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ABSTRACT 

The concerning rate of diabetes mellitus prevalence and its associated chronic 

complications accentuates the urgency for continuous glucose monitoring. Optical 

techniques, especially fluorescence-affinity assays, offer a strategy that transcends 

current transcutaneous sensors by enabling subcutaneous implantation and interrogation. 

Biosensors can initiate an immune response that ultimately leads to a dense fibrous 

capsule surrounding the sensor. This biological interference, termed “biofouling,” 

severely limits implantable sensor lifetimes by slowing analyte diffusion and decreasing 

optical signal propagation. In an effort to control biofouling, a thermoresponsive, “self-

cleaning,” hydrogel membrane based on poly(N-isopropylacrylamide) (PNIPAAm) has 

been proposed. Further, a continuous glucose monitoring system based on a competitive 

binding assay using Concanavalin A (ConA) as a component in a Förster resonance 

energy transfer (FRET) approach is being developed for encapsulation within the 

thermoresponsive hydrogel. In this research, a double network nanocomposite 

PNIPAAm (DNNC) hydrogel’s glucose diffusion, thermosensitivity, cytocompatibility, 

in vitro cellular release, and in vivo compatibility and efficacy were thoroughly 

investigated. Further, an encapsulation strategy was developed for retaining the glucose 

assay within the hydrogel and yet allowing glucose diffusion. The methods and systems 

for obtaining the in vitro and in vivo results of the hydrogel are presented along with the 

glucose encapsulation strategies. In general, the research showed that the hydrogel could 

adequately diffuse glucose at temperatures associated with subcutaneous implantation, 

maintain a stable thermal cycling profile, promote cellular release without toxic effects 
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in vitro, and decrease the extent of biofouling in vivo. Furthermore, the hydrogel 

revealed its feasibility to be embedded with layer-by-layer (LbL) microsphere 

assemblies, which exhibited the ability to encapsulate the components of a competitive 

binding glucose assay. Overall, the results of this research demonstrate that the hydrogel 

combined with the encapsulated glucose assay is a promising approach for an 

implantable continuous glucose monitoring biosensor. 
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NOMENCLATURE 
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PTFE Poly(tetrafluoroethylene) 
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RT Room Temperature 

SMBG Self-Monitoring Blood Glucose 

SN Single Network 

SNNC Thermoresponsive Single Network Nanocomposite PNIPAAm 

T Temperature 

To Initial Temperature 

Tmax Peak Temperature 

TGF-β Transforming Growth Factor-β 
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TNF-α Tumor Necrosis Factor-α 

USPTO United States Patent and Trademark Office 
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CHAPTER I  

INTRODUCTION 

1.1. Motivation 

1.1.1. Diabetes Mellitus 

Glucose is a monosaccharide, a simple sugar, which is the key carbohydrate in 

the human physiology. Its name stems from the Greek word “glykys,” meaning “sweet.” 

Its structure comes in two forms: D- and L-glucose. However, only D-glucose may be 

metabolized by mammalian cells, and thus hereinafter, the term “glucose” will refer to 

this biologically active D-isoform1, 2. 

Insulin is a central anabolic hormone produced by pancreatic islet beta cells and 

essential for glucose metabolism2, 3. The disease, diabetes mellitus, refers to a condition 

in which the body lacks the ability to produce or effectively utilize insulin that results in 

abnormal blood glucose concentrations. The word “diabetes,” a Greek conjugate of “dia” 

and “betes” that means “to go through,” was first composed by Araetus of Cappodocia 

(81-133 AD). It referred to the excessive urination, insatiable thirst, and tissue 

degradation experienced by those affected by the disease4, 5. The term “mellitus,” Latin 

for “honey,” was later added by Thomas Willis in 1675 to describe the sweet taste of 

urine and blood of its patients4.  

There are three subclasses of diabetes, type I (insulin dependent diabetes mellitus 

[IDDM]), type II (insulin/non-insulin dependent diabetes mellitus [I/NIDDM]), and 
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gestational diabetes mellitus (GDM). IDDM arises due to the obliteration of beta-cells in 

the pancreatic islets of Langerhans. This halts the production of insulin, and ultimately 

causes a patient to become hyperglycemic2. In order to survive, patients with type I 

diabetes require daily insulin injections. I/NIDDM stems from a combination of multiple 

disorders that include cellular insulin inefficiency, the inability of pancreatic cells to 

produce adequate insulin, and the failure of insulin to impede glucose fabrication within 

the liver2. Finally, GDM usually transpires during pregnancy, when numerous hormones 

emitted by a woman’s placenta interferes with the body’s normal response to insulin. 

This increased insulin resistance is usually compensated by placing the pancreas into 

overdrive to produce ample insulin, but occasionally, a woman’s pancreas falls short 

causing an abnormally high blood glucose concentration2. 

1.1.2. Occurrence of Diabetes 

The chronic and potentially debilitating disease, diabetes mellitus, was estimated 

by the Centers for Disease Control and Prevention (CDC) to affect roughly 29.1 million 

children and adults in the United States (i.e. 9.3% of the U.S. population) in 20126. 

Globally, it is approximated that 381.8 million people between the ages of 20-79 have 

been diagnosed with diabetes in 2013 with an estimated projection of 591.9 million by 

20357, 8. Figure 1.1. conveys the extent of affected populations and their respective 

growth predictions7, 8. In high-income countries, the majority of people with diabetes are 

over the age of 50 (74%) while those in the low- to middle-income countries are 

predominantly under 50 (59%)8. As life expectancy increases, especially within 
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developing countries, rising trends within all income groups are expected. In essence, 

diabetes is escalating at an alarming rate and raising concerns within the health care 

industry. 

According to the CDC, diabetes associated costs (direct and indirect) in the 

United States totaled USD 245 billion in 2012. It was further determined, upon adjusting 

for population age and gender differences, that the mean medical expenditures amid 

people diagnosed with diabetes were ~2.3 times higher than those without the disease6. 

Figure 1.2. exhibits international regional costs associated with diabetes mellitus for 

2013 and future estimates7, 8. Unfortunately, Guariguata et al. fear that these predictions 

are underestimated as it depends on the accuracy of the estimated undiagnosed 

population8. The seriousness of this mounting epidemic has impelled the United Nations 

Resolutions on diabetes in 2006 to designate November 14th as World Diabetes Day in 

an effort “to raise public awareness of diabetes and related complications, as well as its 

prevention and care, including through education and the mass media”9, 10. 
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Figure 1.1. | Incidence of diabetes mellitus. Estimated prevalence of diabetes 
throughout the world in 2013 and projections for 20357, 8. 
 
 
 

 

Figure 1.2. | Health care expenditure due to diabetes mellitus. Estimated current 
expenditures throughout international regions for 2013 and projections for 20357, 8. 
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1.1.3. Diabetes-related Complications 

  Uncontrolled glucose levels may cause adverse secondary complications to 

arise. As such, this disorder, along with its related complications, has been ranked the 

seventh leading cause of death in the United States as it claims over 72 thousand lives 

per year 6, 11. Between 2009 and 2012, approximately 71% of adults with diabetes had 

elevated blood pressures (≥140/90 mmHg) and about 65% had high blood LDL 

cholesterol levels (≥100 mg dL-1)6. For this adult population, the hospitalization rate due 

to a heart attack or stroke is 1.5-1.8 times greater, and the cardiovascular disease death 

rate is 1.7 times higher6. Eye issues and potential blindness are also increased. An 

estimated 4.2 million adults with diabetes were diagnosed with diabetic retinopathy, a 

degradation to small blood vessels within the retina that may facilitate blindness6. 

Diabetes has also been listed as the leading source of kidney failure that accounted for 

44% of all new cases in 20116. In addition, it accounts for roughly 60% of all adult non-

traumatic lower-limb amputations. Those diagnosed with diabetes may develop other 

complications such as neuropathy, non-alcoholic fatty liver disease, periodontal disease, 

hearing loss, erectile dysfunction, and depression. For woman, diabetes may also impact 

pregnancy as uncontrolled diabetes can cause birth defects and unplanned abortions6. 

The prevention of secondary complications is possible by preserving a narrow glycemic 

range (70-120 mg dL-1), which may be accomplished by routine blood glucose 

monitoring12-14.  
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1.1.4. Controlling Glucose Levels 

 The present standard and advocated point of care is the self-monitoring of one's 

blood glucose level. The results from the Diabetes Control and Complications Trial 

prove that the intensive management of blood sugar levels is an efficient process to 

avoid or at minimum, delay the onset of secondary diabetic complications12-15. 

 The aim of DM therapy is to approximate the blood glucose profile of an 

individual and control its concentration to near-normal levels. Without proper regulation, 

a patient could fall victim to hypoglycemia, a condition where the blood glucose level 

falls significantly below the normal physiological range, which may place the patient in 

a coma and ultimately death. Its opposing condition, hyperglycemia, occurs when the 

blood glucose level rises substantially above normal levels. If left unsupervised and 

untreated, a prolonged, irregular high blood glucose level may cause long-term 

complications such as neuropathy, retinopathy, nephropathy, cardiovascular disease as 

well as death. The appropriate treatment of DM is near-constant monitoring of blood 

glucose levels (more than four times per day) so that insulin, food, and exercise levels 

may be adjusted. As such, well-regulated blood sugar levels have shown to significantly 

lessen secondary complications and slow the advancement of DM. Presently, the most 

common and commercially available methods for glucose-sensing are founded upon 

electrochemical or colorimetric designs. These techniques require pricking of a finger 

with a lancet to obtain a blood droplet anywhere between 0.6 µL to 10 µL in volume2, 16.  
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1.1.5. Self-monitoring Glucose Instruments 

 The blood glucose-sensing market has been growing a rapid rate over the last 

decade. Presently, there are over 80 commercially available self-monitoring blood 

glucose (SMBG) meters15, 17. Although the market is highly competitive, Abbott 

Laboratories, Roche Diagnostics, Johnson & Johnson’s LifeScan, and Bayer AG 

represent the majority15. The vast majority of glucometers rely on an enzymatic assay 

that converts glucose into a quantifiable end product, a process first described in 1962 by 

Clark and Lyons18. The prevailing enzymes (e.g. glucose dehydrogenase [GDH] and 

glucose oxidase [GOx]) encompass redox groups that alter the redox state amidst the 

reaction. These type of sensors are categorized as amperometric systems as they assess 

electrical current streaming from an oxidative reaction at a charged electrode to a 

reduction reaction at an adjacent electrode. For instance, GOx may be adhered to an 

electrode where it will catalyze the conversion of glucose into gluconolactone and 

hydrogen peroxide. As hydrogen peroxide interacts with the electrode, a measurable 

electrical current is produced. Essentially, a modification in the current flow, triggered 

by a change in the oxidation of glucose and the enzyme catalyzed production of 

hydrogen peroxide, will impart a similar adjustment in the glucose concentration19, 20. 

 Notably, environmental elements (e.g. altitude, temperature, and humidity) and 

internal, biological interferens (e.g. vitamin C, hematocrit, glutathione, and uric acid) 

may affect the reported results since these tests transpire ex vivo21. In addition, the self-

monitoring analytical quality may not meet the American Diabetes Association (ADA) 

error standards when executed by a patient rather than a trained specialist22. Although 
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the ADA has previously stated that SMBG devices should contain less than ±10% error, 

the FDA allows for ±20%22, 23. In 2013, the International Organization for 

Standardization (ISO) announced its intentions to implement a revised blood glucose 

meter standard (ISO 15197:2013) for which mandatory compliance will be 

recommended in 2016. Essentially, this revised standard will demand enhanced accuracy 

and precision as 95% of results ≥100 mg·dL-1 must fall within ±15% of the actual blood 

glucose concentration and 95% of results <100 mg·dL-1 must reside within ±15 mg·dL-1 

of the reference glucose level. Furthermore, 99% of all the results must be within zones 

A and B of the consensus error grid24, 25. 

 A primary disadvantage of present SMBG devices is that they require a blood 

sample. Regardless of where on the body this is obtained, this tactic is not only 

cumbersome and time-consuming, but research has shown that patients are often fearful 

of self-testing26. This fear, in combination with the inability to fully understand the 

implications of their glycemic results, leads to infrequent testing of a patient's blood 

glucose level and the failure to commit to an effective DM therapy regiment15. 

According to the ADA, SMBG testing frequency should be molded by the particular 

needs and goals of a patient. However, generally-speaking, this should be roughly 6-8 

tests per day23. Although the associated cost of testing if often cited as a main prohibitive 

hurdle, the inconvenience and obstruction of a patient’s lifestyle may be a more 

influential factor that limits testing frequency27, 28. Regardless, even when testing 6-8 

times per day, this still only provides intermittent readings of continuously changing 

blood sugar levels29.  
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1.2. Continuous Glucose-sensing 

 

1.2.1. Advantages of Continuous Glucose-sensing 

There exists numerous advantages for the use of continuous glucose monitoring 

(CGM) systems. Although, the key reason is the ability to maintain euglycemia. It is 

well documented that increased SMBG is associated with improved glycemic control, 

and therefore, a better quality of life5, 12-15, 30. In 2005, a clinical study proved that even 

with nine SMBG measurements per day, patients still spent an average of 2.1 h in 

hypoglycemia (<70 mg·dL-1) and 4.8 h in hyperglycemia (>180 mg·dL-1)31. Thus, CGM 

has the potential to minimize a patient’s time spent in either of these physiological states, 

but especially within the hypoglycemic phase that often occurs when sleeping. It also 

may decrease hemoglobin A1c (HbA1c) values, which bestow a statistical glucose 

concentration mean spanning 2-4 weeks and a measure to the degree of risk for glycemic 

damage to tissues32-36. Outfitting alarms to CGM devices may further enhance patient 

awareness of their blood glucose levels, providing alerts before their condition becomes 

critical.  

 With the intention to establish a “closed-looped” system, current CGM devices 

have been paired with external insulin pumps to automatically maintain euglycemia – 

thereby, imitating the function of a pancreas. As the CGM quantifies one’s blood 

glucose concentration, the information is relayed to an external insulin pump that 

implements an algorithm to inject the appropriate amount of insulin based on the 
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patient’s physique. This advanced form of an artificial pancreas has proven to better 

control glycemic levels in comparison to conventional insulin pump therapy30. 

 

1.2.2. Transcutaneous Monitors 

 The first CGM apparatus to be approved for use within the United States as a 

trending monitor was procured by Medtronic in 2001. Medtronic’s latest CGM system, 

Guardian® REAL-Time, is designed based on amperometry that provides real-time 

glucose measurements. This sensor relays glucose quantities a patient’s interstitial fluid 

(ISF) every 5 minutes and has the ability to save measurement information to review and 

analyze. In order for this device to operate at its full potential, it requires recalibration 

using a standard “finger-prick” blood glucose measurement 2-4 times daily19, 37-39. In 

addition, its lifetime is only 72 hours. 

 The DexCom™ G4 Platinum CGM by DexCom, Inc. is yet another 

amperometric-based device that was initially FDA approved in 2006 for use as an 

appendage to standard “finger-prick” blood glucose measurements. This apparatus 

includes a small insertable or implantable sensor that aims to quantify glucose within 

subcutaneous tissue with a lifetime of 7 days. In addition, recalibration was reduced to 

every once every 12 hours on average with a mean absolute relative difference (MARD) 

of 9%2, 19. Although this CGM has improved sensor lifetime and device management, it 

still has only been approved as an adjunct to finger stick tests. Thus, any user cannot 

exclusively rely on the DexCom™ CGM calculated glucose concentrations. 
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 Finally, the FreeStyle Navigator® Continuous Glucose Monitoring System by 

Abbott Diabetes Care was FDA approved as a certified CGM in 2008. In August 2011, 

however, the device was discontinued by the FDA due to supply complications that 

obstructed Abbott Diabetes Care from selling new units or replacing parts of units still 

under warranty (i.e. quality control). The company, for the time being, has decided to 

discontinue the FreeStyle Navigator® Continuous Glucose Monitoring System from the 

U.S. market. It, although, remains available in seven international markets40, 41. 

Regardless, this three-electrode amperometric sensor may be positioned within the 

subcutaneous adipose tissue for only up to 5 days. However, glucose levels are not 

reported until approximately 10 hours post insertion as calibration is necessary after 10, 

12, 34, and 72 hours. The FreeStyle Navigator® thereby requires fewer calibrations 

compared to its competitors (Medtronic Guardian® REAL-Time and DexCom™ G4 

Platinum)19, 42. Recently, Abbott Diabetes Care has announced its the FreeStyle® Libre 

Flash Glucose Monitoring System for release in European markets. This advanced CGM 

system requires no “finger-prick” calibrations and lasts up to 14 days. The new CGM 

system is still amperometric-based, but the precision and accuracy of the manufactured 

sensors are incredibly stable, which enables minimal variation over the 2 week sensor 

lifetime and between sensors. 

 These subcutaneous, GOx-based sensors are transdermally inserted beneath the 

patient’s skin using a trocar-like instrument to generate real-time glucose measurements 

in the ISF19, 43. Since the glucose concentration within the ISF can lag behind blood 

glucose from 10-15 minutes (may be translated to discrepancies from 30-45 mg·dL-1), all 
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ISF techniques have the potential to have time correlation differences, which need to be 

considered in any standard of care for diabetic patients44-47. However, CGM system 

accuracy relies heavily on its calibration, which converts the amperometric shifts into a 

glucose value. This assumes that the plasma to ISF ratio remains fairly constant, which 

fails to be the case if calibration occurs during swift plasma glucose changes. As glucose 

sensors may lag 5-10 min during rapid glycemic fluctuations, the key effect on lag is the 

introduction of error during calibration that may impair long-term CGM performance21, 

48. Thus, the average percentage of error for CGM devices is approximately 15%48, 49. 

Though these devices demonstrate the potential to attain tighter glycemic control and 

diminish hypo- and hyperglycemic incidents, there still exists numerous obstacles to 

conquer in order to improve the sensor’s accuracy, precision, and lifetime. 

 

1.2.3. Optical Measuring Approaches 

The most enticing benefit of an optical technique is its potential for non-invasive 

or, at the very least, minimally-invasive sensing to quantify blood glucose 

concentrations. To this field, an enormous research effort has been implemented as 

evident by the number of United States patents filed. Since 1976, a total of 4,194 non-

invasive/noninvasive/minimal optic glucose patents have been released by the United 

States Patent and Trademark Office (USPTO) – a number that continues to rise each 

year50. The aforementioned research effort has explored a variety of methods including 

thermal gradient spectroscopy, polarimetry, Raman spectroscopy, fluorescence 

spectroscopy, kromoscopy, optical coherence tomography, optoacoustic techniques, 
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infrared absorption, and near-infrared scattering to successfully measure glycemic levels 

with accuracy, precision, and longevity2, 5, 51. Unfortunately at the present, not one of 

these techniques is available for commercial use. 

Fluorescence-based glucose-sensing offers one potential scheme to accomplish 

continuous readings. Such a sensor may be intradermally implanted and optically 

interrogated non-invasively using an external, mobile device. An intradermally 

implanted sensor would decrease the risk of a chronic infection, which is commonly 

associated with all present transcutaneous CGM systems (refer to Section 1.2.2.). 

Furthermore, complete submersion in the ISF may decrease the sensing lag time, and 

therefore could enhance blood glucose accuracy. Fluorescence describes the 

phenomenon in which an excited molecule (i.e. a molecule residing in an excited state) 

releases energy (i.e. photons). As demonstrated in Figure 1.3., the process begins with a 

fluorescent molecule in its ground state, S0. As incoming energy (i.e. light source) is 

absorbed by the fluorescent molecule, it rises to an excited energy state, S1. When the 

molecules begin to relax, its vibrational state is lowered via internal conversion. Energy 

may now be freed in the form of fluorescence (spontaneous photon emission of a longer 

wavelength) or through a non-radiative pathway (e.g. scattering, quenching, heat) that 

returns the molecule to S0
2, 5, 52. 

One specific fluorescence method that continues to be utilized for glucose-

sensing is Förster Resonance Energy Transfer (FRET). FRET is the non-radiative 

transfer of excited-state energy between two fluorophores, a donor (D) and an acceptor 

(A), in close proximity to each other. The energy transfer occurs due to dipole-dipole 
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interactions between the donor and acceptor molecules, which reduces the fluorescence 

of the donor when both fluorophores are between 20 and 70 Å apart53, 54. Therefore, 

when D and A are physically close, energy transfer from D to A occurs, and results in a 

smaller donor emission. However, as D and A move apart, approximately beyond 70 Å, 

the energy transfer does not transpire, and thus, the donor emission intensity will rise. 

Now, the energy transfer rate is contingent upon the degree of spectral overlap between 

the donor emission with the acceptor absorption, the donor quantum yield, the donor and 

acceptor transition dipole relative orientation, and the physical distance between D and 

A2, 5, 52. Using the following equation, the energy transfer rate, kT, may be determined: 

 

where τD is the donor decay time without the acceptor present, R0 is the Förster distance 

when kT is only 50% efficient, and r is the donor-to-acceptor distance. The energy 

transfer efficiency (E), the fraction of photons absorbed by D that are transferred to A 

(i.e. the ratio of the transfer rate to total decay rate), may be calculated by: 

 

This relationship is demonstrated in Figure 1.4., where it is apparent that a decrease in 

intermolecular distance is associated with a swift increase in energy transfer efficiency. 

This principle affiliation has been well researched and executed for the purpose of 

glucose-sensing54-56. Through the proper chemistry arrangement, the donor-to-acceptor 

distance widens when glucose enters the FRET system. Since kT is inversely 
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proportional to r6, the fluorescence intensity will also increase proportionally, and 

thereby provides a method to measure glucose concentrations. 

 Since glucose is not fluorescent, exogenous reagents are therefore necessary to 

implement a FRET glucose-sensing system. These reagents will require direct contact 

with biological fluid. As mentioned earlier, subcutaneous placement has its advantages 

for continuous sensing. However, the reagent encapsulating material must encompass 

properties that enhance its biocompatibility in order to minimize the host’s immune 

reaction – a reaction that could substantially decrease the sensor’s lifetime. 

 

 

Figure 1.3. | Jablonski diagram. An energy diagram conveying the energy, electronic 
states of a molecule, its transitions, and release of photon energy as fluorescence52.  
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Figure 1.4. | Distance-dependent energy transfer efficiency. A graphical 
representation exhibiting the energy transfer efficiency dependency on the 
intermolecular distance, r, to Förster distance ratio for a pair of fluorescent molecules2.  
 

 

1.3. The Host Immune Response & Biofouling 

 

1.3.1. The Immune System 

 The human immune system encompasses two primary components: the innate 

and the adaptive. The innate immune system serves two main purposes. First, it acts as 

the initial response to microbes or antigens in order to prevent, control, or eliminate 
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infection(s) to the body. Secondly, it functions as a stimulus to the adaptive immune 

system so that the nature of the adaptive response is more efficient against specific types 

of microbes. The main elements of the innate immune system include 

polymorphonuclear neutrophilic leukocytes (PMN), macrophages, and natural killer 

(NK) cells. The pattern recognition receptors among the cells within the innate immune 

system is fairly limited (~103) since these receptors are encoded within the germline 

DNA. Therefore, any foreign antigens or microbes that present pathogen-associated 

molecular patterns (PAMPs) that are unrecognized by the innate system will be 

addressed by the adaptive immune system. The adaptive immune system is the second 

and last line of defense, but is capable of recognizing ~107 or more PAMPs. This system 

is also vastly more complex in comparison to the innate. The major factors that 

encompass the adaptive immune system include antigen-specific lymphocytes (T and B 

lymphocytes), professional antigen-presenting cells (i.e. dendritic cells), and effector 

cells (i.e. CD4+ helper T lymphocytes, CD8+ cytotoxic T lymphocytes)57. A fundamental 

aspect to understand is that many of the molecules that play a part in the innate system 

are also, in some way, associated with adaptive immune system. This bridges the gap 

between the two systems and thus, allows for a continuous immune response. 

 

1.3.2. Host Response to Implanted Foreign Materials 

 Once a foreign material has been implanted, the host will elicit an immune 

response due to the foreign material itself as well as the introduction of any pathogens 

implemented during the implantation procedure. Penetration of the epithelium induces 
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localized inflammation that stems from the damage incurred and/or the activation of 

tissue mast cells. The degranulation of mast cell vasoactive amines, histamines, and 

serotonin, produces a localized increase in blood flow and capillary permeability that 

results in the discharge of plasma proteins and the migration of PMNs to the 

implantation site58. 

PMNs are considered to be the first line phagocytic defense against extracellular 

pathogens as they are the most abundant population of circulating white blood cells. 

Once having migrated to the implantation site, PMNs will begin to kill microbes non-

specifically. These particular cells are the “kamikaze” cells of the immune response. In 

other words, PMNs kill themselves in the process of destroying microbes. In addition, 

defensins (small cationic peptides that contain three intrachain disulfide bonds) that are 

produced by epithelial cells, neutrophils (PMNs), NK cells, and CD8+ cytotoxic T 

lymphocytes, play a proactive role in direct toxicity to microbes and the activation of 

other cells involved in the inflammatory response57. Now, since the alternative pathway 

of the complement system can be activated by the binding of C3b to the walls a present 

microbe, the activation of this system can produce additional inflammatory mediators 

due to the release of C3a and C5a. C5a further stimulates PMNs to migrate to the site of 

the implantation. In addition, C3b can opsonize pathogens so that they may be easily 

phagocytosed and destroyed58. The activation of the complement system, however, 

depends on a continuous low-level breakdown of C3. If the C3b element of C3 binds to a 

self-cell, regulatory mechanisms within that cell will deactivate it, but if C3b binds to a 

microbe, Factor B is activated, and its cleavage product Bb will bind to C3b. The C3bBb 
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complex stimulates the breakdown of C3 to C3b. Furthermore, C3b aids in cleaving C5 

into C5a and C5b, which have crucial immunological functions: C5a facilitates 

inflammation while C5b is a vital factor for the assembly of the “membrane attack 

complex” (MAC). Now although PMNs are usually the first to respond to the 

implantation site, they are soon followed by monocytes, NK cells, and eventually T and 

B lymphocytes58, 59. 

The mononuclear phagocyte system is widely known for its development of 

macrophages. The development of a macrophage begins as a stem cell that matures to a 

monoblast within the bone marrow. Once it leaves the bone marrow and enters the blood 

stream, it is referred to as a monocyte. Finally, monocytes will fully mature into 

macrophages when they are activated. The main cytokine that evokes macrophage 

activation is IFN-gamma. IFN-gamma is produced in a variety of different ways, but 

most noticeably by NK cells and T cells. Furthermore, IFN-gamma increases the 

expression of Fc receptors for IgG on macrophages and PMNs. It also increases the 

expression of MHC Class II. The enhanced expression augments the phagocytic 

functions of these cells along with improving the abilities of professional antigen-

presenting cells59, 60. Now, macrophages, unlike PMNs, survive for longer periods at the 

site of implantation since they are not terminally differentiated and encompass the ability 

to undergo cellular division while at the implant site. Furthermore, macrophages secrete 

other cytokines such as TNF-alpha (which increases inflammation) and IL-12 (which 

activates NK cells)57. Natural killer cells (NK cells), although categorized as a 

lymphocyte, have the ability to terminate numerous target cells without acquiring any 
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additional activation. These cells recognize infected or stressed cells and react by killing 

them. NK cells also possess an Fc receptor for IgG, which allows them to contribute in 

antibody-dependent cell-mediated cytotoxicity. This line of defense functions before 

specific cytotoxic T lymphocytes (CTLs) can be either recruited or activated58.  

The purpose of CTLs is to terminate infected cells much like NK cells or 

macrophages. CTLs, however, operate through a network of various elements within the 

adaptive immune system, and therefore, are antigen-specific. The development of CTLs 

begins with a professional antigen-presenting cell (APC), such as a dendritic cell, 

recognizing and ingesting a foreign antigen. Once ingested, the APC will migrate to 

lymph nodes, where it will exhibit the antigen to T cells residing in the parafollicular 

zones. Now, MHC Class I molecules will present peptides to and that are recognized by 

CD8+ T cells, while MHC Class II molecules display peptides to CD4+ T cells. If the 

APC exhibits the antigen to a T cell in the presence of a B7 costimulator, it will enable 

the differentiation of the T cell into a CTL. Furthermore, cross-presentation could 

potentially transpire, where the APC binds to both a CD8+ cytotoxic T lymphocyte and a 

CD4+ helper T lymphocyte. For this particular situation the CD4+ helper T lymphocyte 

will secrete cytokines that enable a second signal for CTL assembly57. 

At this point, any pathogens (besides the actual medical device) that were 

introduced during the implantation process should hopefully have been addressed. 

Furthermore, to quicken and enhance the immune response to subsequent exposures to 

similar antigens, memory B and T cells may have been produced through antigen 

stimulation of naïve lymphocytes. In regards to the implanted medical device, the host’s 
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immune system will ultimately determine that the foreign material and its elements may 

not be phagocytosed or destroyed. Therefore, the upsurge of macrophages, which are 

capable of expressing fibronectin along with other various growth factors (e.g. bFGF, 

TGF-β), will eventually result in the recruitment of fibroblast cells and the development 

of a fibrous extracellular matrix. The deliverance of these elements plays a key role in 

the activation of angiogenesis and fibroplasia. More specifically, fibroblast growth factor 

(bFGF) and transforming growth factor-β (TGF-β) bind to proteoglycans in the 

progression of the extracellular matrix of collagen formed by fibroblast cells61-63. 

Furthermore, any prolonged inflammation may be problematic with respect to 

biocompatibility as it increases the potential and severity of a fibrous capsule (i.e. 

biofouling). 

 

1.3.3. Biocompatibility 

 The most agreed upon definition of “biocompatibility,” also known as the 

“Williams’ definition,” was defined in the European Society of Biomaterials Consensus 

Conference as: “the ability of a material to perform with an appropriate host response in 

a specific application”64. Although this definition is practical, it lacks the perception as 

to a degree of biocompatibility and fails to offer a foundation of which the 

biocompatibility of materials could be enhanced65. By this definition, material 

biocompatibility is gauged by its intention at a specific locale. Furthermore, while the 

definition accounts for “appropriate” effects of the biomaterial on the host, the host’s 
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response on the material must also be reflected in order to lessen the development of 

health issues and device failure rates66. 

For the purpose of an analytical biosensor, biofouling and especially eventual 

fibrous formation has the ability to reduce, potentially significantly, the diffusion and 

perfusion of the target analyte. Such action will result in a decreased sensor response, 

increased sensor lag time, and diminished accuracy of true blood concentrations67-69. The 

accuracy could be further reduced as the increased local cellular presence, residing in a 

hypermetabolic state, may alter the analytical (i.e. glucose) concentrations70. However, 

Novak et al. disagree. Upon conducting a computation model to the relative impact of 

capsular tissue effects on lag time and signal attenuation for a glucose-sensor, they 

determined that the cellular (primarily macrophages) metabolic activity and the capsule 

diffusion coefficient had minimal to no impact on the modes of sensor failure. Rather, 

fibrous capsule thickness attributed to longer sensor lag times, and sensor attenuation 

was predominantly affected by deviations in vessel density and capsule porosity71. 

Nonetheless, cellular proliferation surrounding an optically-based sensor will cause 

signal reduction due to increased light scattering and absorption. Eventually, this will 

lead to a sensor failure. To curtail the extent of biofouling, and thereby its effects on an 

implanted biosensor, the general approach implements a combination of specific 

material chemistries and microarchitectures. 
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1.3.4. Key Properties Associated with Biofouling Reduction 

 An engineered material that controls biofouling is essential to the development of 

a long-term transdermal or subcutaneously implanted CGM. Designing materials to 

diminish the degree of biofouling is an interdisciplinary field that combines facets of 

materials, physiological systems, and cells. It has been shown that surface topography 

and chemistry (e.g. hydrophobicity, softness and stiffness, roughness, charge) and 

material microstructure (e.g. porosity, pore size, crosslink density) actuate protein and 

cellular behaviors72, 73. 

 Upon insertion of a foreign material into a host, it has been observed that a 

similar foreign body reaction occurs independent of the material’s surface chemistry. 

This phenomenon has been attributed to the nonspecific adsorption of proteins, also 

known as the Vroman effect72, 74-76. In 1969, Leo Vroman and Ann Adams first verified 

that blood plasma proteins adsorption comprises intricate sequences of adsorption and 

displacement77, 78. This effect exhibits an initial adsorption of plentiful, but weakly 

surface-active proteins (e.g. albumin), which are subsequently dislocated by more robust 

binding proteins present at a lesser concentration in plasma (e.g. fibrinogen, 

fibronectin)79. More importantly, surface protein adhesion mediates cellular attachment 

and conducts cellular signals, primarily through integrins72. Typically, materials with the 

following properties have been considered more resistant to proteins: (a) hydrophilic, (b) 

neutral charge, (c) hydrogen bond acceptor presence, and (d) absence of hydrogen bond 

donors80, 81. 
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Biomaterial hydrophobicity, a property commonly quantified through the contact 

angle spread of a water droplet on its surface, has been reported as a cell adhesion 

mediator. The lower the contact angle, the more hydrophilic the material. Contact angles 

less than 90° are usually considered hydrophilic. Generally, hydrophobic surfaces are 

regarded as more prone to protein adsorption than hydrophilic due to resilient 

hydrophobic interactions as opposed to the repulsive solvation effects that occur as a 

result of strongly bound water molecules80, 82-84. Tamada and Ikada demonstrated that 

maximum protein adsorption arises with a contact angle between 60-100° with either 

bovine serum albumin (BSA), bovine γ-globulin (IgG), or plasma fibronectin (Fn)85. 

Their results indicate that protein adhesion is favored on hydrophobic surfaces, where 

hydrophobicity does not necessarily guarantee protein adsorption or the lack there of as 

there is a dependency on the specific type of protein and/or the particular cell line. Since 

proteins contain both polar and non-polar residues and depending on their structure, 

there is potential that any one protein may adhere to a surface regardless of its 

hydrophobicity86. It has also been concluded that given enough time, protein adsorption 

will increase84. Regarding cellular adhesion variability with hydrophobicity, Wei et al. 

witnessed an increase in osteoblast attachment and dispersion as the contact angle was 

decreased from 106° to 0°87. In contrast, Tamada and Ikada reported that fibroblast 

adhesion improved as the contact angle increased, and peaked at approximately 70°85. 

Ultimately, the optimal material wettability will be contingent on its implant location 

and specific purpose. However, besides protein polarity, electrostatic charges and their 
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associated surface functional groups are another common adsorption control mechanism 

to consider in the material scaffold design. 

 Biomaterial surface functional groups and their related charges are known to 

directly affect the material’s biocompatibility. Of these groups, the most commonly 

investigated for protein-biomaterial interactions are carboxyl (-COOH), hydroxyl (-OH), 

methyl (-CH3), and amine (-NH2). Carboxyl groups convey a negative surface charge, 

which research has demonstrated to effortlessly deflect proteins, such as fibronectin and 

albumin81, 88, 89. Interestingly, -COOH functionalized surfaces have also exhibited 

increased cellular growth. However, Ohya et al. reported that this effect results from a 

dependence of carboxyl density90. As the density increased, and thereby increased the 

negative charge, cellular growth was further inhibited. A study by Jung et al. also 

noticed that charge density affected the extent of cellular proliferation91. However, rather 

than a negative charge, Jung et al. saw an increase in surface cell attachment as the 

positive charge density was increased91, 92. Now, the hydroxyl group denotes a neutrally 

charged, hydrophilic surface. Therefore suggesting that it displays a low protein affinity. 

According to Lestelius et al., that is true. Their group noticed a reduction in plasma 

protein adsorption on hydroxyl-functionalized self-assembled monolayers93. Contrary to 

this outcome, Fn adsorbed on hydroxyl groups lead to an increase in cell growth and 

adhesion strength in comparison to methyl functional groups88. Methyl functional groups 

are hydrophobic in nature, and as such, are generally considered to encourage protein 

adsorption. Fibrinogen, IgG, and albumin have all demonstrated maximum adhesion 

strength to methyl groups93, 94. Similar to methyl, amine groups represent a positive 
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charge that has shown support for protein adhesion. Fibronectin appears to bind 

particularly well to amine-functionalized surfaces, and thus, enhances the adhesion, 

growth, and matrix formation of endothelial and fibroblast cells88, 95-97. Essentially, 

methyl and amine surface groups are apt to tightly bind proteins, which tends to foster 

cell attachment. Therefore, these two functional groups will probably trigger an 

undesirable immune reaction. 

 Material stiffness and surface topography are properties that literature has shown 

to affect biological responses. Blakney et al. witnessed a change in macrophage 

morphology and cytoskeletal organization from round to spread as PEG-DA hydrogel 

stiffness was increased98. Their findings suggested that macrophages were less sensitive 

to softer hydrogels, possibly due to integrin-mediated phenomenon, and that the round 

morphology with no apparent cytoskeletal arrangement reduced their activation; thereby, 

decreasing tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and 

interleukin-6 (IL-6) expression, and forming a thinner surrounding fibrous layer in vivo. 

These findings correlate with Kim et al., who exhibited diminished human mammary 

epithelial cellular stretching when their nude dendrimer immobilized polystyrene 

material surface roughness was increased beyond 4 nm72, 99, and Dalby, who witnessed 

decreased F-actin filaments in fibroblasts with increasing surface roughness100. A round 

cellular morphology resulted in each case.  

Now, porous (i.e. pore size and porosity density) implantable biomaterials have 

demonstrated to result in a loose, dis-organized fibrous capsule101, 102. In contrast, non-

porous biomaterial implants appear more apt to development dense, well-organized, 
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fibrous shells. Interestingly, porous materials also saw increased vascularization 

surrounding the implant101, 103. Present research has probed implant porosity 

optimization to curtail the FBR, which appears to indicate that 30~60 μm pore diameters 

evoke the thinnest fibrous capsules while driving the most extensive level of 

neovascularization102, 104-106.  

Nano- and micro-scale structures are capable of stimulating and/or dampening 

various aspects of cellular adhesion by influencing its morphology, gene expression, 

motility, and differentiation72, 99, 107. Research has revealed that the resulting biological 

response of this property along with the others aforementioned is highly dependent on 

the type of proteins and cells it interacts with. This stresses the importance to understand 

the local environment and the intended role of the biomaterial being implanted. Once 

“tuned”, the biomaterial properties may aid to mitigate cell adhesion and thus, lessen the 

extent of biofouling. 

 

1.3.5. Biomaterials: The Next Generation in Anti-Biofouling 

 A variety of new materials have been investigated to improve the control of 

biofouling. The majority of these materials may be categorized as natural, synthetic, or 

semi-synthetic. Natural materials such as collagen108, 109, alginate110, dextran111, 

hyaluronan112, and chitosan113, 114, provide the benefit of exhibiting similar 

macromolecular properties that are recognized metabolically. As such, these materials 

elicit a lessened immunological response. However, the use of these materials is not 

without its disadvantages including high immunogenic frequency, decomposition, and 
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normal, natural macromolecular inconsistency76. To overcome these limiting obstacles, 

various synthetic hydrogel materials were developed (e.g. poly(vinyl alcohol) (PVA)102, 

115, poly(lactic acid)/poly(lactic co-glycolic acid) (PLA/PLGA)116, 117, poly(ethylene 

glycol)diacrylate (PEG-DA)63, 118, poly(hydrocyethylmethacrylate) (PHEMA)119, 120, 

poly(tetrafluoroethylene) (PTFE)101, 102, 115, 121, and poly(N-isopropylacrylamide) 

(PNIPAAm)122-125). Hydrogels are insoluble, crosslinked, three-dimensional polymer 

networks that swell in aqueous mediums and can appear similar to the highly hydrated 

physique of natural tissues. Their permeability may be tailored for the diffusion of 

analytes, making them wonderful candidates for tissue engineering, drug delivery, or 

bio-sensors. However, they too have their own drawbacks. Many hydrogels lack the 

mechanical robustness for certain applications and, more importantly, have demonstrated 

biocompatibility issues76, 126, 127. In an attempt to address these issues, a new generation 

of “smart” biomaterials is being explored. Generally, these materials experience 

reversible conformational or phase transitions as a response to specific aspects in their 

local environment (e.g. pH, temperature, light, ions, analytes, electric fields, pressure)128-

135. This characteristic is especially attractive for in vivo applications (e.g. drug release, 

bio-sensing) to enhance the parameter control of cell adhesion.  

To encourage a reduced FBR, some researchers have focused “smart” 

biomaterials to either control the inflammatory response chemically or diminish non-

specific protein adsorption. For chemical control, drug releasing polymer systems have 

employed steroidal (corticosteroid, glucocorticoids) anti-inflammatory drugs (e.g. 

dexamethasone136) as they possess the ability to downgrade or inhibit the formation or 
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secretion of inflammatory mediators like leukotrienes and prostaglandrins. Thus, 

reducing the FBR locally to the implant76, 137. In order to promote angiogenesis for 

increased blood-analyte concentration, growth factors (e.g. vascular endothelial growth 

factor [VEGF]) have been implemented concurrently138. Regardless, this technique only 

controls the immune response for a short period of time, essentially based on the 

polymer’s reservoir. Therefore, for long-term analyte sensing, this method is not ideal. 

In comparison, zwitterionic, net neutral molecules with positive and negative charges, 

materials such as carboxybetaine, sulfobetaine, and phosphorylcholine, have recently 

shown to create an ultra-low biofouling hydrogel. Zhang et al. demonstrated that this 

hydrogel has the ability to resist fibrous encapsulation for at least three months in vivo 

while promoting neovascularization139. Although encouraging, temperature responsive 

hydrogels represent another novel approach. 

 

1.3.6. “Self-cleaning” Membrane 

Thermoresponsive, crosslinked hydrogels possess the ability to alter their 

hydrophobicity with complete reversibility. In essence, the properties of these hydrogels 

allow them to switch from a relatively hydrophilic, swollen state to a relatively 

hydrophobic, deswollen state when warmed above their volume phase transition 

temperature (VPTT). More specifically, above the hydrogel’s VPTT, hydrogen bonding 

between water molecules and hydrophilic amide groups is disrupted leading to 

deswelling140. One type of hydrogel that has received attention for its thermoresponsive 

properties is PNIPAAm. Temperature modulation of PNIPAAm hydrogels has been 
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widely exercised for the controlled detachment of cell sheets without chelating or 

enzymatic agents that potentially compromise the integrity of the cultured cells141-144. 

Exploiting this property, thermoresponsive hydrogels can be utilized to self-clean or 

detach cells from its surface to limit biofouling. In order to implement PNIPAAm-based 

hydrogels as a self-cleaning membrane for an implanted biosensor, its VPTT, diffusion 

characteristics, and mechanical properties were evaluated for two designs. 

 Initially, inorganic polysiloxane nanoparticles (NPs) (~200 nm in diameter) were 

crosslinked into a single organic PNIPAAm hydrogel mesh, which enhanced the 

mechanical strength and the extent of swelling/de-swelling125. More recently, these 

characteristics were further developed by the fabrication of a double network (DN) 

PNIPAAm-based hydrogel. This DN hydrogel consists of a tightly crosslinked first 

network with a loosely crosslinked second. It was determined that by increasing the 

crosslinker, N,N’-methylenebisacrylamide (BIS), concentration (4 wt%) and introducing 

~200 nm polysiloxane NPs (2 wt%) within the first PNIPAAm network and adding a 

lower BIS concentration (0.2 wt%) in the second PNIPAAm network, the storage 

modulus and swelling ratio were improved123.  

 With regards to the VPTT, PNIPAAm has a characteristic VPTT of ~33-34 °C, 

which, if implanted, would remain in its collapsed state since the host’s body 

temperature is warmer145, 146. If the hydrogel were to remain in its de-swollen 

(hydrophobic) phase, it would increase the likelihood for cellular attachment and 

proliferation, decrease the target analyte diffusion, and abandon the advantageous 

thermal modulating property. Research has shown that the VPTT may be increased with 

 30 



 

copolymerization of N-isopropylacrylamide (NIPAAm) with hydrophilic 

comonomers147, 148. Therefore, Gant et al incorporated the hydrophilic comonomer, N-

vinylpyrrolidone (NVP) (2 wt%), and tailored the transition temperature to ~39 °C149. 

This will allow the implanted hydrogel to remain in a swollen state at body temperature 

(~37 °C) and essentially reduce cellular attachment by limiting non-specific protein 

adhesion. 

 Diffusion of the target analyte is essential for the membrane to function as a self-

cleaning membrane for an implanted glucose biosensor. Due to the thermoresponsive 

nature of the PNIPAAm-based hydrogel, the diffusion coefficient increases or decreases 

as the hydrogel swells or de-swells, respectively. Therefore, glucose diffusion at 

multiple environmental temperatures have been performed on single network (SN) 

versions of the PNIPAAm-based hydrogel. The results indicated that the glucose 

diffusion coefficients at temperatures of 30 °C, 35 °C, and 39 °C fell within a usable 

range in comparison to glucose diffusion coefficients in dermal and epidermal tissues149. 

 

1.4. Summary 

  

With approximately 380 million individuals currently affected by diabetes 

mellitus and alarming predictions of its growth, the continuous monitoring of blood 

glucose concentration is critical. Through the years, there has been much progression in 

CGM system development. As a result, a few systems are currently available worldwide. 

In the United States, however, only two CGM systems are on the market: the Guardian® 
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REAL-Time (Medtronic) and the G4 Platinum CGM (DexCom™). Although providing 

patients’ with the ability to monitor their glycemic levels more frequently, these 

amperometric-based, transdermal sensors are only FDA approved for use up to 7 days 

with multiple daily “finger-prick” calibrations.  

 An optical approach, specifically FRET, offers one potential scheme to 

accomplish continuous readings. Such a sensor may be intradermally implanted and 

optically interrogated non-invasively using an external, mobile device. An intradermally 

implanted sensor could decrease the risk of a chronic infection, an issue plaguing 

current, commercial CGM systems. These transcutaneous devices provide continuous 

micro-abrasions and an infectious pathway that results in a heightened immune response 

and a more pronounced level of biofouling. 

Biofouling, the biological interference to the function of an implanted device, is 

the primary cause for the limited lifespan of implanted devices, including biosensors. 

The triggered acute and chronic immune response to an implanted material, even those 

considered biocompatible, initiates a complex cascade of events that eventually results in 

the formation of an encapsulating fibrous tissue. Immense research effort has been put 

forth to investigate various material properties that may help control protein and cellular 

attachment, and thereby, minimize or delay the onset of unwelcomed biofouling effects. 

Other studies have even looked into lacing “smart” hydrogels with anti-inflammatory 

agents that can temporarily disrupt the host’s local immune reaction. However, dynamic, 

thermoresponsive hydrogels offer a unique method to reduce non-specific protein 
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adsorption and its cascading suffocating fibrous capsule while entertaining the ability to 

house a FRET-based, glucose-sensing assay. 
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CHAPTER II 

IN VITRO EXAMINATION OF A “SELF-CLEANING” MEMBRANE∗ 

 

2.1. Overview 

  

The lifetime and efficacy of a subcutaneously implanted glucose biosensor could 

be greatly improved by a self-cleaning membrane capable of periodic physical removal 

of adhered cells associated with the foreign body reaction. Previously, we reported a 

DNNC membrane comprised of PNIPAAm and embedded polysiloxane nanoparticles. 

When the membrane was thermally cycled above and below its VPTT (~33-35 °C), the 

associated deswelling and reswelling, respectively, led to in vitro cell release. Herein, 

this membrane design was tailored to meet the specific demands of a subcutaneously 

implanted glucose biosensor and critical functional properties were assessed. First, NVP 

comonomer increased the VPTT to ~38 °C so that the membrane would be swollen and 

thus more permeable to glucose in the “off-state” (i.e. no heating) while residing in the 

subcutaneous tissue (~35 °C). Second, glucose diffusion kinetics though the DNNC 

membrane was experimentally measured in its deswollen and reswollen states. A 

cylindrical DNNC membrane with dimensions considered suitable for implantation (1.5 

∗ Parts of this chapter are reprinted with kind permission from “Self-Cleaning Membrane 
to Extend the Lifetime of an Implanted Glucose Biosensor” by Alexander A. Abraham, 
Ruochong Fei, Gerard L. Coté, Melissa A. Grunlan, 2013. Applied Materials and 
Interfaces, 5(24), 12832–12838, Copyright 2013 by ACS Publications.                             
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x 5 mm, diameter x length) was used to model the glucose diffusion lag time. In 

addition, the DNNC cylinder was used to observe dimensional changes associated with 

deswelling and reswelling. Non-cytotoxicity was confirmed and self-cleaning was 

assessed in vitro in terms of thermally-driven cell release to confirm the potential of the 

DNNC membrane to control biofouling. 

 

2.2. Introduction 

A subcutaneously implanted glucose biosensor could offer a continuous and 

more convenient method to monitor glucose levels. Unfortunately, membrane biofouling 

severely limits the lifetime and accuracy of subcutaneous or transdermal sensors150, 151. 

Upon implantation of a sensor, a foreign body reaction is triggered that results in the 

attachment of proteins and cells to the surrounding membrane and, eventually, the 

formation of a fibrous capsule150, 151 (Fig. 2.1.). Membrane biofouling will inhibit 

glucose diffusion to the sensor thereby causing its failure. In this way, commercially 

available transdermal CGM systems are limited to a 3-7 day lifetime. Approaches to 

control membrane biofouling have largely focused on passive or “anti-fouling” 

membranes such as those based on poly(ethylene glycol)diacrylate (PEG-DA)63, 

poly(hydroxyethylmethacrylate) (PHEMA)152, and poly(tetrafluoroethylene) (PTFE)153, 

154. In contrast, the self-cleaning membrane reported herein relies on an active or “foul-

releasing” mechanism to physically remove adsorbed cells. 

Thermoresponsive PNIPAAm hydrogels undergo deswelling and reswelling 

when heated above and cooled below, respectively, their VPTT (~33-35 °C). This 
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process has been shown to cause the release of cultured cells in vitro125, 155-159. If utilized 

as a membrane for an implanted glucose biosensor, self-cleaning may be accomplished 

via transdermal thermal cycling. Conventional single network (SN) PNIPAAm 

hydrogels prepared via copolymerization of NIPAAm and a crosslinker such as BIS 

exhibit slow deswelling and reswelling kinetics (i.e. thermosensitivity) as well as poor 

mechanical properties160, 161. When used as a self-cleaning membrane, the PNIPAAm 

hydrogel requires enhanced thermosensitivity (for self-cleaning) as well as robust 

mechanical properties (for surgical insertion). Recently, we reported a DNNC hydrogel 

comprised of an interpenetrating, asymmetrically crosslinked PNIPAAm matrix with 

polysiloxane nanoparticles (~200 nm diameter) embedded during formation of the first 

network162. This DNNC hydrogel exhibited significantly improved thermosensitivity in 

terms of both the rate and the extent of deswelling and reswelling versus a conventional 

PNIPAAm hydrogel. Furthermore, the DNNC hydrogel exhibited improved modulus 

and strength. 

Extending the utility of this DNNC hydrogel as a self-cleaning membrane for an 

implanted glucose biosensor requires further refinement and is addressed in this study. 

First, the VPTT of the DNNC membrane was increased to ~38°C. In the subcutaneous 

tissue of the wrist, a likely location for an implanted sensor, the body temperature is ~35 

°C163, 164. Thus, a membrane with a VPTT ~38°C in the “off-state” will be fully swollen 

for optimal glucose diffusion. When undergoing self-cleaning (“on-state”), the 

membrane would begin to deswell via transdermal heating. Copolymerization of 

NIPAAm with a hydrophilic comonomer is known to increase the VPTT of the resulting 
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hydrogel165, 166. Previously, we demonstrated that addition of 1-2 wt% NVP comonomer 

(based on NIPAAm wt) produced analogous SNNC hydrogels with a VPTT of ~38°C167. 

Thus, NVP was similarly incorporated into the DNNC hydrogels. Second, glucose 

diffusion through a planar DNNC membrane was measured at temperatures above and 

below the VPTT. Third, a membrane with a geometry suitable for implantation was 

considered to be a cylindrical rod (~1.5 mm x 5 mm, diameter x length) (Fig. 2.2.). A 

finite element model was constructed for the DNNC hydrogel cylinders to estimate the 

glucose diffusion lag time before achieving equilibrium with its external environment at 

varying glucose concentrations. Since size and geometry also affect thermosensitivity168, 

169, which are critical to fast and efficient self-cleaning, the thermosensitivity of the 

DNNC hydrogel cylinders was assessed by measuring the change in diameter with 

temperature. Finally, cytocompatibility was assessed and thermally-induced in vitro 

cellular detachment was observed using planar DNNC hydrogels. 
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Figure 2.1. | Diagram of “self-cleaning” membrane to minimize biofouling. Fibrous 
encapsulation of a membrane surrounding an implanted biosensor compromises glucose 
diffusion. The double network nanocomposite (DNNC) membrane described herein is 
designed to exhibit “self-cleaning” when thermally cycling above its volume phase 
transition temperature (VPTT). 
 

 

 

Figure 2.2. | DNNC and PEG-DA cylindrical membranes. a,b, DNNC (a) and PEG-
DA (b) cylindrical membranes fabricated with a diameter of ~1.5 mm and length of 5 
mm. 
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2.3. Materials and Methods 

 

2.3.1. Materials 

 NIPAAm (97%), NVP, PEG-DA (MW 575 g/mol), ammonium hydroxide 

(NH4OH), sodium chloride (NaCl), sodium phosphate-dibasis (Na2HPO4), potassium 

phosphate-monobasis (KH2PO4), hydrochloric acid (HCl), sodium hydroxide (NaOH), 

newborn calf serum (NCS), antibiotic antimycotic solution (100X) - stabilized 

bioreagent sterile filtered with 10,000 units penicillin and 10 mg streptomycin A, sterile 

Dulbecco’s phosphate buffered saline (PBS), HEPES (≥ 99.5%), and Dulbecco’s 

Modified Eagle’s Medium (DMEM) –1000 mg dL-1 glucose and L-glutamine without 

sodium bicarbonate and phenol red were purchased from Sigma-Aldrich (St. Louis, 

MO). Potassium chloride (KCl) and D-glucose anhydrous was purchased from Fisher 

Scientific (Pittsburgh, PA). Potassium persulfate (K2S2O8) was purchased from 

Mallinchrodt Chemicals. N,N’-methylenebisacrylamide (BIS, 99%) was purchased from 

Acros Organics (Geel, Belgium). 2-Hydroxy-2-methyl-1-phenyl-1-propanone (Darocur 

1173) and 1-[4-(2-Hydroxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 

2959) was purchased from Ciba Specialty Chemicals (Tarrytown, NY). 

Octamethylcyclotetrasiloxane (D4) and 1,3,5,7-tetramethyl-1,3,5,7-tetra-

vinylcyclotetrasiloxane (D4
Vi) came from Gelest, Inc. Dodecylbenzenesulfonic acid 

(DBSA, BIO-SOFT® S-101) came from Stepan Co. (Northfield, IL). The Slide-A-Lyzer 

dialysis cassettes (MWCO 10,000) and lactate dehydrogenase (LDH) cytotoxicity assay 

kit were obtained from Pierce (Rockford, IL). For hydrogel fabrication and other 
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experiments, deionized water (DI H2O) with a resistance of 18 MΩ·cm (Millipore, 

Billerica, MA) was used. 3T3 H2B-GFP mouse fibroblast cell line was a kind gift from 

Peter Ghazal at the Division of Pathway Medicine at the University of Edinburgh. Cell 

culture media was pH adjusted with 1 M HCl and 1 M NaOH, verified with a pH meter 

(420 A+, Orion; electrode 5990-30, Cole-Parmer, Vernon Hills, IL) and sterilized by 0.2 

μm filtration (sterile 90 mm filter unit, Nalgene Filtration Products). 

 

2.3.2. Polysiloxane Nanoparticle Preparation 

 Polysiloxane colloidal nanoparticles with an average diameter of ~200 nm were 

prepared via emulsion polymerization and purified via dialysis as previously reported125. 

The final emulsion was 4.8 wt% solids. 

 

2.3.3. Preparation of PEG-DA Hydrogels 

 Precursor solutions were formed by votexing DI-H2O, PEG-DA (100 %v/v) and 

Darocur 1173 (1% v/v) for 1 min. 

Planar sheets. Planar hydrogel sheets (~1 mm thick per electronic caliper 

measurements) were prepared by pipetting the precursor solution between two clamped 

glass slides (75 x 50 mm) separated by polycarbonate spacers (1 mm thick) and exposing 

the mold to longwave ultraviolet (UV) light (UVP UV-Transilluminator, 6 mW cm-2, 

λpeak = 365 nm) for 2 min at room temperature (RT). Hydrogel sheets were removed 

from their molds, rinsed with DI H2O and soaked in a Petri dish containing DI H2O (60 

mL) for 24 hours. 

 40 



 

Cylinders. Cylindrical hydrogels (~1.5 mm x 5 mm, diameter x length per 

electronic caliper) were prepared by pipetting the precursor solution into a hollow 

cylindrical glass mold (inside diameter = 1.0 mm, length = 15 mm) with one end sealed 

by Parafilm. After sealing the other end of the mold, it was likewise exposed to 

longwave UV light as above at RT for 3 sec. The cylindrical hydrogel was removed 

from the mold, rinsed with DI H2O and immersed in a Petri dish containing DI H2O (60 

mL) for 24 hours. A clean razor blade was used to equally trim the ends to reduce the 

length to 5 mm.  

 

2.3.4. Preparation of Thermoresponsive DNNC Hydrogels 

 DNNC hydrogels were prepared by sequential formation of a relatively tightly 

crosslinked 1st network containing polysiloxane nanoparticles (2 wt% solid nanoparticles 

based on NIPAAm weight) and a loosely crosslinked 2nd network.162 The “1st network 

precursor solution” was formed by combining NIPAAm monomer (1.0 g), NVP co-

monomer (0.16 g), BIS crosslinker (0.04 g), polysiloxane nanoparticle emulsion (0.485 

g), Irgacure-2959 photoinitiator (0.08 g) and DI H2O (6.54 g). The “2nd network 

precursor solution” was formed by combining NIPAAm (6.0 g), NVP (0.96 g), BIS 

(0.012 g), Irgacure 2959 (0.24 g), and DI H2O (21.0 g). 

Planar sheets. Planar hydrogel sheets (1 mm thick) were produced by pipetting 

the 1st network precursor solution into a mold consisting of two clamped glass slides (75 

x 50 mm) separated by 1 mm thick polycarbonate spacers. The mold was then immersed 

into an ice water bath (~7 °C) and exposed to longwave UV light for 30 min. The 
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resulting single network nanocomposite (SNNC) sheet was removed from the mold, 

rinsed with DI H2O and then soaked in DI H2O at RT for 2 days with daily water 

changes. The SNNC sheet was then transferred into a covered Petri dish containing the 

2nd network precursor solution for 24 hours at RT. Next, the planar hydrogel was placed 

into a rectangular mold (1.5 mm thick), photocured for 30 min and finally soaked in DI 

H2O as above. 

Cylinders. Cylindrical hydrogels (~1.5 mm x 5 mm, diameter x length) were 

prepared by pipetting the precursor solution into a cylindrical glass mold (inside 

diameter = 1.0 mm, length = 15 mm) as above. The mold was immersed in an ice water 

bath (~7 °C) and exposed for 10 min to longwave UV light. Cylindrical hydrogels were 

removed from their molds, rinsed with DI H2O, and soaked in a Petri dish containing DI 

H2O (60 mL) for 2 days at RT with daily water changes. A SNNC cylindrical hydrogel 

was then transferred into a Petri dish containing the 2nd network precursor solution for 

24 hours at RT. The cylindrical hydrogel was then placed into a second cylindrical mold 

(diameter = 1.5 mm, length = 15 mm), submerged in an ice water bath (~7 °C), exposed 

for 10 min to longwave UV light and soaked in DI H2O as above. A clean razor blade 

was used to trim ends to reduce the cylindrical length to 5 mm. The final diameter was 

measured via calipers. 

 

2.3.5. Differential Scanning Calorimetry (DSC) 

 The VPTT of swollen hydrogels was determined by differential scanning 

calorimetry (DSC, TA Instruments Q100). Water-swollen hydrogels were blotted with a 
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Kim Wipe and a small piece sealed in a hermetic pan. After cooling to -50 °C, the 

temperature was increased to 50 °C at a rate of 3 °C /min for 2 cycles. The resulting 

endothermic phase transition peak is characterized by the initial temperature at which the 

endotherm starts (To) and the peak temperature of the endotherm (Tmax). Reported data 

are from the 2nd cycle.  

 

2.3.6. Glucose Diffusion 

 Planar hydrogel strips (1 cm x 1 cm x 1 mm) were placed in a side-by-side 

diffusion cell (PermeGear, Bethlehem, PA) positioned atop a stir plate. The donor 

chamber contained 3 mL of glucose solution (~1,000 mg dL-1) and the receptor chamber 

contained 3 mL of DI H2O. Chamber solutions were stirred with Teflon-coated stir bars 

(800 rpm) to maintain constant solution concentrations. A water jacket maintained the 

designated temperature (25, 35 and 40 °C) throughout the system. Every 20 min (for a 

total time of 3 hours), 50 µL aliquots were removed via pipette from each chamber and 

glucose concentration determined with a YSI 2700 Select Biochemistry Analyzer (YSI 

Incorporated, Yellow Springs, OH). The diffusion coefficients were calculated using 

Fick’s second law of diffusion. 

 

2.3.7. Glucose Diffusion Lag Time 

 A computational model of the DNNC hydrogels was developed using COMSOL 

Multiphysics® software (COMSOL, Inc., Los Angeles, CA). Conducting a time-

dependent transport of diluted species study, a geometric cylinder (1.5 mm x 5 mm, 
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diameter x length) was constructed with a maximum and minimum free tetrahedral mesh 

element size of 0.382 mm and 0.0249 mm, respectively. The simulation began with a 

DNNC hydrogel internal glucose quantity of 0 mg dL-1 and external glucose levels of 60, 

80, 160 and 300 mg dL-1. The average glucose concentration within the cylindrical 

hydrogel was assessed every second for 1 hour for each external glucose concentrations. 

The diffusion lag time was defined as the time required for the hydrogel internal glucose 

concentration to fall within 5% of the external glucose concentration. 

 

2.3.8. Thermosensitivity 

 Three cylindrical DNNC hydrogels (~1.5 mm x 3 mm, diameter x length) were 

vertically attached to a single Petri dish with a small amount of optical adhesive 

(Norland Optical Adhesive 61) to the base of one end. To hydrate the affixed cylinders, 

the Petri dish was filled with DI H2O for at least 12 hours at RT prior to thermally 

cycling. The Petri dish was positioned atop a heating plate under a non-inverted bright 

field microscope (Nikon Eclipse LV 100D, Nikon America Inc., Melville, NY) with a 

5X objective. Images were taken every 5 min as the hydrogels were thermally cycled 

between 25 and 40 °C for 5 cycles. The average rate of heating to 40 °C was ~1.06 

°C/min and passive cooling to 25 °C was ~0.28 °C/min. Thus, each cycle consisted of a 

1 h heating period followed by 1 hour of passive cooling. Cylinder diameters were 

recorded with Nikon® NIS Elements imaging software. 
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2.3.9. Cytocompatibility 

 DNNC hydrogel cytocompatibility was assessed by measuring LDH 

concentrations released by 3T3 H2B-GFP mouse fibroblast cells 24 hours after cell 

seeding versus that of two cytocompatible controls – a PEG-DA hydrogel as well as 

tissue culture plastic (i.e. polystyrene, PS). Planar DNNC and PEG-DA hydrogel sheets 

were prepared as described above. Four 6 mm discs were punched from each sheet and 

then sterilized by immersion in 80% ethanol for 45 min. The hydrogel discs were 

sequentially washed 3X (30 min each) with sterile DMEM (40% NCS), submerged in 

DMEM (40% NCS) for 24 hours and transferred to a sterile 12-well plate. Next, 3T3 

H2B-GFP mouse fibroblast cells [suspended in DMEM (40% NCS) containing 

antimycotics and antibiotics], were seeded onto each of the hydrogel surfaces and into 

the empty tissue culture plastic wells at a concentration of ~6,500 cells cm-2. Cells were 

allowed to incubate for 24 hours at ~37 °C (T < VPTT; swollen state) with 5% CO2. 

Finally, the media surrounding the hydrogel discs or from the empty wells was extracted 

and assessed for LDH levels per the manufacturer’s protocol. The relative LDH activity 

was calculated by normalizing PEG-DA and DNNC sample absorptions to that of 

polystyrene. 

 

2.3.10. “Self-cleaning” Behavior In Vitro 

 Planar DNNC and PEG-DA hydrogel sheets (2 cm x 2 cm x ~1 mm) were 

sterilized by immersion in 80% ethanol for 45 min. All specimens were then washed 3X 

for 30 min each with sterile DMEM (40% NCS). DNNC and PEG-DA hydrogel sheets 
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were submerged for 48 and 96 hours, respectively, in DMEM (40% NCS). Next, in a 

sterile plastic Petri dish, DNNC and PEG hydrogel sheets were inoculated with 3T3 

H2B-GFP mouse fibroblast cells stained with a lipophilic indocarbocyanine dye (DiI) 

and suspended in DMEM (40% NCS) containing antimycotics and antibiotics at a 

concentration of ~30,000 cells/mL. For DNNC and PEG hydrogels, cells were allowed 

to incubate for 4 hours and 72 hours, respectively, at ~35 °C (T < VPTT; swollen state) 

with 5% CO2 before imaging. The Petri dish was transferred to the enclosed microscope 

stage which contained two heating pads (Minco) connected to thermistors controlled via 

a temperature feedback system (LabView). Hydrogel surface images were captured 

every 20 sec for 10 min with an inverted bright field microscope (Nikon Eclipse TE 

2000-S, Nikon America Inc., Melville, NY) with a 10X objective as the temperature was 

increased from ~35 °C to ~39.5 °C (T > VPTT) at a rate of ~0.41 °C/min (i.e. ~10 

minutes). 

 

2.4. Results and Discussion 

 

2.4.1. VPTT 

 By incorporating low levels of NVP comonomer (1.6 wt% based on NIPAAm 

monomer weight) into the 1st and 2nd network precursor solutions, the VPTT of the 

DNNC hydrogel was successfully increased. Per the DSC thermogram (Fig. 2.3.), To 

and Tmax were equal to 36.5 and 39.5 °C, respectively. Thus, at subcutaneous body 
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temperature of the wrist (~35 °C), the DNNC hydrogel are expected to be swollen in the 

absence of external heating (i.e. “off-state”). 

 

 

Figure 2.3. | DSC thermogram of the DNNC hydrogel. The DSC thermogram 
indicates a successful increase in the VPTT of the DNNC hydrogel to ~ 38 °C. 
 

 

2.4.2. Glucose Diffusion 

 A side-by-side diffusion cell system was used to study glucose diffusion through 

the DNNC membrane 25 °C (T < VPTT), 35 °C (body temperature), and 40 °C (T > 

VPPT). Fick’s second law of diffusion was used to calculate the diffusion coefficients at 

each temperature:  
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where c is the concentration within the hydrogel, t is the time, D is the diffusion 

coefficient and x is the diffusion distance170-173. Assuming that each solution preserved a 

uniform concentration and that each element concentrations were equal at the hydrogel 

membrane surface as in the bulk volume of each chamber, the equation may be 

simplified to:  

 

 

 

where Qt is the overall quantity of glucose transferred through the hydrogel until the 

specified time, t, A refers to the hydrogel area exposed to the donor or receptor 

chambers, C1 is the initial solute concentration of the donor chamber, and L is the 

measured hydrogel membrane thickness. Table 2.1. reveals the influence of temperature 

on the diffusion coefficients (D) of the DNNC hydrogel. At 25 °C (T < VPTT), the 

swollen state of the hydrogel facilitates glucose diffusion. In contrast, when heated to 40 

°C (T > VPTT), the hydrogel is deswollen and glucose diffusion is thus substantially 

slowed. While still below the measured To of the VPTT (~36.5 °C), glucose diffusion at 

35 °C (body temperature) began to decrease somewhat indicating that some deswelling 

may have occurred. However, D of glucose through the dermis and epidermis has been 
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reported as 2.64 ± 0.42 x 10-6 cm2/s and 0.075 ± 0.05 x 10-6 cm2/s, respectively174. Thus, 

D of glucose through the hydrogel (1.88 ± 0.01 x 10-6 cm2/s) is within the functional 

range. Furthermore, D of a PEG-DA (MW 575 g/mol) hydrogel was previously 

determined to be 1.59 ± 0.42 x 10-6 cm2/s 175 and such materials are noted to not 

significantly impede glucose transfer to encapsulated biosensors176. Thus, in the “off-

state”, glucose diffusion through the DNNC hydrogel to the enclosed sensor is expected 

to be satisfactory.  

 

Temperature (°C) Membrane Behavior Diffusion Coefficient (cm2/s) 

25 (T < VPTT) Swollen 2.73 ± 0.01 x 10-6 

35 (body temperature) Swollen 1.88 ± 0.01 x 10-6 

40 (T > VPTT) Deswollen 1.03 ± 0.01 x 10-6 

 
Table 2.1. | Glucose diffusion coefficients. Glucose diffusion coefficients (D) of the 
DNNC hydrogel (VPTT ~38 °C) at varying temperatures. 
 

 

2.4.3. Potential Glucose Lag Time 

 A COMSOL Multiphysics® computational model was utilized to evaluate the 

glucose diffusion lag time for a DNNC cylindrical hydrogel. The simulation began with 

an initial glucose quantity of 0 mg dL-1 within the hydrogel and the hydrogel then 

suspended in an environment with a constant glucose level of varying concentrations: 

60, 80, 160, and 300 mg dL-1. These concentrations represent low, normal, high and very 

high physiologically glucose levels, respectively2. Figure 2.4. expresses the average 
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glucose concentration within the cylindrical hydrogel cavity every second for 1 hour at 

each of the external glucose concentrations. Physiological lag times upwards of 15 min 

have been reported between glucose changes in the interstitial fluid (ISF) and in the 

blood177-181. For the DNNC cylindrical hydrogel (diameter 1.5 mm, length 5 mm), an 

average lag time of 19.59 ± 0.13 minutes was observed and thus somewhat exceeds 

physiological lag. To reduce the lag time, the cylinder diameter may be reduced. For 

instance, when the model was applied to a DNNC cylindrical hydrogel with a reduced 

diameter (diameter 350 µm, length 5 mm), a lag time of less than 5 min was determined 

(Fig. 2.5.). 

 

 

Figure 2.4. | DNNC glucose lag time computational model. A computational model 
was utilized to determine the average glucose concentration inside a DNNC cylindrical 
hydrogel at 35 °C for constant environmental glucose levels of 300, 160, 80 and 60 mg 
dL-1. The glucose diffusion lag time (■) marks when the average internal hydrogel 
glucose concentration is 95% to that of the external environment. 
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Figure 2.5. | Reduced DNNC glucose lag time computational model. Decreasing the 
cylindrical diameter to 350 µm, a computational model exhibited the average glucose 
concentration inside a DNNC hydrogel at 35 °C for constant environmental glucose 
levels of 300, 160, 80 and 60 mg dL-1. The glucose diffusion lag time ( ) marks when 
the average internal hydrogel glucose concentration is 95% to that of the external 
environment. The mean glucose lag time was determined as 4.48 ± 0.02 minutes. 
 

 

2.4.4. DNNC Thermosensitivity 

 The extent and rate at which the DNNC cylindrical hydrogel deswells and 

reswells upon cyclically heating (T > VPTT) and cooling (T < VPTT) is important for its 

ability to function as a self-cleaning membrane for a subcutaneous glucose biosensor. 

First, the extent of deswelling is critical as this is the driving force behind physical 

removal of adhered cells on the membrane.125, 155 When the temperature was increased 

and maintained at ~40 °C for 1 hour, the diameter of a vertically affixed DNNC cylinder 

decreased to ~25% of its initial swollen state diameter at RT (Figure 4). After returning 

to 25 °C for a period of 1 hour, the diameter returned to within 5% of its initial measured 

 51 



 

swollen state diameter. Second, the membrane must be able to undergo cyclical 

deswelling/reswelling while being thermally cycled. This behavior was confirmed by 

subjecting a vertically affixed DNNC cylinder to cyclical heating (~1.06 °C/min) and 

cooling (~0.28 °C/min) over a 10 hour period (Figure 5). Here, diameters achieved in the 

swollen and deswollen states remained very consistent.   

 

 

Figure 2.6. | DNNC membrane bright field microscopy. a,b, Bright field microscopy 
images of a vertically affixed DNNC cylinder in its swollen state at 25 °C (T < VPTT) 
(a) and deswollen state at 40 °C (T > VPTT) (b). 
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Figure 2.7. | DNNC membrane temperature modulation thermoresponse. Diameter 
change during thermal cycling of a vertically affixed DNNC cylinder over a 10 hour 
time period.  Diameter change (black) and temperature change (grey). 
 

 

2.4.5. Cytocompatibility 

 Cytocompatibility is essential to the utility of a self-cleaning membrane for a 

subcutaneously implanted glucose biosensor. The cytocompatibility of the DNNC 

hydrogel was determined via LDH activity assays (Fig. 2.8). LDH is a soluble cytosolic 

enzyme that is released into the culture medium due to apoptosis or necrosis182. LDH 

levels released by 3T3 H2B-GFP mouse fibroblast cells 24 hours post-seeding were 

measured for the DNNC hydrogel and compared to that of non-cytotoxic PEG-DA 

hydrogel and tissue culture plastic (i.e. PS). No statistical difference in normalized levels 
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of exogenous LDH activity was observed. Thus, the DNNC hydrogel exhibits low 

cytotoxicity toward fibroblast cells similar to that of PEG-DA hydrogels. 

 

 

Figure 2.8. | DNNC membrane cytotoxicity study. Relative LDH activity after 24 
hours for PEG-DA, DNNC, and polystyrene (PS) inoculated with 3T3 H2B-GFP mouse 
fibroblast cells. 
 

 

2.4.6. “Self-cleaning” In Vitro 

 The ability of the DNNC hydrogel to release adhered cells (i.e. self-clean) when 

induced to deswell with thermally heating was assessed in vitro against a non-

thermoresponsive PEG-DA hydrogel control (Fig. 2.9). To achieve adequate adhesion of 

fibroblasts, the DNNC and PEG hydrogel sheets were first exposed to DMEM (40% 

NCS) for 48 and 96 hours, respectively. Such surface conditioning with protein is a 

common strategy to facilitate cellular adhesion183. This protocol also parallels the way in 

which an implanted surface first adsorbs proteins prior to the adhesion of cells150. A 

longer conditioning period for PEG hydrogels was determined to be required and can be 
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attributed to the protein repulsive nature of PEG184, 185. Initially, at ~35.4 °C (T < 

VPTT), both the DNNC and PEG hydrogels were swollen and adhered fibroblasts 

exhibit a characteristic spread morphology. Heating to a temperature of ~39.5 °C was 

chosen as it is above the onset of the VPTT of the DNNC hydrogel and is below ~41 °C 

where protein denaturation may occur. Upon heating, the DNNC hydrogel underwent 

deswelling and fibroblasts display a round cell morphology indicative of end stages of 

detachment. In contrast, the PEG hydrogel does not undergo appreciable deswelling and 

cells remained adhered. The percentage of attached cells on DNNC and PEG-DA 

hydrogels was assessed from four frames each taken while heating a single membrane 

from ~35 °C to ~39.5 °C (T > VPTT) over 10 minutes (Fig. 2.9a-h). Thus, while the 

PEG hydrogel was more resistant to cellular adhesion, cell release was thermally 

triggered for the DNNC hydrogel. 
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Figure 2.9. | “Self-cleaning” property of the DNNC membrane. a-h, Bright field 
microscopy frames of DNNC (a-d) and PEG-DA (e-h) membranes seeded with 3T3 
H2B-GFP mouse fibroblast cells incubated at ~35 °C (T < VPTT) and then heated to 
~39.5 °C (T > VPTT). a-d, Demonstrate the detachment of cells due to deswelling of 
DNNC membrane. The graph depicts the percentage of attached cells to either DNNC or 
PEG-DA membranes as the temperature was increased from ~35 °C to ~39.5 °C over a 
~10 minute period. 
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2.5. Summary 

 

 A thermoresponsive DNNC hydrogel design was refined and evaluated for its 

ability to function as a self-cleaning membrane for a subcutaneously implanted glucose 

biosensor. The VPTT was adjusted to ~38 °C with NVP comonomer such that the 

membrane would be swollen at body temperature (35 °C, wrist subcutaneous tissue) to 

maximize glucose diffusion. Thus, when heated about the VPTT, the membrane would 

undergo reversible deswelling, which should detach adhered cells from its surface. 

Furthermore, the non-degradable nature of PNIPAAm hydrogels186, 187 is expected to be 

advantageous to maintain membrane functionality and to sustain containment of sensing 

materials. 

The measured glucose diffusion coefficient (D) for the DNNC membrane was 

within the physiological range at 35 °C but decreased substantially when the membrane 

was heated to ~40 °C and deswollen. Consequently, during this phase of self-cleaning, 

glucose measurements would not be effective. A cylindrical rod (~1.5 mm x 5 mm, 

diameter x length) was considered to be a suitable geometry for implantation. Based on a 

finite element model, glucose diffusion lag time for the DNNC hydrogel cylinders was 

estimated to be ~19 min. However, when a reduced diameter (350 µm) was considered, 

the lag time was reduced to ~5 min. 

Thermosensitivity, critical to self-cleaning efficacy, of the DNNC cylindrical 

hydrogel was assessed by measuring the change in diameter when in a deswollen (T > 

VPTT) versus swollen state (T < VPTT). Over a 10 hour period of thermal cycling, the 
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diameter of the deswollen cylindrical hydrogel returned to within 5% of the original 

swollen diameter.  

In vitro, fibroblast cells exhibited minimal cytotoxicity and release from a planar 

DNNC hydrogel upon deswelling by heating above the VPTT while cells remained 

adhered to the non-thermoresponsive PEG-DA surface. Although having demonstrated 

the ability to minimize cellular adhesion in vitro, in vivo systems are significantly more 

intricate. Therefore in order to progress, the DNNC cellular release efficiency must be 

evaluated in vivo. 
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CHAPTER III 

IN VIVO BIOCOMPATIBILITY OF A “SELF-CLEANING” MEMBRANE 

 

3.1. Overview 

 

Implantable biosensors offer the potential to continuously monitor and 

communicate measurable data. However, its accuracy and lifetime, however, may be 

jeopardized by the extent of the host’s multi-stage immune response leading to 

membrane biofouling. Approaches to control membrane biofouling and eventual fibrous 

encapsulation have largely relied on anti-fouling or passivation approaches or active, 

therapeutic-based approaches (e.g. anti-inflammatory drug release). Herein, we illustrate 

a new active, materials-based approach utilizing a thermoresponsive double network 

nanocomposite (DNNC), poly(N-isopropylacrylamide) hydrogel with an adjusted 

volume phase transition temperature (VPTT) of ~ 38 °C. Cylindrical DNNC hydrogels 

(~1.5 mm x 5 mm) were fabricated and inserted within the dorsal subcutaneous tissue of 

CD® Hairless rat models for either 7 or 30 days. Poly(ethylene glycol) diacrylate (PEG-

DA) hydrogel cylinders served as non-thermoresponsive controls whose antifouling 

behavior and biocompatibility is well-established. Upon extraction, DNNC hydrogels 

exhibited a significantly thinner fibrous capsule than PEG-DA post 30 days while 

displaying increased microvascular density within 1 mm of the polymer surface. These 

results reveal an interplay between hydrogel stiffness, enhanced thermosensitivity, and 
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enlarged average pores that promotes angiogenesis while reducing the degree of fibrous 

tissue encapsulation – ideal conditions for a biosensor measuring blood analytes. 

 

3.2. Introduction 

 

 The medical field has seen significant technological advances especially in the 

areas of protein/cell/tissue engineering, biotechnology, and biomaterials that have led to 

the development of implantable devices/materials with various medical or 

pharmaceutical applications, e.g. biosensors188-192, heart valves193, artificial organs194-196, 

tissue regeneration197, 198, and drug delivery199-202. However, device efficacy and lifetime 

may be compromised by the host’s immune response to the implanted biomaterial and 

associated biofouling. For instance, in the case of implanted biosensors, membrane 

biofouling restricts the diffusion of the target analyte. 

The host response to an implantable biomaterial, including a biosensor 

membrane, is a multiphasic process. It begins with the initial (acute) response that occurs 

secondary from tissue damage caused by the implantation of the biosensor material. The 

greater the insertion trauma will result in a more amplified acute response74. The acute 

inflammatory response consists of a humeral and cellular component57. Humeral is the 

initial response and is a vascular driven process with “leakage” of plasma proteins (e.g. 

albumen, immunoglobulins, and fibrin) into the interstitial compartment that results in 

the emergence of a provisional matrix formed by dynamic protein cascades known as the 

Vroman Effect203, 204. This bioactive rich environment stimulates the infiltration of a 
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cellular component that consists primarily of polymorphonuclear leukocytes (PMNs), 

which generally peak within 24 to 72 hours status post-implantation. PMNs phagocytose 

microorganisms, and upon degeneration, release cytoplasmic and granular components 

that conciliate the ensuing inflammatory reaction205. Mast cell degranulation also plays a 

significant role in acute inflammatory response mediation with histamine, interleukin-4 

(IL-4), and interleukin-13 (IL-13) release and fibrinogen adsorption203. Under ideal 

conditions, the acute inflammatory response blends into a subacute response where 

PMNs recede from the exudate and are succeeded by peripheral blood mononuclear cells 

(PBMCs). Once activated, the admixture of tissue macrophage and lymphocytes may 

discharge chemotactic factors, cytokines, growth factors, matrix metalloproteinases, and 

reactive oxygen species that recruit fibroblasts and vascular endothelial cells118. If the 

damaged, necrotic tissue is removed and the biomaterial is neutral (i.e. not antigenic), 

then the implant site transitions into repair with the initial formation of granulation tissue 

(admixture of lymphocytes, macrophages, recruited fibroblast [producing collagen 

fibers] and infiltration with neovascular buds). Granulation tissue undergoes transition 

into an extracellular matrix that provides an encapsulating scaffold for organizing loose, 

cellular collagenous connective tissue (composed primarily of fibroblast and to a lesser 

extent macrophages and lymphocytes) while modulating the biological processes 

associated with end-stage wound repair74, 203, 205, 206. Over time, it remodels into dense, 

avascular collagenous connective tissue consisting of a collagen substrate with scattered 

fibrocytes and glycoaminoglycans207. 
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Reactive (i.e. antigenic) biomaterial implants can complicate and hinder this 

healing process. The degree to which healing is interrupted or delayed is dependent on 

multiple causes including: scale of the injury, the loss of architectural integrity, the level 

of necrosis, and the biomaterial interactions57, 74, 203. The occurrence of these events may 

facilitate the development of a foreign body response (FBR). This response is based on a 

sustained inflammatory reaction during the early healing process when there is 

granulation tissue formation74. Generally, the FBR is recognized by transient neutrophil 

granulocytes and the continued presence of macrophages (both mononuclear and 

polynuclear [e.g. multinucleated foreign body giant cells (MFBGCs)]) and lymphocytes 

within the granulation tissue substrate. As long as there is a chronic inflammatory cell 

presence, the healing process is arrested. Furthermore, this sustained inflammatory 

reaction, which is believed to be attributed to nonspecific protein adsorption and material 

independent, may yield a denser tissue compartment. For an implanted biosensor 

membrane, this compact fibrous capsule may vary from 50-200 μm and could further 

obstruct the interaction between the biosensor, its external interrogating device, and the 

target analyte76, 121, 208, 209. 

For either their resistance to protein adsorption or cellular adhesion, numerous 

studies have concentrated on passive or “anti/non-fouling” polymeric materials to 

effectively minimize the FBR, including: poly(hydrocyethylmethacrylate) (PHEMA)119, 

120, poly(tetrafluoroethylene) (PTFE)101, 102, 115, 121, poly(vinyl alcohol) (PVA)102, 115, and 

poly(ethylene glycol)diacrylate (PEG-DA)63, 118. However, in vivo investigations with 

each of these materials have shown the presence of a fibrous capsule surrounding the 
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implant of at least 50 μm115, 118-121, 210. In contrast, the “self-cleaning”, thermoresponsive 

hydrogel described herein employs an active or “cell-releasing” method to physically 

detach adsorbed cells from its surface122, 123, 125, 211. 

Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels 

experience rapid deswelling and reswelling when temperature modulated above and 

below, respectively, their volume phase transition temperature (VPTT)125, 144, 155, 158, 211, 

212. Previously, we reported a double network nanocomposite (DNNC) hydrogel 

composed of an interpenetrating, asymmetrically cross-linked PNIPAAm matrix with 

polysiloxane nanoparticles (~200 nm diameter) embedded during the formation of the 

first network123. For implantation into subcutaneous tissue, a plausible location for a 

biosensor, we investigated the thermosensitivity, cytocompatibility, and “self-cleaning” 

behavior in vitro using an external heating system122. Although DNNC cellular release 

displayed promising results in vitro, in vivo environments are significantly more 

complex. Thus, the objective of this work is to assess and compare the breadth of the 

FBR between DNNC and PEG-DA implants in vivo under normal temperature 

fluctuations via physical and environmental conditions - without the need for an external 

heating system. PEG-DA serves as non-thermoresponsive controls whose antifouling 

behavior and biocompatibility is well-established. 
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3.3. Materials and Methods 

 

3.3.1. Materials 

N-Isopropylacrylamide (NIPAAm, 97%), N-vinylpyrrolidone (NVP), and 

poly(ethylene glycol)diacrylate (PEG-DA, MW 575 g/mol) were purchased from Sigma-

Aldrich (St. Louis, MO). N,N’-methylenebisacrylamide (BIS, 99%) was purchased from 

Acros Organics (Geel, Belgium). 2-Hydroxy-2-methyl-1-phenyl-1-propanone (Darocur 

1173) and 1-[4-(2-Hydroxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 

2959) was purchased from Ciba Specialty Chemicals (Tarrytown, NY). 

Octamethylcyclotetrasiloxane (D4) and 1,3,5,7-tetra-methyl-1,3,5,7-

tetra¬vinylcyclotetrasiloxane (D4Vi) came from Gelest, Inc. Dodecylbenzene-sulfonic 

acid (DBSA, BIO-SOFT® S-101) came from Stepan Co. (Northfield, IL). For hydrogel 

fabrication and other experiments, deionized water (DI H2O) with a resistance of 18 

MΩ·cm (Millipore, Billerica, MA) was used. 

 

3.3.2. Polysiloxane Nanoparticle Preparation 

Polysiloxane colloidal nanoparticles with an average diameter of ~200 nm were 

prepared via emulsion polymerization and purified via dialysis as previously reported.125 

The final emulsion was 4.8 wt% solids. 
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3.3.3. PEG-DA Hydrogel Preparation 

 Precursor solutions were formed by vortexing DI H2O, PEG-DA (100 %v/v) and 

Darocur 1173 (1% v/v) for 1 min. Cylindrical hydrogels (~1.5 mm x 5 mm, diameter x 

length per electronic caliper) were prepared by pipetting the precursor solution into a 

hollow cylindrical glass mold (inside diameter = 1.0 mm, length = 15 mm) with one end 

sealed by Parafilm. After sealing the other end of the mold, it was likewise exposed to 

longwave UV light as above at room temperature (RT) for 3 sec. The cylindrical 

hydrogel was removed from the mold, rinsed with DI H2O and immersed in a Petri dish 

containing DI H2O (60 mL) for 24 hours. A clean razor blade was used to equally trim 

the ends to reduce the length to 5 mm. 

 

3.3.4. DNNC Hydrogel Preparation 

 DNNC hydrogels were prepared by sequential formation of a relatively tightly 

crosslinked 1st network containing polysiloxane nanoparticles (2 wt% solid 

nanoparticles based on NIPAAm weight) and a loosely crosslinked 2nd network.123 The 

“1st network precursor solution” was formed by combining NIPAAm monomer (1.0 g), 

NVP co-monomer (0.16 g), BIS crosslinker (0.04 g), polysiloxane nanoparticle emulsion 

(0.485 g), Irgacure-2959 photoinitiator (0.08 g) and DI H2O (6.54 g). The “2nd network 

precursor solution” was formed by combining NIPAAm (6.0 g), NVP (0.96 g), BIS 

(0.012 g), Irgacure 2959 (0.24 g), and DI H2O (21.0 g). Cylindrical hydrogels (~1.5 mm 

x 5 mm, diameter x length) were prepared by pipetting the precursor solution into a 

cylindrical glass mold (inside diameter = 1.0 mm, length = 15 mm). The mold was 
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immersed in an ice water bath (~7 °C) and exposed for 10 min to longwave UV light. 

Cylindrical hydrogels were removed from their molds, rinsed with DI H2O, and soaked 

in a Petri dish containing DI H2O (60 mL) for 2 days at RT with daily water changes. A 

SNNC cylindrical hydrogel was then transferred into a Petri dish containing the 2nd 

network precursor solution for 24 hours at RT. The cylindrical hydrogel was then placed 

into a second cylindrical mold (diameter = 1.5 mm, length = 15 mm), submerged in an 

ice water bath (~7 °C), exposed for 10 min to longwave UV light and soaked in DI H2O 

as above. A clean razor blade was used to trim ends to reduce the cylindrical length to 5 

mm. The final diameter was measured via calipers. 

 

3.3.5. IACUC Approval 

 NIH guidelines for the care and use of laboratory animals (NIH Publication #85-

23 Rev. 1985) have been observed. All animal investigations conducted were approved 

by the Texas A&M University Institutional Animal Care and Use Committee and fell 

under the Animal Use Protocol #2012-191. 

 

3.3.6. “Self-Cleaning” In Vivo 

 Cylindrical PEG-DA (control) and DNNC (diameter~1.5 mm, length~5 mm) 

membranes were sterilized by exposure to 80% ethanol for 45 minutes. All hydrogel 

rods were then washed three separate times for 30 minutes with sterile Dulbecco’s 

phosphate buffer solution. Disposable, sterile trocar needles (13G; inner diameter=1.804 

mm, Avid Identification Systems, Inc.) were utilized to inject one of each cylindrical 
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polymer into the subcutaneous tissue (2~3 mm in depth) on the dorsal of CD® Hairless 

rats (N=20, male, 8 weeks old, Charles River Laboratories). The CD® Hairless rat specie 

encompasses a normal immune response despite its abnormal, reduced hair growth. The 

rat’s hairless characteristic is ideal to facilitate the membrane implantation without 

unwarranted skin irritation commonly associated with shaving and Nair™-ing. Using 

isoflurane by inhalation, animals were anesthetized and anesthesia depth was tested by 

foot pinch reaction. Following implantation, the injection site was closed with surgical 

adhesive (3M Vetbond Tissue Adhesive, No. 1469SB). Material composition and 

dorsal placement were recorded for each rat/implant. All animals were immediately 

returned to individual cages and monitored every 12 hours. A custom designed LabView 

program (National Instruments) recorded cage temperatures every 5 mins. After either 7 

or 30 days post implantation, 10 animals were euthanized by CO2 asphyxiation, 

photographed, evaluated for gross changes and immediately fixed in 10% neutral 

buffered formalin for one week. Finally, implants and their surrounding tissue were 

removed and processed for histology by serial dehydration, paraffin embedding, 

sectioning, and staining (hematoxylin and eosin (H&E)). 

 

3.3.7. Implanted DNNC Thermocycling Simulation 

 A 1-dimensional subcutaneously implanted DNNC computational model was 

developed using COMSOL Multiphysics software (COMSOL, Inc., Los Angeles, CA). 

The model accounted for thickness, thermal conductivity, density, specific heat, 

temperature (air), temperature (body), perfusion rate, and metabolic activity for air, 
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epidermis, dermis, DNNC hydrogel, subcutaneous tissue, and blood, as outlined in 

Table 3.1.. A 24 h segment of atmospheric cage temperatures recorded over the implant 

durations was best-fit to a Fourier function and implemented to simulate the atmospheric 

air temperature oscillations. Conducting a time-dependent, heat transfer study, the 

average temperature across the implanted DNNC hydrogel diameter was simulated. 

Previously reported DNNC thermosensitivity data was best-fit to a linear function 

spanning the simulated implanted DNNC temperature range. This linear function was 

then used to determine the potential dimensional change with respect to the simulated 

implanted DNNC temperature. 

 

3.4. Results and Discussion 

 

3.4.1. “Self-Cleaning” In Vivo: Fibrous Encapsulation 

 One sterile cylindrical PEG-DA (control) and DNNC (diameter~1.5 mm, 

length~5 mm) membrane were each implanted into the dorsal subcutaneous tissue (1~3 

mm in depth) lateral to the spine of CD® Hairless rats (N = 20, male, 8 weeks old, 

Charles River Laboratories). At 7 and 30 days post implantation, 10 and 10 animals, 

respectively, were euthanized by CO2 asphyxiation, photographed, evaluated for gross 

changes and immediately fixed in 10% neutral buffered formalin for at least one week. 

The implants and their surrounding tissue were then harvested and processed for 

histology by serial dehydration, paraffin embedding, sectioning, and staining 

(hematoxylin and eosin [H&E]). Gross appearances of the DNNC and PEG-DA 
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membranes confirmed that each hydrogel remained intact following implantation and for 

the duration of 7 (Fig. 3.1.a,b) or 30 (Fig. 3.2.a,b) days. Histological evaluation post 7 

days conveyed insignificant differences between DNNC and PEG-DA implants. At this 

time point, cellular presence around both material compositions consisted mainly of 

fibroblasts followed by macrophages, lymphocytes, eosinophils, and neutrophils (Fig. 

3.3.). The minute neutrophil population and increased fibroblast presence indicated an 

atrophying acute inflammatory response and a developing FBR. This further implies that 

the DNNC hydrogel composition is as inert and biocompatible as PEG-DA. The loose, 

unorganized collagenous tissue width surrounding the DNNC (Fig. 3.1.c,e) and PEG-

DA (Fig. 3.1.d,f) hydrogels was measured at multiple points that resulted in 42.27 ± 

11.78 μm and 51.22 ± 12.06 μm, respectively (Fig. 3.4.) across all animals with an 

average standard deviation of 55.5% (DNNC) and 49.7% (PEG-DA) within an animal. 

At 30 days, a subacute FBR was exhibited. Although the total approximate 

number of cells declined, the percentage of fibroblasts, macrophages, and lymphocytes 

remained similar between both implants (Fig. 3.3.). However, further histological 

analysis revealed distinct differences between DNNC and PEG-DA membranes. Of 

particular importance were the fibrous capsule thicknesses and microvascular presence. 

A matured, organized, and denser fibrous capsule was observed surrounding the DNNC 

(Fig. 3.2.c,e) and PEG-DA (Fig. 3.2.d,f) hydrogels. As shown in Fig. 3.4., a thinner 

fibrous capsule resulted with DNNC membranes (30.06 ± 6.58 μm) in contrast to PEG-

DA hydrogels (44.85 ± 11.11 μm) across animals with an average standard deviation of 

32.3% (DNNC) and 29.3% (PEG-DA) within an animal. A significant difference was 
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also noticed regarding the degree of fibrous tissue organization between 7 and 30 day 

DNNC than between 7 and 30 day PEG-DA. 

Blakney et al. witnessed a change in macrophage morphology and cytoskeletal 

organization from round to spread as PEG-DA hydrogel stiffness was increased98. Their 

findings suggested that macrophages were less sensitive to softer hydrogels, possibly 

due to integrin-mediated phenomenon, and that the round morphology with no apparent 

cytoskeletal arrangement reduced their activation; thereby, decreasing tumor necrosis 

factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) expression, and 

forming a thinner surrounding fibrous layer in vivo. 
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Figure 3.1. | CD® Hairless rat model subcutaneous implanted hydrogel sectioning 
and histology post 7 days. a,b, Gross sections of extracted dorsal subcutaneous tissue 
implanted with DNNC (a) or PEG-DA (b) intact after 7 days. c,d, H&E stained 
histology of tissue surrounding the DNNC (c) and PEG-DA (d) hydrogels. e,f, H&E 
stained histology conveying the development and degree of fibrous encapsulation for 
DNNC (e) and PEG-DA (f).  
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Figure 3.2. | CD® Hairless rat model subcutaneous implanted hydrogel sectioning 
and histology post 30 days. a,b, Gross sections of extracted dorsal subcutaneous tissue 
implanted with DNNC (a) or PEG-DA (b) intact after 30 days. c,d, H&E stained 
histology of tissue surrounding the DNNC (c) and PEG-DA (d) hydrogels. e,f, H&E 
stained histology displaying the extent of organized fibrous tissue encapsulating DNNC 
(e) and PEG-DA (f). 
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Figure 3.3. | Cellular types surrounding hydrogel implants. Graphical analysis 
displaying the various cell types and their approximate percentage adjacent to DNNC 
and PEG-DA hydrogel implants after 7 and 30 days. 
 

 

Figure 3.4. | Mean fibrous capsule thicknesses. The average thickness of the fibrous 
tissue capsules surrounding DNNC (7 days: N=10, M=42.27 μm, SD=11.78 μm; 30 
days: N=9, M=30.06 μm, SD=6.58 μm) and PEG-DA (7 days: N=10, M=51.22 μm, 
SD=12.06 μm; 30 days: N=10, M=44.85 μm, SD=11.11 μm) hydrogels. A statistical 
two-tail t-test was performed between 7 and 30 day DNNC ( t(17)=2.74, p=0.014) and 
between 30 day DNNC and PEG-DA (t(17)=3.48, p=0.0029). Error bars indicate one 
standard deviation from the mean.  
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3.4.2. “Self-Cleaning” In Vivo: Angiogenesis 

 Angiogenesis, the physiological formation of new blood vessels from pre-

existing vessels, was quantified by evaluating the presence of blood vessels (10-100 μm 

in diameter) within 1 mm of the superficial half of the polymer interface (Fig. 3.5.a-d). 

It was determined that DNNC hydrogels had a higher density (vessels per mm2) than 

PEG-DA hydrogels post 30 days (Fig. 3.5.e). 

 In 1995, Brauker et al. investigated FBRs provoked by numerous polymer 

membranes with varying pore sizes (0.02-15 μm)101. They reported that pore size, 

regardless of chemical makeup, appeared to be the principal determinant of the FBR, 

where pore sizes between 5-15 μm elicited a response more closely related to ideal (i.e. 

normal) wound healing. They also noted that this pore size range exhibited an increase in 

blood vessels in close proximity to the polymer implant101, 213, 214. Padera and Colton 

explored the vascularization timeframe associated with microporous membranes 

subcutaneously implanted in rats215. Their study revealed vascular growth adjacent to the 

implant within 10 days. Both groups further reported that neovascularization near the 

implant interface endured for almost a year in stark contrast to normal wound healing, 

where vessels usually begin to regress by the second week214, 215. Ensuing research has 

probed implant porosity optimization to curtail the FBR, and has indicated that 30~60 

μm pores seem to evoke the thinnest fibrous capsules while driving the most extensive 

level of neovascularization102, 104-106. It has been theorized that inflammatory cells, 

specifically macrophages, may infiltrate microporous materials, and in doing so, may 

experience localized reduced oxygen partial pressure. Assuming a sufficiently large pore 
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size where macrophages seem to preserve a spherical morphology, the hypoxic event 

may then instigate macrophages to discharge angiogenic factors, some of which have 

chemotactic and mitogenic activity214-221. As macrophages attach and develop a spread 

morphology, the gene expression pattern deviates to one that encourages fibroblast 

proliferation, even in a hypoxic state. It is speculated that vascular endothelial growth 

factor/vascular permeability factor (VEGF/VPF)222, 223 and TNF-α224, 225 may be the key 

components promoting angiogenesis as these factors have been shown to be secreted by 

macrophages within hypoxic environments. This suggests that the larger DNNC pore 

sizes reported by Fei et al. may further impede macrophage adhesion and spreading, 

while simultaneously motivating neovascular growth123. 

 

 

Figure 3.5. | Mean microvascular density. a,b, H&E stained histology of tissue 
surrounding DNNC (a) and PEG-DA (b) hydrogel implants post 30 days. c,d, Magnified 
H&E stained sections from similar positions on a and b, respectively, displaying blood 
vessels adjacent to the implant surface. e, Graphical representation of neovascular 
density (vessels per mm2) for vessels with a diameter of 10-100 μm within 1 mm of the 
superficial half of the DNNC (N=9, M=8.00, SD=3.72) or PEG-DA (N=10, M=4.91, 
SD=1.87) hydrogel implant interface. A statistical two-tail t-test was conducted 
(t(12)=2.25, p=0.044). Error bars indicate one standard deviation from the mean. 
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3.4.3. Implanted DNNC Thermocycling Simulation 

 Regarding hydrogel mobility, Fan et al. investigated macrophage behavior on 

PNIPAAm and observed that as their PNIPAAm film thickness grew to 4 μm, it became 

“increasingly cell repulsive”226. They attributed this increase to the heightened mobility 

of the polymer’s chains, which in turn, augmented hydration. Thus, the increase in 

hydrophilicity which is unfavorable for protein adsorption that arbitrates cellular 

adhesion, may decrease cellular activity of the FBR (e.g. MFBGCs), and ultimately, 

diminish the size of the fibrous capsule203, 206, 226. Interestingly, Fan et al. also noticed 

that initially attached macrophages to the PNIPAAm surface remained inactivated and 

retained their surface receptor profile after detachment when the temperature was 

adjusted226. This could imply that a continually changing surface may foster perpetual 

cellular detachment without evoking a more severe FBR. To evaluate the potential 

DNNC hydrogel dimensional alterations in vivo, a COMSOL Multiphysics 

computational model was developed. Conducting a time-dependent heat transfer study, a 

1-dimensional subcutaneously implanted DNNC representation was constructed 

incorporating air, epidermis, dermis, subcutaneous tissue, DNNC membrane, and blood 

factors, as outlined in Table 3.1.. A 24 h segment of atmospheric animal cage 

temperatures recorded over the implant durations was best-fit to a Fourier function (Fig. 

3.6.a) and used to simulate the air temperature fluctuations. The computational model 

also accounted for rat core body temperature oscillations and metabolic heat 

production227-230. The simulation results conveyed an average temperature of 31.6 °C 

with an amplitude of 1.2 °C across the DNNC membrane at an implant depth of 2.08 

 76 



 

mm, as shown in Fig. 3.6.b. Based on the previously reported DNNC hydrogel’s 

thermosensitivity, this maximum 1.2 °C temperature oscillation correlates to a maximum 

dimensional change of ~26 μm, assuming the DNNC hydrogel’s initial diameter after 

implantation was 1.5 mm (Fig. 3.6.c,d)122. The simulation demonstrated that over a 24 h 

period, the DNNC membrane would undergo constant dimensional alterations while 

remaining in a relatively high hydrophilic state well below its VPTT. This suggests a 

potential decrease in nonspecific protein adsorption on the DNNC surface, which would 

prompt a decline in macrophage adhesion. Furthermore, the ceaseless DNNC 

thermoresponse would hinder attached macrophages from developing a spread 

morphology and cytoskeletal architecture. 

 

 

Air 
Thickness 500 μm 231 
Thermal conductivity 0.0263 W m-1 K-1 231 
Density 1.3 kg m-3 231 
Specific heat 1004 J kg-1 K-1 231 
Temperature 298.05 ± 0.8 K 

 

Epidermis 
Thickness 80 μm 231, 232 
Thermal conductivity 0.23 W m-1 K-1 231-233 
Density 1200 kg m-3 231, 232 
Specific heat 3590 J kg-1 K-1 231, 232 
Perfusion Rate 0 s-1 231, 232  

 
Table 3.1. | Heat transfer computational simulation parameters.  Input parameters 
for each layer in the 1-dimensional subcutaneously implanted DNNC representation. 
 

 

 77 



Dermis 
Thickness 2000 μm 231, 232 
Thermal conductivity 0.45 W m-1 K-1 231-233 
Density 1200 kg m-3 231, 232 
Specific heat 3300 J kg-1 K-1 231, 232 
Perfusion Rate 1.25 x 10-3 s-1 231, 232 

DNNC Hydrogel 
Thickness 1500 μm 
Thermal conductivity 0.58 W m-1 K-1 
Density 0.2125 g cm-3 
Specific heat 630 J kg-1 K-1 234 

Subcutaneous Tissue 
Thickness 16500 μm 231, 232 
Thermal conductivity 0.19 W m-1 K-1 231, 232 
Density 1000 kg m-3 231, 232 
Specific heat 2675 J kg-1 K-1 231, 232 
Perfusion Rate 1.25 x 10-3 s-1 231, 232 

Blood 
Density  1060 kg m-3 231, 232 
Specific heat  3770 J kg-1 K-1 231, 232 

Miscellaneous 
Metabolic Activity 5100 W m-3 227, 228, 230 
Core body Temperature 310.59 ± 0.42 K 229 

Table 3.1. Continued
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Figure 3.6. | Computational modeling of DNNC dimensional changes due to 
temperature fluctuations subcutaneously implanted. a, Simulated animal cage air 
temperature overlaid on actual temperatures collected over a 24 h period. b, Simulated 
temperature at DNNC hydrogel implant depth (2.08 mm) over a 24 h duration. c, 
Modeled DNNC membrane diameter change as a function of the simulated implant 
depth temperature (b). d, DNNC membrane thermosensitivity assuming the initial 
diameter post implantation was 1500 μm. 
 

 

3.5. Summary 

 “Self-cleaning”, thermoresponsive DNNC membranes and PEG-DA hydrogels 

were successfully implanted into the subcutaneous dorsal tissue of a rat model, and post 

7 and 30 days, these implants were extracted intact. Histological examination of the 
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surrounding tissues revealed properties associated with the FBR, which produced a 

matured fibrous capsule after 30 days. This capsule was significantly less thick 

encircling DNNC compared to PEG-DA hydrogels. In addition, a noticeable neovascular 

growth was observed surrounding DNNC membranes in contrast to the PEG-DA. To 

assess the possible extent of DNNC dimensional fluctuation, a time-dependent, heat 

transfer, computational model was generated. The simulation conveyed a continuous 

dimensional shift with a maximum change of ~26 μm which may effectively promote 

cellular detachment. Although this study did not explore the underlying mechanism(s) 

triggering a diminished FBR while inducing angiogenesis, it was hypothesized and 

appears plausible (based on the modeling and the literature) that the DNNC hydrogel’s 

lack of stiffness, augmented hydrophilicity, and enlarged average pore size, essentially, 

hampered macrophage adhesion, dispersion, and activation to boost the FBR. Further, 

the increased neovascularization neighboring the DNNC hydrogel gives evidence to an 

amplified exudation of angiogenic growth factors, most likely stemming from 

spherically shaped macrophages lying on or potentially infiltrating the surface.  

Ultimately, the minimal fibrous capsule formation and maximum neovascular 

growth around the DNNC hydrogel is ideal for a biosensor membrane in order to 

decrease sensor lag time and improve its accuracy over the extent of its lifespan. 

Although the hydrogel shows tremendous potential to deter biofouling, in order to 

advance as a membrane for a glucose biosensor, its ability to house and enable the 

functionality of a glucose-sensing chemistry must be investigated. 
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CHAPTER IV 

ENCAPSULATION OF A GLUCOSE-SENSING CHEMISTRY WITHIN A “SELF-

CLEANING” MEMBRANE∗ 

 

4.1. Overview 

 

Toward the development of a continuous glucose monitoring (CGM) system, the 

lectin, Concanavalin A (ConA), has been utilized as a component in a Förster resonance 

energy transfer (FRET), competitive, glucose binding assay. However, at physiological 

pH, native ConA exhibits a net negative charge that contributes to non-specific binding 

among ConA as well as with potential electrostatically charged, assay-delivery carriers; 

decreasing its ability to function as part of a glucose-sensing assay. Therefore, to 

minimize non-specific binding and increase resistance to electrostatic surfaces for a 

delivery scheme, ConA was conjugated with monomethoxy-poly(ethylene glycol) 

(mPEG), a process referred to as “PEGylation”. Native and fluorescently labeled ConA 

were successfully PEGylated with monomethoxy-poly(ethylene glycol)-N-

hydroxylsuccinimide(succinimidyl carbonate) (mPEG-NHS(SC)), which showed to 

decrease the electrostatic interactions with a charged layer-by-layer (LbL) assembly 

∗ Parts of this chapter are reprinted with kind permission from “PEGylation of 
Concanavalin A to decrease nonspecific interactions in a fluorescent glucose sensor” by 
Alexander A. Abraham, Brian M. Cummins, Andrea K. Locke, Melissa A. Grunlan, and 
Gerard L. Coté, 2014. SPIE BiOS, 2014. p. 895112-895112-895115, Copyright 2014 by 
International Society for Optics and Photonics. 
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surface (poly(styrene sulfonate) [PSS] / poly(allylamine hydrochloride) [PAH]) while 

maintaining a similar binding affinity of native ConA to the competing ligand. The 

FRET response of APTS labeled ligand (donor) conveyed an increase in fluorescence 

intensity with increasing glucose concentrations in free solution. Upon conveying its 

potential, this assay was successfully encapsulated within calcium carbonate-dissolved 

LbL microspheres and then embedded within a biocompatible SN hydrogel. Although 

the encapsulated assay lacked a definitive FRET response to varying glucose 

concentrations, confocal microscopy confirmed the assay’s homogenous encapsulation 

feasibility – conveying the potential of this FRET-based glucose-sensing assay and its 

delivery systems as an approach for a continuous glucose monitor.  

 

4.2. Introduction 

 

Striving to enhance CGM systems that require fewer calibrations with extended 

lifetimes, fluorescent affinity biosensors that utilize ConA is one tactic under heavy 

consideration54, 235-238. ConA, a carbohydrate-binding lectin derived from the jack bean, 

resides as a tetramer with four identical monomer sub-components (MW~25 kDa)239-241. 

With the capacity to reversibly bind to glucose molecules (affinity~400 M-1), ConA is an 

appealing tool to survey physiological glycemic levels242. 

Although ConA has been used previously in optical competitive binding systems 

for the continuous detection and quantification of glucose concentrations, its 

deliverability and especially its stability have remained issues2, 243-247. Aggregation is one 
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well-known cause of its instability. In its tetrameric state, ConA offers four sites that can 

result the multiple bindings when coupled to multivalent ligands. However, recently a 

suitable, fluorescent, competing ligand labeled with 8-aminopyrene-1,3,6-trisulfonic acid 

trisodium salt (APTS) has been engineered that presents a single high affinity 

trimannose moiety to ConA (APTS-MT)248. Though, ConA still has a net negative 

charge that contributes to non-specific binding among itself as well as with any 

electrostatically charged surfaces. These forms of uncontrolled binding can produce 

aggregates that will eventually precipitate out of solution, and thereby reduce the 

protein’s lifetime and efficiency in a competitive binding assay. 

A method utilized to improve the stability of ConA was implemented that 

covalently conjugates mPEG chains to protein surface molecules (i.e. PEGylation)249-251. 

It is believed that this process improves the solubility and stability of proteins as an 

effect of a hydrophilic cloud that stems from the attached PEG chains252. The highly 

mobile, hydrophilic, neutrally-charged PEG chains also may deliver a steric hindrance 

effect that could minimize particle-to-particle interactions by essentially masking the 

protein’s surface charges. This, however, is dependent of the chains molecular weight 

(i.e. size) and the number of chains grafted to the protein’s surface250, 251, 253. In addition 

to reducing particle interaction, this technique may provide resistance to non-specific 

electrostatic interactions between ConA and charged surfaces, which expands the 

options for a delivery system. 

A wide variety of microencapsulating delivery schemes exist using polymers 

such as PEG235, 237, 254, agarose255-257, and alginate258, 259 for fluorescent assays. However, 
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the ideal encapsulating method must, at the very least, meet the requirements of the 

sensing assay. The FRET-based, competitive binding assay employed here between 

ConA labeled with tetramethylrhodamine isothiocyanate (TRITC) and APTS-MT is 

spatial displacement dependent and contains both high and low molecular weight 

components. Therefore, the chosen encapsulation scheme should provide a cavity for 

assay motility and a barrier that impedes the diffusion of the smallest molecular 

component (APTS-MT) while permitting the target analyte, glucose, to diffuse freely. 

Further, since ConA is a protein that can denature, the encapsulation process must limit 

exposure to any potentially damaging conditions.  

Now although PEG, agarose, and alginate polymer matrices have been utilized to 

contain assay components while simultaneously allowing diffusion of the target analyte, 

these polymers each have their drawbacks. Mannitol-driven porated PEG microspheres 

are non-biodegradable, biocompatible, and can provide hollow cavities for the FRET 

pair to bind and disassociate. However, these randomly positioned pores and the 

polymer’s dense matrix make it difficult to control the assay concentration in and across 

microspheres and severely impedes glucose diffusion, respectively. Now, agarose and 

alginate are also biocompatible and capable of entrapping proteins within their matrices. 

Further, they are biodegradable and have difficulty containing low molecular weight 

components. In contrast, the method of layer-by-layer (LbL) adsorption appears 

promising as an entrapping system for both ConA-TRITC and APTS-MT. These 

polyelectrolyte assemblies, formed by alternating polyanions and polycations, produce 

an electrostatic, multilayer, thin film, whose permeability can be controlled by simply 
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adjusting the number of layers in the assembly and the strength of the chosen 

polyelectrolytes260, 261. In order to form an assembly, an initial charged substrate or 

template is required. Though a variety of templates exist such as silica262, manganese 

carbonate263, cadmium carbonate264, melamine formaldehyde265, 266, poly(lactic)267 or 

poly(lactic-co-glycolic acid)267, the biocompatibility of negatively charged calcium 

carbonate microspheres and their capability for being processed under physiological 

conditions, makes them a suitable choice to entrap ConA-TRITC and APTS-MT260, 261. 

Once a LbL assembly is placed on the calcium carbonate surface, this template may then 

be dissolved gently with ethylenediaminetetraacetic acid disodium salt dehydrate 

(EDTA) and without the addition of an acid, to yield a hollow microsphere with a thin 

LbL shell encapsulating the assay’s components.  

Herein, mPEG-NHS(SC) chains, polymer chains reactive toward primary amine 

groups, were conjugated to the surface of ConA. The extent of PEGylation to ConA, the 

mPEG-ConA’s binding affinity, and the protein’s resistance to a charged LbL assembly 

surface of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) were 

then evaluated. Since PSS/PAH are one of the most studied, stable, robust and 

commercially available polyelectrolyte pairs, they were chosen for the LbL assembly. 

Further, mPEG-ConA was labeled with TRITC which produced a FRET response with 

APTS-MT when the glucose concentrations were varied in free solution. Finally, 

towards the progression of an implantable glucose biosensor, the assay was encapsulated 

within dissolved calcium carbonate LbL-assembled microspheres, which were then 

embedded within a SNNC hydrogel. 
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4.3. Materials and Methods 

 

4.3.1. Materials 

Concanavalin A Type IV lyophilized powder (ConA), poly-(allylamine) solution 

(PAH), poly-(sodium 4-styrenesulfonate) (PSS), Trizma® hydrochloride (Tris-HCl), 

manganese(II) chloride tetrahydrate, methyl α-D-mannopyranoside (MADM), 

hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium bicarbonate (NaHCO3), 

apoly-(ethyleneimine) (PEI) solution, NIPAAm (97%), sodium carbonate (Na2CO3), 

and ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA) were purchased 

from Sigma-Aldrich (St. Louis, MO). Monomethoxy-poly(ethylene glycol)-N-

hydroxylsuccinimide(succinimidyl carbonate) (mPEG-NHS(SC)) MW: 5 000 Da was 

obtained from Nanocs (New York, NY). Calcium chloride dehydrate and potassium 

persulfate (K2S2O8) was purchased from Mallinckrodt Chemical, Inc. (St. Louis, MO). 

N,N’-methylenebisacrylamide (BIS, 99%) was purchased from Acros Organics (Geel, 

Belgium). 2-Hydroxy-2-methyl-1-phenyl-1-propanone (Darocur 1173) and 1-[4-(2-

Hydroxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 2959) was purchased 

from Ciba Specialty Chemicals (Tarrytown, NY). Octamethylcyclotetrasiloxane (D4) 

and 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (D4
Vi) came from Gelest, 

Inc. Dodecylbenzenesulfonic acid (DBSA, BIO-SOFT® S-101) came from Stepan Co. 

(Northfield, IL). Fluorescamine, Concanavalin A, Tetramethylrhodamine isothiocyanate 

conjugate, and tetramethylrhodamine isothiocyanate (TRITC) came from Life 

Technologies (Grand Island, NY). Regenerative cellulose dialysis membranes (MWCO 
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8-10 kDa and 20 kDa) were purchased from Spectra/Por® (Rancho Dominguez, CA). 

Sodium chloride was obtained from J.T.Baker/Avantor Performance Materials (Center 

Valley, PA). 0.2 μm syringe filters were purchased from VWR (Radnor, PA). For 

sodium bicarbonate buffer solution, Tris buffer solution, and other experiments, 

deionized water (DI H2O) with a resistance of 18 MΩ∙cm (Millipore, Billerica, MA) 

was used. Buffer solutions were pH adjusted with 1 M HCl and 1 M NaOH, verified 

with a pH meter (420 A+, Orion; electrode 599030, Cole-Parmer, Vernon Hills, IL). 

 

4.3.2. PEGylation of Concanavalin A 

ConA or ConA-TRITC was conjugated with mPEG-NHS(SC), a primary amine 

reactive PEG derivative with a succinimidyl carbonate linker that provides stability in 

aqueous solutions268. ConA (10 mg) was fully dissolved in 1 mL of sodium bicarbonate 

buffer solution (0.1 M sodium bicarbonate, 0.15 M sodium chloride, pH 8.5). To remove 

any initial aggregates, the solution was filtered using a 0.2 μm syringe filter. MADM 

was added to the ConA solution at a concentration of 1.9 mg mL-1 to protect the sugar 

binding site on each ConA monomer. Once fully dissolved, mPEG-NHS(SC) was 

incorporated at a molar ratio of 15:1 to that of ConA (MW 25,500 g/mol). The solution 

was placed on a rotating plate at room temperature (RT) for 6h and then allowed to sit on 

a bench top for an additional 18h at RT to slowly agitate the contents without denaturing 

of the protein. At the end of the reaction, the solution was separated for dialysis in a 

dialysis tube (MWCO 20 kDa) against either sodium bicarbonate buffer or Tris buffer 

(10 mM TRIS-HCl, 0.15 M NaCl, 1 mM CaCl2, 1 mM MnCl2, pH 7.4) for 24h with 
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multiple bath changes. After dialysis, the solutions were extracted from the dialysis 

membranes and stored in 1.5 mL centrifuge tubes. 

 

4.3.3. Characterization of PEGylation 

The extent of conjugation was assessed using fluorescamine (spiro(furan-

2(3H),1'(3'H)-isobenzofuran)-3,3'-dione, 4-phenyl), a fluorescent, primary amine-

binding dye. Due to the high sensitivity of fluorescamine, it is capable to bind to primary 

amines in as little as 50 ng of protein250, 269. The intensity of fluorescamine decreases as 

the extent of PEGylation increases since fewer primary amines groups are available. 

Solutions were prepared in sodium bicarbonate salt solution, pH 8.5. Known ConA and 

mPEG-ConA concentrations from 0 to 150 μg were placed in a centrifuge tube (1.5 mL) 

to which 0.5 mL of fluorescamine (0.3 mg mL-1 in acetone) was added. After 

approximately 7-10 mins, the fluorescence intensity of the solutions was measured using 

a TECAN Infinite 200 PRO (Tecan Group, Ltd, Männedorf, Switzerland) with an 

excitation and emission wavelength of 390 nm and 475 nm, respectively. The degree of 

PEGylation (DP) was calculated using the following equation: 

 

 

 

where m is the slope from the linear regression of the fluorescence intensity as a function 

of the protein concentration. The number of mPEG chains attached was determined by 
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distributing the DP to the maximum number of available primary amine groups on the 

surface of ConA. 

 

4.3.4. Sugar Binding Affinity  

Fluorescence anisotropy was utilized to examine the binding affinity of 

PEGylated ConA in comparison to native, unmodified ConA to a fluorescently labeled 

ligand, APTS-MT. APTS-MT (APTS, λex: 470nm, λem: 520 nm) was measured in the 

presence of various protein concentrations up to 10 μM using an Infinite 200 PRO 

(Tecan Group, Ltd, Männedorf, Switzerland) outfitted with polarizers. A Boltzmann 

function was used to implement a sigmoidal fit from which the binding (ka) and 

disassociation (kd) constants could be calculated. 

 

4.3.5. Non-Specific Electrostatic Interactions 

Native ConA, at physiological pH, has a net negative charge that contributes to 

non-specific binding among ConA proteins as well as with potential electrostatically 

charged, assay-delivery carriers. To examine the ability of PEGylated ConA to resist 

these electrostatic charges, modified and unmodified ConA were introduced to a layer-

by-layer (LbL) assembly. Multiple 300 μL polystyrene wells were initially treated with 

PEI, a highly positively charged polymer, followed by layers of PSS and PAH. LbL 

assemblies ending with PSS (mainly negatively charged surface) or with PAH (mainly 

positively charged surface) of 4 or 4.5 bilayers, respectively, were fabricated. PEGylated 

ConA (3.47 mg mL-1) and native ConA (3.39 mg mL-1) were injected into control 
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(neutrally charged polystyrene), PSS (negatively charged), and PAH (positively charged) 

surface wells. After 48h, the solutions were extracted and the protein concentration was 

measured by absorbance (280 nm). 

 

4.3.6. Layer-By-Layer Microcapsules Entrapping Glucose-Sensing Assay Components 

 To become the acceptor in a FRET pair with APTS-MT, mPEG-ConA was 

labeled with TRITC (TRITC, λex: 555 nm, λem: 580 nm). This was achieved by first 

dialyzing mPEG-ConA against 0.1 M NaHCO3, pH 9.0 for 24h. mPEG-ConA was then 

removed, placed into a small glass beaker with a Teflon stir bar, and slowly stirred. 

TRITC (dissolved in DMSO at 10 mg mL-1) was then slowly added at 1 mg mL-1 for 

every 1 mL of mPEG-ConA at a concentration of 10 mg mL-1. This solution was 

allowed to reaction for 1~2h. Finally, the solution was dialyzed against TRIS buffer for 

24h (MWCO 8-10 kDa). 

 For microencapsulation within a LbL assembly, the initial capsule cores were 

fabricated by adding 3 μM of mPEG-ConA-TRITC and 400 nM of APTS-MT to 0.33 M 

CaCl2 while stirring at 300 rpm. 0.33 M Na2CO3 with 4 mg mL-1 PSS was then 

introduced at 1:1 ratio, and the solution was allowed stir for 30s. Afterwards, the stirring 

was stopped, and the solution was left to react for 15min at RT. The calcium carbonate 

core solution was transferred into 1 mL centrifuge tubes and centrifuged at 3000 rpm for 

5min. The supernatant was extracted, and washed with 0.01 M NaCl (pH 7.5). The 

resuspended calcium carbonate core solution was centrifuged again (3000 rpm, 5min), 

and the supernatant was extracted once more. The cores were then alternatively soaked 
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in 300~500 μL of a 2 mg mL-1 solution of PAH or PSS, gently shaken for 30s, and 

sonicated for 10s. Between each polyelectrolyte layer, the calcium carbonate 

microspheres (CCMs) were centrifuged at 3000 rpm for 5min, the supernatant was 

discarded, the microspheres were resuspended in 0.01 M NaCl (pH 7.5), and centrifuged 

once more. After depositing 15 bilayers (ending with PSS as the outmost layer), the 

CCMs were suspended in 0.1 M EDTA (pH 7.4) and allowed to mix for 20min to 

dissolve the calcium carbonate core. The microspheres were then centrifuged (3000 rpm, 

5min), the supernatant was discarded, and the spheres were resuspended in 0.1 M EDTA 

again for 20min. Finally, the microspheres were centrifuged, the supernatant was 

discarded, and the spheres were resuspended in TRIS buffer. After centrifuging once 

more and removing the supernatant, the calcium carbonate-dissolved LbL microspheres 

were resuspended in TRIS buffer. 

 For imaging, approximately 10 μL of the microsphere solution was smeared on a 

glass slide on which a slide cover was placed. Images were taken using a confocal 

microscope (Leica TCS SP5, Leica Microsystems, Inc., Buffalo Grove, IL) using 

sequential scanning with excitation wavelengths of 476 nm and 543 nm and either a 40x 

or 63x dry objective. 

 

4.3.7. Thermoresponsive Hydrogel for Microsphere Embedding 

 Polysiloxane Nanoparticle Preparation. Polysiloxane colloidal nanoparticles 

with an average diameter of ~200 nm were prepared via emulsion polymerization and 

purified via dialysis as previously reported125. The final emulsion was 4.8 wt% solids. 
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SNNC Matrix. A SNNC planar hydrogel was used to embed the glucose-sensing 

microspheres. This hydrogel was formed by combining NIPAAm monomer (1.0 g), 

NVP co-monomer (0.16 g), BIS crosslinker (0.04 g), polysiloxane nanoparticle emulsion 

(0.485 g), Irgacure-2959 photoinitiator (0.08 g) and DI H2O (6.54 g) with ~100 μL of 

microspheres. Planar hydrogel sheets (1 mm thick) were produced by pipetting the 1st 

network precursor solution into a mold consisting of two clamped glass slides (75 x 50 

mm) separated by 1 mm thick polycarbonate spacers. The mold was then immersed into 

an ice water bath (~7 °C) and exposed to longwave UV light for 10min. The resulting 

single network nanocomposite (SNNC) sheet was removed from the mold, rinsed with 

DI H2O and then soaked in TRIS buffer at RT for 24h with one buffer exchange.  

 

4.3.8. FRET Responses 

 Free Solution: mPEG-ConA-TRTIC with APTS-MT. The FRET response between 

3 μM mPEG-ConA-TRITC and 100 nM APTS-MT was measured in the presence of 

various concentrations of glucose (0, 200, and 400 mg dL-1). The fluorescence intensity 

spectra were recorded using an Infinite PRO 200 (Tecan Group, Ltd, Männedorf, 

Switzerland). 

 LbL Encapsulated mPEG-ConA-TRITC with APTS-MT Microspheres. The FRET 

response between 3 μM mPEG-ConA-TRITC and 400 nM APTS-MT encapsulated 

within LbL microspheres was measured in the presence of various concentrations of 

glucose (0, 100, 200, 400, and 600 mg dL-1). The fluorescence intensity spectra were 
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recorded using an Infinite PRO 200 (Tecan Group, Ltd, Männedorf, Switzerland) after 

the microspheres had soaked for 5h in each glucose concentration. 

 

4.4. Results and Discussion 

 

4.4.1. Extent of PEGylation 

A total of 12 lysine residual groups and one terminal amine group reside on the 

surface of a ConA monomer. Assuming the majority of mPEG chains conjugate to these 

surface primary amines, 13 is the maximum number of mPEG chains that produce amide 

bonds. Introducing fluorescamine to known concentrations of ConA and mPEG-ConA, 

the extent of PEGylation may be determined by the slope ratio of modified to 

unmodified ConA. As seen in Figure 4.1., the fluorescence intensities increase linearly 

as the protein concentration increases. However, the reduced fluorescence from mPEG-

ConA samples are assumed to be attributed to the reduced available primary amines. 

Upon implementing the DP equation, the result indicates that ~27% of the total available 

surface primary amines on ConA were conjugated. This correlates to 3~4 mPEG chains 

per ConA monomer. 
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Figure 4.1. | Degree of PEGylation. The graph exhibits the fluorescamine fluorescence 
intensities of as a function of ConA and mPEG-ConA concentrations. The slope ratio 
(mPEG-ConA:ConA) is used to calculate the DP and thus approximates the number of 
conjugated mPEG chains to a ConA monomer. 
 

4.4.2. mPEG-ConA Sugar Binding Affinity 

Fluorescence anisotropy is a widely used method to determine the associating 

and disassociating constants of proteins270-272. Here, the anisotropy of the APTS-MT in 

the presence of mPEG-ConA and ConA was measured. Figure 4.2. displays the 

recorded anisotropy as a function of the logarithmic protein concentration. A Boltzmann 

function was applied, which produced a sigmoidal curve fit. Based on the function 

equation: 
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𝑌𝑌 = 𝐴𝐴2 +
(𝐴𝐴1 − 𝐴𝐴2)

1 + 𝑒𝑒𝑒𝑒𝑒𝑒
𝑉𝑉50−𝑋𝑋
𝑚𝑚

 

 

where A1 is the maximum anisotropy value, A2 is the minimum anisotropy value, X is 

the protein concentration, m is the slope, and V50 is the half maximum value as well as 

the disassociation constant (kd), the binding or associating constant (ka) was calculated 

to be 6.226±1.08 μM-1 (mPEG-ConA) and 6.498±1.06 μM-1 (ConA). Although the 

calculated binding constant for mPEG-ConA is lower than ConA while displaying 

higher anisotropies, the affiliated errors indicate that the affinities between native ConA 

and PEGylated ConA and are similar.   
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Figure 4.2. | mPEG-ConA and ConA binding affinities. Measured fluorescence 
anisotropies of APTS-MT in the presence of mPEG-ConA and ConA and their 
respective Boltzmann sigmoidal fits. 
 

 

4.4.3. Non-specific Electrostatic Interaction Resistance 

 Non-specific binding of ConA due to electrostatic interactions reduces the 

protein’s stability, lifetime, and efficiency in a competitive binding assay. To increase 

resistance to these charges, neutrally charged mPEG chains were grafted to ConA. 

PEGylated ConA (3.47 mg mL-1) and native ConA (3.39 mg mL-1) were introduced to 

planar LbL assemblies ending with either a positively or negatively charged surface 
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layer. After 48h, the exposed solutions were extracted and protein concentrations were 

measured via absorbance (280 nm) as seen in Figure 4.3. ConA and mPEG-ConA 

maintained their initial concentrations when exposed to a neutrally charged, polystyrene 

surface (control). In the presence of an electrostatically, mainly positively or negatively 

surface, mPEG-ConA continued to maintain its initial concentration whereas native 

ConA’s concentration decreased. This decrease signifies the non-specific binding of 

unmodified ConA to the LbL assembly’s charged surface layer. 

 

 

Figure 4.3. | Non-Specific electrostatic interaction. mPEG-ConA and native ConA 
supernatant concentrations after a 48h exposure to an electrostatically charged surfaces. 
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4.4.4. Layer-By-Layer Microcapsules Entrapping Glucose-Sensing Assay Components 

 After dissolving the calcium carbonate core, LbL microspheres, initially 

encapsulating 3 μM mPEG-ConA-TRITC and 400 nM APTS-MT, were imaged utilizing 

a confocal microscope (Leica TCS SP5, Leica Microsystems, Inc., Buffalo Grove, IL) 

using sequential scanning with excitation wavelengths of 476 nm and 543 nm and a 63x 

dry objective. As exhibited in Figure 4.4., the fluorescence emission of APTS-MT (Fig. 

4.4.a) and mPEG-ConA-TRITC (Fig. 4.4.b) were captured. The microspheres had an 

approximate diameter of 8~12 μm and conveyed that both assay components were 

successfully encapsulated. Since the microspheres range in size and reside in different x-

,y-, and z- positions, the confocal image captures various planes of individual spheres. 

Upon viewing various microsphere planes, mPEG-ConA-TRITC seems to inhabit the 

entire core. As a previous concern, the net negative charge of ConA would immobilize 

the protein to the innermost positive layer of the assembly and thereby reduce its ability 

to reversibly bind with a competing ligand. However, as seen in Figure 4.4., mPEG-

ConA-TRITC appears to dwell throughout the microsphere core. This may suggest that 

the neutral PEG chains conjugated to the ConA’s surface are masking the protein’s 

negative charges and thus keeping the protein freely suspended.  
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Figure 4.4. | Confocal microscopy: LbL microspheres encapsulating glucose-sensing 
assay components. Confocal microscopy images of LbL microspheres post calcium 
carbonate core dissolution. The microspheres display the fluorescence emission of 
encapsulated (a) APTS-MT and (b) mPEG-ConA-TRITC. c, An overlay of images a and 
b. Scale bars are 10.1 μm. 
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4.4.5. Thermoresponsive Hydrogel for Microsphere Embedding 

 As a proof of concept in the progression of a biocompatible membrane that 

contains a glucose sensing assay, the core-dissolved LbL microspheres (initially holding 

3 μM mPEG-ConA-TRITC and 400 nM APTS-MT) were embedded within a SNNC 

hydrogel matrix. The resulting polymer was then imaged utilizing a confocal microscope 

(Leica TCS SP5, Leica Microsystems, Inc., Buffalo Grove, IL) using sequential 

scanning with excitation wavelengths of 476 nm and 543 nm and a 40x dry objective. 

The densely packed matrix shows microspheres inlayed within the SNNC hydrogel (Fig. 

4.5.). Interestingly, the fluorescence emission from APTS-MT (Fig. 4.5.a) was more 

intense in comparison to the microspheres in free solution. This could suggest that the 

SNNC hydrogel may aid in the containing the low molecular weight of APTS-MT 

should it be slowly leaching from the microsphere hollow cavities. 
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Figure 4.5. | Confocal microscopy: SNNC embedded with LbL microspheres. 
Confocal microscopy images of core-dissolved LbL microspheres (encapsulating (a) 
APTS-MT and (b) mPEG-ConA-TRITC) that are embedded within a SNNC hydrogel 
matrix. c, An overlay of images a and b. Scale bars are 10.1 μm. 
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4.4.6. FRET Responses 

To function in a competitive binding, glucose sensing assay, mPEG-ConA-

TRITC requires a suitable fluorescent pair, APTS-MT, to produce a FRET response. 

Therefore, mPEG-ConA-TRITC (FRET acceptor) was placed in solution with APTS-

MT (FRET donor) at a concentration of 3 μM to 100 nM, respectively. At tiered glucose 

concentrations (0, 200, and 400 mg dL-1), the fluorescence intensity of the FRET donor 

was measured (Fig. 4.6.). As the glucose concentration was increased in the system, the 

FRET donor emission also increased. The relation indicates that in the company of 

glucose, glucose actively binds to mPEG-ConA-TRITC and causes the disassociation of 

APTS-MT beyond the Förster distance. Thus, the FRET efficiency decreases, which 

results in an increase in the donor fluorescence emission intensity. The second peak 

(~580 nm) is believed to be a product of the spectra overlap between the donor and 

acceptor fluorophores.  

Now, the FRET response of the LbL assembled, microsphere encapsulated assay 

(initially 3 μM mPEG-ConA-TRITC and 400 nM APTS-MT) was also measured at 

discrete glucose levels (0, 100, 200, 400, and 600 mg dL-1) (Fig. 4.7.). These spectra 

were collected after the LbL microspheres were allowed to soak in the corresponding 

glucose concentrated solution for 5h. This should have provided adequate time for the 

glucose to diffuse through the 15 bilayers and cause the disassociation of APTS-MT. 

However, in contrast to the FRET response in free solution and shown in Figure 4.7. as 

the glucose concentration increases in the system, the acceptor emission appears to 

change. This could be misinterpreted as a FRET response since the affiliation implies 
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that in presence of glucose, mPEG-ConA-TRITC binds to glucose, pushes APTS-MT 

farther than the Förster distance in which APTS-MT thereby does not transfer energy, 

and the fluorescence intensity of mPEG-ConA-TRITC declines. However, since the 

definitive FRET response in free solution demonstrated a change in the donor emission, 

the acceptor emission change witnessed here is more likely due to a dilution effect. In 

order to vary the glucose concentrations while maintaining a similar population of 

microspheres in each microplate well, small highly concentrated aliquots were 

introduced which increased the sample volumes. Essentially, this diluted the 

microsphere concentration. 

The lack of a FRET response could be a result of an insufficient amount of or an 

incorrect ratio of mPEG-ConA-TRITC and APTS-MT. It is plausible that during 

fabrication the retention rate of one or both assay components within the calcium 

carbonate microspheres is low. Further, if retention is sufficient and the ratio is incorrect, 

it could indicate that although the LbL assembly is providing resistance, APTS-MT is 

still slowly leaching out of the hollow microsphere core. Yet another theory points to the 

use of EDTA to dissolve the calcium carbonate core. EDTA may also interfere with the 

calcium ions required in ConA to bind with carbohydrates. Although the microspheres 

are soaked in a calcium rich TRIS solution, it is possible that EDTA may slight alter the 

protein’s structure resulting in its inability to bind with APTS-MT. Regardless, 

witnessing both the donor and acceptor emission peaks further proves that mPEG-ConA-

TRITC and APTS-MT are present within the microspheres and that the LbL assembly 

appears to be entrapping both components. 
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Figure 4.6. | Assay FRET response in free solution. The assay FRET donor response 
in the presence of various glucose concentrations. 
 

 

Figure 4.7. | Donor and acceptor emission spectra within LbL microspheres. The 
donor and acceptor emission spectra from the calcium carbonate core-dissolved LbL 
microsphere encapsulated FRET pair. 
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4.5. Summary 

 

PEGylated ConA was evaluated and compared to native ConA for use within a 

competitive binding, glucose-sensing assay. ConA was successfully grafted with mPEG 

(5 kDa) chains, and the degree of PEGylation was determined utilizing fluorescamine. 

The decrease in the fluorescamine fluorescence intensity of mPEG-ConA indicated an 

increase in PEGylation, as fewer primary amines were available. It was determined that 

approximately 3~4 chains resided on the surface of a ConA monomer.  

To investigate the ligand binding affinity between PEGylated and native ConA, 

the associating and disassociating constants were measured using fluorescence 

anisotropy. The calculated affinities indicated that PEGylated and native ConA were 

similar and thus, it could be assumed that the mobile, conjugated PEG chains were not 

interfering with ConA’s ligand binding site. 

mPEG-ConA was then assessed for its resistance to non-specific electrostatic 

interactions. In comparison to native ConA, mPEG-ConA exhibited the ability to prevent 

electrostatic, non-specific binding when exposed to charged LbL assembly surfaces. 

This suggested that the mobile PEG chains masked the protein’s net negative charge, 

and therefore, enabled ConA to remain suspended in free solution. As such, it conveys 

promise to resist the associated charges within a LbL assembled delivery system. 

The successful encapsulation of mPEG-ConA-TRITC and APTS-MT within a 

LbL assembled, calcium carbonate core-dissolved microsphere with 15 bilayers was 

demonstrated through confocal images and observing both donor and acceptor emission 
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peaks. Further, mPEG-ConA-TRITC appeared to maintain homogenous suspension 

within the LbL microsphere core – resisting the electrostatic charges of the LbL 

assembly. In addition, it exhibited the LbL assembly’s ability to encapsulate both assay 

components, but especially the low molecular weight of APTS-MT. 

Although a definitive FRET response was witnessed with increasing glucose 

concentrations between mPEG-ConA-TRITC and APTS-MT in free solution, when 

encapsulated, a misleading FRET response was seen that is likely associated with a 

dilution effect. Nonetheless, the assay’s components were confirmed present within the 

microsphere cavities, and as a proof of concept, these microspheres were successfully 

inlayed into a SNNC matrix. Future studies should be completed that consider 

optimizing the concentration and encapsulating rate of higher molecular weight FRET-

pairs to enhance the FRET response within these LbL microspheres and when the 

spheres are embedded within a thermoresponsive, biocompatible hydrogel.  
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CHAPTER V 

CONCLUSIONS 

Diabetes mellitus is a chronic and potentially attenuating disease that results in 

uncontrolled glycemic concentrations and an elevated risk for long-term secondary 

complications. To-date, the “finger-prick” is the most common and widely used 

technique to monitor blood glucose concentration. Unfortunately, it only provides a 

glance of an ever-changing concentration. Commercial CGM systems have potential, but 

their transcutaneous, amperometric sensors facilitate a heightened FBR, which limits 

their lifetimes to an FDA-approved maximum of 7 days. Herein, a “self-cleaning”, 

thermoresponsive, DNNC hydrogel was evaluated and used as an anti-biofouling 

membrane to contain LbL microsphere assemblies encapsulating a competitive binding 

FRET assay composed of mPEG-ConA-TRITC and APTS-MT. This research showed 

the effectiveness of thermoresponsive DNNC hydrogels to resist biofouling and 

demonstrated the potential of thermoresponsive hydrogels, when combined with an 

encapsulated glucose assay, as an implantable continuous glucose monitoring biosensor. 

 In Chapter II, a “self-cleaning,” thermoresponsive, DNNC hydrogel was 

developed that modulates its surface hydrophobicity with temperature. The original 

PNIPAAm hydrogel was designed as a single network (SN). However, to improve its 

mechanical robustness and swelling capabilities, a double network version was 

formulated. The improved DNNC hydrogel composition presented glucose diffusion 

coefficients similar to cutaneous tissue near subcutaneous physiological temperatures, a 

stable forward and reverse thermosensitivity profile, and cellular release abilities in vitro 
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without toxic, cell-damaging effects. Overall, the new DNNC hydrogel exhibited 

promising in vitro anti-biofouling characteristics and glucose biosensor properties. 

In Chapter III, the DNNC hydrogel was assessed in vivo for 30 days. Using PEG-

DA as a well-established, U.S. F.D.A. approved, biocompatible control, DNNC and 

PEG-DA hydrogels were subcutaneously implanted on the dorsal of CD® Hairless rats. 

Excised and assessed post 7 and 30 days, a significant decrease in fibrous capsule 

formation and increase in neovascular growth was observed around the DNNC hydrogel 

in comparison to PEG-DA at 30 days. Furthermore, a model of metabolic and 

environment temperatures conveyed a potential fluctuation range that appeared sufficient 

to drive the DNNC hydrogel’s “self-cleaning” property. Essentially, these results are 

ideal for a biosensor membrane in order to decrease sensor lag time and improve its 

accuracy over the extent of its lifespan without the use of an external heat source. 

In Chapter IV, a competitive binding, FRET assay was encapsulated within 

calcium carbonate core-dissolved LbL assembled microspheres. To improve the stability 

of the carbohydrate-binding protein, ConA, and increase its resistance to electrostatic 

surfaces without sacrificing its ligand bind affinity, PEG chains were covalently 

conjugated to the protein’s surface through a process known as PEGylation. mPEG-

ConA-TRITC and APTS-MT were successfully encapsulated within LBL microsphere 

assemblies with a dissolved calcium carbonate core, which were also successfully 

embedded within a SNNC hydrogel. Although the encapsulated assay lacked a definitive 

FRET response to varying glucose concentrations, confocal microscopy confirmed the 

assay’s homogenous encapsulation feasibility – conveying this FRET-based glucose-
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sensing assay and its delivery systems as a promising approach for a continuous glucose 

monitor. 
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CHAPTER VI 

FUTURE DIRECTIONS 

 

6.1. Implantable Membrane Geometry 

 

 The delayed glucose biosensor response results due to a combination of diffusion 

and assay reaction time lags. It is essential to minimize these parameters to obtain a 

sensible response time (3-5 min). Therefore, future studies will consider alternative 

DNNC geometries for the containment of the glucose-sensing LbL microspheres. 

As needle-injection simplifies subcutaneous implantation, a hollow cylindrical 

geometry will be constructed, whose cavity will be injected with glucose-sensing 

microspheres. A glucose diffusion time lag model was simulated that effectively helps 

determine the DNNC hydrogel’s optimal cylindrical dimensions. Incorporating the 

glucose diffusion rate (1.88 ± 0.01 x 10-6 cm2 s-1, see Chapter II), the maximum and 

minimum free tetrahedral mesh element size of 0.382 mm and 0.0249 mm, respectively, 

cylinder end cap thicknesses of 300 μm, and varying the membrane wall thickness, the 

hollow cavity radius, and the membrane length, the glucose diffusion time lag will be 

modeled. Based on the following simplified equation that relates the cylinder’s surface 

area to hollow cavity volume: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

=  
2(𝑟𝑟1 + 𝐿𝐿1)
𝑟𝑟22𝐿𝐿2
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where r1 is the cylinder outer radius, r2 is the hollow cavity radius, L1 is the cylinder 

outer length, and L2 is the hollow cavity length, it is expected to result in a decreased 

surface area to volume ratio as the radii and lengths are increased (Fig. 6.1.). Future 

studies will consider the required mechanical robustness for subcutaneous implantation 

and necessary glucose-sensing microsphere volume when deciding on a final geometric 

design. 

 

 

Figure 6.1. | Hollow Cylindrical Glucose Diffusion Model. Glucose diffusion model 
conveying the necessary cylindrical dimensions to obtain 3 and 5 min lag times. 
 

 

6.2. Extended In Vivo Biocompatibility Evaluation 

 

The human body’s immune system is an amazing and intricate organization that 

provides the best available comprehensive protection. Its synergistic, yet complex, 

pathways fight the introduction of most foreign elements – even those with physiological 

benefits (i.e. implantable continuous glucose monitoring biosensor). Future studies will 

evaluate the DNNC hydrogel’s efficacy to minimize biofouling for at least 90 days. This 
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time point marks the full length of the healing process, and thereby provides greater 

insight to the extent of the DNNC hydrogel’s anti-biofouling property. Furthermore, a 

DNNC hydrogel containing glucose-sensing LbL microspheres will be evaluated in vivo 

for at least 90 days to confirm its effectiveness in reducing fibrous encapsulation 

although the hydrogel’s composition has been slightly altered.  
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