benefit the UHV chamber is equipped with a 

cryostat letting the STM see surfaces with atomic resolution from any temperature in the range of liquid 

helium to room temperature, 4K to 320K 17. 

1.3 Topography Calibration: Preparing the First Surface 

 

Now that we have a fully working scanning probe system we must calibrate it 18,19, to ensure that 

the tunnel junction is accurately reproducing a known atomic surface and to set the conversion between 

a) The fully assembled Z mover with moveable prism and sapphire ball for tuning exact frictional force b) The STM tip 

over a in-situ cleaved sample as an example of the Z-Mover’s working functionality 

a) b) 
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the current signal and both height and distance. To do this it is common practice to use a freshly prepped 

surface of Au (111). A gold crystal is a good choice for calibration because it exhibits two features: atomic 

steps with well-defined height, and a surface reconstruction known as herringbone with a well-defined 

length. Most gold however is not perfectly atomic, and is typically amorphous. It is important that we have 

a method to create the necessary cleaning and calibration crystal in our UHV chamber, which we must 

form from a cut Au (111) single crystal through cycles of annealing and argon bombardment. A picture of 

the mounted crystal can be seen in the STM in Figure 1.5, this is the same crystal used in calibration for 

every experiment after repeated cleaning cycles.   

In the process of cleaning gold it is necessary to heat the gold to temperatures in the range of 

600 C to 800 C. To reach these temperatures we devised a filament annealer that can be manipulated in 

UHV using a magnetic transfer arm. This annealer works through radiative heating, since there is no 

convection in vacuum the only possible methods for heat transfer are either conductive or radiative. As 

our heat source we use a coiled tungsten rhenium filament which we pass 4.4 A and 30 V through. 

Effectively this creates a ~130 W light bulb which we contain within a reflective medium made from high 

heat materials such as molybdenum, tantalum and alumina. Closing this box with a gold sample holder 

we can easily reach the required temperature for cleaning, which we verify using the radiative color and a 

pyrometer. The heated gold sample is shown in Figure 1.5b. For comparison we show the cooled shiny 

gold surface in its sample mount in Figure 1.5c. 
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Figure 1.5: Gold Calibration Crystal and Annealer 

As promised we look at the surface using STM, looking for our two calibration parameters. The 

typical surface that is characteristic of Au (111) is shown in Figure 1.6. In this image we can clearly see an 

atomic step in the top left corner and a rippling structure across the surface. When gold is allowed to relax 

in a vacuum potential, as is developed through repeated annealing the surface buckles to maximize the 

contact between gold atoms. The resulting pattern which resembles the textile “herringbone” is well 

established in literature to have a spacing of 6.3 nm 18,20. We use this to calibrate the STM by looking at a 

line profile as is demonstrated in Figure 1.6b. One period of the pattern is defined from pair to pair, using 

this we can exactly map our scanning voltage to our distance calibration. We can do the same thing for a 

single atomic terrace of gold. A step on gold should be 240 pm 21, we calibrate to this in Figure 1.6c. 

a) The gold crystal cleaned and in the scanning tunneling microscope during the tip cleaning process b) The annealing 

system built to heat the gold to 650 C within UHV c) The mounting system used to affix the gold to its sample plate 

a) b) 

c) 
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Figure 1.6: Standard Gold Calibration 

1.4 Intro to Scanning Tunneling Spectroscopy 

 

The calibration capabilities when scanning gold aren’t just topographical, another capability of 

STM is measurement of the electronics on the surface 22,23. Since the current is proportional to the 

integrated density of states we can take the derivative using a lock-in amplifier. This allows us to measure 

dI/dV, the local density of states on the surface. In a clean metal the band dispersion is simple, we expect 

parabolic bands – and we can image those using scanning tunneling spectroscopy (STS). For gold we 

can see a series of slices of this band which are circular in nature, and since these also represent allowed 

momentum states we effectively measure the surface for different electron wavelengths. In Figure 1.7 we 

show the scattering of the gold surface band 24, this is a circular ring of momentum states that are present 

at this energy. This image comes from the Fourier transform of the real space map of the surface at this 

energy, which is pictured next to it in Figure 1.7b. We can extract the band structure because the 

a) The herringbone and step edge patterns characteristic of a gold surface when properly cleaned b) A cross section of 

the herringbone surface to calibrate the STM the lateral spacing should be 6.3 nm between periods c) A cross section 

showing the height profile of a single atomic step. The resulting height should be 240 pm  

a) b) 

c) 
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electrons scatter from point defects and step edges. At the step edge in the top of the image we even can 

see a linear scattering of incoming electrons, which looks quite like water waves hitting a barrier, or light 

diffracting from a knife edge. Since the available states at this energy come from a momentum ring of 

length k, the scattering vector which can be detected in the STS is a ring of magnitude 2k 25,26. 

                         

Figure 1.7: The Spectroscopic Properties of Gold 

With a working STM, using the techniques demonstrated on gold we now are able to turn our 

efforts towards systems of interest. While there is a large class of materials that STM can scan, some of 

the most interesting are layered Van Der Waals structures, specifically the transition metal dichalcognides 

known as TMDs.  

  

a) FFT of a scanning tunneling spectroscopy map taken on a gold surface. The resulting ring is a slice of scattering 

caused by the density of states at this energy b) The surface of the crystal at the energy which this dI/dV map was 

taken, showing that the FFT is a powerful tool in extracting information regarding the electronic structure.  

a) b) 
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Chapter 2 : Introduction to Transition Metal Dichalcogenides  

Introduction to Transition Metal Dichalcogenides 

2.1 Backgrounds of Transition Metal Dichalcogenide Experiments  

 

The transition metal dichalcogenides (TMDs) were developed in an effort to make materials that 

were graphene like, but with a wider range of electronic properties 27,28. The defining property of such 

layered materials is the formation of sheets that bind to one another through a weak Van Der Waals 

interaction. This allows layers of these materials to be separated from one another using exfoliation 

methods. In the case of graphene the most famous layered material, the Van Der Waals force binds 

together prefect planes of hexagonally connected carbon. The discovery of graphene opened many new 

doors because it was a way to confine electrons to two dimensions. As soon as the exfoliation of 

graphene was realized, many other available Van Der Waals crystals became candidates for the creation 

of 2D monolayers. One of the first such natural crystals to be exfoliated was a lubricant material MoS2. 

This material was found to have a rich range of physics because unlike graphene the parent crystal was a 

semiconductor. With monolayers of this material the indirect bandgap seen in bulk switched to a direct 

one, making this material of much interest to the optical community, since strong excitonic resonances 

require a direct gap.  

Developing synthetic materials based on the same physics was the natural course for the physics 

community. Using MoS2 as a base to start a materials search the class of TMDs became a much larger 

crystal family. It was found that the same hexagonal structure could be reproduced using any transition 

metal M, paired to two oxygen column elements, or chalcogens denoted X. The simplest resulting 

structure was determined to be a unit cell containing two stacked layers with equivalent hexagonal 

spacing. A shorthand for this form is 2H – MX2 where the 2H is the stacking order and the metal 

constituent can stand for any of M = Ta, Mo, W, Nb, Pt, etc. Similarly X denotes one of the three 

chalcogens X = S,Se,Te. We plot the top view of the hexagonal plane in Figure 2.1a. Also shown is the 

unit vectors �⃗⃗�  and �⃗⃗�  for the typical TMD this distance is 3.3 Å. In Figure 2.1b we show the lateral stacking 
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of these sheets. Since this crystal has a two layer unit cell the vector bridging these sheets is �⃗� /2 which 

measures roughly 6.5 Å

 

Figure 2.1: Transition Metal Dichalcogenide Lattice 

The significant properties of these sheets are highly dependent on the differing elements that are 

used to construct these materials, they range anywhere from semiconductors, superconductors, and 

Weyl metals 29. A subclass that has been heralded for two dimensional circuitry is the TMDs that consist 

of a metal M= Mo,W and chacogens X = S, Se, Te. The band structure for the bulk material of one of this 

subfamily is shown in Figure 2a. The optical modes of the uppermost valence band and lowest 

conduction bands are the A, and B excitons at the K-point and a smallest indirect one from Γ to Γ – K 

denoted X 30-33. When exfoliated to a single layer the bands of this material change to make the smallest 

gap be the A exciton, which can be excited optically. These new bands are shown in Figure 2b. 

a) The in plane lattice structure of the two dimensional dichalcogenide sheet with two lattice vectors a and b as shown 

b)  The lattice spacing between layers and the atomic stacking of the 2H structure 

 

a) b) 
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Figure 2.2: The Band Structure of the Semiconducting TMDs 

2.2 Scanning Probe Imaging of TMDs 

 

The STM can be used to see the atomic structure of these materials, since their bandgap is not 

large enough to limit quantum tunneling, the biggest of which is seen in MoS2 of 1.5 V is still easily 

scannable when the bias is within either the conduction or valence bands. Since the STM probes the 

integrated bands it will always detect the smallest bandgap. For bulk this means that the STM will detect 

a gap the size of X, roughly .7 V, but in monolayer it will revert to the K-point gap. Since these materials 

can be very sensitive to air contamination, getting a clean surface into the vacuum system requires that 

we have a method to exfoliate the material in vacuum.  

With Van Der Waals materials the interlayer binding is weak enough that most adhesives are 

stronger than the out of plane bonds of the material. Therefore to exfoliate the system in vacuum we glue 

a cleaving post to the top of the surface. This consists of small shaped piece of scrap metal and an 

epoxy. We then transport the crystal into vacuum where hitting the post with a sharp, fast motion results 

in a freshly exposed layer.  

a) The bulk band structure of a typical TMD semiconductor specifically MoSe2. There are three recombination 

channels the A and B direct excitons and the X indirect exciton pair b) The monolayer structure of the TMD band 

structure, the A exciton splits into a bright and dark pair with close energies, the B exciton remains. 

 

 

a) b) 
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The STM’s imaging capabilities were tested on many candidate TMDs before deciding on one for 

an in-depth study. Since these materials are mainly semiconducting atomic resolution can be typically 

found near either band edge since in this state the carriers are localized. An example image of a 

semiconducting TMD crystal is shown in Figure 2.3a with an inset that shows the atomic placement in 

Figure 2.3b. This image was taken at a bias of 2V and a current of 150pA. 

 

Figure 2.3: Typical 2H TMD Lattice Structure with STM 

Another TMD structure results from a distortion of the hexagonal 2H structure this phase is stable 

for a couple of the semiconducting class specifically for ones including tellurium (Te). In this distorted 

structure known as 1T’ the resulting crystal is metallic 34,35. We can again see this system with atomic 

resolution however it is much harder to visualize atomic positions at reasonable tunneling currents. An 

image of this TMD is shown in Figure 2.4a with an inset Figure 2.4b that overlays the lattice. In this 

metallic system to achieve this resolution we use a bias of -1.5 mV and -28 nA of current. 

a) A large area atomic scan of a typical 2H structure b) Zoom in on a lattice vacancy showing clear resolution of the 

atomic sites and individual defects 

 

 

 

a) b) 
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Figure 2.4: Typical Lattice Structure of the 1T' TMD Using STM 

2.3 TMD Crystal Growth 

 

To study transition metal dichalcogenides, requires a source for repeated measurements 36 37. 

Since we have seen that the STM is a good probe for seeing the atomic placement and electronic 

properties of a surface, the best course is to examine the methods for synthetic crystal growth. Bulk 

TMDs can be grown through two well established methods, with many others that focus on growing the 

monolayer directly. The two methods that were used to make crystals for our experiments were chemical 

vapor transport (CVT) and self-flux growths. These methods vary in both total growth time, crystal size 

and material quality.  

When growing crystals through the chemical vapor transport method, constituent elements are 

placed on one end of a quartz ampoule with an additional transport agent, typically a halogen such as 

bromine (Br) or iodine (I) 38 39,40. This ampoule is then placed in a furnace with a gradual temperature 

gradient. At the hot end of the tube the transport agent helps the constituent elements to sublime where 

they recondense as MX2 crystals in the cold end of the furnace. Since the sublimation point of the 

a) A large area atomic scan of a typical 1T’ structure b) Zoom in of the lattice showing clear resolution of the atomic sites 

in orthorhombic fashion 

 

 

 

a) b) 
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halogen is very low it continues to cycle from the hot to cold ends of the ampoule until all of the reactants 

have been used. This method is pictured in Figure 2.5a where iodine is being used as the transport 

agent.  
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Figure 2.5: Growth Procedures for TMD Crystal Formation 

 

a) A cartoon model of the chemical vapor transport (CVT) growth technique for the formation of TMD crystals b) A 

similar cartoon showing the growth conditions of self-flux crystals c) A example of a typical CVT crystal after growth d) 

An example of a typical self-flux crystal after growth 

 

 

 

a) 

b) c) 

d) 
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The second method for creation of TMD crystals is the self-flux method 41,42. Unlike the transport 

method this uses the chaclogen itself to dissolve the metallic component at high temperatures. Single 

crystals seed and grow out of this flux-melt over a period of months. The system is then inverted to allow 

the flux to drain through a barrier of quartz wool. This prevents the crystals from becoming encased in 

solid chalcogen. An additional anneal cycle afterward allows for the removal of further excess chalcogen 

since the mixture must contain on the order of 20 X : 1 M. A diagram denoting the growth method is 

shown in Figure 2.5b.   

The crystals that resulted from these two methods typically varied in macroscopic parameters, 

however some general trends were noted before applying scanning tunneling microscopy techniques. 

Chemical vapor transport (CVT) methods created larger crystals in a much faster time. Crystals of this 

growth method are shown in Figure 2.5b. It was found that these batches would occasionally appear with 

microcrystals of pure selenium, additionally the halogen used had to be dissolved by heating the crystal in 

isopropanol or acetone. Flux method resulted in much smaller crystals shown in Figure 2.5d. Although 

much smaller it appeared that the longer growth time resulted in crystals that were consistently 

monocrystaline. With such varied macroscopic parameters we would expect the microscopic composition 

to be affected; which is exactly the type of question we can answer through STM. 

2.4 Experimental Methods 

 

All STM measurements to follow were performed using a custom built, variable temperature, UHV 

STM system. Single crystals of MoSe2 and WSe2 were mounted onto metallic sample holders using a 

vacuum safe silver paste. Samples were then transferred into the STM chamber and cleaved in-situ, 

exposing a clean surface. A Pt-Ir STM tip was cleaned and calibrated against a gold (111) single crystal 

prior to the measurements. Measurements were collected at 82 K and 300 K.  

MoSe2 and WSe2 crystals were synthesized by reacting Mo/W powders, 99.999%, with Se shot, 

99.999%, typically in a ratio of 1:20. These materials were first loaded into a quartz ampoule. A piece of 

quartz wool is then pressed into a cylindrical shape and pushed into the quartz ampoule, approximately 1 
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cm above the raw elements. The ampoule was then evacuated and sealed at ~10-3 Torr. For growth, the 

ampoule is heated to 1000 °C over 48 hours, held there for 3 days, then cooled at a rate of 1.5 °C down 

to 400 °C and subsequently flipped and centrifuged. Crystals are then harvested from the quartz wool 

filter and annealed at a temperature of 250 °C with the empty end of the quartz ampoule held 

approximately at 100 °C for 48 hours.  

MoSe2 crystals were synthesized by reacting Mo powder, 99.999%, with Se shot, 99.999%, in 

stoichiometric proportions with iodine 99.999% as a transport agent. These materials were first loaded 

into a quartz ampoule 12 cm in length, 1 cm in diameter, then evacuated and sealed at ~10-3 Torr. For 

growth, the ampoule is heated to 1000 °C over a period of 48 hours, held there for 1 week, then cooled 

for 3 days to 750 °C and subsequently quenched in air. Crystals are then harvested and rinsed in acetone 

and isopropanol to remove iodine residue, and left to dry.  

Chapter 3 : Defect Dynamics of Transition Metal Dichalcogenides 

Defect Dynamics of Transition Metal Dichalcogenides 

3.1 TMD Semiconductors 

 

Two dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors have been shown 

to possess many novel optical and electronic properties, with multiple potential engineering applications. 

This is all the more true as synthetic methods for crystal growth become well characterized. Starting from 

the macroscopic crystals we quantify their properties on a microscopic scale; specifically using metrics 

where optical examination only provides qualitative suggestion. We use the STM to characterize the 

atomic and electronic nature of point defects that are intrinsic to single crystals of these materials 

synthesized by two different methods - chemical vapor transport and self-flux growth. When combining 

scanning tunneling microscopy (STM) with scanning transmission electron microscopy (STEM), we show 

that the two major intrinsic defects in these materials are metal vacancies and chalcogen antisites. With 

further control of the synthetic conditions, we can reduce the defect concentration from above 1013/cm2 to 
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below 1011/cm2. Because naturally occuring point defects act as centers for non-radiative recombination 

of excitons, this improvement in material quality leads to a hundred-fold increase in the radiative 

recombination efficiency.   

 The semiconducting transition metal dichalcogenides (TMDs) promise a wide range of 

applications in electronics and optoelectronics 43-46. These materials host novel phenomena such as 

valley physics 47 48, interlayer tunneling49,50, topological properties51,52, and exciton superfluidity47 which 

are of fundamental interest and may enable new device functionality. However, crystalline disorder 

obscures intrinsic phenomena and imposes an upper limit on achievable functionality47,48,53,54. In 

particular, point defects55,56,57,58 strongly impact TMD monolayers: these defects cause carrier scattering 

and localization59-61, act as centers for non-radiative recombination62-65, and give rise to localized emission 

from excitonic traps66,67. Pioneering transport49,68,69 and STEM studies55,56,57 have explored the atomic 

nature and electronic impact of defects arising in monolayer TMDs, and indicate that the quality of these 

materials remains far behind the classic semiconducting materials such as Si and GaAs. Addressing the 

quality of these materials is urgently needed to advance their science and engineering applications.  

3.2 Intrinsic Defects in Layered Structures   

 

In two-dimensional materials, disorder can arise from both intrinsic sources, such as point defects 

and grain boundaries in the crystal itself; and extrinsic sources arising from the environment, such as 

inhomogeneous strain, and charge traps / adsorbates in the substrate56,70. In the case of mechanically 

exfoliated graphene, the intrinsic defect density is extremely low (109-1010/cm2 71,72), and reducing 

extrinsic disorder by encapsulation in hexagonal boron nitride (hBN) has enabled spectacular advances in 

device performance73-75. However, most other 2D materials do not necessarily possess graphene’s 

ultrahigh purity. In the case of semiconducting TMDs, hBN encapsulation also results in improved 

performance76,77, but the physical properties of these devices are still far from their theoretical limits, 

indicating that intrinsic disorder plays an important role. This is consistent with studies showing point 
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defect densities exceeding 1012/cm2 in commonly used TMD materials78. Therefore, continued progress in 

the field necessitates the characterization, quantification, and minimization of defects in TMD materials. 

Toward this end, a particular challenge is the diversity of material sources, which include natural or 

synthesized single crystals, and large-area films grown by chemical vapor deposition (CVD)39,40, metal 

organic chemical vapor deposition79, physical vapor deposition80, and molecular beam epitaxy81, each of 

which can give rise to a different density and type of defects. For instance, STEM imaging of MoS2 

reveals that CVD-grown films are dominated by S-vacancies, whereas defects in natural MoS2 crystals 

are predominantly Mo vacancies56.  

As mentioned in the introduction to transition metal dichalcogenides and other Van Der Waals 

materials, we focus on the quality of synthesized TMD single crystals. Currently, single crystals remain 

the source of the highest-quality TMD monolayers39,53,82,83, and do not suffer from grain boundaries and 

phase separation58,84,85 observed in large-area films. While much initial work on TMDs has utilized 

naturally occurring minerals49,86, laboratory-synthesized crystals provide a wider materials selection, and 

can offer a higher degree of quality control and reproducibility.  Toward this end, a number of companies 

are currently supplying synthesized TMD crystals for laboratory use. However, synthesized TMD crystals 

have not been well characterized, and virtually no experimental work has examined the correlation 

between defect density and optoelectronic properties of monolayers derived from these bulk crystals. We 

use STM and STEM imaging to determine the type and density of intrinsic defects present in single 

crystals of MoSe2 and WSe2 synthesized by the chemical vapor transport (CVT) and flux growth 

techniques. 

3.3 Review of Growth Processes 

 

The CVT technique utilizes a transport agent, usually a halogen, to transport starting materials 

from a hot region into a cooler growth region where they form crystals38.  CVT provides large crystals in a 

relatively short growth time at moderate temperatures, and thus has become the prevalent technique for 

TMD synthesis. The self-flux method in which crystals are grown directly from the molten phase is an 
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alternative method known to create higher-quality, albeit smaller, crystals42. In this work, we characterize 

three types of crystals: commercially obtained crystals grown by CVT and tested without further annealing 

(as-grown CVT or ag-CVT); crystals synthesized in our furnaces by CVT then annealed in a temperature 

gradient (treated CVT or t-CVT); and crystals grown by the self-flux method (flux). Details of the growth 

procedures, temperatures, and cooling rates are given in the previous chapter. 

We first examine defects in bulk crystals through scanning tunneling microscopy (STM), which 

can provide defect lattice positions, local electronic structure, and defect density.  To avoid surface 

contamination, crystals were cleaved in situ under UHV conditions. Scanning tunneling microscopy is a 

valuable tool to characterize defects because it has access to atomic resolution of the surface layer. 

Referring to the structure of the 2H phase of these compounds we see that based on the Van Der Waals 

binding the STM is in direct contact with the top chalcogen plane of the X-M-X structure. The metal sites, 

since not directly in contact with the STM tip, must further be inferred from the positions of these top 

chalcogen atoms which form a triangular lattice. Electronic states will also play into our recognition of the 

lattice, therefore we must observe the surface under many scanning conditions to determine defect lattice 

sites and composition 

3.4 STM Topography of TMD Semiconductors  

 

STM images were taken for a series of scanning bias voltages to compare the height contrast of 

defects, providing an assay of defect evolution with bias and current. It was found that defects changed 

their appearance for the opposite sign of scanning bias, which can be attributed to a change of electronic 

density when switching carriers. Otherwise bias alterations had little effect on the defect contrast. To 

illustrate this contrast change under bias flip, images taken on the same chalcogen site defect are 

presented in Figure 3.1a,b taken at positive (a) and negative bias (b) respectively. We additionally 

observe a central atom is present for this defect type at all biases, as indicated within the circled region.  
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Figure 3.1: Bias Effects on STM Imaging 

 

 With knowledge of how the surface will respond under various scanning conditions we examine a 

25 nm square region of MoSe2 (Figure 3.2a), we observe two defect types that can be initially identified 

by contrast as either “dark” or “bright”. As discussed further below, these two predominant types of 

defects account for the vast (>99%) majority of defects imaged in both flux and CVT samples. Figure 3.2b 

and Figure 3.2c  show atomic resolution images of these defects. The bright defects, which we denote –

X, are located on a selenium site (Figure 3.2b). Since there is no missing atom associated with this 

defect, it is not a selenium vacancy78,87, but is rather a substitutional impurity on the chalcogen site, as we 

saw in Figure 3.1 the atomic site for this defect has an atom at all measured scan conditions. Se 

vacancies can indeed be observed by STM but are roughly two orders of magnitude less common than 

the vacancies and substitutional impurities  

a) The surface of MoSe2 when imaged at a positive bias of 1V a single defect can be seen identified within the black 

circle b) Another image of the same region but at a negative bias of -1 V at this voltage the same bright defect appears 

dark, however all atoms remain visible as is seen in the white circle  
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Figure 3.2: STM Topography Showing Two Predominant Defect Types 

The dark defects observed in STM images, which we denote –M, are aligned with the Mo sites, 

which are located in the center of a triangle of selenium atoms (Figure 3.2c). Interestingly, whereas flux-

grown MoSe2 possesses both –M and –X defects, similarly grown WSe2 displays predominately –M 

defects. Atomic resolution measurements were taken on WSe2 as seen in Figure 3.3a. These images 

appear with the opposite contrast when compared to those shown previously due to opposite choice of 

STM bias. As was the case of MoSe2 two defect types were observed, one occurring on the metal site 

and one occurring on the chalcogen site. We again label the metal site defect as seen in Figure 3.3b as a 

metal vacancy and the chalcogen site defect seen in Figure 3.3c as a metal antisite. STM scans on both 

WSe2 and MoSe2 suggest that these defect types are common to the TMD family. 

a) An atomic resolution image of the surface of MoSe2 showing two defect types a “dark” and a “bright” species. b) A 

2nm x 2nm zoom in around the bright defect with its characteristic hexagonal shape created by a defect centered on the 

chalcogen (-X) site. c) A 2nm x 2nm zoom in around the dark defect with its characteristic triangular shape created by a 

defect centered on the metal (-M) site. 

 

 

 

a) b) 

c) 
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Figure 3.3: STM Topography of WSe2 Showing Two Predominant Defect Types 

3.5 Scanning Tunneling Spectroscopy of TMD Defects 

 

Further insight into these defect types can be obtained by looking at the electronic structure using 

scanning tunneling spectroscopy (STS). Figure 3.4a shows a sequence of tunneling spectra measured at 

varying distances from a single -X defect, out to a distance of 3.5 nm. Directly over the defect, we 

measure a broad resonance pinned to the edge of the conduction band. The resonance shifts as a 

function of distance from the defect site, likely due to band bending effects88. This indicates that the –X 

defects behave as n-type dopants. STM itself cannot identify the elemental composition of defects. 

However, we have observed that the concentration of –X defects can vary widely between crystals 

a) An atomic resolution image of the surface of WSe2 showing two defect types a “dark” and a “bright” species due to an 

inverted bias this image is the opposite contrast of the previous figure. b) A 2nm x 2nm zoom in around the characteristic 

triangular shape created by a -M defect. c) A 2nm x 2nm zoom in around the characteristic hexagonal shape created by 

a defect centered on the -X site. 
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depending on the growth method, even when the same starting raw materials are used in the syntheses. 

This indicates that the defect is not associated with a foreign substituent, but is most likely an antisite 

defect, i.e, a Mo atom substituting for a Se atom as suggested by theoretical calculations. The antisites 

are observed in roughly equal numbers on the top and bottom selenium layers of the MX2 unit cell as 

expected as we will see later for large area scans.  

 

Figure 3.4: Scanning Tunneling Spectroscopy Taken Over Common Defects Types 

In contrast to the –X defects, the -M defects show a resonance near the edge of the valence 

band, as shown in Figure 3.4b. This indicates that the –M defects are acceptor type defects. From a 

combination of spectra and positioning we can attribute this defect to metal vacancies. Since this is the 

absence of an atom there is no metal present to supply electrons to the lattice at this location, making the 

defect act as an electron acceptor. Defect spectra are further compared to spectra taken at 10 nm away 

shown in Figure 3.5a,b. In this figure we can see the same curves presented in Figure 3.4 presented 

against a dashed curve which is the corresponding pristine spectra. When looking at the comparison in 

this manner the defect peak is readily apparent.  

a) Scanning tunneling spectroscopy (STS) taken over a chalcogen type defect shows a state on the edge of the 

conduction band that persists even 5nm away from the defect site b) A similar spectra taken over a metal defect shows 

a gap edge state in the valence band 

 

 

 

a) b) 
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Figure 3.5: Defect Spectra Compared WIth Pristine MoSe2 Spectra 

3.6 Rare TMD Defect Types 

 

After imaging all possible native defects we found that transition metal vacancies and anti-sites 

are found to be the most-common defect types, with Se vacancies being much rarer. In our STM imaging 

experiments, >99% of all of the point defects observed were either the metal vacancy (-M) or chalcogen 

antisite (-X). We have very occasionally observed missing chalcogen structures in the lattice as shown in 

Figure 3.6. The vacant atom is observed as a depression in STM topography at all bias voltages, 

consistent with the missing atom on the surface. The depth of these chalcogen vacancy structures were 

measured to be 300pm, an order of magnitude deeper than other observed defect types. This defect does 

not have an observable in-gap state and does not affect the bandgap significantly. Referencing the 

formation energy from DFT single chalcogen vacancies have a formation energy of 1.81eV, and double 

vacancies require much higher formation energy of 4.88eV. Therefore we conclude that this vacancy 

structure represents a single point vacancy. The density of all chalcogen vacancies structures were too 

low to estimate accurately the area density for the crystals we scanned. Since the density should be 

a) A comparison of scanning tunneling spectroscopy (STS) taken over a chalcogen type defect compared with a dashed 

pristine curve b) A similar spectra taken over a metal defect where gap edge state can clearly be seen above the pristine 
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proportional to formation energy, we do not report findings of the double chalcogen vacancy through 

STM.  

 

Figure 3.6: Chalcogen Vacancy Defect 

3.7 Large Scale TMD Defect Analysis 

 

Now having fully characterized the defects present on the small scale we now proceed to quantify 

defect densities on a larger scale. To count defects and obtain a density we switch to large-area STM 

imaging. Figure 3.7a-c show topographic scans (0.5 µm x 0.5 µm) of the three MoSe2 materials under 

study. In the ag-CVT sample (Figure 3.7a), the defect density is high enough such that the individual point 

defects have overlapping electronic signatures, and therefore STM can only provide a lower bound on the 

defect density of >1013/cm-2 (1% of unit cells). This defect density is dramatically reduced, to (2.5 ± 1.5) 

x1012
 cm-2 (0.2%) in the t-CVT sample (Figure 3.7b). The self-flux crystals display still lower defect density 

of (1.7 ± 0.5) x1011 cm-2 (0.01%) (Figure 3.7c). 

a) Scanning tunneling imaging of a chalcogen vacancy a rare defect occurring in pristine bulk crystals 
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Figure 3.7: MoSe2 Growth Comparison on a 0.5x0.5 μm2 Scale 

Shifting our focus to WSe2 we perform the same comparison. Commercial ag-CVT WSe2 exhibits 

a very high defect density and STM imaging can only provide a lower bound of >1012 cm-2 (0.1 %) (Figure 

3.8a). In the flux-grown WSe2, the defect density is dramatically smaller, (7.0 ± 2.2) x1010 cm-2 (0.006%) 

(Figure 3.8b). This defect density is by far the lowest reported for any TMD semiconductor.  

 

Figure 3.8: WSe2 Growth Comparison on a 0.5x0.5 μm2 Scale 

 

STM imaging of a 0.5 x 0.5 μm2 area in order to count defect density in a) ag-CVT b) t-CVT and c) self-flux grown 

crystals of MoSe2 

 

 

 

STM imaging of a 0.5 x 0.5 μm2 area in order to count defect density in a) ag-CVT and b) self-flux grown crystals of WSe2 

 

 

 

a) b) c) 

a) b) 
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Since the STM is able to distinguish defect types by color contrast we can process STM images 

to count individual defect densities. Chalcogen antisite (-X) and metal vacancy (-M) defects are distinctly 

different from each other at an imaging bias of V=1.25 V and current of I=100 pA. Under these conditions, 

the –X defect appears as a roughly 10 pm bump in STM topography, as shown in Figure 3.9a, while the –

M defect appears as a roughly 10 pm depression (Figure 3.9b). Large scale images can be processed by 

applying height thresholds to identify directly the –X (red) and –M (blue) defects, Here we specifically 

demonstrate this procedure on the raw data from Figure 3.7c, this results in the image in Figure 3.9c.  

Labeled defects can now be counted either manually or by edge detection algorithms. After sorting defect 

counts by type for each growth method, we produce a summary of these results for each growth in Table 

3.1. 

Table 3.1 : Defect Densities by Growth Methods Based on Defect Species and Crystal Type  

Crystal Growth 
Method 

Total Defect Count 

 𝐷𝑒𝑓𝑒𝑐𝑡𝑠/𝑐𝑚2 

M- Site Defects 

 𝐷𝑒𝑓𝑒𝑐𝑡𝑠/𝑐𝑚2 

X- Site Defects 

 𝐷𝑒𝑓𝑒𝑐𝑡𝑠/𝑐𝑚2 

MoSe2 ag-CVT > 1013  > 1013  > 1013 

MoSe2 t-CVT (2.5 ± 1.5)  × 1012  (1.3 ± 0.8) × 1012  (1.12 ± 0.6)  × 1012 

MoSe2 Self-flux (1.7 ± 0.5) × 1011 (7.0 ± 0.2)  × 1010 (9.91 ± 0.2)  × 1010 

WSe2 ag-CVT > 1012 > 1012 > 1011 

WSe2 Self-flux (7.0 ± 2.2)  × 1010 (6.41 ±  2.0)  × 1010 (5.83 ±  1.8)  × 109 
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Figure 3.9 : Automated Counting of Defect Species Using a Height Threshold 

3.8 TMD Defect Sorting 

 

In the counting procedure we additionally can sort chalcogen defects by position within a single 

TMD layer. Since the metal atoms are capped by a top and bottom chalcogen we have two possible 

orientations for our antisite defects (the red marked ones in Figure 3.9c), either X-M-D or D-M-X, where D 

represents the lattice defect. Since defect placement is random we expect chalcogen antisite defects 

(bright) should occur on both sides of this layer with an equal probability. In our STM images, we can 

distinguish between these two antisite defects from their apparent topographic height. We first 

demonstrate this procedure on a small area. Using the topographic image of Figure 3.10a,b (reproduced 

from Figure 3.2) we switch to a three dimensional banded colorscale. From the three dimensional image 

in Figure 3.10c, we can see that the bright defects (antisite) have two topographic heights (110 and 170 

pm). This is consistent with some of them being on the top chalcogen layer while some of them are in the 

a) Lattice profile of a chalcogen site defect, where it is visualized as a 200 pm electronic protusion b) A profile of a metal 

site defect with an apparent electronic depth of 30 to 40 pm c) A false color reproduction of an image taken on the flux 

crystal to demonstrate the defect counting algorithm. Defect species are labeled by color –X (red) and –M (blue) 
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bottom chalcogen layer. The dark defects on the other hand all have the identical topographic depth of -

30 pm. The consistent observation that the dark defects have the same apparent depth while the bright 

defects have two apparent heights (consistent with the top and bottom chalcogen layer). This convinces 

us that the point-defect features we see in our images all come from the first MX2 layer. We do see weak 

topographic features over much larger length scales (nanometers) that could arise from additional 

electronic and topographic detection of defects in our large area topographs. We note that these 

extended corrugations may have multiple origins including defects from layers below39 or grain defects 

occurring on a larger scale. 

 

Figure 3.10: Distinguishing -X Defect Lattice Position by Apparent Height 

a) Reproduction of the MoSe2 image where we look for two variants of bright defects. b) Labeling these defects using a 

banded colorscale we can see that there are two apparent heights which should correspond to their lattice position, top or 

bottom chalcogen site within a single layer c) The same area but plotted in 3D to highlight the consistent variation of height 

 

 

 

a) c) 

b) 
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Shown in Figure 3.11a we use the same procedure to label a large scale STM image (again with 

nicely separated bright defects). We choose a different color scale that emphasizes the difference in the 

two types of antisite defects. More quantitatively, we plot a histogram of the topographic heights of all the 

bright defects extracted from this image in Figure 3.11b. The histogram clearly shows the presence of a 

bimodal distribution of the antisites. For this particular image, we see 61 antisite defects on the top layer 

and 79 on the bottom layer. Similar bimodal distributions of antisites are seen in other images.  

`  

Figure 3.11: Large Scale Delineation of Bright Defects Based on Positions Within the Top Layer 

 

a) We now apply the same fine height filtering to the larger image confirming that two close variants of bright defects can 

be distinguished based on their electronic heights b) Plotting the height distribution we see that these match nicely with 

the atomic scale image, and therefore can infer that these are the same defect type  
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Chapter 4 : STEM and Theoretical Approaches to TMD Defect Identification 

Scanning Transmission Electron Microscopy and Theoretical 

Approaches to TMD Defect Identification 

4.1 Overview of Scanning Transmission Microscopy 

 

Since the scanning tunneling microscope provides information about defects, without exact 

chemical composition, another technique is useful in crosschecking the data acquired. For this we use 

scanning transmission electron microscopy (STEM) which provides data regarding the elemental 

composition of lattices and their defects.  

For the preparation of electron transparent samples for point defect density measurements, the 

TMD crystals were mechanically exfoliated using ScotchTM tape. The exfoliated flakes were transferred 

onto oxidized silicon wafer substrates. The monolayer flakes of the exfoliated TMD crystals were 

identified using light optical microscopy. The monolayers were then transferred onto Quantifoil® holey 

carbon TEM grids using isopropyl alcohol as a medium. After the alcohol evaporated, the holey carbon 

grid was attached to the wafer and the monolayer. The wafer sections were then slowly immersed in 1M 

potassium hydroxide (KOH) solution to etch the very top surface of the oxide and release the TEM grid 

and the exfoliated crystals attached to it. Distilled water was used to dilute and wash away the KOH 

solution from the TEM grids. As a last step, TEM grids were immersed in warm (40 oC) acetone for 10 

minutes to dissolve any residue that remained from the exfoliation and sample transfer. The resulting 

sample is presented in Figure 4.1. 
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Figure 4.1: WSe2 monolayer on Scanning Transmission Microscopy Grid 

The STEM imaging of TMD monolayers was carried out in an FEI Talos F200X instrument 

operated at 200 kV. A low beam current (~60 pA) was used to reduce the amount of beam damage. By 

using the smallest condenser aperture (50 µm) and beam size 9, the convergence angle of the probe was 

calculated to be approximately 10 mrad. Images were acquired at a series of times to determine the rate 

at which metal vacancies formed in the samples when irradiated by the electron beam.  For MoSe2, the 

density of metal vacancies was found to increase linearly with time allowing extrapolation to time zero to 

determine the initial density.  For WSe2, no new metal vacancies were found to be created up to 40 

seconds of imaging.  Thus, for these samples, images from multiple regions were collected using a 20 

second acquisition time. To improve the contrast and reduce the noise in the images for quantification of 

point defect density, the Butterworth filter in Gatan Digital Micrograph and the Wiener deconvolution in 

MATLAB were used. In addition, the simulated structure of the monolayer using the CrystalMaker 

software was overlaid on the processed STEM images to aid in identification of the metal and the 

chalcogen positions.  

a) A monolayer of WSe2 on a holey carbon substrate for use in scanning transmission electron microscopy  

 

 

 

a) 
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4.2 STEM Imaging of WSe2 

 

Shown in Figure 4.2a is a large-area image of one of these flakes of flux grown WSe2 having 

several different thicknesses of TMDs. A part of the flake (false colored in yellow) of monolayer thickness 

is examined for defects. Shown in Figure 4.2b is a section of this flake with atomic resolution imaging. A 

single W vacancy is seen in this image. To prove that this defect was not caused by beam damage in 

these films, defect concentration was measured as function of image acquision time was analyzed. 

Shown in Figure 4.2c and Figure 4.2d are roughly the same small area of pristine monolayer seen in 

Figure 4.2b imaged for 20 seconds (Figure 4.2c) and for 40 seconds total (Figure 4.2d). Eight additional 

selenium vacancies are observed in Figure 4.2c (circled in yellow) when compared to Figure 4.2c, which 

has three vacancies (circled in black). From a systematic set of such imaging experiments, we have 

determined the intrinsic concentration of selenium defects is zero (as we see in figure 6b) as well as the 

knock-off rate. We find that the beam damage is limited to knock-off at the selenium sites (which appear a 

180 degree rotation to those at W sites), and that much longer times are needed to remove the W atoms. 

Therefore our count of W vacancies will be unaffected by the STEM imaging conditions. 
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Figure 4.2: STEM of a WSe2 Monolayer Showing Intrinsic Defects and Calibration of Knock-off Damage 

We can perform the same analysis for the selenium concentrations for multiple areas. In our 

STEM experiments, when imaging the monolayer using a typical beam voltage of 80kV, we do not see 

evidence for a significant number of Se vacancies - certainly not at levels matching the concentration of 

bright defects seen in STM. As additional evidence, we discuss measurements performed at a beam 

voltage of 200 kV. At this voltage, STEM induced knock off damage occurs, typically due to local 

increases in temperature, structural instabilities and deformations at higher beam energies. We find a 

significant number of Se vacancies can be created in this manner (up to 1013 /cm2 at the largest exposure 

in this sequence of images). Shown in Figure 4.3 is a time series of images that show increasing numbers 

of Se vacancies that are created as a function of exposure time (Figure 4.3 b-e). For each of these 

images, we extract the vacancy concentration, and plot this in Figure 4.3a. Extrapolating to zero time 

indicates that the native Se vacancy concentration is too small to be statistically measurable by STEM 

imaging. 

a)  Highlighted region of WSe2 on holey carbon where the following images were acquired b) An area of pristine WSe2 

showing a single metal vacancy circled in black c) A region where continuous imaging was tested for knock-off damage 

d) the same region after 40s of exposure to the electron beam, created defects are circled in yellow 
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Figure 4.3: STEM Time Series of the Inclusion of Knock-off Defects 

Shown in Figure 4.4a is an STEM image that shows the only type of point defect observed in the 

flux-grown WSe2 sample. The bright atoms in this image are W due to its high atomic number, indicating 

that the defect is a missing W atom, i.e., a metal vacancy. This chemical assignment of the –M defect is 

consistent with the STS observation that they act as electron acceptors. 

In our STEM imaging, we do regularly see defects consistent with the antisite defects, which 

should show a higher contrast at the chalcogen site. One such STEM image is shown in Figure 4.4b. 

However, we need to be cautious in the interpretation of such images. Since our STEM images are 

obtained on exfoliated monolayers, we cannot exclude the possibility of adatoms on the surface during 

the processing required to go from a bulk crystal to a monolayer sample suitable for STEM. To make this 

a) Experimental extrapolation of knock-off damage in the WSe2 system, we see that within a short acquisition time (~20s) 

the monolayer remains pristine b-e) An image series of the same region measuring the knock off defect density as a 

function of time 
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claim accurately would require element specific EELS mapping at the picometer scale together with 

several controls for the exfoliation process. This is a separate long-term project by itself. So while our 

STEM data is completely consistent with the presence of antisites at levels comparable to the bright 

defects seen in STM, we do not wish to over-interpret the STEM data shown in Figure 4.4b. 

   

Figure 4.4: Two Defect Types Measured By Scanning Transmission Electron Microscopy 

4.3 Theoretical Predictions of Lattice Defects 

 

Our STEM, STM and STS measurements can be compared to theoretical expectations of defect 

formation energies and electronic structure from density functional theory (DFT). We wish to compare the 

theoretical formations for three defects, a metal vacancy, a metal antisite, and a selenium vacancy. We 

find that a metal vacancy requires an additional 5.22 eV per defect site for its formation. Using the Kröger-

Vink (K-V) formalism to examine the chemistry of this defect gives a charge state of 4- when referenced to 

the neutral crystal causing this defect type to act as an electron acceptor (i.e., M
4- + 4h•

, where  M
4- 

denotes the vacancy on the metal site for a compound with chemical formula MX2 - this defect has a 

negative charge relative to the filled metal site in the neutral crystal reference state typically used in the K-

V formalism, and h•
 denotes the requisite holes in the valence band to maintain overall charge 

a) A metal vacancy in WSe2 as imaged through STEM within the window where the lattice remains pristine b) A proposed 

metal antisite defect seen on the chalcogen site with STEM imaging 

 

 

 

a) b) 
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neutrality). DFT predictions for the local density of states match nicely with the observed STS, finding a 

shallow acceptor state (not pictured). The metal antisite defect has a formation energy of 4.81 eV. These 

defects exhibit a charge state of 6+ when referenced to the neutral crystal making them electron donors, 

consistent with STM and STS (i.e.,
6 6XM e+ + where 

6

XM +
denotes the metal antisite and e represents 

the electrons required to retain charge neutrality). Apart from the two observed defect types in 

experiments, we also calculate the formation energy for chalcogen vacancies. We find this energy to be 

1.81 eV, which is lower than that of a metal vacancy or antisite. The observed lack of these vacancies in 

spite of their lower formation energy suggests that kinetics plays a large factor in determining observed 

defect concentrations. Details of these calculations can be found in the methods and a table of calculated 

values can be seen in Table 4.1. Additional experiments that control for the kinetics of the reaction (for 

example by species availability) are required to relate the observed defect concentrations to the formation 

energies discussed here. 

  Table 4.1: Defect Formation Energies and Charge States 

Defect Type Krӧger-Vink Formation Energy Charge State 

Mo Vacancy M
4- 6.68 eV 4-, Acceptor 

Mo Antisite MX
6+ 5.04 eV 6+, Donor 

Se Vacancy X
2+ 1.72 eV 2+, Donor 

 

First-principle calculations for defect formation energies were done using density functional theory 

(DFT) within the projected augmented wave method 89,90, as implemented in the VASP code 91,92. The 

generalized gradient approximation 93 is employed to treat exchange and correlation in DFT. Projected 

augmented wave method (PAW) was used in the description of the bonding environment for W, Mo, and 

Se. The structures are fully relaxed until all interatomic forces are smaller than 0.02 eV/Å. The Brillouin 

zone was sampled with a 5×5×1 k-mesh under the Monkhorst-Pack scheme 94. Plane-wave energy cut 

offs of 400 eV and 500 eV are used for structural relaxation and static runs, respectively. The defect 

formation energies are defined via Eform=Edefect-(Epristine+Σniμi), where Edefect stands for the total energy of a 
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defected monolayer, Epristine is the total energy of a pristine monolayer, ni is the number of removed 

(minus sign) or added (plus sign) species i and μi is the chemical potential of species i. The size of the 

supercell was determined by convergence tests, resulting in a 6×6×1 with a 15 Å vacuum space. The 

chemical potentials of each species are constrained by the relation 94, μMoSe2= μMo+2μSe, where μMo and 

μSe are the chemical potentials for Mo and Se, respectively; μMoSe2 is the total energy per formula unit of 

MoSe2. We determine the range of chemical potentials with two extreme cases: Mo-rich environment and 

Se-rich environment. For the Mo-rich environment, μMo is chosen to be the total energy per atom of Mo in 

the bcc structure. For the Se-rich environment, μSe is chosen to be the total energy per atom of Se in the 

trigonal phase. The defect formation energies as a function of μMo are presented in Figure 4.5. These 

formation energy values are extracted with the chemical potentials following μi=Ei+Ebond, where Ei = Total 

energy of bulk metal or crystal of chalcogenide and Ebond = (EMX2-EM-2EX)/3 95. 

 

Figure 4.5: Formation Energy as a Funciton of Binding Energy 

4.4 Basic Semiconductor Theory Applied to TMD Defects 

 

From the observed defect densities and binding energies, we can use semiconductor theory to 

calculate the chemical potential in various samples of MoSe2 as a function of temperature96.  This model 

a) Formation energy of three defect types as a function of the energy required to disassemble the parent compounds in 

vacuum 

 

 

 

a) 
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depends on the concentration of the two defect species as well as the temperature of the system. A four 

dimensional plot showing these relationships is plotted in Figure 4.6a. If we make this result specific to 

the defect species we measured for each crystal we arrive at Figure 4.6b for the t-CVT and flux-grown 

samples. For the CVT material, we expect a relatively constant chemical potential due to large but 

compensated numbers of donor and acceptor defects. The flux-grown crystal, in contrast, has smaller 

defect density but a dominance of donors, resulting in a strong chemical potential shift towards the 

conduction band edge as a function of temperature.  

 

Figure 4.6: Theoretical Semiconducting Bandgap Size as a Function of Defect Concentrations 

  

a) A sampling of three dimensional curves showing the resulting Fermi Energy as a function of temperature and acceptor 

and donor concentrations b) Predicted Fermi Energy of our two crystal growths as a function of temperature, using the 

acceptor and donor concentrations measured in experiment 

 

 

 

a) b) 
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Chapter 5 : Scanning Tunneling Spectroscopy and Large Area Defect Electronics 

Scanning Tunneling Spectroscopy and Large Area Defect 

Electronics 

5.1 Overview of Scanning Tunneling Spectroscopy Maps 

 

These considerations indicate that we should measure chemical potential shifts in our STS 

spectra between different samples. In order to measure this with high spatial resolution, we use STS 

spectroscopy to measure the local semiconducting gap at every pixel of a 256 x 256 px grid overlaid on a 

0.5 x 0.5um2 area. At each point, we extract a local value of the conduction and valence band edges from 

the local spectrum. A sum of these two values gives the local value of the semiconducting bandgap.  

To obtain bandgap values systematically, gap sizes were found using an automated extraction 

method for each pixel of our spatially resolved spectroscopy maps. Since the measured dI/dV signal is a 

convolution of the density of states with the Fermi-Dirac distribution of thermally activated carriers, we use 

a linear extrapolation to extract the conduction and valence band edges as shown in Figure 5.1a. This 

figure illustrates the procedure at a location far away from defects. A similar process is employed when 

spectra are taken over a defect as shown in Figure 5.1b. The band edge is still extracted by linear 

extrapolation from higher energies as in the defect free case. To extract the energy of the defect state an 

additional resonance (assumed to be Gaussian in shape) is added near the band edge.  
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Figure 5.1: Bandgap Extraction from dI/dV Curves 

5.2 Growth Comparison of Defect Electronics 

 

Shown in Figure 5.2a is a color scale image of the measured bandgap variation in a t-CVT 

crystal. Color variations in this picture represent gap variations in the vicinity of defects. The average 

bandgap in this crystal is 860 meV, with defect-induced gap variations of order 50 meV. The bulk 

bandgap is in reasonable agreement with the theoretical gap of 840 meV 97. The variation seen for the t-

CVT crystal is to be contrasted with a similar gap variation image for the flux crystal shown in Figure 5.2b. 

While the flux crystal also exhibits an average bandgap of 860meV, it displays much smaller variations in 

space due to the lower concentration of defects.  

a) Bandgap extrapolation of a typical MoSe2 dI/dV spectra as taken in a pristine region b) The same bandgap extraction 

using a summation of a numerically fit Gaussian to remove the defect state from the spectra 
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Figure 5.2: Bandgap Maps over a 0.4 x 0.4 μm2 Area 

To visualize these differences, histograms detailing the spread of gap sizes for t-CVT and flux are plotted 

in Figure 5.3a and Figure 5.3b respectively. The observed gap variation in the t-CVT (3𝜎) is 50 meV, 

while the flux crystal shows a gap variation of 20 meV. As part of our measurement, STS was able to 

extract the valence and conduction band edges separately. Therefore, we further the analysis by 

examining the impact defects have on the valence and conduction band edges. In Figure 5.3c,d we plot 

the valence band onset distributions for t-CVT (centered at –370meV) and flux (centered at –760meV) 

respectively. From these plots we see that most of the gap variation arises from defect states on the 

valence edge, which we found earlier correspond to metal vacancies. A similar analysis of the conduction 

band edge is plotted for t-CVT in Figure 5.3e (centered at 490meV) and flux in Figure 5.3f (centered at 

100meV). Here we see almost no variation, especially in the case of the flux crystal.  

a) Bandgap map taken on a CVT crystal showing a large number of defect states infringing on the gap edge b) Bandgap 

map taken on a self-flux sample. These crystals show much more bandgap continuity 

 

 

 

a) b) 
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Figure 5.3: Gap and Band Edge Histograms 

Our detailed gap maps can also be used to estimate the position of the chemical potential relative to the 

gap midpoint from 𝜇 = −
<𝐸𝐶>+<𝐸𝑉>

2
. For the t-CVT sample, this gives a chemical potential 60 meV below 

the gap center, indicating slight p-type doping. The self-flux crystals have a chemical potential of 330 meV 

above the gap center, making them n-type. At 77K, we expect from Figure 4.6b that the chemical 

potential should be 50 meV below the gap center for t-CVT and 320meV above the gap center for self-

flux. This agreement with STS mapping over a 500x500nm2 region indicates that we have properly 

accounted for all of the dopants in the semiconductor. Additionally, the observed behavior explains the 

commonly observed p-type ambipolar FET devices98 that have been made from t-CVT crystals. To 

a-b) Bandgap distribution for the CVT and self-flux crystals respectively c-d) valence band distibutions of the maps 

pictured in inset for CVT and flux, we see that most of the variation of the bandgap occurs on this edge e-f) The same 

treatment for the conduction band, we see that the distribution on this edge is much sharper 

 

 

 

a) b) 

c) d) 

e) f) 
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visualize this further average dI/dV spectra for each bandgap map are presented on the same plot in 

Figure 5.4.  

                               

Figure 5.4: Average dI/dV curves for CVT and Self-Flux 

Flux growth achieves 1-2 orders of magnitude lower defect density than CVT does, and defect densities 

lower than 1011/cm2 from our flux-grown sample are by far the lowest reported for TMD materials. This 

improvement is reflected in reduction of band-edge disorder measured by scanning tunneling 

spectroscopy, therefore we expect orders of magnitude increase in photoluminescence quantum yield. 

  

a) The average spectra for both the CVT and flux crystals as averaged across the full gap map. We see that the Fermi 

energy is very different at 77K as we expected from semiconducting band theory. In this case the CVT has a compensated 

number of defects while the self-flux is pinned to the conduction edge due to a higher concentration of donor states 

 

 

 

a) 
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Chapter 6 : Optical Analysis of TMD Crystal Growth Utilizing PL Measurements 

Optical Analysis of TMD Crystal Growth Utilizing 

Photoluminescence Measurements 

6.1 Overview of Photoluminescence Setup 

 

To connect the large disparity of crystal imperfections versus growth observed across different 

crystals in STM to the monolayer limit, we carry out photoluminescence (PL) measurements as a simple 

way to measure the radiative response versus its quality. We isolate single layers through mechanical 

exfoliation from bulk single crystals39,82,83. Monolayers were simultaneously exfoliated from ag-CVT, t-CVT 

and flux grown crystals and each sample was subsequently handled under identically conditions to 

eliminate extrinsic factors.  

Optical stacks of BN/TMD/BN were fabricated using the polypropylene carbonate (PPC) method 

as described in 99 and placed on passivated SiO2
76. MoSe2 samples were measured using a closed-cycle 

He cryostat (Attocube Attodry 1100) and an excitation wavelength of 532 nm using a cw diode laser with 

an approximate power of 2.0 μW. For WSe2, samples were loaded into a cryostat with a sapphire window 

which is combined with a homemade photoluminescence setup with an excitation wavelength of 532 nm 

using a cw diode laser and a power of 80 μW. For cooling, either helium-4 or liquid nitrogen were 

continuously flowed through the cryostat chamber, immersing the sample while temperature was 

modulated with a stage heater. 

After ensuring monolayer was encapsulated in BN and placed on a passivated SiO2 surface76. 

The resulting stacks were measured under the same conditions (laser excitation power, spot size, and 

acquisition time). Additional data was taken to ensure that these curves were taken within the linear 

regime of the laser, as is seen in Figure 6.1. 
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Figure 6.1: Laser Power as a Function of Laser Spot Size 

6.2 Photoluminescence Comparison 

 

The raw PL data for MoSe2 at 4K are plotted on a log scale in Figure 6.2a. While the peak 

position shifts very slightly as crystalline quality is enhanced, the linewidth (FWHM) shows an obvious 

decrease with improved crystal quality, from 4 meV in ag-CVT to 3 meV in t-CVT to 2 meV in self-flux 

sample. The decrease in FWHM is consistent with the improvement in homogeneity of monolayer sample 

as defect density decreases. A dramatic effect is seen in the total light emission intensity (proportional to 

the quantum yield), with the self-flux sample having a 10-fold increase in light intensity over the t-CVT 

monolayer, and a 100-fold increase over the ag-CVT monolayer. We note that improvements in PL yield 

can also be achieved by various surface treatments100,101 that can affect the exciton lifetime or light 

absorption. In our PL experiments, we take care to keep the environment of the films as identical as 

possible across samples via encapsulation in BN. The large suppression of excitons with little change to 

peak position suggests that defects provide non-radiative pathways for the recombination of excitons, via 

a) The power regime of the laser used in the photoluminescence experiments to follow 

 

 

 

a) 
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exciton localization102 or defect enhanced Auger processes62,64,65, lowering the PL yield from the intrinsic 

limit of a pristine sample. 

 

Figure 6.2: Raw Photoluminescence Comparison of Growth Methods 

To quantify the impact of defects on the excitonic properties, we extend the PL measurements 

described above to various temperatures on t-CVT and flux monolayers (ag-CVT is omitted due to a lack 

of intensity at high temperatures). We plot the data taken for both MoSe2 (red) and WSe2 (blue) on a log 

scale at 77K in Figure 6.2b where t-CVT is dashed and flux is solid.   

6.3 Integrated Photoluminescence 

 

Since the major observed difference from the crystals is the overall PL intensity, we plot the 

integrated PL intensity as seen for MoSe2 in Figure 6.3. To model the shape of the integrated PL signal 

we must account for the unique band structure of monolayer TMDs. In the TMD materials, both the 

valence and conduction bands are spin split due to spin-orbit coupling. The magnitude of the splitting in 

the valence band is roughly an order of magnitude larger than the conduction-band splitting (~300 meV 

versus ~30 meV). Due to the spin splitting in the conduction band, one of the two transitions from the 

conduction band to the upper valence band (A exciton) is dark, while the other is optically bright. In 

MoSe2 the lower of the two transitions is bright, while the situation is reversed in WSe2.  

a) Photoluminescence curves taken at 4K showing the large power disparity between the three growth methods, each is 

roughly separated by a factor of x10 b) Spectra taken at 77K comparing CVT (dashed) and self-flux (blue) for both 

MoSe2 and WSe2 

 

 

 

a) b) 
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Figure 6.3: Integrated Photoluminescence for MoSe2 

To model the integrated photoluminescence a modified Arrhenius like formula was used. This 

formula accounts for the presence of dark excitons as well as other non-radiative factors. To accurately 

represent this PL signature we first look at the band structure of a single layer. Shown in Figure 6.4a is a 

simplified band structure of monolayer MoX2 compounds. Due to orbital hybridization of the 𝑑𝑥2−𝑦2 and 

𝑑𝑥𝑦 orbitals a spin splitting of (100 – 500 meV) occurs in the valence band. A smaller splitting of (10-100 

meV) exists in the conduction band due to strong spin orbit coupling (SOC) of the transition metal orbitals. 

In Figure 6.4b a three dimensional rendering of the A exciton bands can be seen. The two lowest energy 

excitons therefore corresponds to a hole in the top of the valence band and an electron in one of the two 

spin split conduction bands. The lowest energy exciton is bright while the other is dark in MoX2 due to 

spin selection rules (Figure 6.4c). The SOC splitting of the conduction band is opposite in the case of WX2 

causing the lowest energy exciton to be dark.  

a) A comparison of the integrated photoluminescence signal for CVT (dashed) and self-flux (solid). We see that there is a 

kink in the self-flux signal which corresponds to the energy at which the dark exciton is screened out by temperature. This 

does not occur in the CVT crystal because defects help the excitons decay non-radiatively  

 

 

 

a) 
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Figure 6.4: Model of Exciton Recombination 

For every photon that is absorbed there are three recombination channels103 - radiative 

recombination via the bright A exciton, non-radiative recombination from the dark A exciton and 

defect/phonon assisted recombination. We can write the rates of each of these three processes 

(assuming them to be independent) in terms of their energies and rate constants 104:  

𝑊𝑃𝐿 = 𝐶𝐵𝑟𝑖𝑔ℎ𝑡 ∗ 𝑒
− 
𝐸𝐵𝑟𝑖𝑔ℎ𝑡
𝑘𝐵𝑇 ,  𝑊𝐷𝑎𝑟𝑘 = 𝐶𝐷𝑎𝑟𝑘 ∗ 𝑒

− 
𝐸𝐷𝑎𝑟𝑘
𝑘𝐵𝑇 ,  𝑊𝑁𝑅 = 𝐶𝑁𝑅 ∗ 𝑒

− 
𝐸𝑁𝑅
𝑘𝐵𝑇  

We can put these together to extract the temperature dependent integrated PL from the ratio of incoming 

to outgoing photons  

𝑀𝑜𝑋2 : 
𝐼𝑃𝐿
𝐼𝑇𝑜𝑡

=
𝐶𝐵𝑟𝑖𝑔ℎ𝑡 ∗ 𝑒

−
𝐸𝐵𝑟𝑖𝑔ℎ𝑡
𝑘𝐵𝑇

 𝐶𝐷𝑎𝑟𝑘 ∗ 𝑒
− 
𝐸𝐷𝑎𝑟𝑘
𝑘𝐵𝑇 + 𝐶𝑁𝑅 ∗ 𝑒

− 
𝐸𝑁𝑅
𝑘𝐵𝑇 + 𝐶𝐵𝑟𝑖𝑔ℎ𝑡 ∗ 𝑒

−
𝐸𝐵𝑟𝑖𝑔ℎ𝑡
𝑘𝐵𝑇

=
1

 𝐶1 ∗ 𝑒
− 
Δ𝐸𝑆𝑂𝐶
𝑘𝐵𝑇 + 𝐶2 ∗ 𝑒

− 
Δ𝐸𝑁𝑅
𝑘𝐵𝑇 + 1

 

 

A similar analysis can be performed for WSe2 where the only difference is the sign on the SOC term. 

a) A reproduction of the TMD band structure for MoSe2 showing the difference between the dark and bright A exciton b) 

Extending this model to three dimensions we can see the conduction band splitting at both the K and K’ points c) This spin 

splitting informs the allowed pairings of the excitonic pairs. We see that like spins are the only possible channels for 

recombination since the electron must be able to fill the place of the hole in the valence band.  
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𝑊𝑋2 : 
𝐼𝑃𝐿
𝐼𝑇𝑜𝑡

=
1

 𝐶1 ∗ 𝑒
 
Δ𝐸𝑆𝑂𝐶
𝑘𝐵𝑇 + 𝐶2 ∗ 𝑒

− 
Δ𝐸𝑁𝑅
𝑘𝐵𝑇 + 1

 

 

We fit the integrated PL intensity to an empirical Arrhenius equation as described above, which 

accounts for both the spin split exciton104, and non-radiative processes which average multiple 

recombination rates. We find that the integrated PL emission can be described as follows for MoSe2: 

𝐼𝑇𝑜𝑡 =
1

1 + 𝐶1 ∗ 𝑒
− 
Δ𝐸𝑁𝑅
𝑘𝐵𝑇 + 𝐶2 ∗ 𝑒

−
Δ𝐸𝐷𝑎𝑟𝑘
𝑘𝐵𝑇

 

Here the non-radiative term arises both from defects and phonon scattering at higher 

temperatures, and other term arises from thermal equilibrium between the dark and bright excitons. 

Looking back at Figure 6.3 a sudden drop can be seen in the PL signal of the self-flux MoSe2 monolayer 

above roughly 60K. This can be attributed to the Boltzmann distribution of electrons able to access the 

dark exciton state. As per our fit prescribed above we extract the dark exciton energy to be 40 meV above 

the bright exciton binding energy. This matches well with reports utilizing a backgate to directly measure 

the dark exciton at 30 meV above the bright one105. 

Like MoSe2, the PL resonances of WSe2 have roughly the same peak position across growth 

methods. The temperature dependent integrated intensity shows distinct behaviors for the flux versus 

CVT crystals as shown in Figure 6.5. The self-flux crystal shows an initial increase in the PL intensity with 

decreasing temperature down to about 150 K, below which the intensity drops sharply. The CVT crystal 

however shows a decreasing intensity with decreasing temperature starting from room temperature. This 

difference in the case of WSe2 arises due to the fact that the lowest energy transition is dark106. This 

implies that at sufficiently low temperature only the dark state is populated, exponentially suppressing the 

PL intensity. At high enough temperature, on the other hand, the PL intensity is suppressed with 

increasing temperature due to phonon scattering. We can model both effects together using the same 

formula as MoSe2 with a sign change: 
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𝐼𝑇𝑜𝑡 =
1

1 + 𝐶1 ∗ 𝑒
− 
Δ𝐸𝑁𝑅
𝑘𝐵𝑇 + 𝐶2 ∗ 𝑒

Δ𝐸𝐷𝑎𝑟𝑘
𝑘𝐵𝑇

 

This change of sign indicates that the dark exciton is now at a lower energy than the bright. Thus, 

PL shows a maximum at some intermediate temperature which is determined by the interplay between 

defect and phonon recombination versus dark exciton coupling. Using the fitting for the integrated 

intensity from the flux crystal, we extract a conduction-band splitting of 43 meV. Our measurement of this 

splitting is within experimental error of the value directly measured from magnetic field measurements (47 

meV)107,108. We additionally find that CVT crystals exhibit stronger defect mediated coupling to the dark 

exciton state diminishing the PL signal out to much higher temperatures.  

                          

Figure 6.5: Integrated Photoluminescence for WSe2 

6.4 Conclusions of Defect Studies 

 

Our studies of defects in transition-metal dichalcogenides show definitively that there is a direct 

link between intrinsic point defect concentration in bulk crystals and the optoelectronic properties of 

a) Comparison of the integrated photoluminescence signal for CVT (dashed) and self-flux (solid). The dark exciton coupling 

strongly suppresses the photoluminescence signal at low temperatures. However since the self-flux crystal is so clean we 

are able to extract a dark exciton energy of ~50meV using the Arrhenius equation 

 

 

 

a) 
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exfoliated monolayers. The improvements in synthesis presented here have led to a lowering of the 

defect concentration by two orders of magnitude when compared to the current state of the art. Such 

improvements are a necessary step towards achieving many of the predicted optical phenomena that 

require high exciton concentration as well as transport phenomena that require long scattering times. We 

note in conclusion that while our synthetic achievements set a new benchmark for TMD semiconductors, 

the lowest bulk defect concentrations achieved here (~1018 /cm3) are still significantly higher than those 

achieved in the best III-V semiconductor films, indicating that there is still room for refining synthetic 

processes to achieve higher quality TMD materials. 
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Chapter 7 : Strain Measurements of TMD Semiconductors 

Strain Measurements of TMD Semiconductors 

7.1 Strain Experiments in Two Dimensional Systems 

 

As we demonstrated in the previous chapters the transition metal dichalcogenides share many of 

the control parameters that are common to traditional semiconductors such as silicon and the III-V 

compounds. These include the ability to chemically tune the bandgap, excitonic response, and single 

crystal growth. However there is one principle difference between the transition metal dichalcogenides 

(TMDs) and conventional semiconductors, a new parameter, two dimensionality109. 

Layered materials research, has seen the creation of two dimensional analogs for traditional 

silicon based electronics, however these materials have garnered much more interest due an intersection 

of nano-scalability, flexibility110 and desirable electronic properties28,43,46,111. Development has focused on 

a myriad of Van Der Waals materials including conductors and insulators such as graphene and boron 

nitride, and semiconductors such as the transition metal dichalcogenides, and black phosphorous. As a 

consequence of their two dimensional nature, these compounds can easily be integrated into electronic 

circuits with unparalleled thinness, which unlike traditional circuitry can further be made to conform to 

non-Euclidean geometries112-114. To understand how these materials react within such an environment, 

the resulting pursuit has been to understand performance under applied strain115-122. 

As with many layered materials the first studies of strain due to geometric constraints were 

performed on graphene. While most methods of induced strain were initially due to variations in 

mechanical scratching techniques using scotch tape123, controlling strain in layered structures is a 

promising new parameter available to two dimensional materials. Strain in the two dimensional limit has 

unique access to a regime unavailable to conventional bulk systems due to the extreme in-plane strength 

of monolayer bonds. Monolayers therefore can experience much higher strain percentages without 



57 
 
 

deformation or breaking. Initial experiments regarding strain, found however that for any system of more 

than one layer, the material was especially susceptible to strain relief due to weak coupling in between 

the Van Der Waals layers. This is especially true for graphene, in this system strain applied to fixed layers 

is relieved through the formation of atomic slips along principle directions. These can occur in any free 

layer not in contact with the strain substrate. The resulting phenomenon is akin to edge dislocations in 

bulk materials, and has been coined the strain soliton. These solitons form naturally through energy 

relaxation, and play a major role in stretched or twisted systems of 2D materials. 

 

Figure 7.1: Strain Regimes and Interlayer Relief Mechanisms 

To demonstrate the process by which strain solitons are formed we need to focus on two 

regimes, the low strain and high strain limits. Shown in Figure 7.1a is a simple representation of a crystal 

without any strain. The dashed bonds in this figure align perfectly with the layer above and represent the 

Van Der Waals interlayer binding of atoms. We see that the lattice constant additionally has an unstrained 

length of 𝒂. If we apply strain to the bound layers represented by the brackets we arrive at Figure 7.1b. 

Since only a small strain has been applied all layers remain commensurate with a new strained length of 

𝒂 + 𝚫𝒂. This crystal still retains its Van Der Waals binding between layers and the strain is uniformly 

Cartoon model of strain regimes in the presence of  a) no strain b) low strains c) edge dislocations in the high strain regime 

d) Strain solitons occurring as an instance of an edge dislocation whose formation is exclusive to two dimensional systems 

 

 

 

a) b) 

c) d) 
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distributed throughout the crystal. The typical descriptor for this is a strain percentage 𝛜, which is an 

equivalent representation of our strain field 𝒂 + 𝛜 ∗ 𝒂. If we continue to apply strain we enter the high 

strain regime as denoted by  Figure 7.1c,d. In this case layers become too strained to remain in contact, 

and energetically prefer to slip by a lattice constant. This relaxation of the in-plane elastic constraints 

lowers the strain, creating either an edge dislocation124,125 (Figure 7.1c), or a strain soliton (Figure 7.1d). 

The main difference between the two high strain systems in the 2D limit is that a soliton has no 

constraints from above, and therefore can further restore its Van Der Waals bonds by lifting from the 

surface. Therefore we can see this as a special type of edge dislocation only available to 2D crystals. 

Again, both of these line defects relax the local region around the dislocation to its original length 𝒂, 

thereby reducing lattice strain in the defective layers. We also can envision additional strain geometries 

that form from a full lattice mismatches with the strain substrate, as in the case of BN and graphene126-

129. In this special case the lattice must relieve through triaxial strain, so instead energetics cause 

formations such as moiré mismatch130,131 and pyramidal nanobubbles126. In graphene these have been 

shown to exhibit strong pseudomagnetic fields126,132 and confining potentials133 due to orbital overlap in 

the regions of deformation.  

Strain in transition metal dichalcogenides (TMDs) has been harder to access than that of 

graphene, but has much wider application due to the semiconducting nature of these compounds with 

optical bandgap129,134. This is mainly due to much stronger coupling between sheets of the MX2 

hexagonal lattice, where constituents can be any of the transition metals, {M=Mo,W,Re} and chalcogens, 

{X = S,Se,Te}. While many other combinations are possible we choose to focus on the semiconducting 

class of these compounds as studied in previous chapters. We note that further research opportunities lie 

in the application of strain to other forms of TMDs including layered superconductors such as NbSe2, and 

Weyl metals like WTe2. This work however will address high strain in TMDs through controllable strain 

soliton formation occurring within sheets of MoSe2, a typical TMD semiconductor.  
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The impact of high strain within the TMD lattice has been a long withstanding goal due to 

predicted change of phase from semiconducting to metallic121. Pursuits in this direction have measured 

the shift of the bandgap through optical spectra for strains as high as 6%115-117,135. For bilayer and 

greater, however strains of this magnitude unfortunately have not been achievable due to delamination of 

layers from one another136. This makes strain soliton regime of interest, because it is an intermediary 

region that exhibits partial detachment. To begin to breach this topic we first turn our attention to past 

works, specifically graphene, where a much weaker Van Der Waals force makes this intermediate region 

much more accessible.  

Studies on few layered graphene provide the mechanisms behind layer delamination under 

application of strain. Although many groups found strain solitons occurring naturally, the first atomic 

identification of these features were measured through transmission electron microscopy (TEM). Since 

this technique can see atoms from every layer on thin substrates these microscopy measurements 

detected that each soliton contained an extra atomic row (versus the bulk lattice) across its length. This 

extra row allows for a relaxation of the top lattice to its unstrained length an experimental confirmation of  

Figure 7.1c,d. The induced relaxation occurs along the atomic direction that is parallel to the short axis of 

the fold. As a fold or ripple forms in the sheet, its geometry forces a local detachment of the layer through 

breaking of the Van Der Waals force. Further inspection of soliton theoretically, found that these 

formations exist due to a competition of interlayer binding force and input strain energy. These 

calculations were based on the shear lag model137,138, which both predicts the critical value of strain 

required for soliton formation, and lattice dynamics which cause an increasing soliton density for further 

applied strain. Predictions for graphene place the critical soliton formation value at 0.6%, which is easily 

achievable, as was seen experimentally139. For the TMDs however their much higher binding force 

causes this value to hover near 2%.  
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7.2 Achieving High Strains in Experiment 

 

In practice achieving high strain has been an experimental challenge. Multiple apparatuses have 

been produced to control the internal strain applied to two dimensional materials, most using a 

combination of polymers, piezoelectrics and micromanipulators. Since strain solitons are a local 

phenomenon which should exhibit electronic features, scanning tunneling microscopy (STM) and 

spectroscopy (STS) was chosen as the best local probe. To strain in-situ within an STM system, many 

groups have used piezoelectrics because they provide electronic manipulation in ultra-high vacuum. This 

method typically requires gluing a crystal to a piezoelectric medium, then using the intrinsic expansion 

and contraction of the piezo as the strain field for the whole crystal. The drawback to this method is in 

strain percentage, since each piezo has a limited range, the crystal can only experience the maximum 

strain of the piezo. Strain percentage therefore is solely dependent on piezo dimensions and material. 

Given the constraints of our STM environment the best choice of piezo only results in a maximal strain of 

0.2%. Since the soliton regime requires strain magnitude a factor of x10 larger, we circumvent these 

limitations by instead deploying a similar scheme using shear piezos. The apparatus used is pictured in 

Figure 7.2 is the resulting development for much higher strains. 
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Figure 7.2: Strain Device and Principles of Operation 

Again using the definition of strain, we bind our crystals over a length of 𝐿. Therefore the applied 

strain is given as the change in length ∆𝐿, and so for our strained lattice 𝐿 ±  ∆𝐿. If we control the length 

over which strain is applied we have an easy way to tune the strain up to arbitrarily high percentages. To 

do this the device pictured in Figure 7.2a is formed from two towers of shear piezos which tilt in opposite 

directions upon the application of a strain voltage as is shown in Figure 7.2b,c. This geometry is beneficial 

since it allows for two types of strain application compressive (Figure 7.2b) and tensile (Figure 7.2c). 

Sitting atop these piezo towers are metallic plates for the application of STM bias voltage. To avoid shear, 

plates have been sanded to level to within a few micron. To demonstrate the constraints applied to the 

crystal, Figure 7.3a shows the experimental setup this is the way in by which the crystal was attached. 

Sapphire plates were affixed to ensure a uniform gap and the crystal ends were encased in epoxy to 

apply a uniform strain within the exposed region. Before and after gluing a crystal to these piezoelectrics, 

they were tested for the control of the gap separating them as shown in  Figure 7.3b. For the 100 𝜇𝑚 

a) Experimental strain device showing sample mount, strain gap and shear piezo stacks b) The device in its b) 

compressive and c) tensile modes of operation 

 

 

 

a) b) 

c) 
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separation they were found to move by ±3𝜇𝑚 at liquid nitrogen temperatures, resulting in both 3% 

compressive and tensile strain for anything bound across the gap.  

 

Figure 7.3: Experimental Verification of Gap Motion 

With this strain setup, achieving strain solitons is theoretically possible within the strain range. To 

visualize these as part of the experimental setup a cartoon model of their formation is shown in Figure 

7.4. In this figure we see that the top (free) layer is not in contact with the constraining epoxy, while the 

rest of the bulk crystal is. When strain is applied to this system the top layer is free to relax by folding 

upward creating several strain solitons. 

 

a) MoSe2 crystal used in the strain experiment mounted across the strain gap b) Proof of shear piezo motion with bound 

crystal calibrated to LN2 temperatures 

 

 

 

a) b) 
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Figure 7.4: Cartoon model of a Free Monolayer with Soliton Formation 

The last piece of this puzzle is how to achieve a free monolayer, such as the one pictured in the 

cartoon. Many groups have noted the existence of unbound monolayers due to the cleaving procedure 

required for UHV-STM. For a typical cleave we therefore expect that some portions of the freshly exposed 

bulk will not be in direct contact with our constraint epoxy, but instead be floating monolayers. In these 

regions under the application of strain we predict the formation of strain solitons to relax the high strain of 

the layers below creating a linear folding of the unbound layer in many discrete solitons.  

Voltage control of the strain system has an additional benefit, we can choose a single large scan 

area to use during the experiment, and since the strain is applied gradually the STM can remain in 

feedback with the region throughout. Presented in Figure 7.5a is the area chosen before the application 

of any strain voltage. Here we only see slight variations due to lattice defects, the multitude of which have 

been categorized in previous chapters. Using these as landmarks, we see that they persist, providing 

further proof the STM is remaining in stable position. After application of tensile strain we see that this 

area develops long range linear features, whose density are strain dependent. Figure 7.5b,c are the 

resulting area when under 1% and 2% strain respectively. From the macroscopic perspective the 

a) Linear solitons occurring in the top monolayer of a material. Here the bulk crystal is bound by epoxy and experiences the 

full strain field. The free monolayer begins to form soliton folds in a competition between strain energy and the Van Der 

Waals force 

 

 

 

a) 
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formation of line defects under strain fit the prescription of strain solitons, which similarly occur only under 

high strain magnitudes. Looking closer, we see that the network of linear features are connected at three 

way –Y like junctions, additionally suggesting a preferred directionality.  

 

Figure 7.5: MoSe2 Soliton Formation at 0, 1, and 2% Strains 

To more accurately represent the data we update our cartoon model to show strains that don’t 

conform to a crystallographic axis. The resulting three dimensional structure is shown in Figure 7.6a. Here 

since the strain axis does not have a single component the lattice must relax in some linear combination 

of existing high symmetry vectors. This enables the creation of solitons along all three crystallographic 

axes. From this cartoon it is much easier to see the terminations of these folds on the edges of the atomic 

sheet. Further proof that the features seen in Figure 7.5 are indeed solitons is to find the monolayer edge 

experimentally. We image the step edge where our features stop in Figure 7.6b. Through this image we 

see that our linear defects terminate at the boundary of our free monolayer, and do not propagate into 

bulk. We additionally find that the solitons can be reversibly tuned through compressive cycling allowing 

us to control the fold density in this free standing layer. With this system we should both be able to scan 

and measure transmitted strain effects, both for the bulk material and folded sheet. 

a) A 1.5 x 1.5 μm2 area of pristine MoSe2 at 0% strain. Since the strain is applied in-situ we image the same region (using 

defects as markers) as we apply b) 1% and c) 2% strain. The resulting line defects fit with the prescription of strain solitons, 

we see their density increase in order to relieve higher strains. 

 

 

 

a) b) c) 
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Figure 7.6: Soliton Formation Pattern at the Monolayer Edge 

7.3 Atomic Scale Confirmation of Strain Solitons 

 

So far we have only discussed strain of the MoSe2 lattice with a large field of view. Without 

atomic resolution this only provides a topical nature of these features, to achieve an accurate 

identification we must look at the atoms themselves. Because these features are folds of the lattice, the 

most striking feature of a strain soliton is the addition of an extra row of atoms along its length. Since we 

expect this addition to occur smoothly, we should be able to distinguish a soliton from a tear or point 

lattice defect. Folds cannot remove or break the atomic periodicity. For conclusive proof of a soliton, we 

must devise a way to detect a change in atomic frequency over the length of the feature. The easiest way 

to accomplish this is to take atomic resolution images using STM. Figure 7.7a is a 5x5 nm2 square zoom 

in on a single strain soliton, notable dimensions are a 3 Å height and roughly a 3nm width.  

a) We update our soliton model to include components along all three zigzag axes, where we see the expected fold 

structure should start at the monolayer edge b) Experimental observation of the monolayer edge itself. We see no 

evidence of solitons occurring in the bulk crystal 

 

 

 

a) b) 
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Figure 7.7: Atomic Resolution of a Single Soliton and its FFT 

With lattice visibility, STM images also determine that every soliton is a contraction along the 

zigzag direction (short axis), and that this is perpendicular to the direction of propagation along armchair 

(long axis). Over the feature we see no evidence of atomic distortions, mirror twin or other grain 

boundaries allowing us to rule out these types of lattice defects. With a soliton distance of 3.3 nm there 

are roughly 9-10 atoms across the soliton.  

Measurements of lattice spacing are useful, but do not prove beyond doubt that this feature has 

contracted under strain. A more accurate way is to detect an extra row of atoms is direct comparison with 

the strained lattice. Typically to detect an abrupt change in the lattice frequency we would use the Fourier 

space of an image, however here signal strength is proportional to the number of atoms that carry that 

specific frequency. Since the addition of a single atom in a smooth manner only results in small changes, 

detecting this slightly altered atomic placement would require extremely high resolution in Fourier space, 

whereas for our data this simply appears as a blurring effect, which is exemplified in Figure 7.7b. Here the 

atomic peaks and their harmonics are clearly visible however the resolution on the central atomic peak is 

not high enough to detect a change in lattice constant. This is in part due to the infrequency of solitions 

compared to the perfect lattice, diminishing any available signal. Instead we find it much easier to detect 

the extra atomic row in real space.  

Since the soliton is a three dimensional feature, we can use a high pixel density image to extract 

a height profile and local atomic spacing. We present this data in Figure 7.8a, where we can clearly see 

a) An atomic resolution image across a single soliton, notable dimensions are a 3Å height and a 3nm width b) The FFT of 

such features. We can see atomic peaks however we are unable to discern a clear difference in peak position (lattice 

compression) due to broadening of the FFT. 

 

 

 

a) b) 
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each atom individually as a ripple occurring atop a Gaussian-like profile. With this information we can 

extract the lateral profile by determining the distance between local maxima. If we do this for height slices 

taken on both a strained off (blue) and on (red) soliton region the result is  Figure 7.8b. In this figure, we 

plot the lateral spacing �⃑� versus distance detecting exact compression of the soliton along its length. This 

allows us to measure the total distance spanned by the soliton and subtract it from a pristine region. The 

resulting difference is equivalent to a strained lattice constant, specifically 3.4 Å, indicating that both sides 

of the strain soliton are commensurate. More useful information can be extracted from the strained 

region’s lattice spacing of 3.4 Å, this strain value (roughly 3%) matches the maximum strain of our device. 

 

Figure 7.8: Real Space Topographic Slice and Lateral Atomic Spacing 

To further this analysis we extend this same concept into two dimensions. Since we are now 

attempting to compare two regions locally it will be easiest to visualize this as a beat frequency implicit 

from the change of atomic placement. Mismatching atoms on the soliton will deviate from a pristine area, 

over the length of the soliton and return to matching if the two sides of the soliton are commensurate. To 

combat experimental drift or other distortions due to acquisition time we need to choose our rows along 

the fast axis of the scan. Put simply, we need to acquire the both lattices simultaneously for comparable 

a) The height profile of a single soliton, we see that it is 9-10 atomic lengths and roughly 3Å high b) An extracted lateral 

spacing on (red) and off the soliton (blue). We see that the soliton is indeed a lattice compression, however when adding in 

the vertical component we regain the original lattice spacing of 3.3 Å. The blue curve corresponds to 3% applied strain 

 

 

 

a) 

b) 
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results. We present the two regions chosen for this analysis in Figure 7.9a. Our scanning direction is 

oriented so that each image line contains half of the soliton region and half the pristine. On the left side of 

the image is an incoming soliton from which we will extract the (red) region, the middle a junction where 

the soliton splits out of frame, and the right side a fully pristine lattice from which we will extract the (blue) 

region. Stitching the left and right side of the experimental data together we arrive at Figure 7.9b. To 

easily detect a beat frequency we label each armchair row separated by ~1.8 Å on the pristine side. At 

the top of the image it is seen that same row 1 matches on both sides, but on the bottom the pristine (blue 

row) 18 now matches with row 19 (red). A real space analysis is conclusive, crossing the soliton we gain 

a single atomic row, additionally we find that the length is again 3.3 nm which is roughly what we 

expected from simply measuring its distance in Figure 7.8a,b. 

  

Figure 7.9: Comparison Pristine Lattice with Soliton 

7.4 Theoretical Models of Soliton Direction 

 

With confirmation of lattice contractions along an axis, we have experimentally verified the 

presence of strain solitons. We now address why these contractions were only seen along the zigzag 

direction. This contrasts solitons found in graphene, which naturally occur along any direction of high 

a) Comparison regions for simultaneous acquisition of a strain soliton (red) and a pristine area (blue) b) The atomic 

resolution of the two regions for comparison. We see while the first row matches, after crossing the soliton row 19 matches 

with row 18 this means that across the length we have gained an extra row of atoms 

 

 

 

a) b) 
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symmetry and can be manipulated to take almost any shape. Therefore we suspect terms in the Van Der 

Waals binding must break the symmetries present in graphene. The main difference for TMDs is the three 

atom unit cell, here unlike graphene the bonds out of plane are much stronger, dictating which folds will 

be energetically unfavorable due to an increase of Van Der Waals coupling. To account for this, we 

directly calculate the Van Der Waals binding energy between layers using a two layer model. In this 

calculation, we measure the binding of one sheet as the other is incrementally moved through all possible 

translation vectors. The resulting two dimensional energy landscape for the two sheets of MoSe2 is given 

in Figure 7.10a. Looking at the high symmetry directions we see that the lowest energy configuration for 

contraction occurs along the zigzag orientation and the highest occurs along armchair. Taking this further 

we use this result in a shear-lag model137,138 to calculate soliton formation for strains applied along the 

principle axes. For strains applied to zigzag, our model predicts parallel lines along the armchair direction, 

shown in Figure 7.10b. The inclusion of solitons into the sheet propagate inward from the monolayer 

edge. Performing a similar analysis along armchair we find that the top layer solitons form in a linear 

combination of zigzag directions, forming –X like soliton junctions as seen in Figure 7.10c. Empirically the 

experimental data supports these formation tendencies. The switch from linear to –X junctions followed 

closely by –Y junctions is seen in an image series taken for increasing strain, results are presented in 

Figure 7.11. 

 
Figure 7.10: Van Der Waals Binding Energy and Shear Lag Soliton Formation 

a) Van Der Walls energy as a function of layer stacking b) Soliton formation when straining along the zigzag direction 

using a shear lag model. We see that the solitons fold using zigzag as their short axis c) the same calculation when 

straining along armchair similarly solitons relieve the lattice using only zigzag components  

 

 

 

a) b) 

c) 
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7.5 Observed Soliton Formation and Modeling 

 

In an effort to understand why the lattice prefers to form the –Y junction we reversibly watch the 

formation of the soliton features in the same region. To create this image series we take STM 

topographies as we increment the applied strain. In Figure 7.11a we detect the first inclusion of a strain 

soliton propagating inward from the left hand corner of the image. Further applying strain to this region we 

arrive at Figure 7.11b where we see formation of the second fold creating an –X junction. This junction 

persists for some time, however when we reach strains upwards of 1% the junction begins to split, as we 

see in Figure 7.11c. This image is specifically zoomed in to see the initial split of this feature. As we 

continue to apply strain the two junctions begin to separate from one another resulting in two –Y 

junctions, as were seen for the entirety of most of the sample, Figure 7.11d. 

 

Figure 7.11: Soliton Formaiton Pattern 

What we have described above is a three step process, solitons seed, –X junctions form, then 

those transform into –Y junctions. With simple mathematics we can describe the processes through which 

these soliton building blocks incorporate themselves into the layer. Starting with a description of the 

a) The first soliton enters the monolayer propagating upward from the bottom left hand corner b) After the first linear soliton 

has fully formed a second one seeds relieving the next highest strain direction c) The completed –X junction begins to 

separate creating a third soliton d) The completed soliton network with two –Y juncitons 

 

 

 

a) b) 

c) d) 
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soliton seed, we need to see how a strained and unstrained lattice combine to form the proto-soliton. We 

do this simply by noting the formation of linear moiré patterns that form from the application of a strain 

field. It is these moiré that are the initial points that energetically favor the soliton fold formation. We can 

see these quite distinctly in Figure 7.12, where we plot the free monolayer versus its entirely strained 

partner, the bulk crystal. 

 

Figure 7.12: Demonstration of a Strain Moiré and Its Effect on Soliton Seeding 

In this figure we can see at the overlap of our two lattices the resulting moiré is exactly the 

necessary bunching needed to start a soliton superlattice140. We also note that due to defects and strain 

direction this will become more complicated and less periodic than under the perfect conditions we apply 

to the layers of Figure 7.12. 

Calculations above provide good theoretical match to observed soliton direction, and from the 

models presented we can understand how strain relief drives soliton formation in a linear strain regime; 

but how do we use these to describe the –X and –Y junctions. To answer this we construct the theoretical 

formation of the experimental data in Figure 7.11 from two postulates. First, that the strain vector will take 

a) A linear moiré lattice formed at the intersection of a strained and unstrained lattice. This formation is likely influential in 

propagating the first strain solitons throughout the lattice 

 

 

 

a) 



72 
 
 

any arbitrary direction in experiment. And second, soliton components can only relieve strain along the 

three zigzag directions. With these simple rules the solitons created through relaxation of the lattice will 

match with our observations of –X intersections followed closely by –Y junctions.  

Intuitively we know that any arbitrary vector can be described using a two component basis. 

Therefore, the necessary inclusion of three vector components seems contradictory to basic linear 

algebra. Fortunately, this is expected from mathematical formalisms, as strain vectors affect both lattice 

directions simultaneously through matrix multiplications. So instead of needing to describe a simple 

position vector, we need a basis that spans the possible two dimensional 2x2 strain matrices. With an 

arbitrary strain direction, the inverse matrix which denotes strain relief additionally must be compositely 

formed from transforms along all three zigzag directions (from our second postulate), since solitons can 

only form along these high symmetry vectors. Our new objective is to find a suitable matrix decomposition 

for the inverse of applied strain, using only these three principle directions. As mentioned earlier, a simple 

vector analysis is insufficient; the inverse matrix for an arbitrary direction that contains two out of three 

zigzag components will necessarily result in persistent off diagonal terms (barring cases where the 

applied strain shares a high symmetry axis). 

To begin the decomposition process, we first write out the matrix for application of an arbitrary 

strain. Since we wish to apply strain at any choice of angle 𝜃, by definition we need to project vectors that 

compose our lattice basis onto the strain direction. After projecting, we extend the parallel components, 

while leaving those perpendicular unchanged. The resulting vector is then transformed back to its original 

angle, and will compose our newly strained lattice basis. The matrix representation of this process is: 

𝑆𝜃(𝜖) = (
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
) (
𝜖 + 1 0
0 1

) (
cos(𝜃) sin(𝜃)

− sin(𝜃) cos(𝜃)
) 

Since each strain matrix contains an angle and a magnitude we shorten the description to 𝑆𝜃(𝜖) 

making it easier to perform operations without writing so many rotation matrices. We now need a 

procedure to write the inverse matrix for the above strain matrix using only three components, namely the 

zigzag directions of our lattice. 
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𝑣1 = 𝑎0 (
1
0
) , 𝑣2 = 𝑎0 (

1/2

√3/2 
) , 𝑣3 = 𝑎0 (

1/2

−√3/2 
) 

These principle directions occur at 0°,60° and –60° respectively. Concisely, we use these to write 

the following decomposition for our arbitrary strain matrix: 

𝑆𝜃
−1(𝜖) = 𝑆−60(𝜆3) ∗ 𝑆60(𝜆2) ∗ 𝑆0(𝜆1) 

Here the 𝜆s must be determined numerically based on the applied strain magnitude 𝜖 and 

direction 𝜃. This can be done for any given direction or magnitude, and becomes a simple set of four 

equations with four unknowns, namely 𝜃, 𝜆1, 𝜆2, 𝜆3 (through direct comparison of the individual entries of 

both resulting 2x2 matrices). For demonstration, we visualize the application of these matrices one by one 

to a strained lattice showing that all three components are required to reverse the strain. We start by 

applying an arbitrary strain to a lattice, pictured in Figure 7.13a and our objective is to return to an 

unstrained lattice as seen in Figure 7.13b. The first step of this process is to apply a reverse strain along 

the x-axis (𝑣!) this results in Figure 7.13c, where we can see that the bottom corner atom is now almost 

corrected in x but with a vertical offset. Since strain changes both vectors at once this additionally places 

the upper atom of the triangle closer to its starting position, but with an offset at roughly 60°. Next we 

apply the second matrix which compresses along the 60°, or the 𝑣2 axis. Again both atomic directions are 

affected since both vectors have a component along this direction. Therefore the best we can do is get 

both atoms almost to their starting position. If we move one perfectly back the other overshoots, and vice-

versa. The best option is to align them along the third axis resulting in Figure 7.13d. Now since both lie 

along the 𝑣3 direction we simply apply a small correction along this axis restoring the atoms to their 

original positions as in Figure 7.13b. Since this process is occurring in our soliton system it is useful in 

explain their formation pattern, first solitons relieve the highest magnitude of strain. This is chosen to be 

the direction that is closest aligned to the applied strain. Then additional solitons form to relieve the next 

largest strain component. This creates multiple –X junctions throughout the monolayer. Finally with very 

high strains the –Xs are required to break into –Y junctions to return the lattice to a perfect match utilizing 

a slight component along 𝑣3 as in this scenario. 
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Figure 7.13: Strain Reversal Using a Three Zigzag Component Inverse Matrix 

We can additionally plot the magnitudes of the 𝜆s as a function of strain angle; since the system 

has multiple symmetries we expect that these will look the same for each vector direction with an applied 

rotation of 120°. Similarly strain applied along 0° is the same as that along 180° therefore we expect the 

plot to have mirror symmetry along its principle direction. The resulting 𝜆s are plotted in polar fashion 

versus strain angle 𝜃 in Figure 7.14a,b,c where each panel corresponds with the magnitude of 𝑆0(𝜆1), 

𝑆60(𝜆2) and 𝑆−60(𝜆3) respectively. These represent the components required to compose the 𝑆𝜃
−1(𝜖) 

matrix. 

a) The unit cell of MoSe2 with an arbitrary strain applied to it b) The resulting lattice after all three zigzag components have 

been enacted c) The lattice shown in a after only the x-axis inverse is applied d) The lattice shown in a after having applied 

an inverse along both principle lattice vectors. Here we see that a third component is necessary since strain application is 

matrix multiplication not simply vector addition 

 

 

a) b) 

c) d) 
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7.6 Soliton –Y Junction and its Consequences 

 

So far, our experimental analysis has been focused on data that confirms the presence of a 

single soliton and how that drives the formation of the soliton network. We now shift focus to the physics 

of the –Y junction. Notably, these are unlike the –X junctions or linear solitons; these are created by 

breaking parallel folds into intersecting soliton line segments. Therefore implicit to their creation we 

expect many consequences that must retain the original topology of the parent system. To begin our 

analysis let us first look at this atomistically, as we did earlier for the linear soliton. Imaging the junction 

using STM, a typical image is shown in Figure 7.15a. Parsing this image we see that there are three 

pristine regions separated by the solitons, single point defects in the lattice and elevated rows that 

correspond to the three solitons. Taking a closer look at the soliton center we can see that each of the 

three extra rows enter into what appears to be a lattice defect. To see this intersection at a much closer 

scale, we zoom in using Figure 7.15b to image the soliton center, arrows denoting the incoming rows 

from each soliton. From this picture we see that the center is not actually a simple lattice defect but one 

that has generated itself at a node in the soliton network. With three incoming rows the intersection 

therefore looks like a zero dimensional “point” soliton. Like a soliton, this point contains an extra atom, 

however this cannot be its own inclusion since for the –X junction does not require such a node. 

Therefore we must determine how this extra atom has entered the lattice.  

Figure 7.14: Matrix Coefficients for Each Zigzag Direction as a Function of Strain Angle 

a) The necessary relaxation coefficient 𝜆1 for inverting stain applied along the given angle b) 𝜆2 c) 𝜆3 We note that along 

high symmetry directions only one (or two) components are needed to invert the strain field 

 

a) b) c) 
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Figure 7.15: -Y Junction and Zoom in Around Atomic Center 

To start by analogy, this three way intersection is an atomic zipper. We can use the properties of 

our linear solition, most importantly the inclusion of an extra unit, to understand why the extra atom is 

present, where it came from, and how the two –Y junctions generated are intrinsically linked. 

   

Figure 7.16: Vectorization of the Soliton Intersection 

a) Atomic resolution around a single –Y junction showing three incoming solitons and an apparent lattice defect in the 

center b) A zoom in around this intersection point we see that the node where all three solitons meet is additionally the 

center of this electronic defect 

 

a) A vectorization of the soliton lattice where each vector is the defined lattice shift accumulated crossing the soliton. We 

see that as soon as a basis is chosen the remaining vectors are decided since it is necessary to cancel the extra unit on 

both the left and right sides. A cartoon of this cancelation is seen on the left 

 

a) b) 

a) 
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Momentarily, let us return to Figure 7.9, the image taken on both sides of a single –Y junction. 

Since crossing the soliton gives us an extra unit we can choose to represent this in a vectorized way – we 

define a unit vector that points along the short axis of the soliton. Whenever we compare regions 

separated by the soliton we add the denoted extra lattice constant, which occurs normally when crossing 

any soliton boundary. Of course we can choose this vector one of two ways, however once we have 

decided how one vector is oriented, it defines the whole system. To elaborate our reasoning, two choices 

must exist because is there is no explicit directionality when crossing a soliton, only that one unit must be 

gained. We find therefore that only two choices are possible, the chosen vector or a 180° flip where its 

head becomes its tail.    

Once we have labeled the incoming soliton (the red region of Figure 7.9a) we can create an 

equivalent vectorized cartoon; the final result of which is the vector assignment of Figure 7.16. Here we 

can extract the vectors for the remaining solitions because we know that the blue region of Figure 7.9a 

does not contain an extra unit. Therefore the remaining vectors must reverse (or unzip) the incoming 

soliton by additively canceling. We can see that this is true for regions on both sides of the –Y junctions, 

where a vectorized addition is shown on the lefthand side of Figure 7.16. This resulting vector is 

equivalent to the negative of extra unit gained from the central soliton thereby halting its propagation 

through the lattice. 

From this simple cartoon, we find something that has much bigger physical implications. Looking 

closely at each –Y junction we see that when traveling around a single junction there is a preferred 

handedness. Again using Figure 7.16 we see that the junction on the left is a counterclockwise set of 

shifts, while on the right a clockwise set. We illustrate this better in Figure 7.17, showing that each 

junction has a defined parity. As mentioned earlier, the choice of vectorization is arbitrary, but this is only 

relevant to which junction has which parity. So although we can’t distinguish the handedness of an 

individual junction in experiment, we should be able to tell that they have a different parity from one 

another. This means that we can look for differences between each –Y, and that those differences will 

hold for every –Y of its kind globally. Effectively when we break the –X junction we create a system of –Ys 

with equal and opposite parity, and this in turn conserves the parity of the entire system.  
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Figure 7.17: Two Parity System as Defined by -Y Junctions 

With all of this analysis in mind we plot a close up image of a pair of –Y junctions. This is shown 

in Figure 7.18. In this image we have a high enough resolution to see both central intersections. This 

results in a stark distinction for each –Y. We see that the partner junction to Figure 7.15a,b has a center 

that is opposite in electronic contrast. Therefore we can extrapolate that instead of gaining a unit cell from 

nowhere, the system has split an existing unit, placing a metal (M) at the center of one junction and a 

chalcogen (X) at the other. With this determination, our soliton network is actually composed of multiple 

pairs of Frenkel defects whose charge is dictated by the intersection parity. 

a) The two possible parities that can be taken by a –Y junction based on the two ways we can add two vectors. Both of 

these parities exist in our lattice we now write these as –Y and –⅄ junctions. 

 

a) 
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Figure 7.18: Distinguishing Junction Parity Experimentally 

7.7 Macroscopic Extension of Soliton Dynamics 

 

The vector representation of solitons is useful in extracting macroscopic properties. Since we 

know that each soliton contains a detectable lattice shift we can use a two dimensional correlation to 

measure the lattice distortion141,142. This is a direct extension of our analysis for the linear soliton, since 

with the atomic resolution of Figure 7.15 we can exactly measure the lattice positions of the soliton –Y 

junction. We compare these positions with respect to the perfectly generated lattice, which was found 

using the FFT and calibrated to one side of the junction. This setup lets us correlate every atom in the 

image with its predicted positioning. We expect two sides of the image correlate perfectly to the projected 

lattice, by returning a value of unity, proving that the region is also commensurate. An analysis of this kind 

will determine when two lattices have both the same k vectors and offset (phase). Any region that is 

perfectly correlated therefore can only differ by a phase of 2π, or a full lattice period. Shown in Figure 

7.19 is the result of a correlation of this kind. For all three pristine sides of the image we return values that 

are consistently greater than .9 with only slight deviations occurring around point defects. Thus we can 

a) The –Y and –⅄ junctions, we see the existence of two defect types one at each center 

 

a) 



80 
 
 

conclude that all three sides that are separated by solitons are matched in phase and k. As expected, the 

same analysis performed on the soliton itself return values slightly less than zero. We find that the soliton 

lattice differs along one k vector, and hence will never perfectly correlate with the pristine lattice. A soliton 

also does not anti-correlate, since other k vectors are retained. Hence the comparison returns values that 

indicate a null correlation, no connection between the lattices whatsoever. 

 

Figure 7.19: Distortion Analysis of Soliton Junction 

We can extend this result by performing a line integration along the strain direction for a full 

image where we label each region that is commensurate in the same process as we did for Figure 7.19. 

For an integration of this type crossing any soliton is cumulative, each crossing adds an additional lattice 

constant. Every pristine region therefore takes a constant value corresponding to its net shift versus a 

region which is defined to be at the origin. Again due to the vectorized choice this will show strain 

direction but only be able to reveal information relative to our origin. Our analysis results in Figure 7.20, in 

a) A lattice correlation showing commensurate regions of the soliton lattice with the pristine 

 

a) 
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this integration the bottom of the image was defined to be zero lattice shifts, resulting in seven shifts 

across the full image. We see that traveling along the strain direction results in the fastest ascent, top to 

bottom, from the point defined to be at zero. Traveling perpendicular to this we see that there is negligible 

change in phase, or roughly a band of constant valued slips. We can conclude, that the lattice does not 

need to relieve strain along this direction.  

 

Figure 7.20: Lattice Slips Along the Strain Direction 

Our vector labels have allowed us to extract much more information from the raw data, and 

additionally predict pairs of Frenkel defects143 throughout the soliton network. We further our lattice 

analysis by looking at the –Y junctions electronically using scanning tunneling spectroscopy (STS). We 

expect that given the parity difference, the electronic signatures of each junction will be easily 

distinguishable. To extract the interactions around the –Y junctions however we first need to controllably 

understand the lattice itself when exposed to large strains.   

a) A measure of the number of lattice slips along the strain direction. We see that traveling top to bottom the most strain 

has been relieved, while left to right there is a small difference since this is perpendicular to the strain direction 

 

a) 
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7.8 Electronic Properties of Strained TMDs 

 

As mentioned in previous chapters, when taking spectra the STM will only be able to discern the 

smallest gap value. Therefore we will effectively measure the bulk indirect bandgap as a function of 

strain. Presented in Figure 7.21a we use STS to take spectra up to 3% strain and track the gap size using 

a set of dashed lines. We find that the average gap size for different strain percentages follows a roughly 

linear trend which we present in Table 7.1 

 Table 7.1: A Measure of the Indirect Gap Size versus Strain Percentage 

Strain % Lattice Constant Gap Size 

0 % 3.30 Å 0.86 V 

1 % 3.33 Å 0.73 V 

2 % 3.36 Å 0.6 V 

3 % 3.40 Å 0.47 V 

 

This spectra was taken in a region that was entirely under strain, we can use this as an additional 

calibration for strain percentage, without needing to measure the lattice constant directly. From here we 

can look at our solitons at a given strain, for the remaining experiments we chose to stay at a value of 

2%. Since we expect the different –Y junctions to have differing electronics let us take spectra on them 

each individually and compare them with a pristine area within the vicinity. The resulting spectra 

presented as a waterfall plot is shown in Figure 7.21b. From the top down, we see the pristine region with 

its strained gap size of 0.6 V, an inverted –⅄ junction (to distinguish parity) and an upright –Y junction. 

When we look at both junctions we see that they both have the same average bandgap size as the 

pristine, however they also have additional features on the band edges. And in the case of the upright –Y 

junction there are two in gap states that appear around 100 meV and 175meV respectively. 
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Figure 7.21: dI/dV Spectra as a Function of Strain and Position on Junction 

7.9 Electronic Signatures of the Soliton Network 

 

While the STS can resolve electronic features locally using point spectra, it is a much more 

powerful when combined with scanning capabilities allowing us to create spatial maps of the electronic 

structure. Shown in Figure 7.22 is the density of states difference between regions on the soliton and in 

the pristine lattice for a slice at 325 meV. In this image we see that the soliton network has full 

resonances that begin immediately as the pristine band edge of the material opens, and we note that 

additional resonances occur at voltages higher in the conduction band. Again in this spatial map we can 

already clearly detect an electronic difference between our two junctions by looking at the size and 

magnitude of these states. 

a) A measure of the indirect gap as a function of strain percentage b) Spectra taken at 2% strain for a pristine region, a  

–⅄ junction and a –Y junction. In gap states are seen in one distinguishing them by parity 

 

a) b) 
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Figure 7.22: Energy Slice Showing Density of States at 325 meV 

The electronic differences between both junctions were readily apparent from both the peaks in 

Figure 7.21b and the gap slice of Figure 7.22. Now to fully explore these differences, we compare band 

slices at every energy of the dI/dV spectral map. The easiest way to visualize this is to plot the radial 

average around the –Y and –⅄ junctions. This will provide a profile of states in the junction vicinity as well 

as give us better intuition as to what causes these states themselves. To generate these spatially 

averaged spectra slices we take the full dI/dV map (from which we extracted Figure 7.22) and average 

the spectra found in radial rings surrounding the center of each junction. The resultant Figure 7.23a,b 

compares the available states for a –⅄ (Figure 7.23a) and –Y (Figure 7.23b) junction respectively. 

a) dI/dV map slice at 325meV highlighting difference between the two junctions at the conduction band edge. Here the 

states on the solitons are higher than the surrounding band, we note the difference in electronic size of the two junctions 

 

a) 
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Figure 7.23: Radial Average of Density of States around Each Junction 

Within these pictures we can see that there are two effects occurring around the band edge and 

in the gap. And that the junctions behave fairly differently within the same parameters. To start with the 

description of the simpler one we describe the –⅄ junction of Figure 7.23a. In this radial average we see 

that there are states that are evenly spaced beginning at the conduction band edge. With such an even 

dispersion of approximately of 75meV we can conclude that these states must arise from a harmonic 

oscillator like potential. As for the origins of this potential we should expect quantum confinement which 

arises from the altered curvature of the soliton network120,122. And indeed these states can be seen 

occurring in the other junction as well starting at roughly the same energy. However in the other junction 

Figure 7.23b we see an additional effect. Below the energy at which the quantum confinement takes 

effect we see two almost equally sized in-gap states. Since these additional states occur within the 

bandgap, their origin is due to the electron donor nature of this half of the Frenkel defect. This defect state 

may also be responsible for the enhancement of the confinement levels since we see that they are of 

much higher intensity within the same colorscale. Most importantly, this defect is how we can distinguish 

a) Spectra taken over a –⅄ junction on the band edge we can see the presence of confinement states due to the local 

geometry b) States over a –Y junction in addition to the confinement states we see two defect states in the gap and 

overall electronic enhancement 

 

a) b) 
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the two –Y junctions by parity, and is a measureable consequence of the soliton network. Since we can 

tune the system reversibly using strain we can control the distance between these junctions, making this 

state of further interest especially because of its topological origin.  

7.10 Quantum States at –Y Junction Centers 

 

Although further analysis of the transport and optical effects of this soliton topology is not 

available to the STM we can plot the exact wavefunction magnitudes for both the defect states and the 

quantum confinement occurring in the band. We plot the first four quantum confinement states in Figure 

7.24a-d, where we can see a clear node – antinode alternation between states. We would expect such 

states due to the density of a typical two dimensional harmonic oscillator or similar potential landscape. 

Even within the linear channel we can detect harmonic oscillator states, but these are a much weaker 

effect and occur at a much closer energy spacing that is hard to capture within our resolution. 
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Figure 7.24: Measure of the First Four Confinement State Wavefunction Magnitudes 

Exact reasons to expect this behavior make this system promising for applications and further 

research. Since the soliton is a local effect, any model describing the addition of electronic states must 

arise from some brand of quantum confinement. The simplest of these as presented, must result in the 

introduction of a quantum wire system. To create this conducting channel two candidate theories are 

likely or some combination thereof. Strain in TMDs causes a change in the tight binding hopping 

parameters. Analogous to nanobubbles in graphene, these new parameters create trapping potentials for 

electrons, hence cause confinement within the soliton channels. Alternatively confinement can arise from 

The quantum confinement states seen in the vicinity of both junctions at the following energies; a) 325 meV b) 400 meV 

c) 475 meV and d) 550 meV 
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a local change from a 2H to 3R stacking configuration. This has been shown to create topological edge 

states, it will induce a change in the band structure of the TMD locally. Further understanding 

confinements of this nature can be critical to moiré and twisted angle systems and their impact on 

systems comprised of TMD monolayers.  

To complete our analysis of the strain system we plot the in-gap defect state which is available to 

only the –Y junction. The two defect states are plotted in Figure 7.25a,b. From this dI/dV map we see that 

the defect state is roughly 5 nm across. While the defects look similar to the confinement states we note 

that the second state is the only state of the system that is not radially symmetric. Looking at Figure 7.25b 

we notice that the asymmetric state is similar in quality to the triplet state or of a hydrogenic system. Since 

the TMDs have a strong spin dependence this may be due to the conduction band splitting. Additionally 

the axis of asymmetry is pointed to the closest partnering –⅄. Alternatively, this may be due to a 

polarization caused by the formation of Frenkel defects in a multiple charge system. Therefore we may be 

measuring an induced a dipole state, the exact dynamics of which may be of interest for further study.   

 

Figure 7.25: Conduction Band Defect States Occurring Exclusively at the -Y Junction 

For states occurring in the gap over the –Y junction we plot their wavefunciton magnitude at energies of a) 100 meV and 

b) 225 meV. As a defect “orbital” this state is not spherically symmetric as was the case for the confinement states, and 

therefore may reflect the nature of the junction formation and its parity.  
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7.11 Conclusions of TMD Strain 

Throughout the text we have explored the impact of defects and strain on the TMD system. And 

as with any research we have outlined the methods and designs that can be built upon to take any of the 

ideas presented further. There are many more avenues and innovations that can be made from the 

systems and devices that were produced at Columbia University. Within this thesis and accompanying 

technical documents it is my hope that future generations of graduate students will find and extract some 

of the knowledge I’ve put to paper; may it assist them on their own journey toward a PhD. 
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Appendix A1 : Landau Physics 

Landau Physics 

A1.1 Introduction to Landau Physics 

 

This appendix details the inner workings of Landau physics, as is applicable to a general strain 

field. This was a possible description of the linear soliton system and a circularly symmetric system. This 

section of work was attached to appendix because it was tangentially relevant to our discussion of strain 

given the current models we have for the system, but may be useful in describing others. This deals with 

the derivations of the typical landau physics and how they can be applied for any system, as opposed to 

the specific case of strain. 

For charged particles traveling within a magnetic field quantum mechanics dictates the nature of 

the classical cyclotron orbits. The quantum states exhibited by this system were first characterized by Lev 

Landau and have come to be known as Landau levels. In finding the quantum analog, we borrow the 

techniques of classical physics with operator formalism. Therefore the simplest starting point is a quantum 

analog to the Lagrangian. We write this as the following, additionally noting the Hamiltonian: 

  

𝓛 ≡∑
1

2
𝑚𝒙�̂�̇

2
+ 𝑞𝒙�̂�̇ �̂�𝒊

𝑖

 , �̂� ≡ ∑
1

2
𝑚𝒙�̂�̇

2

𝑖

 

Of course �̂��̇� is not a well-defined quantum operator, however we can obtain its form by noting 

that �̂�𝑖 = 𝜕𝓛/𝜕�̂��̇� where �̂�𝑖 is a quantum operator defined in the position representation as �̂�𝑖 ≡ − 𝕚ℏ
𝜕

𝜕𝑥𝑖
. 

Enacting this partial derivative we obtain: 

�̂�𝑖 =
𝜕𝓛

𝜕�̂��̇�
 ⇒  �̂�𝑖 = 𝑚𝒙�̂�̇ + 𝑞�̂�𝒊  ⇒  𝒙�̂�̇ =

�̂�𝑖 − 𝑞�̂�𝒊
𝑚
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We now choose to define a new operator 𝑚𝒙�̂�̇  as the canonical momentum �̂�𝑖 this results in the following 

Hamiltonian: 

�̂�𝑖 ≡ (�̂�𝑖 − 𝑞�̂�𝒊) , �̂� =
1

2𝑚
�⃑⃗⃗� ∙ �⃑⃗⃗� =

1

2𝑚
∑(�̂� − 𝑞�̂�)

𝑖

2

𝑖

 

We should note the Hamiltonian’s similarity to that of a free particle �̂�2/2𝑚 where �̂� has been 

replaced with the canonical momentum vector operator �⃑⃗⃗� which includes the effects of the magnetic field 

as represented through choice of a gauge potential �̂�. We also note that although displayed for clarity the 

summation is typically dropped for ease of notation. 

So far we have presented the material generally, however for demonstration we shall now work in 

a simplified case where we choose �̂� as based on a uniform �⃗⃑⃗� field in the z direction. This arbitrary choice 

is justified as any constant field direction can be recovered by simple rotation.  

�⃗⃑� =  (
0
0
𝐵0

) ⇒ ∇x𝐴 = (
0
0
𝐵0

) 

It should be said that the gauge field is not uniquely defined, as it is not a physical observable, 

and therefore can be chosen without altering the physics of the system. This choice of gauge will however 

impact the shape of degenerate eigenstates, because any configuration can be a sum of these 

wavefunctions with differing weights. We therefore wish to view our gauge choice as instead altering the 

commutivity of momentum operators with the overall Hamiltonian. Given that the gauge choice will alter 

the shape of the resulting solutions, we can use this to determine the best solutions to use in perturbation 

calculations where the B-field decays within a characteristic magnetic length.  

To begin with the simplest gauge representation we choose the Landau gauge which is linear in 

nature. In this gauge we have that: 

𝐴 = (
0
𝐵0𝑥
0
) , ∇x𝐴 =  𝑑𝑒𝑡 (

𝑖̂ 𝑗̂ �̂�
𝜕𝑥 𝜕𝑦 𝜕𝑧
0 𝐵0𝑥 0

) = (
0
0
𝐵0

) 

From here we can write out the Hamiltonian: 
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�̂� =
1

2𝑚
(�̂� − 𝑞�̂�)

2
=
1

2𝑚
(�̂�𝑥

2 + (�̂�𝑦 − 𝑞𝐵0𝒙)
2
) 

A1.2 Translation Operators 

 

In order to simplify our Hamiltonian further we now introduce another operator, the translation 

operator �̂�(�⃑�) this operator shifts the overall wavefunction by the vector �⃑�. Depending on our choice of 

geometry we will later find it useful to choose this vector along principal axes where we expect 

conservation. First though we work out relations involving this operator �̂�(�⃑�) and its action on a state 

𝜓(�⃑�). 

�̂�(�⃑�)|�⃑�⟩ ≡ |�⃑� + �⃑�⟩ 

Based on this we can define multiple properties that must hold: 

�̂�(0⃑⃗) = �̂�  ;  �̂�(�⃑� + �⃑⃗�) =  �̂�(�⃑�)�̂�(�⃑⃗�)  ;  �̂�−1(�⃑�) = �̂�(−�⃑�)  ;   �̂�†(�⃑�) = �̂�−1(�⃑�) 

Unpacking these relations we first note that a zero translation must be equal to the identity 

operator and return the original wavefunction since |�⃑� + 0⃑⃗⟩ =  |�⃑�⟩. We also have that two consecutive 

translations should be the same as applying their summation by the associative property of vectors; 

|�⃑� + (�⃑� + �⃑⃗�)⟩ =  |�⃑� + �⃑� + �⃑⃗�⟩. From this we immediately can derive the inverse as �̂�(−�⃑�) since the 

summation will return the zero vector. The last property comes from noting that �̂� is a unitary operator, 

meaning it has no impact on the magnitude of a wavefunction, hence we can write: 

 �̂�†(�⃑�) = �̂�(−�⃑�) ⇒ ⟨�⃑�|�̂�(�⃑�)|𝜓⟩ = ⟨�⃑� − �⃑�|𝜓⟩ 

�̂�(�⃑�)𝜓(�⃑�) ≡ 𝜓(�⃑� − �⃑�) 

We see that based on our simple definition the translation operator shifts the spatial electronic 

density in a fairly straightforward way. However we would prefer to have a formalization for this operator 

in terms of the operators available in the postulates of quantum mechanics. To remedy this we expand �̂�  

in a series of small translations 𝛿𝑎⃗⃗⃗⃗ ⃑: 
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�̂�(𝛿𝑎) = �̂�(0) + 𝛿𝑎
𝑑�̂�

𝑑𝑎
(0) + 𝕆(𝑎2) 

We will write the first term of this differential series as an operator in its own right �̂� =
𝑑�̂�

𝑑𝑎
(0) since this has 

no positional arguments we can write �̂� without any 𝑎 dependence. We separately use the definition of 

the derivative acting on �̂� at an arbitrary position 𝑎: 

𝑑�̂�

𝑑𝑎
(𝑎) = lim

𝜖→0

�̂�(𝑎 + 𝜖) − �̂�(𝑎)

𝜖
= lim
𝜖→0

(
�̂�(𝜖) − �̂�

𝜖
) �̂�(𝑎) = lim

𝜖→0
(
�̂�(𝜖 + 0) − �̂�(0)

𝜖
) �̂�(𝑎) = �̂� ∗ �̂�(𝑎)  

This provides us with simple differential equation for �̂� with exponential solutions: 

𝑑�̂�

𝑑𝑎
(𝑎) = �̂� ∗ �̂�(𝑎)  ⟹ �̂�(𝑎) = 𝑒𝑎�̂� 

However we don’t know the exact nature of the �̂� operator although we can see that this will be 

the generator of translations. To elucidate the action of �̂� further we look at its effect on an arbitrary 

spatial wavefunction with the addition of clever zero to rewrite the derivative on 𝑎 using the product rule: 

�̂�𝜓(𝑥) =
𝑑�̂�

𝑑𝑎
(𝑎)𝜓(𝑥)|

𝑎→0

=
𝑑�̂�

𝑑𝑎
(𝑎)𝜓(𝑥) + �̂�(𝑎)

𝑑

𝑑𝑎
(𝜓(𝑥))|

𝑎→0

=
𝑑

𝑑𝑎
(�̂�(𝑎)𝜓(𝑥))|

𝑎→0
 

Since we now have the translation operator acting directly (as opposed to its derivative) we can enact the 

operator on 𝜓(𝑥): 

𝑑

𝑑𝑎
(�̂�(𝑎)𝜓(𝑥))|

𝑎→0
=
𝑑

𝑑𝑎
(𝜓(𝑥 + 𝑎))|

𝑎→0
= 𝜓′(𝑥) 

We’ve taken the spatial derivative along 𝑎 but we just as easily could have taken this along 𝑥 as a 

rephrasing of the terms in the definition of the derivative: 

𝑑

𝑑𝑎
(𝜓(𝑥 + 𝑎)) = lim

𝜖→0 

𝜓(𝑥 + 𝑎 + 𝜖) − 𝜓(𝑥 + 𝑎)

𝜖
=
𝑑

𝑑𝑥
(𝜓(𝑥 + 𝑎)) 

Hence we have that the operator �̂� is related to the (canonical) momentum operator, which also 

takes the form of a derivative in a spatial basis: 
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�̂� =
𝕚

ℏ
�̂�  ⇒  �̂�(�⃑�) = 𝑒

𝕚
ℏ
(�⃗⃑�∙�̂�)

 

We have now vectorized this operator noting that �⃑� is dotted into the momentum vector operator. 

�⃗⃑⃗� = {�̂�𝒙, �̂�𝒚, �̂�𝒛} 

We note that because of our derivative 𝑑/𝑑𝑥 actually referring to �̂� we have a more general form of �̂� 

where we must add back the gauge term. (This will be useful in the symmetric case when the gauge is 

non-zero in both x and y) 

�̂� =
𝕚

ℏ
(�̂� + 𝑞�̂�) 

Our transgression with translation operators is nearly complete, lastly we note the effect it has on 

functions of spatial operators. We have that: 

[𝒙, �̂�(𝑎)]|𝑥⟩ = (𝒙 �̂�(𝑎) − �̂�(𝑎) 𝒙) |𝑥⟩ = (𝑥 + 𝑎 − 𝑥) |𝑥 + 𝑎⟩ = 𝑎�̂�(𝑎)|𝑥⟩  

Utilizing this commutation we have that: 

�̂�†(�⃑�)𝒙�̂�(�⃑�) = �̂�†(�⃑�) (�̂�(𝑎)𝒙 + 𝑎�̂�(𝑎)) = 𝒙 + 𝑎�̂� 

As a more general statement we can now write out for any function of 𝒙 (such as our Hamiltonian): 

�̂�†(�⃑�)𝑓(𝒙)�̂�(�⃑�) = 𝑓(𝒙 + 𝑎�̂�) 

A1.3 Linear Solution 

 

Let us return to the magnetic field problem at hand, before our interlude we had that: 

�̂� =
1

2𝑚
(�̂� − 𝑞�̂�)

2
=
1

2𝑚
(�̂�𝑥

2 + (�̂�𝑦 − 𝑞𝐵0𝒙)
2
) 

We see that this Hamiltonian commutes with the momentum operator �̂�𝑦 because there are no instances 

of �̂�. Therefore we know that eigenstates of this Hamiltonian are also eigenstates of �̂�𝑦. Therefore we can 

conclude that this wavefunction will have a measurable y momenta and our wavefunction will be 
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separable along the axes. As an added benefit this means that 𝑘𝑦, the eigenstate of momentum, will be a 

good quantum number for our energy state wavefunctions.  

[�̂�𝑦 , �̂�] = 0 ⇒  [�̂�𝑦(𝑎), �̂�] = 0  �̂�𝑦|𝜓𝐸⟩ = ℏ𝑘𝑦|𝜓𝐸⟩ 

Using the simultaneous diagonizability of �̂� and �̂�𝑦 we write the wavefunction as a joint state of both 

energy and y-axis momentum, |𝜓𝐸,𝑘𝑦⟩. In this representation all �̂�𝑦 operators simply act on the 

wavefunction to replace all values of  �̂�𝑦 with their eigenvalue ℏ𝑘𝑦 further simplifying our Hamiltonian: 

�̂� =
1

2𝑚
(�̂�𝑥

2 + (ℏ𝑘𝑦 − 𝑞𝐵0𝒙)
2
) 

Since 𝑘𝑦 is a constant (of degeneracy) we have effectively reduced this to an offset one dimensional 

harmonic oscillator (H.O.) equation. To condense equation into a typical H.O. form this we write out the 

angular frequency as 𝜔𝐶 =
𝑞𝐵

𝑚
 , which unsurprisingly is just the classical cyclotron frequency.  

�̂� = (
�̂�𝑥
2

2𝑚
+
1

2
𝑚𝜔𝐶

2 (𝒙 −
ℏ𝑘𝑦

𝑚𝜔𝐶
)

2

) 

Given that we have separated y from our Hamiltonian we can use a convenient conversion of coordinates 

using translation operators. We start from the set of harmonic oscillator wave functions centered around 

the origin: 

�̂�(𝒙, �̂�𝒙)  = (
�̂�𝑥
2

2𝑚
+
1

2
𝑚𝜔𝐶

2(𝒙)2) ;  𝜙𝐸𝑛(𝑥) =
𝜋−

1
4

√2𝑛𝑛!
𝑒−

𝑥2

2 𝐻𝑛(𝑥) 

With 𝐻𝑛(𝑥) being given by the physicists Hermite polynomials. These fit into an energy eigen-equation, 

where the expectation of the energy is given as: 

𝐸𝑛 = ⟨𝜙𝑛(𝑥)|�̂�(𝒙, �̂�𝒙)|𝜙𝑛(𝑥)⟩ 

Now inserting a set of specially chosen translation operators (and their inverses) we have that: 

𝐸𝑛 = ⟨𝜙𝑛(𝑥)|�̂� (−
ℏ𝑘𝑦
𝑚𝜔𝐶

) �̂�† (−
ℏ𝑘𝑦
𝑚𝜔𝐶

) �̂�(𝒙, �̂�𝒙) �̂� (−
ℏ𝑘𝑦
𝑚𝜔𝐶

) �̂�† (−
ℏ𝑘𝑦
𝑚𝜔𝐶

) |𝜙𝑛(𝑥)⟩ 
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𝐸𝑛 = ⟨𝜙𝑛(𝑥 +
ℏ𝑘𝑦
𝑚𝜔𝐶

)| �̂�(𝒙 −
ℏ𝑘𝑦
𝑚𝜔𝐶

�̂�, �̂�𝒙) |𝜙𝑛(𝑥 +
ℏ𝑘𝑦
𝑚𝜔𝐶

)⟩ 

This is the exact form of our magnetic Hamiltonian. So we can extract the same energy eigenvalues and 

wavefunctions with a quick change of basis. Given that �̂� = 𝒙  −
ℏ𝑘𝑦

𝑚𝜔𝐶
�̂�, with eigenkets of 𝜉 = 𝑥 +

ℏ𝑘𝑦

𝑚𝜔𝐶
 we 

can recover eigenvalues of 𝒙. We also note that translation operators leave momentum unchanged such 

that �̂�𝝃 = �̂�𝒙. Another minor point is that shifts along 𝑥 due to 𝑘𝑦 have the opposite sign within the 

Hamiltonian to that of their eigenvalue, this ensures the correct position for the translated density. A fact 

that becomes relevant later when relating to symmetric gauge (or from an orbit “perspective” this line 

density is just an infinitely elongated ellipse).  

𝐸 = ℏ𝜔𝐶 (𝑛 +
1

2
) , 𝜓𝐸𝑛,𝑘𝑦 (𝑥 +

ℏ𝑘𝑦

𝑚𝜔𝐶
, 𝑦) =  𝜓𝑘𝑦(𝑦) ∗ 𝜙𝐸𝑛(𝜉) =

𝜋−
1
4

√2𝑛𝑛!
𝑒−

𝜉2

2
+𝕚(𝑘𝑦)𝑦𝐻𝑛(𝜉) 

Here the x-axis is governed by the physicists Hermite polynomials 𝐻𝑛 and the y axis is a free particle with 

well-defined momentum. We plot the first few wavefunctions noting that the degeneracy only changes the 

position along the x axis (as expected through choice of 𝑘𝑦): 

When represented through the Landau gauge, solutions lie parallel with a linear axis. Therefore 

this gauge should be chosen for perturbation calculations where the B-field takes constant values along a 

line and variations only occur along a perpendicular direction. We find this geometry to match well with a 

linear strain profile due to fringing of the field on the sides of a parallel channel.  

|𝜓0|
2 |𝜓2|

2 |𝜓4|
2 

Figure A1.1: The First Few Linear Landau Wavefunctions 

A few of the wavefuncitons that occur for a Landau system in linear gauge a) 0th state b) 2nd state c) 4th state 

 

a) b) c) 
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A1.4 Symmetric Gauge 

 

We now choose to represent our B-field in a symmetric gauge. In this gauge we have that A 

varies along both the x and y axes as follows: 

𝐴 =
1

2
(
−𝐵0𝑦
𝐵0𝑥
0

) , ∇x𝐴 =  𝑑𝑒𝑡

(

 

𝑖̂ 𝑗̂ �̂�

𝜕𝑥 𝜕𝑦 𝜕𝑧
−𝐵0𝑦

2

𝐵0𝑥

2
0)

 = (
0
0
𝐵0

) 

Using this gauge we need a more complicated Hamiltonian due to the presence of components along 

both axes: 

�̂� =
1

2𝑚
(�̂� − 𝑞�̂�)

2
=
1

2𝑚
((�̂�𝑥 +

𝑞𝐵0
2
�̂�)

2

+ (�̂�𝑦 −
𝑞𝐵0
2
𝒙)

2

) 

However with a clever commutator trick we can factorize this as a harmonic oscillator just as we 

saw in the linear case. To start to tackle this we write out the general form of the commutator [�̂�𝑥 , �̂�𝑦]   

[�̂�𝑥, �̂�𝑦] =  �̂�𝑥�̂�𝑦 − �̂�𝑦�̂�𝑥 = [(�̂�𝑥 − 𝑞𝐴𝑥(𝒙, �̂�)), (�̂�𝑦 − 𝑞𝐴𝑦(𝒙, �̂�))] 

Simplifing this further using commutator relations we must now calculate the following commutations: 

[�̂�𝑥, �̂�𝑦] = [�̂�𝑥, �̂�𝑦] − 𝑞[�̂�𝑥, 𝐴𝑦(𝒙, �̂�)] + 𝑞[�̂�𝑦, 𝐴𝑥(𝒙, �̂�)] + 𝑞
2[𝐴𝑥(𝒙, �̂�), 𝐴𝑦(𝒙, �̂�)] 

We see that the first and last terms vanish because the spatial axes are independent of one 

another. The middle terms however do not commute with one another in general because each A field 

can contain position operators along all axes. We have additionally reversed the order of the [𝐴𝑥(𝒙, �̂�), �̂�𝑦] 

commutator so that it takes the same form as the x-axis commutation with an additional negative sign.  

Due to the formalism of momentum operators in the position representation �̂�𝑥 = − 𝕚ℏ𝜕𝑥 it is 

easy enough to prove that the commutator of momentum  �̂�𝑥 with a general function of position operators 

𝑓(𝒙, �̂�). Our result will simply return the application of a partial derivative. This is best understood by using 

the chain rule through application to an arbitrary wavefunction:  
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[�̂�𝑥, 𝑓(𝒙, �̂�)] 𝜓 = (�̂�𝑥 𝑓(𝒙, �̂�) − 𝑓(𝒙, �̂�) �̂�𝑥) 𝜓 = − 𝕚ℏ (
𝜕

𝜕𝑥
(𝑓(𝒙, �̂�) ∗ 𝜓) − 𝑓(𝒙, �̂�)

𝜕

𝜕𝑥
(𝜓)) 

Working out the derivatives we obtain the following: 

[�̂�𝑥, 𝑓(𝒙, �̂�)] 𝜓 =  − 𝕚ℏ (
𝜕

𝜕𝑥
(𝑓(𝒙, �̂�)) ∗ 𝜓 + 𝑓(𝒙, �̂�)

𝜕

𝜕𝑥
(𝜓) − 𝑓(𝒙, �̂�)

𝜕

𝜕𝑥
(𝜓) ) 

Dropping 𝜓 we have that: 

[�̂�𝑥, 𝑓(𝒙, �̂�)] = − 𝕚ℏ
𝜕

𝜕𝑥
(𝑓(𝒙, �̂�)) 

Hence we can now write out the commutator of canonical momentum [�̂�𝑥 , �̂�𝑦] as: 

[�̂�𝑥, �̂�𝑦] = [�̂�𝑥, 𝐴𝑦(𝒙, �̂�)] − [�̂�𝑦, 𝐴𝑥(𝒙, �̂�)] =  𝕚ℏ𝑞 (
𝜕

𝜕𝑥
(𝐴𝑦(𝒙, �̂�)) −

𝜕

𝜕𝑦
(𝐴𝑥(𝒙, �̂�))) =  𝕚ℏ𝑞(∇x�⃑⃗⃗�)𝑧 

Or more concisely using the definition of the B-field 

[�̂�𝑥 , �̂�𝑦] =  𝕚ℏ𝑞𝐵𝑧(𝒙, �̂�) 

We have calculated this generally because it will become useful for perturbation calculations, however in 

the case of a uniform symmetric gauge this reduces further to the following: 

[�̂�𝑥 , �̂�𝑦] = 𝕚ℏ𝑞𝐵0 = 𝕚ℏ𝑚𝜔 

With knowledge of the final solution we again condense the B field into an angular frequency =
𝑞𝐵0

𝑚
 , 

based on the classical cyclotron orbit. From here we are able to factorize the Hamiltonian to collect terms 

in the form of a harmonic oscillator.  

�̂� =
1

2𝑚
(�̂�𝑥

2 + �̂�𝑦
2) =

1

2𝑚
((�̂�𝑥 −  𝕚�̂�𝑦)(�̂�𝑥 +  𝕚�̂�𝑦) − 𝕚[�̂�𝑥, �̂�𝑦]) 

Upon factorization we pick up an additional commutator term which is necessary to cancel the cross 

terms arising from the multiplication of the canonical momentums. We plug in the definition of this 

commutator as calculated above. 
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�̂� =
1

2𝑚
(�̂�𝑥

2 + �̂�𝑦
2) =

1

2𝑚
((�̂�𝑥 −  𝕚�̂�𝑦)(�̂�𝑥 +  𝕚�̂�𝑦) + ℏ𝑚𝜔) 

Proceeding we look at the commutation relation of our factorized operators 

[(�̂�𝑥 +  𝕚�̂�𝑦), (�̂�𝑥 −  𝕚�̂�𝑦)] = [�̂�𝑦 , �̂�𝑦] − 𝕚[�̂�𝑥, �̂�𝑦] + 𝕚[�̂�𝑦, �̂�𝑥] + [�̂�𝑥 , �̂�𝑥] = −2𝕚[�̂�𝑥, �̂�𝑦] = 2ℏ𝑚𝜔 

Because this commutator results in a constant we can redefine the operators in a characteristic 

raising/lowering operator form, as is common to all quantum harmonic oscillators: 

�̂�† ≡ √
1

2ℏ𝑚𝜔
(�̂�𝑥 −  𝕚�̂�𝑦) , �̂� ≡ √

1

2ℏ𝑚𝜔
(�̂�𝑥 +  𝕚�̂�𝑦) 

Where now we have that [�̂�†, �̂�] = 1, rearranging constants we have converted our symmetric gauge to a 

harmonic form. 

�̂� =
1

2𝑚
(2ℏ𝑚𝜔 ∗ �̂�†�̂� + ℏ𝑚𝜔) = ℏ𝜔 (�̂�†�̂� +

1

2
) 

A1.5 Angular Momentum and Degeneracy 

 

Earlier we noted that our choice of gauge field �̂� will effectively choose the quantum number of 

degeneracy. Since the Hamiltonian has both 𝒙 and �̂� dependence we must look for a momentum that 

treats them symmetrically to fit our choice of gauge. Therefore following further analysis we will find that 

the good quantum number will be eigenstates of the �̂�𝒛 operator where �̂�𝒛 ≡ 𝒙 �̂�𝑦 − �̂� �̂�𝑥. 

To understand this more generally however we must return to the Lagrangian as represented by quantum 

operators and calculate the operator of total angular momentum  �̂�. As is apparent from classical 

mechanics we have that the total angular momentum is �̂� ≡ ∑
𝜕𝓛

𝜕𝜃�̇�
𝑖 . Since we are working in cylindrical 

coordinates, we only have one angular derivative to enact namely: 

𝜕

𝜕�̇�
≡ −𝑦

𝜕

𝜕�̇�
+ 𝑥

𝜕

𝜕�̇�
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𝓛 ≡∑
1

2
𝑚𝒙�̂�̇

2
+ 𝑞𝒙�̂�̇ �̂�𝒊

𝑖

 ⇒
𝜕𝓛

𝜕�̇�
=  −�̂�(𝑚�̇� + 𝑞�̂�𝒙) + 𝒙(𝑚�̇̂� + 𝑞�̂�𝒚) 

More succinctly we have that: 

�̂� =  𝒙 �̂�𝒚 − �̂� �̂�𝒙 +  𝑞𝒙�̂�𝒚 − 𝑞�̂��̂�𝒙 

Although it will be simpler to use the canonical form for �̂� as given above we can use our definition of �̂�𝒊 to 

recover some physical intuition for this system: 

�̂� =  𝒙 �̂�𝑦 − �̂� �̂�𝑥 − 𝑞𝒙�̂�𝒚 + 𝑞�̂��̂�𝒙 + 𝑞𝒙�̂�𝒚 − 𝑞�̂��̂�𝒙 = �̂�𝒛 

Working cylindrical coordinates does imposes a caveat, but as long as the particle is confined to a plane 

we see that the canonical form will always reduce to �̂�𝒛 regardless of our choice of gauge field. We expect 

this type of dependence because �̂� is a physical observable and therefore cannot depend on �̂�.  We note 

that more generally, without choice of coordinates, we expect �̂� to be an arbitrary function of all �̂�𝒊 

operators. Since we have chosen a gauge earlier in the symmetric problem we insert that into the 

canonical �̂� now: 

�̂� =  𝒙 �̂�𝒚 − �̂� �̂�𝒙 +
𝑞𝐵0
2
(𝒙2 + �̂�2) 

With the ability to measure the angular momentum (knowing that it is conserved) we also need to devise 

a way to change the angular state. Looking back to the linear problem for inspiration we can make an 

educated choice by looking at the generators of spatial translation. These come to us in the form of 

magnetic translation operators. These translations must depend on the canonical momentum �̂� as 

opposed to �̂� directly (where previously our gauge reduced �̂�𝒙 to �̂�𝒙), a side effect of their derivation. We 

have that these generators are instead (without prefactors): 

�̂� = �̂� + �̂�(𝒙, �̂�) 

In symmetric gauge these become: 

�̂�𝒙 = �̂�𝒙 −
𝑞𝐵0
2
�̂� , �̂�𝒚 = �̂�𝒚 +

𝑞𝐵0
2
𝒙 
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We look for a simple relation between these translation generators and the Hamiltonian. Since these look 

like the canonical momenta but with the opposite sign of 𝐵0 we write out a “Hamiltonian-like” equation: 

�̂�𝒙
𝟐 + �̂�𝒚

𝟐

2𝑚
=
1

2𝑚
((�̂�𝒙 −

𝑞𝐵0
2
�̂� )

𝟐

+ (�̂�𝒚 +
𝑞𝐵0
2
𝒙 )

𝟐

) 

Substituting in �̂�𝒙 = �̂�𝒙 −
𝑞𝐵0

2
�̂� and �̂�𝒚 = �̂�𝒚 +

𝑞𝐵0

2
�̂� we can further write this as: 

�̂�𝒙
𝟐 + �̂�𝒚

𝟐

2𝑚
=
1

2𝑚
((�̂�𝒙 − 𝑞𝐵0�̂� )

𝟐 + (�̂�𝒚 + 𝑞𝐵0𝒙 )
𝟐
) 

=
1

2𝑚
(�̂�𝒙

2 + �̂�𝒚
2 + 2𝑞𝐵0 (�̂�𝒚𝒙 − �̂�𝒙�̂� +

𝑞𝐵0
2
(𝒙𝟐 + �̂�𝟐))) 

But using our definition for the angular momentum in this gauge we see this reduces to: 

�̂�𝒙
𝟐 + �̂�𝒚

𝟐

2𝑚
=
1

2𝑚
(�̂�𝒙

2 + �̂�𝒚
2) + 𝜔�̂� = �̂� + 𝜔�̂� 

Our choice of starting equation has naturally developed an interesting relationship between our 

translation generators, energy and the angular momentum. Following a similar treatment to our 

Hamiltonian let us look for a raising/lowering form. First let us calculate the commutators of [�̂�𝒙, �̂�𝒚]: 

[�̂�𝒙, �̂�𝒚] = [�̂�𝒙 + 𝒒�̂�𝒙, �̂�𝒚 + 𝒒�̂�𝒚] = [�̂�𝒙, �̂�𝒚] + [�̂�𝒙, 𝒒�̂�𝒚] − [�̂�𝒚, 𝒒�̂�𝒙] + [𝒒�̂�𝒙, 𝒒�̂�𝒚] 

[�̂�𝒙, 𝒒�̂�𝒚] − [�̂�𝒚, 𝒒�̂�𝒙] = −𝕚ℏ𝑚𝜔 

We end up seeing that these operators form their own harmonic oscillator equation and are simply the 

angular momentum raising and lowering operators: 

�̂�† ≡ √
1

2ℏ𝑚𝜔
(�̂�𝑥 −  𝕚�̂�𝑦) , �̂� ≡ √

1

2ℏ𝑚𝜔
(�̂�𝑥 +  𝕚�̂�𝑦) 

A1.6 Symmetric Gauge Solutions 
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We now have a new formulation for energy using �̂� and the angular momentum raising and lowering 

operators: 

�̂� = ℏ𝜔 (�̂�†�̂� +
1

2
) − 𝜔�̂� 

And since �̂�†commutes with this Hamiltonian we see that changing the angular momentum has no effect 

on the energy. Therefore in this gauge our Landau levels look like the following: 

 

 

 

 

 

 

 

 

 

 

As a result of this appendix, we can create a method for dealing with strain fields, the most 

apparent connection being a strong correlation with the harmonic oscillators which are observed in 

experiment. Results this direction are as of yet inconclusive however the background understanding will 

help press future works regarding the connections between strain, tight binding and Landau levels in TMD 

materials.   

  

𝑛 = 0 

𝑛 = 1 

Figure A1.2: Landau Levels in Symmetric Gauge 

a) The 0th state of the Landau system in symmetric gauge b) The 1st energetic state of the symmetric gauge c) A three 

dimensional plot of the first four landau confinement levels 

 

a) 

b) 

c) 



110 
 
 

Appendix A2 : Distortion Detection Algorithm 

Distortion Detection Algorithm 

A2.1 Phase Matching a Lattice in 1D 

 

We will show an easy way to define the phase match of the system with a single variable, M[ϕ]=

 

 

Figure A2.1: Beat Frequency of Two Cosine Waves 

The phase difference between the two waves above can be represented using the function M[ϕ] 

noting how this this function behaves under varying phase conditions. We first comment that M[ϕ] is a 

sliding integrand, testing the phase matching for a single period of a wave at a specified position. 

Therefore if we understand how a single period behaves it will give us an understanding for all of space. 

Here we present some special cases: 

  = 1,    = -1,    = 0 

Here F[θ] is a basic sine or cosine with period (2Pi)/k. We have that when F[θ] is in perfect phase 

our integrand M[ϕ] is identically 1, out of phase -1, and for a 90 degree shift M = 0. 

Therefore for the wave above we simply compute the functional using M[ϕ] as our metric for the 

corresponding phase shifts as a function of space. 
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Figure A2.2: Phase Difference between Two Cosines with a Beat Frequency 

This returns exactly what we expect when the waves are synchronized we return 1 (at roughly 0 

and 2π) and when perfectly mismatched -1 (at roughly π). Because this represents the phase 

mismatching of two waves occurring with a beat frequency we also extract that the region plotted is a 

single period of the resulting beat between our competing waves. Additionally we note that the smaller 

ripples seen in our phase match arise from the fact that our two waves never perfectly match one another 

beacuse there is no point  over a full period where F[k*x]=F[(k+1)*x] indentically. 

A2.2 Phase Matching a 1D Soliton 

 

Now we calculate the consequences for the phase difference arising from a 1D soliton. Consider 

a waveform that changes in a piecewise fashion such that it’s position and derivatives match at the 

stitching point. When we suture these waveforms together we form a function as follows, and we apply 

our phase match procedure: 

 

Figure A2.3: Phase Signature of a 1D Soliton 
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We see exactly now that over the soliton length scale the phase mismatches, then returns to perfectly 

phase matched. We additionally can create a partial solition (creating a 2π/(k+1) phase difference) and 

see the effects:  

 

Figure A2.4: Phase Signature of a Partial Soliton 

Because after the soliton we return to a wave with a phase mismatch from the original, the phase 

metric we’ve created M[ϕ] detects the change by returning a value other than 1. This soliton has caused a 

lattice mismatch of 2π/(k+1) which we graphically indicate below: 

 

Figure A2.5: Graphical Representation of Phase Mismatch after Partial Soliton 

As an additional note we observe Gibbs phenomenon due the discontinuity we introduced into our 

waveform. This an expected result arising in any Fourier technique, hence our phase matching metric will 

overshoot if it encounters a feature that causes a discrete change in periodicity.  
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Figure A2.6: Gibb's Phenomenon Occurring in Phase Signature 

A2.3 Phase Matching in 2D Using a Square Lattice 

 

Now we need a way to generalize this procedure into higher dimensions. Unlike the 1D case we 

need a spatial wave in two dimensions. This requires us to create a periodic lattice with a simple wave 

representation of two components {x,y}. Therefore as is typical with lattices, we can write out principle 

vectors, which in the ideal case are seperable. Separating variables however requires our vectors to be 

orthogonal confining us to rectrangular geometries. For a square lattice we additionally know that the 

principle vectors should also have the same magnitude hence, we write vectors a = {1,0} , b = {0,1} which 

are orthonormal. This lets us fomulate our lattice as the sum of trigonometric functions, with additional 

parameter k for periodicity and ϕ for lattice rotation: 

 

Figure A2.7: A Perfect 2D Square Lattice 
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Our integrand now must become an area integral over the region we wish to phase match, M[x,y] 

=  ∯  F[ξ,ψ] G[ξ,ψ] dξ dψ . However this doesn’t come without additional complications we must ensure 

that the area we integrate over contains a single periodicity in each direction. Therefore we must search 

for the smallest possible region which satisfies this constraint: 

  

Here a slice along the x and y directions shows that we contain a single full period of a cosine 

wave, A+B*Cos[kx] hence this is the smallest acceptable integration region. 

We find that the the smallest possible area in the case of our square lattice is simply a square which goes 

from -Pi/k to Pi/k along both axes, hence we have M[x,y] =    

This inegration area comes with a few stipulations:  

     1. The integration remains consistent for all translations of the lattice represented by F[x,y] 

     2. Rotations require an additional rotation of the integration area 

     3. For latticies with different periodicty along the x and y axes the periodicity k must be scaled with the 

given direction {kx, ky} 

 Now we demonstrate proof of the statements given above: 
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Figure A2.8: Integration Region with a Complete Period of the 2D Cosine Lattice 
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Figure A2.9: Incomplete Period for Un-rotated Integration Region 

For a translation, we see that over the same region presented we still contain a single waveform, 

although it is not in an exact sine or cosine phase. Within our region however this has no impact on the 

resulting integral. Hence we have that for any arbitrary translation of the lattice our integration region 

remains accurate.  As a corolary, this is the same as noting that F[x,y] matches itself for all of space.  

       M[x,y] =   = 1 , for any choice of {x,y} 

 We now use this translational property to show that for a rotated lattice the same integration region is not 

adequate: 

 

Figure A2.10: Demonstration of a New Complete Integration Region 

Above we present the previous integration region for a π/4 (45 degree) shifted lattice. We can 

see that along the x and y axis the periodicity now matches the diagonal of our original lattice. Hence we 

must choose a different region for integration to contain a full period. While it is acceptable to increase the 

size of the region to match the rotated size (extending to the red dashed curves) it will not the smallest 
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indivisible region of choice. Therefore we perform a rotation on our integration region as follows. Now we 

see that for any slice along our new integration variables, as represented by the sliding red line, we have 

a single period of the waveform as in the un-rotated case. Therefore in the original Cartesian coordinates 

we find that our second integrand now is dependent on the limits defined for the first. For the π/4 rotation 

our integrand is now: 

     M[x,y] =  +  = 

1 

For a general rotation therefore we must describe our region with 3 piecewise integrations. Lastly 

we turn our attention to the third point, looking at a rectangular region with two periodicities For the 

rectangular boxed region we find that our phase match integrand is correct, along each integration axis 

we contain a full period of the lattice, despite kx and ky being different. The only major change is in the 

integration limits and the normalization factor. We now must normalize by the boxed region (kx/Pi)*(ky/Pi) 

A2.4 Phase Matching a 2D Square Soliton 

 

To prove the effectiveness of our phase match metric M[x,y] we create an artificial soliton for detection: 

 

Figure A2.11: Square Lattice with Inclusion of Soliton 

Using our phase metric we determine that the soliton creates a phase slip along a single axis, this 
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corresponds to a 180 phase shift along the x-axis while perfectly matched along y. Hence we see that our 

metric averages these correponding to M[x,y] = 0. If we instead had a slip along both axes this would 

correspond with M[x,y] = -1. 

  

Figure A2.12: Lattice Integration Used to Detect Distortion 

 

A2.5 Phase Matching a 2D Hexagonal Lattice  

To exactly match the experiment we must now write a phase match procedure for a hexagonal 

lattice. The implicit complication lies in separating the three vectors that describe our space; now the third 

lattice vector is linearly dependent on the principle two we use to define our axes. Dealing with this 

problem we write instead three principle directions and attempt to classify them instead using their 

symmetries to our advantage.  

 

Figure A2.13: A Pristine Hexagonal Lattice 

Now that we have a lattice what is the smallest indivisible area that we can phase match, while keeping 

all directions equivalent? 
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Figure A2.14: Intuitive Choices for Integration Region 

The area to integrate over looks slightly counter intuitive and is represented by the solid red 

region. Perhaps we could take a smaller slice just around the atom (in dashed yellow)? This however is 

not a complete phase of the lattice waveform. We demonstrate this by taking a slice along the y axis, 

where our choice becomes much more apparent: 

 

Figure A2.15: Demonstration of Correct Integration for Full Period 

If we chose the yellow region only we would end up neglecting contributions from the bridge 

between neighboring atoms. This causes complications when translating the integration area. Our red 

region provides the desired result, equivalence between three lattice directions and an integration region 
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which is invariant under translation. As is apparent by symmetry each direction is composed of an 

identical set of waveforms. We also note that there are regions which are only accessible to a single 

lattice vector, these were the regions that were omitted in our smaller integration region. From the 

perspective where we omit the third vector (as dependent) these are only accessible to the difference 

vector between the two remaining lattice directions. Before moving on to the hexagonal soliton we simply 

note that the three proofs we gave earlier still hold for this lattice:  

     1) Invariance to Translation 

     2) Lattice Rotation = Integration Region Rotation 

     3) Deformation = Integration Region Deformation 

A2.6 Phase Matching a 2D Hexagonal Soliton 

Let’s create a strained lattice by deforming along the x-axis, now we’ll stitch this into a normal 

lattice to create a soliton structure 

 

Figure A2.16: Generated Hexagonal Linear Soliton 

Completing our calculation, we now apply our phase match metric M[x,y] to our hexagonal soliton.  
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Figure A2.17: Distortion Analysis of Generated Hexagonal Soliton 

This results in a somewhat different pattern than in the case of the square lattice. We see that the 

addition of dependent vectors lends phase structure to the inside of the soliton. This looks much more like 

a moire pattern confined to the soliton itself, corresponding with variations from the other principle vectors 

also share the x-axis as a component.  

A2.7 Discrete Matching a Soliton –Y Junction 

A soliton junction entails a much more interesting system however these have no simple analytical form. 

Our objective therefore is to transform our continous equations into a discrete numeric form (with 

additional use for parsing data). We start by simply producing the soliton lattice from vectorized positions 

of atomic centers. 

 

Figure A2.18: Generated Discrete Triangular Lattice 

Start a Perfect Lattice (for proof of principle): 
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Figure A2.19: Generated Full MoSe2 Lattice 

A single soliton junction, where we show the first two layers, top (blue) with soliton and bottom (red) 

without soliton. This is as we would expect on the crystal itself: 

 

 

Figure A2.20: Soliton Junction Discrete Model 

Now let’s turn this into something that we can sample for a pixel density, as opposed to a discrete list of 

points. We’ll try putting a gaussian at the center of each atomic position: 
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Figure A2.21: Comparison of Soliton Model and Perfect Lattice 

For the perfect lattice we have no need to compromise so we can use a waveform to describe it over all 

space. Now we discretize the integration area. 

 

Figure A2.22: Discretized Integration Filter for Lattice Distortion Measurements 

With even as low as 10 pixels from atom to atom the accuracy of the phase match metric M is ± 0.025. 

This is acceptable error for the phase we wish to detect (difference between 0 and 1). Now we need to 

sweep the integration area over all of the space containing the soliton junction. Presto, we have a phase 

matched junction: 
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Figure A2.23: Distortion Map of a Junciton and Linear Soliton 

 


