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Abstract 

Unbiased Expression Profiling Identifies A Novel Notch Signaling 

Target Rnd1 As Regulator Of Angiogenesis 
 

Jing Du 

 

Notch signaling controls normal and pathological angiogenesis through transcriptional 

regulation of a wide network of target genes. Despite intensive studies of the endothelial 

Notch function, a comprehensive list of Notch-regulated genes, especially direct 

transcriptional targets, has not been assembled in endothelial cells (ECs). Here we 

uncovered novel EC Notch targets that are rapidly regulated by Notch signaling using 

several unbiased in vivo and in vitro screening approaches that captured genes regulated 

within 6 hours or less of Notch signal activation. We used a gamma-secretase inhibitor in 

neonates to profile Notch targets in the brain endothelium using the RiboTag technique, 

allowing for isolation of endothelial specific mRNA from a complex tissue without 

disrupting cell-cell contact. We used two types of primary cultured endothelial cells to 

define ligand-specific Notch targets by tethered-ligand stimulation. The identified Notch 

targets were validated by determining their regulation within one to two hours of EGTA-

mediated Notch activation. By comparing significantly regulated genes in each of the 

screens, we assembled a comprehensive database of potential Notch targets in endothelial 

cells. Of particular interest, we uncovered G protein pathway related genes as potential 

novel Notch targets. We focused on a novel candidate target passing selection criteria after 

all screens, a small GTPase RND1. 



 

 

 

 

RND1(Rho GTPase1) regulates cytoskeleton arrangement through Rho and Ras signaling. 

RND1 was validated as an endothelial Notch target in multiple endothelial cell types. In 

Human Umbilical Vein Endothelial Cells (HUVECs) we established angiogenic activity 

for RND1 that included regulation of cell migration towards VEGF and function in 

sprouting angiogenesis. We established that Notch and RND1 suppressed Ras activation 

but had no effects on Rho activation in HUVECs. These results demonstrate that RND1 

expression is regulated by Notch signaling in endothelium and suggest that RND1 

functions downstream of Notch in sprouting angiogenesis, revealing an unexplored role of 

endothelial Notch in regulating G protein pathways. 
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Chapter 1 Introduction 

 

1.1 Angiogenesis 

 

1.1.1 Mechanisms of blood vessel growth 

 

The circulatory system develops by two distinct processes: vasculogenesis and 

angiogenesis. Vasculogenesis refers to the de novo formation of blood vessels, which 

occurs during early embryonic development when endothelial precursors differentiate and 

assemble into a primitive vascular labyrinth of small capillaries (Risau & Flamme, 1995). 

The vascular plexus then expands through a process referred to as angiogenesis and 

remodels into a highly organized vascular network composed of arteries, capillaries, and 

veins (Udan, Culver, & Dickinson, 2013). Angiogenesis is initiated when endothelial cells 

lining formed vessels are activated by pro-angiogenic signals. Local degradation of 

extracellular matrix allows “budding” of the activated endothelial cells from the existing 

vessels. These budding cells, called tip cells, lead new angiogenic sprouts and probe the 

environment for guidance cues. Following tip cells, stalk cells undergo proliferation and 

lumenization to support elongation of the angiogenic sprouts. Finally, the sprouts recruit 

mural cells such as pericytes and vascular smooth muscle cells, which serve to stabilize 

the newly formed vessel. This establishes a vascular network capable of delivering 

nutrients and oxygen through blood flow. 
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1.1.2 Anti-angiogenic therapy  

 

Angiogenesis plays important role not only in mammalian embryogenesis, but also in 

physiological blood vessel formation after birth such as in menstrual cycle, pregnancy and 

wound healing(Carmeliet, 2003; Zygmunt, Herr, Munstedt, Lang, & Liang, 2003). 

Moreover, angiogenesis plays an important pathological role in diseases such as tumor 

growth, tumor metastasis, and retinopathies, which has stimulated intensive studies in anti-

angiogenic therapy over the past decades(Mittal, Ebos, & Rini, 2014). Though there are a 

growing numbers of anti-angiogenic drugs, current anti-angiogenic therapies are often 

accompanied by side effects and drug resistance(Potente, Gerhardt, & Carmeliet, 2011). 

Development of improved anti-angiogenic therapies requires a deeper understanding of 

the molecular mechanisms controlling angiogenesis, identification of novel targets, and 

advances in new technologies. 

 

1.2 Notch signaling pathway 

 

1.2.1 Overview of the Notch signaling pathway 

 

Notch signaling is an evolutionarily conserved pathway that is involved in cell fate 

determination and differentiation. Notch genes were originally discovered in Drosophila 

melanogaster, where mosaic  loss of function mutations result in notches in the wing 

margins (Mohr, 1919). Notch signaling often controls binary cell-fate decisions between 
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cells that are initially equivalent, a process known as lateral inhibition. In C. elegans, for 

example, the Notch family member LIN-12 mediates interactions between two 

equivalent progenitor cells to induce one cell to adopt anchor cell (AC) and the other to 

adopt ventral uterine precursor cell (VU) cell fate(Greenwald, Sternberg, & Horvitz, 1983).  

 

Mammals have four Notch genes, NOTCH1, NOTCH2, NOTCH3, and NOTCH4, which 

act as transmembrane receptors. Notch proteins are normally cleaved in the Golgi prior  

Site-1 (S1) by a furin-like convertase to membrane insertion, and appear at the cell 

surface as heterodimers consisting of N-terminal EGF-like repeats and LNR repeats non-

covalently bound to the C-terminal heterodimerization (HD) region, transmembrane 

domain, and Notch intracellular domain (NICD) (Hambleton et al., 2004). NICD 

contains a RAM domain, seven ankyrin repeats (ANK), a transcription activation domain 

(TAD) and PEST domain. Notch ligands are also single-pass transmembrane proteins. 

Five Notch ligands in mammals are divided into two classes, the Delta-like-class ligands 

Delta-like1, Delta-like3, and Delta-like4 (abbreviated DLL1, DLL3, and DLL4) and 

Jagged-class ligands Jagged1 and Jagged2 (abbreviated JAG1 and JAG2)(Shawber & 

Kitajewski, 2004) (Figure 1-1). Notch ligands share a conserved degenerate EGF-like 

repeat, the DSL domain, which is required for ligand binding to Notch, followed by an 

EGF-like repeats. Notch EGF-like repeats 11 and 12 and the DSL domain of ligands are 

necessary for Notch interaction with all ligands (Kangsamaksin et al., 2015) . 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/progenitor-cell
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Figure 1-1. Mammalian Notch receptors and ligands  

(Figure from Bray, 2006(Bray, 2006)) All Notch proteins (Notch1-4) are structurally similar. The 

extracellular domain of Notch contains multiple EGF like repeats and cysteine-rich LIN-

12/Notch repeats. Following the transmembrane domains, the Notch intracellular domain (NICD) 

contains a RAM domain, seven ankyrin repeats (ANK), a transcription activation domain (TAD) 

and PEST domain. Notch ligands are divided into Delta-like and Jagged classes. Notch ligands 

share the DSL domain, which is required for ligand binding to Notch, and  the EGF-like 

repeats. Jagged  have 16 EGF-like repeats , and DLLs contain 8 or fewer. The Jagged 

proteins have additional cysteine-rich region, but the Delta-like protein do not(Kangsamaksin et 

al., 2015). 

 

1.2.2 Signaling cascade and primary downstream targets of Notch 

 

Notch proteins are cleaved in the Golgi at site 1 (S1) by a furin-like convertase to generate 

a non-covalently associated heterodimer at the cell surface. Notch signaling is initiated 

when a membrane-bound Notch ligand binds to a Notch protein’s extracellular domain 

presented on the membrane of an adjacent cell, allowing successive cleavages by ADAM 
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metalloproteases at extracellular cleavage site 2 (S2) and by γ-secretase at intramembrane 

cleavage site 3 (S3). The S3 cleavage event releases the NICD that translocate to the 

nucleus. NICD heterodimerizes with the DNA binding protein CSL (also known as RBPJ, 

CBF1, RBPjκ, Su(H), Lag-1). Activated NICD displaces co-repressors off CSL and 

subsequently recruits co-activators such as Mastermind-like, SKIP, and histone 

acetyltransferases (HATs) to form a fully functional transcriptional activation complex that 

activates transcription of genes containing RBP-J binding sites (Borggrefe & Oswald, 2009; 

Fiuza & Arias, 2007). 

 

Hairy and Enhancer-of-split-related (HES) basic helix-loop-helix (bHLH) transcription 

factors such as grl and Her in zebrafish, or Hey and Hes in mammals, represent the initially 

identified effectors of Notch signals during development, these have been referred to as 

“canonical Notch targets” (Iso, Kedes, & Hamamori, 2003). Hes and Hey are 

transcriptional repressors, and can suppress expression of downstream target genes such 

as tissue‐specific transcriptional activators. Thus, these genes directly affect cell fate 

decisions as primary Notch effectors(Fischer, Schumacher, Maier, Sendtner, & Gessler, 

2004) (Figure 1-2). Several lines of evidence have suggested these genes are direct Notch 

targets, that is, they are bound directly by NICD complexes which regulate their expression. 

For example, the promoters of Hes1, Hes5 and Hes7 as well as Hey1, Hey2 and can be 

activated by a constitutive active form of Notch1 and in co-culture experiments with 

Notch-ligand expressing cells, these genes were elevated in the presence of cycloheximide, 

an inhibitor of protein synthesis, to exclude secondary effects, reviewed in (Borggrefe & 
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Oswald, 2009). Therefore, in mammals, Hey and Hes are the best characterized primary 

Notch targets. 

 

Figure 1-2. Notch signaling cascade  

(Figure adapted from Iso, 2003(Iso, Kedes, et al., 2003)) The ligand binding to receptor induces 

cleavage events that free the Notch intracellular domain (NICD). NICD translocates to the nucleus, 

where it forms a complex with RBPJ protein, replacing co-repressor (CoR) complex (blue) with 

co-activator complex (yellow) and leading to activation of Notch direct target, with HES used here 

as an example. HES is a basic helix-loop-helix (bHLH) transcriptional repressor, and suppresses 

expression of downstream target genes. 

 

 

Multiple other Notch targets have been identified as primary Notch targets. The 

transcription factor GATA3(Fang et al., 2007), a master regulator for T cell development 
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has been shown as a direct Notch target gene. In cancer cells, multiple genes such as C-

myc (Fang et al., 2007; Palomero, Lim, et al., 2006; Wang et al., 2014; Weng et al., 2006) 

and cyclinD1(Ronchini & Capobianco, 2001) have been implicated as direct Notch targets. 

The targets were identified through a variety of screening approaches in immortalized cell 

lines such as T-ALL (T-cell Acute Lymphoblasts Leukemia) cells, and we will review and 

discuss those approaches in the last section of Chapter I. 

1.3 Notch signaling in angiogenesis 

 

1.3.1 Function of Notch signaling in vessel formation 

 

Notch has been shown to play critical role in angiogenesis by regulating the fate of 

endothelial cells during this process.  In mice, deficiency in a variety of Notch signaling 

components, including Notch1, Notch1 and Notch4, Jagged1, Dll1, Dll4, Hey1/Hey2, and 

presenilin genes, PS1 and PS2, results in embryonic lethality with vascular remodeling 

defects(Iso, Hamamori, & Kedes, 2003). In human, mutations in the JAG1 and NOTCH3 

genes cause the autosomal dominant disorders Alagille syndrome and CADASIL, 

respectively, which present with abnormal vascular phenotypes. Mutations in 

the NOTCH1 receptor are associated with several types of cardiac disease(Penton, 

Leonard, & Spinner, 2012).  

 

1.3.2 Notch effectors in endothelial cells 
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Notch plays an important role in regulating endothelial cell behaviors. Aside from the best-

characterized primary Notch targets HEY and HES, a fairly limited description of other 

primary Notch targets have been defined in endothelial cells. NRARP, a direct Notch target, 

has been shown to coordinate endothelial Notch and Wnt signaling to control vessel 

density in angiogenesis (Lamar et al., 2001; Phng et al., 2009). EphrinB2 has been shown 

as direct Notch target that regulates arterial-venous differentiation (Iso et al., 2006). In 

quiescent endothelial cells, alarmin interleukin-33 (IL-33) was identified as direct target of 

Notch signaling (Sundlisaeter et al., 2012).  Slug, a snail family protein, was shown as a 

direct Notch target in endothelial cells and regulate the endothelial-to-mesenchymal 

transition (EMT) (Niessen et al., 2008). 

 

In endothelial cells, an important group of Notch effectors that have been well studied are 

VEGF receptors. Notch signaling inhibits KDR gene expression (VEGFR2) via HEY2 

induction, and induces FLT1 expression (VEGFR1) through unknown mechanisms. 

(Funahashi et al., 2010; Harrington et al., 2008; Suchting et al., 2007; Taylor, 2002). In 

cultured endothelial cells when Notch is constitutively activated, the Notch/CSL complex 

binds the VEGFR3 promoter and activates its transcription, leading to a higher level of 

VEGFR3 (FLT4 gene) and increasing responsiveness to VEGF-C (Shawber et al., 2007).  

 

1.3.3 Tip/Stalk cell model  
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Figure 1-3. Tip/Stalk cell selection in sprouting angiogenesis 
(Figure from Suchting, 2009)(Suchting & Eichmann, 2009) A sprouting blood vessel is composed 

of a tip cell and stalk cells. VEGF induces expression of Dll4 in tip cells, which activates Notch in 

the stalk cells to reduce VEGF receptor expression level. In the stalk cells, the glycosyltransferase 

Fringe modifies Notch to enhance Dll4-Notch signaling, but to reduce Jag1-Notch signaling. Stalk 

cell express low level of Dll4. Fringe modification allows Jag1 to antagonize Dll4-Notch signaling 

from stalk cell to tip cell.  

 

Current models of angiogenesis center on the interplay between tip and stalk cells, two 

endothelial cell fates that can rapidly interchange during the process of angiogenesis.  

Determination of tip cell versus stalk cell fate occurs through Notch signaling and Vascular 

Endothelial Growth Factor (VEGF) signaling (Figure 1-3). Hypoxia triggers the release of 

angiogenic factors, the best characterized of which is VEGFA. VEGFA activates quiescent 

endothelial cells in preexisting vessels by interacting with VEGF receptor 2 (VEGFR2) on 

the cell, and induces expression of Notch ligand Dll4 in activated cells. These cells become 
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tip cells, with chemotactic filopodial extensions, and are highly migratory towards 

environmental cues such as VEGFA.  Dll4 in tip cells binds to Notch in adjacent cells and 

activates Notch signaling in adjacent endothelial cells.  Notch signaling then suppresses 

tip cell fate in neighboring cells by regulating expression of VEGF receptors, including 

downregulation of VEGFR2, which plays a primary role in endothelial cell activation and 

migration, and upregulation of soluble variant of VEGFR-1, a high affinity, low activity 

receptor in endothelial cells that can act as a competitive inhibitor of VEGFA/VEGFR2 

interaction. The net result is that Notch signaling in the tip cell decreases sensitivity to 

VEGF-A in adjacent endothelial cells, which adopt a distinct cell fate to become the stalk 

cells that proliferate, lumenize and form the body of the sprout (Tung, Tattersall, & 

Kitajewski, 2012). This model is supported by the phenotypes of endothelial loss of Dll4 

or inhibition of Notch-Dll4 interaction, which result in de-repression of tip cell fate and 

excess sprouting(Hellstrom et al., 2007; Kangsamaksin et al., 2015; Lobov et al., 2007). 

 

The role of Jag1 remains more controversial and elusive. Loss of Jag1 or inhibition of 

Notch-Jag1 interaction produces hypo-sprouting phenotype; that is reduced angiogenic 

sprouting. This has been interpreted as opposite roles of Jag1 and Dll4 in 

angiogenesis(Benedito et al., 2009; Kangsamaksin et al., 2015). It has been suggested that 

Jag1 enhances angiogenesis by antagonizing the effects of Dll4-mediated Notch signaling 

during sprouting angiogenesis. Unlike Dll4, which is primarily expressed in tip cells, Jag1 

is strongly expressed in stalk cells and can antagonize Dll4-Notch signaling to maintain an 

activate tip cell phenotype that is responsive to VEGF(Benedito et al., 2009; Suchting & 

Eichmann, 2009). The antagonistic interaction between Dll4 and Jagged1 in endothelial 
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cells is mediated by glucosaminyl transferases of the Fringe family, which regulates 

posttranslational modification of Notch [38]. Fringe modification promotes Notch 

activation by Dll4 and reduces Notch activation by Jag1, thereby enabling Jag1 to 

antagonize Dll4-Notch activation through competitive binding activity(Benedito et al., 

2009; LeBon, Lee, Sprinzak, Jafar-Nejad, & Elowitz, 2014). Other studies have showed 

that JAG-specific N110-24 decoy,  reduced the mRNA levels of Notch targets HEY1, HEYL, 

HES1, suggesting Jag1 is an activating ligand. Jagged inhibition has been shown to reduce 

angiogenesis while also reducing Notch signaling using Jagged-specific Notch decoy, 

suggesting that Jagged-Notch may promote Notch signaling in a manner that is pro-

angiogenic(Kangsamaksin et al., 2015). 

 

 

Some studies have offered important revisions to this classical tip/stalk model. For instance, 

tip and stalk cell identities may shift between neighboring cells in a dynamic fashion, 

suggesting that in stalk cells, Notch-mediated suppression of tip cell fate and VEGF 

responsiveness is unstable and frequently overcome (Jakobsson et al., 2010). It’s been 

reported that deacetylase SIRT1 acts as an intrinsic negative regulator of Notch in stalk 

cells(Guarani et al., 2011). Additionally, evidence indicated that multiple cells constitute 

the tip of developing blood vessels, suggesting a non-binary Notch signaling scenario 

between tip and stalk cells (Pelton, Wright, Leitges, & Bautch, 2014). 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/16430858
https://www.ncbi.nlm.nih.gov/pubmed/16430858
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1.4 Unbiased screening studies of Notch targets  

 

1.4.1 Unbiased screening studies in ECs  

 

In endothelial cells, multiple primary Notch targets such as HEY, HES, NRARP, EphrinB2, 

and FLT4 as well as non-direct effectors, including VEGFRs have been defined to play 

important roles mediating the function of Notch in angiogenesis. Those studies provide 

valuable insights of the regulatory mechanism of Notch in endothelial cells, leading to 

establishment of elegant models such as the role of Notch in regulation of tip/stalk cell 

selection during sprouting angiogenesis.  

 

However, most of the studies on EC Notch targets were carried out on a gene-by-gene 

basis. Very limited insights have been gained of the EC Notch regulation networks through 

global, unbiased screening studies.  Harrington LS et al. performed a cDNA microarray-

based screening study in HUVECs with retroviral-mediated Dll4 overexpression (OE) 

(Harrington et al., 2008). This type of study compares steady-state level changes in Notch 

target gene expression to control. Data from the screens indicated that Dll4 down-regulates 

VEGFR2(KDR), and up-regulates VEGFR1(FLT1) and sVEGFR1 (sFLT1). While this 

provided important insights into the network of Dll4-Notch regulation, the method of study 

did not allow identification of primary/direct response genes following Dll4-Notch 

activation. Another limitation of the study is that retroviral-mediated ligand OE can lead 

to both Notch activation and potential cis-inhibition of Notch, and thus was not the most 

physiological relevant approach of Notch activation.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Harrington%20LS%5BAuthor%5D&cauthor=true&cauthor_uid=17692341
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1.4.2 Unbiased screening studies in other cell types 

 

A number of studies have utilized different approaches to profile Notch targets in T-acute 

lymphoblastic leukemia(T-ALL) cell lines and other cancers cells. 

 

The ability to identify direct Notch transcriptional targets was greatly facilitated by the 

establishment of the chromatin immunoprecipitation (ChIP) assay coupled with next 

generation sequencing (ChIP-Seq). The development of ChIP-grade anti-Notch and anti-

RBPJ antibodies provided the ability to verify the direct interaction between the Notch 

complex and endogenous target gene loci. Most of the ChIP or ChIP-seq studies have been 

limited to T-ALL and other cancers where Notch is constitutively active (Palomero, 

McKenna, et al., 2006; Wang et al., 2011) or to immortalized cell culture systems where 

Notch activation was achieved (Castel et al., 2013; Krejci & Bray, 2007).  

 

Recently, a new technique termed Split DamID (SpDamID) was developed by the Kopan 

group, allowing differentiation between monomeric and dimeric Notch binding sites(Hass 

et al., 2015). In this technique, DNA methylase (DAM) is split into two halves, and each 

halve is fused to one components of the Notch transcriptional complex. Methyltransferase 

activity is reconstituted at Notch complex formation sites, complex-bound DNA is 

methylated, and bound sites are detected via digestion with a methylation-sensitive enzyme 

DpnI. The technique was used in mK4 cells and successfully identified genomic sites 

bound by Notch monomer and dimer, as a complementary approach to ChIP-seq. 



 

14 

 

 

 

Despite revealing physical interaction between Notch/CSL and a target gene locus, an 

important limitation to ChIP and SpDamID is that Notch/CSL binding does not always 

indicate that a particular locus is expressed(Wang et al., 2011). Another limitation is that 

the short half-life of the active NICD has made it difficult to determine the genomic 

locations bound by endogenous Notch transcriptional complexes operating at 

physiological levels(Hass et al., 2015). 

 

Another common approach for identifying direct and canonical Notch targets is via the use 

gamma secretase inhibitor (GSI), which provides a method for rapidly modulating Notch 

signaling. GSI inhibits the gamma secretase-dependent S3 cleavage that releases the Notch 

intracellular domain from the Notch extracellular domain. Cells treated with GSI causes 

reduction of NICD and accumulate a pool of membrane-tethered NOTCH. Upon washout 

of GSI, this pool of partially processed receptors is rapidly cleaved by gamma-secretase, 

allowing for precisely timed NOTCH activation(Bailis et al., 2013). A GSI washout assay 

in combination with RNA Seq or ChIP-Seq was used to profile Notch targets regarding T 

cell leukemia in several studies. Direct Notch target genes were identified as transcripts 

whose expression level rebound between 4 hours to 72 hours after GSI wash out and was 

insensitive to cycloheximide treatment(Liefke et al., 2010; Wang et al., 2014; Wang et al., 

2011; Weng et al., 2006).   

 

Despite being widely used to modulate Notch signaling, GSI is not a Notch-specific 

inhibitor and can target other signaling events.  It is important to consider that the results 
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of the GSI-based screen could also be caused by its effect on other gamma-secretase 

substrates such as VEGFR1(Haapasalo & Kovacs, 2011).  

 

Collectively, even though multiple approaches have been taken to identify target genes of 

Notch signaling, the majority of the studies were done in cancer cells and other 

immortalized cell lines and not physiologically relevant cells. In addition, each of those 

approaches has its limitations and one should not solely rely on a single screen, but utilize 

multiple approaches collectively to identify the common targets.  

 

1.4.3 Techniques to profile cell-type specific gene expression in vivo 

 

Most of the studies on Notch target identification in vivo were carried out on a gene-by-

gene base, and the full repertoire of Notch target genes in vivo is poorly understood.  

Multiple components of the Notch signaling pathway were identified through classical 

forward genetic screens conducted in Drosophila (Artavanis-Tsakonas, Rand, & Lake, 

1999; Bray, 2006) but these studies are difficult to be directly translate to mammalian 

endothelial cells.  In mammals, genome-wide screening of genes in specific cell types in 

vivo have typically been performed through ChIP-Seq, RNA-Seq or Single-Cell RNA-Seq 

on isolated cells from the complex tissue. Those approaches face one major challenge: by 

physically isolating cells of interest from complex tissue, gene expression can change 

during experiments and hence the measured gene expression profile may not represent the 

gene expression profile when they were in an intact tissue. This is especially true in the 
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context of Notch signaling that relies on cell-cell contact, where physical disruption of 

tissue may alter the gene expression. 

 

To overcome the limitation of physical cell isolation-based approaches, a recently 

developed approach was designed whereby an epitope-tagged ribosomal protein is 

expressed in a specific population of cells in the mouse. The epitope-tagged ribosomal 

protein incorporates into the ribosome in a cell type of interest. The ribosome, when 

incorporated into polysomes, can be affinity-purified from tissue lysate for mRNA 

extraction and analysis (detailed scheme will be discussed in Chapter 3). In one RiboTag 

model, a mouse line was made to conditionally express an EGFP-tagged rpL10a, a 60S 

ribosomal protein. However, the limitation of this system is that the Lox-Stop-Lox-EGFP-

rpL10a cassette is inserted into the Rosa26 allele, so that protein is expressed from 

exogenous alleles and must compete with the endogenous rpL10a for ribosome 

occupancy(Zhou et al., 2013). The problem was solved with the creation of another knock-

in mouse line termed RiboTag. RiboTag is a knock-in mouse line that express HA tagged 

rpL22 protein from the endogenous allele to replace the wildtype rpL22 by Cre-mediated 

recombination(Sanz et al., 2009).  

 

RiboTag has several major advantages over other technologies that define expressed genes 

in specific mammalian cell types. First, the RiboTag approach provides the information 

that is closest to gene expression profile in an intact tissue, because changes gene 

expression or mRNA levels does not proceed after tissue lysis. Moreover, these methods 

allow analysis of the ‘translatome'—ribosome-associated mRNA— which represents 
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genes that are actively being translated and serves as a better predictor of the proteome 

than the transcriptome does.  

 

The technique has been applied to multiple systems both in vivo and in vitro(Gonzalez et 

al., 2014; Lesiak, Brodsky, & Neumaier, 2015; Sanz et al., 2013; Sanz et al., 2009; 

Shigeoka et al., 2016). A recent study carried out a RiboTag based screens on mouse retinal 

ECs at different postnatal stages of angiogenesis. However, this system has not yet been 

used to profile specific signaling pathway in any tissues.  

 

1.5 Summary, hypothesis and working strategy  

 

Notch signaling controls developmental and physiological angiogenesis and contributes to 

pathological angiogenesis through regulation of target genes that then produce proteins 

that carry out elements of Notch function. Thus, identifying Notch downstream effectors 

and uncovering their roles in angiogenesis are critical to understanding regulatory 

mechanism of Notch in angiogenesis. Although many insights were provided of Notch 

targets by previous studies, the short list of established endothelial Notch targets, 

especially the primary target genes, does not account for the full range of Notch responses.  

 

A comprehensive list of Notch effectors, especially the primary targets of Notch, has not 

been assembled in endothelial cells, nor do we know much about the functions of different 

Notch targets in angiogenesis. In addition, only very limited knowledge of Notch 

regulation landscape have been gleaned through unbiased in vivo screenings. 
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Thus, we hypothesized that novel endothelial Notch primary and/or rapid target genes will 

be uncovered using unbiased and physiologically relevant screening approaches. We 

therefore set out to establish a comprehensive understanding of genome-wide response of 

Notch using both in vivo and in vitro studies. Through combining these screens, we aim to 

identify high-confidence novel primary targets of Notch that are important in regulating 

endothelial behavior. The knowledge gained from those novel Notch targets will contribute 

to a better understanding of the transcriptional regulation mechanism of Notch signaling 

in angiogenesis. (Figure 1-4) 

 

 

Figure 1-4. Project working strategy 
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Chapter 2 Materials and Methods 

 

2.1 Cell culture 

 

Primary cells and cell lines: 

Human Umbilical Vein Endothelial Cells (HUVECs) were isolated from human umbilical 

cords following established protocols(Jaffe, Nachman, Becker, & Minick, 1973). The cells 

used in experimental replicates were isolated from different donors. Cells were grown in 

EGMTM-2 Endothelial Cells Growth Media (Lonza) (every supplement from the bullet kit 

was added except for Hydrocortisone) on cell culture dish coated with rat tail type I 

collagen (Corning). The HUVEC cells used in experiments were passage five or lower.   

 

Human Retina Microvasculature Endothelial Cells (HRECs) were purchased from Cell 

System. Cells were maintained on fibronectin (Sigma) coated plates (Millipore) and in 

EGMTM-2 Endothelial Cells Growth Media (Lonza). Cells used for experiments were up 

to passage 8. 

 

Human Dermal Microvasculature Endothelial Cells (HDECs) were purchased from 

American Type Culture Collection (ATCC). Cells were grown in EGMTM-2MV 

Microvasculature Endothelial Cell Growth Media (Lonza) on rat tail type I collagen coated 

plate. Cells used in experiments were passage 5 or lower. 
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293T cells were acquired from ATCC and maintained in High Glucose DMEM (Gibco) 

with 10% Heat Inactivated- Fetal Bovine Serum (HI-FBS) and 1X antibiotics penicillin-

streptomycin. 

 

D551 human skin fibroblasts were purchased from ATCC and maintained in EMEM 

(Gibco) with 10% HI-FBS and 1X penicillin-streptomycin.  

 

Mouse Lewis Lung Carcinoma (LLC) cell line was acquired from ATCC and maintained 

in High Glucose DMEM (Gibco) with 10% HI- FBS and 1X penicillin-streptomycin. 

  

Lentivirus-mediated stable expression of constructs in primary cells 

To perform stable knockdown and overexpression studies in primary cells, a lentiviral 

infection system was utilized. For lentiviral gene transfer, lentiviral vector pLKO.1 was 

used for shRNA knockdown and pCCL was utilized for overexpression studies. 293T cells 

were calcium phosphase mediated-transfected with the following combination of plasmids:  

3 g of pVSVG, 5g of pMDLg/pRRE, 2.5g of pRSV-Rev, and 10g of pCCL/pLKO 

vector encoding genes of interest. Transfected 293T cells were allowed to produce 

lentivirus for 48 hours and the supernatant was collected, filtered through 0.45m filter 

and then added onto the target primary cells. Single round of infection was performed. The 

primary cells were allowed to express shRNA or overexpression constructs for at least 48 

hours before experiments. We have tested 5 different shRNAs to knockdown human Rnd1, 

all acquired from Sigma (TRCN0000047433-47437).  
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siRNA transfection for transient knockdown in primary cells 

DharmaFECT™ Transfection system (Dharmacon) was utilized to perform transient 

knockdown based on the instruction manual. In separate tubes, SiRNA or DhamraFECT4 

reagent were diluted with serum free media. After 5-minute incubation, siRNA and 

DharmaFECT4 reagents were mixed together followed by 20-minute incubation in room 

temperature. Reagents were mixed with antibiotic-free media and transfected into targets 

cell. Primary cells were incubated for 24-72  hours for RNA analysis, and 48-96  hours for 

protein analysis.  Functional assays were performed in 48-72  hours. SiRNA used to 

knockdown human RND1 in HUVECs is ON-TARGETplus siRNA from Dharmacon J-

008929-05. Non-targeting control is D-001810-10-05. SiRNA was used at final 

concentration of 25nM for all the functional studies. 

 

Tethered Ligand Assay (TLA) 

Extracellular domains of human DLL4 fused to Fc (Final concentration 10g/ml, 10171-

H02H, Sin Biologicals Inc.), JAG1-Fc (Final concentration 40g/ml, 11648-H02H, Sino 

Biologicals Inc.), or IgG-Fc control proteins (Final concentration 10g/ml, 10702-HNAH, 

Sino Biologicals Inc.) was mixed with Fibronectin (Final concentration 10 g/ml Sigma. 

Coating was performed by incubating plates with 100 l/well of 24-well plate of the above 

proteins suspended in PBS at room temperature or at 4 oC  overnight, then washing the 

plates with PBS prior to adding cells and media. Primary ECs were seeded into 80%-90% 

confluency on top of the coated plate. RNA was collected from the plate 6 hours after 

seeding the cells. For the experiments with HUVECs, each experiment consisted of cells 

from a different isolate (biological replicates), while the experiments from HRECs were 
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obtained from three frozen batches from a single commercially purchased vial Cell 

Systems (technical replicates). 

 

EDTA/EGTA Notch activation assay 

Primary ECs plated to 70% confluency were treated with Gamma Secretase Inhibitor (GSI)  

compound E (ALX-270-415-c250, Enzo Life Sciences) at 200nM O/N to inhibit 

endogenous Notch signaling. The following day, cells were washed with PBS 2X and were 

treated with 1xPBS supplemented with 10mM EGTA or EDTA for 15 minutes at 37oC. 

After 15 minutes incubation, the PBS was replaced with fresh EGM2 (if cell detached, 

supernatant was collected, spin down, resuspended with fresh media and placed back to 

the same plate). Start time was established as the moment that EGTA was added, and RNA 

was collected at different time points from 30 minutes up to 4 hours. For the CpE treatment 

group, 500 nM of CpE were supplemented to PBS wash solution, EGTA treatment solution, 

as well as fresh EGM2 media after EGTA treatment. HRECs used in the RNA seq 

experiment were obtained from three frozen batches from a single commercially purchased 

vial Cell Systems (technical replicates). 

 

 

Co-culture Notch reporter assay 

HeLa cells were transfected with either pCRIII-JAG1-FLAG, pCRIII-Dll4-FLAG or 

pCRIII-GFP-FLAG. HUVECs were transfected with pGL3.11CSL-Luc(containing 11 

repeats of a CSL-responsive element) and pGL3.Renilla-luc housekeeping plasmid. 

Lipofection was mediated using lipofectamine 2000 (Thermo Fisher Scientific) as per 
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manufacturer’s instructions. 24 hours after Lipofection, two types of cells  were co-

cultured at 1:1 ratio in HUVEC media overnight. Cells were then lysed, and luciferase 

activity was measured using the Dual-Luciferase Reporter Assay System (Promega 

Corporation), as per manufactures’ instructions. 

 

MTT viability assay 

HUVECs cells were plated at the same number among cell lines in triplicate in 96-well 

plates, and the viability of HUVECs were measured at 24, 48, 72, and 96 hour time point 

using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (Sigma). 

Briefly, at each time point, 100 L of fresh medium were changed and 10 L of 12mM 

MTT were added into each well. After 4 hours of incubation at 37 oC, 25 L of medium 

were removed, and 50 L of DMSO were added and mixed thoroughly. Following 10 

minutes incubation at 37 oC , each sample was read absorbance at 570 nM with microplate 

reader. 

 

EdU assay 

HUVEC proliferation was measured using Click-iT EdU Imaging Kits (Invitrogen) 

following the manufacturer instruction. Briefly, cells were cultured with EdU working 

solution to get labeled.Cells were then fixed, permeabilized, and subjected to EdU 

detection and DNA staining.  Imaging and quantification were performed using Celigo 

Imaging Cytometry (Nexcelom Biosciences). Data was presented as % of (EdU positive 

cells / by total DAPI positive cells). 
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Endothelial monolayer wounding (scratch) assay 

HUVECs were seeded at confluency in 24-well plates. After incubation overnight, the 

confluent cell monolayer was scratched with 200 l pipet tips across the diameter of each 

well. Floating cells were gently washed off with 1XPBS and fresh media were replaced. 

Pictures were taken at every 3 hours at 10X within the same area until the scratch was 

completely closed. Contrast between the cellular area and the scratch was enhanced, and 

the open wound area was measured by Image J as described in an established protocol 

(Kees Straatman, 2008).  

 

Boyden chamber transwell migration assay 

HUVECs were serum starved in starvation medium (EBM2 + 0.5%FBS) overnight. 1X105 

cells per well (24-well format) HUVECs were seeded in triplicate in collagen coated insert 

of 8 m pore size transwell chamber (BD Falcon) with 400ul/well serum free media for 3 

hours. Following starvation,  1.2 mL of serum free media supplemented with stimulant 

(50ng/ml hVEGFA from R&D 293-VE, 100ng/ml hSDF1 from R&D 350-NS-010, 1M 

S1P from Enzo Life Sciences BML-SL140) was placed in the lower transwell chamber. 

Cells were allowed to migrate for 6 hours towards lower chamber stimulant, followed by 

fixation of the cells with 4%PFA for 15 minutes and 10 minutes incubation of 0.1% crystal 

violet to stain the cells. Cells from top of the membrane insert were wiped and cleaned 

with cotton swab and the migrated cells at the bottom of insert were imaged at 10X . Cell 

migration  were measured by quantifying area covered by cells and dividing by total area 

of the image using ImageJ (3 different areas per well, 3 wells per sample). 
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Fibrin Beads Sprouting Assay (FIBA) 

HUVEC cells were incubated with cytodex3 collagen-coated dextran bead at a ratio of 400 

cells/bead for 4 hours in EGM-2 with gentle agitation every 20 minutes. The HUVEC 

coated beads were then placed on TC-treated dishes in EGM-2 media overnight. Following 

day, beads were washed with EGM 3X and embedded at a density of 150 beads/500ul 

within a fibrin clot composed of 3mg/mL fibrinogen (Sigma-Aldrich), 0.15 TIU/mL 

aprotinin (Sigma-Aldrich) and 0.625 U/mL thrombin (Sigma-Aldrich) in 24-well plate. 

Once the gel was polymerized, 1X105 D551 fibroblast was resuspended in 1 ml EGM-2 

media and were seeded on top of the gel for each well. Media was changed every other 

day and sprouting can be observed from day 2-day 3 until day 7. To quantify the assay, 

sprouts number and length were measured using 5 low power (5X) image from each well, 

for a total of between 50-100 beads per group.  

 

G-Lisa RhoA and Ras activation assay 

Assays were performed using RhoA (Cytoskeleton, BK124), and Ras (Cytoskeleton 

BK131) G-Lisa Activation Assay Kit. HUVECs were serum starved in EBM2 with 1% 

serum overnight and serum-free (EBM2) for additional 3 hours the following day. The 

cells were then stimulated with 100 ng/ml hEGF (Sigma-Aldrich E9644) to activate Ras 

for 5-10 minutes or 50 nM Thrombin (Enzyme Research Laboratories HT1002a) to 

activate RhoA for 2-5 minutes. Cell lysates were harvested and snap frozen. The lysates 

were added to plates containing RhoA/Ras GTP binding proteins linked to the wells. 

Inactive GDP-bound protein was washed out during washing steps and the active GTP-
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bound form of RhoA/Ras was then detected with specific antibodies. G-Lisa assay was 

performed based on manufacture recommendations and signal is measured at 490 nm 

absorbance using microplate reader.  

 

cDNA library creation and quantitative PCR 

RNA was isolated from cultured cells using RNeasy Kit (Qiagen). RNA was reversed 

transcribed to cDNA using the Verso cDNA synthesis kit (Fischer Scientific), all according 

to manufacturer specifications. Quantitative Real Time PCR(qRT-PCR) was performed 

using SYBR Green master mix (Applied Biosystem) and  primers specific to genes of 

interest (Table 2-1). Mean threshold cycle number (Ct) were determined of each gene and 

compared to the mean Ct of housekeeping gene beta actin. 
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Table 2-1. Primer sequence for qRT-PCR gene expression analysis 

 

 

 

2.2 Mouse experiments 

 

DAPT administration in postnatal animals 

For postnatal studies, the RiboTag mouse was bred to the endothelial specific 

Cdh5CreERT2 driver line to obtain Rpl22HA/HA;Cdh5CreERT2 (RiboTagEC) mice. Cre 

recombination was induced through oral gavage of mother at P1(postnatal day1, the first  

day that a litter was discovered was considered postnatal day 0) , P2, P3 with 0.25mg 

Gene Symbol Species Forward Primer (5'-3') Reverse Primer (5'-3') 

ACTB Human/Mouse CGAGGCCCAGAGCAAGAGAG CTCGTAGATGGGCACAGTGTG  

HEY1 Human ATCTGCTAAGCTAGAAAAAGCCG GTGCGCGTCAAAGTAACCT 

HEY2 Human GCCCGCCCTTGTCAGTATC CCAGGGTCGGTAAGGTTTATTG 

HES1 Human CCTGTCATCCCCGTCTACAC CACATGGAGTCCGCCGTAA 

NRARP Human TCAACGTGAACTCGTTCGGG ACTTCGCCTTGGTGATGAGAT 

RND1 Human CTATCCAGAGACCTATGTGCC  CGGACATTATCGTAGTAGGGAG 

RND2 Human TCCTGATTCTGATGCTGTGCTC ATTGGGGCAGAACTCTTGAGTC 

RND3 Human GACAGTGTCCTCAAAAAGTGGAAA CTGGCGTCTGCCTGTGATT  

GUCY1B3 Human ACGACCACCTTGCTACCATC TGGATTTGTTGTGCCACTGT 

RAPGEF5 Human CTTAGTCATCTCCAAATCCCTCG AGATCCCAAGTGTTCATTCCC 

RGS4 Human TTCATCTCAGTCCAGGCAAC GGAATCCTTCTCCATCAGGTTG 

ARHGEF17 Human CCTGCCTTTCTCAAGTTCCTAG GTCCTCAGGTGTATGCTTCAG 

F2RL1 Human GTGATTGGCAGTTTGGGTCT CTGCATGGGATACACCACAG 

ARHGAP24 Human TTAGCCTCAACTCCTTTCATCC CAGACGGTTCCCATATCTCTTC 

Hey1 Mouse GCGCGGACGAGAATGGAAA TCAGGTGATCCACAGTCATCTG 

Hey2 Mouse AAGCGCCCTTGTGAGGAAAC GGTAGTTGTCGGTGAATTGGAC 

Hes1 Mouse CCAGCCAGTGTCAACACG AATGCCGGGAGCTATCTTTCT 

Nrarp Mouse AAGCTGTTGGTCAAGTTCGGA CGCACACCGAGGTAGTTGG 

Rnd1 Mouse CAGTTGGGCGCAGAAATCTAC TGGGCTAGACTTGTTCAGACA 
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tamoxifen/kg body weight dissolved in corn oil. On P6-P8, 100mg/kg DAPT (N-[N-(3,5-

Difluorophenacetyl-L-alanyl)]-S-phenylglycinet-ButylEster;Calbiochem,565770) 

dissolved in 10% ethanol and 90% corn oil was subcutaneously injected at 10 l/g 

bodyweight. Control mice were injected with vehicle only. 6 hours after injection, treated 

mice were sacrificed for follow-up studies.  

 

RiboTag studies  

Mice were sacrificed with tissues quickly removed, weight and snap frozen in liquid 

nitrogen. Frozen tissue was placed in pre-chilled homogenizer containing Homogenizing 

Buffer+ ( Homogenizing Buffer/HB: 10mM Tris pH8, 10mM Tris pH7, 50mM NaCl, 

15mM MgCl2, 1mM DTT, 0.5% Triton, 100 g/ml Cyclohexamide; Homogenizing 

Buffer+: for every 1ml , supplemented HB with 12l Superase Inhibitor (SUPERase-IN, 

Invitrogen AM2696), 12 l turbo DNase (Invitrogen AM2238), and 10 l Protease 

Inhibitor (Thermo Scientific 78430) ) to create a 5% weight/volume homogenate using the 

homogenizer and G27 needles. Tissues such as heart and retina were homogenized using 

RNase-free stainless-steel beads kit (Green kit, Next Advance) and the bullet blender at a 

spin speed 6-8 for 30 seconds-1minute (Next advance).    

 

After tissue was completely homogenized, sample is then centrifuged at 10,000 rpm for 10 

minutes at 4 oC.  The supernatant was collected and 1:200 anti- HA antibody (ab9118, 

Abcam) was added to the sample, which is then rotated at 4oC for 4 hours. Prior to the end 

of incubation, Dyna Protein A magnetic beads (10001D, Invitrogen) were collected from 

stock solution (300µl of stock solution of beads/1ml supernatant) and were equilibrate in 
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Homogenizing Buffer for 1 hour at 4oC. The antibody-homogenate sample was then 

transferred to the beads and rotated overnight in the cold room. 

 

The following day, magnetic beads were collected from the sample and washed with wash 

buffer (Wash Buffer: for every 1ml, supplement HB with 6l SUPERase inhibitor, 6l 

turbo DNase, and 5l Protease Inhibitor),3X 10 minutes at 4oC. After final wash was 

removed, 300l of RLT reagent supplemented with Beta-Mercaptoethanol (10l/ml) from 

the Qiagen RNeasy mini prep kit was then added to the beads, incubate for 5minuts at RT 

and collected. The collection step was repeated once by adding another 300 l of RLT 

buffer to the same beads, and followed by purifying RNA using Qiagen RNeasy mini kit. 

 

 

Tumor studies 

For tumor studies, the RiboTag mice were bred to Cdh5CreERT2 line and DNMAML-

GFP flox mouse line (DNMAML1-GFP has a loxP-flanked transcriptional STOP cassette 

upstream of a DNMAML1-GFP fusion protein, from Warren Pear, University of 

Pennsylvania) to obtain Cdh5CreERT2;Rpl22HA/HA;DNMAMLflox/+ mouse line.  

Cdh5CreERT2;Rpl22HA/HA mice were used as control.  At 5 weeks, mice were 

intraperitoneal injected with 100 l of 20mg/ml tamoxifen dissolved in corn oil for 5 

days in a row to induce Cre recombination. At 6 weeks, mice were subcutaneously 

implanted with 5X105 Mouse Lewis Lung Carcinoma (LLC) cells suspended in PBS in 

the lower left flank. Tumor growth was monitored by caliper measurement and was 

harvested at day 14. 



 

30 

 

 

 

Immunofluorescence Studies 

Tissues were fixed in 4% PFA overnight, and dehydrated in 30% sucrose solution until 

tissues sank to the tube bottom before embedding into OCT and snap frozen in Isopentane 

mixed with dry ice. Frozen tissue was sectioned (5m for tumor, 10 m for brain) and 

stored in -20oC. Slides were warmed in room temperature and post fixed in cold acetone 

for 3 minutes. A hydrophobic pen was used to circle around the tissue sections. The 

sections were then blocked for 1 hour at room temperature in the blocking solution 

containing 3% bovine serum albumin (BSA) and 2% serum from which species the 

secondary antibody was made. Then slides were incubated with primary antibody at 4oC 

overnight followed by secondary antibody for 30 minutes. Slides were then mounted with 

VECTASHIELD mounting media containing DAPI. 

 

2.3 RNA sequencing and statistics 

 

RNA sequencing and data analysis 

RNA quantity and integrity were measured by Bio-analyzer and TAPE station (Agilent) 

before RNA sequencing. The sequencing conditions for TLA HUVEC samples, RiboTag 

brain and tumor studies were ~30 million SE read depth with 100-base fragments on the 

TruSeq platform in the Sulzberger Columbia Genome Center. Conditions for Tethered 

ligand assay HREC samples and EGTA assay samples were ~30 million PE reads with 150 

base-paired fragments using the services of Novogene corporation. 
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Raw reads from the HUVEC and HRECs were mapped to the Human database 

(ENSEMBL/GRCh38) using STAR (version 2.5.0a) and processed with Samtools (version 

1.4.1). The counts obtained by FeatureCounts were analyzed by DESeq2 to identify 

differentially expressed genes. 

 

Reads from IP-ribosomes were aligned with the mouse rRNA reads with Bowtie2 to 

remove the contamination of the ribosomal RNA reads from the mRNA reads. Next, these 

reads were mapped to the mouse transcriptome Mouse: (UCSC/mm10) using STAR 

aligner and processed with Samtools to generate bam files. The bam files were processed 

to obtain raw counts by FeatureCounts, that generated a table of counts for each gene in 

the genome. These raw counts were normalized and then tested for differential gene 

expression using DESeq2. The normalized counts were scaled to log scale and were used 

to generate the Principal Component Analysis (PCA) and the Volcano plots using DESeq2. 

PCA is a statistic procedure that uses an orthogonal transformation to summarize features 

and important patterns (Lever et al, 2017). Volcano plot is a type of scatter plot that is used 

to identify changes in large data sets. .  

 

Statistics 

Analysis and statistics of RNA-seq results will be discussed in details in the following 

chapters. For other experiments, unless otherwise noted, two-way Analysis of variance 

(ANOVA) with Bonferroni post-hoc analysis was performed on all quantified data to 

determine significant differences between groups. The statistical tests were analyzed in 

GraphPad Prism software. P values less than 0.05 were considered statistically 
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significant. If a p-value is less than 0.05 it is flagged with one star (*). If a p-value is less 

than 0.01 it is flagged with two stars (**). If a p-value is less than 0.001 it is flagged with 

three stars (***). Unless otherwise noted, experiments were repeated at least three times. 
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Chapter 3 An in-vivo screen for Notch regulated genes in the 

endothelium of mice using RiboTag technology 

 

3.1 Strategy and Rationale 

 

Little is known about the primary transcriptional events of Notch activation in endothelial 

cells, especially from an intact animal. One difficulty faced by previous studies of Notch 

signaling lies in the difficulty in achieving tight temporal control of Notch activation or 

inhibition by in vivo genetic tools, which can take many hours or even days to recombine 

and either build up or deplete relevant Notch modulatory proteins. This imprecision makes 

it difficult to resolve primary transcriptional events in vivo, because the transcriptional 

profile of Notch modulation will contain Notch targets, feedback inhibitors, downstream 

secondary and tertiary effectors, and signatures of broadly changed differentiation states. 

We have overcome these difficulties by using a small molecule pharmacological Notch 

inhibitor, DAPT, which rapidly and effectively downregulates Notch signaling in 

mice(Dovey et al., 2001). This approach reduces the specificity of transcriptional response 

due to non-Notch targets, but can be timed precisely and is effective in mice. We will 

address specificity concerns with experiments in subsequent chapters. 

 

Most methods of mRNA isolation from a specific cell type (i.e. endothelial cells) in a 

complex tissue to study cell type specific gene regulatory events involve tissue digestion 

and disruption. We have optimized the use of the RiboTag technology to isolate 
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endothelial-specific transcriptional profiles without disrupting the cell-cell contacts critical 

for Notch signaling. 

 

We hypothesize that Notch signaling activates transcription of critical known and 

unknown angiogenic effectors in vivo and that discovery of novel Notch effectors will 

elucidate the unknown mechanism(s) of Notch regulations in angiogenesis.  We further 

hypothesize that by screening preferentially for genes that respond rapidly, within six hours 

of Notch inhibition, to Notch signaling in endothelium, we will enrich for direct Notch 

targets and effectors. Therefore, we carried out an in vivo unbiased screening of Notch 

signaling targets using the RiboTag technique, focusing on transcriptional events occurring 

rapidly after dosage with Notch inhibitor DAPT.  

 

3.1.1 Neonatal brain as a model of angiogenesis  

 

The vertebrate central nervous system (CNS) is comprised of the brain, spinal cord, and 

retina, which are heavily vascularized tissue, to meet oxygen and glucose demands. 

Vascularization in mouse starts with vessel formation in the mesenchyme ventral to the 

neural tube at around E7.5-8.5(Ruhrberg & Bautch, 2013). This is followed by sprouting 

angiogenesis that invades the CNS to form the CNS vessel network during embryonic 

development and postnatal stages (Tata, Ruhrberg, & Fantin, 2015). The most intensively 

studied CNS angiogenesis model has been the perinatal mouse retina, which has 

contributed vastly to our understanding of postnatal blood vessel growth in the 

CNS(Hofmann & Luisa Iruela-Arispe, 2007). The mouse embryonic brain, including 
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hindbrain and brain, has also been used to study CNS vascularization(Vasudevan, Long, 

Crandall, Rubenstein, & Bhide, 2008). Evidence suggests that the brain microvasculature 

undergoes extensive endothelial proliferation and branching for at least a month after birth 

(Harb, Whiteus, Freitas, & Grutzendler, 2013). More detailed examination of the brain 

microvasculature revealed that endothelial tip cells, new blood vessels, and perfused blood 

vessels are being actively formed in the P8 brain, especially the cortex (Walchli et al., 

2015). We therefore chose to focus on the P8 brain as an understudied but actively 

angiogenic region to study the effects of Notch modulation on angiogenesis. 

 

3.1.2 Isolation of endothelial-specific mRNA from whole tissues 

 

The RiboTag method, developed by the McKnight lab (Sanz et al., 2009), allows isolation 

of cell type specific mRNA from a tissue of interest without cell disaggregation and flow 

sorting, minimizing the risk of alterations secondary to breaking cell-cell contacts, time-

dependent gene expression patterns, and mRNA quality during physical or enzymatic 

separation of cells. The RiboTag model incorporates a conditionally-expressed epitope-

tagged ribosomal protein that can be recombined with Cre recombinase in targeted cell 

types, and then used to immunoprecipitation (IP) polysomes of a cell type and the 

associated mRNA. 

 

The RiboTag mouse carries a Rpl22 allele consisting of a LoxP-flanked wild type C-

terminal exon 4 followed by an alternate C-terminal exon encoding a similar Rpl22 

sequence, but with three copies of the hemagglutinin (HA) epitope inserted before the stop 
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codon. After Cre recombination in the cell type of interest, the LoxP-flanked wild type 

Rpl22 exon 4 is removed and the Rpl22HA protein is then specifically expressed and 

incorporated into ribosomal particles in the desired cell type. The target tissue is snap 

frozen to preserve its transcriptional state, homogenized, and then anti-HA antibodies are 

used to IP HA-tagged polysomes along with their bound mRNA. This procedure results in 

isolation of polysomes from the cell type of interest, out of the bulk homogenate. 

Ribosome-associated mRNA can then be extracted for RT-qPCR, microarray or RNA-Seq 

analysis. This technique has been used successfully in multiple systems both in vivo and 

in vitro (Gonzalez et al., 2014; Lesiak et al., 2015; Sanz et al., 2013; Sanz et al., 2009; 

Shigeoka et al., 2016), and has recently been extended to mouse retinal ECs at different 

postnatal stages of angiogenesis, providing insights on the in vivo transcriptional regulation 

of normal angiogenesis over developmental stages of the postnatal mouse retina (Jeong et 

al., 2017). 

 

To target the P8 brain endothelium, we crossed the RiboTag mouse to a Cdh5CreERT2 

mouse, which expresses a tamoxifen-inducible Cre-recombinase (Cre-ERT2) under the 

regulation of the vascular endothelial cadherin promoter (VECad), and generated 

Rpl22HA/HA, Cdh5CreERT2/+ mice, known as RiboTagEC mice. This schematic is 

illustrated in Figure 3-1. 
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Figure 3-1. Schematic of the RiboTagEC mouse model  

and experimental workflow 

(Figure adapted from Gonzalez, 2014)(Gonzalez et al., 2014) Tamoxifen-inducible recombination 

of the RiboTag allele using endothelial-specific Cdh5-creERT2 led to expression of HA-tagged 

RpL22 ribosomal protein specifically in ECs. mRNA extracted from tissue homogenate were 

RNA-sequenced to build homogenate library (whole brain). Polysome-bound transcripts were IP 

from homogenate with anti-HA antibody, and was converted into polysome profiling library (EC-

specific).  

 



 

38 

 

 

 

3.1.3 Modulation of Notch signaling in vivo 

 

Modulation of Notch signaling by pharmacological inhibition via γ-secretase inhibitors 

(GSI) allows for a precise temporal control of Notch signaling in vivo (Bailis, Yashiro-

Ohtani, & Pear, 2014). GSI inhibits the γ-secretase-dependent S3 cleavage that releases 

the Notch intracellular domain from the Notch extracellular domain and allows the 

intracellular domain to translocate to the nucleus and form a transcriptional complex 

(Figure 3-2). Administering GSI to postnatal mouse results in inhibition of Notch signaling 

and causes an increase in the number of tip cells and vascular sprouts in developing retinal 

vasculature, consistent with other Notch loss of function phenotypes (Ahmad et al., 2011; 

Benedito et al., 2009; Zarkada, Heinolainen, Makinen, Kubota, & Alitalo, 2015).  
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Figure 3-2. Schematic of Gamma secretase inhibitors (GSI)  

inhibition of Notch signaling  

(Figure adapted from Teodorczyk and Schmidt, 2015)(Teodorczyk & Schmidt, 2014) The 

interaction between Notch ligand and receptors lead to S2 cleavage on the extracellular site by 

ADAM10 or ADAM17, followed by S3 cleavage by gamma-secretase-presenilin complex. The S3 

cleavage give rise to NICD.  GSIs have been widely used to inhibit Notch and are already in clinical 

trials.  

 

In order to capture early transcriptional changes in ECs following Notch modulation, we 

administering the GSI N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-

butylester (DAPT) to postnatal RiboTagEC mice, using previously established dosage 

repressor 
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(Zarkada et al., 2015).  With this system, we profiled the endothelial transcriptome from 

P8 brains, as well as selected other tissues for differentially expressed genes collected at 

earliest timepoints of Notch signaling inhibition after DAPT administration.  

 

In summary, our strategy aimed at profiling the endothelial mRNA isolated from P8 brains 

from our RiboTagEC mouse model after GSI based inhibition of Notch signaling. By 

focusing on early timepoints after GSI treatment, we aimed to capture the early endothelial 

Notch transcriptional landscape during angiogenesis and identify novel Notch targets.  

 

3.2 Analysis- Profiling Notch signaling using RiboTagEC system  

  

3.2.1 Optimization of the RiboTagEC system 

 

3.2.1.1  Rpl22HA expression was detected specifically and efficiently in endothelial 

cells  

 

To induce Cre recombination in neonatal RiboTagEC mice the nursing females were 

gavaged with 250 mg/kg tamoxifen in oil at postnatal day (P) P1, P2 and P3. 

Recombination efficiency and tissue specificity of Rpl22HA expression was confirmed by 

sectioning the brains of P5 pups and immunostaining for HA and endothelial marker 

isolectin B4 (IB4) (Figure 3-3). These sections showed nearly complete overlap between 
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Rpl22HA and endothelium, demonstrating robust and specific expression of Rpl22HA in 

endothelial cells in mice brain. 

 

 

 

Figure 3-3. Rpl22-HA staining 

Rpl22-HA expression (Anti-HA, red) was detected specifically and efficiently in the endothelial 

cells (IB4, green) of P5 brain of RiboTagEC mice 

 

3.2.1.2 HA Antibody ab9110 generated higher yield of RNA compared with the 

previously established antibody 

 

To optimize immunoprecipitation of Rpl22HA polysomes, we screened multiple anti-HA 

antibodies.  Using tumor tissues collected from RiboTagEC mice, we found that the ChIP-
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grade polyclonal antibody ab9110 (Abcam) yielded higher quantity of RNA with good 

quality (with RNA integrity number (RIN) > 9), compared to other antibodies including 

the antibody previously published in RiboTag studies (HA11, Covance) (Figure 3-4) 

(Gonzalez et al., 2014; Sanz et al., 2013; Sanz et al., 2009). A recent study indicated that 

these two antibodies were similarly effective in precipitating RpL22HA, but ab9110 co-

purified increased amounts of 80S ribosomes than antibody HA11 and thus generated 

higher yield, consistent with our findings (Shigeoka et al., 2016). 

 

 

Figure 3-4. Comparison of IP efficiency using selected antibodies 

Four different anti-HA antibodies including ab9110 (Abcam), Anti-HA.11(BioLegend), C29F4 

(Cell Signaling), and home purified antibody 12CA5 were tested in the RiboTag IP process using 

xenografted tumor tissues (LLC tumors) collected from RiboTagEC mice. Anti-HA.11 was mostly 

widely used in previous studies. Ab9110 yielded significant higher amount of mRNA after IP 

compared with the other three antibodies. IP efficiency was measure as the quantity (ng) of mRNA 

after IP out of 1g of input total RNA.  

 

3.2.1.3  Negative control study indicated little contamination of the IP system 
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One challenge of the RiboTag technique is the non-specific binding of mRNAs to 

antibodies and/or antibody-binding proteins that are used to precipitate antibodies and their 

associated complexes. To examine the level of background RNA binding, brains from Cre-

negative RiboTag mice were used as negative controls and were found to give extremely 

low yield (<1ng out of 1g input total RNAs after IP) of mRNA after the RiboTag IP 

process, indicating very little contamination of the system when the HA-tagged Rpl22 is 

not expressed (Figure 3-5). We also tested other tissue types and found that some tissues, 

such as xenografted tumor, exhibited more non-specific RNA binding, but this background 

could be reduced by pre-clearance of the tissue lysates with Protein A magnetic beads. 

 

 

 

Figure 3-5. IP effeciency of RiboTagEC mice and Cre negative control mice 

Cre negative mice from the same litter was used as negative control. Low amount of RNA (<1ng) 

was detected after IP from Cre negative mice, indicating little contamination of the system. 

 

3.2.2 Pharmacological modulation of Notch- time course study  
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To capture the dynamic process and establish the earliest robust response, we performed a 

time-course screen by harvesting P8 brains and retinas from mice at 4, 6, and 8  hours after 

a single dose of 100mg/kg DAPT or vehicle (10% ethanol and 90% corn oil) injection. 

RNA was extracted from tissue homogenates and quantitated the expression levels of 

canonical Notch targets by RT-qPCR.  

 

As expected, DAPT treatment significantly reduced the expression of canonical target 

genes in all conditions and timepoints compared to vehicle. The effects of DAPT treatment 

were measurable as early as 4 hours. However, treatment with DAPT for 6 hours showed 

the strongest effect on expression levels of select canonical targets (Figure 3-6). From these 

experiments, we determined that 6 hours treatment enabled an early yet robust response 

after DAPT injection. 
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Figure 3-6. Time course study of DAPT treatment in postnatal mice 

Brains and retinas were harvested from P8 mice at 0, 4,6,8 hours after 100mg/kg DAPT or vehicle 

(10% ethanol and 90% corn oil) treatment. RNA was extracted from homogenized tissues and was 

subjected to RT-qPCR to evaluate canonical Notch targets including Hey1, Hey2, Hes1 and Nrarp. 

All four genes showed significant inhibition at 6 hours. No significant further inhibition was 

detected at 8 hours.  
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3.2.3 6-hour profiling of ECs from RiboTag mouse brain  

 

To identify early response changes (altered after 6 hours of inhibition) in expression in-

vivo, we selected 6 postnatal day 8 littermates mice for the study, where half were treated 

with DAPT and the other (control) half received the vehicle (i.e. 3 DAPT treated + 3 

Vehicle treated/Control).  6 hours after DAPT administration, we collected different 

tissues (Brain, Retina, Lung, Liver) from these mice and isolated polysome-associated 

mRNA using the RiboTag IP process, as described in the workflow below (Figure 3-7). 

Here we focused on brains for RNA-seq analysis of endothelial, polysome associated 

mRNA.   

 

 

Figure 3-7. Experimental workflow of the 6 hour profiling studies 

 using P8 RiboTagEC mice  
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Nursing females were gavage with (250mg/kg) tamoxifen from P1-P3 to induce Cre recombination 

in neonatal RiboTagEC mice. On P8, RiboTagEC pups were injected with either 100mg/kg DAPT 

(n=3) or vehicle (n=3). 6 hours later, mice were sacrificed and tissues including brain, retina, heart, 

liver, lung and kidney were collected and snap frozen in liquid nitrogen. Tissue can be stable in 

liquid nitrogen for months. Brains were used in this study for RiboTagIP and RNA-seq purposes. 

Both homogenate mRNA and the IP-derived RNA were sent for RNA-seq. A total of 12 samples 

were sequenced: DAPT-Input (n=3), DAPT-IP (n=3), Control-Input (n=3), and Control-IP (n=3). 

 

The mRNA isolated from tissues was used to generate two distinct samples; 1) EC specific 

mRNA library obtained from RiboTag-IP fraction of the brain, and 2) a homogenate 

mRNA library isolated from the input fraction of the brain which represents mRNA from 

the whole tissue. Samples from four categories (GSI-IP, GSI-Input, Vehicle-IP, Vehicle-

Input) were sequenced at a depth of ~30 million 100-base single-end reads on the TruSeq 

platform in the Sulzberger Columbia Genome Center. Reads from IP-ribosomes were 

analyzed first to remove rRNA reads with Bowtie2 and then mapped to the mouse 

transcriptome Mouse: (UCSC/mm10) using STAR and processed with Samtools. The 

counts obtained by FeatureCounts were analyzed by DESeq2 to identify differentially 

expressed genes.  

 

3.2.3.1 Samples clustered into four group by PCA plot 

 

Two-dimensional principal component analysis (PCA) was done to identify the variability 

along the samples. The samples segregated into four clusters: GSI treated homogenate 

mRNA, control homogenate mRNA, GSI treated RiboTag-IP mRNA, control RiboTag-IP 

mRNA. The biggest source of variability in the data (principal component 1/PC1) comes 
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from tissue types (homogenate VS endothelium), and another main variability source 

(principle component 2/PC2) is from drug treatment (vehicle VS control) (Figure 3-8). 

 

 

Figure 3-8. PCA plot of the 12 samples sequenced  

Two-dimensional principal component analysis (PCA) plot showing segregation of the mice brain 

homogenate (red and green, left) and Endothelial fraction (dark blue and light blue, right) into two 

clusters. The analysis also segregated mice into two additional clusters after 6h treatment with 

DAPT, resulting in a total of four groups of clustered samples including control homogenate (red), 

control IP (dark blue), DAPT homogenate (green), and DAPT IP (light blue). 

 

3.2.3.2 Significant enrichment of endothelial markers was detected in IP samples 

compared with control 
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To test the samples for successful immunoprecipitation of endothelial mRNA, we 

compared the expression levels of pre-selected endothelial-specific genes among the Input 

versus IP samples. As expected, the expression of endothelial specific markers was 

significantly and consistently enriched in the IP fractions in comparison to the Input, in all 

samples (Figure 3-9). This analysis confirmed endothelial-specificity achieved by the 

RiboTagEC system. 

 

 

Figure 3-9. Enrichment of endothelial markers in RiboTag-IP samples 

Differential expression analysis comparing homogenate (n=6) and IP isolated RNA (n=6) 

showed significant and consistent enrichment of pre-selected endothelial (including Emcn, 

Pecam1, Cdh5, Cldn5, and more) markers across all samples. 

 

3.2.3.3 Gene set enrichment analysis confirmed successful inhibition of canonical 

Notch targets  
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To exam the Notch inhibition efficiency with GSI administration, we performed the Gene 

Set Enrichment Analysis (GSEA) of Notch signaling pathway and identified significant 

under-presentation of multiple established Notch targets in GSI-treated group in both 

homogenate and IP samples ( 

Figure 3-10). Known targets such as Hey1, Hes5, Cxcr4, Dll4, Gja5 (connexin40), and 

Nrarp were significantly inhibited (with Padj<=0.05, Log2FoldChange>0.27) in both 

whole homogenate and brain endothelium. Interestingly, a small group of genes including 

Hes1, Hes3, Efnb2, Flt4, were detected as significantly down-regulated in the endothelium 

but not the brain homogenate. While other genes like Hey2, Pdgfb were detected in 

homogenate but not endothelium. This data suggested successful inhibition of Notch 

signaling 6 hours after GSI treatment. Moreover, it also revealed tissue-specific gene 

response to Notch that worth future analysis. 
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Figure 3-10. GSEA analysis of Notch signaling pathway  

Gene Set Enrichment Analysis of Notch signaling pathway identified downregulation of majority 

of the established Notch targets such as Hey1, Hes1, Cxcr4, Hes5 and Efnb2 in the DAPT treated 

input (brain homogenate) and IP (brain EC) samples. This analysis confirmed the successful 

inhibition of Notch using DAPT, and more importantly, 6 hour after treatment was an appropriate 

timepoint to identify gene expression changes of primary Notch downstream targets.  

 

 

IP samples Input samples 
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3.2.3.4 Common and endothelial specific Notch targets were detected in GSI treated 

group 

 

In order to identify Notch targets in brain endothelium, we interrogated the RNA-seq data 

for increased amounts (upregulated) or decreased amounts (downregulated) of mRNA in 

the GSI treated samples compared with control. Significantly changed mRNAs for specific 

genes were identified with an adjusted P-value of <=0.05. Potential candidate genes were 

chosen based on their significance and their log2foldchange values (log2FC with at least 

+/- 0.27, fold ~= +/- 1.2fold). In order to identify primary Notch downstream targets which 

should be down regulated by GSI, we only focused on the down regulated genes as 

potential candidates.  

 

Analysis of the homogenate fraction identified 76 significantly downregulated genes of 

fold change at least 1.2 after GSI treatment.  In the brain ECs (IP fraction), we identified 

591 genes significantly repressed by GSI with fold change at least 1.2 at 6h. Among those 

591 genes, 27 were common targets in both homogenate and the endothelium, while 564 

genes were uniquely identified in endothelium which could be endothelial-specific Notch 

responsive genes (Figure 3-11 and Figure 3-12). 
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Figure 3-11. Volcano Plots: transcriptional changes of brain EC (IP fraction) after 6 

hour of DAPT treatment compared with Vehicle  

Volcano plots showing transcriptional changes after 6h of DAPT treatment on the IP fraction. The 

x-axis represents the Log fold change calculated in this analysis, and the y-axis shows the Log10 

P values. Each gene is represented by a dot. Dots in red indicate genes that are statistically 

significant (Padj < 0.05). Additionally, the green dots represent genes that are up/downregulated 

1.2fold. Black dots are genes that not significantly altered in expression level. Because Notch is 

transcriptional activator and GSI functions as Notch inhibitors, we only focused on significant 

down-regulated genes with a fold change at least 1.2 (green box). 
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Figure 3-12. Comparison of significant downregulated genes  

in homogenate (brain) and IP (brain EC) fraction  

 

Venn plots generated by comparing the homogenate and endothelial fraction from P8 mouse brain. 

In the homogenate fraction (shaded in Blue), 76 genes of 213 (Padj < 0.05) were significantly 

repressed 1.2fold or higher, following DAPT treatment for 6h. Similarly, the endothelial fraction 

(shaded in Orange) identified 591 genes of 929 (Padj < 0.05) to be repressed 1.2fold. Comparing 

the two fractions of genes (Fold Change of 1.2 or higher) identified 27 common genes between the 

two fractions.  

 

Table 3-1 shows the top 30 downregulated genes identified in brain EC ranked by fold 

change. Among the top 20 EC-specific genes were canonical targets including Cxcr4, Hes5, 

Dll4, Gja5, and Nrarp, as well as multiple interesting novel candidates. For example, the 

netrin receptor Unc5B has been well established to play an anti-angiogenic role during 

embryonic vascular patterning, as well as in postnatal and pathological angiogenesis 

(Larrivee et al., 2007; Lu et al., 2004). However, it has never been linked with Notch 

signaling pathway in previous studies. Our data suggests a novel mechanism that Notch 

regulates the Unc5b pathway to carry out angiogenic functions. 
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Table 3-1. Top 30 genes ranked by fold change of GSI-treated brain EC 

Symbol Log2FC Padj common with Input? 

Hes5 -2.49  2.30E-13 Y 

Gpx6 -2.29  2.55E-02 N 

Cxcr4 -2.19  1.43E-88 N 

Kcnj8 -1.87  1.05E-07 Y 

Unc5b -1.50  3.29E-46 Y 

Gm14207 -1.46  5.21E-07 N 

Bricd5 -1.41  8.24E-04 N 

Syt15 -1.22  3.40E-25 N 

Scgb3a1 -1.14  3.38E-06 N 

Dll4 -1.14  3.43E-32 N 

Gja5 -1.06  8.36E-25 N 

Foxs1 -1.06  8.46E-03 Y 

Hey1 -1.04  2.41E-17 Y 

Cmklr1 -1.04  1.96E-15 N 

Rnase1 -1.03  4.33E-02 N 

Tbx2 -1.02  1.49E-03 Y 

Rhbdl2 -1.02  1.77E-02 N 

Kcnj2 -1.02  7.25E-17 N 

Efna1 -0.98  1.13E-24 N 

Sat1 -0.93  1.47E-21 N 

Nrarp -0.93  4.19E-21 Y 

Gipc3 -0.88  2.46E-02 N 

Myh11 -0.88  3.42E-02 N 

Mapk8ip2 -0.86  4.15E-02 N 

Gja4 -0.86  1.34E-28 N 

Cdkn2b -0.84  1.36E-06 N 

Zfp69 -0.83  2.59E-05 N 

Mfsd2a -0.83  9.36E-44 N 

Ptp4a3 -0.81  2.94E-19 N 

 

Table 3-1 shows the most inhibited genes in brain ECs 6 hours after DAPT treatment. Multiple 

canonical Notch target genes (red) were within the list, together with a great number of novel genes. 

Majority of the genes were not significantly inhibited in brain homogenate. 
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3.2.3.5 Gene Ontology analysis revealed G-protein coupled receptor pathway as 

potential Notch effectors. 
We further interrogated the list of DEGs to identify pathways that were altered by GSI 

treatment in both the homogenate and EC population. We performed a Statistical Over-

representation test using the Fisher’s exact test (PANTHER GO). Analysis identified 

several significant pathways that are altered, as shown in Figure 3-13. As expected, Notch 

pathway was repressed by GSI treatment in both the homogenate (Fold enrichment = 12.56, 

FDR= 0.00421) and the brain EC population (Fold enrichment = 4.64, FDR = 0.0189).  
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Figure 3-13. Gene Ontology Pathway Analysis 

Figure showing the gene ontology pathways identified on genes repressed by GSI in the 

homogenate and endothelial fraction. The analysis was done using PANTHER DB using the over-

representation test using the Fisher’s exact test. The analysis identified enrichment of the Notch 

signaling pathway in both the homogenate and the endothelial fraction. Analysis on endothelial 

fraction additionally identified involvement of the Rho and Ras pathways, indicating involvement 

of the G protein related pathway. 



 

58 

 

 

 

 

Interestingly, the analysis indicated the Notch inhibition downregulates the Rho and Ras 

pathways, implicating the G-protein related pathway as effectors of Notch signaling, as 

highlighted in Figure 3-13. This finding is interesting because G-protein pathways plays 

fundamental role in regulating cell behavior but the role of this pathway in Notch signaling 

has rarely been reported. Figure 3-14 and Volcano plots showing transcriptional changes 

of selected G protein/GPCR related genes after 6h of DAPT treatment on the IP fraction. 

The x-axis represents the Log fold change calculated in this analysis, and the y-axis shows 

the Log10 P values. Each gene is represented by a dot. We only focused on significant 

down-regulated genes with a fold change at least 1.2 (green dot area). 

 

Table 3-2 listed selected G-proteins related effectors that’s been identified. 
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Figure 3-14. Volcano plot of selected G proteins identified  

as potential Notch targets in brain EC   

Volcano plots showing transcriptional changes of selected G protein/GPCR related genes after 6h 

of DAPT treatment on the IP fraction. The x-axis represents the Log fold change calculated in this 

analysis, and the y-axis shows the Log10 P values. Each gene is represented by a dot. We only 

focused on significant down-regulated genes with a fold change at least 1.2 (green dot area). 

 

Table 3-2. Listed of selected G proteins identified  

as potential Notch targets in brain EC   

Gene Log2FC Padj 

Myh11 -0.88 3.42E-02 

Prr5 -0.56 5.62E-06 

Rps6ka1 -0.48 5.19E-07 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0
2

4
6

8
1

0
1
2

Brain Ribotag IP

log2FoldChange

-l
o

g
1

0
(p

v
a

lu
e

)

Rhoj

Rnd1

Arpc1b

Myh11

Rhoc

Pik3cg

Prr5

Rps6ka1

Ets1



 

60 

 

 

Pik3cg -0.46 5.55E-03 

Pfn1 -0.45 4.55E-06 

Tubb6 -0.44 5.03E-05 

Ets1 -0.43 1.24E-09 

Vasp -0.43 6.14E-06 

Arpc1b -0.42 6.34E-04 

Rhoj -0.41 4.31E-06 

Actb -0.39 4.67E-05 

Tiam1 -0.38 4.10E-06 

Rhoc -0.36 6.14E-06 

Ralb -0.35 4.23E-03 

Mapk12 -0.32 1.49E-02 

Rnd1 -0.3 1.96E-02 

Rps6ka2 -0.29 1.59E-02 

Cfl1 -0.29 4.73E-03 

 

Table 3-2 listed selected G protein/GPCR related genes significantly inhibited (Padj<0.05, 

LogFC<0.27) in P8 brain endothelium after 6h of DAPT treatment . Genes were listed by fold 

change. 

 

3.3 Discussion 

 

Notch signaling plays an important role in regulating angiogenesis by regulating complex 

transcriptional networks (Tung et al., 2012). However, the full repertoire of Notch target 

genes regulated in mammalian endothelium is largely unknown. In this study, we 

generated a mouse model to isolate EC specific mRNA from brain tissue homogenate from 

P8 mice. This allowed us to profile the transcriptional changes that occur within 6 hours 

of GSI based inhibition of Notch signaling. Our analysis showed that several known Notch 

targets and numerous novel genes were modulated at 6 hours (See section II.B.2). Of 

particular interest, “G protein pathway” was identified as significantly down-regulated in 
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the endothelial in response to GSI treatment, which may represent a novel mechanism of 

Notch regulation in endothelial cells (See section II.B.3,4).  

While this screen allows us to understand the early response to GSI at the transcriptional 

and translational level, the study design is not without limitations: 

1) While GSI has largely been used to modulate Notch signaling, it is important to 

consider that the results of the screen could also be caused by its effect on other 

gamma-secretase substrates such as VEGF Receptor signaling (Haapasalo & Kovacs, 

2011). This is important and may influence the interpretation of this screening data. 

2) Similarly, administering GSI subcutaneously targets a variety of cell types beyond 

endothelial cells. While, the RiboTag model used in our study, allows isolation of 

mRNA specifically from ECs, it does not control for signals that originate from the 

interaction between ECs and other cell types in the tissue of interest. This crosstalk 

could influence the gene expression patterns we observe. 

 

One way to overcome these limitations, is to understand the early transcriptional changes 

that occur after specifically stimulating the Notch receptor in ECs. This can be done in an 

in-vitro setting by stimulating ECs with its ligands, but is currently difficult to accomplish 

ligand-dependent Notch signaling in a mammalian, whole animal setting. Therefore, we 

performed an unbiased screening by using primary endothelial cell types from two 

different tissues, human umbilical vein and retina, to confirm our findings from the in-vivo 

analysis. 
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Chapter 4 Tethered Notch Ligand-mediated and EGTA-mediated 

activation of endothelial Notch signaling define ligand specific 

Notch transcriptional response. 

4.1  Strategy and Rationale 

 

In the previous study, we assembled a dataset of endothelial genes that respond to Notch 

inhibition by GSI treatment in vivo. However, we anticipate that some of these candidate 

target genes are not bona fide endothelial Notch targets, but are instead modulated by non-

Notch effects of GSI treatment or secondary effects caused by Notch signaling changes in 

adjacent cell types such as pericytes and smooth muscle cells. We therefore set out to 

validate endothelial Notch targets by specifically inducing Notch activity in isolated 

human primary endothelial cells using both Dll4 and Jag1 as Notch activating ligands. 

Further, the approach of ligand activation in vitro allows for description of ligand-specific 

(Jag1 versus Dll4) Notch transcriptional responses in endothelial cells. We hypothesize 

that an in vitro unbiased screen of genes upregulated by ligand-specific Notch induction 

will detect an overlapping set of genes as the in vivo screen and permit us to refine our in 

vivo dataset by focusing on candidates that are also directly induced by Notch ligand 

binding, in addition to being down-regualted by GSI in vivo.  

 

We anticipate that some Notch targets are expressed at low levels under homeostatic in 

vivo conditions, and their further suppression by Notch inhibition will be difficult to detect. 

We therefore hypothesize that in vitro Notch induction will detect additional endothelial 
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Notch targets that may have only minimally been suppressed by Notch inhibition in vivo, 

but are strongly and rapidly induced by Notch signaling.  

 

4.1.1 Ligand-specific activation of Notch 

 

Both of the endothelial Notch ligands, DLL4 and JAG1, play important roles in regulating 

tip/stalk cell selection in angiogenesis (Benedito et al., 2009) but their activity has 

opposing effects in angiogenic regulation in endothelial cells.  This difference has not been 

analyzed carefully at the mechanistic level, a goal of this Chapter. Identifying how each of 

these two ligands regulate Notch signaling will allow a better understanding how Notch 

regulates angiogenesis.  

 

The ligand DLL4 has been extensively studied in physiological and pathological 

angiogenesis. Haploinsufficiency of Dll4 in mice caused embryonic lethality due to 

vascular defects (Duarte et al., 2004; Gale et al., 2004; Krebs et al., 2004). In the context 

of tumors, blockade of Dll4 signaling promoted excess but non-functional angiogenesis, 

thus inhibiting tumor growth (Noguera-Troise et al., 2006; Ridgway et al., 2006). Data 

from a microarray-based screening study in HUVECs with retroviral-mediated DLL4 

overexpression (OE) identified DLL4 as a suppressor of VEGFR2 expression, and inducer 

of VEGFR1 and sVEGFR1 (Harrington et al., 2008). While these studies provided 

important insights into the network of DLL4-NOTCH regulation, the method of study did 

not allow identification of primary response genes following DLL4-NOTCH activation. In 

addition, these studies used overexpression of Notch ligands in the same cell as the receptor, 
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which can cause cis-inhibition of Notch, and counterintuitively, downregulation of Notch 

signaling (del Alamo, Rouault, & Schweisguth, 2011).  

 

Unlike DLL4, the role of JAG1 in ECs remains controversial and elusive. It is suggested 

that JAG1, as an inactive or weakly-acting ligand, promotes angiogenesis by antagonizing 

DLL4-mediated activation of Notch signaling in fringe-modified endothelial cells 

(Benedito et al., 2009). However, data from our group and others suggest that JAG1 can 

activate EC-Notch signaling to promote angiogenesis(Chang et al., 2011; Kangsamaksin 

et al., 2015). Our lab demonstrated that blocking JAG1 activity in ECs using the JAG1 

specific Notch1 decoy downregulated canonical Notch targets including HEY1, HEYL, and 

HES1(Kangsamaksin et al., 2015). But the mechanism of how JAG1 mediates Notch 

signaling still remains to be addressed. Thus, our studies implicate JAG1 as an active 

ligand in endothelium, however, the activity mediated by JAG1 may differ from that 

elicited by DLL4. 

 

Therefore, we focused on identifying primary/early response genes that are differentially 

regulated following DLL4-NOTCH or JAG1-NOTCH activation using a more 

physiological stimulation approach: the tethered ligand assay. Under physiological 

conditions, the ligand and the receptor are on adjacent cells and thus embedded in different 

membranes.  The interaction of the ligand and the receptor activates endocytotic 

mechanisms acting on the receptor and the ligand and creates a pulling force (Varnum-

Finney et al., 2000).  This pulling force exposes the negative regulatory region (NRR) of 

the Notch receptor to ADAM proteins, leading to S2 cleavage. In our model system, ligand 
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is immobilized onto coated dishes and cells are seeded on top, which supports tension 

against Notch and mimics the way that Notch ligand is presented on a cell surface(Li et al., 

2007).  

 

In order to validate our in vivo dataset and elucidate the possible separate mechanism(s) 

downstream of DLL4-NOTCH and JAG1-NOTCH, we performed an unbiased screening 

of endothelial Notch genes whose expression is stimulated by Notch ligands in human 

endothelial cells using the tethered-ligand assay combined with RNAseq, focusing on early 

transcriptional responses (within 6 hours) to Notch activation.  

 

 

4.1.2 EGTA-dependent activation of Notch 

  

In our attempt to detect genes that rapidly respond to Notch signaling, we have tried to 

limit the period between Notch inhibition/induction and RNA harvest as tightly as possible.  

While we optimized a chemical gamma-secretase inhibitor (DAPT) of Notch in the 

RiboTagEC study, DAPT still takes time to diffuse and function in the mouse. Similarly, 

in the tethered ligand activation assay, the cells seeded on to the ligand-coated plates can 

settle at variable rates and it is difficult to precisely control the time at which the seeded 

cells contact the immobilized ligand. Therefore, as a third approach, we employed an ion 

chelator-based Notch activation method that allows for very tight temporal control of 

Notch activation. By conducting this EGTA activation method with or without a GSI, we 

sought to identify endothelial genes rapidly regulated by Notch signal activation. 
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Notch proteins are composed of a ligand-binding extracellular domain (NEC), a single-

pass transmembrane signaling domain (NTM) and the Notch intracellular domain (NICD). 

The NEC and NTM are bound by a non-covalent interaction stabilized by Ca2+ (Rand et 

al., 2000). Treatment of cells with the calcium chelators such as EDTA and EGTA leads 

to shedding of the Notch ectodomain and renders the residual transmembrane fragment 

open for ADAM and γ-secretase cleavage (S2 and S3 cleavage) resulting in immediate 

Notch activation(Gupta-Rossi et al., 2001; Krejci & Bray, 2007; Rand et al., 2000).  

 

EGTA based Notch activation method offers the advantage of a precisely timed NOTCH 

activation method and counters the issues with the previous two methods (RiboTag and 

tethered ligand activation) in controlling the timepoint for detecting early response Notch 

targets. However, EGTA is not a specific activator of Notch and so this screen serves as a 

validation for candidates identified in the other two screens.  

 

4.2 Strategy & Analysis: Profiling Notch-mediated gene expression using the 

Tethered-Ligand Assay (TLA) 

 

4.2.1 Optimization of the tethered-ligand assay 

 

In tethered-ligand assay (TLA), we immobilized the extracellular domains of human DLL4 

fused to Fc (10171-H02H, Sino Biologicals Inc.), JAG1-Fc (11648-H02H, Sino 

Biologicals Inc.), or IgG-Fc control proteins (10702-HNAH, Sino Biologicals Inc.) with 
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extracellular matrix (ECM) on dishes. Then, we seeded ECs onto these coated plates for 

different periods of time after which we measured Notch activation by CSL-Luciferase 

reporter assay, focusing our analysis with the use of RT-qPCR of canonical target genes 

or via RNA-seq (Figure 4-1). In order to achieve the optimal activation effects, we started 

by testing different conditions including choices of matrix, dosage and timepoint.  

 

Figure 4-1. Schematic of Tethered Ligand Assay 

 

4.2.1.1 No differences in Notch activation with different ECMs tested 

 

We tested the effects of coating different cellular matrices on the level of Notch activation. 

We coated the ligands with fibronectin, gelatin or collagen and measured the level of Notch 

activation in HUVECs using CSL-Luciferase reporter assay. We identified no significant 

differences in the level of activation, as measured by Notch reporter luciferase signaling, 

caused by the different ECMs (Figure 4-2). 
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Figure 4-2. No significant difference in Notch activation 

 detected using different ECMs 

Luciferase was utilized to measure Notch activation by tethered ligand using different ECMs 

including fibronectin, collagen and gelatin. HUVECs transfected with pGL-11CSL-Luc and 

Renilla were seed on (10 g/ml) Dll4-Fc mixed with different choice of ECMs for 24 hours. Notch 

signaling was measured by the dual-luciferase-assay (see Chapter II). No significant difference 

was detected utilizing different ECMs.  

 

4.2.1.2  DLL4 more efficiently activated NOTCH in HUVEC than JAG1 

 

We performed a ligand concentration estimation to determine the minimum dose with 

maximum levels of Notch activation. For both DLL4 and JAG1, we tested concentrations 

ranging from 1 g/ml-100 g/ml. For DLL4, 10 g/ml was sufficient to activate Notch 

signaling in HUVECs (Figure 4-3).  To test for the specificity of the DLL4 induction, we 

overexpressed pan-Notch inhibitor dominant negative Mastermind Like (dnMAML) in 

cells, which significantly reduced the induction signal caused by ligand-based stimulation 

(Figure 4-4). These results indicate that the signaling observed was due to interactions 

Normalized Luciferase signaling in HUVECs 
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between Dll4 and Notch that led to Rbp-Jk mediated transcriptional events, not any other 

incidentally activated pathways. 

 

 

 

Figure 4-3. Low dose of Dll4 activated EC Notch, while Jag1 activated Notch in 

HeLa but not in HUVECs 

Dose curve studies were performed on both ligands using Luciferase reporter assay. 10 g/ml of 

Dll4 is sufficient in activating EC Notch. High dose(40-80 g/ml) can activate Notch signaling in 

HeLa cells but not in HUVECs.  

 

 

Normalized Luciferase signaling  
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Figure 4-4. DnMAML OE inhibited tethered-Dll4 stimulated  

Notch signaling in HUVECs  

Luciferase reporter assay was used to measure the Notch activation of lentiviral-mediated 

DnMAML Over Expression (OE) HUVEC stimulated by tethered-Dll4. DnMAML OE completely 

inhibited the Notch activation by Dll4.  

 

When JAG1-Fc was used to induce Notch signaling, we observed lower responses relative 

to DLL4 in HUVECs, with no concentrations sufficient to achieve significant induction of 

luciferase activity that compared to that achieved by using DLL4-Fc (Figure 4-3). To 

determine if this was a HUVEC-specific response, we tested JAG1-Fc induction in HeLa 

cells. The magnitude of response was higher in HeLa, but a minimum of 40 g/ml of JAG1 

was necessary to significantly induce Notch signaling (Figure 4-3). We conclude that 

increasing the concentration of JAG1-Fc was not able to replicate the magnitude of the 

effect seen when DLL4-Fc was used to activate Notch in two different cell types. We were 

concerned that the low degree of JAG1-NOTCH response was due to inability to properly 

present JAG1 when using the tethered ligand system, so we repeated these assays using a 

co-culture system, where HUVEC cells expressing the Notch CSL-Luciferase reporter 

were co-cultured with HeLa cells expressing selected Notch ligands to stimulate Notch in 

Normalized Luciferase signaling  
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the context of normal cell-cell contact.  In the co-culture system, JAG1-Fc continued to 

show lower induction of Notch signaling than that achieved by DLL4-Fc (Figure 4-5). This 

may be explained by poor responsiveness of endothelial cells to JAG1, or the possibility 

that endothelial JAG1 functions through a non-canonical, CSL-independent signal 

transduction, which cannot be efficiently detected by the CSL-luciferase reporter.  

 

 

 

Figure 4-5. Dll4, but not Jag1 activated EC Notch using co-culture system 

HeLa cells overexpressing Jag or Dll4 was co-cultured with HUVEC transfected with pGL3.11 

CSL Notch reporter. Notch activity was measured using dual luciferase assay. Dll4, but not Jag1 

activated Notch in HUVECs. 

 

 

4.2.1.3 Robust Notch activation was detected 6 hours after seeding the cells 
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In order to identify early effectors/primary response genes after Notch activation, we 

performed a time course study by quantitating gene expression of selected canonical Notch 

target genes. We identified robust response 6 hours after seeding the cells (Figure 4-6). We 

estimate that this timepoint is a snapshot of the gene expression profile approximately 3-4 

hours. after HUVECs fully contact the ligands, based upon visual assessments of the time 

it takes for HUVEC to fully settle onto plates and cell spreading to have occurred, which 

took approximately 2 to 3 hours.  

 

 

Figure 4-6. Time course studies of tethered-Dll4 stimulation 

HUVECs were seed on tethered-Dll4, and RNA was collected at different timepoint. 4 hours after 

seeding cells, we were able to detected significant up-regulation of Hey1 and Hes1 but with a low 

fold change. 6 hours showed a robust response of both canonical targets. 

 

 

In summary, our assessment led to optimization of the tethered-ligand assay where we coat 

the plates/well with 10 g/ml of Fibronectin ECM along with 10g/ml of DLL4-Fc/IgG-

Fc or 40 g/ml of JAG1-Fc. We also determined that the 6 hour timepoint may be optimal 
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for for gene expression profiling (comparable to the timepoint in the RiboTag study (See 

Results1: II.A). 

 

4.2.2 Transcriptome profiling and Bioinformatic analysis of the tethered-ligand assay 

 

To understand the mechanism by which Notch signals in endothelial cells, we profiled 

genes regulated by DLL4- or JAG1-Notch activation following 6 hours of ligand 

stimulation in-vitro using RNA-seq (Figure 4-7). We compared DLL4-Fc or JAG1-Fc 

stimulated ECs with IgG-Fc stimulated ECs in two different human primary endothelial 

cells whose sources were the human umbilical cord and the human retina (HUVEC and 

HRECs, respectively). Each experiment included 3 replicates for each condition. For the 

experiments with HUVECs, each experiment consisted of cells from a different isolate 

(biological replicates), while the experiments from HRECs were obtained from different 

frozen batches from a single commercially purchased vial Cell Systems (technical 

replicates). The sequencing conditions for HUVECs were ~30 million SE read depth with 

100-base fragments on the TruSeq platform in the Sulzberger Columbia Genome Center. 

Conditions for the HRECs were ~30 million PE reads with 150base-paired fragments using 

the services of Novogene corporation. 
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Figure 4-7. Schematic of TLA screening  

10 g/ml of Dll4-Fc, 40 g/ml of Jag1-Fc and 10 g/ml Fc control mixed with 10mg/ml 

Fibronectin were used to coat tissue culture dishes. HUVECs and HRECs were seeded onto the 

coated dishes at sub-confluency and incubate for 6 hours. RNA were then extracted and subjected 

to RNA-seq. 

 

Raw reads from the HUVEC and HRECs were mapped to the Human database 

(ENSEMBL/GRCh38) using STAR (version 2.5.0a) and processed with Samtools (version 

1.4.1). The counts obtained by FeatureCounts were analyzed by DESeq2 to identify 

differentially expressed genes. 

6 hours after seeding cells 



 

75 

 

 

 

4.2.3 Identifying endothelial gene transcripts significantly stimulated by Dll4-Fc 

 

4.2.3.1 PCA of HUVEC samples showed significant batch effect, and HREC samples 

exhibits tight clustering  

 

We assessed the quality of these samples by determining the clustering patterns using the 

PCA plots. The PCA analysis of the HUVECs showed a differential segregation of one 

sample in both conditions, indicating a batch effect. The PCA plot of the HREC showed 

tight clustering of the 3 replicates within each condition (Figure 4-8). 

 

HUVECs 
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HRECs 

 

 

 

 

 

 

 

 

 

 

Figure 4-8. PCA plot of DLL4-TLA  

Two-dimensional principal component analysis (PCA) plot showing segregation of the DLL4 

stimulated samples and Fc samples into two clusters. HUVECs exhibited large variance between 

individual samples. HRECs showed tight clustering.   

 

4.2.3.2 Gene Ontology analysis shows enrichment of genes in Angiogenesis and Notch 

pathways 

 

Gene Ontology analysis (PANTHER Db) on the upregulated (Padj=0.05) from both 

HUVECs and HRECs identified enrichment of several pathways.  As expected, GO:Notch 

signaling pathway (Fold enrichment HUVECs/HRECs= 8.28/5.28, FDR= <0.05) and 

GO:Angiogenesis (Fold enrichment HUVECs/HRECs= 2.89/2.98, FDR= <0.05), were 

enriched in both cell types, as expected (Figure 4-9). 
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Figure 4-9. Gene Ontology Pathway Analysis 

Gene Ontology pathway analysis showed significant enrichment of “Angiogenesis pathway” and 

“Notch signaling pathway” (indicated by the arrow) in Dll4-upregulated genes in both HUVECs 

and HRECs 

 

4.2.3.3 Novel and canonical DLL4-Notch targets were identified after 6 hour. of DLL4-

stimulation 

 

Differential gene expression analysis of the HUVECs and HRECs identified both 

canonical and novel gene targets with significant expression changes in the DLL4-Notch 

induced ECs. Since the aim of our study was to identify direct/primary Notch effectors and 
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Notch signal activation leads to transition of repressed genes to transcriptional activated 

genes we focused on upregulated genes in this screen. 

 

Of the 719 genes (Padj < 0.05) in HUVECs that were significantly altered, 388 genes were 

upregulated with a fold change of at least 1.2-fold (Log2FC = 0.27). In HRECs, a total of 

3330 genes (Padj < 0.05) were significantly altered, of which 956 were upregulated by a 

fold change of at least 1.2-fold. 

 

A comparative analysis between the HUVECs and the HRECs showed overlapping genes 

(n=692) of which 340 up-regulated genes (Padj = 0.05, Log2FC =0.27) had a foldchange of 

at least 1.2-fold. (Figure 4-10) 

 

Figure 4-10. Comparison of significant Dll4 up-regulated genes 

 in HUVECs and HRECs 

Venn plots compared genes regulated by Dll4 between HUVEC and HREC. 719 genes were 

significantly regulated (Padj<0.05) in HUVEC, among which 388 genes were up-regulated 

(Padj<0.05, Log2FoldChange>=0.27). In HREC, 3330 genes were significantly regulated 

(Padj<0.05) , of which 956 genes were up-regulated(Padj<0.05, Log2FoldChange>=0.27). A 
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comparative analysis between the HUVECs and the HRECs showed 340 significantly up-regulated 

genes in common(Padj<0.05, Log2FoldChange>=0.27). 

 

As expected, we observed upregulation of multiple canonical Notch targets such as HEY2, 

DLL4, NRARP, HES1, GJA5 and EFNB2 (Figure 4 10. Comparison of significant Dll4 

up-regulated genes in HUVECs and HRECs). Among the novel genes identified, we 

uncovered a set of G-protein coupled receptor (GPCR) related genes rapidly induced by 

DLL4 in both cell types (See Table 4-2). These findings are in accordance with the findings 

from the RiboTag screen, which showed GSI mediated downregulation of GPCR genes. 

This finding is of interest because GPCRs play critical roles in cell migration, proliferation, 

changes in cell shape and polarity, and organization of cells into multicellular structures. 

A few genes like RASA1(Eerola et al., 2003) and FZD4(Ye et al., 2009) also influence 

disease states and are linked to human vascular diseases.  

 

Among the GPCRs related genes, upregulation of the Rho-GTPase RND1 was 

significantly stronger and ranked in the top 20 list of differentially expressed genes by fold 

change (See Figure 4-10. Comparison of significant Dll4 up-regulated genes in HUVECs 

and HRECs, Table 4-2 and Figure 4-11), and will be discussed in more detail in Chapter 

5. 

 

Table 4-1. Top 20 hits induced by Dll4 in both HUVECs and HRECs, ranked by 

fold change in HUVECs 
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Table 4-2. GPCR/G proteins induced by Dll4 in both HUVECs and HRECs, ranked 

by fold change in HUVECs 

Symbol Gene log2FC Padj 

RND1 Rho family GTPase 1 4.56 2.4E-12 

GUCY1B3 Guanylate cyclase 1 soluble subunit beta 2.20 2.4E-04 

RAPGEF5 Rap guanine nucleotide exchange factor 5 1.60 4.5E-16 

RGS4 Regulator of G-protein signaling 4 1.24 3.0E-02 

ARHGEF17 Rho guanine nucleotide exchange factor 17 1.16 4.2E-06 

F2RL1 F2R like trypsin receptor 1 1.01 4.3E-03 

ARHGAP24 Rho GTPase activating protein 24 0.95 6.3E-06 

F2R Coagulation factor II thrombin receptor 0.78 1.0E-03 

FZD4 Frizzled class receptor 4 0.70 1.0E-02 

Blue: canonical targets 
Red: top fold change novel gene 

Box: G protein family gene 
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Figure 4-11. Volcano plots of DLL4-TLA in HUVECs and HRECs 

Volcano plots showing transcriptional changes of DLL4 stimulation compared with Fc Control. 

The x-axis represents the Log fold change calculated in this analysis, and the y-axis shows the 

Log10 P values. Each gene is represented by a dot. The dots in red indicate genes that are 

statistically significant (Padj < 0.05). Additionally, the green dots represent genes that are 

up/downregulated 1.2 folds.  Small GTPase RND1 was highlighted with star due to significant 

stronger induction fold and significance compared with other targets in both cell types. 

 

4.2.3.4 Novel genes identified by RNA-seq analysis of DLL4 regulated genes show 

similar trends when validated using quantitative PCR. 

 

We validated the expression patterns of a few GPCR related genes that may be novel 

targets with high interest by DLL4-stimulation of HUVEC and HRECs and identifying the 

expression levels after GSI treatment.  We found GSI to repress the expression levels of 

these novel targets, indicating that the expression induction of these genes was Notch 

dependent (Figure 4-12).   
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Figure 4-12. Validation of selected novel G-protein family Notch targets  

using RT-qPCR 

RNA-seq analysis of the TLA results was confirmed using RT-qPCR. Selected Novel Notch 

targets-G-protein family genes were up-regulated with Dll4 stimulation, and CpE treatment 

significantly inhibited the induction to basal level. This experiment have only been performed 

twice.  

 

4.2.3.5 Identification of genes identified both by the RiboTag brain profile and TLA 

screens 

 

Of the common genes identified by the TLA (n=692, Padj < 0.05, Log2FC>+/- 0.27), 18.2 % 

(n=126) overlapped with the RiboTag in vivo screen list (Brain IP). Of the 126 overlapping 

genes, 40 genes that were upregulated by DLL4 stimulation were downregulated in the 

brain of GSI treated RiboTag mice (Figure 4-13). Gene Ontology pathway analysis of these 

40 common genes identified GO: Notch signaling to be enriched 29.47fold (FDR=0.0143).  
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Figure 4-13. Identification of rapid (6 hour) Notch targets by Comparing Dll4-TLA 

and RiboTag screens 

Venn plots comparing the 340 common upregulated genes (Padj<0.05 FC>1.2) induced by DLL4-

TLA and the 591 DAPT repressed genes (Padj<0.05 |FC|>1.2) in the endothelial fraction of the P8 

brain. 40 genes overlapped between the two analysis.  

 

As expected, the 40 genes included canonical Notch genes- GJA5, DLL4, HES1, HEY1, 

NRARP and EFNB2, as well as a number of novel genes. Based on their novelty for Notch 

function in endothelium, we chose to focus further on GPCR related genes such as RND1 

(Table 4-3). 
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Table 4-3. 40 Common genes between Dll4-TLA and RiboTag EC screens 

Gene 
Log2FC 

HUV HREC Ribotag-IP 

GJA5 5.03 5.45 -1.06 

RND1 4.44 4.57 -0.30 

NPR3 4.35 4.55 -0.55 

INHBB 4.07 3.44 -0.38 

SLC45A4 3.50 2.66 -0.29 

EFNB2 2.64 2.50 -0.35 

DLL4 2.20 2.68 -1.14 

UNC5B 1.81 1.41 -1.50 

DKK2 1.68 2.11 -0.60 

HEY1 1.61 1.58 -1.04 

SORBS2 1.56 1.84 -0.55 

NRARP 1.55 1.63 -0.93 

SAT1 1.54 2.11 -0.93 

MECOM 1.22 0.52 -0.55 

KCNJ2 1.21 1.02 -1.02 

EFNA1 1.14 1.93 -0.98 

TSPAN15 1.09 0.72 -0.48 

OAZ2 1.07 0.49 -0.51 

SPSB1 1.06 1.16 -0.49 

GJA4 0.98 1.89 -0.86 

MAOA 0.89 1.01 -0.27 

HES1 0.80 2.13 -0.61 

SH2D3C 0.78 0.99 -0.41 

CLMN 0.71 0.74 -0.43 

LMO2 0.69 0.72 -0.50 

FHL3 0.69 0.86 -0.52 

HIC1 0.68 0.49 -0.31 

CDKN2B 0.54 0.78 -0.84 

RGS3 0.54 0.68 -0.73 

PMEPA1 0.53 0.58 -0.65 

FAM84B 0.52 0.68 -0.30 

PEX5 0.48 0.42 -0.33 

SLC29A1 0.45 0.33 -0.33 

FLT4 0.45 0.53 -0.42 

ENDOD1 0.44 0.44 -0.29 
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TGFB1 0.38 0.39 -0.54 

RHOJ 0.38 0.34 -0.41 

TNFRSF21 0.37 0.43 -0.30 

STX6 0.33 0.34 -0.35 

LIMS1 0.29 0.47 -0.39 

 

In summary, the TLA with immobilized recombinant DLL4 induced Notch signaling in both ECs 

tested. Analysis of the expression profile successfully identified known canonical Notch targets 

(marked in red), as well as novel genes targets including a set of GPCR related proteins. Cross 

comparison with RiboTag EC in vivo screening dataset identified 40 overlapped genes. We 

conclude that these novel candidates rapidly respond to Notch signaling in vitro and Notch 

inhibition in vivo. One interesting gene identified by both the RiboTag and DLL4-TLA screen was 

RND1, a Rho GTPase (highlighted in Table 4-3).  

 

4.2.4 Identifying endothelial transcriptional responses to JAG1/Notch signaling using 

tethered ligand assay 

 

Similar to the DLL4 induction of Notch signaling, we performed an experiment with 

JAG1-Fc to understand the effect of JAG1 on Notch signaling. Comparison of the DLL4- 

and JAG1- induction levels in HUVECs and HRECs led to the observation that JAG1 was 

able to induce Notch signaling, albeit weaker in comparison to DLL4.  

 

4.2.4.1 Principal component analysis showed tight clustering of samples for JAG-Fc 

TLA in endothelial cells 

 

Principal component analysis of the normalized counts from JAG1 induction profile 

demonstrated a tight clustering of samples with the same conditions (Figure 4-14). The 
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data on HUVECs was generated with two samples (biological replicates) while the data 

with HRECs was generated with three samples (technical replicates). 
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Figure 4-14. PCA OF JAG-TLA 

Two-dimensional principal component analysis (PCA) plot showing segregation of the JAG1 

stimulated samples and Fc samples into two clusters. HUVECs exhibited large variance between 

individual samples. HRECs showed tight clustering.   

 

 

4.2.4.2 Gene Ontology analysis shows enrichment of genes in Angiogenesis in HREC 

after JAG stimulation 

 

Similar to the DLL4, we analyzed the JAG1 upregulated genes (Padj <0.05) for over-

represented pathways (Gene Ontology analysis using PANTHER Db) in both HUVECs 

and HRECs.  Surprisingly, no statistically significant pathways were identified in the 

HUVEC analysis. This could be due to the limited replicated (n=2) we included in this 

study. Analysis with the upregulated genes in HRECs identified a few pathways including 

GO: Angiogenesis (Fold enrichment = 7.32, FDR= 0.00105). 

 

4.2.4.3 Differential gene expression profiling detected weak but significant induction of 

Notch targets by JAG1 

 

Data from RNA sequencing of HUVEC and HRECs stimulated by JAG1 identified few 

genes to be differentially regulated.  Analysis of the screen with HUVECs identified 730 

significantly (Padj <0.05) up/downregulated genes Log2FC of 0.27 (~1.2 Fold), among 

which 200 genes were upregulated.  In HRECs, 120 genes were significantly up/down 
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regulated ~1.2 Fold (Padj <0.05, Log2FC of 0.27). Comparing the profiles from the two 

screens (HUVECs and HRECs) identified 18 common genes (11 upregulated, 6 

downregulated, 1 conflict) with a Log2FC of 0.27 (~1.2 fold) in both the screens. 

  

All 11 upregulated genes, were common to the DLL4 profile (both HUVECs and HRECs) 

(Table 4-4). Among the 11 common genes were canonical Notch target HES1 (labeled red) 

and several published Notch targets including INHBA (Chang et al., 2011), PRICKLE2 

(Katoh & Katoh, 2007) and SORBS2 (Fouillade et al., 2013). Most importantly, several 

novel genes including RND1 (highlighted in Table4-4, and Figure 4-15) was also detected 

as genes commonly induced by both DLL4 and JAG1. 

 

Table 4-4. Up-regulated genes by Jag1 in both cell types 

Gene 
Log2FC 

HUV-JAG1 HREC-JAG1 HUV-DLL4 HREC-DLL4 

RND1 2.47 1.28 4.57 4.44 

HES1 1.95 0.77 2.13 0.80 

PRICKLE2 1.58 0.83 2.29 2.60 

F2RL1 1.31 0.54 1.00 1.25 

INHBA 1.30 0.72 1.44 1.30 

SLC46A3 1.13 0.70 2.94 2.56 

YPEL2 1.05 0.30 1.24 0.69 

ZNF702P 1.04 0.27 #N/A 0.94 

SORBS2 1.01 0.39 1.84 1.56 

PLD1 0.95 0.30 1.11 1.14 
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Figure 4-15. Volcano plots of Jag1 TLA  
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Volcano plots showing gene changes 6 hours after Jag1 stimulation. The x-axis represents the Log 

fold change calculated in this analysis, and the y-axis shows the Log10 P values. Each gene is 

represented by a dot. The dots in red indicate genes that are statistically significant (Padj < 0.05). 

Additionally, the green dots represent genes that are up/downregulated 1.2fold. RND1 was 

highlighted in both cell types, showing a relatively strong fold change. 

 

In summary, our analysis on ECs stimulated by JAG1 identified a weak activation potency. 

We did not see significant down-regulation of canonical Notch targets, which may occur 

if JAG-Fc blocks the EC specific DLL4 activity which is exhibited in cultured EC. 

Furthermore, comparison of the DLL4 and JAG1 profiles (using Common genes between 

HUVEC and HREC) identified 88% genes (16 of 18 genes) to be common. Among the 11 

common upregulated genes by JAG1 were both canonical targets and novel genes, 

including the GTPase RND1. Our data suggested that JAG1 functions as a weak activator 

of Notch signaling in endothelial cells. 

 

4.3 Analysis: Profiling Endothelial Notch signaling using EGTA assay 

 

As discussed earlier (See Results2: I.B.), using EDTA/EGTA to activate Notch signaling 

eliminates the need to trypsinize and plate cells and so allows us to perform a tighter time 

control of Notch activation and screen for rapid response genes earlier than 6 hour. Primary 

targets are expected to be much more rapidly induced by EDTA/EGTA and the secondary 

effectors would be transcribed slower than the primary targets. We hypothesized that by 

focusing on early timepoints of EGTA induction, we would be able to screens for 

direct/primary transcriptional targets. In combination of the dataset generated by the 
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RiboTagEC screens and the TLA screens, we would be able to identify direct/primary 

endothelial Notch effectors with both in vivo and in vitro relevance. 

 

Our strategy included suppressing endogenous Notch signaling with 200nM Compound E 

(CpE), a GSI inhibitor treatment overnight and treating the recuperating cells (after 2x 

washes with PBS) with 10 M EGTA for 15 minutes in PBS. The cells were then 

replenished with normal media and the RNA collected from these cells at various 

timepoints of interest (Figure 4-16). We included a condition where the EGTA stimulated 

ECs are co-treated with CpE to identify Notch-specific target; that is, we compared 

transcripts with and without a GSI. CpE treatment should be able to down-regulate the 

induction by EGTA if the target is canonical Notch dependent. 

 

 

 

Figure 4-16. Schematic of EGTA assay 

Notch proteins are heterodimers composed of extracellular domain and transmembrane signaling 

domains, which are held together by non-covalent bond. Calcium depletion dissociates the 

heterodimer and activate Notch in ligand independent way. In this assay, ECs were cultured with 
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200nM CpE overnight to inhibit endogenous Notch signaling, followed by 15 minutes treatment 

of 10nM EGTA. RNA was extracted at different timepoint after EGTA treatment (0-4 hours).  

 

4.3.1 Analysis of time course study of EDTA/EGTA assay 

 

In order to choose an early timepoint that allows us to capture primary and early response 

targets, we quantitated samples at different timepoints after EDTA/EGTA treatment for 

the levels of canonical Notch targets using a quantitative PCR (Figure 4-17). 

 

 

Figure 4-17 . Rapid induction of canonical Notch target in HUVECs 

 after EGTA treatment 

RNA was extracted every 30 minutes from 0 hour to 4 hours after EGTA treatment. RT-qPCR on 

canonical Notch targets HEY1, HEY2, HES1 and NRARP showed rapid induction of those genes, 

which peaks at 0.5-1.5 hours and return to basal expression in 2-3 hours. 
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Quantitative analysis of canonical targets showed that the induction starts as early as 15-

30 minutes, peaks at 0.5-1.5 hour. and returns to basal at 2-3 hours. Expression levels of 

HEY1, HEY2, HES1, NRARP in EDTA stimulated HUVECs increased rapidly and returned 

to basal levels within 3 hours (data not shown). CpE treatment significantly down regulated 

the induction in all gene targets. We repeated the experiments using EGTA in both 

HUVECs and HREC and detected a similar pattern. 

 

4.3.2 Rapid gene expression changes were identified at 1 and 1.5 hour. after EGTA 

stimulus 

 

Based on the observation that EDTA and EGTA rapidly induced expression of the 

canonical Notch targets and the induction peaks at 1-2 hours, we performed an unbiased 

screen of HUVECs at 1h and 1.5h timepoints after EGTA induction. We sequenced RNA 

from these two timepoints with a read depth of ~20 million PE reads with 150base-paired 

fragments using the services of Novogene corporation. Raw reads from the HUVEC and 

HRECs were mapped to the Human database (ENSEMBL/GRCh38) using STAR (version 

2.5.0a) and processed with Samtools (version 1.4.1). The counts obtained by 

FeatureCounts were analyzed by DESeq2 to identify differentially expressed genes. 

 

The analysis identified 132 and 727 (Padj < 0.05) differentially expressed genes to be 

significantly up/down-regulated within 1 hour and 1.5 hour (respectively) of EGTA 

induction. Because the aim of our study was to identify primary effectors of Notch 
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signaling, we limited our analysis to targets that were up-regulated. In the 1hour profile, 

131 of 132 genes were upregulated (all with Log2FC > 0.27), while the 1.5 hour. profile 

showed 612 genes of 727 to be upregulated (600 genes with Log2FC > 0.27). In 

combination, 644 genes were upregulated in 1-1.5hour. 

 

4.3.3 Common genes were identified between the RiboTagEC brain profile, TLA screens 

and 1.5hour. EGTA induced genes 

 

Comparison of the 1-1.5 hour profile with the 40 common genes identified by RiboTagEC 

screening and tethered-DLL4 screening (See Results2: II.B.1.(e)), identified 17 of 40 

genes (42.5%) from the 1 and 1.5 hour profile as overlapping (See Table 4-5 and Figure 

4-18).Out of the 17 genes, we identified 6 canonical targets including GJA5, DLL4, EFNB2, 

HES1, NRARP, HEY1.  The other genes are potential direct Notch targets, based upon 

regulation within 1.5 hours, with both in vivo and in vitro significance.  
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Figure 4-18. Identification of primary Notch targets by comparing EGTA, TLA and 

RiboTag datasets 

Venn plots identifying direct early targets of Notch signaling. EGTA stimulation of HUVECs 

identified 600 genes to be significantly upregulated (Fold Change > 1.2, Padj < 0.05). These 600 

genes were compared to the 40 common genes identified comparing endothelial fraction from P8 

mice brain and the primary endothelial cells stimulated by DLL4 for 6h. 17 genes overlapped 

between the two groups. 

 

 

Table 4-5. 17 genes identified as potential Notch direct targets by RiboTag, TLA 

and EGTA screens 

Gene 
RiboTag 

IP 

TLA-DLL4 Log2FC EGTA Log2FC Direct target 

on SpDAM IP 

list 
HREC HUV 1hr 1.5hr + CpE 

HEY1 -1.04 1.61 1.58 5.36 6.17 -1.63 Y 

RND1 -0.30 4.44 4.57 3.65 4.94 -2.16 Y 

HES1 -0.61 0.80 2.13 5.76 4.53 N/A Y 

GJA5 -1.06 5.03 5.45 N/A 3.35 N/A Y 

DLL4 -1.14 2.20 2.68 2.88 3.35 -3.28 Y 

NRARP -0.93 1.55 1.63 2.59 3.28 -0.86 Y 

UNC5B -1.50 1.81 1.41 N/A 2.77 N/A N 

EFNB2 -0.35 2.64 2.50 N/A 1.87 -1.45 N 

EFNA1 -0.98 1.14 1.93 N/A 1.55 N/A Y 

KCNJ2 -1.02 1.21 1.02 1.45 NA N/A Y 

HIC1 -0.31 0.68 0.49 0.80 1.33 N/A Y 

SPSB1 -0.49 1.06 1.16 N/A 1.27 N/A Y 

SAT1 -0.93 1.54 2.11 N/A 1.01 N/A Y 

RGS3 -0.73 0.54 0.68 N/A 0.71 N/A Y 

PMEPA1 -0.65 0.53 0.58 N/A 0.64 N/A Y 

LMO2 -0.50 0.69 0.72 N/A 0.61 N/A N 

TGFB1 -0.54 0.38 0.39 N/A 0.32 N/A N 

 

 

Red: canonical targets 
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Table 4-5 listed genes (with Log2Foldchange presented) that were identified as potential Notch 

target by the RiboTagEC screens, TLA-Dll4 stimulation and EGTA screens. 17 genes were 

identified as overlapping targets (Padj<0.05, |Log2FC|>0.27) by all three screens. Canonical targets 

were highlighted in red. 

 

4.3.4 Comparison with published SpDAM ID database with RiboTagEC/TLA/EGTA 

screens identifies endothelial genes that are known direct transcriptional Notch 

targets 

 

To validate the 17 genes that we screened are direct Notch targets, we compared our data 

with the published spDAM ID database generated using mouse kidney cells to establish 

direct Notch targets. 

 

The spDAM ID screen is based on the reconstitution of the split DAM enzyme that has 

been fused with two proteins from the Notch transcriptional activator complex, that binds 

to the CSL sequence found upstream of Notch target genes. This study allowed screening 

for targets of Notch dimers and Notch monomers (in combination with either RBPJ, 

MAML or P300). We compared the data from our screen (Padj = 0.05, Log2FC =0.27) to 

genes on the spDAM ID database. Our analysis showed 76% of our targets are detected in 

at least one spDAM combination in mK4 (metanephric) cells (Table 4-5). 
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4.3.5 EGTA induction combined with CpE treatment identified RND1 as Notch 

dependent responder  

 

Of these 17 genes identified in common with our three major screens, the induction of 5 

(33.3%) genes were significantly downregulated by CpE including canonical targets DLL4, 

EFNB2, NRARP, HEY1 (highlighted in Table 4-5) and one novel target RND1 

(highlighted in Table 4-5). It was interesting to note that the induction of some established 

Notch genes like HEY1 by EGTA were not significantly repressed by CpE at 1.5 hour. The 

possible explanation could be that EDTA/EGTA may also be stimulating other potent 

inducer of those Notch targets, which may mask the differences caused by CpE treatment. 

For instance, despite the fact that HES1 are without doubt primary Notch targets, other 

signaling pathways (e.g. Hedgehog, FGF, Wnt, or serum-induced ultradian oscillators) 

have also been showed to control its expression(Woltje, Jabs, & Fischer, 2015; Yoshiura 

et al., 2007). CpE treatment provides important insight of targets that were solely or heavily 

Notch dependent in response to EGTA induction. 

  

In summary, we performed an EGTA induction screen to allow identification of targets 

induced at 1-1.5 hour after EGTA-mediated Notch activation. Based on the initial 

quantitative screen that showed peak induction at 1 and 1.5 hour. Of various canonical 

Notch targets, we performed an RNA-seq screen of HUVECs collected at these time points.  

Analysis revealed known and novel targets to be upregulated within 1 hour and 1.5 hour. 

of EGTA stimulation. Comparison of the 1.5 hour. profile to the 48 common genes 

identified by the RiboTagEC screening and the DLL4-TLA, led to identification of 17 



 

99 

 

 

genes as early/potential direct Notch targets from both in vivo and in vitro. Among those 

17 genes, the induction of 5 genes were significantly repressed with CpE treatment, 

including 4 canonical genes and 1 novel candidate-RND1. 

 

4.4 Discussion 

 

Notch signaling plays a critical role in angiogenesis through regulation of a wide network 

of target genes, however, very limited information has been obtained and reported 

regarding transcriptional event of Notch activation in endothelial cells, especially the 

primary targets. To identify rapidly-responding Notch downstream targets from both in 

vivo and in vitro, we have generated a comprehensive dataset using three distinct unbiased 

screenings, all focusing on early responsive genes of Notch. The majority of the genes we 

identified were also reported to be direct-transcriptional targets of Notch in mK4 cells. 

 

Summary of our data: 

1. RiboTagEC screens  

In Chapter 3, we performed an in vivo screen of early Notch targets in mouse brain 

endothelium using RiboTag EC technique, focusing on gene downregulated 6 hours after 

GSI administration. 591 genes were identified as potential targets. Of particular interest, a 

set of GPCR related genes were detected as novel Notch targets. 

 

2. Tethered Ligand Assay (TLA) screens  
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In Chapter 4-II, we activate endothelial Notch using a physiological relevant method-

tethered ligand activation. We characterized genes that were rapidly (6 hours after plating 

cells) response to ligand-specific Notch induction in two human primary ECs. Among the 

340 DLL4-Notch rapidly induced novel genes, were again a set of GPCR related genes.  

 

3. EGTA screens  

In Chapter 4-III, to perform an even tighter control of Notch activation, we screened for 

genes induced at 1-1.5 hours with EGTA-mediated Notch activation, and cross-compare 

with the first two datasets. 

 

Figure 4-19 summarized the three layers of screening study. Comparison of dataset 1 

(RiboTagEC screens) and 2 (DLL4-TLA screens) identified 40 overlapping genes 

including canonical Notch targets as well as novel potential targets. Those genes are rapid 

Notch responder with both in vitro and in vivo significance. Integrating data from EGTA-

induction identified 17 genes out of the 40 genes as potential direct notch targets. Out of 

the 17 genes, Notch inhibitor CpE treatment significantly repressed the EGTA induction 

of 5 genes, including 4 canonical Notch target and 1 novel target RND1, a small GTPase. 

The CpE treatment identified genes that are largely or even solely dependent on Notch 

signaling during EGTA treatment. 
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Figure 4-19. Summary of the three unbiased screens 

 

RND1 is of our particular interest not only because it was identified as Notch target in all 

screens, but also of the following points: 

1. Expression of Rnd1 was significantly reduced in brain EC, but not brain 

homogenate after GSI treatment, indicating an endothelial specific regulation of Notch on 

Rnd1 

2. RND1 has a high magnitude of induction (ranked top 2 by fold change) by tethered 

DLL4 at 6 hours in both HUVEC and HREC. JAG1, as a weak activator, induced RND1 

EGTA+CpE: 
HEY1,DLL4, 
NRARP,EFNB2, 
RND1 
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by more than 6-fold at 6 hour. (rank top 2 by fold change), thus both DLL4 and JAG1 can 

regulate RND1. 

3. G proteins are critical in regulating cell behavior, but have rarely been linked to 

Notch signaling pathway in previous studies. RND1, as a Rho GTPase, may lead to 

discovery of intersects between G protein pathway and Notch signaling pathway in 

endothelial cells. All these data suggest a potential unexplored area of Notch regulation 

through GPCR signaling.   
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Chapter 5 Validation and functional study in angiogenesis of a 

novel Notch target; the GTPase RND1  

5.1 Rationale 

 

Data from the previously performed screens identified RND1 to be a gene downregulated 

by GSI administration in mouse brain EC, upregulated by DLL4 (and JAG1) stimulation 

in the TLA, and EGTA-mediated activated in two primary human EC types. Thus, several 

methods were used to support with high confidence that RND1 is a consistent and highly 

induced Notch target in endothelial cells. Several other genes met these criteria, namely 

HEY1, DLL4, NRARP, and EFNB2.  Each of these genes are already known and 

characterized as Notch targets with a function in angiogenesis or vascular development.  

We have therefore focused on RND1 as a candidate Notch target for detailed exploration 

of its mechanistic role in angiogenesis using functional and signaling analyses. We 

hypothesize that Rnd1 is a downstream effector of endothelial Notch signaling that acts to 

regulate angiogenesis. 

 

The Rnd family includes Rnd1/Rho6, Rnd2/Rho7 and Rnd3/Rho8/RhoE in humans and is 

a distinct structural sub-group of the Rho family of GTP-binding proteins [88]. Most G 

proteins cycle between an active GTP-bound and a resting GDP-bound form and their 

activity is controlled by guanine nucleotide-exchange factors (GEFs) and GTPase-

activating proteins (GAPs).  However, Rnd proteins have a low affinity for GDP and thus 

remain in their constitutively active, GTP-bound state(Foster et al., 1996; Guasch, 
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Scambler, Jones, & Ridley, 1998; Nobes et al., 1998). This suggests that Rnd proteins are 

subject to regulatory mechanisms distinct from other G proteins, such as via transcriptional 

or protein stability mechanisms. Studies in neurons have provided important insights into 

the mechanisms that control the activity of the Rnd proteins, and revealed that their 

expression, localization and phosphorylation control their activity, rather than the 

GDP/GTP switch(Chardin, 2006).  

 

5.1.1 Established function of Rnd1  

 

Rnd1 has been well established to regulate cytoskeleton formation and function in various 

cell types including fibroblast and epithelial cells. In neurons, overexpression of Rnd1 

promoted dendritic growth and branching in cultured hippocampal neurons(Ishikawa, 

Katoh, & Negishi, 2006).  Furthermore, the Xenopus ortholog of Rnd1 has shown to be 

expressed in tissues undergoing extensive morphogenetic changes, such as marginal zone 

cells, somitogenic mesoderm, and neural crest cells, and overexpression of Xenopus Rnd1 

induces the disruption of cell adhesion(Wunnenberg-Stapleton, Blitz, Hashimoto, & Cho, 

1999). Recently, Rnd1 has also been shown to play a role in breast tumor progression: 

depletion of Rnd1 disrupted epithelial adhesion and polarity and induced epithelial-to-

mesenchymal transition(Okada et al., 2015).  

 

The three Rnd proteins have overlapping and distinct functions in a context-dependent way. 

For example, Rnd1 and Rnd3 have similar effects to inhibit formation of actin cytoskeleton 

in fibroblasts, whereas Rnd2 has little or no effect (Chardin, 2006). Rnd2 and Rnd3, but 
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not Rnd1, contribute to cortical neuron migration (Heng et al., 2008; Pacary et al., 2011). 

Consequently, the same protein might have different functions depending on the cellular 

context.  

 

Unlike in fibroblasts or neurons, the role of Rnd1 in endothelial cells has been poorly 

understood. One study suggested that Rnd1 knockdown in HUVECs enhanced VEGF-

mediated cell migration towards SDF-1 and neovascular formation from aortic rings in 

response to VEGF (Suehiro et al., 2014). Another study indicated that Rnd1 induces stress 

fiber disassembly in HUVECs, while Rnd2 and Rnd3 enhanced stress fiber 

formation(Gottesbuhren et al., 2013). A thorough characterization of Rnd1 function in 

endothelial cells, especially in angiogenesis, will be of great value.  

  

5.1.2 Signaling mechanism of Rnd1  

 

Rnd proteins can interact with a variety of downstream targets to induce cellular responses 

(Riou, Villalonga, & Ridley, 2010). Rnd1 has been shown to indirectly inhibit Rho and 

Ras in a cell-context-dependent manner. Most studies indicate that the morphological 

effect of Rnd proteins are related to inhibition of RhoA-mediated contraction. Studies have 

shown that Rnd1 can interact and recruit p190 RhoGAP at the site where Rho should be 

inhibited (Wennerberg et al., 2003). Another study, however showed that Rnd1 silencing 

has no effect on Rho activation, but induces robust Ras activation in multiple cell types 

including MCF-10A, HMLE, HUVEC and HEK293 cells (Okada et al., 2015). 

 



 

106 

 

 

The involvement of Rnd proteins in axon guidance provides a very well described model 

to understand the mechanisms of how Rnd proteins controls Rho and Ras activity. In 

neurons, the signaling mechanism of Rnd1 depends on the presence of plexin-semaphorin 

signals. Plexin B1 is Sema-4D receptor and has been shown to simultaneously interact 

with both Ras and Rnd1. When plexinB1 is not activated with Sema-4D, the interaction 

between Rnd1 and p190 RhoGAP inhibits RhoA-induced contraction. However, when a 

plexin recognizes a semaphorin signal, the interaction of Rnd1 with the plexin stimulates 

its R-Ras GAP activity, leading to inhibition of Ras. The plexin also traps Rnd1 away from 

p190 RhoGAP, which is then released, allowing efficient RhoA activation (Chardin, 2006).    

 

In endothelial cells, however, the signaling effect of Rnd1 remains elusive and 

controversial. Tomoyo Okada et al. suggested Rnd1 inhibits Ras activation in HUVECs, 

and has no effect on Rho activity (Okada et al., 2015), while another group showed that 

knockdown of Rnd1 leads to RhoA hyperactivation in HUVECs(Suehiro et al., 2014). So 

here we investigated the signaling event(s) mediated by Rnd1, focusing on Rho and Ras 

signaling.  

 

5.1.3 Intersection between Notch and Rnd proteins 

 

Very few studies have linked Rnd proteins to Notch signaling. One study showed that the 

expression level and pattern of Rnd1 and Rnd3 were controlled by Notch signaling in 

Xenopus somite formation (Goda, Takagi, & Ueno, 2009). Another study suggested that 

Rnd3 is a direct transcriptional target gene of Notch signaling in squamous epithelium, 
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mediating nuclear translocation of the activated portion of Notch1 (N1IC) through 

interaction with importins (Zhu et al., 2014). Rnd3 has also been demonstrated to 

negatively regulated Notch signaling through direct interaction and degradation of NICD 

in ependymal cells of CNS (Lin et al., 2013). However, Rnd1 has never been shown as 

Notch effector in mammals. 

 

Since Rnd1 is an important regulator of Rho and Ras, we considered whether Notch and 

Rho/Ras pathway have been shown to interact with each other in previous studies. 

Interestingly, in C. elegans vulval development, Ras and Notch pathways antagonize each 

other so that only one of the two pathways can be highly active (Shaye & Greenwald, 

2002). Notch induces the transcription of undefined Ras inhibitors in the P5.p and P7.p 

cells of C. elegans and in undifferentiated eye cells of Drosophila(Sundaram, 2005). 

Despite Notch and Rho signaling pathway having been shown to influence common sets 

of cells and common processes such as dendritic development (Redmond & Ghosh, 2001), 

the evidence of direct interplay of the two pathway is still sparse.  

 

Collectively, very limited insights were gained from previous studies about the role of 

Rnd1 in regulating endothelial cell behavior and angiogenesis. The intersection between 

Notch signaling and Rnd1, as well as Ras/Rho signaling pathway, still remains to be 

addressed, especially in mammalian systems. In this chapter, we explored the function and 

the signaling mechanism of Rnd1 in endothelial cells.  
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5.2 Results: Validation of RND1 as endothelial Notch target 

 

5.2.1 Within the RND family, only RND1 responds to EC Notch activation 

 

Three Rnd proteins exist in humans. We examined Rnd family expression to determine the 

expression level of Rnd proteins in endothelial cells. The mRNA basal expression level of 

RND1, RND2 and RND3 were compared in HUVECs and HRECs using the RNA-seq data 

of baseline (control) endothelial cells used as reference points within the lab. RND3 is 

expressed at much higher levels than other Rnds in endothelial cells. The basal level of 

RND1 mRNA is low in both types of ECs. RT-PCR analysis of all three genes produced 

bands of varying intensity that were consistent with the expression levels observed by 

RNA-seq (Figure 5-1). 

 

 

Figure 5-1. Expression of RND family genes in endothelial cells 
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Gene counts of RND1, RND2, and RND3 from RNA-seq data indicated that RND3 is the most 

highly expressed member of the family in ECs. Basal expression of RND1 is very low in ECs. RT-

PCR confirmed the RNA seq results. 

 

To identify the response of all three Rnd proteins to Notch induction, sequencing data from 

RiboTagEC profile, TLA, and EGTA induction assays were examined. Interestingly, 

RND1 is the only gene of the Rnd family that is induced by Notch activation in any of our 

screens.  These sequencing results were confirmed by RT-qPCR analysis (Figure 5-2).  

Thus, this suggested RND1 is the prime Notch target gene within the Rnd family, although 

RND3 is more highly expressed in endothelial cells. 

 

Currently available commercial antibodies do not differentiate well between the three Rnd 

proteins, so we examined mRNA level in our studies. In future studies, we may generate a 

custom Rnd1 antibody for protein analysis. 

 

Normalized Counts from RNA seq (See Chapter III, IV) 
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RT-qPCR validation using TLA 

 

Figure 5-2. RND1, but not RND2 and RND3, is Notch target 

Figure shows a summary of the expression changes of RND family genes in response to Notch 

activation/inhibition. Normalized counts of RND1, RND2 and RND3 was generated from RNA-

seq results of RiboTagEC profile, Dll4-TLA as well as EGTA 1-hour induction (Chapter III and 
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IV).  RND1 is the only gene responding to Notch signaling in all the systems. These results are 

confirmed by RT-qPCR on RND1, RND2, and RND3 mRNA in cells stimulated with tethered-Dll4.  

 

5.2.2 RND1 was further validated as endothelial Notch target from in vivo and in vitro 

analysis 

 

To confirm the RNA-seq results suggesting that RND1 is Notch target, we validated the 

Notch responsiveness of Rnd1 expression by using RT-qPCR to examine expression in 

previously examined and novel endothelial contexts.  

 

Rnd1 was downregulated rapidly by GSI in EC from multiple tissues in vivo 

 

We performed RiboTag IP to isolate endothelial-specific mRNA from a variety of tissues 

including the whole brain, the cortex, and the heart of P6 RiboTagEC mice 6 hours after 

GSI administration and assessed Rnd1 levels in homogenate mRNA and IP mRNA using 

RT-qPCR. Rnd1 was significantly inhibited with GSI compared with vehicle-treated 

samples in all the vascular beds.  The tissue homogenates did not show differential 

expression of Rnd1, indicating that Notch regulation of Rnd1 is EC-specific (Figure 5-3) 
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Figure 5-3. Rnd1 was inhibted by 6 hour GSI treatment in multiple vascular beds 

Multiple tissues (brain, heart, cortex) from postnatal RiboTagEC mice were collected 6 hours after 

GSI or vehicle treatment and were subjected to RiboTag IP process. RT-qPCR was performed to 

check Rnd1 and canonical targets expression in both homogenate and IP fraction (EC). Rnd1 was 

significantly inhibited in all EC samples tested, but not the tissue homogenate.  
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RND1 was induced rapidly by Notch ligand in a GSI-dependent manner in multiple 

primary endothelial cells in vitro 

 

Consistent with the RNA sequencing results, tethered Dll4/ Jag1 significantly induced 

RND1 in all three primary EC we tested [(HREC, HUVEC, and human dermal 

microvascular endothelial cells (HDEC)]. RND1 induction was reduced to basal level with 

500 nM CpE treatment, indicating that induction is dependent on gamma secretase activity 

(Figure 5-4). 

 

 

 

 

 

 

 

 

 

Figure 5-4. RND1 induced by tethered-Dll4 in multiple ECs, and CpE completely 

blocked the induction. 

RNA-seq analysis of the TLA results was confirmed using RT-qPCR in multiple primary 

endothelial cells (HUVEC, HREC and HDEC). RND1 was up-regulated with Dll4 stimulation in 

6 hours after seeding the cells, and CpE treatment significantly inhibited the induction to basal 

level.  
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RND1 was induced rapidly by EDTA and EGTA in a GSI-dependent manner in multiple 

primary endothelial cells in vitro 

We performed the time course study of RND1 expression after EGTA and EDTA induction 

in both HUVECs and HRECs. Induction of RND1 started as early as 30minutes, peaked at 

1.5 hours, and returned back to basal level in 4 hours, which is similar with the pattern of 

canonical Notch targets. Notch inhibitor CpE treatment completely blocked EGTA/ EDTA 

induction of RND1, while only partially blocked other canonical Notch targets, indicating 

that the induction of RND1 is solely dependent on Notch signaling after EGTA treatment 

(Figure 5-5). 

 

 

Figure 5-5. RND1 rapidly induced with EGTA treatment 

HUVECs and HRECs were treated with EGTA as previously described (Chapter 4), and the 

expression of RND1 was measured at different timepoints (every 30minutes, from 0-4 hours) by 

RT-qPCR. Induction of RND1 can be detected as early as 30minutes, peaks at 1.5-2 hours, and was 

back to basal level at 3-4 hours. 

 

RND1 was induced by overexpression of NICDs in endothelial cells 
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As discussed in Chapter 1, the when the Notch intracellular domain (NICD) is cleaved 

from the membrane, it translocates to the nucleus to form an active transcriptional complex. 

Truncated versions of the Notch proteins act as constitutively active proteins and strongly 

induce target genes. Lentivirus-mediated NICD overexpression of Notch1 ICD (N1ICD) 

and Notch4 ICD (int3) strongly induced RND1 expression level as predicted (Figure 5-6). 

 

 

Figure 5-6. Overexpression of Notch strongly induced RND1  

Lentiviral-mediated overexpression Notch1 intra cellular domain (N1CD) and Notch4/Int3 

induced RND1 by 300fold in HUVECs.  N4/int-3 encodes 30 amino acids upstream of the 

transmembrane domain and the entire cytoplasmic domain of Notch4, and is naturally occurring 

active allele of Notch4(Shawber et al., 2007). 

 

5.2.3 In Silico evaluation of open chromatin mapping in cultured cells reveals a putative 

endothelial-specific enhancer region of Rnd1 that is responsive to Notch activation 

 

Data from the RiboTagEC screen identified RND1 to be repressed by GSI specifically in 

the Brain ECs but not the brain homogenate, indicating cell type specific effects. Studies 

have shown that cell type specific gene expression profiles are regulated by promoters, 

enhancers and insulators. While promoters are important for the formation of the 
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transcription initiation complex and binding of RNA pol II, enhancers contain consensus 

sequences that recruit specific transcription factors that aid in the formation of the pre-

initiation complex and are often required to regulate cell type specific gene transcription. 

Activity of enhancers are regulated by the chromatin organization and can be differentiated 

from promoters by the presence of histone marks (Calo & Wysocka, 2013; Heinz, 

Romanoski, Benner, & Glass, 2015). Therefore, we screened our target of interest, RND1 

locus for the presence of EC specific regulators using the ENCODE database (Rosenbloom 

et al., 2010) (https://genome.ucsc.edu/encode/). This data allows one to explore the 

chromatin organization and methylation patterns in the genome. The ENCODE data 

contains information from DNase I hypersensitive sites (DHS) sequencing screens, which 

indicate regions with open chromatin in a variety of cell types and tissues. DNase I 

hypersensitive sites (DHSs) are regions of chromatin that are sensitive to cleavage by 

the DNase I enzyme (Keene, Corces, Lowenhaupt, & Elgin, 1981) . In the nucleus, the vast 

majority of genomic DNA is wrapped around nucleosomes. Regions where local 

modifications to this chromatin structure displace these nucleosomes (such as for the 

activation of promoters) allow for easier digestion by DNase I. DNase I hyper-sensitive 

(HS) sites have been shown to be markers for many different types of genetic regulatory 

elements, including promoters, enhancers, silencers, insulators, and locus control regions 

(Felsenfeld & Groudine, 2003). 

 

Our analysis showed a large DHS peak at the promoter region of Rnd1, but this peak 

appeared in all cell types examined, suggesting that was a region of open chromatin in 

most or all tissues. No significant EC specific DHS peaks were observed in the promoter 

https://genome.ucsc.edu/encode/
https://en.wikipedia.org/wiki/Chromatin
https://en.wikipedia.org/wiki/DNase_I
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region. However, we identified a putative enhancer region located ~ 17 kb upstream from 

RND1 that showed DHS peaks specifically in different ECs in the ENCODE database 

(HUVECs, HMVECs, HBMECs, HRGECs, etc.) and not in non-EC cell types (K562, 

HepG2, B cells, HeLA cells, etc.). Further interrogation of this region identified two Notch 

consensus sites with the sequence: (C/T)GTGGGAA (Figure 5-7). 

 

 

Figure 5-7. Open Chromatin Mapping of Rnd1 indicated putative EC-specific 

enhancer 

Examination of ENCODE database for DHS peaks uncovers a putative enhancer (highlighted in 

yellow) 17kb upstream of RND1 locus (circled in red box) in multiple ECs (Here listed HUVEC 

and HBMEC as examples). No DHS peaks was detected in non-EC cell types (Here listed B cells 

and HepG2 as examples). The enhancer region contains RBPJ consensus binding sites. 
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Enhancer regions are further classified as inactive, primed, or active, based on the histone 

marks present. Inactive enhancers have compact chromatin and prevent transcription factor 

binding. The primed and active enhancers both contain open chromatin regions and contain 

the histone marks H3K4me1 and H3K4me2, but are differentiated by the acetylation mark 

H3K27ac, which is only found in active enhancers(Calo & Wysocka, 2013; Creyghton et 

al., 2010; Heintzman et al., 2007) . Screening for these histone marks in the RND1 

enhancer locus, identified that the enhancer region defined above contained H3K4m1, m2, 

m3 and the H3K27ac, indicating that this EC specific enhancer was active. In non-EC cell 

types (HepG2, K562) the acetylation histone mark was absent. 

 

These data indicate RND1 possesses a putative enhancer, active specifically in ECs, with 

RBPJ-binding consensus sites 17 kb upstream of the RND1 promoter, suggesting that this 

sequence binds the Notch transcriptional complex directly and is responsible for the 

endothelial-specific upregulation of RND1 in response to Notch signaling.  

 

5.3 Results: Function of Rnd1 in endothelial cells 

 

Rnd1 has been well characterized as an important regulator of cytoskeleton rearrangement 

in multiple cell types. However, limited knowledge has been gained about its function in 

endothelial cells. As a potential novel effector of endothelial Notch, we hypothesize that 

Rnd1 functions to regulate endothelial behavior during angiogenesis. In order to 

investigate the function of Rnd1 in endothelial cells, a series of functional assay were 
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performed to assess the role of Rnd1 in viability, proliferation, migration, and sprouting 

angiogenesis in HUVECs. 

 

5.3.1 siRNA successfully and specifically knocked down Rnd1 in HUVECs  

 

To perform loss-of-function study of Rnd1 in endothelial cells, we started with lentivirus-

mediated shRNAs, which has been widely shown as efficient and stable knockdown 

system in primary ECs for many genes. Unfortunately, all five Rnd1 shRNA constructs we 

tested, including published shRNA constructs, showed cellular toxicity and inconsistent 

knockdown efficiency in HUVECs.  

 

Given the possibility that ECs poorly tolerate constitutive knockdown of Rnd1 with 

shRNA, we then sought to design an inducible shRNA system where we could acutely 

knockdown Rnd1 during experiments. We therefore attempted a Dox-inducible lentiviral 

shRNA system that allows transcription of shRNA upon the addition of doxycycline (Dox), 

which sequesters TetR and relieve repression at the TetO operon that drives shRNA 

expression (Frank, Schulz, & Miranti, 2017). We successfully detected TetR protein 

expression in HUVECs using this system, however, we were unable to detect any 

knockdown of Rnd1. Two possible reasons that could lead to this issue: 1) The efficiency 

of the system in primary cells could be poor, since most descriptions of this inducible 

system has been in immortalized cell lines. 2) Targeting sequences need to be further 

optimized to develop functional shRNA constructs.  
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We then utilized an siRNA approach to knockdown Rnd1 protein in HUVECs. Traditional 

Lipofectamine mediated transduction of siRNA resulted in low transfection efficiency in 

HUVECs. So here we used DharmaFECT4 transfection system, which resulted in >80% 

transfection efficiency in HUVECs. HUVEC treated with Rnd1 siRNA (Dharmacon 

J008929-05, sequence GGAUCUCCCUACUACGAUA, termed as siRND1) showed 

significant and specific knockdown of Rnd1 compared with control siRNA (Figure 5-8). 

Dose-response curve suggested that as low as 5nM siRND1 leads to significant knockdown 

(>60% reduction in expression), and with 25nM siRND1 the knockdown efficiency can 

reach >80% without observable cellular toxicity (Figure 5-9). siRNA is degraded over time 

in cells, so the knockdown effect is transient and lasted from 24-96 hours after transfection 

without passaging cells, or lasted for 24-72 hours if cells were passaged (Figure 5-10).  

 

  

Figure 5-8. siRND1 specificly knocked down Rnd1 (RT-qPCR on mRNA)  

 

RND1 RND2 RND3
0.0

0.5

1.0

1.5

48 hrs after transfection

F
o

ld
 r

e
la

ti
v
e
 t

o
 c

tr
l

RND1

RND2

RND3



 

121 

 

 

 

Figure 5-9. Dose curve of siRND1 (RT-qPCR on mRNA) 

5nM of siRND1 significantly knockdown RND1 (~60% reduction in expression), and 25nM was 

determined as the minimal dose with the strongest knockdown effect (~80% reduction in 

expression) 

 

 

Figure 5-10.  Time course of siRND1 KD effect (RT-qPCR on mRNA) 

Knock effect of siRND1 lasted for at least 72 hours. after transfection, with or without passaging 

cells 

 

To summarize, siRNA successfully and specifically, though transiently, knocked down 

Rnd1 expression in HUVECs. Given the dose curve and time course of siRND1 effects the 

following loss of function studies were performed within a time frame of 48-72 hours after 

transfection with 25nM siRND1. 
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5.3.2 Loss of Rnd1 showed no effects on EC viability and proliferation 

 

Rnd1 has been established as regulator of Rho and Ras activity in multiple cell types, and 

G proteins such as Ras have been shown to affect cell proliferation and viability(Takai, 

Sasaki, & Matozaki, 2001). Thus, we explored the function of Rnd1 in endothelial cell 

viability and proliferation with an MTT assay, which measures the number of viable cells, 

and an EdU assay, which measures proliferation via incorporation of a labeled dNTP 

analogue into the DNA of dividing cells. HUVECs transfected with Rnd1 siRNA showed 

no significant difference in viability compared with control siRNA in both assays (Figure 

5-11). 

 

Figure 5-11. Rnd1KD shows no effects on HUVEC proliferation and viability 

The effect of Rnd1 knock down (Rnd1KD) on HUVEC viability was measured using MTT assay 

as described in Chapter II. Proliferation was measured using EdU staining as described in Chapter 
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II. Data was presented as % of EdU positive cells/ total DAPI positive cells, as an average of three 

independent siRNA knockdown experiments. No significant difference was detected with Rnd1KD.  

 

5.3.3 Loss of Rnd1 in basal and stimulated conditions shows no differences in EC 

migration using scratch assay 

 

Rnd family proteins have been shown to contribute to cell migration such as cortical 

neuron migration [8,9]. We assessed the effect of Rnd1 knockdown in HUVEC migration. 

Scratch migration assays were performed by scratching the confluent layer of cells with a 

pipet tip, and the closure of scratched area by cells migrating into the open area was 

monitored over the course of 12 hours. No significant difference was observed between 

Rnd1KD cells and control cells in the migration rate (data not shown) . 
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Figure 5-12. Rnd1KD shows no effects on HUVEC migration in scratch assay 

Scratch assay was performed in combination of tethered ligand assay, allowing for investigating 

Rnd1 effects on HUVEC migration in both normal and stimulated conditions. Cells seeded on top 

of tethered-DLL4 or Fc control into confluency and a scratch was made.  Image were taken every 

3 hours until 12 hours. Contrast between the cellular area and the scratch was enhanced 

and the open wound area was measured by Image J as described in an established protocol 
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(Kees Straatman, 2008). DLL4 stimulated HUVECs migrated significantly slower compared 

with Fc control, but Rnd1KD failed to rescue the phenotype.  

 

Given the low basal expression level of Rnd1 in HUVEC, we then asked the question 

whether the effects of loss of Rnd1 can be more easily detected when Rnd1 is stimulated. 

To stimulate Rnd1 expression, we combined the tethered ligand assay with scratch assay 

(Figure 5-12). The dish was coated with DLL4-Fc (or Fc as control) as described in 

Chapter IV. Cells were seeded to confluency on top of the Dll4 ligand (or Fc control) to 

stimulate RND1 expression. A scratch was made after the cells fully settled down and the 

remaining open area was monitored over time. RT-qPCR analysis confirmed the up-

regulation of RND1 by immobilized DLL4, as well as the successful knockdown with 

siRND1 in both Fc or DLL4 stimulated cells. No significant difference was observed in 

the rate of migration between Rnd1KD cells and Control cells seeded on Fc control plate. 

As expected from previous literature, tethered-DLL4 stimulation significantly decreased 

HUVEC migration compared with Fc control. However, Rnd1KD cells still showed no 

effects in migration compared with control cells in the context of DLL4 activation (Figure 

5-12). 

 

To summarize, no significant difference was detected with Rnd1KD in EC migration using 

scratch assay. EC stimulated with tethered DLL4 exhibited significant slower migration 

compared with Fc control, but Rnd1KD failed to rescue this phenotype, indicating that 

Rnd1 may not mediate the Notch-induced suppression of EC migratory behavior.  
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5.3.4 Loss of Rnd1 augmented VEGF induced EC migration in basal and Dll4 

overexpression condition 

 

We hypothesized that endothelial cells migrating to a chemokine may require Rnd1 

function, despite the lack of response of Rnd1KD cells in the scratch assay. Therefore, we 

carried out directional cell migration assay using Boyden chambers. To trigger chemokine 

responsiveness, siRNA-treated HUVECs were starved in 0.5% FBS overnight and then in 

complete, but serum free, media for an additional 3 hours. We assessed HUVEC migration 

towards different chemo-attractants including 50ng/ml hVEGF-A, 100ng/ml hSDF1, 1uM 

S1P and 2% serum. Knockdown of Rnd1 significantly augmented HUVEC migration 

towards hVEGF-A, but not the other attractants, suggesting that RND1 plays critical role 

in regulating VEGF-mediated migration (Figure 5-13). 
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Figure 5-13. Rnd1KD accelerated HUVEC migration towards VEGF 

HUVECs transfected with siRND1 or siCtrl were starved in 0.5% FBS overnight followed by a 

complete starvation with EBM-2 for 3 hours. Cells were then subjected to Boyden Chamber 

migration assay as described in Chapter II.  Cell migration was measured by quantifying area 

covered by cells and dividing by total area of the image using ImageJ (3 different areas per well, 3 

wells per sample), experiments was performed three times. Rnd1KD significantly accelerated 

HUVEC migration towards 50ng/ml hVEGF-A Interestingly, other chemoattractant (SDF-1, S1P 

and full serum) mediated-migration was not affected by Rnd1KD.  

 

This finding is of particular importance because during angiogenesis, activation of Notch 

signaling leads to the loss of migration capabilities towards VEGF in stalk cells and 

sustained VEGF expression upregulates Notch signaling in EC (Funahashi et al., 2010). 

Rnd1 might function as a Notch downstream effector to mediate this phenotype in stalk 
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cell. To test our hypothesis, we activated Notch by overexpressing DLL4 in HUVEC, 

which significantly up regulated Rnd1 expression, and siRND1 successfully inhibited the 

Rnd1 induction to basal level.  Our preliminary data shows that DLL4 overexpression led 

to a dramatic decrease in HUVEC migration activity towards VEGF. More importantly, 

siRND1 partially and significantly rescued this phenotype. This finding confirmed our 

hypothesis that Rnd1 functions downstream of Notch to inhibit endothelial cell migration 

towards VEGF. Migration towards VEGF is not fully restored in the absence of Rnd1, but 

this may be due to the presence of other Notch effectors, such as VEGFRs, that also serves 

as regulators of the migration activity (Figure 5-14).  
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Figure 5-14.  Dll4 OE decreased HUVEC migration towards VEGF, and Rnd1KD 

rescued the phenotype (preliminary) 

Lentiviral mediated DLL4 over expression (OE) in HUVECs significantly decreased cell migration 

towards VEGF in the Boyden Chamber migration assay. Cell migration was measured by 

quantifying cell number per field using ImageJ, and this experiment has only been performed once. 

si-RND1 treatment on DLL4 OE HUVECs successfully rescued this phenotype. To note, this 

experiment has only been done once. 

 

5.3.5 Loss of Rnd1 promoted sprouting and overexpression of RND1 restricted sprouting 

in Fibrin-bead angiogenesis (FIBA) assay 

 

Notch plays critical role in regulating angiogenesis. Rnd1, as a novel EC Notch target, has 

been shown above to regulate VEGF-stimulated migration. Our next question is whether 

Rnd1 functions in regulating the multistep processed of angiogenesis.  To characterize 

Rnd1 function in angiogenesis, we carried out an in vitro sprouting assay called Fibrin 

Bead Sprouting Assay (FIBA). FIBA is a 3D capillary sprouting assay that mimics the 

normal sprouting process in vitro.  FIBAs consist of EC attached to latex beads, embedded 

in a fibrin clot, and overlaid with feeder cells that secrete critical growth factors to promote 

formation of vessel-like structures (Figure 5-15). Sprouting activity in FIBA can be well 

assessed 5-7 days after beads are embedded in fibrin, when endothelial sprouts form 

lumen-containing, branching networks (Nakatsu, Davis, & Hughes, 2007; Nakatsu & 

Hughes, 2008).  
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Figure 5-15. Schematic of Fibrin Beads Sprouting Assay  

Endothelial cell-coated beads were embedded in a fibrin gel, overlaid with a fibroblast feeder layer, 

and cultured in endothelial cell culture media (Left). Sprouting with branches and tube- like 

structures can be observed in day5-day7 FIBAs (Right). 

 

When Rnd1KD were used in FIBA assays, we observed a significant increase the number 

of sprouts on day 2 (Figure 5-16). However, this difference was lost over time, possibly 

due to the loss of siRNA knockdown efficacy, which we showed fades away after 3-4 days 

(Figure 5-16). The hyper sprouting phenotype caused by Rnd1 knockdown on day2 is 

consistent with the effects of Notch inhibition, which leads to enhanced endothelial 

sprouting, and further suggests that Rnd1 may also mediate Notch-induced sprouting 

inhibition.   
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Figure 5-16. Rnd1KD enhanced sprouting angiogenesis in HUVECs 

HUVECs transfected with siRND1 or siCtrl was embedded for FIBA assay 48 hours after 

transfected the cells. Rnd1KD HUVECs showed enhanced sprouting on day2 compared with 

control.  To quantify the assay, sprouts number and length were measured using 5X image from 

each well, for a total of between 50-100 beads per group However, as KD effect of siRNA faded 

away, no significant differences were detected on day5.  

 

We then investigated the effects of Rnd1 overexpression. HUVECs were co-infected with 

pCCL constructs expressing full length Rnd1 (or empty pCCL vector as control) and 

pCCL-RFP to better visualize the sprouting activity. As expected, HUVECs with lentiviral 

meditated stable overexpression of Rnd1 showed decreased sprouting number, sprout 

length and tip cell number on day 5-7 of FIBA assays, which is consistent with the effects 

of Notch activation that inhibit sprouting activity in endothelial cells (Figure 5-17). 

 



 

132 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17. Rnd1 overexpression decreased sprouting angiogenesis in HUVECs  

Lentiviral-mediated stable overexpression of Rnd1 significantly inhibited sprouting of HUVECs 

in the FIBA assay. To quantify the assay, sprouts number and length were measured using 5X 

image from each well, for a total of between 50-100 beads per group.  Quantification of the assay 

showed decreased sprouts number, sprouts lengths as well as tip number in siRND1 HUVECs. 

 

Taken together, these findings suggest multiple functions of Rnd1 in cultured endothelial 

cells, including regulation of cell migration towards VEGF and sprouting angiogenesis. 

More importantly, Rnd1KD significantly rescued the migration phenotype caused by Dll4 

induction, indicating that Rnd1 is required downstream of Notch to mediate suppression 

of cell migration. During sprouting angiogenesis, Notch plays a critical role in restraining 

the migratory capability of stalk cells towards VEGF. Based on our data, we hypothesized 

that Rnd1 is rapidly and strongly induced by Dll4-Notch in stalk cells and contributes to 

the stalk cell phenotype through repressing migration and angiogenic sprouting in that cell.   
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5.4 Results - Signaling mechanism of Rnd1 in endothelial cells 

 

We sought to examine the mechanism by which Rnd1 regulates endothelial behavior. It 

has been shown that Rnd1 can be an indirect regulator of either Rho or Ras in previous 

studies (see introduction). Here we performed G-LISA assays to detect the effect of Rnd1 

knockdown on Rho and Ras activities. G-LISA is a colorimetric based assay that measures 

the GTP-loaded Rho/Ras protein in cell lysates(Alford, Wang, Feng, Longmore, & Elbert, 

2010). 

 

Knockdown of Rnd1 with siRNA showed no significant effects in basal Ras activation 

level in HUVECs (Data not shown) We then investigate the effects of Rnd1 on induced-

level of Ras activity. EGF has been previously described to induce Ras activity in multiple 

cell types (Margolis & Skolnik, 1994; Rojas, Yao, & Lin, 1996).  In HUVECs, EGF 

treatment caused a transient increase of Ras activation at 5 minutes. Inhibition of Rnd1 by 

siRNA significantly enhanced EGF-mediated Ras activation. We then explored the effects 

of Notch signaling on Ras activity. Overexpression of N1IC dramatically up-regulated 

Rnd1 mRNA level by more than 300-fold as previously shown. Consistent with the 

Rnd1KD effect, N1IC overexpression completely abolished EGF-mediated Ras activation 

in HUVEC (Figure 5-18). 
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Figure 5-18. EGF-induced Ras activation was enhanced by Rnd1KD, and inhibited 

by Notch OE 

EGF transiently induced Ras activation at 5minutes after treatment, detected with GLISA-RasGTP 

kit. Rnd1KD enhanced the EGF-mediated Ras activation. N1ICD overexpression strongly induced 

Rnd1 expression (see Figure 5-6), and completely blocked EGF-mediated Ras activation. 

 

Most studies indicate that the morphological effect of Rnd proteins are related to inhibition 

of RhoA-mediated contraction. We then examine the possibility that RND1 regulates 

RhoA signaling in endothelial cells. Rnd1 knockdown, however, showed no effect on basal 

or thrombin-induced RhoA activation in HUVECs. Consistent with the Rnd1 knockdown, 

N1ICD overexpression did not affect Rho activation in HUVECs (Figure 5-19). 
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Figure 5-19. Rnd1KD and Notch OE has no effect on Thrombin-mediated RhoA 

activation 

Thrombin transiently induced RhoA activation at 2minutes after treatment, detected with GLISA-

RhoA GTP assay. Neither Rnd1KD nor NIC overexpression has any significant effects on 

Thrombin-mediated RhoA activation. 

 

Collectively, our data suggests that Notch, and the downstream target Rnd1, regulate Ras 

but not RhoA activity in HUVECs.  

 

5.5 Discussion/Working model 

 

In this chapter, we interrogated the functional role of the Rho GTPase Rnd1, a novel 

endothelial Notch responsive gene identified in the screens described in Chapters 3 and 4. 

Rnd1 has been well established as a regulator of cytoskeleton activity in various cell types, 

while the role of Rnd1 in endothelial cells has been poorly understood. Here, we 

established that Rnd1 regulates VEGF-mediated migration and angiogenesis capability in 
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HUVECs. Loss of Rnd1 resulted in enhanced migratory and hyper sprouting of endothelial 

cells, which is consistent of the effects of Notch inhibition which lead to “tip cell” 

phenotype. Overexpression of Rnd1 blocked sprouting, which mimic the “stalk cell” 

phenotype. More importantly, Rnd1KD significantly rescued the migration phenotype 

caused by Dll4 overexpression, indicating that Rnd1 is required downstream of Notch 

signaling to mediate suppression of cell migration. These results strongly support Rnd1 as 

a downstream target of Notch signaling and support Rnd1 as a critical Notch effector in 

endothelial cells. Signaling mechanism studies revealed that Notch, as well as the 

downstream target Rnd1, regulate Ras activity but not Rho activity in endothelial cells. 

 

 

It has been well established that Dll4 in tip cells activates Notch signaling in adjacent 

endothelial cells, which suppress tip cell fate in neighboring cells through regulation of 

VEGF receptor expression. VEGF receptors are secondary targets of Notch signaling, and 

are subjected to regulation of Hey2. Here, we propose a working model which reveals a 

novel mechanism of Notch regulation in angiogenesis through newly defined primary 

target and effector Rnd1 (Figure 5-20). Our date suggests that Rnd1 remains at a low 

expression level in quiescent endothelial cells. During angiogenesis, Dll4 in tip cells 

activates Notch signaling in adjacent endothelial cells, which rapidly and strongly up 

regulate Rnd1. High expression levels of Rnd1 inhibits Ras activity (and other potential 

signaling pathways), which contributes to stalk cell phenotype by inhibiting the migration 

activity towards VEGF and sprouting activity. 
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Figure 5-20. Working Model 
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Chapter 6 Discussion and Future Directions 

 

This thesis work employs a variety of in vitro and in vivo unbiased screening approach to 

identify novel early Notch transcriptional targets in endothelial cells. We established an in 

vivo screening method that captures rapid response Notch targets in endothelial cells 6 

hours after GSI injection using the RiboTag technique.  In vitro, we identified a set of 

genes in primary endothelial cells that are activated 6 hours after Dll4/Jag1 stimulation and 

the genes that are stimulated within 1-1.5 hours by EGTA treatment and which are 

sensitive to GSI treatment.  Combining these screens, we established a comprehensive data 

set that characterized the rapid Notch transcriptional events from both in vivo and in vitro 

contexts. A large number of novel Notch candidates were identified in the comprehensive 

dataset. We picked one of the most highly induced candidates, Rho GTPase RND1, for 

further study. RND1 was successfully validated as a Notch target using a variety of assays. 

We discovered that Rnd1, was a bone fide Notch effector when analyzed using cultured 

endothelial cells, regulating endothelial cell migration towards VEGF and angiogenesis 

capabilities through the Ras signaling pathway. These studies make a significant 

contribution to our understanding of Notch-mediated angiogenic signaling through 

downstream effectors and established comprehensive methodology as well as datasets for 

future interrogation of novel Notch targets.  However, many questions remain to be 

addressed and we will discuss here experiments to follow up on our current studies and 

further elucidate the roles of Notch effectors. 
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6.1 Determining the mechanism by which Notch regulates RND1 

 

It is important to understand how the endothelial-specific expression of genes is controlled 

at the transcriptional level. The basal expression level of RND1 was very low in endothelial 

cells, however the expression was upregulated in a rapid and dramatic manner upon Notch 

activation. Our in-silico analysis suggested a putative endothelial specific enhancer region 

of RND1 that may be responsive to Notch activation. Our hypothesis is that this enhancer 

is a key player for increasing endothelial specific RND1 expression upon Notch activation. 

This hypothesis can be explored by characterizing the binding activity of NICD to the 

enhancer region using Chromatin IP, and the function of enhancer fragments from the 

Rnd1 gene using Luciferase reporter assays and/or deletion analysis to study the effects of 

the enhancer regions on gene expression in response to Notch signaling in endothelial cells 

and other cell types.  

 

We have considered possibility of creating a mouse model with a knockout of the 

endothelial-specific enhancer of Rnd1.  However, while this enhancer can be clearly 

defined in human cells, the syntenic region in mouse is not well defined and the ENCODE 

DHS sequencing database does not contain sufficient coverage in mouse cells to identify 

this enhancer region in the mouse genome.    

 

6.2 Deciphering signaling mechanism of Rnd1 in endothelial cells 
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Our data suggested that Notch, and its effector Rnd1, functions through Ras signaling in 

endothelial cells. It has been well established in other cell types that Rnd1 functions 

through Ras effectors to indirectly regulate Ras activity. Plexin-B1, a Sema-4D receptor, 

can interact simultaneously with Rnd1 and R-Ras•GTP, and this interaction stimulates the 

GAP activity of plexin-B1 on R-Ras(Yamamoto et al., 2018). We hypothesize that Rnd1 

in association with plexins regulate Rap and Ras GAP in endothelial cells. To test this 

hypothesis, co-immunoprecipitation (co-IP) will be performed to exam direct binding 

partners of Rnd1. Rap and Ras activities will be examined in conditions of Rnd1 loss or 

gain function. Previous studies have shown that Rnd1 functions primarily through Rho 

activation in some cell types, so it is currently unknown why Rnd1 functions through Ras, 

but not Rho, in endothelial cells.  We hypothesize that the presence of plexins play critical 

roles in regulating this process. We can test the hypothesis by knocking down plexin 

proteins in Rnd1 overexpressing endothelial cells to observe the effects on Rho and Ras 

activation.  

 

6.3 Determining Rnd1 function in angiogenesis using mouse model  

 

Our in vitro data demonstrates that Rnd1 regulates sprouting angiogenesis. It will be of 

great interest to characterize Rnd1 function in physical and pathological angiogenesis 

using mouse models. So far, no Rnd1 transgenic mouse models have been published. Our 

lab is in the process of generating Rnd1 conditional knockout mice (Rnd1flox) using 

Crisper-Cas9 technology. Rnd1ECKO (Rnd1flox/flox in combination with an endothelial 

specific inducible Cre allele, Cdh5CreERT2) mice can be used to interrogate Rnd1 
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function in different models of angiogenesis, such as postnatal retina angiogenesis and 

oxygen induced retinopathy. To determine if Rnd1 is required to mediate Notch function 

in angiogenesis, we can compare retinal angiogenesis in N1ICDEC; Rnd1ECKO with N1ICEC 

mice and examine whether loss of Rnd1 is sufficient to rescue some or all of the effects of 

Notch overexpression in vivo. Furthermore, Rnd1ECKO mice can be bred to RiboTag mice 

to characterize downstream changes caused by loss of Rnd1 in vivo using RNA-seq. These 

experiments will be of great value to examine the angiogenic roles of Rnd1 as a Notch 

effector and establish whether endothelial Rnd1 also has Notch-independent roles in the 

context of the living organism. 

 

6.4 Exploring other targets of interest  

 

Our in vitro and in vivo screens identified a large number of candidate endothelial Notch 

targets and effectors which remain unexplored. We identified a subset of G-Protein/GPCRs 

(including but not exclusive to Rnd1) as potential Notch targets. GPCRs are regarded as 

potent regulators of blood vessel formation, in both developmental and pathological 

angiogenesis. For example, one of the novel targets GPR126, has been shown to regulate 

developmental and pathological angiogenesis through modulation of VEGFR2 receptor 

signaling(Cui et al., 2014). However, a better understanding of the functionality and 

molecular mechanisms of the majority G-Protein/GPCR candidates in angiogenesis still 

needs to be characterized. Moreover, the observation that Notch regulates proteins that 

function in GPCR signaling is novel and unexplored area of endothelial Notch function.  
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Another group of interesting targets are those that have been well established as key 

regulator of vascular function, but have not previously been linked to Notch signaling, 

such as UNC5B and MSFD2A. As discussed in Chapter III, the netrin receptor UNC5B has 

been well established to play an anti-angiogenic role during embryonic vascular patterning, 

as well as in postnatal and pathological angiogenesis (Larrivee et al., 2007; Lu et al., 2004). 

Our data suggest UNC5B as a very rapid responder to Notch activation both in vivo and in 

vitro and is among the 17 genes identified by all three screens as Notch targets. Another 

target of high interest is MSFD2A, which is critical for the formation and function of the 

blood brain barrier (Ben-Zvi et al., 2014). Our data indicate that MSFD2A is a rapid 

responding gene of Notch in brain endothelium, and this may reveal an unaddressed area 

of Notch regulation on blood brain barrier. 

 

 

6.5 Jag1 in endothelial cells: activator or inhibitor of Notch? 

 

The regulation of Notch signaling in endothelial cells is attributed to Notch ligand, Jag1 

and Dll4. High expression of Dll4 in tip cells is thought to activate Notch in stalk cells, 

and functions to suppress sprouting angiogenesis in stalk cell. The role of Jag1, unlike Dll4, 

is controversial and elusive. It is suggested that Jag1, as an inactive ligand, promotes 

angiogenesis by antagonizing Dll4-mediated activation of Notch signaling in fringe-

modified endothelial cells (Benedito et al., 2009). However, data from our group and others 

suggest that Jag1 can activate EC-Notch signaling to promote angiogenesis (Chang et al., 

2011; Kangsamaksin et al., 2015). Our lab demonstrated that blocking Jag1 activity in ECs 
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using the JAG-specific NOTCH1 decoy downregulated canonical Notch targets including 

HEY1, HEYL, and HES1(Kangsamaksin et al., 2015). The mechanism of how Jag1 

regulates endothelial Notch signaling has been a great interest. We formed three 

hypotheses of the role of endothelial Jag1:  

a. Jag1 functions as inactive ligand to antagonize Dll4-Notch signaling. If the hypothesis 

is real, we would detect down-regulation of canonical Notch targets upon presence of Jag1.  

b. Jag1 functions as a weak ligand to stimulate low level of Notch activation. If the 

hypothesis is real, we would detect overlapping genes but with weaker fold induction by 

Jag1/Notch compared to Dll4/Notch.   

c. Jag1/Notch signaling promotes unique downstream targets. If the hypothesis is real, we 

would detect distinct target genes of Jag1/Notch compared with Dll4/Notch.  

 

Our RNA-seq analysis on ECs stimulated by tethered-Jag1 identified a weak activation 

potency. We did not see significant down-regulation of canonical Notch targets, which 

may occur if Jag1-Fc blocks the endogenous Dll4-Notch activity which is exhibited in 

cultured EC. Furthermore, comparison of the Dll4 and Jag1 profiles (using Common genes 

between HUVEC and HREC) identified 100% up regulated genes (11 of 11 genes) to be 

common. The induction fold change of stimulated genes by Jag1 is relatively lower 

compared with Dll4. Collectively, our data confirmed hypothesis b and suggested that Jag1 

functions as a weak activator of Notch signaling in endothelial cells. 

 

6.6 Application of RiboTagEC model to profile other vascular beds  
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The RiboTagEC model is a powerful tool to characterize endothelial transcriptional 

responses where cellular environment is maintained. We use the global Notch inhibitor 

GSI to detect Notch-dependent transcripts. In the future, we may detect ligand-specific 

Notch signaling targets using ligand-specific “Notch decoys” previously developed in our 

lab. By establishing a comprehensive catalog of endothelial global Notch, Dll-Notch, and 

Jag-Notch targets in vivo, we will have a better understanding of the regulation mechanism 

of ligand-specific Notch signaling. In this study, we focused on neonatal brains. However, 

the RiboTagEC model can be easily used to profile other vascular beds to characterize 

transcriptional events in developmental retina angiogenesis, oxygen induced retinopathy, 

cardiovascular disease, tumor angiogenesis and other model systems. As shown for the 

example of Rnd1, this powerful approach enables the identification of novel regulators and 

molecular processes mediating angiogenic growth, which will provide valuable insights to 

regulatory mechanisms of those process and novel targets to address pathological 

conditions. In next Chapter (Chapter 7 appendix), we utilized the RiboTagEC technique to 

profile Notch signaling in tumor endothelial using a xenograft tumor model.    
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Chapter 7 Appendices 

Profiling Notch signaling in tumor vessels using RiboTag model 

7.1 Introduction 

 

7.1.1 Tumor angiogenesis and anti-angiogenic therapy 

 

Angiogenesis is a critical step in tumor growth, malignancy and metastasis. Most solid 

tumors are avascular in the initial stage until the size reaches 1-2 mm in diameter.  As the 

tumor continue to expand, “angiogenic switch” is triggered by tumor-derived angiogenic 

factors and inflammatory cytokines, recruiting surrounding host vessels to form new blood 

vessel capillaries, which supply growth factors for tumor expansion and metastasis(Weis 

& Cheresh, 2011). In contrast to the host vessel, these tumor-induced vessels are abnormal, 

fragile, and hyperpermeable.  

  

Anti-angiogenic therapy has become an established therapeutic approach through reducing 

solid tumor growth. VEGF signaling is one of the most established signaling pathways in 

tumor angiogenesis. The first FDA approved anti-angiogenic drug, bevacizumab (Avastin), 

is a VEGF-A inhibitor used in several types of cancers and has proved somewhat 

successful(Bergers & Hanahan, 2008). However, anti-angiogenic agents targeting the 

VEGF pathway do not exhibit durable tumor responses, and they eventually induce drug 

resistance or even favor tumor metastasis in some cases(Bergers & Hanahan, 2008; Ebos, 

Lee, & Kerbel, 2009; Paez-Ribes et al., 2009). 
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7.1.2 Notch signaling in tumor angiogenesis 

 

Notch signaling has been shown to play an important role in tumor angiogenesis. Notch 

proteins and ligands are widely expressed in endothelial and perivascular cells, but they 

are also shown to be up-regulated in several types of tumor cells. Dll4 was found to be up-

regulated in tumor blood vessels and several types of tumors(Mailhos et al., 2001; Patel et 

al., 2005) and its blockade decrease tumor growth by inducing hyper sprouted-but-

nonfunctional vasculature(Hoey et al., 2009; Ridgway et al., 2006). Therefore, Notch 

signaling, like VEGF, has become a focus for developing anti-angiogenic therapy by 

pharmaceutical companies. Pan-Notch inhibitor GSI, and Dll4 inhibitors have been 

developed for cancer therapy and are now in clinical trials; however, varying susceptibility 

among different tumors and safety concerns for long-term treatments have rendered those 

therapies less promising as reliable solutions (Jain, 2005; Shojaei et al., 2007; Yan et al., 

2010). Notch signaling is involved in many cellular functions. Hence, altering Notch 

signaling may lead to severe side effect. In addition, the hyper-sprouting phenotype 

resulted from pan Notch (GSI) or Dll4 blockader is also worrisome.  

 

Significant amount of studies over last two decades has revealed the complexity of 

signaling mechanism in tumor angiogenesis. Even though increased knowledge was 

gained on Notch signaling pathway in tumor angiogenesis, a comprehensive and complete 

understanding is still missing. In order to reveal the transcriptional landscape of Notch 
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signaling in tumor vessels, we used the RiboTagEC mice model and performed an 

unbiased profiling of Notch signaling in tumor vessel.  

 

7.2 Results- Characterizing tumor angiogenesis in DNMAMLEC mice 

 

Notch inhibition can be achieved either by conditional knockout of Notch or ligands, or 

expression of inhibitory construct. The former method can be efficient but with the 

possibility of compensation effect by other receptors and ligands. It is also more difficult 

to recombine both alleles in every cells. So here we ablate Notch signaling with expression 

of inhibitory protein-dominant negative Mastermind-like (DNMAML). In normal cells, 

activation of Notch signaling causes translocation of the Notch intracellular domain (NICD) 

to the nucleus, where it complexes with the CSL complex. Mastermind-like (MAML) 

binds to the CSL/NICD complex and facilitates the binding of an additional coactivation 

complex (CoA), which causes transcriptional activation of Notch/CSL targets (Nam, Weng, 

Aster, & Blacklow, 2003). The inhibitory dominant negative MAML (DNMAML) 

construct binds to CSL/NICD, but cannot recruit CoA. In the absence of CoA recruitment, 

CSL maintains its role as a transcriptional repressor, and canonical Notch signaling is 

inhibited. DNMAML has been well validated in cell-based assays and in mouse models as 

a specific Notch inhibitor that replicates phenotypes produced by Notch or RBPJ 

deficiency (McElhinny, Li, & Wu, 2008). 
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7.2.1 Working strategy 

 

To inhibit Notch signaling specifically in endothelial cells, we crossed Cre-inducible 

DNMAML mice with Cdh5CreERT2 mice to get DNMAMLEC (Cdh5CreERT2/+; 

DNMAML-GFP flox/+) mice. Recombination was induced with tamoxifen 5 weeks after 

mice were born. For this experiment, we employed the Lewis Lung Carcinoma (LLC) 

tumor model, an established highly vascularized tumor model. At week 6, LLC tumor cells 

were subcutaneously implanted into mice. LLC tumor growth were monitored on a weekly 

basis and harvested after 2 weeks or when tumors reached the size of 2 centimeters in 

diameter. 

 

7.2.2 DNMAMLEC mice showed no difference in tumor progression 

 

DNMAMLEC mice exhibited similar primary tumor growth kinetics to control mice, as 

well as comparable primary tumor masses at endpoint day 14 (Figure 7-1).  
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Figure 7-1. DNMAMLEC mice showed no significant difference  

in tumor progression  

Recombination was induced with tamoxifen 5 weeks after mice were born. LLC tumor was 

implanted subcutaneously on week 6. Tumor volume was monitored by caliper measurement every 

day, and tumor weight was assessed at day 14 once they were dissected out of the mouse. No 

significant differences were observed between DNMAMLEC mice (n=3) and control mice (n=3). 

 

7.2.3 DNMAMLEC mice showed significant enhanced endothelial cell density  

 

Despite this, we did note that DNMAMLEC mice showed a significant increase in 

endothelial cell density when we analyze endpoint tumor vasculature by Endomucin 

staining (Figure 7-2). This is consistent with the hyper-sprouting phenotype resulted from 

blockade of Dll4-Notch from previous studies (Hoey et al., 2009; Ridgway et al., 2006) 
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Figure 7-2. DNMAMLEC mice showed enhanced endothelial density in tumor 

Tumors were fresh frozen in OCT. 7 m sections were post fixed and stained for endothelial 

markers (Endomucin). Quantification was done using Fiji-ImageJ. Endothelial cell coverage was 

calculated by quantifying area covered by Endomucin positive signals and dividing by total area 

of the specimen. DNMAMLEC mice (n=3) showed significant enhanced tumor density compared 

with control(n=3). 

 

To summarize, in this study, DNMAMLEC significantly increased tumor vessel density 

while showed no effect on tumor growth. The potential explanations could simply be that 

inhibition of Notch signaling solely in vessel may be efficient in changing vessel density, 

but have limited effect in changing tumor progression. Other explanation could be that 

LLC tumor grows aggressively and rapidly, which lead to potential complication that 

subtle differences in tumor dynamics may be lost due to the overwhelmingly aggressive 
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nature of the tumor cells themselves. It also allows limited time for the development of 

detectable metastasis. It is possible that changes of tumor growth by inhibition of Notch 

function in vessels will be detected using different types of tumor models.  

 

7.3 Results- Profiling Notch signaling in tumor vessels using RiboTagEC model  

 

Tumors have been recognized as aberrant organs composed of a complex mixture of highly 

interactive cells including cancer cells, stroma (fibroblasts, adipocytes, and 

myofibroblasts), inflammatory (innate and adaptive immune cells), and vascular cells 

(endothelial and mural cells)(Ziyad & Iruela-Arispe, 2011). Uncovering critical vascular 

specific genes in the complex tumor environment is challenging. Translational profiling 

using RiboTag represents a particularly useful technique to study specific cell types from 

complex tissues. Here we used the RiboTagEC mouse model in combination with the 

DNMAMLEC mice to profile Notch signaling in tumor vessels. 

 

7.3.1 Working strategy 

 

DNMAMLEC, RiboTagEC (Cdh5CreERT2/+;DNMAML-GFPflox/+;Rpl22HA/+) mice were 

used in the study, RiboTagEC(Cdh5CreERT2/+;Rpl22HA/+) were used as control mice. 

Following tamoxifen-induced recombination at week 5, HA-tagged Rpl22 and DNMAML 

were specifically expressed in endothelial cells. At week 6, LLC tumor cells were 

subcutaneously implanted into mice. Tumors at endpoint (14 days) were harvested and 

snap frozen in liquid nitrogen. RiboTag IP were then performed as previously described, 
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and mRNA extracted from both whole tumor homogenate and IP ribosome were subjected 

to RNA-seq at a depth of ~30 million 100-base single-end reads. We included 3 

DNMAMLEC, RiboTagEC mice, and 3 RiboTagEC mice as control in this study (Figure 7-3). 

 

 

Figure 7-3. Working Strategy 

 

7.3.2 RiboTag staining and endothelial marker enrichment confirmed tissue specificity 

of the IP system 

 

Immunostaining of end-point primary tumor section detects specific and robust expression 

of Rpl22HA in endothelial cells (Figure 7-4). To confirm successful immunoprecipitation 

of endothelial-specific mRNA, we compared Input versus IP samples for expression of 
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multiple established endothelial markers. As expected, RNA for endothelial specific 

markers were significantly and consistently enriched in the RiboTag-IP fractions compared 

with the Input fraction in all samples, which validated endothelial specificity of the IP 

system (Figure 7-5). 

 

Figure 7-4. Rpl22-HA expression was detected specifically in ECs 

Rpl22-HA expression (Anti-HA, red) was detected specifically and efficiently in the endothelial 

cells (IB4, green) of P5 brain of RiboTagEC mice 
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Figure 7-5. RiboTag IP samples exhibited enrichment of EC markers  

Differential expression analysis comparing homogenate (n=6) and IP isolated RNA (n=6) 

showed significant and consistent enrichment of pre-selected endothelial (including Emcn, 

Pecam1, Cdh5, Cldn5, and more) markers across all samples.  

 

7.3.3 PCA analysis revealed substantial variation between individual samples 

 

Two-dimensional principal component analysis (PCA) analysis reveals clustering of 

homogenate samples versus IP-samples. However, the variation between individual 

sample are so substantial and this may mask the subtle differences caused by DNMAML 

expression (Figure 7-6). The big variation is not out of expectation, given the heterogeneity 

of tumors. A larger sample size is needed for a better interpretation of the results.  
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Figure 7-6. PCA plots showed segregation of homogenate and IP, and revealed 

substantial variability between individual samples 

Two-way principle analysis (PCA) showed segregation of 2 groups: Homogenate (left) and IP 

(right). The DNMAML effects, however, did not further differentiate the samples (blue as control, 

green as DNMAML). Large variability between individual samples was revealed.  

 

7.3.4 Differential analysis detected genes altered by DNMAML in tumor vessels, but 

without success identifying canonical Notch targets 
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Expression profiles of DNMAML mice were compared with the control group. Genes with 

Padj≤0.05 and fold change of log2≥0.6 fold were considered as candidate genes. No 

significant differences were detected in gene profiles comparing tumor homogenate from 

DNMAML and control mice. However, we were able to identify 31 significantly up-

regulated genes and 87 significantly down-regulated genes in DNMAML mice RiboTag-

IP sample compared with control (Figure 7-7). This is in consistent with the detection of 

altered tumor vessel density without differences in tumor growth. However, out of our 

expectation, canonical Notch signaling targets were not present in significantly regulated 

genes. We will discuss the potential reasons in “Discussion”.  
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Figure 7-7. Significant gene changes caused by DNMAMLEC were detected in IP 

samples 

Differential analysis comparing genes being altered in DNMAMLEC mice versus control mice 

detected no significant change in homogenate samples. Total of 118 genes including 31 

upregulated gene and 87 downregulated gene were identified as significant (Padj<0.05) with a 

Log2FC at least 0.6. However, within those significant genes, we didn’t detect any canonical Notch 

targets.  

7.4 Discussion 

 

Tumors are complex tissues that involve multiple cell types, and the 

transcriptional/translational machinery is highly dynamic. Tumor angiogenesis has been 

an important target for the treatment of many solid tumors and, in particular, their 

metastasis. Gaining a comprehensive understanding of cellular behavior and the molecular 

mechanism controlling the biological processes of tumor vessel can be of great value. 

Previous transcriptional profiling studies focus on endothelial cells isolated from 

malignant tissues, which are often complicated by expression altering tissue dissociation 

and cell sorting steps. The problem can be avoided with the RiboTagEC model. 

RiboTagEC model is a strong tool to identify altered patterns of RNA translation in 

specific cell types within a heterogenous background without the need of cell sorting.  

 

We successfully used the RiboTag technique to profile endothelial cells from LLC late-

stage tumors. We observed enhanced tumor density in DnMAMLEC mice, and detected 

significant gene expression alteration within tumor vessel using RiboTag IP and RNA-seq. 

However, we were unable to identify any endothelial canonical Notch targets that 
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significantly altered by transgenic inhibition of Notch in this study. This may be explained 

by the following reasons: 

 

1. Genetic gain and loss of function mice model is a powerful tool to characterize 

phenotype, however these techniques lack the ability to resolve primary transcriptional 

events. It is challenging to detect Notch target genes when Notch signaling is integrated 

with the output from downstream signaling cascades, feedback loops, and compensation 

from parallel pathways. Instead, pharmacological inhibition could be utilized such as GSI, 

or ligand-specific “Notch decoys” previously developed in our lab to perform a stringently 

control of signaling kinetic.  

 

2. Abnormality features of tumor vessels at end stage may lead to gene expression changes 

that are irrelevant to Notch signaling.  It has been known that vascular density decreases 

as tumors grow, leading to zones of ischemia and ultimately necrosis(Nagy, Chang, 

Dvorak, & Dvorak, 2009). It is not surprising when the environmental cues like ischemia 

and necrosis triggers dramatic gene expression changes in the endpoint tumors. Future 

studies could focus on profiling tumor vessels at earlier cancer developmental stage.     

 

3. It could be simply explained by the limited experimental replicates (# of mice) we 

included in the study. Substantial variations were observed between individual tumors in 

terms of tumor burden and vessel density, which may serve to mask subtle differences in 

gene changes between groups.  
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Taken together, we believe pharmacological manipulation, which enables more precise 

signaling kinetic control, would be a better tool to profile primary signaling event. Given 

tumor heterogeneity, more experimental replicates as well as multiple tumor types should 

be utilized to draw a conclusion.  

 

Finding druggable targets on tumor blood vessels will require them to be better 

characterized. RiboTag technique can be a great tool to generate cell-specific gene 

expression signature to understand tumor development, metastasis and therapeutic 

response.  
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