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1 Abstract 

1. Abstract 

 

Dimethyl fumarate (DMF) is approved for treatment of relapsing remitting multiple sclerosis 

(RRMS), a chronic inflammatory disease of the central nervous system (CNS) that is caused by 

autoreactive T cells. The effect mechanism of DMF is not fully elucidated so far; however, a 

preferential impact on CD8+ T cells was described. In the cerebrospinal fluid (CSF) of MS 

patients IL-17-producing CD8+ T (Tc17) cells are enriched. In addition, during experimental 

autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis (MS), a co-

pathogenic function of Tc17 was described. Hence, Tc17 cells crucially contribute to 

autoimmune processes in the CNS of men and mice.  

This study shows that DMF elevated reactive oxygen species (ROS) in CD4+ T (Th17) cells and 

Tc17 cells by glutathione depletion, resulting in IL-17 suppression particularly in Tc17 cells. 

Accordingly, IL-17 production by CD8+ but not by CD4+ T cells was reduced in DMF-treated MS 

patients and DMF application diminished Tc17 cell pathogenicity in EAE. Accumulated ROS 

shifts the Tc17 transcriptome towards a cytotoxic T lymphocyte (CTL)-like signature by 

enhancing IL-2 signalling including phosphoinositide-3-kinase (PI3K)/ protein kinase B (AKT) 

and signal transducer and activator of transcription (STAT)5 pathways. AKT deactivated 

forkhead-box-Protein O (FOXO)1 leading to the upregulation of the transcription factor T-box 

transcription factor TBX21 (T-bet), which in turn suppressed IL-17. The modified transcriptional 

network was accompanied by altered histone modifications at the Il17 locus. In line, T-bet-

deficiency, inhibition of histone deacetylases (HDAC), PI3K/AKT or STAT5 partially prevented 

DMF-mediated suppression of Tc17 cells. 

Thus, this work provides mechanistic insights into the selective modulation of Tc17 cell 

differentiation by DMF-mediated upregulation of ROS and IL-2 signalling with relevance for 

Tc17-driven pathologies including MS and psoriasis.  

 



  
2 Zusammenfassung 

1. Zusammenfassung 

 

Dimethylfumarat (DMF) wird zur Behandlung von schubförmig remittierender multipler 

Sklerose (RRMS) eingesetzt, einer chronisch-entzündlichen Erkrankung des zentralen 

Nervensystems (ZNS), die von autoreaktiven T-Zellen verursacht wird. Der Wirkmechanismus 

von DMF ist nicht vollständig aufgeklärt; es ist jedoch bekannt, dass insbesondere CD8+ T-

Zellen beeinflusst werden. IL-17-produzierende CD8+ T-Zellen (Tc17) sind in der 

Zerebrospinalflüssigkeit (CSF) von MS-Patienten angereichert. Zusätzlich wurde die ko-

pathogene Wirkung von Tc17-Zellen in der experimentellen autoimmunen Enzephalomyelitis 

(EAE), dem Mausmodell für MS, beschrieben. Diese Beobachtungen legen nahe, dass Tc17-

Zellen zu autoimmunen Prozessen im ZNS bei Mensch und Maus beitragen. 

Die vorliegende Studie zeigt, dass DMF durch Glutathiondepletion in IL-17-produzierenden 

CD4+ T-Zellen (Th17) und Tc17-Zellen Sauerstoffradikale anreicherte und dies besonders in 

Tc17-Zellen zu einer IL-17 Suppression führte. Dementsprechend konnte eine reduzierte IL-17-

Produktion in CD8+ T-Zellen, nicht jedoch in CD4+ T-Zellen von DMF-behandelten MS-Patienten 

nachgewiesen werden. Ebenso verminderte die Verabreichung von DMF die Pathogenität von 

Tc17-Zellen in der EAE. Die Akkumulation von Sauerstoffradikalen trieb das Transkriptom von 

Tc17-Zellen in Richtung einer cytotoxischen T-Zell Signatur. Mechanistisch wurde dies durch 

die Verstärkung von IL-2-Signalwegen, wie Phosphoinositid 3-Kinase (PI3K)/ Proteinkinase B 

(AKT) und STAT5 realisiert. AKT deaktivierte FOXO1, einen Suppressor des 

Transkriptionsfaktors T-bet. Die daraus resultierende Induzierung von T-bet führte letztendlich 

zu einer IL-17 Hemmung. Die Modifizierung des transkriptionellen Netzwerks ging mit 

veränderten Histonmodifikationen am Il17 Locus einher. Übereinstimmend konnten sowohl T-

bet-Defizienz als auch die Inhibierung von Histon-Deacetylasen (HDAC), PI3K/AKT oder STAT5 

die DMF-vermittelte Tc17-Suppression teilweise verhindern. 

Zusammenfassend liefert diese Arbeit mechanistische Einblicke in die selektive Modulation der 

Tc17-Zelldifferenzierung durch eine DMF-vermittelte Induzierung von Sauerstoffradikalen und 

IL-2 Signalwegen und ist daher relevant für Tc17-vermittelte Krankheitsbilder wie MS und 

Psorias. 

 



  
3 Introduction 

2. Introduction  

 

2.1 Pivotal role of T cells during immune responses 

The immune system is a complex network consisting of various cellular and soluble 

components that cooperate in order to protect the human body against pathogens and the 

development of cancer. However, misguided immune responses can evoke allergy or 

autoimmunity that represent important pathologies in industrialised nations.  

Immune cells are derived from pluripotent hematopoietic stem cells and are categorised into 

the myeloid lineage, including dendritic cells (DC), macrophages, granulocytes, mast cells and 

erythrocytes or to the lymphoid lineage such as NK cells, innate lymphoid cells (ILC), T and B 

cells. T lymphocytes are further classified into cluster of differentiation (CD)4+ T helper (Th) 

and CD8+ cytotoxic T (Tc) cells, which differ in their reactivity to the major histocompatibility 

complex (MHC). Whereas the T cell receptor (TCR) of CD4+ Th cells binds peptide-loaded MHC 

class II molecules located on professional antigen-presenting cells (APC), all nucleated cells 

contain MHC class I that is recognised by the TCR of CD8+ T cells. During thymic selection, 

TCR/MHC interaction ensures that only T cells survive which bind to MHC molecules (positive 

selection) without reacting to self-antigens (negative selection). The naïve T cells that remain 

after this selection are largely non-responsive to self but capable of responding to foreign 

peptides and egress into the blood and lymphatic circulation. The activation of naïve T cells 

into effector T cells by APCs in lymphoid organs is realised by the interaction of TCR/MHC 

together with costimulatory stimuli and cytokine signalling, however recent data also imply the 

contribution of reactive oxygen species (ROS) in this process (Franchina, Dostert, & Brenner, 

2018). At the end of a primary immune response, the majority of responding T cells dies by 

apoptosis. However, a small percentage survives and gives rise to immunological memory, a 

characteristic of the adaptive immunity. It is acquired by the development of memory T cells 

that ensure a fast and effective immune response in case of re-exposure to the cognate 

antigen (Murphy & Weaver, 2017). Human memory cells are further specified into central 

memory (TCM), effector memory (TEM) and effector memory T cells (TEMRA), depending on 

the expression of CC-chemokine receptor (CCR)7 and CD45RA (Geginat, Lanzavecchia, & 

Sallusto, 2003). 

During immune responses, CD4+ and CD8+ T cells have distinct roles: Th cells coordinate 

specific immune responses by their cytokine production, whereas CD8+ T cells are able to kill 

target cells directly by inducing apoptosis through cytotoxic molecules like perforins or 

granzymes, in addition to cytokine production. However, in order to guarantee an efficient 
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immune response tailored to tumour cells and the variety of pathogens, the generation of 

distinct subsets of CD4+ and CD8+ T cells is required. The differentiation into subpopulations 

with specific defence mechanisms is driven by the surrounding cytokine milieu during T cell 

activation (Murphy & Weaver, 2017). The subsets differ particularly in their specific 

transcription factors (TF), cytokine profiles as well as their characteristic effector functions. In 

1986, Mosman et al. first described the existence of interferon (IFN-)-producing Th1 and IL-4-

producing Th2 cells (Mosmann, Cherwinski, Bond, Giedlin, & Coffman, 1986) since then a great 

number of CD4+ T cell subsets has been discovered, demonstrating the complexity of 

immunological responses. Beside Th1 and Th2 cells, IL-9-producing Th9 cells, regulatory T 

(Treg) cells, follicular T helper cells and Th17 cells with their signature cytokine IL-17 are known 

and orchestrate immune responses against specific pathogens (J Zhu, Yamane, & Paul, 2010). 

Recent data show that also CD8+ T cells can be subdivided into different subtypes, comparable 

to their CD4+ counterparts. Besides classical cytotoxic T lymphocytes (CTL or Tc1) also Tc2, Tc9, 

CD8+ Treg and Tc17 cells have been described (Mittrücker, Visekruna, & Huber, 2014). 

 

2.2 T cells in health and disease 

Both, CD4+ and CD8+ T cells play central roles in the function of the immune system by clearing 

diverse pathogens and eliminating of tumorigenic cells. However, due to their central function 

in immune responses, dysregulation of T cells can have tremendous consequences and lead to 

pathological immune reactions as allergy or autoimmunity (J Zhu et al., 2010). Therefore, the 

variety of T cell subsets and their functional diversity have the potential to initiate a multitude 

of pathologies.  

 

2.2.1 Protective and pathogenic functions of CD4+ T cells 

On the one hand, Th1 cells contribute to the clearance of intracellular pathogens by activating 

macrophages via their IFN- production (Jinfang Zhu & Paul, 2008) but on the other they can 

also contribute to delayed-type hypersensitivity responses and autoimmunity (Damsker, 

Hansen, & Caspi, 2010). Combating extracellular pathogens, such as worms, is mediated by  

IL-4, IL-5 and IL-13-producing Th2 cells and subsequent activation of B cells, however 

dysregulation can induce allergic responses (Damsker et al., 2010). Similar to Th2, also Th9 

cells combat against parasites and in addition possess anti-tumour immunity by producing IL-9. 

On the other side, they can also contribute to the induction of allergy and asthma (Carrascosa 

et al., 2017; Kaplan, Hufford, & Olson, 2015; J Zhu et al., 2010). The clearance of intracellular 

pathogens is mediated by Th17 cells, which produce pro-inflammatory IL-17, IL-21 and IL-22 
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and thereby trigger neutrophil recruitment to the infection side (Jinfang Zhu & Paul, 2008). 

However, the ability to induce inflammation predetermines Th17 cells to contribute to the 

development of autoimmune disorders such as multiple sclerosis (MS), rheumatoid arthritis, 

Crohn’s disease and many others (Tabarkiewicz, Pogoda, Karczmarczyk, Pozarowski, & 

Giannopoulos, 2015). In order to prevent autoimmunity and maintain immune homeostasis, 

Treg cells secrete anti-inflammatory cytokines as TGF- and IL-10 (Jinfang Zhu & Paul, 2008), 

but the suppression of immune responses makes them to key-players in tumour progression 

(Chaudhary & Elkord, 2016), impressively demonstrating the requirement of fine-tuned 

immune responses.  

 

2.2.2 Protective and pathogenic functions of CD8+ T cells 

CD8+ T cells fulfil crucial functions in immune responses against intracellular pathogens and 

tumours  (Klenerman & Hill, 2005; Y. Lu et al., 2014; Su, Lee, & Kung, 2010; Sukumar et al., 

2013), but also contribute to allergic and autoimmune disorders (Huber et al., 2009; Loser et 

al., 2010; Tang et al., 2012; Visekruna et al., 2013). The best-characterized subset of CD8+ T 

cells are CTLs, which can kill infected or cancerous cells directly by releasing cytotoxic 

molecules and production of cytokines as IFN- and tumour necrosis factor (TNF)- (Kaech & 

Cui, 2012), but they are also implicated in autoimmune processes (Blanco, Viallard, Pellegrin, & 

Moreau, 2005). Similar to Th2 cells, Tc2 cells secrete IL-4, IL-5 as well as IL-13 and can show 

high or low cytotoxicity, dependent on the type of immune response (Mittrücker et al., 2014). 

Functionally, they contribute to rheumatoid arthritis (Cho et al., 2012) and Th2-mediated 

allergy (Tang et al., 2012). Th2/Tc2-dependent airway inflammation is further promoted by IL-

9- and IL-10-producing Tc9 cells (Visekruna et al., 2013), however, this subset is also implicated 

in the provision of a strong anti-tumour response via IL-9 (Y. Lu et al., 2014). CD8+ Tregs reflect 

to large extend the properties of CD4+ Treg by secreting anti-inflammatory IL-10 and TGF-, 

determining them to important regulators of T cell-mediated responses (Mittrücker et al., 

2014). However, comparable to their CD4+ counterparts, also CD8+ Treg cells at least partially 

promote tumour progression (Zhang et al., 2015) and contribute to autoimmune diseases such 

as lupus (Dinesh, Skaggs, La Cava, Hahn, & Singh, 2010).  

Similar to Th17 cells, also murine Tc17 cells produce the pro-inflammatory marker cytokine  

IL-17A and can co-secrete further cytokines including IL-17F, IFN- granulocyte monocyte-

colony stimulating factor (GM-CSF), IL-21, IL-22 or TNF- (Srenathan, Steel, & Taams, 2016). A 

high plasticity towards IFN- production as well as variability in cytotoxicity have been 

reported and represent characteristic features of Tc17 cells (Srenathan et al., 2016). Due to the 

production of pro-inflammatory IL-17, they provide immunity against bacterial, viral and fungal 
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infections (Hamada et al., 2009; Naik et al., 2015; Nanjappa et al., 2017; Yeh et al., 2010) on 

the one hand, but there is strong evidence for a pathogenic function of Tc17 cells in 

autoimmunity on the other. Amongst others, their contribution to MS (Huber et al., 2013), 

psoriasis (Kryczek et al., 2008) and autoimmune colitis (Tajima et al., 2008) has been reported. 

The function of Tc17 cells in anti-tumour responses is contradictory and ranges from clearance 

of cancer to promoting of tumour growth (Hinrichs et al., 2009; Kuang et al., 2010). 

It was demonstrated that CD8+ T cell subtypes can acquire the characteristic cytokine 

production of other subpopulations, while retaining the initial cytokine production, a 

phenomenon called T cell plasticity (Zhou, Chong, & Littman, 2009). Thus, Tc17 cells positive 

for IL-17 and IFN- or Tc2 cells that co-express IFN- together with IL-4 and IL-10 were detected 

(Mittrücker et al., 2014). 

 

Figure 1: Plasticity of CD8+ T cell subsets and their specific cytokine production 

Similar to CD4+ T cells, CD8+ T cells also show lineage plasticity and acquire different subset phenotypes 

described as CTL, Tc2, Tc9, Tc17 and CD8+ Treg. These subsets produce specific cytokines and cytotoxic 

molecules to combat pathogens and tumour development. Arrows show the ability of cells to acquire 

characteristics of the other Tc subsets. Modified from (Mittrücker et al., 2014). 

 

2.3 Multiple sclerosis 

Worldwide, approximately 2.5 million people suffer from MS, a disease of the central nervous 

system (CNS) that mainly affects young adults between 20 and 40 years of age, especially 

women. During the course of the disease, autoreactive immune responses cause the 

development of lesions in the CNS, leading to disturbed neuronal signalling. Dependent on the 

location of lesions, clinical manifestation is heterogenous and can include motor impairments 

up to fatigue or visual disturbances (Dendrou, Fugger, & Friese, 2015). Intense research over 

the past years led to a better understanding of the mechanisms involved in MS pathogenesis 

and the development of new therapeutics however, until now there is no effective cure for the 

disease (Comabella & Khoury, 2012).  
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2.3.1 Pathogenesis of multiple sclerosis 

MS is an inflammatory disease of the CNS, which is considered to be caused by autoreactive T 

cells that initiate immune responses against myelin antigens such as myelin basic protein 

(MBP) or oligodendrocyte glycoprotein (MOG) (Dendrou et al., 2015; Nylander & Hafler, 2012). 

Usually, autoreactive T cells are killed during the selection process in the thymus; however, 

this process is imperfect, leading to the release of some autoreactive T cells in the periphery. 

During functional immune regulation, these cells are controlled by peripheral tolerance 

mechanisms. If this tolerance is dysregulated, autoreactive CD4+ and CD8+ T cells can be 

activated by self-antigen presenting cells and infiltrate the CNS, leading to inflammation and 

tissue damage by re-activation and specific effector functions (Dendrou et al., 2015). Both, 

genetic and environmental factors, including infectious agents, can contribute to this process 

and thereby lead to manifestation and progression of the disease (Dendrou et al., 2015). The 

development of inflammatory lesions is a hallmark of MS pathology and caused by immune 

cell infiltration across the blood-brain barrier (BBB) that initiates inflammation. This process 

leads to focal demyelination, neuroaxonal injury and in the end loss of neurological function 

(Dendrou et al., 2015). 

In order to understand the pathogenesis of MS, the animal model experimental autoimmune 

encephalomyelitis (EAE) was established 70 years ago (Rivers, 1933). EAE is induced by 

immunisation of mice with myelin peptides or by transfer of myelin-reactive T cells (Holmøy & 

Hestvik, 2008). Despite the fact that EAE provided important pathogenic mechanisms for the 

development of MS therapies, one has to keep in mind that this model cannot cover the entire 

spectrum of the immunological and pathological features of the disease (’t Hart, Gran, & 

Weissert, 2011; Lassmann, 2017). 

The pathology of MS is subdivided into four major types, based on the course of disease. The 

most common form is the relapsing-remitting MS (RRMS), affecting 80-90% of MS patients 

(Goldenberg, 2012). This type is characterised by relapses followed by remission phases, when 

symptoms improve or disappear. Over time this course often converts into the secondary 

progressive MS with or without periods of remission and progressive neurological deficits. The 

primary progressive MS affects 10 % of the patients and is marked by symptoms worsened 

from the beginning without relapses or remission. The forth type, progressive-relapsing MS, is 

a rare form with progressive course from the start and intermittent flare-ups, without periods 

of remission (Goldenberg, 2012; Loma, 2011).  

The aforementioned MS types are used to predict the course of the disease, but besides 

prognosis purpose they are also important for treatment decisions. Nowadays many drugs 
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against MS exist that reduce relapses; however, they cannot substantially cure the disease or 

reverse axonal damage (Dendrou et al., 2015).  

 

 

Figure 2: Typical course of the four major MS types 

(A) Relapsing-remitting MS (RRMS) is the most common type that is characterised by times of relapses 

and recovery. (B) Secondary-progressive MS (SPMS) is marked by initial relapses, followed by gradual 

increase of disability that is not associated with acute attacks. (C) Primary-progressive (PPMS) patients 

show a steady functional decline from the onset of disease without relapses or remission phases. (D) 

Progressive-relapsing MS (PRMS) is characterised by steady functional decline from onset of disease 

with acute relapses. 

 

B cells have been shown to contribute to the pathogenesis of MS by mediating aberrant T cell 

activation in the periphery and by producing myelin-specific auto-antibodies that are found in 

the serum and cerebrospinal fluid (CSF) of some patients (Pröbstel, Sanderson, & Derfuss, 

2015). The treatment with B cell-depleting anti-CD20 monoclonal antibodies (mAb) 

ameliorated the disease, underlining the important role of B cells in MS pathogenesis (Hauser 

et al., 2008; Michel et al., 2015). In addition, some studies suggest the involvement of innate 

immune cells such as macrophages, microglial cells and DCs to the pathogenesis of MS by 

influencing the effector functions of B and T cells (Gandhi, Laroni, & Weiner, 2010; Mishra & 

Yong, 2016).  

For a long time, autoreactive IFN--producing Th1 cells were considered to be the key-

mediators of MS pathogenesis (Compston & Coles, 2008). Further studies demonstrated the 

contribution of various cell types and T cell subsets, with a central role of Th17 cells 

(McFarland & Martin, 2007). In addition, it was shown that MS patients show reduced Treg 

function, although similar numbers in MS patients and controls have been found (Haas et al., 

2005). Besides the involvement of CD4+ T cells, growing evidence supports the pathogenic role 

of CD8+ T cells in the pathogenesis of MS (Denic, Wootla, & Rodriguez, 2013). It was found that 

CD8+ T cells even outnumber the numbers of CD4+ T cells in CNS parenchyma and active lesions 

of MS patients (Babbe et al., 2000; Booss, Esiri, Tourtellotte, & Mason, 1983), suggesting a 

critical contribution to the disease. As IL-17-producing T cells contribute to the pathogenicity 

of MS, they will be discussed in more detail in the following chapter. 
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2.3.2 Contribution of Tc17 and Th17 cells to MS pathogenesis 

A number of studies highlight the important role of IL-17-producing CD4+ and CD8+ T cells in 

the development and pathogenesis of MS and EAE (Huber et al., 2013; Komiyama et al., 2006; 

Tzartos et al., 2008). Both, Th17 and Tc17 cells have been detected in acute and chronic MS 

lesions (Tzartos et al., 2008). In RRMS patients, high frequencies of Th17 cells are found in the 

CSF during relapses, whereas patients in remission show lower numbers (Brucklacher-Waldert, 

Stuerner, Kolster, Wolthausen, & Tolosa, 2009). In addition, MS severity was shown to 

correlate with a high expression of IL-17 (Matusevicius et al., 1999), further suggesting key 

functions in the pathogenesis. 

Previously it was thought that Th1 cells drive MS inflammation, but it was shown that Th17 

cells were able to induce EAE following adoptive transfer, whereas Th1 cells failed to induce 

EAE. Moreover, antibody-mediated neutralisation of IL-17 reduced the severity of EAE, while 

blocking IFN- exacerbated the disease (Langrish et al., 2005). However, in another study 

simultaneous neuralisation of IL-17A and IL-17F had only marginal effects on disease outcome 

(Haak et al., 2009), demonstrating some difficulties in defining the role of Th17 cells. A possible 

explanation might be the instability and plasticity of the type 17 phenotype, as they can switch 

to IFN- production (Abromson-Leeman, Bronson, & Dorf, 2009; G. Shi et al., 2008; Srenathan 

et al., 2016). The pathogenic role of IL-17 family cytokines is linked to many autoimmune 

diseases (Jin & Dong, 2013) as it induces the generation of pro-inflammatory cytokines and 

chemokines such as IL-1, IL-6, TNF- or GM-CSF that promote the infiltration of neutrophils 

and macrophages to inflammation site (Jadidi-Niaragh & Mirshafiey, 2011; Jin & Dong, 2013).  

To cause inflammation in the CNS, autoreactive T cells need to cross the BBB after activation in 

the periphery. By using EAE, the C-C chemokine receptor (CCR) 6-dependent entry of Th17 cells 

through the choroid plexus at the beginning of the disease was revealed (Reboldi et al., 2009). 

After invasion into the CNS, they increase BBB permeability via IL-17 and IL-22 production and 

initiate a pathological immune cell infiltration including Th1, CD8+ T cells, B cells and plasma 

cells (Kebir et al., 2007). 
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Figure 3: Hypothetical view of Tc17 and Th17 cell contribution to immune responses in acute MS 

lesions  

Tc17 and Th17 cells are primed in the periphery by APCs presenting antigens that are released from the 

CNS or by cross-reactive foreign antigens. After clonal expansion they invade the CNS where re-

activation of Th17 cells leads to an increased production of inflammatory cytokines. These cytokines 

attract other immune cells, which contribute to the immune response by direct phagocytic attack on the 

myelin layer. Tc17 cells are re-activated by MHC class I-presenting glial or neuronal cells and cause 

damage by secretion of cytokines and cytotoxic molecules. Modified from (Hemmer, Cepok, Nessler, & 

Sommer, 2002). 

 

Besides Th17 cells, also IL-17-producing CD8+ T cells contribute to MS pathogenesis. It was 

shown that CD8+ and CD4+ T cells produce similar amounts of IL-17 in active MS lesions 

(Tzartos et al., 2008) and a selective enrichment of Tc17 numbers in CSF of MS patients at early 

stages were detected (Huber et al., 2013). Interestingly, transferred Tc17 cells alone were not 

able to infiltrate the CNS of EAE-resistant interferon regulatory factor (IRF)4-deficient mice 

after immunization and could not induce EAE on their own. However, transfer of CD8+ T cells 

and a subpathogenic number of CD4+ T cells together caused the onset of EAE in Irf4-/- mice, 

indicating a cooperation between both cell types (Huber et al., 2013). In addition, it was 

demonstrated that the cooperation during early stages of EAE required both, CCR6 expression 

of CD4+ T cells and the IL-17A production by CD8+ T cells. In a first step, Tc17 cells via their  

IL-17A secretion increased the pathogenicity of Th17 cells, including IL-17 production. 

Subsequently, Th17 cells were able to infiltrate the CNS CCR6-dependently in a first step and 

recruit Tc17 cells to the CNS in a second step, which was CCR6-independent (Huber et al., 

2013). This data point to the importance of Tc17 cells during the onset of EAE, as they enable 
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the infiltration of Th17 cells into the CNS in early phases of the disease by their IL-17 

production (Huber et al., 2013). 

 

2.3.3 Dimethyl fumarate in MS therapy and beyond 

Due to intense research during the last decades several drugs have been introduced for MS 

therapy (Comi, Radaelli, & Soelberg Sørensen, 2017). One of them is dimethyl fumarate (DMF), 

a fumaric acid ester that was approved by the Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) as first-line treatment of RRMS in 2013. It is marketed 

under the name Tecfidera® and approved for patients suffering from RRMS with oral 

application of 240 mg twice a day (Bomprezzi, 2015). Already since the 1990s a combination of 

DMF and ethyl hydrogen fumarates (Fumaderm®) is used for treatment of psoriasis, an 

inflammatory skin disease to which Tc17 cells are contributing (Res et al., 2010), providing 

DMF with a long record of efficacy and safety.  

A phase II clinical study in RRMS patients with a modified fumaric acid ester, BG-12, 

demonstrated a significant reduction by 69% in the number of gadolinium enhancing lesions 

after 12-24 weeks of treatment as compared to placebo (Kappos et al., 2008). A decrease of 

relapse rate and reduced progression of disability was found in a phase III clinical study (Gold 

et al., 2012). In EAE, DMF has been shown to exert neuroprotective and immunomodulatory 

effects and to improve the clinical score (Ghoreschi et al., 2011; Linker et al., 2011; Schilling, 

Goelz, Linker, Luehder, & Gold, 2006). 

MS is considered to be a T cell-mediated disease; thus, the effect of DMF therapy on 

circulating T lymphocytes is of major interest. Studies revealed that DMF decreased the 

numbers of peripheral blood lymphocyte (Fox et al., 2012; Gold et al., 2012) with 

disproportionate CD8+ T cell reduction in stable patients, who showed no radiological or 

clinical evidence of disease activity after six months of treatment (Fleischer et al., 2017; 

Spencer, Crabtree-Hartman, Lehmann-Horn, Cree, & Zamvil, 2015). In rare cases treatment 

with DMF-containing drugs Tecfidera® or Fumaderm® led to progressive multifocal 

leukoencephalopathy (PML) in patients (Ermis, Weis, & Schulz, 2013; Longbrake & Cross, 2015; 

Rosenkranz, Novas, & Terborg, 2015).  

During the last years, several studies aimed to clarify the exact mode of action of DMF in MS 

treatment, but it is still not fully elucidated. Similar to other immunomodulatory therapies, it 

became clear that DMF rather exerts a plethora of mechanisms on various cell types (Linker & 

Haghikia, 2016). Fumarates are , -unsaturated electrophilic metabolites that covalently bind 

to cysteine residues of proteins, leading to their succination that can result in inactivation 

(Blatnik, Thorpe, & Baynes, 2008). It was demonstrated that DMF exerts protective effects 
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against oxidative stress in DCs, astrocytes and neurons by induction of a nuclear factor 

erythroid 2-related factor 2 (Nrf2)-dependent antioxidant response (Ghoreschi et al., 2011; 

Linker et al., 2011; Scannevin et al., 2012). Succination and inactivation of kelch-like ECH-

associated protein 1 (Keap1) by DMF, results in the release of Nrf2 from Keap1-binding, its 

translocation in the nucleus and induction of antioxidant gene transcription. However, the use 

of an EAE model in wildtype (WT) and Nrf2-deficient mice revealed an almost similar 

protection following DMF treatment, indicating that the anti-inflammatory effects of DMF may 

occur Nrf2-independent (Schulze-Topphoff et al., 2016).  

Furthermore, DMF was shown to bind and succinate the ROS scavenger glutathione (GSH), 

resulting in a reduced antioxidant capacity and a subsequent increase of ROS in DCs, tumour 

cells, monocytes and macrophages (Ghoreschi et al., 2011; Hoetzenecker et al., 2012; Sullivan 

et al., 2013; Zheng et al., 2015). Another study reported a significant increase in cytosolic ROS 

in T cells of in MS patients after 3 months of DMF treatment (Diebold et al., 2017). Of note, 

GSH depletion and ROS accumulation induce DCs that rather produce IL-10 instead of 

proinflammatory IL-12 and IL-23, thereby indirectly rather promoting Th2 than Th1/Th17 

differentiation (Ghoreschi et al., 2011).  

As DMF is a derivative of fumarate, a metabolic intermediate of the tricarboxylic acid (TCA) 

cycle, it is not surprising that DMF can influence the metabolism of cells: beyond succination of 

KEAP1 and glutathione, DMF succinates the glycolytic enzyme glycerinaldehyde-3-phosphat-

dehydrogenase (GAPDH) in vivo and in vitro. This results in GAPDH inactivation, followed by 

the downregulation of aerobic glycolysis in macrophages and Th1 as well as Th17 cells (Sui et 

al., 2018). Activated macrophages and T cells require glycolysis for their survival, 

differentiation and effector functions (Gerriets & Kishton, 2014; Macintyre et al., 2014; 

Tannahill et al., 2013; Wang et al., 2011). In line, Kornberg et al. found suppressed IFN- and IL-

17 production in Th1 and Th17 respectively upon DMF treatment (Sui et al., 2018). A study of 

Diebold et al confirmed the suppression of glycolysis in T cells during DMF treatment in MS 

patients (Diebold et al., 2017). 

Besides succination, DMF and its metabolite monomethyl fumarate (MMF) are reported 

agonists of the G protein-coupled membrane receptor hydroxycarboxylic acid receptor 2 

(HCAR2). It was shown that DMF decreased neutrophil infiltration and demyelination of spinal 

cords in WT but not in HCA2-deficient mice, indicating that DMF mediates its therapeutic 

effects by HCA2 (H. Chen et al., 2014).  

DMF treatment also impacts B cell subsets in vivo and in vitro (Li et al., 2017). Li et al revealed 

that DMF modulates MS disease activity by reducing the phosphorylation of nuclear factor 

'kappa-light-chain-enhancer' of activated B-cells (NF-B) as well as reducing GM-CSF, IL-6 and 

https://de.wikipedia.org/wiki/Glycerinaldehyd-3-phosphat-Dehydrogenase
https://de.wikipedia.org/wiki/Glycerinaldehyd-3-phosphat-Dehydrogenase


  
13 Introduction 

TNF- production, thereby shifting the balance between pro-and anti-inflammatory B cell 

responses (Li et al., 2017; M. D. Smith, Martin, Calabresi, & Bhargava, 2017) A reduced NF-B 

translocation into the nucleus is reported by several studies and for different cell types 

(Diebold et al., 2017; Kastrati et al., 2016; Seidel et al., 2009). 

DMF is further known to influence the hypoxia-sensitive TF hypoxia-inducible factor-1 (HIF-

1a) (Laukka et al., 2016; Zhao et al., 2014), alter histone modifications (Sullivan et al., 2013) 

and increase DNA hypermethylation by inhibition of TET enzymes that catalyse demethylation 

by converting 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) (Laukka et al., 2016; Xiao 

et al., 2012).  

Collectively, the aforementioned studies reveal the wide range of immune modulatory and 

neuroprotective effects by DMF, which affect a variety of cell types. It shows a broad 

efficiency; however, rare cases of PML require therapy control, especially during the first year 

of treatment. 

 

2.4 Signal transduction 

In order to respond to the environment, cells of the immune system have to sense 

extracellular stimuli. These signals are transmitted via surface receptors that trigger 

intracellular signalling cascades, which regulate cellular processes including transcription, 

translation and posttranslational modifications (Murphy & Weaver, 2017). The differentiation 

into distinct T cells subsets is based on signal transduction initiated by cytokine signalling, 

followed by ligand-induced activation of serine/threonine or tyrosine kinases (Kishimoto, Taga, 

& Akira, 1994). Finally, this cytokine-induced cascade regulates the cellular fate by forming a 

network of TFs (J Zhu et al., 2010). 

 

2.4.1 Signalling networks in T cell differentiation 

The differentiation in specific T cell subsets is mediated by extracellular cytokine signals that 

induce a complex network of TFs, ultimately leading to the characteristic signature of the 

respective subpopulation. For inducing and maintaining CD4+ and CD8+ T cell subsets the 

expression of lineage-specific master regulators is a central mechanism. Th1 cells are induced 

by IFN- signalling and subsequent activation of signal transducers and activators of 

transcription (STAT)4, which results in the induction of the master regulator T-box expressed in 

T cells (T-bet). T-bet maintains Th1 differentiation by several mechanisms: by inducing 

endogenous IFN- production in a positive feedback loop (Szabo et al., 2000), increasing 

sensitivity to IL-12 signalling (Mullen et al., 2001) and repressing Gata binding protein (GATA)3 
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functions and thereby suppressing Th2 differentiation (Hwang, Szabo, Schwartzberg, & 

Glimcher, 2005). The differentiation of naïve CD8+ T cells into effector CTLs is mediated by IL-2 

and IL-12 and the combined activities of the TF B lymphocyte-induced maturation protein-1 

(Blimp-1), T-bet (Joshi et al., 2007; Kalia et al., 2010; Pipkin et al., 2010; Xin et al., 2016) Id2 

(Cannarile et al., 2006) and IRF4 (Man et al., 2013; Raczkowski et al., 2013; Yao et al., 2013). 

Th2 and Tc2 cells differentiate in the presence of IL-4-mediated STAT6 activation ultimately 

leading to GATA3 expression, which promotes Th2 proliferation and prevents Th1 

differentiation (Jinfang Zhu, Yamane, Cote-Sierra, Guo, & Paul, 2006). For Th2 cells it is known 

that IL-2-induced STAT5 is required for an optimal differentiation (Cote-Sierra et al., 2004). The 

combination of IL-4 and TGF- drives Th9/Tc9 cell fate and the TF PU.1 and IRF4 regulate the 

expression of type 9 specific genes (Chang et al., 2010; Staudt et al., 2010). The master 

regulator retinoic acid-related orphan receptor (RORt) initiates the differentiation into Th17 

and Tc17 cells (Mittrücker et al., 2014; J Zhu et al., 2010). The transcriptional regulation of type 

17 differentiation is described more in detail in the following chapter. 

Despite the aforementioned classification into CD4+ and CD8+ subsets with specific master 

regulators, differentiated T cells still have the ability to de- or redifferentiate, a phenomenon 

called ‘T cell plasticity’ (Mittrücker et al., 2014; Zhou et al., 2009). 

 

2.4.1.1 Transcriptional regulation of type 17 cell differentiation 

Only a few years ago, the presence of IL-17-producing CD8+ T cells has been described in 

human and mouse (Hamada et al., 2009; Huber et al., 2009; Intlekofer et al., 2008; Kondo, 

Takata, Matsuki, & Takiguchi, 2009). Similar to Th17 cells, also Tc17 cells differentiate in 

response to IL-6 or IL-21 along with TGF- (Hamada et al., 2009; Huber et al., 2009; Yen et al., 

2009), resulting in the expression of RORt that is crucial for production of the marker 

cytokines IL-17A and IL-17F (Ivanov et al., 2006). The presence of IL-23 stabilises the 

pathogenic phenotype (Langrish et al., 2005). IL-6- and IL-21-mediated intracellular signal 

transduction induces the activation and phosphorylation of the TF STAT3 (Ivanov, Zhou, & 

Littman, 2007), which induces expression of type 17 regulators RORt, ROR and the cytokine 

IL-17A by binding to the respective promoters (Arra et al., 2017; Laurence et al., 2007; X. O. 

Yang et al., 2008; Yen et al., 2009). In line, STAT3-deficient T cells do not produce IL-17 nor 

RORt (Laurence et al., 2007; X. O. Yang et al., 2008; Zhou et al., 2007). Furthermore, STAT3 

mediates the transcription of IL-21 and IL-23R that contribute to the stabilisation of the type 

17 phenotype (Arra et al., 2017; Huber et al., 2009; Zhou et al., 2007). It was shown that IL-6 

induces the expression of IL-21, thereby supporting type 17 phenotype by a positive feedback 

mechanism (Korn et al., 2007; Nurieva et al., 2007). In addition, IL-21 induces the expression of 
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IL-23R, thus further stabilising the type 17 phenotype (Ciric, El-behi, Cabrera, Zhang, & 

Rostami, 2009). 

In addition, the TCR-induced TF IRF4 is critical for Tc17 differentiation by inducing RORt and 

ROR on the one side and restricting Eomes and Foxp3 expression on the other (Huber et al., 

2013). The absence of IRF4 results in disturbed Tc17 differentiation, demonstrating its 

importance (Huber et al., 2013). In contrast to classical CTLs, Tc17 cells are low-cytotoxic and 

express diminished levels of Eomes and T-bet (Huber et al., 2009; Intlekofer et al., 2008; 

Srenathan et al., 2016). Recently, it was shown that costimulatory cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) regulated Tc17 differentiation and stability by enhancing STAT3 

binding to the IL-17 promoter (Arra et al., 2017).   

IFN- and IL-27 signalling restricts type 17 differentiation by inducing STAT1 expression (Hu & 

Ivashkiv, 2009; Stumhofer et al., 2006). The ratio of STAT1 /STAT3 has been shown to regulate 

the type 17 fate (Peters et al., 2015). In addition, IL-2 has been shown to suppress Th17 

differentiation by STAT5 (Gilmour, Pine, & Reich, 1995) as STAT5 and STAT3 are known to 

compete at the Il17 locus of Th17 cells, leading to activation or suppression respectively  (X. P. 

Yang et al., 2011). 

 

2.4.1.2 ROS signalling in T cells 

ROS are small, highly reactive oxygen-containing molecules. For long time, they have been 

seen as exclusively harmful, causing cell damage. However, recent data demonstrate that ROS 

are essential second messengers in a multitude of immune functions, including antiviral, 

antibacterial and anti-tumour responses (Belikov, Schraven, & Simeoni, 2015; Franchina et al., 

2018; Sena & Chandel, 2012). Most intracellular ROS are generated in mitochondria in the 

electron transport chain (ETC) during the reduction of O2 to H2O (Belikov et al., 2015). 

Enzymatic or non-enzymatic antioxidant mechanisms dynamically balance ROS levels within 

the cell and protect against oxidative damage (Meister, 1983). The most abundant antioxidant 

GSH scavenges ROS by formation of oxidised glutathione disulfide (GSSG), which can be 

reversed to GSH by glutathione reductase (S. C. Lu, 2013).  

ROS produced by macrophages have been reported to exert immunosuppressive functions and 

being functional for Treg induction (Kraaij, 2010). In addition, cancer cells and tumour-

infiltrating immune cells including macrophages produce high levels of ROS in the tumour 

microenvironment, thereby suppressing T cell responses and contributing to tumour growth 

(X. Chen, Song, Zhang, & Zhang, 2016). 

TCR signalling during activation of T cells leads to a release of Ca2+ from the endoplasmatic 

reticulum. Ca2+ is taken up by mitochondria and results in elevated ETC, leading to increased 
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oxygen consumption and ROS production (Murphy & Weaver, 2017). Depending on their levels 

and localisation, ROS can influence T cell responses by altering signalling transduction and 

metabolism (Franchina et al., 2018; Sena & Chandel, 2012). It revealed that high ROS levels 

suppress T cell activity (Gelderman, Hultqvist, Holmberg, Olofsson, & Holmdahl, 2006) and 

initiate DNA damage and cell death (Sena & Chandel, 2012), whereas low ROS concentrations 

promote T cell activation, expansion and effector functions (Devadas, Zaritskaya, Rhee, 

Oberley, & Williams, 2002; Jackson, Devadas, Kwon, Pinto, & Williams, 2004). Sena et al 

showed that an ROS-dependent signalling is required for activation of nuclear factor of 

activated T-cells (NFAT) and IL-2 expression (Sena et al., 2013), thus, confirming ROS as an 

essential component for T cell activation. Furthermore, there is evidence for the ability of ROS 

to affect T cell differentiation: T cells lacking the ROS-producing enzyme NADPH oxidase 

showed diminished expression of STAT1, STAT4 and T-bet, resulting in reduced production of 

IL-2, IL-4, IFN- and TNF-, whereas STAT3, IL-17 and TGF- were elevated (Tse et al., 2010). 

These results underline the capacity of ROS to modify immune responses.  

 

2.4.1.3 IL-2 signalling in T cells 

The cytokine IL-2 belongs to the common -chain family and plays a central role in the 

regulation of tolerance and immunity (Malek & Castro, 2010). It mediates its functional activity 

by binding to the cell surface receptor complex consisting of IL-2R (CD25), IL-2R (CD122) and 

IL-2R (CD132). Interestingly, IL-2R is not expressed on resting, naïve T cells, thereby 

preventing a response to physiologic doses of IL-2 (Malek & Castro, 2010). Upon T cell 

activation IL-2R is induced and the cells become sensitive to IL-2 signalling (Boyman & Sprent, 

2012). Binding of IL-2 to its receptor leads to a conformational change that initiates the 

activation of associated cytoplasmic kinases Janus kinase 1 (JAK)1 and JAK3, which 

subsequently phosphorylate several tyrosine residues on the IL-2R chain. In the following 

steps, several IL-2 downstream pathways are induced: STAT5 is recruited and phosphorylated 

by the two tyrosine residues Tyr392 and Tyr510, leading to transcription of IL-2-dependent genes 

(Lin et al., 2012). In addition, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein 

kinase (MAPK) are activated by Tyr338 and the adapter protein Shc (G. A. Smith, Taunton, & 

Weiss, 2017). Depending on the physiologic context, these three signals ultimately trigger 

proliferation, differentiation into specific T cell subpopulations and production of effector 

molecules (G. A. Smith et al., 2017). 

Functionally, IL-2 induces the expression of IL-2R on activated CD4+ and CD8+ T cells and 

stimulates their proliferation (G. A. Smith et al., 2017). Furthermore, IL-2 is essential for the 

development of Treg cells during thymic development (Cheng, Yu, Dee, & Malek, 2013; 
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Shevach et al., 2006), contributes to T memory formation (Bachmann & Oxenius, 2007; 

Williams, Tyznik, & Bevan, 2006) and terminal differentiation into T effector cells (Kalia et al., 

2010; Pipkin et al., 2010). Interestingly, strong or extended IL-2 signalling drives CTL effector 

cell differentiation, whereas weak or limited IL-2 signals enhance CTL memory cell formation 

(Kalia et al., 2010; Pipkin et al., 2010). IL-2 induces Blimp-1 that supports terminal 

differentiation of effector T cells (Cretney et al., 2011; Kallies et al., 2006; Kallies, Xin, Belz, & 

Nutt, 2009; Kallies & Nutt, 2007; Rutishauser et al., 2009), but also contributes to 

programming of memory CTLs (Feau, Arens, Togher, & Schoenberger, 2011; Williams et al., 

2006). Therefore, IL-2 signalling in CTL differentiation is complex and still incompletely 

understood (Xin et al., 2016). The other CTL-skewing cytokine, IL-12, enhances the expression 

of T-bet and Id2 (Joshi et al., 2007; X. P. Yang et al., 2011) and via phosphoinositide 3-kinase 

(PI3K)-AKT also drives the serine/threonine protein kinase mammalian target of rapamycin 

(mTOR) activity (Araki et al., 2009). Of note, the loss of both CTL-driving TF T-bet and Blimp-1 

was shown to induce a substantial IL-17 production in CD8+ T cells (Xin et al., 2016), 

demonstrating the plasticity of T cells as well as the importance of T-bet and Blimp-1 for CTL 

fate. 

Whereas CTL and Treg differentiation is supported by IL-2 signalling (Kalia et al., 2010; Pipkin et 

al., 2010; Shevach et al., 2006), IL-2 opposes Th17 cells by inducing STAT5, leading to elevated 

binding of the negative regulator to the Il17 promoter (Laurence et al., 2007).   

Despite similarities in IL-2-dependent signal transduction in CD4+ and CD8+ T cells, there are 

also differences: whereas IL-2 signalling in CD4+ T cells initiates a biphasic STAT5 

phosphorylation (P-STAT5), CD8+ T cells show a single, sustained peak of P-STAT5, indicating 

functional differences in downstream-signalling cascades in both T cell classes (G. A. Smith et 

al., 2017). Furthermore, the phosphorylation of S6, a downstream target of the PI3K/AKT and 

mTOR kinase pathway is higher in CD8+ T cells compared to CD4+ T cells (Yu, Zhu, Altman, & 

Malek, 2009).  

 

2.5 Epigenetic regulation of gene expression 

In a multicellular organism all cells contain homogeneous genetic information. However, these 

cells with the same underlying DNA sequence are extremely heterogeneous in their phenotype 

and function due to differential gene expression, which is preserved through cell division 

(Kanno, Vahedi, Hirahara, Singleton, & O’Shea, 2012). Gene expression is not exclusively 

regulated by the presence/ absence or activation of specific TFs; additionally, other factors 

contribute to the transcription of a genomic sequence. The term ‘epigenetics’ is used to 
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describe heritable changes in gene expression that do not involve changes of the DNA 

sequence (Dupont, Armant, & Brenner, 2009).  

 

2.5.1 Chromatin remodelling 

Eukaryotic DNA has to be densely packed in order to fit in the nucleus. Therefore, it is tightly  

wrapped around octamers of histones, forming structures called nucleosomes, in this way a 

10,000 to 20,000-fold compaction is achieved (Zentner & Henikoff, 2013). The close binding of 

DNA to the nucleosomes is ensured by the negatively charged backbone of the DNA and the 

positively charged histones. The properties of nucleosomes can be modified in several ways, a 

process called chromatin remodelling, thereby allowing or preventing access to the DNA. 

Several elements contribute to remodelling of chromatin, including histone tail modifications, 

DNA methylation and chromosome conformation (Kanno et al., 2012). 

 

2.5.1.1 Histone tail modifications  

More than 50 years ago, it was discovered that active gene transcription correlates with 

hyperacetylation of histones (Allfrey, Faulkner, & Mirsky, 1964). Since then a plethora of 

posttranslational histone modifications has been described, such as acetylation (Ac), 

methylation (me), phosphorylation, ubiquitination and further more (Kanno et al., 2012). Two 

opposing enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs), are 

associated with sites of active transcription, suggesting their contribution to chromatin 

remodelling (Kanno et al., 2012; Zentner & Henikoff, 2013). Acetylation of N-terminal histone 

tails is mediated by HATs. By neutralisation of positive charges of lysine residues of the 

histones, the interaction between negatively charged DNA and nucleosomes is disturbed, 

leading to elevated accessibility of the chromatin to the transcription machinery (Zentner & 

Henikoff, 2013). On the other side, HDACs mediate the removal of acetyl groups, causing tight 

binding of nucleosomal DNA to the histones. Thus, classically HDACs are associated with 

histone deacetylation and therefore reduced transcription, whereas HATs are related to 

acetylated chromatin and active transcription (Kanno et al., 2012).  

Further regulatory elements are histone methylations. In contrast to acetylation, methylations 

do not alter the charges of the amino acid lysine. Thus, the impact of histone methylation on 

nucleosome compaction is less direct and can activate or repress gene transcription (Zentner & 

Henikoff, 2013). Whether a gene is activated or silenced is depending on the number of methyl 

groups as well as the lysine position on the histone. Methylation is known to occur on histone 

H3 (K4, K9, K27, K36) and H4 (K20) (Dimitrova, Turberfield, & Klose, 2015; Kouzarides, 2002). 
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For example, H3K4me is linked with active gene transcription, whereas H3K27me is seen as a 

repressing histone methylation (Kouzarides, 2002). 

 

2.5.1.2 DNA methylation 

DNA methylation occurs on cytosines in CG-rich regions of the DNA and is widely associated 

with gene silencing (Kanno et al., 2012). CG-rich regions, so called CpG islands, are short DNA 

sequences with a high frequency of 5’-CpG-3’ sequences. They often occur at transcription 

start sites (TSS) and are mostly unmethylated, leading to active transcription (Chatterjee & 

Vinson, 2012). The methylation of CpG islands by DNA methyltransferases was considered to 

be the most stable epigenetic mark that transfers heritable epigenetic memory (Kanno et al., 

2012). However, 10 years ago ten eleven translocation (TET) proteins were discovered, which 

are able to modify methyl cytosine and thereby probably remove DNA methylations (Tahiliani 

et al., 2009), implying that DNA methylation patterns are not as stable as previously assumed 

(Rasmussen 2016). 

 

2.5.1.3 Nucleosome compaction and chromatin conformation 

Accessible DNA is required to allow binding of the transcription machinery in order to achieve 

gene transcription. It was shown that nucleosomes can alter their position with respect to a 

specific DNA sequence, thereby reducing their occupancy at a promoter and allowing active 

transcription. This process is called nucleosome compaction and is mediated by ATP-

dependent nucleosome remodelers, multiprotein complexes that are able to slide or 

disassemble histone octamers (Kanno et al., 2012). 

In addition to histone modifications, DNA methylation and nucleosome compaction also three-

dimensional chromatin conformation has been recognised to affect regional gene transcription 

(Deng & Blobel, 2010). Chromatin looping allow close contact between distal regulatory 

elements and their respective promoter region. These interactions realised by formation of 

three-dimensional structures can take place on the same (cis) or even between regions of 

different chromosomes (trans)(Kanno et al., 2012).  
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3. Material  

 

3.1 Equipment 

Device Model Company 

Bioruptor Bioruptor® Plus Diagenode, Liège, Belgium 

Flow cytometers 
BD FACSCalibur 

BD FACSAriaIII 
BD, Franklin Lakes, USA 

Incubator HERAcell240i Heraeus, Hanau 

pH meter inoLab pH Level 2 WTW, Weilheim 

Plate photometer FLUOstar Omega BMG Labtech, Ortenberg 

qPCR machine StepOnePlusTM 
Applied Biosystems, 

Darmstadt 

 

3.2 Chemicals and consumables 

Chemical Company 

AB serum Sigma-Aldrich, St. Louis, USA 

Aqua dest. Braun, Melsungen 

Akt1/2 kinase inhibitor Merck, Darmstadt 

Biotinylated microBeads Institute for Med. Microbiology, Marburg 

Bovine serum albumin Biomol, Hamburg 

Brefeldin A Sigma-Aldrich, St. Louis, USA 

β-Mercaptoethanol Sigma-Aldrich, St. Louis, USA 

2-DG Merck, Darmstadt 

Dimethyl fumarate Sigma-Aldrich, St. Louis, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, St. Louis, USA 

DNase I Sigma-Aldrich, St. Louis, USA 

Dulbecco’s Modified Eagle’s Medium Sigma-Aldrich, St. Louis, USA 

EDTA Thermo Fisher Scientific, Waltham, USA 

Fetal calf serum Sigma-Aldrich, St. Louis, USA 

Glutathione, reduced form ethyl ester Sigma-Aldrich, St. Louis, USA 

Glycine Riedel-de Haën, Seelze 

Halt Protease Inhibitor Single Use Cocktail Thermo Fisher Scientific, Waltham, USA 
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HEPES Roth, Karlsruhe 

Incomplete Freund’s adjuvans (IFA) Sigma-Aldrich, St. Louis, USA 

Ionomycin Sigma-Aldrich, St. Louis, USA 

L-glutamine Biochrom, Berlin 

Lithium chloride Merck, Darmstadt 

Ly294002 Cell Signaling Technology, Danvers, USA 

MOG37-50 peptide 
synthesised by R. Volkmer, Charite Berlin, 

Germany 

Mycobacteria tuberculosis H37 RA Difco, Michigan, USA 

Non-essential amino acids (NEAS) 100x PAA, Pasching, Österreich 

NP-40 (Igepal-CA6309) Sigma-Aldrich, St. Louis, USA 

Pancoll (ficoll solution) Pan Biotech, Aidenbach 

para-formaldehyde 4 % Sigma-Aldrich, St. Louis, USA 

Penicillin G Biochrom, Berlin 

Pertussis toxin from Bordetella pertussis Sigma-Aldrich, St. Louis, USA 

Phorbol 12-Myristate 13-Acetate (PMA) Sigma-Aldrich, St. Louis, USA 

Phosphate buffered saline (PBS) 10x Biochrom, Berlin 

PIPES Roth, Karlsruhe 

Protein A Sepharose Beads 4 FastFlow GE Healthcare, Chalfont St. Giles, UK 

RPMI 1640 Sigma-Aldrich, St. Louis, USA 

Saponin Sigma-Aldrich, St. Louis, USA 

Streptavidin-Biotin α-FITC Institute for Med. Microbiology, Marburg 

Sodium bicarbonate (NaHCO3) Biochrom, Berlin 

Sodium chloride (NaCl) Sigma-Aldrich, St. Louis, USA 

Sodium dodecyl lsulphate (DOC) Sigma-Aldrich, St. Louis, USA 

Sodium pyruvate Sigma-Aldrich, St. Louis, USA 

STAT5-Inhibitor Cayman Chemicals, Ann Arbor, USA 

Streptomycin sulphate Biochrom, Berlin 

TEMED Sigma-Aldrich, St. Louis, USA 

Tris-Base Roth, Karlsruhe 

Tris-HCl Roth, Karlsruhe 

Triton-X 100 Sigma-Aldrich, St. Louis, USA 
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3.3 Kits and dyes 

Kit Company 

Annexin V APC Biolegend, San Diego, USA 

BD Phosflow Lyse/ Fix Buffer BD, Franklin Lakes, USA 

BD Phosflow Perm Buffer III BD, Franklin Lakes, USA 

5(6)-Carboxyfluorescein diacetate N-

succinimidyl ester (CFSE) 
Thermo Fisher Scientific, Waltham, USA 

CM-H2DCFDA Thermo Fisher Scientific, Waltham, USA 

Fast SYBR™ Green Master Mix Thermo Fisher Scientific, Waltham, USA 

FoxP3 Transcription Factor Fixation/ 

Permeabilization Concentrate and Diluent 
Thermo Fisher Scientific, Waltham, USA 

GSH/GSSG Glo™ Assay Promega, Madison, USA 

High Pure RNA Isolation Kit Roche, Basel, Switzerland 

IL17 DuoSet ELISA, murine R&D systems, Wiesbaden 

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit Thermo Fisher Scientific, Waltham, USA 

Propidium iodide Sigma-Aldrich, St. Louis, USA 

RevertAid First Strand cDNA synthesis Kit Thermo Fisher Scientific, Waltham, USA 

 

3.4 Buffers and Media 

3.4.1 Buffers and media for cell biology 

Buffer / media Composition 

Balanced Salt Solution 
9.9 g/l Hank’s Balanced Salt, 1.425 g/l NaHCO3,  

10 mM HEPES in Aqua dest. (pH 7.2) 

Coating buffer for cell culture 50 mM Tris-Base (pH 9.5) in Aqua dest. 

DMEM (complete media for cell 

culture) 

50 µM ME, 60 mg/ml Penicillin G, 100 mg/ml 

Streptomycin, 2.4 g/l HEPES, 1.4g/l NaHCO3, 10 % FCS,  

2 mM Glutamine  

Fetal calf serum Heat inactivated (30 min, 56°C) 

MACS buffer 0.5 % BSA [w/v], 2 mM EDTA (pH 8.0) in PBS 

PBS PBS powder concentrate in Aqua dest. (pH 7.2) 

PBS/ 1% FCS 1 % FCS [v/v] in PBS 
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RPMI (complete media) 

10 % FCS, 2 mM Glutamine, 1% NEAS [v/v],  

50 µM β-Mercaptoethanol, 60 mg/ml Penicillin G,  

100 mg/ml Streptomycin in RPMI 1640 

Saponin buffer 0.3 % Saponin [w/v], 2% FCS [v/v] in PBS 

 

3.4.2 Buffers and media for molecular biology 

Application Buffer Composition 

ChIP Lysis buffer I 5 mM PIPES (pH 8.0), 85 mM KCl, 0.5 % NP-40 

 
Lysis buffer II 

 

10 mM Tris-HCl (pH 7.5), 150 mM NaCl,  

1% NP-40, 1 % DOC, 1 mM EDTA 

 
Wash buffer I 

 

20 mM Tris-HCl (pH 8.0), 150 mM NaCl,  

2 mM EDTA, 0.1% SDS, 1 % Triton-X 100 

 
Wash buffer II 

 

20 mM Tris-HCl (pH 8.0), 500 mM NaCl,  

0.1 % SDS, 1 % Triton-X 100 

 
Wash buffer III 

 

10 mM Tris-HCl (pH 8.0), 1% NP-40, 1 % DOC,  

1 mM EDTA, 0.25 % LiCl 

 TE buffer  10 mM Tris-HCl (pH 8.0), 1 mM EDTA 

 Elution buffer 1 % SDS, 0.1 M NaHCO3 

 
Reversal 

crosslinking 

0.2 M NaCl, 10 mM EDTA (pH8), 40 mM Tris (pH 

7.2), 40 µg/ml Proteinase K, 20 µg/ml RNase A 

 

3.5 Antibodies 

3.5.1 Antibodies for CD8+ T cell isolation 

Epitope Conjugate Clone Company 

α-m B220 FITC RA3-6B2 Thermo Fisher Scientific, Waltham, USA 

α-m CD11b FITC M1/70 Thermo Fisher Scientific, Waltham, USA 

α-m CD11c FITC N418 Thermo Fisher Scientific, Waltham, USA 

α-m CD49b FITC DX5 Thermo Fisher Scientific, Waltham, USA 

α-m CD4 FITC 6K1.5 Thermo Fisher Scientific, Waltham, USA 

α-m Ter119 FITC TER-119 Thermo Fisher Scientific, Waltham, USA 

 

 



  
24 Material 

3.5.2 Antibodies for cell culture 

Epitope Clone Company 

α-m CD28 Hamster IgG, 37-51 Hybridoma supernatant 

α-m CD3ε Hamster IgG, 145-2c11 Hybridoma supernatant 

α-m IFN- Rat IgG, XMG 1.2 Hybridoma supernatant 

 

3.5.3 Antibodies for flow cytometry 

 Epitope Conjugate Clone Dilution Company 

Murine α-CD4 PE RPA‐T4 1:500 
Thermo Fisher, Waltham, 

USA 

 α-CD4 V450 RM4-5 1:500 BD, Franklin Lakes, USA 

 α-CD8a APC 53-6.7 1:500 
Thermo Fisher, Waltham, 

USA 

 α-CD8a V500 53-6.7 1:500 BD, Franklin Lakes, USA 

 α-CD44 PE IM7 1:1000 BD, Franklin Lakes, USA 

 α-CD62L AlFl 700 MEL-14 1:500 BD, Franklin Lakes, USA 

 α- Eomes APC 
Dan11ma

g 
1:500 

Thermo Fisher, Waltham, 

USA 

 α-IFN- APC XM61.2 1:500 Biolegend, San Diego, USA 

 α-IL-17A PE eBio17B7 1:500 
Thermo Fisher, Waltham, 

USA 

 
α-P-Akt 

Ser473 
AlFl488 D9E 1:100 

Cell Signaling, Danvers, 

USA 

 
α-P-Akt 

Thr308 
PE D25E6 1:100 

Cell Signaling, Danvers, 

USA 

 
α-P-S6 

(Ser235/236) 
AlFl488 D57.2.2E 1:500 

Cell Signaling, Danvers, 

USA 

 
α-P-STAT5 

(Tyr694) 
PE SRBCZX 5µl/ test 

Thermo Fisher, Waltham, 

USA 

 α-RORt PE B2D 1:500 
Thermo Fisher, Waltham, 

USA 

 α-T-bet PE eBio4B10 1:500 
Thermo Fisher, Waltham, 

USA 
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Human α-CD8a BV510 SK1 3µl/test Biolegend, San Diego, USA 

 α-CD4 Pacific Blue RPA-T4 4µl/test Biolegend, San Diego, USA 

 α-CD14 FITC HCD14 3µl/test Biolegend, San Diego, USA 

 α-CD45RA BV650 HI100 1µl/test Biolegend, San Diego, USA 

 α-IFN- APC 4S.B3 3µl/test Biolegend, San Diego, USA 

 α-IL-17A PE BL168 3µl/test Biolegend, San Diego, USA 

 

3.5.4 Antibodies for ChIP 

Epitope Catalogue Nr Amount for IP Company 

α-H3K4me3 39159 2.5 µg Active motif, La Hulpe, Belgium 

α-H3K27ac ab4729 2.5 µg Abcam, Cambridge, UK 

α-H3K27me3 39155 2.5 µg Active motif, La Hulpe, Belgium 

α-H4ac 06-866 5 µl Millipore, Darmstadt 

 

3.6 Cytokines 

Cytokine Company 

rh IL2 Novartis, Basel, Switzerland 

rh TGF-β PeproTech, Hamburg 

rm IL-6 PeproTech, Hamburg 

rm IL-1β PeproTech, Hamburg 

rm IL-23 R&D systems, Wiesbaden 

 

3.7 Primers 

Application Target Sequence Company 

qRT-PCR Il17a 
5‘-TTTAACTCCCTTGGCGCAAAA-3‘ 

5‘-CTTTCCCTCCGCATTGACAC-3‘ 

Metabion, 

Martinsried 

 Hprt 
5‘-CTGGTGAAAAGGACCTCTCG-3‘ 

5‘-TGAAGTACTCATTATAGTCAAGGGCA-3‘ 

Metabion, 

Martinsried 

 Ifng 
5‘-TTCTTCAGCAACAGCAAGGC-3‘ 

AGCTCATTGAATGCTTGGCG-3‘ 

Metabion, 

Martinsried 

 Rorc 
5‘-TTTGGAACTGGCTTTCCATC-3‘ 

5’-AAGATCTGCAGCTTTTCCACA-3‘ 

Metabion, 

Martinsried 
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ChIP Il17a promoter 
5‘-GAACTTCTGCCCTTCCCATCT -3‘ 

5‘-AGCACAGAACCACCCCTTT-3‘ 

Metabion, 

Martinsried  

 Il17a -5 enhancer 
5‘-CGATACTTTTCAGTGACATCCGTTT-3‘ 

5‘-TGCTGACTTCATCTGATACCCTTAGA-3‘ 

Metabion, 

Martinsried 

 
RPL32 promoter  

5‘-TCATTTCTCAGGCACATCTT-3‘ 

5‘-ACTCACCGTAAAACAGATGG-3‘ 

Metabion, 

Martinsried 

 
Il10 promoter 

5’-GCAGAAGTTCATTCCGACCA-3’ 

5’-GGCTCCTCCTCCCTCTTCTA-3’ 

Metabion, 

Martinsried 

 

3.8 Plasmids 

Plasmid Company 

pMIG-STAT3 (CSTAT3) 
CSTAT3 was provided by Dr. M. Klein (University of 

Mainz) 

pMIG-STAT5 (STAT5A1*6) STAT5A1*6 was made by E. Bothur as described 
before (Dissertation E. Bothur, University Marburg) 

 

3.9 Mice 

Mouse strain Description Company/breeding 

C57BL/6 Inbred wildtype mouse strain Charles River Laboratories 

Irf4-/- 

IRF4-deficient, on C57BL/6 

background 

Own breeding (Animal facility 

Biomedical Research Center, 

Marburg) 

2D2 

transgenic MOG35-55 specific 

TCR, on C57BL/6 background 

Own breeding (Animal facility 

Biomedical Research Center, 

Marburg) 

Tbx21-/- 
T-bet-deficient, on C57BL/6 

background 

Tbx21-/- mice were provided by Dr. 

H. Garn (University of Marburg) 

 

3.10 Cell lines 

Cell line Origin Modification 

HEK 293 Human embryonic kidney cells Transformed with adenovirus 5 DNA 
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3.11 Software 

Name Company 

Adobe Illustrator C3S Adobe Systems, San José, USA 

Flow Jo Treestar, San Carlos, USA 

GraphPad Prism 5.0 GraphPad Software, La Jolla, USA 

MS Office 2010 

(Word, PowerPoint, Excel) 
Microsoft, Redmond, USA 

StepOne Thermo Fisher Scientific, Waltham, USA 

R Studio, Bioconductor Free software 
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4. Methods 

 

4.1 Cell culture  

For this work primary murine lymphocytes from lymph nodes, spleen or central nervous 

system, human PBMCs and human embryonic kidney (HEK) 293 cells were used as indicated 

below. Primary murine lymphocytes were cultured in RMPI complete media with 10% FCS, 

while human primary cells were cultured in RPMI complete media with 5% AB serum. HEK293 

cells were cultured in DMEM complete media with 10% FCS. All cells were handled and 

cultured under sterile conditions in sterile bench and incubators at 37°C with 5% CO2. Cell 

numbers were determined by using a Neubauer counting chamber according to 

manufacturer’s instructions. 

 

4.2 Murine T cell isolation and in vitro differentiation  

C57BL/6 WT mice were purchased from Charles River Laboratory. Irf4-/-, Tbx21-/- and transgenic 

2D2 mice were bred at the animal facility of the Biomedical Research Center, University 

Marburg. All experiments were carried out in accordance to the German animal protection law 

and Regierungspräsidium Gießen. 

 

4.2.1 Preparation of lymph nodes and spleen 

To receive murine, naïve CD8+ T cells, mice were sacrificed by cervical dislocation. Thereafter 

lymph nodes and spleen were removed and stored in BSS on ice. To obtain a single cell 

suspension, the organs were crushed separately through 30 µm cell strainers and washed with 

BSS. All following washing steps were performed at 1500 rpm at 4°C for 5 min. In order to lyse 

remaining erythrocytes, the spleen pellet was treated with 5 ml NH4Cl2 for 4 min and then 

washed with MACS buffer to stop the lysis reaction. After centrifugation cells from spleen and 

lymph nodes were pooled and the total cell number was determined. 

 

4.2.2 Magnetic cell purification of CD8+ T cells 

To obtain CD8+ T cell fraction from homogenised lymph node and splenic cell suspension, 

magnetic negative cell separation was applied. During this method unwanted cell types like NK 

cells, macrophages or DC are labelled with antibodies binding to surface markers, followed by 

magnetic separation of labelled cells (non CD8+ T cells) from non-labelled CD8+ T cells. 
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Therefore, the mixed cell suspension was washed with MACS buffer and the pellet was 

resuspended with a primary FITC-conjugated antibody cocktail (2.5 µl/100 × 106 cells) directed 

against surface markers of unwanted cell populations. After incubation for 10 min at 4°C the 

cells were washed again with MACS buffer, resuspended with secondary streptavidin-α-FITC 

antibodies (1 µl/100×106 cells) and incubated for 15 min at 4°C. Thereafter the cells were 

washed twice with MACS buffer and biotinylated microbeads (30 µl/100×106 cells) were added 

and incubated on a rotator at 4°C for 20 min. Finally, the suspension was placed on a magnet 

at room temperature (RT) to separate the magnetic beads-labelled non-CD8+ T cells from non-

labelled CD8+ T cells and after 20 min the supernatant was removed carefully, washed with 

MACS buffer and resuspended in RPMI complete media. Cell purity was determined by FACS 

analysis using α-CD8 staining and was usually ≥ 90%. To obtain naïve CD8+CD62L+CD44- T cells, 

purified CD8+ T cells were either sorted subsequently or directly cultured in vitro upon 

magnetic cell separation. 

 

4.2.3 Activation and differentiation of CD8+ T cells in vitro 

T cell activation and differentiation requires three signals, which are provided by APCs and 

other cells under physiological conditions. In addition to (i) antigen-specific TCR binding to 

MHC, (ii) non-specific costimulatory signals and (iii) cytokine-induced signaling pathways are 

necessary to fully activate T cells.  

During in vitro cultivation these signals are provided by monoclonal antibodies directed against 

(i) the CD3 molecule of the TCR and (ii) the CD28 costimulatory receptor. To ensure 

differentiation into the desired subtype (iii) recombinant cytokines are added. 

After purification the cells were plated under Tc17 conditions (indicated in Table 1) in 24, 48- 

or 96-well plates (1.0/0.3/0.12×106) usually for 3 days and indicated in figure legends, if 

different. Resting periods were performed as indicated in figure legends. 

 

Table 1: Culture conditions for murine Tc17 differentiation 

 

 

 

 

 

 

 

 Murine Tc17 conditions 

α-CD3, coated 5 µg/ml 

α-CD28 0.5 µg/ml 

α-m IFN- 5 µg/ml 

rh IL-2 50 U/ml 

rh TGF- 0.5 ng/ml 

rm IL-6 30 ng/ml 
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4.3 Human T cell preparation and in vitro differentiation 

4.3.1 Isolation of human PBMC from whole blood 

To obtain human peripheral blood mononuclear cells (PBMC) from healthy control persons, a 

ficoll gradient was performed with whole blood. 60 ml of whole blood contained app. 80×106 

PBMCs. For separation, 15 ml of ficoll solution (at RT) was pipetted into a 50 ml tube, followed 

by careful addition of 35 ml whole blood on top. After centrifugation at 2000 rpm for 35 min at 

RT without brake, the PBMC ring was transferred into a fresh 50 ml tube and two washing 

steps with PBS were performed (1500 rpm, 5 min, 4°C). The cells were either stored at - 80°C 

overnight and transferred in liquid nitrogen for long-time storage or processed immediately. 

 

4.3.2 Differentiation of human CD8+ T cells  

Upon ficoll density gradient centrifugation, human PBMCs were incubated with antibodies and 

memory CD8+ T cells were sorted (CD8+CD45RA-) using a FACS AriaIII (see section 4.4.1). Like 

murine T cells, also human T cells require for full activation three signals (TCR and 

costimulatory signals as well as cytokines), indicated in Tab. 2. Cells were cultured in flat 

bottom 96-well culture plates for 4-5 days. Experiments were performed in collaboration with 

Dr. C. Zielinski from Technical University of Munich. 

 

Table 2: Culture conditions for human Tc17 differentiation 

 

 

 

 

 

 

 

4.3.3 Freezing and thawing of human PBMCs 

For freezing of PBMCs, the cell pellet was resuspended in 250 µl ice-cold RPMI complete media 

containing 5% human albumin and transferred to a cryotube. Then another 250 µl of RPMI 

complete media with 5% human albumin and 20% DMSO was added dropwise while gently 

swivelling. The tube was placed immediately in 4°C cold EtOH and put overnight to - 80°C to 

ensure mild freezing. The next day cells were transferred into liquid nitrogen. 

 Human Tc17 conditions 

α-CD3, coated 2 µg/ml 

α-CD28 2 µg/ml 

rh TGF- 20 ng/ml 

rh IL-1 20 ng/ml 

rh IL-6 10 ng/ml 
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In order to analyse frozen PBMCs, cryotubes were thawed, transferred in a 15 ml tube and 

washed (1500 rpm, 5 min, 4°C) twice with RPMI complete media containing 5% AB serum to 

remove the DMSO. For recovery, cells were rested for 2 h at 37°C, before restimulation. 

 

4.3.4 Restimulation of human PBMCs 

For analysis of frozen PBMC samples from untreated RRMS patients and 12 months after start 

of DMF treatment (240 mg orally twice a day), we thawed the PBMCs and added cold RPMI/ 

5% AB serum dropwise to a volume of 6 ml. Cells were washed twice with RPMI/ 5% AB serum 

(1500 rpm, 5 min, 4°C), followed by resting in 1 ml RPMI/ 5% AB serum at 37°C for 2h. 

Thereafter, cells were restimulated with 50 ng/ml PMA and 1 µg/ml ionomycin and incubated 

for 2.5 h at 37°C. After addition of brefeldin A for another 2.5 h, cells were washed with PBS 

and surface staining was performed as indicated in 4.4.2 for 30 min at 4°C. Upon fixation with 

2% para-formaldehyde, cells were stained intracellularly as mentioned in 4.4.3 for 45-60 min at 

4°C. Thereafter cells were analysed using FACS AriaIII. 

 

4.4 Flow cytometry 

Flow cytometry allows simultaneous multiparametric analysis of heterogenous cell 

suspensions as well as sorting of certain cell populations. Therefore, single cells suspended in a 

liquid stream are passed through a laser light beam and the interaction with the light is 

measured by an electronic detection apparatus as light scatter and fluorescence intensity. This 

gives information about cell size and granularity, cell viability and expression of fluorescence 

dye-labelled epitopes based on antibody binding or transfection. Cells were measured on FACS 

Calibur using CellQuest (version 0.3) or FACS AriaIII using Diva software (version 8.0.2.) and 

analysed with FlowJo Software. 

 

4.4.1 Cell sorting 

Fluorescence-activated cell sorting (FACS) enables sorting of desired cell populations based on 

respective parameters, like surface markers or intracellular amines in dead cells. 

After labelling the cell suspension with antibodies directed against surface markers, primary 

naïve CD8+CD62L+CD44- T cells were sorted by charge into separate vessels. Therefore, the 

cells were washed with PBS and incubated for 10 min at RT with LIVE/DEAD Fixable Near-IR 

Dead Cell Stain Kit to label dead cells. After washing the cells with PBS, they were incubated 

with appropriate surface antibodies for 15 min at 4°C, washed and resuspended in a suitable 
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volume of PBS/1% FCS for sorting procedure. Sorting was performed under sterile conditions 

at FACS AriaIII. Analysis usually confirmed a sorting purity of ≥ 98%. 

 

4.4.2 Surface staining 

Cells express distinct surface markers that give information about cell type, subsets and 

biological function. Additional staining of dead or dying cells with amine-reactive dyes was 

used to determine viability of the cells. 

Surface molecules are stained prior to any fixation and can be analysed without fixation. 

Therefore, cells were washed with PBS and stained with LIVE/DEAD Fixable Near-IR Dead Cell 

Stain Kit according to manufacturer’s information for 10 min at RT to determine dead or dying 

cells, then again washed with PBS. Murine cells were stained with respective antibodies in PBS 

for 15 min at 4°C in the dark, while human PBMCs were stained for 30 min. After an additional 

washing step with PBS/1%FCS cells were analysed or subjected to further staining procedures. 

 

4.4.3 Intracellular staining 

To analyse cytokine production, cells have to be restimulated. Therefore, cells were incubated 

with PMA and ionomycin to increase TCR signalling, whereas the addition of brefeldin A blocks 

the protein transport from endoplasmatic reticulum to golgi apparatus to enrich produced 

cytokines within the cell. Furthermore, cells were fixed with formaldehyde to crosslink 

proteins, followed by permeabilisation to access intracellular molecules. 

Therefore, murine cells were washed with PBS, resuspended in 1 ml restimulation medium 

containing 50 ng/ml PMA, 1 µg/ml ionomycin and 50 µg/ml brefeldin A and incubated for 4 h 

at 37°C. Then, cells were washed with PBS and fixed with 0.5 ml 2% para-formaldehyde for 20 

min at RT. After fixation, cells were washed with PBS/1% FCS and saponin buffer, followed by 

antibody incubation for 15 min for murine cells, whereas human PBMCs were stained for 45-

60 min at 4°C. For this, fluorescence-labelled antibodies in saponin buffer were added to the 

cells in a final volume of app. 150 µl. Upon incubation were washed with saponin buffer and 

PBS/1% FCS, resuspended in PBS/1% FCS and subsequently analysed. 

 

4.4.4 Intranuclear staining 

To analyse the expression of nuclear proteins and TFs the nuclear membrane has to be 

permeabilised, which requires a harsher fixation method. 

Therefore, the cells were washed in PBS and fixed with 0.5 ml 1x FoxP3 Transcription Factor 

Fixation/Permeabilization Kit for 20 min at 4°C.  
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If cells were additionally transduced with GFP-expressing vectors, cells were previously fixed 

with 0.2 ml 0.5% formaldehyde for 5 min to prevent leakage of cytoplasmic GFP and then 

washed with PBS, followed by fixation with FoxP3 Transcription Factor Fixation/ 

Permeabilization Kit.  

After fixation, cells were washed with PBS/1% FCS and saponin buffer, followed by antibody 

staining in a volume of app. 150 µl for 20 min at 4°C. Finally, cells were washed with PBS/1% 

FCS and saponin buffer and analysed by flow cytometry. 

 

4.4.5 Phosflow 

The detection of phosphorylated proteins requires a harsh and highly optimized fixation and 

permeabilisation. Therefore, the cells were washed with PBS, fixed with 1x BD Phosflow Lyse/ 

Fix Buffer and permeabilised with BD Phosflow Perm Buffer III according to the manufacturer’s 

specifications. 

 

4.4.6 ROS staining 

Measuring ROS levels within a cell was performed by usage of CM-H2DCFDA, an indicator of 

free ROS. After passive diffusion into the cell, acetate groups of CM-H2DCFDA are cleaved by 

intracellular esterases. Subsequent oxidation by ROS results in DCF, a highly fluorescent 

compound, which allows measurement by flow cytometry. 

Prior to staining, cells were washed with PBS and the cells incubated in 500 µl of 1µM CM-

H2DCFDA loading solution in PBS for 10 min at 37°C. Thereafter cells were washed twice with 

PBS, after the last wash step the pellet was resuspended in 500 µl RPMI and incubated for 15 

min at 37°C for recovery. After a final wash step with PBS/1% FCS, cells were subsequently 

analysed. 

 

4.4.7 Proliferation and apoptosis staining 

For assessment of proliferation, CD8+ T cells were isolated (see section 4.2) and incubated for 8 

min with 5µM 5(6)-Carboxyfluorescein diacetate N-succinimidyl ester (CFSE) staining solution 

at 37°C. Then, cells were washed and cultured under Tc17-driving conditions with DMSO, DMF 

or DMF in combination with GSH for 3 days. Proliferation was analysed by flow cytometry.  

For assessment of apoptosis cells were stained with Annexin V and propidium iodide. Annexin 

V binds to phosphatidylserine (PS), which is located on the cytoplasmic surface of the cell 

membrane in viable cells. However, in intermediate stages of apoptosis, PS is translocated to 

the outer leaflet of the membrane and can be bound by Annexin V, leading to a fluorescence 
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signal that can be analysed by flow cytometry. Simultaneous staining with propidium iodide, a 

DNA intercalating dye that cannot cross the membrane of living cells, allows measurement of 

apoptotic and dead cells.  

Tc17 cells were differentiated for 3 days, washed with PBS and stained with Annexin V dye and 

propidium iodide according to the manufacturer’s instructions and analysed by flow 

cytometry. 

 

4.5 Retroviral overexpression 

Retroviral overexpression of CD8+ T cells allows the functional analysis of specific TFs. First, 

HEK 293 cells are transfected with a plasmid containing the coding sequence of the gene of 

interest, usually tagged with GFP to track the expression. The transfection process takes 

advantage of the ability of retroviruses to integrate into genomic DNA and be stably expressed. 

Upon calcium-phosphate-mediated transfection, HEK cells release virus-like particles (VLPs), 

expressing the protein of interest in a massive amount. In order to transfect murine primary T 

cells with VLP-containing supernatant coding for the gene of interest, a murine stem cell 

retroviral expression system was used. 

 

4.5.1 Transfection of HEK 293 cells 

Transfection is the process of introducing nucleic acids into eukaryotic cells. This can be 

realised with a calcium-phosphate transfection method, which is based on forming calcium-

phosphate DNA precipitates. Positively charged calcium-phosphate facilitates the binding to 

the negatively charged backbone of DNA, allowing the DNA to enter the cell by endocytosis. 

One day before transfection, 1.5-2×106 HEK 293 cells were plated in a 10 cm2 petri dish. 

Transfection was performed by generating calcium-phosphate DNA precipitates by mixing 106 

µl 2 M CaCl2, respective amount of DNA (3 µg each of the packaging elements pECO and pCPG 

and 14 µg retroviral vector) and Aqua dest. to a total volume of 850 µl. In the end, 850 µl of 

HBS (pH 7.05) were added dropwise while reverse pipetting constantly to create air bubbles 

and thereby ensure fine precipitate. After incubation for 10 min at RT, DMEM media of HEK 

cells was exchanged and the transfection mix was added dropwise to the plate. The 

transfected cells were incubated for 8 h at 37°C to allow endocytosis of calcium-phosphate 

DNA precipitates. Thereafter, the transfection mix was removed by washing the cells twice 

with BSS and replaced by 5 ml prewarmed RPMI complete media. 
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4.5.2 Generation of virus-containing supernatant 

After transfection of HEK 293 cells, they release virus-like particles (VLP) to the supernatant, 

which are able to transfect other cells with the gene of interest.  

Therefore, transfected HEK 293 cells were washed and RPMI complete media was added, as 

described in 4.5.1. 24 h after transfection, the VLP-containing supernatant was transferred to a 

new tube, 5 ml of fresh RPMI complete media was pipetted to the cells and collected 48 h 

post-transfection. Both virus-containing supernatants (24 h and 48 h) were pooled, 

centrifuged, aliquoted and stored at - 80°C. 

 

4.5.3 Spin-based transduction of T cells 

In comparison to HEK 293 cells, the calcium-phosphate method is less appropriate to introduce 

the gene of interest in murine primary T cells as these cells are hard to transfect. Therefore, a 

murine stem cell retroviral expression system was used. 

T cells were isolated as described in 4.2, plated in a 48-well plate with 0.3×106 cells per well 

and centrifugated to ensure sticking to the plate bottom. In the meantime, a transduction mix 

was prepared, containing 400 µl viral supernatant containing the gene of interest, 7µg/ml 

polybrene to enhance transduction efficiency and 50U/ml rh IL-2 to ensure cell survival. Upon 

centrifugation, the media was removed completely and replaced by the transduction mix. 

Thereafter, the T cells were transduced by a centrifugation process at 2700 rpm at 37°C for 90 

min. The viral supernatant was discarded afterwards and replaced by a Tc17 differentiation 

mix. To increase the efficiency of the spin-based transduction, the process was repeated for a 

second time after 2 h of incubation. Thereafter, cells were incubated under Tc17-driving 

conditions (see section 4.2.3) for 3 days. On day three, cells were washed and rested in RPMI 

complete media containing 50 U/ml rh IL-2 and 5 µg/ml anti-mIFN- for 3 days. Thereafter, 

cells were re-cultured under Tc17 conditions for additional 72 h, then washed, restimulated 

and analysed by flow cytometer (see section 4.4). 

 

4.6 Protein-biochemical methods 

4.6.1 Enzyme-linked immunosorbent assay 

Sandwich enzyme-linked immunosorbent assay (ELISA) was performed in collaboration with 

Dr. C. Zielinski from TU Munich.  

ELISA is a plate-based assay technique designed for detecting and quantifying proteins, like 

cytokines. Briefly, a first antibody is coated to a 96-well plate, followed by incubation with the 

sample solution. Then, a second detection antibody is added, which is conjugated to an 
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enzyme that induces a horse radish peroxidase-mediated colour change. By comparing the 

colour intensity of the sample to a dilution series of a protein with known concentration, the 

protein concentration of the sample can be calculated. 

Cell culture supernatant was collected and human IL17 DuoSet ELISA was performed as 

described in the manufacturer’s specifications.  

 

4.7 Molecular biological methods 

4.7.1 Quantitative real-time PCR 

Quantitative real-time polymerase chain reaction (qRT-PCR) allows the analysis of 

transcriptional efficiencies. Beforehand total RNA has to be isolated and reversely transcribed 

into cDNA, following qRT-PCR. Thereby, the amplification of the targeted gene can be 

monitored in real-time using SYBR Green intercalation. To evaluate the relative mRNA 

expression, the threshold cycle (Ct) of the target gene is normalized to a housekeeping gene 

(∆Ct) and compared with a control condition (∆∆Ct).  

In a first step, 2-8×105 cells were washed twice with PBS and resuspended in 200 µl PBS, 

followed by RNA extraction with High Pure RNA Isolation Kit, which was used accordingly to 

manufacturer’s instructions.  

Subsequently, cDNA synthesis was performed to reversely transcribe cDNA from the RNA 

template. Herefore, 11 µl of RNA was transcribed using Oligo-dT primers on basis of the 

RevertAid First Strand cDNA synthesis Kit, according to manufacturer’s specifications. The 

resulting cDNA was diluted with Aqua dest. and used for qRT-PCR with Fast SYBR™ Green 

Master Mix on a StepOnePlus Real-Time PCR system. 

Thermocycler conditions consisted of an initial denaturation step at 95°C for 1 min, followed 

by 35 cycles of a two-step PCR program consisting of 95°C/ 3 sec and 60°C/ 30 sec. Melting 

curves were included to determine primer specificity. Ct values were analysed for gene 

expression by using the ∆∆Ct method. 

 

4.7.2 RNA sequencing 

RNA-Seq is an approach to transcriptome profiling that reveals the complete set of transcripts 

and their quantity in a cell. The sequencing process starts with the preparation of a library. For 

that RNA is isolated, transcribed to cDNA and sheared into short fragments. These fragments 

are size-selected and oligo-adaptors are ligated at both ends. In a second step, the adapter-

ligated library is loaded onto a flow cell with adaptor-complementary oligos on its surface, 

leading to DNA fragment hybridisation to the flow cell. The library is then clonally amplified, 
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resulting in cluster generation around the initial copy of fragment. In a third step, clusters are 

sequenced similar to Sanger sequencing, with a reversible terminator-based detection of single 

nucleotides. In a final step, sequenced reads are aligned to the reference genome, allowing 

data analysis. 

RNA-Seq was performed in cooperation with Dr. M. Klein and Dr. F. Marini from University of 

Mainz. Therefore, 5×105 naïve CD8+ T cells were differentiated to Tc17 cells (see Table 1) for  

48 h, washed twice with PBS, resuspended in Trizol and RNA was isolated according to 

manufacturer’s specifications. Determination of RNA quality was assessed on a Bioanalyzer 

2100 using an RNA 6000 Nano chip, whereas RNA quantification was performed on a Qubit 2.0 

fluorometer. In the next step, libraries were prepared with 300 ng RNA (RNA integrity number 

> 9) on the basis of NEBnext® ultra™ RNA Library Prep Kit for Illumina. The following 

sequencing was performed on a HiSeq2500. 

 

4.7.3 Chromatin immunoprecipitation 

Chromatin immunoprecipitation (ChIP) is used to analyse the interaction of proteins with 

DNAat specific genomic regions in primary T cells, as well as examination of histone 

modifications. Cells are first fixed to stabilise protein/DNA interactions reversibly (crosslinking) 

and lysed in a second step. Then, chromatin is subsequently sheared using sonication, followed 

by immunoprecipitation (IP) of cross-linked DNA fragments with appropriate specific 

antibodies. After removal of crosslinks, DNA is purified and qRT-PCR is performed to analyse 

the abundance of a particular DNA sequence. The enrichment of the DNA-Sequence is 

expressed as fold enrichment above background enrichment of a non-specific antibody 

control. 

 

4.7.3.1 Cell lysis, fixation and shearing 

For analysing histone modifications in primary T cells, 2-5×106 Tc17 cells were harvested, 

washed twice with PBS and transferred to a sonication tube. For crosslinking, cells were fixed 

with 1 ml of 1% formaldehyde at RT for 3 min. Fixation was stopped by adding 100 µl 1.25 M 

glycine and subsequent rotation for 30 min at RT. Thereafter, cells were pelleted (8000 g,7 

min, RT) and washed twice with cold PBS. After resuspending the cells in 1 ml lysis buffer I 

complete to disrupt cell membranes, they were either stored at -80°C or processed 

immediately. 

To obtain DNA fragments, cells were sheared by sonication. Herefore, 75 µl of lysis buffer II 

complete with 4 % SDS was added for 5 min at RT to disrupt nuclear membranes and release 

chromatin. To dilute SDS content, 225 µl of lysis buffer II complete 0% SDS were added to the 
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nuclei, followed by incubation on ice for 3 min. Then the tubes were inserted into a Bioruptor 

and 28 cycles of sonication were performed at high power intensity for 30 secs on/ off each to 

obtain 200-500 bp DNA fragments. Subsequently, samples were diluted by adding 1.2 ml lysis 

buffer II 0.1% SDS and pelleted (15000 g, 15 min, 4°C). 1.3 ml of the chromatin was stored at 

4°C for immunoprecipitation, whereas the remaining 200 µl were used to determine shearing 

efficiency. Herefore, chromatin was incubated with reversal crosslinking solution for 3 h at 

55°C, followed by incubation at 65°C overnight. By adding 750 µl 100 % of ice-cold EtOH and 30 

µl 3 M sodium acetate and centrifugation at 15000 g for 15 min at 4°C chromatin was 

precipitated. Supernatant was removed and chromatin visualized with 1 ml 75 % EtOH and 2 µl 

glycogen. After further centrifugation, the chromatin pellet was first dried and then 

reconstituted in 20 µl Aqua dest. 4 µl of loading dye were added before running the DNA on a 

1.5 % agarose gel at 80 V for 1.5 h. If sonication was successful, the stored chromatin was 

further processed. 

 

4.7.3.2 Precipitation and elution 

Protein A-coupled sepharose beads were used for immunoprecipitation, as they are able to 

bind heavy chains of antibodies, allowing a selective purification of target protein-bound DNA 

fragments. Therefore, they were washed twice with 5 ml of lysis buffer II 0.1 % SDS (3000 g, 3 

min, 4°C) and blocked with 600 µl BSA and 1 % fish skin gelatine in 5 ml lysis buffer II 0.1 % SDS 

overnight to prevent unspecific protein binding. The next day, blocked beads were washed 

again with 5 ml lysis buffer II 0.1 % SDS (3000 g, 3 min, 4°C) and divided into three different 

tubes: 

App. ½ of the blocked beads was stored at 4°C for the actual immunoprecipitation. 

App. ¼ of beads were used for preclearing I. Therefore, 20 µl blocked beads per IP were 

incubated together with chromatin for 2 h on a rotator to get rid of DNA/protein complexes 

that unspecifically bind to the beads. 

App. another ¼ was used for preclearing II by adding 1 µl of unspecific IgG antibody per IP for 1 

h at 4°C on a rotator in order to prevent unspecific IgG binding. 

After 1 h of preclearing II, the beads were washed thrice with 5 ml lysis buffer II 0.1% SDS 

(3000 g, 3 min, 4°C) and split into fresh tubes (20 µl per IP). Precleared chromatin (from 2) was 

centrifuged (8000 g/ 5 min/ 4°C) and transferred to the tubes with IgG-precleared beads and 

subsequently incubated on a rotator for another 2 h at 4°C. 

After following centrifugation (8000 g, 5 min, 4°C), the chromatin was divided into fresh tubes 

for immunoprecipitation. Therefore, the total volume of 1.3 ml was split in accordance to the 

number of IPs, an IgG control and non-precipitated chromatin, called ‘input’. The input made 
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up 10 % of the volume for IP samples and was stored at 4°C. 2.5-5 µg of specific antibody was 

added to the IP samples, whereas 0.4 µg unspecific IgG antibody was added to the control IP. 

The antibody binding was performed at 4°C on a rotator overnight. On the following day the 

antibody-bound chromatin was incubated together with 30 µl blocked beads (from 1) per IP on 

a rotator at 4°C for 2 h.  

In order to remove non-specific bound chromatin, the immunoprecipitated complexes were 

washed by adding 1 ml of ice-cold buffers with increasing salt concentrations, including twice 

washing buffer I, twice washing buffer II, thrice washing buffer III and twice TE buffer (8000 

rpm, RT, 2 min). Thereafter, samples were eluted by adding 500 µl of freshly prepared elution 

buffer, vortexing and incubation on a rotator at RT for 30 min. After centrifugation, the 

chromatin was transferred to a fresh tube and the protein-DNA crosslinking was reversed by 

adding proteinase K-containing crosslinking reversal buffer. Also, the ‘input’ samples were 

filled up to 500 µl with elution buffer before adding crosslinking reversal buffer. Then, all 

samples were incubated at 55°C for 3 h followed by a 65°C incubation overnight. 

 

4.7.3.3 DNA purification and quantitative detection 

In order to perform qRT-PCR, DNA had to be purified. Therefore, a silica membrane-based 

technique was used, as nucleic acids bind to silica membrane depending on salt concentrations 

and pH. By using QIAquick PCR Purification Kit, the precipitated DNA was diluted in 2.5 ml of PB 

buffer and 700 µl of the sample were successively transferred to the column and centrifuged 

(13000 rpm, 1 min, RT). After loading the sample completely, the column was washed by 

adding 500 µl of PE buffer and dried afterwards by centrifugation at 13000 rpm at RT for 2 min. 

To elute purified DNA, 50 µl of elution buffer were applied to the column, and after incubation 

for 10 min at 55°C, the sample was centrifuged (13000 rpm, 1 min, RT). The eluted DNA was 

stored at 4°C and used for qRT-PCR by using Fast SYBR™ Green Master Mix according to 

manufacturer’s specifications. qRT-PCR was performed on the Thermocycler StepOnePlus with 

an initial denaturation step at 95°C for 10 min, followed by 35 cycles of a three-step PCR 

program consisting of 95°C/ 30 sec, 55°C/ 30 sec and 72°C/ 20 sec. Melting curves consisting of 

95°C for 15 sec, 55°C at 1 min and 95°C for 15 sec were included to determine primer 

specificity. 

 

4.7.4 Glutathione assay 

Glutathione is the most important ROS scavenger within a cell. Most glutathione exists in the 

reduced form (GSH) to detoxify ROS and only a small percentage of glutathione is oxidised 

(GSSG) and present as a dimer of two of the peptide elements connected by a disulfide bond. 
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Changes in levels of GSH or GSSG can provide information about cell health, with low 

GSH/GSSG ratio indicating oxidative stress. To detect and quantify total glutathione (GSH and 

GSSG), GSSG levels and GSH/GSSG ratios the GSH/GSSG-Glo™ Assay was used. Briefly, cells are 

lysed and GSH and GSSG are determined, based on a GSH-dependent conversion of a GSH 

probe to luciferin. The luminescent signal is proportional to the amount of GSH. To measure 

total glutathione, all glutathione (GSH and GSSG) is converted to the reduced form, whereas 

the oxidised form is measured in a second configuration by adding a reagent that blocks all 

GSH while leaving GSSG intact. In a second reducing step, GSSG is converted to GSH for 

quantification in the luminescent reaction.  

CD8+ T cells were isolated as described in section 4.2 and cultured in Tc17-driving conditions 

for the indicated time. Thereafter cells, were washed with PBS and seeded in a 96-well ELISA 

plate with 0.3×106 cells per well. Centrifugation at 1500 rpm for 5 min was performed to 

ensure sticking to the plate bottom, thereafter supernatant was removed and GSH/GSSG-Glo™ 

Assay was used according to the manufacturer’s instructions. 

 

4.8 Experimental autoimmune encephalomyelitis mouse model 

Experimental autoimmune encephalomyelitis (EAE) is the most commonly used animal model 

to examine human inflammatory demyelinating diseases of the CNS, like MS. EAE induction is 

facilitated by the transfer of T cells, that are specific for myelin-associated autoantigens and 

simultaneous application of MOG-peptide, pertussis toxin and Mycobacteria tuberculosis 

together with incomplete Freund’s adjuvans (IFA) to enhance the immune response and 

ensure activation and migration of disease-mediating T cells into the CNS. 

 

4.8.1 Oral DMF application and EAE induction 

Oral DMF application and EAE induction was performed in collaboration with Dr. F. Kurschus 

from University of Mainz. 

For induction of EAE, C57BL/6 or SJL/L mice were immunized s.c. at the tail basis with 50 μg 

MOG35-55 (C57BL/6) or 100 µg PLP139-151 peptide (SJL/L) emulsified in complete Freund’s 

adjuvant (CFA) supplemented with 10 mg/ml of heat-inactivated M. tuberculosis (strain 

H37RA). Along with immunisation and on day 2 post immunisation, 100 ng pertussis toxin in 

PBS was administered by i.p. injection. Oral DMF treatment was applied by supplying the 

drinking water with 0.5 mg/ml DMF starting 10 days before EAE induction during the entire 

course of the disease. Daily clinical scoring of EAE symptoms was conducted as follows: Score 

0, no symptoms, normal behaviour; Score 1, tail paralysed; Score 2, impaired righting reflex 
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and gait; Score 3, partial hind limb paralysis; Score 4, hind legs completely paralysed; Score 5, 

tetraparesis; Score 6, dead. Draining lymph nodes (dLN), spinal cord and brain were analysed 

at peak of disease (day 14–17 after immunization). 

 

4.8.2 T cell adoptive transfer and induction of EAE 

For transfer experiments, CD8+ T cells were differentiated under Tc17 conditions for 4 days in 

vitro before 6×106 cells were injected i.p. together with 1×104 antigen-specific CD4+ 2D2 cells 

into EAE-resistant Irf4-/-recipient mice (d-1). On the following day (d0) EAE was induced by s.c. 

injection of 200 µl emulsion consisting of incomplete Freund’s adjuvans (IFA), 200 µg MOG37-50 

peptide and 500 µg M. tuberculosis (strain H37RA) in the two flanks of the mice (injection of 

100 µl at each side). At the same day, 200 ng pertussis toxin in 100 µl PBS was injected i.p. to 

promote opening of the blood-brain barrier and allowing reactive T cells to migrate into the 

CNS. Pertussis toxin injection was repeated similarly on d2 upon EAE induction. Thereafter, 

mice were inspected at least daily and EAE scoring was performed. The following classification 

was applied: Score 0: healthy, no symptoms; Score 1: flaccid tail; Score 2: paralysed tail; Score 

3: hind limp weakness, ataxia; Score 4: partial hind limb paralysis. As soon as the mice were 

scored with 4 they were sacrified, CNS and dLN were removed and infiltrating T cells were 

isolated and processed. 

 

4.8.3 T cell isolation from CNS  

Isolation of T cells from lymph nodes was performed as described in section 4.2, whereas the 

isolation of T cells from CNS required a more complex conduction. Therefore, the head and 

waist of the mouse had to be removed allowing removal of spinal cord. By means of a syringe 

filled with PBS, spinal cord was rinsed out of the spine into a petri dish. Brain and spinal cord 

were crushed by scalpel and transferred into RPMI complete media containing 0.5 mg/ml 

collagenase D and 10 µg/ml DNase I. After digestion on a shaker at 37°C for 45 min, tissue was 

crushed through a 70 µm cell strainer and washed with RPMI media. To enrich lymphocyte 

fraction, the cell solution was applied to ficoll gradient centrifugation. Therefore, cells were 

resuspended in 5 ml of 40 % ficoll solution and pipetted on 3 ml of 70 % ficoll solution. Upon 

centrifugation at 620 g, w/o brake at RT for 30 min lymphocyte fraction was transferred in a 

fresh tube and washed twice with RPMI media. Then, cell number was determined as 

described in 4.1 and cells were restimulated and stained as described in section 4.4.2 and 

4.4.3. 
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4.9 Bioinformatical analysis of RNA sequencing  

Bioinformatics is an interdisciplinary field that provides important practical software tools to 

interpret and analyse high-throughput RNA sequencing data and was performed in 

collaboration with Dr. F. Marini from University of Mainz.  

To analyse differential gene expression, alignment of sequenced reads, mapping to a reference 

genome and annotation of genes was performed. By using FastQC and QoRTs (Quality of RNA-

Seq Toolset) (Hartley & Mullikin, 2015), RNA quality was evaluated.  

 

4.9.1 Alignment, mapping and annotation 

Reads were aligned and mapped to mouse reference genome (Mus musculus GRCm38). 

Corresponding gene annotation referred to ENSEMBL v76 and STAR aligner (version 2.4.0b) 

was used to perform mapping to reference genome.  

 

4.9.2 Differential gene expression analysis 

Differential gene expression analysis was performed to estimate the magnitude of differential 

expression between the samples, especially calculating the fold change of read counts and 

furthermore to estimate the significance of the differences. 

Differential expression analysis was performed with Bioconductor DESeq2 package (version 

1.12.3) and the pheatmap package (version 1.0.8), setting the false discovery rate (FDR) to 0.05 

or as indicated. To visualise the expression values of analysed samples, heatmaps were 

generated. Heatmaps show the colour-coded z-scores for the regularized logarithm (rlog) 

transformed and batch-corrected expression values of the most highly changed genes. Z-

scores indicate the number of standard deviations away from the mean of expression in a 

reference sample. Differential gene expression analysis was performed with the R 

programming language. 

 

4.9.3 Gene set enrichment analysis 

Broad Institute’s Gene set enrichment analysis (GSEA) was used to perform functional analysis 

of RNA-Seq data (Subramanian et al., 2005). The method derives its power by focusing on 

groups of genes that are involved in the same biological pathway or share common regulation 

or biological function. GSEA software was downloaded from the Broad institute. The hallmark 

gene set collection of the Molecular Signature Database (MSigDB) as well as published gene 

sets were used for GSEA. Genes were ranked and p value as well as FDR were calculated. 
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4.9.4 Principal component analysis 

Principal component analysis (PCA) is a classical multidimensional scaling method and was 

applied to categorise gene expression profiles (Ringnér & Ringner, 2008). Thereby it extracts 

the most important information from the data table and expresses this information as a set of 

new orthogonal variables called principal components. Thereby, this algorithm reduces the 

dimensionality of the data, while retaining most of the variation of a data set. PCA was 

performed using the pcaExplorer package. 

 

4.10 Statistics 

Data are means ±SD, unless indicated otherwise, and p values were determined by unpaired 

Students’s t test or two-way ANOVA test with Bonferroni’s post-hoc test with Prism 5.0 

(GraphPad). P values ≤ 0.05 were considered significant (*p < 0.05; **p < 0.01; ***p < 0.001), p 

≥ 0.05 not significant (ns). 
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5. Results 

 

Autoreactive IL-17-producing CD4+ and CD8+ T cells have been implicated in MS pathology and 

were detected in active areas of acute and chronic MS lesions (Kebir et al., 2007; Tzartos et al., 

2008). Hence, unravelling the mechanisms which control Tc17 cell differentiation is essential 

for future treatment options. 

One approved drug for MS is DMF (Tecfidera®) which is used for treatment of RRMS as it 

reduces disease activity and progression (Kappos et al., 2008) by various mechanisms: besides 

inducing anti-inflammatory DCs (Ghoreschi et al., 2011) and B cells (Li et al., 2017), DMF 

increases the ratio of CD4+/CD8+ T cells, indicating a major impact on CD8+ T cells (Spencer et 

al., 2015). In DCs, monocytes and macrophages (Ghoreschi et al., 2011; Hoetzenecker et al., 

2012; Sullivan et al., 2013; Zheng et al., 2015), DMF accumulates ROS by depletion of 

glutathione, the most important ROS scavenger. Not much is known on the impact of ROS on T 

cell activation and differentiation: Generally, elevated ROS levels on the one hand are able to 

support CD8+ T cell activation (Sena et al., 2013), whereas on the other hand can also 

dramatically impair T cell proliferation and function (Mak et al., 2017).  

Taking into consideration the impact of DMF-mediated ROS accumulation on Tc17 cells, we 

analysed the role of DMF on the differentiation of murine as well as human Tc17 cells and 

evaluated its influence on the onset of EAE. Furthermore, we determined the influence of 

Tecfidera treatment on CD4+ and CD8+ T cells in peripheral blood (PB) of RRMS patients by 

analysing their cytokine production before and after the first year of treatment.  

 

5.1 DMF-mediated ROS accumulation leads to a robust IL-17 suppression 

in Tc17 cells 

DMF binds to glutathione, thereby abolishing its antioxidative capacity and causing increased 

ROS levels in a variety of cells including DCs, astrocytes and tumour cells (Ghoreschi et al., 

2011; Scannevin et al., 2012; Sullivan et al., 2013). Considering the wide-ranging effects of 

elevated ROS levels together with the preferential impact on CD8+ T cells by DMF during RRMS 

treatment (Fleischer et al., 2017; Spencer et al., 2015), we evaluated whether DMF via 

elevated ROS influences Tc17 cells. 

To examine if DMF has an impact on IL-17-producing CD8+ T cells, murine wildtype 

(WT) CD8+ T cells were differentiated under Tc17 conditions in vitro and reduced GSH as well 

as oxidised GSSG contents were measured. The analysis revealed that DMF depletes the 

intracellular pool of GSH, leading to a decrease in the GSH/GSSG ratio (Fig. 1 A). Reduced GSH 
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levels resulted in a significant upregulation of endogenous ROS as confirmed by staining with 

CM-H2DCFDA, a general oxidative stress indicator, and flow cytometric analysis (Fig. 1 B). The 

addition of cell-permeable reduced GSH-ethyl ester (GSH-OEt, GSH) largely restored 

intracellular GSH concentration and reversed increased ROS levels comparable to control. 

 

 

Figure 4: DMF-GSH-ROS axis stably suppresses IL-17 production by Tc17 cells 

(A - F) Murine CD8+ or CD4+ T cells were isolated and cultured in vitro under type 17 conditions (TGF- + 

IL-6 + IL-2) and treated with 0.2% DMSO (control, Ctrl) 20 µM DMF alone or together with 50 µM GSH or 

400 µM Trolox as indicated. (A) Ratio of reduced to oxidized glutathione contents was determined after 

2 h of culture. (B) Flow cytometric analysis of ROS levels by CM-H2DCFDA staining after 2 h of culture. 

Numbers in histogram represent MFI. Bars show fold ROS induction relative to control. (C) Flow 

cytometric analysis of IL-17A+ and IFN-+ CD8+ T cells after three days. Numbers in plots represent % of 

gated cells. Bars show percentages of IL-17A+ and IFN-+ CD8+ T cells. (D) Flow cytometric analysis of IL-

17A+ and IFN-+ CD4+ T cells after three days of culture. Bars show percentages of IL-17A+ and IFN-+ 

CD4+ T cells. (E) Flow cytometric analysis of ROS levels by CM-H2DCFDA staining of CD4+ T cells after 2 h 

of culture under type 17 conditions. (F) Outline of experimental strategy is depicted. To the right, flow 

cytometric analysis of IL-17A+ CD8+ T cells after six days of culture. CD8+ T cells were primed under Tc17 

conditions and treated ± DMF ± GSH for three days. Then, the cells were washed, rested in the presence 

of IL-2 as well as anti-IFN- and left either untreated or treated again with DMF ± GSH for the next three 

days. Histograms and contour plots are representative for seven (B, C) independent experiments. Bars 

show mean ± SD from three (D, E, F), five (A) or seven (B, C) combined experiments. Statistical analysis 

was performed using unpaired two-tailed Student’s t-test (ns P>0.05, * P<0.05, ** P<0.01, *** P<0.001). 
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DMF is able to suppress pro-inflammatory cytokine production in DCs (Ghoreschi et al., 2011), 

macrophages (McGuire et al., 2016) and B cells (M. D. Smith et al., 2017), demonstrating its 

immune modulatory mode of action. 

To investigate the influence of DMF-mediated ROS upregulation on the production of pro-

inflammatory IL-17, the effector cytokine of Tc17 cells, we performed intracellular staining for 

IL-17 and IFN-. DMF was able to suppress IL-17 significantly and simultaneously upregulated 

IFN- production in a ROS-dependent manner. Neutralisation of ROS with the anti-oxidants 

GSH or Trolox, a vitamin E derivative, restored cytokine levels comparable to control Tc17 cells 

(Fig. 1 C). Next, we differentiated Th17 cells in vitro and exposed them to DMF to examine 

whether DMF impacts Th17 cells, the CD4+ counterpart of Tc17 cells, by a similar mechanism. 

Surprisingly, DMF influenced neither IL-17 nor IFN- production of Th17 cells, although ROS 

were upregulated significantly (Fig. 1 D, E). To investigate the duration of the DMF-mediated 

IL-17 reduction in Tc17 cells that allows a prediction about the stability of IL-17 suppression 

during treatment, cells were primed under Tc17 conditions for three days with DMSO, DMF 

alone or in combination with GSH, followed by washing and resting in the absence or presence 

of DMF for further three days. Flow cytometric analysis revealed a stable IL-17 inhibition, as IL-

17-producing cells remained significantly reduced after the resting phase, comparable to 

continuous DMF treatment over six days (Fig 1 F).  

Hence, DMF-mediated GSH depletion resulted in an early ROS upregulation, leading to 

increased IFN- levels and a robust IL-17 suppression in Tc17 cells. 

 

5.2 IL-17 is diminished by DMF-mediated transient ROS upregulation at 

early stages of Tc17 differentiation  

DMF induces an anti-oxidant response in astrocytes (Scannevin et al., 2012), neurons (Linker et 

al., 2011) and DCs (Ghoreschi et al., 2011) by succination of Keap1 and thereby activation of 

the NRF2 pathway. After detecting elevated ROS levels in Tc17 cells upon DMF treatment, we 

thought to elucidate the compatibility between moderate accumulation of ROS on one side 

and an induction of anti-oxidative stress responses on the other.  

Therefore, the ratio of GSH/GSSG as well as ROS levels were determined 24 h post 

Tc17 differentiation and DMF treatment. Surprisingly, GSH/GSSH ratio showed an upward 

trend and ROS levels were already significantly reduced after 24 h of DMF treatment as 

compared to control (Fig. 2 A, B). In line with this finding, anti-oxidative NRF2 targets were 

upregulated in DMF-treated Tc17 cells, indicating an activation of mechanisms counteracting 

the previous ROS accumulation (Fig. 2 C). To examine whether the early ROS increase by DMF-
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mediated GSH-depletion was sufficient to restrict IL-17 production, DMF was added to the cells 

at later time points of differentiation. It revealed that only the early application of DMF after 

up to 17 h of differentiation was sufficient to suppress IL-17 production, whereas DMF hardly 

affected the already established Tc17 cells (Fig. 2 D).  

In summary, the DMF-mediated increase of endogenous ROS at early stages of Tc17 

differentiation is required for an efficient IL-17 inhibition, despite a rapid counter regulation by 

induction of oxidative stress response pathways. In contrast, DMF treatment at later time 

points of differentiation is not able to limit IL-17 production. 

 

 

Figure 5: DMF upregulates ROS transiently and suppresses IL-17 production at early stages of Tc17 

differentiation 

(A-D) WT CD8+ T cells were isolated and cultured in vitro under type 17 conditions and treated with 0.2% 

DMSO (control, Ctrl) 20 µM DMF alone or together with 50 µM GSH as indicated. (A) Ratio of reduced to 

oxidized glutathione contents was determined after 24 h of culture. (B) Flow cytometric analysis of ROS 

levels by CM-H2DCFDA staining after 24 h of culture. Numbers in histogram represent MFI. Bars show 

MFI of CM-H2DCFDA staining. (C) Expression of normalised counts of NRF2 target genes as determined 

by RNA-Seq. CD8+ T cells were cultured in vitro under type 17 conditions with indicated treatment for 

two days. Total RNA was purified and RNA-Seq was performed (n=3). (D) Flow cytometric analysis of IL-

17A+ CD8+ T cells after three days of Tc17 priming with addition of DMSO (Ctrl) or DMF at indicated time 

points after culture start. Bars show percentages of IL-17+ CD8+ T cells. Histogram in B is representative 
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for three independent experiments. (A - D) Bars show mean ± SD from three combined experiments. 

Statistical analysis was performed using unpaired two-tailed Student’s t-test (ns P>0.05, * P<0.05, ** 

P<0.01, ***p<0.001). 

 

5.3 DMF signalling suppresses IL-17 production independent of apoptosis 

or proliferation 

The positive safety record of DMF is compromised by the occurrence of lymphopenia, or in 

rare cases of PML in MS patients under Tecfidera treatment (Linker & Haghikia, 2016). To 

examine if the altered cytokine production is an effect of elevated apoptosis, Annexin V and 

propidium iodide staining was performed in Tc17 cells. 20 µM DMF, the concentration that 

significantly reduced IL-17 production, did not induce apoptosis, whereas higher DMF 

concentrations were pro-apoptotic (Fig. 3 A). Interestingly, this effect was reversed by adding 

the antioxidant GSH, confirming that DMF via ROS upregulation leads to cell death at high 

concentrations, whereas moderate ROS levels rather alter Tc17 cells fate. 

In addition, the influence of DMF-treatment on proliferation of Tc17 cells was assessed. It 

revealed that DMF-treated Tc17 cells showed a non-significant tendency towards reduced 

division as indicated by CFSE staining and flow cytometric analysis after three days (Fig. 3 B). 

However, this did not influence the IL-17 production, as the frequencies of IL-17-producing 

cells in DMF-treated samples were similarly reduced in each proliferation stage as compared to 

control (Fig. 3 C). 

 

Figure 6: DMF does not influence apoptosis or proliferation of Tc17 cells at immune modulatory 

concentrations 
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(A) Flow cytometric analysis of apoptosis via Annexin V and propidium iodide staining. CD8+ T cells were 

primed in vitro under Tc17 conditions treated with DMSO, 20 or 40 µM DMF alone or in combination 

with GSH as indicated for three days. Numbers represent % of gated cells. Bars show quantification of 

Annexin V+ Tc17 cells. (B) Flow cytometric assessment of proliferation by CFSE staining. CD8+ T cells 

were stained with CFSE, washed and primed under Tc17 conditions with indicated treatment for three 

days. Numbers in histogram represent MFI. Bars show fold changes of MFI of CFSE-stained cells. (C) Dot 

blot of CFSE-stained Tc17 cells with marking of each proliferation cycle. Bars show fold changes of IL-

17A+ CD8+ T cells at each proliferation cycle after three days of differentiation relative to control. 

Histograms and dot plots are representative for three (A - C) independent experiments. Bars show mean 

± SD from three (A - C) combined experiments. Statistical analysis was performed using unpaired two-

tailed Student’s t-test (ns P>0.05, *P<0.05, **P<0.01, ***P<0.001). 

 

  

5.4 DMF-ROS axis modifies Tc17 cell gene signature 

After having confirmed that DMF-mediated ROS suppressed IL-17 independent of apoptosis- 

and proliferation, RNA-Sequencing (RNA-Seq) was performed to examine the impact of DMF 

on Tc17 cells on a genome-wide level. In addition, principal component analysis (PCA) was 

carried out to compare genetic profiles between differently treated Tc17 cells. Furthermore, 

gene set enrichment analysis (GSEA) was performed as previously described (Subramanian, 

2005) to determine involved pathways in IL-17 suppression mediated by the DMF/ROS axis. 

In DMF-treated Tc17 cells, 994 transcripts were significantly upregulated and 898 

significantly downregulated (FDR < 0.01, as compared to control. Interestingly, most of the 

altered gene expression was restored by addition of GSH, indicating a major contribution of 

increased ROS levels to the modulation of Tc17 cells. To visualise and compare gene 

expression profiles, PCA was performed which showed a distinct gene expression between 

DMF-treated and control Tc17 cells. Interestingly, the profiles of Tc17 cells that received DMF 

in combination with GSH were similar to control cells (Fig. 4 A, B). By performing GSEA it was 

confirmed, that DMF treatment significantly downregulated Tc17-associated genes, whereas 

ROS neutralisation by GSH restored the transcriptional program comparable to control cells 

(Fig. 4 C). Amongst the 70 most significantly downregulated transcripts, several Tc17-

associated genes were found, as Il17a, Il17f, Il21, Rorc and Il21 (Fig. 4 D). In line, the main 

transcription factor of Tc17 cells, RORt, was significantly reduced on protein level in cells 

treated with DMF as compared to control, an effect that was again dependent on ROS (Fig. 4 

E). 

Taken together, these results revealed that DMF treatment via ROS controls Tc17 

differentiation by suppressing the Tc17 transcriptional program in vitro. 
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Figure 7: Tc17 fate is suppressed by DMF treatment 

(A-D) CD8+ T cells were cultured under Tc17 conditions and treated with DMSO (Ctrl), DMF alone or in 

combination with GSH for two days. RNA was isolated and RNA-Seq was performed (n=3). (A) Heatmap 

shows color-coded z-scores for the regularized logarithm (rlog) transformed batch-corrected expression 

values. Displayed are 659 differentially expressed genes with an effect size of at least > 1.5-fold (log2) 

and FDR < 0.01 in the expression between control vs DMF-treated Tc17 cells. (B) Principal component 

analysis (PCA) of Tc17 cells treated as indicated (C) GSEA comparing the relative expression of genes of 

Tc17 cells with indicated treatment, examining the distribution of genes associated with Tc17 phenotype 

as defined in GSE110346. (D) Heatmap shows color-coded z-scores for the rlog transformed batch-

corrected expression values. Displayed are the top 70 core enriched hits of genes downregulated in 

DMF-treated Tc17 cells. (E) Flow cytometric analysis of RORt levels in CD8+ T cells after three days of 

Tc17 priming and treatment with DMSO (Ctrl), DMF alone or in combination with GSH. Numbers in 

histogram represent MFI. Bars show fold MFI changes relative to DMF treatment. Histogram in E is 

representative for three independent experiments. Bars in E show mean ± SD from three combined 

experiments. Statistical analysis was performed using unpaired two-tailed Student’s t-test (ns P>0.05,  

* P<0.05, ** P<0.01, *** P<0.001). 
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5.5 DMF via ROS suppresses permissive histone modifications at the Il17 

locus 

Elevated ROS levels can modulate the activity of intracellular signalling molecules and 

pathways, including epigenetic modifications such as histone methylation and acetylation 

(Kim, Ryan, & Archer, 2013; Kreuz & Fischle, 2016).  

To evaluate whether the DMF/ROS axis suppresses IL-17 in Tc17 by affecting the epigenetic 

landscape, Tc17 cells were differentiated in vitro for three days and ChIP assays were 

performed.  

First, we compared permissive total acetylation levels of H4 as well as for H3K27 in 

Tc17 cells treated with control, DMF alone or in combination with GSH. While DMF treatment 

reduced H4Ac as well as H3K27Ac levels at the Il17 promoter and enhancer, the addition of 

GSH restored the occupancy of acetylation at both sides, indicating a ROS-dependent 

mechanism (Fig. 5 A). After having demonstrated that DMF via ROS modified histone 

acetylation, we evaluated whether ROS could impact the acetylation status of histones.  

 

 

Figure 8: DMF alters histone modifications at the Il17 locus of Tc17 cells in a ROS-dependent manner  

(A, C, D) CD8+ T cells were differentiated for 3 days under Tc17 conditions with indicated treatment and 

ChIP analysis were performed. (A) ChIP analysis for H4Ac and H3K27Ac at the Il17 promoter, Il17 

enhancer-5 and Il10 promoter. (B) Flow cytometric determination of IL-17A+ CD8+ T cells differentiated 

for 3 days under Tc17 conditions with indicated treatment. (C) ChIP analysis for H3K4me3 at the Il17 
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promoter, Il17 enhancer -5 and Rpl promoter. (D) ChIP analysis for H3K27me3 at (C) the Il17 promoter 

and Il17 enhancer -5 or (D) Il10 promoter. The experiments were repeated three times with consistent 

results. Bars show mean ± SD of fold change relative to DMF-treated Tc17 cells from three (A, C, D) or 

five (B) combined experiments. (A-D) Statistical analysis was performed using unpaired two-tailed 

Student’s t-test (ns P>0.05, * P<0.05, ** P<0.01, *** P<0.001). 

 

Histone deacetylation is catalysed by HDACs, whose activity cannot only be suppressed, but 

also increased by ROS (Kreuz & Fischle, 2016). To determine the contribution of HDACs during 

DMF-mediated IL-17 inhibition, Tc17 cells were treated with DMF together with the HDAC 

inhibitor TSA. Notably, the addition of TSA could partially restore the inhibitory effect of DMF 

on IL-17 production, indicating that the DMF/ROS axis suppressed acetylation at the Il17 locus 

via HDACs (Fig. 5 B).  

Further, it has been shown that fumarates as well as ROS are able to impact the 

methylation status of histones (Afanas’ev, 2015; Kreuz & Fischle, 2016; Sullivan et al., 2013). 

Therefore, we compared permissive methylation levels of H3K4 and methylation of H3K27, 

which is associated with transcriptional silencing, at the Il17 locus of Tc17 cells treated with 

control, DMF alone or together with GSH. We found that DMF also reduced permissive histone 

trimethylation at H3K4 (Fig. 5 C), whereas the repressive trimethylation at H3K27 was not 

significantly altered (Fig. 5 D).  

Taken together, these results imply that DMF via ROS upregulation can suppress permissive 

histone acetylation and methylation at the Il17 promoter and enhancer, whereas the 

repressive methylation H3K27me3 was not affected.  

 

5.6 DMF suppresses pathogenicity of Tc17 cells in EAE 

5.6.1 Oral DMF treatment diminishes EAE severity 

DMF is a commonly prescribed oral drug for RRMS patients. Our aforementioned data show 

that DMF treatment directly impacts the fate of Tc17 cells in vitro, which are known to 

contribute to inflammatory processes in the CNS (Huber et al., 2013). To examine whether 

orally administered DMF is able to influence Tc17 cells in vivo, we performed EAE experiments 

in collaboration with Dr. F. Kurschus from University of Mainz. 

To analyse the impact of orally given DMF, EAE was induced in WT mice by 

immunisation with MOG35-55 peptide and treated with DMF in drinking water during the course 

of disease (Fig. 6 A). In accordance with the literature (Ghoreschi et al., 2011; Linker et al., 

2011; Schulze-Topphoff et al., 2016), mice that received oral DMF treatment showed reduced 

clinical EAE symptoms as compared to the control group (Fig. 6 B). The mild disease course 
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Figure 9: Oral DMF treatment limits EAE severity 

(A) Outline of experimental strategy. WT mice were immunised with MOG35-55, CFA and M. tuberculosis 

for induction of EAE. Pertussis toxin (PTX) was injected i.p. along and on day 2 post immunisation. Mice 

were treated ± DMF in drinking water starting 10 days before EAE induction and during the course of 

disease. Analysis was performed on day 14. 

 (B) Mean clinical scores (± SEM) of MOG35-55 immunised WT mice (n=8) treated orally with control or 

DMF for 24 days. P values were calculated comparing the scores of WT mice ± DMF. (C) Flow cytometric 

analysis of IL-17A+ CD8+ T cells from the CNS of WT mice ± DMF. Bars show percentages of IL-17+ CD8+ T 

cells in the CNS. (D) Flow cytometric analysis of IL-17+ CD8+ T cells in the LNs of WT mice after EAE 

induction and oral control- or DMF-treatment as described in A. Bars show percentages of IL-17A+ CD8+ 

T cells in the LNs. Experiments were repeated three times with consistent results. Bars show mean ± SD 

from mice (n = 8) from one representative experiment. Statistical analysis was performed using 

unpaired two-tailed Student’s t-test (ns P>0.05, * P<0.05, ** P<0.01, *** P<0.001). 

during DMF treatment was accompanied by significantly reduced percentages of IL-17-

producing CD8+ T cells in the CNS (Fig. 6 C) and dLNs (Fig. 6 D).  

Hence, our data show that beside direct effects on Tc17 cells in vitro, the oral administration of 

DMF suppresses Tc17 cells also in vivo, demonstrated by diminished severity of EAE and 

reduced Tc17 cell infiltration in the CNS and draining lymph nodes (dLN).  

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6.2 DMF limits pathogenicity of Tc17 cells in vivo 

Our in vitro data demonstrate that DMF treatment is able to suppress the Tc17 cell fate, 

including their ability to produce IL-17. This cytokine contributes to inflammation in the CNS 

and lesion formation by promoting the generation of pro-inflammatory cytokines and 

chemokines, which attract neutrophils and macrophages to inflammation sites (Jin & Dong, 
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2013). Furthermore, it has been shown that Tc17 cells, via their IL-17 production, support Th17 

cell-mediated pathogenicity during the onset of EAE (Huber et al., 2013). In addition, we could 

show that DMF treatment in vivo diminished clinical EAE symptoms, but it was not clear 

whether these effects directly or indirectly impact Tc17 cells. 

To analyse the functional impact of DMF-treatment directly on Tc17 cells, we 

performed T cell adoptive transfer experiments. Therefore, we transferred in vitro 

differentiated congenic control- or DMF-treated Tc17 cells together with low numbers of 2D2 

CD4+ T cells, which are transgenic for MOG-specific TCR, into EAE-resistant Irf4-/- recipient mice 

(Brüstle et al., 2007; Huber et al., 2013), followed by EAE induction (Fig. 7 A). The transfer of 

low numbers of 2D2 cells alone did not evoke disease outbreak, whereas the combination with 

control Tc17 cells induced an early onset of disease including acute clinical symptoms, as 

previously shown (Huber et al., 2013) (Fig. 7 B). The severe disease course was characterised 

by T cell infiltration of both, endogenous and transferred CD8+ T cells, into the CNS (Fig. 7 C, 

D). The transferred control Tc17 cells were detectable in dLNs and their IL-17 production was 

accompanied by higher IL-17- and IFN-- production of CD4+ T cells within the CNS. In addition, 

the mice receiving control Tc17 cells were characterised by increased percentages of IL-17-

producing CD8+ T cells in dLN and elevated percentages of IL-17-producing CD4+ and CD8+ T 

cells within the CNS as compared to the control (Fig. 7 E-I). 

In contrast, recipients of 2D2 cells together with DMF-treated Tc17 cells showed only a mild 

disease course (Fig. 7 B), which was accompanied by significantly elevated T cell numbers in 

the dLNs and reduced T cell infiltration into CNS (Fig. 7 C, D). The transferred DMF-treated 

Tc17 cells were detectable in dLNs and produced less IL-17 as compared to control Tc17 cells. 

At the same time, IL-17 and IFN- production in CNS-infiltrating CD4+ T cells was reduced as 

compared to the group that received control Tc17 cells (Fig. 7 E-I). 

In summary, DMF diminishes the co-pathogenic function of Tc17 cells in an in vivo mouse 

model for MS by suppressing their transcriptional program, suggesting a possible mechanism 

for MS. 
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Figure 10: DMF limits CNS autoimmunity by suppressing the co-pathogenic function of Tc17 cells 

(A) Outline of experimental strategy. Irf4-/- mice receiving cells as described above. EAE was induced on 

the next day by injection of MOG37-50, IFA and M. tuberculosis. PTX was injected i.p. on day 0 and 2 post 

immunization. Analysis was performed on day 15. (B-H) Analysis of MOG37-50-immunized Irf4-/- mice 

receiving 1×103 CD4+ 2D2 cells alone or together with 2.5×106 CD8+ cells in vitro differentiated for four 

days under type 17 conditions ± DMF, in the following the cells are termed Tc17 cells. (B) Mean clinical 

scores (± SEM) combining two independent experiments of MOG37-50-immunized Irf4-/- (n = 7) mice. P 

values were calculated comparing the scores of Irf4-/- mice receiving CD4+ 2D2 cells together with Tc17 

cells ± DMF. (C) Absolute T cell numbers (mean ± SD of three combined experiments, n=7) in the (left) 

CNS or (right) LN of Irf4-/- mice. (D) Number of CD8+ T cells (mean ± SD of two combined experiments, 

n=5) in the CNS of Irf4-/- mice. (E, F) Flow cytometric analysis of IL-17A+ and IFN-+ gated CD4+ and CD8+ T 
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cells in the (E) LN or (F) CNS of Irf4-/- mice. Numbers in plots represent % of gated cells (G, H) 

Percentages of IL-17A+ CD4+ or CD8+ T cells (mean ± SD of three combined experiments, n=7) in (G) LN 

and (H) CNS of Irf4-/- mice. (A-H) The experiments were repeated three times with consistent results. Dot 

plots are representative for (E, F) three independent experiments. Statistical analysis was performed 

using two-way ANOVA and Bonferroni’s post-hoc test (B) or unpaired two-tailed Student’s t-test (C, D, G, 

H) (ns P>0.05, * P<0.05, ** P<0.01, *** P<0.001). 

 

 

5.7 DMF treatment shifts Tc17 cells towards a CTL-like signature 

After having validated the modulatory effect by DMF on Tc17 genetic profile and function in 

the EAE mouse model, we evaluated how DMF shapes the transcriptional signature of Tc17 

cells in more detail.  

To identify changes on the genome-wide level we further analysed the RNA-Seq data of Tc17 

cells treated with DMSO (Ctrl), DMF alone or in combination with GSH. Amongst the 70 most 

upregulated transcripts we found CTL-associated genes as Ifng, Eomes, Gzmb, Gzmc and Tbx21 

(Kaech & Cui, 2012), whose induction was largely dependent on ROS as addition of GSH 

reversed the effect (Fig. 8 A). Furthermore, by applying GSEA we found a significant 

enrichment of CTL-associated genes in DMF-treated Tc17 cells in a ROS-dependent manner as 

compared to untreated Tc17 cells. (Fig. 8 B). This included CTL marker molecules like perforin, 

granzyme B and granzyme C (Fig. 8 C). The transcription factor T-bet (encoded by Tbx21) that 

regulates effector CTL differentiation (Kallies & Good-Jacobson, 2017) was upregulated on 

protein level by DMF treatment compared to control (Fig. 8 D).  

Taken together, these results obtained by RNA-Seq analysis and flow cytometry reveal that 

DMF-mediated ROS promotes a CTL-like signature and suppressed the Tc17 transcriptional 

program. 
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Figure 11: DMF- induced ROS favours a CTL-like gene signature 

(A) Heatmap shows color-coded z-scores for the rlog transformed batch-corrected expression values 

from the dataset described in Figure 4. Displayed are the top 70 core enriched hits of genes upregulated 

in DMF-treated Tc17 cells.  (B) GSEA comparing the relative expression of genes of Tc17 cells treated as 

indicated, examining the distribution of genes associated with CTL phenotype as defined in GSE110346. 

(C) Normalized expression counts of selected CTL-associated genes in Tc17 cells with indicated 

treatment as determined by RNA-Seq. (D) Flow cytometric determination of T-bet levels in CD8+ T cells 

after three days of Tc17 priming with indicated treatment. Numbers in histogram represent MFI. Bars 

show fold MFI change of T-bet relative to control. Histogram in D is representative for three 

independent experiments. Bars show mean ± SD from three (C, C) combined experiments. Statistical 

analysis was performed using unpaired two-tailed Student’s t-test (ns P>0.05, * P<0.05, ** P<0.01, *** 

P<0.001). 

 

 

5.8 DMF/ROS axis enhances IL-2 signalling in Tc17 cells 

The aforementioned data showed that DMF treatment of Tc17 cells leads to the accumulation 

of ROS, which is responsible for a shift of the Tc17 profile towards a CTL-like signature, but the 

underlying signalling remained elusive. In order to elucidate the molecular pathways involved 

in the suppression of Tc17 cells, the acquired RNA-Seq data was further analysed by GSEA to 

explore various signalling pathways involved. 
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Figure 12: IL-2 signalling is elevated by ROS and required for suppression of IL-17 in Tc17 cells 

(A) GSEA comparing the relative expression of genes in Tc17 cells ± DMF (left) or DMF ± GSH (right) 

from the dataset described in Figure 4. Shown is the distribution of genes involved in hallmark IL- 

2-STAT5-signaling as defined by MSigDB. (B) Flow cytometric analysis of IL-17A+ CD8+ T cells 

differentiated for three days under Tc17 conditions with indicated treatment in the presence or absence 

of 50 U/ml IL-2. (C) Flow cytometric analysis of IL-17A+ CD8+ T cells differentiated for three days under 

Tc17 conditions with indicated treatment and increasing IL-2 concentrations. (D) Ratio of reduced to 

oxidized glutathione levels in CD8+ T cells differentiated for 2 h under Tc17 conditions with indicated 

treatment in the presence or absence of 50 U/ml IL-2. (E) Flow cytometric analysis of ROS levels in CD8+ 

T cells differentiated for 2 h under Tc17 conditions with indicated treatment in the presence or absence 

of 50 U/ml IL-2 after staining with CM-H2DCFDA (fold MFI relative to control). Graph in (C) shows ± SEM 

from five combined experiments. Bars show mean ± SD from three (B, D, E) or five (C) combined 

experiments. Statistical analysis was performed using unpaired two-tailed Student’s t-test (ns P>0.05, * 

P<0.05, ** P<0.01, *** P<0.001). 

 

 

We found a significant ROS-dependent enrichment of IL-2/STAT5 signalling-associated genes in 

DMF-treated Tc17 cells, suggesting an involvement of the IL-2 pathway in the suppression of 

IL-17 production of Tc17 cells (Fig. 9 A), as previously reported for Th17 cells (Laurence et al., 

2007). To prove the dependency of DMF on IL-2 signalling, we compared the effect of DMF in 
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the presence or absence of IL-2 and found that IL-2 signalling was required for the DMF-

mediated IL-17 suppression in Tc17 cells, as DMF was not able to limit IL-17 in the absence of 

IL-2 (Fig. 9 B). The effects of IL-2 were dose-dependent, as low IL-2 amounts prevented IL-17 

inhibition, whereas high concentrations were already sufficient to suppress IL-17 without 

addition of DMF (Fig. 9 C). As expected, GSH rescued the IL-17 production, demonstrating that 

the DMF-mediated ROS upregulation led to IL-17 suppression by IL-2 signalling. Finally, to test 

whether IL-2 signalling and ROS affected each other, we performed GSH-Assay and ROS-

staining in the absence or presence of IL-2. Interestingly, we could demonstrate that neither 

GSH-depletion nor ROS accumulation were dependent on IL-2 (Fig. 9 D, E).  

Hence, DMF-induced ROS levels impinge on IL-2 signalling pathways, thereby suppressing IL-17 

production of Tc17 cells. 

 

5.8.1 DMF limits IL-17 production of Tc17 cells via STAT-5 induction  

The aforementioned results revealed that the DMF-mediated ROS accumulation enhances  

IL-2/STAT5 signalling-associated genes. It is already shown for Th17 cells, that IL-2 via STAT5 

inhibits IL-17 production by the competition with STAT3 at Il17 regulatory elements (Laurence 

et al., 2007; X. P. Yang et al., 2011). In order to evaluate the contribution of STAT5 to the DMF-

mediated IL-17 suppression in Tc17 cells, we performed retroviral overexpression of 

constitutive active STAT5 and made use of a pharmacological STAT5 inhibitor. 

 Tc17 cells were differentiated with respective treatment for 2 days in vitro, followed by 

a resting phase overnight and added IL-2 kinetically. Flow cytometric analysis of the cells 

revealed elevated phosphorylation of STAT5 in DMF-treated Tc17 cells in a ROS-dependent 

manner (Fig. 10 A). To examine whether STAT5 is able to limit the IL-17 production in Tc17 

cells, they were overexpressed with a GFP-STAT5-expressing vector (pMIG STAT5) or the 

corresponding control vector (pMIG empty). To verify that GFP and P-STAT5 expression 

correlated, staining of P-STAT5 was performed. Indeed, high levels of GFP correlated with 

enhanced production of P-STAT5 in cells transduced with the pMIG STAT5 vector, but not in 

cells transduced with pMIG empty as expected. In line, the highest P-STAT5 expression was 

detected in the highly pMIG STAT5-transduced cells (Fig. 10 B). Next, the IL-17 production of 

Tc17 cells either transduced with pMIG empty or pMIG STAT5 was determined. We found a 

significant inhibition of IL-17 in P-STAT5 overexpressed Tc17 cells as compared to cells 

transduced with the control vector (Fig, 10 C, D), indicating that P-STAT5 is able to suppress IL-

17 production also in Tc17 cells. The inhibitory effect of DMF-ROS-STAT5 pathways was at least 

partially regulated by competition with STAT3, as the IL-17 suppression by DMF was 

significantly decreased by overexpression with constitutive active STAT3 (pMIG STAT3) (Fig. 10 
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E). To link the enhanced P-STAT5 production to the DMF-mediated IL-17 suppression, we 

added a STAT5 inhibitor together with DMF to the cells and analysed the IL-17 production after 

three days of culture. Of note, the inhibition of STAT5 could only partially restore the IL-17 

production of Tc17 cells, suggesting a contribution of further IL-2 dependent pathways to the 

ROS-mediated suppression of IL-17 in Tc17 cells (Fig. 10 F). 

 

 

Figure 13: Elevated P-STAT5 contributes to the DMF-mediated IL-17 inhibition of Tc17 cells  

(A) Flow cytometric analysis of P-STAT5(Y694) in CD8+ T cells differentiated for 2 days under Tc17 

conditions with indicated treatment, rested overnight and restimulated with 100 U/ml IL-2 for indicated 

times under indicated treatment. Numbers in histograms represent MFI. Bars show fold MFI changes 

relative to control. (B-E) CD8+ T cells were spin transduced twice with retroviruses expressing either 

constitutive active P-STAT5 (pMIG STAT5) or constitutive active P-STAT3 (pMIG STAT3) or GFP alone 

(pMIG empty) as indicated. Then, CD8+ T cells were differentiated for 3 days under Tc17 conditions, 

rested for 3 days and re-cultured under Tc17 conditions for further 3 days. (B) Flow cytometric analysis 

of P-STAT5 (Y694) in CD8+ T cells. Dot plots show three subsets, based on the GFP expression intensity 

(GFP-negative, neg, GFP-intermediate, int, and GFP-high, high) for further analysis of P-STAT5 (Y694) 

expression in each subset. Numbers in histograms represent MFI. (C) Flow cytometric analysis of IL-17A+ 

GFP+ CD8+ T cells. Contour plot to the left shows four subsets, based on the GFP expression intensity 

(GFP-negative, neg, GFP-low, lo, GFP-intermediate, int, and GFP-high, hi) for analysis of percentages of 

IL-17A+ CD8+ T cells in each subset (graph shown to the right). (D) Flow cytometric analysis of GFPhigh IL-
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17A+ CD8+ T cells. Bars show percentages of GFPhigh IL-17A+ CD8+ T cells (E) Flow cytometric analysis of IL-

17A+ GFP+ CD8+ T cells after transduction with retroviruses expressing either constitutive active P-STAT3 

(pMIG STAT3) or GFP alone (pMIG empty). Bars to the left show fold IL-17A inhibition by DMF in GFPneg 

Tc17 cells. Bars to the right show fold IL-17 inhibition by DMF in GFPhigh Tc17 cells. (F) Flow cytometric 

analysis of IL-17A+ CD8+ T cells differentiated for 3 days under Tc17 conditions with indicated treatment 

(35 µM STAT5i). Contour-plots and histograms are representative for three (A, B, D) independent 

experiments. Bars show mean ± SD from (A, C) three, (F) four or (E) five combined experiments. 

Statistical analysis was performed using unpaired two-tailed Student’s t-test (ns P>0.05, *P<0.05, 

**P<0.01, *** P<0.001). 

 

 

5.8.2 DMF/ROS axis suppresses IL-17 production of Tc17 cells by 

elevated AKT/FOXO1/T-bet pathway  

As the inhibition of STAT5 could only partially restore the IL-17 production in Tc17 cells, we 

analysed further IL-2 downstream signalling pathways. The CTL fate of CD8+ T cells is 

determined by PI3K-AKT signalling (Macintyre et al., 2014), which is activated by IL-2 (Liao, Lin, 

& Leonard, 2013). Since we could show that DMF induced a shift towards a CTL-like signature 

in Tc17 cells on the one side and increased IL-2 signalling on the other, we thought to analyse 

the impact of DMF on the PI3K-AKT pathways. 

DMF increased the phosphorylation of AKT at the mTORC2-dependent S473 as well as on the 

PDK1-dependent site T308 in a ROS-dependent manner in Tc17 cells (Fig. 11 A, B). The lipid 

phosphatase PTEN limits activation of AKT and mTORC2 by their dephosphorylation, thereby 

counteracting the activity of PI3K (Ardestani, Lupse, Kido, Leibowitz, & Maedler, 2018). It has 

been shown that upregulated ROS can inhibit phosphatases by oxidation of their catalytic 

residues (Kamata et al., 2005). Accordingly, we found hampered Pten expression in DMF-

treated Tc17 cells (Fig. 11 C), suggesting that reduced PTEN levels contributes to the increased 

phosphorylation of AKT. AKT-mediated phosphorylation of the transcription factor FOXO1 

leads to the termination of its transcriptional activity (Finlay & Cantrell, 2011). In line, DMF-

treated Tc17 cells showed increased phosphorylation of FOXO1/3a (Fig. 11 D) and 

upregulation of T-bet (Fig. 8 D), a transcription factor suppressed by FOXO1 (Michelini, 

Doedens, Goldrath, & Hedrick, 2013; Rao, Li, Bupp, & Shrikant, 2012). To analyse the 

contribution of AKT/FOXO1/T-bet pathway to the DMF-mediated IL-17 suppression, we 

differentiated WT and T-bet-deficient (Tbx21-/-) CD8+ T cells under Tc17 cell conditions and 

treated them with DMF and a specific AKT1/2 inhibitor (AKTi). The use of AKTi increased the IL-

17 production in control- and to a significantly higher extent in DMF-treated WT, but not in 

Tbx21-/- Tc17 cells (Fig. 11 E), thus indicating that T-bet is required for the IL-17 suppression by 

enhanced AKT signalling. In addition, the DMF-mediated IL-17 inhibition was less pronounced 
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in Tbx21-/- as compared to WT Tc17 cells (Fig. 11 F), demonstrating a contribution of the 

AKT/FOXO1/T-bet pathway to the DMF-mediated IL-17 limitation in Tc17 cells, in addition to 

enhanced STAT5 signalling (Fig. 11 G). 

 

 

Figure 14: ROS suppress IL-17 production in Tc17 cells via increased AKT/FOXO1/T-bet signalling 
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(A, B) Flow cytometric analysis of (A) P-AKT(S473) and (B) P-AKT(T308) in CD8+ T cells differentiated for 2 

days under Tc17 conditions with indicated treatment, rested overnight and restimulated with 100 U/ml 

IL-2 for 2 h under indicated treatment. Numbers in histograms represent MFI. Bars show fold MFI 

change relative to control. (C) Fold change of normalized expression counts of Pten from the dataset 

described in Figure 4 as determined by RNA-Seq and relative to DMF-treated Tc17 cells. (D) Flow 

cytometric determination of P- FOXO1(T24)/FOXO3a (T32) in CD8+ T cells differentiated for 2 days under 

Tc17 conditions with indicated treatment. Numbers in histograms represent MFI. Bars show fold MFI 

change relative to control. (E) Flow cytometric analysis of IL-17A+ and IFN-+  WT and Tbx21-/- CD8+ T 

cells differentiated for 3 days under Tc17 conditions with indicated treatment. Numbers in plots 

represent % of gated cells. (F) Flow cytometric analysis of IL-17A+ CD8+ WT and Tbx21-/- CD8+ T cells 

differentiated for 3 days under Tc17 conditions with indicated treatment. Bars show fold IL-17A 

inhibition by DMF. (G) Schematic DMF/ROS influence on IL-2 signalling, leading to IL-17 suppression in 

Tc17 cells. Modified from (Ardestani et al., 2018; Haddadi et al., 2018). Histograms and contour plots are 

representative for three (A, B), four (E) or five (D) independent experiments. Bars show mean ± SD from 

three (A-C), four (E, F) or five (D) combined experiments. (A-F) Statistical analysis was performed using 

unpaired two-tailed Student’s t-test (ns p>0.05, *p<0.05, **p<0.01, ***p<0.001). 

 

 

5.9 IL-17 production is differentially regulated in Tc17 and Th17 cells 

Besides FOXO1 and T-bet, the PI3K/AKT pathway also induces mTORC1 (Ardestani et al., 2018; 

Finlay & Cantrell, 2011). In line with the elevated PI3K/AKT pathway, we found an upregulation 

of mTOR-associated genes after DMF treatment of Tc17 cells (Fig. 12 A). In particular, 

phosphorylation of its downstream target S6 was elevated after DMF treatment (Fig. 12 B), 

demonstrating increased activity of mTORC1. In Th17 cells, mTORC1 is a positive regulator of 

IL-17 production, as the rapamycin-mediated mTORC1 inhibition limits IL-17 (Shi 2011). 

However, in contrast to Th17 cells, rapamycin did not limit IL-17 production in Tc17 cells (Fig. 

12 C, D). Furthermore, the inhibition of AKT failed to influence the production of IL-17 in Th17 

cells (Fig. 12 E), whereas it was induced in Tc17 cells (Fig. 11 E).  

Hence, these data indicate that AKT and mTORC1 signalling differentially impact the  

IL-17 production of Th17 and Tc17 cells (Fig. 11 G and Fig. 12 F). 
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Figure 15: Differential impact of AKT- and mTORC1-signalling on IL-17 production of Tc17 and Th17 

cells 

(A) Heatmap shows color-coded z-scores for the rlog transformed batch-corrected expression values 

from the dataset described in Figure 4. Displayed are the 16 most differentially upregulated mTOR 

signalling-associated genes according to KEGG database in Tc17 cells treated with DMF compared to 

control. (B) Flow cytometric analysis of P-S6(S235/236) in CD8+ T cells differentiated for 3 days under 

Tc17 conditions with indicated treatment. Bars show fold MFI change of P-S6 relative to control. (C, D, E) 

Flow cytometric analysis of IL-17+ CD4+ or CD8+ T cells differentiated for 3 days under type 17 conditions 

with indicated treatment. (F) Schematic influence of IL-2 signalling on Th17 cells. Modified from 

(Ardestani et al., 2018; Haddadi et al., 2018). Histogram in D is representative for three independent 

experiments. Bars show mean ± SD from (B, C, E) three or (D) four combined experiments. Statistical 

analysis was performed using unpaired two-tailed Student’s t-test (ns P>0.05, *P<0.05, **P<0.01, 

***P<0.001). 
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5.10 DMF suppresses IL-17 production of human Tc17 cells in a ROS-

dependent manner 

IL-17-producing CD8+ T cells have been found in acute active and chronic lesions of MS patients 

(Tzartos et al., 2008) and Tc17 cells support the pathogenicity of Th17 cells by IL-17 production 

during the onset of EAE (Huber et al., 2013).  

Our data acquired in the murine system demonstrated that DMF via GSH-depletion and ROS 

induction is able to suppress the Tc17 cell fate, including the production of pro-inflammatory 

IL-17. To examine whether the findings obtained in mouse Tc17 cells can be translated to the 

human system, we differentiated human Tc17 cells in vitro. These experiments were done in 

collaboration with Dr. C. Zielinski from Technical University of Munich.  

 

 

Figure 16: DMF treatment limits IL-17 production in human Tc17 cells 

(A-C) CD8+CD45RA-
 T cells were sorted from human peripheral blood of healthy donors and 

differentiated under Tc17 conditions for 4 days with indicated treatment. (A, C) Flow cytometric analysis 

of IL-17A+ or IFN-+ CD8+ T cells. Numbers in plots represent % of gated cells. Data are representative of 

three individual experiments and donors. (B) ELISA analysis of IL-17 in the supernatant from cultures 

described in A. Bars give mean ± SD from two combined experiments with different donors. Statistical 

analysis was performed using unpaired two-tailed Student’s t-test (ns P>0.05, *P<0.05, **P<0.01, 

***P<0.001). 

 

Briefly, CD8+ CD45RA- T cells of healthy donors were sorted, cultured under Tc17 conditions 

and treated with control, DMF alone or in combination with GSH as indicated. After four days, 

IL-17 and IFN- levels were analysed by flow cytometry and the measurement of IL-17 

concentration in cell culture supernatant was additionally determined by ELISA.  

In accordance with the findings in the murine system, DMF significantly suppressed the IL-17 

production also in human Tc17 cells in a ROS-dependent manner (Fig. 13 A, B). Surprisingly,  

IFN- levels were not influenced by DMF treatment (Fig. 13 C). 
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Taken together, DMF-mediated ROS upregulation suppresses IL-17 production in murine and 

human cells in comparable manner, whereas production of IFN- seems to be differentially 

regulated. 

 

5.11 DMF treatment reduces frequencies of IL-17-producing CD8+ T cells 

in MS patients 

CD8+ T cells contribute to autoimmune processes in the CNS by production of pro-

inflammatory IL-17 (Huber et al., 2013). Our aforementioned data revealed that the RRMS 

drug DMF suppresses IL-17 production by murine as well as human CD8+ T cells in vitro. 

Furthermore, oral DMF application limited T cell infiltration in the CNS and diminished clinical 

disease symptoms in the mouse model. To examine the impact of DMF treatment on CD8+ and 

CD4+ T cells in RRMS patients, we analysed the frequencies of IL-17-and IFN--producing 

memory CD8+ and CD4+ T cells before and after the first year of treatment. Biosampling and 

analysis were performed in collaboration with Dr. B. Tackenberg from the University Hospital 

Marburg. 

  

 

Figure 17: DMF treatment limits IL-17 production of CD8+ T cells in MS patients 

(A) Flow cytometric analysis of percentages of IL-17A+ or IFN-+ CD8+ CD14- CD45RA- T cells and (B) 

percentages of IL-17A+ or IFN-+ CD4+ CD14- CD45RA- T cells from PB of treatment naïve RRMS patients  

(n = 18) before (0 M) and after 12 months (12 M) of Tecfidera therapy. Statistical analysis was 

performed using paired two-tailed Student’s t-test. 

 

 

We analysed PB from 18 naïve DMF responders, who were stable in terms of relapses, 

new/enlarging T2 lesions in magnetic resonance imaging (MRI) and the expanded disability 
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status scale (EDSS) after the first year of Tecfidera treatment and compared cytokine 

production with cytokine levels of naïve patients before treatment. 

In accordance with the previous data, the frequencies of IL-17-producing memory 

CD8+CD45RA- T cells were significantly reduced, demonstrating a positive response to Tecfidera 

treatment. In contrast to the in vitro data, also the IFN- production of memory CD8+ T cells 

was reduced (Fig. 14 A). In addition, we analysed the influence of DMF on memory CD4+ T cells 

and found also here a significant reduction of IFN- producers, whereas the frequencies of IL-

17-producing memory CD4+ T cells were not affected, again demonstrating the preferential 

influence of DMF on IL-17-producing CD8+ T cells (Fig. 14 B). 

Thus, we could show that DMF treatment limits IL-17 production in CD8+ T cells also in RRMS 

patients. In addition to the in vitro data, also the IFN- production of CD8+ and CD4+ T cells was 

diminished, assuming a contribution of further indirect effects in vivo. 
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6. Discussion 

 

Immune modulatory impact of DMF 

DMF (marketed as Tecfidera®) is approved for treatment of RRMS since early 2013, but its 

mode of action has not been fully elucidated (Bomprezzi, 2015). What has become clear so far 

is that DMF does not only have a single mechanism by which it shows its effect, but rather it 

exerts a multitude of effects on the immune system. These effects vary from reduced 

infiltration of immune cells to the CNS (H. Chen et al., 2014), histone hypermethylation of 

tumour cells (Sullivan et al., 2013), elevated ROS levels by depletion of GSH (Diebold et al., 

2017; Ghoreschi et al., 2011) to an induction of antioxidant responses via the NRF2 pathway in 

neurons and glial cells (Linker & Haghikia, 2016). However, a direct influence of DMF on IL-17-

producing CD8+ T cells that contribute to the pathogenicity of MS has not been evaluated so 

far. This thesis provides new insights in DMF’s mode of action by revealing its inhibitory impact 

on murine and human Tc17 cells via ROS accumulation.  

 

6.1 ROS modifies Tc17 cell fate 

6.1.1 DMF suppresses IL-17 in Tc17 cells via early GSH-depletion and 

subsequent ROS accumulation  

In several studies it has been shown that DMF binds to intracellular GSH and decreases its 

antioxidative capacity, thereby leading to elevated ROS levels in various cell types (Ghoreschi 

et al., 2011; Hoetzenecker et al., 2012; Sullivan et al., 2013; Zheng et al., 2015). Depending on 

their concentration, on the one hand ROS are able to support CD8+ T cell activation (Sena et 

al., 2013), on the other they can also result in a tremendous impairment of T cell function (Mak 

et al., 2017). Although a reduction of CD8+ T cells was uncovered upon DMF treatment, the 

functional impact of DMF on CD8+ T cells, in particular IL-17-producing CD8+ T cells, remained 

elusive. 

Here, we demonstrated that DMF treatment of Tc17 cells in vitro resulted in a 

significant reduction of intracellular GSH levels, followed by ROS upregulation at early time 

points of differentiation. After 24 h of differentiation a reversed picture with a significant 

reduction of ROS and an increase of NRF2 target genes emerged, pointing to the induction of 

antioxidant pathways, already described for DCs, neurons and astrocytes (Ghoreschi et al., 

2011; Linker & Haghikia, 2016; Scannevin et al., 2012). Surprisingly, the early accumulation of 

ROS was sufficient to suppress IL-17 and upregulate IFN- production in Tc17 cells, as the 
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addition of reduced GSH was able to restore cytokine production to a large extend. To 

evaluate the susceptibility of established Tc17 cells to DMF, we added DMF at later time 

points. Of note, after at least 17 h upon begin of culture, DMF was not able to limit IL-17 

anymore, demonstrating the importance of early DMF presence in order to inhibit IL-17 

production of Tc17 cells.  

Although we detected elevated ROS levels in Th17 cells as well, we did not observe a 

significant IL-17 suppression. This is in contrast to previously published data describing a ROS-

mediated inhibitory effect on IL-17 production in Th17 cells, the mechanism however remains 

obscure (Gerriets & Kishton, 2014). These contrary results may be due to differences in the 

experimental setup of our and their study. Whereas we used DMF to induce ROS upregulation 

in our experiments, Gerriets at el. made applied dichloroacetate (DCA), an inhibitor of the 

pyruvate dehydrogenase kinase (PDHK). DCA treatment suppressed glycolysis and increased 

oxidative metabolism including ROS levels in Th17 cells. Apart from differential ROS induction 

among the studies, also the levels differed as well. Additionally, while in our experimental 

setup, DMF only induced moderate ROS increase at early time points, Gerriets at al. showed 

high ROS accumulation even after three days of differentiation, indicating a more prominent 

and prolonged ROS upregulation. Taken together, while DMF leads to moderate ROS 

accumulation early in the differentiation process, DCA induced higher ROS concentrations, 

probably over a longer time period, which might explain the differential influence on IL-17 

production in Th17 cells. Hence, future work must be carried out to assess the impact of 

differentially created ROS in T cells. Furthermore, it should be examined at which 

concentrations ROS might have suppressive effects on Th17 cells to ensure safe and effective 

therapies. 

Finally, we demonstrated the stability of IL-17 suppression in Tc17 cells by DMF. 

Interestingly, IL-17 levels were diminished to a similar extend in cells treated for six days 

continuously with DMF and cells treated for three days, followed by a three-day resting period 

without DMF. This indicated a persistent impact of DMF on Tc17 cells with relevance for 

therapy. 

Thus, it can be concluded that the DMF-mediated GSH depletion leads to an early moderate 

ROS upregulation, causing long-lasting suppressive effects on IL-17 production of Tc17, but not 

Th17 cells. DMF preferentially inhibits IL-17 production of Tc17 cells when administered at 

early stages of differentiation. This observation is supported by a study showing that early 

DMF therapy is highly effective especially in newly-diagnosed cases of MS (Gold  G.; Phillips, J. 

T.; Fox, R. J.; Zhang, A.; Meltzer, L.; Kurukulasuriya, N. C., 2015). Furthermore, continuous 
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application of DMF might be required in therapy for RRMS patients in order to suppress newly 

developing pathogenic Tc17 cells. 

 

6.1.2 Involvement of DMF/ROS axis on T cell proliferation and apoptosis 

Besides the intensity of TCR signalling, co-stimulation and cytokines, the activation of T cells is 

influenced by ROS (Franchina et al., 2018). ROS are generated in the mitochondrial electron 

transport chain (ETC) and their levels are physiologically balanced by antioxidants like GSH 

(Franchina et al., 2018). Depending on concentration and exposure time, ROS can influence T 

cell responses in a positive or negative manner (Mak et al., 2017; Sena et al., 2013). 

To evaluate whether DMF via ROS accumulation suppressed proliferation of Tc17 cells and 

thus influenced their cytokine production, we performed CFSE staining and detected only a 

tendency of reduced proliferative capacity in DMF-treated cells. By comparing the IL-17 

suppression in each proliferation cycle, it became clear that DMF limits IL-17 independently of 

proliferation, as the frequencies of IL-17-producing cells were reduced to a similar extent in 

each proliferation cycle. Thus, the increased ROS levels induced by DMF do not impair 

proliferation of Tc17 cells and thereby cytokine production. 

The occurrence of lymphopenia or PML in some MS patients under Tecfidera treatment threw 

a shadow onto the overall positive safety profile of DMF (Linker & Haghikia, 2016). To 

elucidate if the IL-17 inhibition was a side effect of apoptosis induced by DMF, we performed 

Annexin V and propidium iodide staining on DMF-treated Tc17 cells compared to controls. It 

became obvious that DMF at immune modulatory concentrations hardly induced apoptosis in 

Tc17 cells, whereas higher DMF concentrations were pro-apoptotic, in accordance with 

previous reports (Diebold et al., 2017). Interestingly, the neutralisation of ROS by GSH reversed 

the cell death induced by DMF, demonstrating a dose-dependent impact of ROS levels: At 

moderate levels, ROS exerted immune modulatory effects, whereas high ROS levels had 

detrimental impact by inducing cell death.  

Taken together, DMF executes the Tc17 suppression neither via elevated apoptosis nor 

reduced proliferation but probably by interfering with further signalling pathways. 

 

6.1.3 ROS shifts the Tc17 profile towards a CTL-like signature 

After having demonstrated the influence of elevated ROS levels for limiting IL-17 production in 

Tc17 cells, we sought to elucidate whether DMF-induced ROS have broader implications on the 

transcriptome of Tc17 cells. Hence, we performed RNA-Seq to compare gene expression 

profiles of Tc17 cells treated with control, DMF alone or in combination with GSH. Gene 

expression profiles clearly showed the global influence of DMF treatment and the reversion by 
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GSH co-treatment on Tc17 cells. PCA analysis highlighted the impact of the DMF-mediated ROS 

increase on Tc17 cell transcriptome by pointing out the similar profiles of control and GSH co-

treated cells. Functional analysis via GSEA revealed a significant reduction of Tc17-associated 

genes in DMF-treated samples whereas CTL-associated genes were significantly enriched, 

including those involved in the induction of cytotoxic molecules as perforin and granzymes. As 

addition of GSH could reverse these changes, we could clearly show that DMF via ROS 

accumulation was responsible for the reprogramming towards a CTL-like phenotype. 

Furthermore, the type 17 TF RORt was reduced on protein level, whereas T-bet, crucial for 

effector CTL differentiation, was upregulated in DMF-treated samples (Kallies & Good-

Jacobson, 2017), suggesting that ROS can act as modulator of T cell plasticity.  

Collectively, these data indicate that DMF-induced ROS downregulates Tc17 cells, whereas 

boosts CTL signatures, indicating their ability to influence CD8+ T cell plasticity. Since Tc17 cells 

contribute to several pathologies including MS, psoriasis and type 1 diabetes (Srenathan et al., 

2016), actively regulating ROS levels might represent a potential therapeutic tool for these 

immunopathologies. 

 

6.1.4 DMF alters histone modifications of Tc17 cells in a ROS-dependent 

manner 

Oxidative stress can exert a strong influence on immunopathologies, including cancer, diabetes 

and neurodegenerative diseases. There is growing evidence that ROS influences chromatin 

structure, DNA methylation and histone modifications. The resulting cellular changes including 

altered gene expression are disease-driving mechanisms of the aforementioned pathologies 

(Kreuz & Fischle, 2016). Histones especially are extensively affected by ROS, which leads to an 

altered structure that influences post-translational modifications (Kreuz & Fischle, 2016). 

Furthermore, it was proved that permissive histone modifications such as H3K27Ac and 

H3K4me3 are essential for gene expression of the Il17 locus (Akimzhanov, Yang, & Dong, 

2007).   

To assess whether ROS influences histone modifications in Tc17 cells, we performed ChIP 

assays at the promoter and an enhancer of the Il17 locus in Tc17 cells treated with control, 

DMF alone or in combination with GSH. We could demonstrate that the DMF-promoted ROS 

specifically suppressed permissive histone modifications including H4Ac, H3K27Ac and 

H3K4me3 in Tc17 cells, whereas the repressive methylation H3K27me3 was not influenced. 

This was quite surprising, as high fumarate concentrations have been shown to inhibit α-

ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation 

(Laukka et al., 2016; Xiao et al., 2012). In order to address the question whether DMF also 



  
72 Discussion 

influences DNA and/or histone methylation genome-wide, which has been reported in 

previous studies (Xiao et al., 2012), ATAC-Seq or ChIP-Seq analysis would be required.  

Besides its direct influence on histones, ROS have been implicated in the induction of HDAC 

activity, enzymes that catalyse deacetylation and thus gene silencing (Kreuz & Fischle, 2016). 

Additionally, it was shown previously that ROS can suppress expression of members of cell 

junction protein as E-cadherin by an HDAC1-dependent decrease of H3Ac, H4Ac as well as 

H3K4me2 in human hepatoma cells (Lim et al., 2008). Of note, it was shown by Yang et al that 

IL-2 induced STAT5 is able to reduce permissive histone modifications such as H3Ac at the Il17 

locus by recruitment of a histone deacetylator adaptor protein (X. P. Yang et al., 2011). 

To investigate the contribution of HDACs to the ROS-mediated IL-17 suppression, we co-

treated Tc17 cells with DMF and the HDAC inhibitor TSA. Our data indicate that the reduction 

of permissive histone acetylation was in parts mediated by increasing HDAC recruitment or 

function, as HDAC inhibition by TSA partially restored IL-17 levels.  

In summary, DMF-mediated ROS increase can influence histone modifications, leading to 

reduced permissive acetylation and methylation at the Il17 locus. This was at least partially 

mediated by enhancement of HDAC function or recruitment. 

 

6.2 ROS alter Tc17 network by enhancing IL-2 signalling  

Our data showed the key role of ROS in Tc17 cell suppression, as neutralisation by GSH or 

Trolox reversed the effects. In Tc17 cells, besides ROS IL-2 was also absolutely required for the 

limitation of IL-17 production by DMF. Furthermore, the functional analysis of RNA-Seq data by 

GSEA revealed an enrichment of IL-2/STAT5-associated genes in DMF-treated Tc17 cells as 

compared to control. These results show that IL-2 is not only necessary for IL-17 inhibition but 

is also elevated by DMF/ROS axis, suggesting interdependency between ROS and IL-2 signalling 

during DMF treatment. However, GSH depletion as well as ROS induction upon DMF addition 

were not dependent on the presence of IL-2. Therefore, we hypothesised that ROS by 

enhancing IL-2 signalling caused the suppression of IL-17 in Tc17 cells. 

IL-2 has been shown to promote naïve CD4+ T cell differentiation into Th1 and Th2 cells, 

whereas Th17 cell differentiation is suppressed (Liao et al., 2013). Besides its actions on CD4+ T 

cells, IL-2 supports the development of naïve CD8+ T cells into effector and memory CTL with 

induction of IFN-, perforin and granzymes (Pipkin et al., 2010). Our data demonstrated a ROS-

dependent shift from Tc17 signature towards a CTL-like profile by DMF, resulting in prevention 

of CNS autoimmunity. It is conceivable that these mechanisms also count for CTLs, in which 

ROS by enhanced IL2 signalling would drive terminal effector differentiation (Pipkin et al., 

2010). The fact that accelerated IL-2 can induce apoptosis in CTLs (Shrikant & Mescher, 2002), 
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makes this cytokine promising for tumour therapy. In this context, ROS via IL-2 would induce 

apoptosis in tumour-infiltrating CTLs and thus contribute to tumour progression. 

With keeping the importance of IL-2 signalling for DMF-mediated IL-17 suppression in mind, 

we sought to analyse IL-2 downstream pathways in order to elucidate mechanisms of Tc17 fate 

suppression more in detail. 

 

6.2.1 Elevated ROS increase STAT5 and PI3K/AKT signalling, thereby 

limiting IL-17 inhibition 

Our results demonstrate that DMF via ROS accumulation enhances IL-2 signalling and elevated 

phosphorylation of STAT5 in Tc17 cells. In accordance to the published data for Th17 cells (Liao 

et al., 2013; X. P. Yang et al., 2011), STAT5 can limit IL-17 production also in their CD8+ 

counterparts. It was shown that STAT3 and STAT5 compete for common binding sites at the 

Il17 locus and thereby regulate gene transcription by direct opposing actions in Th17 cells (X. 

P. Yang et al., 2011). By performing STAT3 overexpression we could confirm a comparable 

mechanism for Tc17 cells, as high STAT3 levels diminished the IL-17 suppression partially. The 

co-treatment of cells with DMF and a pharmacological STAT5 inhibitor revealed a contributing 

effect of STAT5 to the DMF/ROS-mediated IL-17 suppression. 

Besides STAT5, IL-2 induces also PI3K/AKT pathways and thereby determines CTL fate 

(Macintyre et al., 2014). This is in line with our finding that DMF via ROS suppress Tc17 cells 

and equips them with a CTL-like signature, including the transcription factor T-bet. 

Furthermore, our data demonstrate an ROS-mediated elevated activation of AKT, probably 

caused by a diminished expression of the phosphatase Pten. This is in accordance with 

previous data, which reported an inhibitory effect of ROS on the activity of phosphatases by 

oxidation of their catalytic residues (Kamata et al., 2005) and was already described for PTEN 

in RAW macrophages (Leslie et al., 2003) and the protein-tyrosine phosphatase PTPN2 in 

hepatocytes (Gurzov et al., 2014). Elevated AKT activity results in the increased 

phosphorylation of FOXO1, leading to the termination of its transcriptional activity (Finlay & 

Cantrell, 2011). Accordingly, DMF-treated Tc17 cells showed enhanced P-FOXO1/3a levels and 

upregulation of T-bet, a TF suppressed by FOXO1 (Michelini et al., 2013; Rao et al., 2012). As 

DMF could inhibit IL-17 in T-bet-deficient Tc17 cells to a lesser extent, we assumed a T-bet 

requirement for suppression of IL-17. Furthermore, we demonstrated that the partial IL-17 

limitation by AKT signalling was mediated via T-bet, as inhibition of AKT in T-bet-deficient cells 

had no influence on IL-17 production. Our data is in line with previous literature, showing that 

T-bet hinders Tc17 cell differentiation (Intlekofer et al., 2008; Xin et al., 2016). In addition, 
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further work has to be performed to reveal the contribution of further IL-2 downstream 

pathways, as ERK signalling, to IL-17 suppression by DMF. 

In summary, DMF alters Tc17 transcriptional program at least partially via enhanced STAT5 as 

well as PI3K/AKT/FOXO1/T-bet signalling in a ROS-dependent manner. 

 

6.2.2 Model of differential IL-17 regulation in Th17 and Tc17 cells 

We show that DMF treatment preferentially suppresses the IL-17 production of Tc17 cells, 

whereas Th17 cell remain largely unaffected. This might be due to a different sensitivity 

towards ROS levels in CD4+ and CD8+ T cells, as discussed in 6.1.1. 

A further possibility for the selective IL-17 suppression in Tc17 cells by DMF might be the 

differential AKT- and mTORC1-signalling in Tc17 and Th17 cells. Whereas IL-2-induced AKT 

suppressed the IL-17 production by Tc17 cells, it failed to do so in Th17 cells, pointing to 

signaling differences between CD4+ and CD8+ T cells.  

Furthermore, our data revealed differences in mTORC1 signalling between Th17 and Tc17 cells. 

Besides FOXO1 and T-bet, also mTORC1 is induced by the PI3K/AKT pathway (Ardestani et al., 

2018; Finlay & Cantrell, 2011). In accordance with the elevated PI3K/AKT signalling, we 

detected an enhanced mTORC1 activity after DMF treatment in Tc17 cells, indicated by 

elevated levels of mTOR signalling-associated genes including P-S6. In Th17 cells, mTORC1 is 

supposed to be a positive regulator of IL-17, as rapamycin suppressed its production (L. Z. Shi 

et al., 2011). However, in contrast to Th17 cells, the mTORC1 inhibitor rapamycin could not 

limit IL-17 in Tc17 cells, although suppression of P-S6 revealed its effectiveness.  

A possible explanation for this contrast could be given by differential signalling, as already 

reported for IL-2 signalling in CD4+ versus CD8+ T cells: whereas CD4+ T cells show a biphasic 

STAT5 phosphorylation, only one P-STAT5 peak is detectable upon IL-2 stimulation in CD8+ T 

cells (G. A. Smith et al., 2017). Therefore, additional functional differences in IL-2 downstream-

signalling cascades in both T cell classes are conceivable. However, further work has to be 

carried out to investigate the exact differences between Tc17 and Th17 cells concerning their 

responsiveness to DMF treatment. 

Taken together, the preferential IL-17 suppression in Tc17 cells as compared to Th17 cells 

could be explained by several convergent effects. Besides a different ROS sensitivity in CD4+ 

and CD8+ T cells, also variances in mTORC1 and AKT signalling might contribute to a differential 

response to DMF treatment. 
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6.3 Impact of DMF treatment on EAE pathogenesis 

6.3.1 The course of EAE is attenuated by oral DMF application  

Multiple sclerosis is a heterogenous, T cell-mediated disease characterized by demyelination 

and multifocal inflammation. Besides T cells, inflammatory lesions are additionally infiltrated 

by B cells, monocytes, macrophages and plasma cells, indicating a multicellular 

pathophysiological process leading to axonal damage (Comabella & Khoury, 2012; Dendrou et 

al., 2015; Nylander & Hafler, 2012). Several in vivo and in vitro studies point to the beneficial 

impact of DMF treatment during MS and the animal model EAE (Ghoreschi et al., 2011; Gold  

G.; Phillips, J. T.; Fox, R. J.; Zhang, A.; Meltzer, L.; Kurukulasuriya, N. C., 2015). It has been 

reported that DMF attenuates the progression of disease by various mechanism, including 

limitation of immune cell infiltration into the CNS via HCA2 receptor (H. Chen et al., 2014), 

modulation of DCs and B cells towards an anti-inflammatory phenotype (Ghoreschi et al., 

2011; Li et al., 2017) and induction of anti-oxidative response in neurons and glial cells (Linker 

& Haghikia, 2016). Additionally, our aforementioned data show that DMF treatment directly 

impacts the in vitro differentiation of Tc17 cells that contribute to autoimmune processes in 

the CNS (Huber et al., 2013).  

Here we show that oral administration of DMF can limit severity of clinical symptoms during 

EAE as well as reduce the infiltration of IL-17-producing CD8+ T cells into dLN and CNS as 

compared to control group. This demonstrates that oral DMF application is able to attenuate 

EAE severity, as already described in the literature (Ghoreschi et al., 2011; Linker et al., 2011; 

Schulze-Topphoff et al., 2016). 

Taken together, the improved disease outcome after oral DMF treatment is probably the result 

of a multitude of mechanisms, whereby the effect on IL-17-producing CD8+ T cells represents 

one. Therefore, besides its suppressive effect on Tc17 cell differentiation in vitro, oral DMF 

treatment can limit Tc17 cells also in vivo, demonstrated by reduced percentages of IL-17-

producing CD8+ T cells in dLN and CNS compared to the control. However, based on this data it 

is not possible to distinguish between direct and indirect DMF effects on Tc17 cells.  

 

6.3.2 DMF treatment limits co-pathogenic function of Tc17 cells in EAE 

A series of studies have highlighted the pathogenic role of IL-17 in the development of MS by 

using EAE (Langrish et al., 2005). IL-17 augments inflammatory processes in the CNS by 

promoting the generation of further pro-inflammatory cytokines and chemokines, which 

attract neutrophils and macrophages to inflammation sites (Jin & Dong, 2013). In addition,  

IL-17 production has been associated with active disease and was detected in brain lesions of 
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MS patients (Fletcher, Lalor, Sweeney, Tubridy, & Mills, 2010). Although, MS has been 

considered as being driven by CD4+ T cells, recent studies revealed the contribution of other 

immune cells, including CD8+ T cells (Friese & Fugger, 2009; Salou, Nicol, Garcia, & Laplaud, 

2015). The fact that CD8+ T cells outnumber CD4+ T cells 3- to 10-fold in chronically inflamed 

MS plaques gives further evidence for an important role of CD8+ T cells in MS (Babbe et al., 

2000; Booss et al., 1983). Furthermore, previous data from our group revealed a co-pathogenic 

function of Tc17 cells during the onset of EAE by enhancing the pathogenicity of Th17 cells via 

their IL-17 production (Huber et al., 2013).  

After having demonstrated the beneficial impact of orally administered DMF in EAE on the one 

hand and the stable IL-17 suppression by Tc17 cells in vitro on the other, we sought to 

elucidate a direct functional effect by DMF on Tc17 cells in vivo. This is why we chose an 

adoptive transfer EAE model to assess the impact of DMF treatment on Tc17 cells resulting in 

low IL-17 production in vivo.  

In this model, Tc17 cells were differentiated in vitro, treated with control or DMF and 

adoptively transferred into recipient Irf4-/- mice that are resistant to EAE (Brüstle et al., 2007; 

Huber et al., 2013). Simultaneously, MOG-specific TCR-transgenic CD4+ 2D2 T cells we 

transferred into the mice to induce EAE. Of note, transferred DMF-treated Tc17 cells evoked 

significantly less severe EAE symptoms characterised by significantly diminished T cell 

infiltration in the CNS and elevated T cell numbers in dLNs, demonstrating that DMF treatment 

reduced pathogenicity of Tc17 cells. More importantly, the high IL-17 production of control-

treated Tc17 cells in dLNs correlated with a significant higher IL-17 production by Th17 cells in 

the CNS as compared to the animals that received DMF-treated Tc17 cells.  

In summary, these data reveal that DMF treatment limits the co-pathogenic function of Tc17 

cells by suppressing their IL-17 production. The reduced IL-17 levels of Tc17 cells are 

accompanied by a diminished pathogenic IL-17 production in Th17 cells, resulting in lower 

migration of both, IL-17-producing CD4+ and CD8+ T cells into the CNS. Furthermore, these 

experiments demonstrate the complex interaction between T cell subsets and underline the 

key role of IL-17 production by CD8+ T cells in EAE.  
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Figure 18: DMF disturbs the cooperation between Tc17 and Th17 cells during the onset of EAE 

Schematical display of the cooperation between Tc17 and Th17 cells during the onset of EAE (above) 

and the disturbed cooperation while DMF treatment (below). By their IL-17A production, Tc17 cells 

provide reverse help to Th17 cells and thereby increase their pathogenicity, including high IL-17A 

production. In the presence of DMF however, the IL-17 production of Tc17 cells is suppressed, resulting 

in a diminished pathogenicity of Th17 cells. Modified from (Huber & Lohoff, 2015) 

 

6.4 DMF treatment suppresses human IL-17-producing CD8+ T cells 

In accordance with the data obtained from murine Tc17 cells, we showed that DMF also 

suppresses the IL-17 production of human Tc17 cells in vitro. Similar to the murine system, the 

DMF-mediated inhibition of human cells was ROS-dependent, suggesting similar mechanisms. 

In contrast, IFN- production was not elevated upon DMF treatment, indicating differences in 

IFN- regulation between murine and human Tc17 cells.  

Along with the results in vitro, we demonstrated that a stable response to DMF therapy in 

RRMS patients was associated with a significant reduction of IL-17-producing CD8+ T cells. In 

accordance, in vitro data from murine Th17 cells, IL-17-producing CD4+ T cells were hardly 

affected. Therefore, the extent of IL-17 production in CD8+ T cells of RRMS patients with DMF 

treatment could be a reliable marker for determination of therapy success.  In contrast to the 

murine system, the IFN- production of CD8+ T cells of patients was reduced by DMF 

treatment, indicating again differential regulation of IFN- production in human and murine 

Tc17 cells. 
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Hence, DMF treatment suppresses the IL-17 production of murine as well as human CD8+ T 

cells, whereas IFN- seems to be regulated differently. 

 

6.5 Potential implications of DMF/ROS-mediated Tc17 suppression 

In the course of this study, moderate ROS accumulation, promoted by the MS drug DMF has 

been identified as a suppressor of human and murine Tc17 cells. Besides their pathogenic 

function in autoimmune processes of the CNS, these cells contribute to protective immune 

responses against bacterial, viral and fungal infections (Hamada et al., 2009; Naik et al., 2015; 

Nanjappa et al., 2017; Yeh et al., 2010). Therefore, the limitation of IL-17-producing CD8+ T 

cells during DMF therapy might also result in disturbed clearance of pathogens and should be 

part of future work. 

Furthermore, the role of pro-inflammatory IL-17 in tumour immunity has been highly 

discussed and is controversial (Qian et al., 2017). However, the majority of studies reported an 

inflammation-associated support of cancer development (Murugaiyan & Saha, 2009; Qian et 

al., 2017). In our study we revealed that DMF leads to a shift from IL-17-producing Tc17 cells 

towards cells with CTL signature in a ROS-dependant manner. Several points support a positive 

contribution of CTLs to anti-tumour responses by their production of IFN- and cytolytic 

molecules (Maher & Davies, 2004). IFN-, which is induced by DMF/ROS axis, has been shown 

to have direct and indirect anti-tumour properties (Qin et al., 2003). Additionally, the 

expression of cytotoxic molecules as perforin and granzymes in DMF-treated Tc17 cells was 

evaluated on mRNA level. However, the acquirement of cytotoxic functionality has to be 

proved by cytotoxicity assays and in vivo experiments of LCMV infection or tumour models. 

Finally, Tc17 cells contribute to the pathogenesis of psoriasis as they are present in psoriatic 

skin lesions and correlate with severity of psoriatic arthritis (Srenathan et al., 2016). 

Considering that fumarate has been successfully applied for treatment of psoriasis since the 

1990s (Reich et al., 2009), it is conceivable that the described suppression of Tc17 phenotype 

by DMF also applies for psoriasis, suggesting a common DMF-ROS-driven protective 

mechanism in Tc17-associated immune pathologies. 

In summary, the ability of DMF to suppress Tc17 cells and IL-17 production could influence 

other immune responses, especially during infections and cancer therapy. As DMF mediates its 

major effects via ROS, understanding the impact of oxidative stress on CD8+ T cell fate 

decisions should be analysed more in detail. 
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6.6 Final discussion and outlook 

The results reported in this study demonstrate that DMF, an approved treatment for RRMS, 

limits the pro-inflammatory IL-17 production in human and murine Tc17 cells ROS-

dependently. In detail, cell-permeable DMF binds to the ROS scavenger GSH and causes an 

accumulation of ROS at early time points. This early ROS increase is sufficient to induce a shift 

towards a CTL-like signature while suppressing Tc17 fate, leading to their reduced co-

pathogenic function during EAE. Thus, ROS was identified as an essential regulator of T cell fate 

and plasticity in Tc17 cells. The modification of Tc17 cells is accompanied by altered histone 

modifications: DMF via ROS suppresses permissive methylation and acetylation at the Il17 

locus, partially by interfering with HDACs. However, future work must be carried out to 

evaluate how DMF impacts epigenetic modifications in detail. Furthermore, we could 

demonstrate that IL-2 is required for the IL-17 inhibition by DMF and that the IL-2 downstream 

pathways PI3K/AKT/FOXO1 as well as STAT5 are upregulated by ROS and partially contributed 

to the IL-17 inhibition. Remarkably, the PI3K/AKT/FOXO1 pathway restricts IL-17 production 

only in Tc17 but not in Th17 cells, providing an explanation for the preferential suppression of 

CD8+ T cells. Thus, further work has to be performed to analyse the exact differences in IL-17 

signalling between Tc17 and Th17 cells. Accordingly, DMF-treated RRMS patients show a 

reduction of IL-17-producing CD8+ memory T cells whereas IL-17 production in CD4+ T cells 

remains unaffected. Consequently, the analysis of IL-17 production of CD8+ T cells in MS 

patients under DMF treatment could represent a novel and reliable marker of therapeutical 

success. 

Collectively, we show that DMF via ROS suppresses Tc17 cells fate, including its co-pathogenic 

role during EAE and MS. Hence, ROS is a potential regulator of CD8+ T cell plasticity and the use 

of pro-and antioxidants might represent a promising tool in preventing Tc17-mediated 

pathologies like MS, psoriasis or IL-17-driven tumorigenesis including pancreatic or colorectal 

cancer. 
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Figure 19: Influence of DMF on Tc17 cells 

Schematical display of the signalling in Tc17 cells in the absence (above) or presence of DMF (below). 

Cytoplasmic GSH levels neutralise basal ROS contents that are produced in the electron transport chain 

(ETC). In the presence of DMF, GSH is depleted and results in elevated ROS levels. Accumulated ROS 

enhances the IL-2 pathway, leading to upregulation of P-AKT and P-STAT5 signalling. P-STAT5 probably 

directly reduced Il17 transcription, whereas P-AKT via P-FOXO1 and T-bet suppresses Il17 expression. 

 

 

 



   
81 References 

7. References 

 

’t Hart, B. A., Gran, B., & Weissert, R. (2011). EAE: Imperfect but useful models of multiple sclerosis. 

Trends in Molecular Medicine. 

Abromson-Leeman, S., Bronson, R. T., & Dorf, M. E. (2009). Encephalitogenic T cells that stably express 

both T-bet and RORγt consistently produce IFNγ but have a spectrum of IL-17 profiles. Journal of 

Neuroimmunology, 215(1–2), 10–24. 

Afanas’ev, I. (2015). Mechanisms of Superoxide Signaling in Epigenetic Processes: Relation to Aging and 

Cancer. Aging and Disease, 6(3), 216. 

Akimzhanov, A. M., Yang, X. O., & Dong, C. (2007). Chromatin remodeling of interleukin-17 (IL-17)-IL-17F 

cytokine gene locus during inflammatory helper T cell differentiation. The Journal of Biological 

Chemistry, 282(9), 5969–5972. 

Allfrey, V., Faulkner, R., & Mirsky, A. (1964). Acetylation and methylation of histones and their possible 

role in the regulation of RNA synthesis. … of Sciences of the United States …, 315(1938), 786–794. 

Araki, K., Turner, A. P., Shaffer, V. O., Gangappa, S., Keller, S. A., Bachmann, M. F., … Ahmed, R. (2009). 

mTOR regulates memory CD8 T-cell differentiation. Nature, 460(7251), 108–112. 

Ardestani, A., Lupse, B., Kido, Y., Leibowitz, G., & Maedler, K. (2018). mTORC1 Signaling: A Double-Edged 

Sword in Diabetic b Cells. Cell Metabolism, 27, 314–331. 

Arra, A., Lingel, H., Kuropka, B., Pick, J., Schnoeder, T., Fischer, T., … Brunner-Weinzierl, M. C. (2017). The 

differentiation and plasticity of Tc17 cells are regulated by CTLA-4-mediated effects on STATs. 

OncoImmunology, 6(2). 

Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R., … Rajewsky, K. (2000). Clonal 

Expansions of Cd8 + T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as 

Shown by Micromanipulation and Single Cell Polymerase Chain Reaction. The Journal of 

Experimental Medicine, 192(3), 393–404. 

Bachmann, M. F., & Oxenius, A. (2007). Interleukin 2: From immunostimulation to immunoregulation 

and back again. EMBO Reports. 

Belikov, A. V., Schraven, B., & Simeoni, L. (2015). T cells and reactive oxygen species. Journal of 

Biomedical Science. 

Blanco, P., Viallard, J.-F., Pellegrin, J.-L., & Moreau, J.-F. (2005). Cytotoxic T lymphocytes and 

autoimmunity. Current Opinion in Rheumatology, 17(6), 731–734. 

Blatnik, M., Thorpe, S. R., & Baynes, J. W. (2008). Succination of Proteins by Fumarate. Annals of the 

New York Academy of Sciences, 1126(1), 272–275. 

Bomprezzi, R. (2015). Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an 

overview. Therapeutic Advances in Neurological Disorders, 8(1), 20–30. 

Booss, J., Esiri, M. M., Tourtellotte, W. W., & Mason, D. Y. (1983). Immunohistological analysis of T 

lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. Journal 

of the Neurological Sciences, 62(1–3), 219–232. 



   
82 References 

Boyman, O., & Sprent, J. (2012). The role of interleukin-2 during homeostasis and activation of the 

immune system. Nature Reviews Immunology. 

Brucklacher-Waldert, V., Stuerner, K., Kolster, M., Wolthausen, J., & Tolosa, E. (2009). Phenotypical and 

functional characterization of T helper 17 cells in multiple sclerosis. Brain, 132(12), 3329–3341. 

Brüstle, A., Heink, S., Huber, M., Rosenplänter, C., Stadelmann, C., Yu, P., … Lohoff, M. (2007). The 

development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature 

Immunology. 

Cannarile, M. A., Lind, N. A., Rivera, R., Sheridan, A. D., Camfield, K. A., Wu, B. B., … Goldrath, A. W. 

(2006). Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nature Immunology, 7(12), 

1317–1325. 

Carrascosa, L. C., Klein, M., Kitagawa, Y., Lückel, C., Marini, F., König, A., … Huber, M. (2017). Reciprocal 

regulation of the Il9 locus by counteracting activities of transcription factors IRF1 and IRF4. Nature 

Communications. 

Chang, H.-C., Sehra, S., Goswami, R., Yao, W., Yu, Q., Stritesky, G. L., … Kaplan, M. H. (2010). The 

transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic 

inflammation. Nature Immunology, 11(6), 527–534. 

Chatterjee, R., & Vinson, C. (2012). CpG methylation recruits sequence specific transcription factors 

essential for tissue specific gene expression. Biochimica et Biophysica Acta, 1819(7), 763–770. 

Chaudhary, B., & Elkord, E. (2016). Regulatory T Cells in the Tumor Microenvironment and Cancer 

Progression: Role and Therapeutic Targeting. Vaccines, 4(3), 28. 

Chen, H., Assmann, J. C., Krenz, A., Rahman, M., Grimm, M., Karsten, C. M., … Schwaninger, M. (2014). 

Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE. Journal 

of Clinical Investigation, 124(5), 2188–2192. 

Chen, X., Song, M., Zhang, B., & Zhang, Y. (2016). Reactive Oxygen Species Regulate T Cell Immune 

Response in the Tumor Microenvironment. Oxidative Medicine and Cellular Longevity, 2016, 11–

16. 

Cheng, G., Yu, A., Dee, M. J., & Malek, T. R. (2013). IL-2R signaling is essential for functional maturation 

of regulatory T cells during thymic development. Journal of Immunology (Baltimore, Md. : 1950), 

190(4), 1567–1575. 

Cho, B. A., Sim, J. H., Park, J. A., Kim, H. W., Yoo, W. H., Lee, S. H., … Kim, H. R. (2012). Characterization of 

effector memory CD8+ T cells in the synovial fluid of rheumatoid arthritis. J Clin Immunol, 32(4), 

709–720. 

Ciric, B., El-behi, M., Cabrera, R., Zhang, G.-X., & Rostami, A. (2009). IL-23 Drives Pathogenic IL-17-

Producing CD8+ T Cells. The Journal of Immunology, 182(9), 5296–5305. 

Comabella, M., & Khoury, S. J. (2012). Immunopathogenesis of multiple sclerosis. Clinical Immunology 

(Orlando, Fla.), 142(1), 2–8. 

Comi, G., Radaelli, M., & Soelberg Sørensen, P. (2017). Evolving concepts in the treatment of relapsing 

multiple sclerosis. The Lancet. 

Compston, A., & Coles, A. (2008). Multiple sclerosis. The Lancet. 



   
83 References 

Cote-Sierra, J., Foucras, G., Guo, L., Chiodetti, L., Young, H. A., Hu-Li, J., … Paul, W. E. (2004). Interleukin 

2 plays a central role in Th2 differentiation. Proceedings of the National Academy of Sciences, 

101(11), 3880–3885. 

Cretney, E., Xin, A., Shi, W., Minnich, M., Masson, F., Miasari, M., … Kallies, A. (2011). The transcription 

factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T 

cells. Nature Immunology. 

Damsker, J. M., Hansen, A. M., & Caspi, R. R. (2010). Th1 and Th17 cells. Ann N.Y. Acad Sci, 1183, 211–

221. 

Dendrou, C. A., Fugger, L., & Friese, M. A. (2015). Immunopathology of multiple sclerosis. Nature 

Reviews Immunology. 

Deng, W., & Blobel, G. A. (2010). Do chromatin loops provide epigenetic gene expression states? Current 

Opinion in Genetics and Development. 

Denic, A., Wootla, B., & Rodriguez, M. (2013). CD8 + T Cells in Multiple Sclerosis. Expert Opin Ther 

Targets, 17(9), 1053–1066. 

Devadas, S., Zaritskaya, L., Rhee, S. G., Oberley, L., & Williams, M. S. (2002). Discrete generation of 

superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-

activated protein kinase activation and fas ligand expression. The Journal of Experimental 

Medicine, 195(1), 59–70. 

Diebold, M., Sievers, C., Bantug, G., Sanderson, N., Kappos, L., Kuhle, J., … Derfuss, T. (2017). Dimethyl 

fumarate influences innate and adaptive immunity in multiple sclerosis. Journal of Autoimmunity. 

Dimitrova, E., Turberfield, A. H., & Klose, R. J. (2015). Histone demethylases in chromatin biology and 

beyond. EMBO Reports, 16(12), 1620–1639. 

Dinesh, R. K., Skaggs, B. J., La Cava, A., Hahn, B. H., & Singh, R. P. (2010). CD8+ Tregs in lupus, 

autoimmunity, and beyond. Autoimmunity Reviews, 9(8), 560–568. 

Dupont, C., Armant, D. R., & Brenner, C. A. (2009). Epigenetics: Definition, mechanisms and clinical 

perspective. Seminars in Reproductive Medicine. 

Ermis, U., Weis, J., & Schulz, J. B. (2013). PML in a Patient Treated with Fumaric Acid. New England 

Journal of Medicine, 368(17), 1657–1658. 

Feau, S., Arens, R., Togher, S., & Schoenberger, S. P. (2011). Autocrine IL-2 is required for secondary 

population expansion of CD8 + memory T cells. Nature Immunology, 12(9), 908–913. 

Finlay, D., & Cantrell, D. A. (2011). Metabolism, migration and memory in cytotoxic T cells. Nature 

Reviews Immunology. 

Fleischer, V., Friedrich, M., Rezk, A., Bühler, U., Witsch, E., Uphaus, T., … Luessi, F. (2017). Treatment 

response to dimethyl fumarate is characterized by disproportionate CD8+ T cell reduction in MS. 

Multiple Sclerosis Journal. 

Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N., & Mills, K. H. G. (2010). T cells in multiple 

sclerosis and experimental autoimmune encephalomyelitis. Clinical and Experimental 

Immunology. 

Fox, R. J., Miller, D. H., Phillips, J. T., Hutchinson, M., Havrdova, E., Kita, M., … Dawson, K. T. (2012). 



   
84 References 

Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. The New 

England Journal of Medicine, 367(12), 1087–1097. 

Franchina, D. G., Dostert, C., & Brenner, D. (2018). Reactive Oxygen Species: Involvement in T Cell 

Signaling and Metabolism. Trends in Immunology, 0(0), 1–14. 

Friese, M. A., & Fugger, L. (2009). Pathogenic CD8 + T cells in multiple sclerosis. Annals of Neurology. 

Gandhi, R., Laroni, A., & Weiner, H. L. (2010). Role of the innate immune system in the pathogenesis of 

multiple sclerosis. Journal of Neuroimmunology. 

Geginat, J., Lanzavecchia, A., & Sallusto, F. (2003). Proliferation and differentiation potential of human 

CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood, 101(11), 

4260–4266. 

Gelderman, K. A., Hultqvist, M., Holmberg, J., Olofsson, P., & Holmdahl, R. (2006). T cell surface redox 

levels determine T cell reactivity and arthritis susceptibility. Proceedings of the National Academy 

of Sciences, 103(34), 12831–12836. 

Gerriets, V., & Kishton, R. (2014). Metabolic programming and PDHK1 control CD4+ T cell subsets and 

inflammation. The Journal of Clinical Investigation, 125(15), 1–14. 

Ghoreschi, K., Brück, J., Kellerer, C., Deng, C., Peng, H., Rothfuss, O., … Röcken, M. (2011). Fumarates 

improve psoriasis and multiple sclerosis by inducing type II dendritic cells. The Journal of 

Experimental Medicine, 208(11), 2291–2303. 

Gilmour, K. C., Pine, R., & Reich, N. C. (1995). Interleukin 2 activates STAT5 transcription factor 

(mammary gland factor) and specific gene expression in T lymphocytes. Proceedings of the 

National Academy of Sciences of the United States of America, 92(23), 10772–10776. 

Gold  G.; Phillips, J. T.; Fox, R. J.; Zhang, A.; Meltzer, L.; Kurukulasuriya, N. C., R. . G. (2015). Efficacy and 

safety of delayed-release dimethyl fumarate in patients newly diagnosed with relapsing-remitting 

multiple sclerosis (RRMS). Mult Scler, 21(1), 57–66. 

Gold, R., Kappos, L., Arnold, D. L., Bar-Or, A., Giovannoni, G., Selmaj, K., … Dawson, K. T. (2012). Placebo-

Controlled Phase 3 Study of Oral BG-12 for Relapsing Multiple Sclerosis. The New England Journal 

of Medicine, 367(12), 1098–1107. 

Goldenberg, M. M. (2012). Multiple sclerosis review. P & T : A Peer-Reviewed Journal for Formulary 

Management, 37(3), 175–184. 

Gurzov, E. N., Tran, M., Fernandez-Rojo, M. A., Merry, T. L., Zhang, X., Xu, Y., … Tiganis, T. (2014). 

Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein 

tyrosine phosphatase N2. Cell Metabolism, 20(1), 85–102. 

Haak, S., Croxford, A. L., Kreymborg, K., Heppner, F. L., Pouly, S., Becher, B., & Waisman, A. (2009). IL-

17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. Journal of 

Clinical Investigation, 119(1), 61–69. 

Haas, J., Hug, A., Viehöver, A., Fritzsching, B., Falk, C. S., Filser, A., … Wildemann, B. (2005). Reduced 

suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against 

myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. European Journal of 

Immunology, 35(11), 3343–3352. 



   
85 References 

Haddadi, N., Lin, Y., Travis, G., Simpson, A. M., McGowan, E. M., & Nassif, N. T. (2018). PTEN/PTENP1: 

“Regulating the regulator of RTK-dependent PI3K/Akt signalling”, new targets for cancer therapy. 

Molecular Cancer. 

Hamada, H., Garcia-Hernandez, M. d. l. L., Reome, J. B., Misra, S. K., Strutt, T. M., McKinstry, K. K., … 

Dutton, R. W. (2009). Tc17, a Unique Subset of CD8 T Cells That Can Protect against Lethal 

Influenza Challenge. The Journal of Immunology. 

Hartley, S. W., & Mullikin, J. C. (2015). QoRTs: A comprehensive toolset for quality control and data 

processing of RNA-Seq experiments. BMC Bioinformatics, 16(1). 

Hauser, S. L., Waubant, E., Arnold, D. L., Vollmer, T., Antel, J., Fox, R. J., … Smith, C. H. (2008). B-cell 

Depletion with Rituximab in Relapsing-Remitting Multiple Sclerosis. N Engl J Med, 358(7), 676–

688. 

Hemmer, B., Cepok, S., Nessler, S., & Sommer, N. (2002). Pathogenesis of multiple sclerosis: An update 

on immunology. Current Opinion in Neurology. 

Hinrichs, C. S., Kaiser, A., Paulos, C. M., Cassard, L., Sanchez-Perez, L., Heemskerk, B., … Restifo, N. P. 

(2009). Type 17 CD8+ T cells display enhanced antitumor immunity. Blood, 114(3), 596–599. 

Hoetzenecker, W., Echtenacher, B., Guenova, E., Hoetzenecker, K., Woelbing, F., Brück, J., … Röcken, M. 

(2012). ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated 

immunosuppression. Nature Medicine, 18(1), 128–134. 

Holmøy, T., & Hestvik, A. L. K. (2008). Multiple sclerosis: Immunopathogenesis and controversies in 

defining the cause. Current Opinion in Infectious Diseases. 

Hu, X., & Ivashkiv, L. B. (2009). Cross-regulation of Signaling Pathways by Interferon-γ: Implications for 

Immune Responses and Autoimmune Diseases. Immunity. 

Huber, M., Heink, S., Grothe, H., Guralnik, A., Reinhard, K., Elflein, K., … Lohoff, M. (2009). Th17-like 

developmental process leads to CD8+ Tc17 cells with reduced cytotoxic activity. European Journal 

of Immunology. 

Huber, M., Heink, S., Pagenstecher, A., Reinhard, K., Ritter, J., Visekruna, A., … Lohoff, M. (2013). IL-17A 

secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. Journal of 

Clinical Investigation. 

Huber, M., & Lohoff, M. (2015). Change of paradigm: CD8+ T cells as important helper for CD4+ T cells 

during asthma and autoimmune encephalomyelitis. Allergo Journal International. 

Hwang, E. S., Szabo, S. J., Schwartzberg, P. L., & Glimcher, L. H. (2005). T helper cell fate specified by 

kinase-mediated interaction of T-bet with GATA-3. Science, 307(5708), 430–433. 

Intlekofer, A. M., Banerjee, A., Takemoto, N., Gordon, S. M., DeJong, C. S., Shin, H., … Reiner, S. L. (2008). 

Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. 

Science, 321(5887), 408–411. 

Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., … Littman, D. R. (2006). 

The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-

17+ T Helper Cells. Cell, 126(6), 1121–1133. 

Ivanov, I. I., Zhou, L., & Littman, D. R. (2007). Transcriptional regulation of Th17 cell differentiation. 



   
86 References 

Seminars in Immunology. 

Jackson, S. H., Devadas, S., Kwon, J., Pinto, L. A., & Williams, M. S. (2004). T cells express a phagocyte-

type NADPH oxidase that is activated after T cell receptor stimulation. Nature Immunology, 5(8), 

818–827. 

Jadidi-Niaragh, F., & Mirshafiey, A. (2011). Th17 Cell, the new player of neuroinflammatory process in 

multiple sclerosis. Scandinavian Journal of Immunology. 

Jin, W., & Dong, C. (2013). IL-17 cytokines in immunity and inflammation. Emerging Microbes and 

Infections. 

Joshi, N. S., Cui, W., Chandele, A., Lee, H. K., Urso, D. R., Hagman, J., … Kaech, S. M. (2007). Inflammation 

Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of 

T-bet Transcription Factor. Immunity, 27(2), 281–295. 

Kaech, S. M., & Cui, W. (2012). Transcriptional control of effector and memory CD8+ T cell 

differentiation. Nature Reviews Immunology. 

Kalia, V., Sarkar, S., Subramaniam, S., Haining, W. N., Smith, K. A., & Ahmed, R. (2010). Prolonged 

Interleukin-2Ralpha Expression on Virus-Specific CD8+ T Cells Favors Terminal-Effector 

Differentiation In Vivo. Immunity, 32(1), 91–103. 

Kallies, A., & Good-Jacobson, K. L. (2017). Transcription Factor T-bet Orchestrates Lineage Development 

and Function in the Immune System. Trends in Immunology. 

Kallies, A., Hawkins, E. D., Belz, G. T., Metcalf, D., Hommel, M., Corcoran, L. M., … Nutt, S. L. (2006). 

Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature 

Immunology. 

Kallies, A., & Nutt, S. L. (2007). Terminal differentiation of lymphocytes depends on Blimp-1. Current 

Opinion in Immunology. 

Kallies, A., Xin, A., Belz, G. T., & Nutt, S. L. (2009). Blimp-1 Transcription Factor Is Required for the 

Differentiation of Effector CD8+ T Cells and Memory Responses. Immunity. 

Kamata, H., Honda, S. I., Maeda, S., Chang, L., Hirata, H., & Karin, M. (2005). Reactive oxygen species 

promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase 

phosphatases. Cell, 120(5), 649–661. 

Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K., & O’Shea, J. J. (2012). Transcriptional and Epigenetic 

Control of T Helper Cell Specification: Molecular Mechanisms Underlying Commitment and 

Plasticity. Annual Review of Immunology, 30(1), 707–731. 

Kaplan, M. H., Hufford, M. M., & Olson, M. R. (2015). The development and in vivo function of T helper 9 

cells. Nature Reviews Immunology. 

Kappos, L., Gold, R., Miller, D. H., Macmanus, D. G., Havrdova, E., Limmroth, V., … O’Neill, G. N. (2008). 

Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a 

multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet, 372(9648), 

1463–1472. 

Kastrati, I., Siklos, M. I., Calderon-Gierszal, E. L., El-Shennawy, L., Georgieva, G., Thayer, E. N., … Frasor, J. 

(2016). Dimethyl Fumarate Inhibits the Nuclear Factor κB Pathway in Breast Cancer Cells by 



   
87 References 

Covalent Modification of p65 Protein. The Journal of Biological Chemistry, 291(7), 3639–3647. 

Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., … Prat, A. (2007). 

Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system 

inflammation. Nature Medicine, 13(10), 1173–1175. 

Kim, G. H., Ryan, J. J., & Archer, S. L. (2013). The Role of Redox Signaling in Epigenetics and 

Cardiovascular Disease. Antioxidants & Redox Signaling, 18(15), 1920–1936. 

Kishimoto, T., Taga, T., & Akira, S. (1994). Cytokine signal transduction. Cell. 

Klenerman, P., & Hill, A. (2005). T cells and viral persistence: Lessons from diverse infections. Nature 

Immunology. 

Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., … Iwakura, Y. (2006). IL-17 

Plays an Important Role in the Development of Experimental Autoimmune Encephalomyelitis. The 

Journal of Immunology, 177(1), 566–573. 

Kondo, T., Takata, H., Matsuki, F., & Takiguchi, M. (2009). Cutting Edge: Phenotypic Characterization and 

Differentiation of Human CD8+ T Cells Producing IL-17. The Journal of Immunology. 

Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jäger, A., Strom, T. B., … Kuchroo, V. K. (2007). IL-21 initiates 

an alternative pathway to induce proinflammatory TH17 cells. Nature, 448(7152), 484–487. 

Kouzarides, T. (2002). Histone methylation in transcriptional control. Current Opinion in Genetics & 

Development, 12(2), 198–209. 

Kraaij, M. (2010). Induction of regulatory T cells by macrophages is dependent on production of reactive 

oxygen species. Proceedings of the …. 

Kreuz, S., & Fischle, W. (2016). Oxidative stress signaling to chromatin in health and disease. 

Epigenomics, 8(6), 843–862. 

Kryczek, I., Bruce, A. T., Gudjonsson, J. E., Johnston, A., Aphale, A., Vatan, L., … Zou, W. (2008). Induction 

of IL-17+ T Cell Trafficking and Development by IFN- : Mechanism and Pathological Relevance in 

Psoriasis. The Journal of Immunology, 181(7), 4733–4741. 

Kuang, D.-M., Peng, C., Zhao, Q., Wu, Y., Zhu, L.-Y., Wang, J., … Zheng, L. (2010). Tumor-Activated 

Monocytes Promote Expansion of IL-17-Producing CD8+ T Cells in Hepatocellular Carcinoma 

Patients. The Journal of Immunology, 185(3), 1544–1549. 

Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., … Cua, D. J. 

(2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. The 

Journal of Experimental Medicine, 201(2), 233–240. 

Lassmann, H. (2017). Targets of therapy in progressive MS. Multiple Sclerosis Journal, 23(12), 1593–

1599. 

Laukka, T., Mariani, C. J., Ihantola, T., Cao, J. Z., Hokkanen, J., Kaelin, W. G., … Koivunen, P. (2016). 

Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. Journal 

of Biological Chemistry, 291(8), 4256–4265. 

Laurence, A., Tato, C. M., Davidson, T. S., Kanno, Y., Chen, Z., Yao, Z., … O’Shea, J. J. J. (2007). Interleukin-

2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, 26(3), 371–381. 

Leslie, N. R., Bennett, D., Lindsay, Y. E., Stewart, H., Gray, A., & Downes, C. P. (2003). Redox regulation of 



   
88 References 

PI 3-kinase signalling via inactivation of PTEN. EMBO Journal, 22(20), 5501–5510. 

Li, R., Rezk, A., Ghadiri, M., Luessi, F., Zipp, F., Li, H., … Bar-Or, A. (2017). Dimethyl Fumarate Treatment 

Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. The 

Journal of Immunology, 198(2), 691–698. 

Liao, W., Lin, J. X., & Leonard, W. J. (2013). Interleukin-2 at the Crossroads of Effector Responses, 

Tolerance, and Immunotherapy. Immunity. 

Lim, S. O., Gu, J. M., Kim, M. S., Kim, H. S., Park, Y. N., Park, C. K., … Jung, G. (2008). Epigenetic Changes 

Induced by Reactive Oxygen Species in Hepatocellular Carcinoma: Methylation of the E-cadherin 

Promoter. Gastroenterology, 135(6). 

Lin, J. X., Li, P., Liu, D., Jin, H. T., He, J., Rasheed, M. A. U., … Leonard, W. J. (2012). Critical Role of STAT5 

Transcription Factor Tetramerization for Cytokine Responses and Normal Immune Function. 

Immunity, 36(4), 586–599. 

Linker, R. A., & Haghikia, A. (2016). Dimethyl fumarate in multiple sclerosis: latest developments, 

evidence and place in therapy. Therapeutic Advances in Chronic Disease. 

Linker, R. A., Lee, D. H., Ryan, S., Van Dam, A. M., Conrad, R., Bista, P., … Gold, R. (2011). Fumaric acid 

esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant 

pathway. Brain, 134(3), 678–692. 

Loma. (2011). Multiple sclerosis: Pathogenesis and treatment. Current Neuropharmacology, 9(3), 409–

416. 

Longbrake, E. E., & Cross, A. H. (2015). Dimethyl fumarate associated lymphopenia in clinical practice. 

Multiple Sclerosis. 

Loser, K., Vogl, T., Voskort, M., Lueken, A., Kupas, V., Nacken, W., … Beissert, S. (2010). The toll-like 

receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+T cells. 

Nature Medicine, 16(6), 713–717. 

Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5), 

3143–3153. 

Lu, Y., Hong, B., Li, H., Zheng, Y., Zhang, M., Wang, S., … Yi, Q. (2014). Tumor-specific IL-9–producing CD8 

+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of 

cancers. Proceedings of the National Academy of Sciences, 111(6), 2265–2270. 

Macintyre, A. N., Gerriets, V. A., Nichols, A. G., Michalek, R. D., Rudolph, M. C., Deoliveira, D., … 

Rathmell, J. C. (2014). The glucose transporter Glut1 is selectively essential for CD4 T cell 

activation and effector function. Cell Metabolism, 20(1), 61–72. 

Maher, J., & Davies, E. T. (2004). Targeting cytotoxic T lymphocytes for cancer immunotherapy. British 

Journal of Cancer. 

Mak, T. W., Grusdat, M., Duncan, G. S., Dostert, C., Nonnenmacher, Y., Cox, M., … Brenner, D. (2017). 

Glutathione Primes T Cell Metabolism for Inflammation. Immunity, 46(4), 675–689. 

Malek, T. R., & Castro, I. (2010). Interleukin-2 Receptor Signaling: At the Interface between Tolerance 

and Immunity. Immunity. 

Man, K., Miasari, M., Shi, W., Xin, A., Henstridge, D. C., Preston, S., … Kallies, A. (2013). The transcription 



   
89 References 

factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T 

cells. Nature Immunology, 14(11), 1155–1165. 

Matusevicius, D., Kivisäkk, P., He, B., Kostulas, N., Özenci, V., Fredrikson, S., & Link, H. (1999). 

Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple 

sclerosis. Multiple Sclerosis Journal, 5(2), 101–104. 

McFarland, H. F., & Martin, R. (2007). Multiple sclerosis: A complicated picture of autoimmunity. Nature 

Immunology. 

McGuire, V. A., Ruiz-Zorrilla Diez, T., Emmerich, C. H., Strickson, S., Ritorto, M. S., Sutavani, R. V., … 

Arthur, J. S. C. (2016). Dimethyl fumarate blocks pro-inflammatory cytokine production via 

inhibition of TLR induced M1 and K63 ubiquitin chain formation. Scientific Reports, 6. 

Meister, A. (1983). Selective modification of glutathione metabolism. Science, 220(4596), 472–477. 

Michel, L., Touil, H., Pikor, N. B., Gommerman, J. L., Prat, A., & Bar-Or, A. (2015). B cells in the multiple 

sclerosis central nervous system: Trafficking and contribution to CNS-compartmentalized 

inflammation. Frontiers in Immunology, 6(DEC), 1–12. 

Michelini, R. H., Doedens, A. L., Goldrath, A. W., & Hedrick, S. M. (2013). Differentiation of CD8 memory 

T cells depends on Foxo1. The Journal of Experimental Medicine. 

Mishra, M. K., & Yong, V. W. (2016). Myeloid cells — targets of medication in multiple sclerosis. Nature 

Reviews Neurology, 12(9), 539–551. 

Mittrücker, H.-W., Visekruna, A., & Huber, M. (2014). Heterogeneity in the Differentiation and Function 

of CD8+ T Cells. Archivum Immunologiae et Therapiae Experimentalis, 62(6), 449–458. 

Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., & Coffman, R. L. (1986). Two types of 

murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted 

proteins. Journal of Immunology (Baltimore, Md. : 1950), 136(7), 2348–2357. 

Mullen, A. C., High, F. A., Hutchins, A. S., Lee, H. W., Villarino, A. V., Livingston, D. M., … Reiner, S. L. 

(2001). Role of T-bet in commitment of TH1 cells before IL- 12-dependent selection. Science, 

292(5523), 1907–1910. 

Murphy, K., & Weaver, C. (2017). JANEWAY. Janeway’s Immunbiology. 

Murugaiyan, G., & Saha, B. (2009). Protumor vs Antitumor Functions of IL-17. The Journal of 

Immunology, 183(7), 4169–4175. 

Naik, S., Bouladoux, N., Linehan, J. L., Han, S. J., Harrison, O. J., Wilhelm, C., … Belkaid, Y. (2015). 

Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature, 

520(7545), 104–108. 

Nanjappa, S. G., McDermott, A. J., Fites, J. S., Galles, K., Wüthrich, M., Deepe, G. S., & Klein, B. S. (2017). 

Antifungal Tc17 cells are durable and stable, persisting as long-lasting vaccine memory without 

plasticity towards IFNγ cells. PLoS Pathogens. 

Nurieva, R., Yang, X. O., Martinez, G., Zhang, Y., Panopoulos, A. D., Ma, L., … Dong, C. (2007). Essential 

autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 448(7152), 480–

483. 

Nylander, A., & Hafler, D. a. (2012). Multiple sclerosis. J Clin Invest, 122(4), 1180–1188. 



   
90 References 

Peters, A., Fowler, K. D., Chalmin, F., Merkler, D., Kuchroo, V. K., & Pot, C. (2015). IL-27 Induces Th17 

Differentiation in the Absence of STAT1 Signaling. The Journal of Immunology, 195(9), 4144–4153. 

Pipkin, M. E., Sacks, J. A., Cruz-Guilloty, F., Lichtenheld, M. G., Bevan, M. J., & Rao, A. (2010). Interleukin-

2 and Inflammation Induce Distinct Transcriptional Programs that Promote the Differentiation of 

Effector Cytolytic T Cells. Immunity, 32(1), 79–90. 

Pröbstel, A. K., Sanderson, N. S. R., & Derfuss, T. (2015). B cells and autoantibodies in multiple sclerosis. 

International Journal of Molecular Sciences. 

Qian, X., Chen, H., Wu, X., Hu, L., Huang, Q., & Jin, Y. (2017). Interleukin-17 acts as double-edged sword 

in anti-tumor immunity and tumorigenesis. Cytokine. 

Qin, Z., Schwartzkopff, J., Pradera, F., Kammertoens, T., Seliger, B., Pircher, H., & Blankenstein, T. (2003). 

A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T 

cells. Cancer Research, 63, 4095–4100. 

Raczkowski, F., Ritter, J., Heesch, K., Schumacher, V., Guralnik, A., Hocker, L., … Huber, M. (2013). The 

transcription factor Interferon Regulatory Factor 4 is required for the generation of protective 

effector CD8+ T cells. Proceedings of the National Academy of Sciences. 

Rao, R. R., Li, Q., Bupp, M. R. G., & Shrikant, P. A. (2012). Transcription Factor Foxo1 Represses T-bet-

Mediated Effector Functions and Promotes Memory CD8 + T Cell Differentiation. Immunity, 36(3), 

374–387. 

Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., … Sallusto, F. (2009). C-C 

chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is 

required for the initiation of EAE. Nature Immunology, 10(5), 514–523. 

Reich, K., Thaci, D., Mrowietz, U., Kamps, A., Neureither, M., & Luger, T. (2009). Wirksamkeit und 

Sicherheit von Fumarsäureestern in der Langzeittherapie der Psoriasis - Eine Retrospektive Studie 

(FUTURE). JDDG - Journal of the German Society of Dermatology, 7(7), 603–611. 

Res, P. C. M., Piskin, G., de Boer, O. J., van der Loos, C. M., Teeling, P., Bos, J. D., & Teunissen, M. B. M. 

(2010). Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests 

Their Involvement in the pathogenesis of psoriasis. PLoS ONE, 5(11). 

Ringnér, M., & Ringner, M. (2008). What is principal component analysis? Nat Biotechnol, 26(3), 303–

304. 

Rivers, T. M. (1933). Observations on Attempts To Produce Acute Disseminated Encephalomyelitis in 

Monkeys. Journal of Experimental Medicine, 58(1), 39–53. 

Rosenkranz, T., Novas, M., & Terborg, C. (2015). PML in a Patient with Lymphocytopenia Treated with 

Dimethyl Fumarate. New England Journal of Medicine, 372(15), 1476–1478. 

Rutishauser, R. L., Martins, G. A., Kalachikov, S., Chandele, A., Parish, I. A., Meffre, E., … Kaech, S. M. 

(2009). Transcriptional Repressor Blimp-1 Promotes CD8+ T Cell Terminal Differentiation and 

Represses the Acquisition of Central Memory T Cell Properties. Immunity, 31(2), 296–308. 

Salou, M., Nicol, B., Garcia, A., & Laplaud, D.-A. (2015). Involvement of CD8+ T Cells in Multiple Sclerosis. 

Frontiers in Immunology, 6. 

Scannevin, R. H., Chollate, S., Jung, M. -y., Shackett, M., Patel, H., Bista, P., … Rhodes, K. J. (2012). 



   
91 References 

Fumarates Promote Cytoprotection of Central Nervous System Cells against Oxidative Stress via 

the Nuclear Factor (Erythroid-Derived 2)-Like 2 Pathway. Journal of Pharmacology and 

Experimental Therapeutics, 341(1), 274–284. 

Schilling, S., Goelz, S., Linker, R., Luehder, F., & Gold, R. (2006). Fumaric acid esters are effective in 

chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin 

Exp Immunol, 145(1), 101–107. 

Schulze-Topphoff, U., Varrin-Doyer, M., Pekarek, K., Spencer, C. M., Shetty, A., Sagan, S. A., … Zamvil, S. 

S. (2016). Dimethyl fumarate treatment induces adaptive and innate immune modulation 

independent of Nrf2. Proceedings of the National Academy of Sciences, 113(17), 4777–4782. 

Seidel, P., Merfort, I., Hughes, J. M., Oliver, B. G. G., Tamm, M., & Roth, M. (2009). Dimethylfumarate 

inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine 

secretion. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(2), L326–

L339. 

Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. 

Molecular Cell. 

Sena, L. A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D. A., … Chandel, N. S. (2013). 

Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species 

Signaling. Immunity, 38(2), 225–236. 

Shevach, E. M., DiPaolo, R. a, Andersson, J., Zhao, D.-M., Stephens, G. L., & Thornton, A. M. (2006). The 

lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunological Reviews, 212, 

60–73. 

Shi, G., Cox, C. A., Vistica, B. P., Tan, C., Wawrousek, E. F., & Gery, I. (2008). Phenotype Switching by 

Inflammation-Inducing Polarized Th17 Cells, but Not by Th1 Cells. The Journal of Immunology, 

181(10), 7205–7213. 

Shi, L. Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D. R., & Chi, H. (2011). HIF1α–dependent 

glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T H 17 and T reg 

cells. The Journal of Experimental Medicine, 208(7), 1367–1376. 

Shrikant, P., & Mescher, M. (2002). Opposing effects of IL-2 in tumor immunotherapy: promoting CD8 T 

cell growth and inducing apoptosis. Journal of Immunology (Baltimore, Md : 1950), 169(4), 1753–

1759.  

Smith, G. A., Taunton, J., & Weiss, A. (2017). IL-2R abundance differentially tunes IL-2 signaling dynamics 

in CD4+and CD8+T cells. Science Signaling, 10(510). 

Smith, M. D., Martin, K. A., Calabresi, P. A., & Bhargava, P. (2017). Dimethyl fumarate alters B-cell 

memory and cytokine production in MS patients. Annals of Clinical and Translational Neurology, 

4(5), 351–355. 

Spencer, C. M., Crabtree-Hartman, E. C., Lehmann-Horn, K., Cree, B. A. C., & Zamvil, S. S. (2015). 

Reduction of CD8 + T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. 

Neurology - Neuroimmunology Neuroinflammation, 2(3), e76. 

Srenathan, U., Steel, K., & Taams, L. S. (2016). IL-17+ CD8+ T cells: Differentiation, phenotype and role in 



   
92 References 

inflammatory disease. Immunology Letters. 

Staudt, V., Bothur, E., Klein, M., Lingnau, K., Reuter, S., Grebe, N., … Bopp, T. (2010). Interferon-

Regulatory Factor 4 Is Essential for the Developmental Program of T Helper 9 Cells. Immunity, 

33(2), 192–202. 

Stumhofer, J. S., Laurence, A., Wilson, E. H., Huang, E., Tato, C. M., Johnson, L. M., … Hunter, C. A. 

(2006). Interleukin 27 negatively regulates the development of interleukin 17-producing T helper 

cells during chronic inflammation of the central nervous system. Nature Immunology, 7(9), 937–

945. 

Su, Y.-C., Lee, C.-C., & Kung, J. T. (2010). Effector function-deficient memory CD8+ T cells clonally expand 

in the liver and give rise to peripheral memory CD8+ T cells. Journal of Immunology (Baltimore, 

Md. : 1950), 185(12), 7498–7506. 

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., … Mesirov, J. P. 

(2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide 

expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. 

Sui, P., Wiesner, D. L., Xu, J., Zhang, Y., Lee, J., Van Dyken, S., … Sun, X. (2018). Dimethyl fumarate targets 

GAPDH and aerobic glycolysis to modulate immunity. Science, pp. 1–16. 

Sukumar, M., Liu, J., Ji, Y., Subramanian, M., Crompton, J. G., Yu, Z., … Gattinoni, L. (2013). Inhibiting 

glycolytic metabolism enhances CD8+T cell memory and antitumor function. Journal of Clinical 

Investigation, 123(10), 4479–4488. 

Sullivan, L. B., Martinez-Garcia, E., Nguyen, H., Mullen, A. R., Dufour, E., Sudarshan, S., … Chandel, N. S. 

(2013). The Proto-oncometabolite Fumarate Binds Glutathione to Amplify ROS-dependent 

signaling. Molecular Cell, 51(2), 236–248. 

Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G., & Glimcher, L. H. (2000). A Novel 

Transcription Factor, T-bet, Directs Th1 Lineage Commitment. Cell, 100(6), 655–669. 

Tabarkiewicz, J., Pogoda, K., Karczmarczyk, A., Pozarowski, P., & Giannopoulos, K. (2015). The Role of IL-

17 and Th17 Lymphocytes in Autoimmune Diseases. Archivum Immunologiae et Therapiae 

Experimentalis. 

Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., … Rao, A. (2009). Conversion 

of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 

324(5929), 930–935. 

Tajima, M., Wakita, D., Noguchi, D., Chamoto, K., Yue, Z., Fugo, K., … Nishimura, T. (2008). IL-6–

dependent spontaneous proliferation is required for the induction of colitogenic IL-17–producing 

CD8 + T cells. The Journal of Experimental Medicine, 205(5), 1019–1027. 

Tang, Y., Guan, S. P., Chua, B. Y. L., Zhou, Q., Ho, A. W. S., Wong, K. H. S., … Kemeny, D. M. (2012). 

Antigen-specific effector CD8 T cells regulate allergic responses via IFN-γ and dendritic cell 

function. Journal of Allergy and Clinical Immunology, 129(6), 1611–1620. 

Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-Mcdermott, E. M., McGettrick, A. F., Goel, G., … 

O’Neill, L. A. J. (2013). Succinate is an inflammatory signal that induces IL-1β through HIF-1α. 

Nature, 496(7444), 238–242. 



   
93 References 

Tse, H. M., Thayer, T. C., Steele, C., Cuda, C. M., Morel, L., Piganelli, J. D., & Mathews, C. E. (2010). 

NADPH Oxidase Deficiency Regulates Th Lineage Commitment and Modulates Autoimmunity. The 

Journal of Immunology, 185(9), 5247–5258. 

Tzartos, J. S., Friese, M. A., Craner, M. J., Palace, J., Newcombe, J., Esiri, M. M., & Fugger, L. (2008). 

Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated 

with active disease in multiple sclerosis. American Journal of Pathology. 

Visekruna, A., Ritter, J., Scholz, T., Campos, L., Guralnik, A., Poncette, L., … Huber, M. (2013). Tc9 cells, a 

new subset of CD8+ T cells, support Th2-mediated airway inflammation. European Journal of 

Immunology, 43(3), 606–618. 

Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., … Green, D. R. (2011). The 

Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. 

Immunity, 35(6), 871–882. 

Williams, M. A., Tyznik, A. J., & Bevan, M. J. (2006). Interleukin-2 signals during priming are required for 

secondary expansion of CD8+memory T cells. Nature, 441(7095), 890–893. 

Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., … Guan, K. L. (2012). Inhibition of α-KG-dependent 

histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of 

FH and SDH tumor suppressors. Genes and Development, 26(12), 1326–1338. 

Xin, A., Masson, F., Liao, Y., Preston, S., Guan, T., Gloury, R., … Kallies, A. (2016). A molecular threshold 

for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. 

Nature Immunology, 17(4), 422–432. 

Yang, X. O., Pappu, B., Nurieva, R., Akimzhanov, A., Kang, H. S., Chung, Y., … Dong, C. (2008). TH17 

lineage differentiation is programmed by orphan nuclear receptors ROR and ROR. Immunity, 

28(1), 29–39. 

Yang, X. P., Ghoreschi, K., Steward-Tharp, S. M., Rodriguez-Canales, J., Zhu, J., Grainger, J. R., … 

Laurence, A. (2011). Opposing regulation of the locus encoding IL-17 through direct, reciprocal 

actions of STAT3 and STAT5. Nature Immunology, 12(3), 247–254. 

Yao, S., Buzo, B. F., Pham, D., Jiang, L., Taparowsky, E. J., Kaplan, M. H., & Sun, J. (2013). Interferon 

regulatory factor 4 sustains CD8+ T cell expansion and effector differentiation. Immunity, 39(5), 

833–845. 

Yeh, N., Glosson, N. L., Wang, N., Guindon, L., McKinley, C., Hamada, H., … Kaplan, M. H. (2010). Tc17 

Cells Are Capable of Mediating Immunity to Vaccinia Virus by Acquisition of a Cytotoxic 

Phenotype. The Journal of Immunology. 

Yen, H., Harris, T. J., Wada, S., Grosso, J. F., Getnet, D., Goldberg, M. V, … Drake, C. G. (2009). Tc17 CD8 T 

cells: functional plasticity and subset diversity. Journal of Immunology (Baltimore, Md. : 1950), 

183(11), 7161–7168. 

Yu, A., Zhu, L., Altman, N. H., & Malek, T. R. (2009). A Low Interleukin-2 Receptor Signaling Threshold 

Supports the Development and Homeostasis of T Regulatory Cells. Immunity, 30(2), 204–217. 

Zentner, G. E., & Henikoff, S. (2013). Regulation of nucleosome dynamics by histone modifications. 

Nature Structural and Molecular Biology. 



   
94 References 

Zhang, S., Ke, X., Zeng, S., Wu, M., Lou, J., Wu, L., … Pan, S. (2015). Analysis of CD8+ Treg cells in patients 

with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol, 12(5), 580–

591. 

Zhao, G., Liu, Y., Fang, J., Chen, Y., Li, H., & Gao, K. (2014). Dimethyl fumarate inhibits the expression and 

function of hypoxia-inducible factor-1α (HIF-1α). Biochemical and Biophysical Research 

Communications, 448(3), 303–307. 

Zheng, L., Cardaci, S., Jerby, L., Mackenzie, E. D., Sciacovelli, M., Johnson, T. I., … Gottlieb, E. (2015). 

Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nature 

Communications, 6. 

Zhou, L., Chong, M. M. W., & Littman, D. R. (2009). Plasticity of CD4+ T Cell Lineage Differentiation. 

Immunity. 

Zhou, L., Ivanov, I. I., Spolski, R., Min, R., Shenderov, K., Egawa, T., … Littman, D. R. (2007). IL-6 programs 

TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. 

Nature Immunology, 8(9), 967–974. 

Zhu, J., & Paul, W. E. (2008). CD4 T cells: Fates, functions, and faults. Blood, 112(5), 1557–1569. 

Zhu, J., Yamane, H., Cote-Sierra, J., Guo, L., & Paul, W. E. (2006). GATA-3 promotes Th2 responses 

through three different mechanisms: Induction of Th2 cytokine production, selective growth of 

Th2 cells and inhibition of Th1 cell-specific factors. Cell Research. 

Zhu, J., Yamane, H., & Paul, W. (2010). Differentiation of effector CD4 T cell populations. Annu Rev 

Immunol., 28(1), 445–489. 

 



   
95 Appendix 

8. Appendix 

 

8.1 List of academic teachers 

Following ladies and gentlemen were teachers during my studies at the University of Marburg 

(2009-2018): 

Bauer, Baumeister, Beck, Bölker, Brandis-Heep, Brandl, Brändle, Bremer, Buttgereit, Exner, 

Feuser, Galland, Garten, Grollig, Hassel, Heider, Homberg, Huber, Kaufmann, Kost, Kostron, 

Lingelbach, Linklater, Lohoff, Maier, Maisner, Mösch, Önel, Przyborski, Renkawitz-Pohl, Rexer, 

Schachtner, Steinhoff, Višekruna, Weber, Yu, Zauner 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
96 Appendix 

8.2 Danksagung 

 

Zu guter Letzt möchte ich die Gelegenheit nutzen und mich bei den vielen Menschen 

bedanken, die mich während meiner Promotion begleitet und unterstützt haben. 

 

Mein ganz besonderer Dank gilt Prof. Magdalena Huber für die Betreuung meiner Dissertation, 

die wissenschaftlichen Diskussionen sowie die Ermöglichung einige Monate in Australien 

verbringen zu dürfen. Herzlichen Dank für deine Unterstützung und deine ansteckende 

Begeisterung für die Wissenschaft!  

Zudem möchte ich mich bei Prof. Michael Lohoff für die Möglichkeit bedanken am Institut für 

Medizinische Mikrobiologie meine Dissertation anfertigen zu können. Vielen Dank für die 

kritischen Diskussionen und deine Hilfsbereitschaft!  

Ein herzliches Dankeschön auch an alle Kooperationspartner, die zum Gelingen dieser Arbeit 

beigetragen haben, besonders Prof. Axel Kallies und seine Gruppe in Melbourne sowie 

Matthias Klein und Federico Marini aus Mainz. 

Vielen Dank auch an Prof. Ulrich Steinhoff und PD Dr. Alexander Višekruna für eure 

wissenschaftliche Hilfe und Unterstützung! 

Besonders möchte ich mich besonders bei allen Mitgliedern der AG Huber Anna, Hartmann, 

Dennis, Felix, Niklas, Doro und Eva für die fachliche, emotionale und kulinarische 

Unterstützung bedanken. Vielen Dank für die tolle Teamarbeit!  

Des Weiteren möchte ich vor allem Lu, Agnes und Niyati danken, die während dieser Zeit nicht 

nur „Leidensgenossen“ waren, sondern zu guten Freunden geworden sind. Ein riesengroßes 

Dankeschön für eure Unterstützung und die unvergessliche Zeit! 

Bei allen jetzigen und ehemaligen Mitarbeitern des Labors, besonders Addi, Anne, Alekhya, 

Bärbel, Claudia, Conny, Daniel, DG, Elena, Flo, Kang, Maik, Meike, Melli, Olaf, Petra, Rossana, 

Sabrina und Safa möchte ich mich herzlich für die Hilfsbereitschaft, das gute Arbeitsklima 

sowie die oft benötigte „Nervennahrung“ bedanken.  

Vielen Dank für die schöne und unvergessliche Zeit in- und außerhalb des Labors!  

Ganz besonders möchte ich mich bei meinen Eltern und Geschwistern für ihre immerwährende 

Unterstützung, ihr Verständnis sowie ihren Glauben an mich bedanken.  

Vielen Dank! 

 


