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Abstract

Community recovery is a major challenge in data science and computer science. The goal in
community recovery is to find the hidden clusters from given relational data, which is often
represented as a labeled hypergraph where nodes correspond to items needing to be labeled
and edges correspond to observed relations between the items.

We investigate the problem of exact recovery in the class of statistical models which can
be expressed in terms of graphical channels. In a graphical channel model, we observe noisy
measurements of the relations between k nodes while the true labeling is unknown to us,
and the goal is to recover the labels correctly. This generalizes both the stochastic block
models and spiked tensor models for principal component analysis, which has gained much
interest over the last decade. We focus on two aspects of exact recovery: statistical limits
and efficient algorithms achieving the statistic limit.

For the statistical limits, we show that the achievability of exact recovery is essentially
determined by whether we can recover the label of one node given other nodes labels with
fairly high probability. This phenomenon was observed by Abbe et al. for generic stochas-
tic block models, and called "local-to-global amplification". We confirm that local-to-global
amplification indeed holds for generic graphical channel models, under some regularity as-
sumptions. As a corollary, the threshold for exact recovery is explicitly determined.

For algorithmic concerns, we consider two examples of graphical channel models, (i)
the spiked tensor model with additive Gaussian noise, and (ii) the generalization of the
stochastic block model for k-uniform hypergraphs. We propose a strategy which we call
"truncate-and-relax", based on a standard semidefinite relaxation technique. We show that
in these two models, the algorithm based on this strategy achieves exact recovery up to a
threshold which orderwise matches the statistical threshold. We complement this by showing
the limitation of the algorithm.

Thesis Supervisor: Michel X. Goemans
Title: Professor of Applied Mathematics
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Chapter 1

Introduction

Identifying clusters from relational data is one of the fundamental problems in data

science. Such a task can be often formulated as a problem of recovering the true

labeling (or community assignment) of the items from a given data set which is a

collection of noisy measurements of the similarity between two or more items. We are

particularly interested in the setting where those measurements are independent of

each other. Such models are referred to as graphical models, or conditional random

fields in some literature.

As a motivational example, let us consider a community detection problem on a

graph. The stochastic block model (SBM) is one of the simplest generative models

which can be used to formally address such a problem. Specifically, in the case of

the SBM with two symmetric communities, we observe a graph G on the vertex set

V, where two vertices are joined with an edge with a probability only depending on

whether they belong to the same community. We assume that true community labels

are already assigned to the vertices but are unknown to us. The goal of community

detection is to recover the correct labels from the observed graph G. We note that

one can only succeed with high probability, as there is still a positive (but low) chance

for G being adversarial for recovering all the labels.

In this thesis, we only focus on exact recovery, i.e., we are only interested in the

solution which is correct everywhere. There are other notions of recovery require-

ments, such as almost exact recovery and partial recovery, which lead to their own
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theories of interest. However, we will not take a deeper look into them as it is out of

the scope of this thesis.

For exact recovery, it is well-known in the statistics community that the maxi-

mum likelihood estimation or Bayesian estimation achieves the minimum error. This

allows us to understand exact recovery by analyzing the performance of the optimal

estimator. In the SBM with two equal-sized communities, the optimal estimator re-

duces to the minimum' bisection problem: given a graph G with the vertex set V,

find A C V with half of the vertices such that the number of edges between A and

V \ A is minimized. Hence, exact recovery is possible if and only if the minimum

bisection problem returns the correct communities with high probability, where the

probability is taken over all randomness of the model.

Such an optimal estimator is usually hard to compute as it requires optimization

over the solution space whose size is exponential. In the example above, to compute

the optimal estimator we need to solve the minimum bisection which is indeed an NP-

hard problem. Nevertheless, we expect that worst-case instances for those problems

are nothing similar to a "typical" instance we observe from the model.

Let us name a few advantages of considering the average-case complexity over a

statistical model. First of all, it surpasses the curse of worst-case instances which

might not be a good representative of data from real-world applications. Second,

such models can be used as a testbed for various algorithms, allowing us to compare

them with provable performance guarantees. Also, it is very interesting in complexity

theory perspective that many NP-hard problems becomes easy when we consider

average-case complexity over a model with a planted solution.

This thesis focuses on a particular class of statistical models which are called

the graphical channel models. Graphical channels are powerful enough for describing

important models such as SBMs and its variants, noise models with planted signal

which are used to model principal component analysis, random constraint satisfaction

problems with planted solutions, and more.

Let us formulate the recovery problem as a problem of inferring the values of

lor maximum, depending on the parameters of the model
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latent variables from an instance of observables which are mutually independent and

depend on only a few number of latent variables each. For example, in the SBM

described above, community assignment of a vertex corresponds to a latent variable

and the presence (or non-presence) of an edge corresponds to an observable which

only depend on the labels of its endpoints.

Precisely, we consider a model which factorizes along a hypergraph R = (V, E)

where v E V is associated with a latent variable x, and e E E is associated with an

observable ye. We further restrict our focus on the case that the hypergraph R is

k-uniform for some fixed k (i.e., jej = k for all hyperedge e), hence the dependence

graph on xv's and ye's forms a bipartite graph which is k-regular on the y-side. This

is the graphical channel model.

One may notice that the graphical channel model can be expressed as a graph code

on a memory-less noise channel. In this context exact recovery corresponds to the

problem of decoding the message from a given corrupted codeword. The celebrated

Shannon's noisy-channel coding theorem tells us that when we fix a memory-less

channel with capacity C, there then exists an encoding scheme with rate R which

allows decoding with high probability as long as R < C. The converse is also true: if

R > C, then no encoding scheme with rate R allows a stable decoding.

Inspired by Shannon's theorem, we search for the correct notion of "channel ca-

pacity" for graphical channel models. Notice the difference between the two settings:

in the setting of graphical channel models, we have an encoding scheme which is given

to us and have specific structure, while in the setting of Shannon's theorem, we have

freedom to choose an encoding scheme while the channel is fixed. We also remark

that the graphical channel model corresponds to a sparse code whose rate decays to

zero as the length of message IVI grows. This implies that the channel capacity in a

traditional sense would be diverging as IV| grows, so we need an asymptotic notion

of the capacity in the limit of |V| - oc.

It was shown in [6] that the Chernoff-Hellinger divergence serves a role of capacity

in generic SBMs. As a consequence, one can find a sharp threshold such that exact

recovery can be done successfully with probability asymptotically approaching 1 if

13



and only if the capacity is above the threshold. This can be proven by a local-to-

global amplification argument as appearing in [11, which means roughly that we can

recover all vertex labels as long as we can locally recover the label of a vertex given

the labels of all other vertices with low failure probability.

We extend this argument to discrete signal recovery in spiked tensor models in

Chapter 2, and to a generalized version of SBMs for k-uniform hypergraphs in Chapter

3. Moreover, in Chapter 4 we prove that local-to-global amplification happens in

generic graphical channel models as long as it satisfies some regularity conditions on

the channels. As a corollary, we determine the sharp threshold value in terms of a

certain type of divergence computed on the channel which matches previous works

on a specific model.

On the other hand, we ask whether exact recovery can be efficiently done. Recall

that in the case of the SBM with two symmetric communities, the optimal estimation

scheme corresponds to the minimum bisection problem which is NP-hard to solve

in the worst case. We may wonder whether there is a polynomial-time algorithm

which solves the minimum bisection problem on most typical instances. Indeed,

there are several polynomial-time algorithms known to achieve exact recovery up to

the statistical threshold in this case [4, 21, 56, 6].

In general, the optimal estimator in the graphical channel model can be expressed

as a polynomial optimization problem, which is the problem of finding the maximum

(or the minimum) value of a given polynomial over a set which can be described by

polynomial inequalities. Although this problem is in general NP-hard (even when the

polynomial is quadratic), the sum-of-squares relaxation scheme provides a systematic

way to find an approximate solution. Roughly speaking, this scheme first relaxes the

original problem to a convex optimization problem which we can solve efficiently, then

finds a feasible solution by rounding the solution of the relaxation. Interestingly, in

[21] and 156] it was independently pointed out that in the SBM with two symmetric

communities, one does not need the rounding step: The relaxed problem will give the

exact solution with high probability as long as it is statistically possible.

Inspired by those results, we propose a strategy which we call "truncate-and-relax":
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We first truncate the polynomial to a quadratic polynomial, then solve the standard

semidefinite relaxation to find the optimum of the truncated polynomial. We show

that in planted bisection models and in generalized SBMs for k-uniform hypergraphs,

the truncate-and-relax strategy successfully recovers the community labels up to a

threshold which orderwise matches with the statistical threshold (See Section 2.4 and

Section 3.4, respectively).

1.1 Organization of the thesis

In the rest of this chapter, we motivate our work by reviewing previous works on

two particular models: the stochastic block model with two symmetric communities

and the spiked Wigner model. We also give a general formulation of the graphical

channel model and several important examples of it, formally describing the recovery

requirements that we consider, and discuss briefly various relaxation techniques from

the spectral to the Sum-of-Squares methods.

Chapter 2 is devoted to spiked models with additive Gaussian noise. We deter-

mine the statistical threshold where the sharp phase transition happens for a generic

spiked model. We discuss the guarantee of the truncate-and-relax algorithm on the

planted bisection model (which is a specific instance of spiked models) and make

a comparison with a naive sum-of-squares technique. In Chapter 3 we consider the

generalization of the stochastic block model to k-uniform hypergraphs. We first deter-

mine the statistical threshold where the sharp phase transition happens, and discuss

the performance guarantee of the truncate-and-relax algorithm on this type of model.

Finally, in Chapter 4 we discuss the statistical limit of generic graphical channel mod-

els. We describe the local-to-global amplification phenomenon and prove that such

amplification holds under a set of mild conditions on the channel.
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1.2 Problem description and examples

Consider a hypergraph N = (V, E) with JVj = n and Iej = k for all e E E (k-uniform).

We assign the vertex variable x, to each vertex v E V and the edge variable ye to

each (hyper)edge e e E. Each vertex variable has a value in the input alphabet X

and each edge variable has a value in the output alphabet Y. We assume that X is

finite to make the notion of exact recovery clear (but Y is arbitrary). Let Q be a

noisy channel which gets (xi, - -- ,Xk) E Xk as an input and outputs a random value

in Y according to some distribution only depending on the value of the input.

A graphical channel model is defined as a probabilistic model for y given x, where

ye is obtained by independently sending (xe,- - , xVk ) through the channel Q, for

each e = {vi, -.. , Vk} E E. Let us write this as x y, or simply x - y if N is clear

from the context. Furthermore, we assume that the input x is drawn from a prior

distribution P. Now we formulate exact recovery as the following:

Definition 1.1 (Exact recovery in graphical channel model). Suppose that we are

given the prior distribution P, the channel Q and the base hypergraph W. Exact

recovery in the graphical channel model defined by P, Q and N is a task of recovering

x given an instance of y. For E > 0, we say that a deterministic algorithm D which

maps y E yE to D(y) E Xv achieves exact recovery with error probability E if

P (D(y) = x) > 1 - 6.

The statistical threshold can be characterized by minimizing the error probability

over all possible D. Note here that we did not require D to be an efficient algorithm,

i.e., running in polynomial time with respect to the size of input. If we restrict D

even further to be efficient, then we would get the computational threshold. We are

interested in characterizing those two types of thresholds and ask whether they match

(exactly or asymptotically) or not.

Now we describe two main questions of this thesis:

* Can we characterize the (sharp) threshold for exact recovery in terms of an
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appropriate notion of channel capacity? More specifically, is the global recovery

threshold only dependent on a local property such as information capacity of Q

as in Shannon's theorem?

* In many statistical models on graphs (e.g. the stochastic block model with

two communities), exact recovery can be directly achieved by a simple algo-

rithrm based on a standard semidefinite relaxation technique. Would the same

technique work when we consider higher-order models such as when the base

hypergraph is k-uniform for some k > 3?

The answer for the first question is yes. We call such phenomenon local-to-global

amplification and we discuss it in full generality in Chapter 4. For the second ques-

tion, we consider an algorithm based on the truncate-and-relax strategy and analyze

it on generalizations of the SBM and the spiked Wigner model for k-uniform hyper-

graphs. We prove that the algorithm successfully recovers the ground truth in an

orderwise optimal parameter regime, but it cannot achieve exact recovery all the way

down to the statistical threshold. Moreover, for a certain generalization of the spiked

Wigner model, we consider an alternative algorithm using the sum-of-squares relax-

ation techniques and prove that this algorithm is orderwise suboptimal in contrast to

the truncate-and-relax algorithm.

In the remainder of this section, we provide several examples of graphical channel

models which were investigated in the literature.

1.2.1 Stochastic block models

The stochastic block model (SBM) has been one of the most fruitful research topics in

community detection and clustering. The SBM can be thought of as a generalization

of the Erd6s-Renyi (ER) model g(n, p), in which we observe a graph G on n vertices

where each pair of vertices (i, j) is joined with an edge independently with probability

p. While the ER model is deeply understood and has a wide range of theories devel-

oped for it, often real-world network behaves very differently from a typical random

graph. It leads us to consider alternative models for random graphs.
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For exposition, let us start with a simple version of the SBM, where there are two

equal sized communities. Let n be an integer greater than 1 and let p and q be real

numbers in [0, 1].

Definition 1.2. The model S B M (n, p, q) generates a random graph G = (V, E) on n

vertices in the following way:

(i) A label x, E {0, 1} is assigned for each vertex v C V. We choose a labeling with

equal number of the vertices labeled 0 and labeled 1, uniformly at random.

(ii) Each pair of vertices (u, v) are joined with an edge independently with probability

p if xU = x, (i.e., in the same community) or probability q if xu = xv.

Sometimes the vertex labeling is chosen in a way such that each vertex receives

a label drawn independently and uniformly at random, while in our definition the

labels of vertices are not independent due to the fact that we restrict the size of two

communities to be equal. We remark that this does not create a big difference and

any result in this thesis applies to either definition with a slight modification.

We can easily get the stochastic block model with multiple communities by choos-

ing a label x, in the finite set X with IX > 3.

The SBM is believed to provide good insights in the field of community detection.

We can take advantage of the fact that there is a "true" community structure when

a graph is sampled, and we can theorize community recovery problems in formal

way. Likewise for the ER model, it exhibits many sharp phase transition behaviors

[77, 6, 4], and it was studied for whether such statistical thresholds can be achieved

by an efficient algorithm 133, 8]. Also, the SBM was used as a testbed for various

algorithms. To name a few, spectral algorithms 172, 94], semidefinite programming

based algorithms [4, 56, 59], belief-propagation [38, 7, 9], and approximate message-

passing algorithms [93, 30, 40, 67] were considered. We recommend [1] for a survey

of this topic.

In this thesis, we consider a generalization of the SBMs for hypergraphs. It was

first introduced in [49] and was studied in [51, 50, 46, 20, 52, 69, 34, 15]. Specifically,
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we consider a model for k-uniform hypergraphs, which we call the stochastic block

model for k-uniform hypergraphs (k-HSBM). Chapter 3 is devoted to characterizing

the sharp threshold for exact recovery in k-HSBM with two communities. We also

analyze the truncate-and-relax algorithm on k-HSBM.

1.2.2 Models for Principal component analysis

Principal component analysis (PCA) is a powerful method which is widely used in

signal processing and other applications. When we are given a data matrix Y, PCA

provides a way to extract a signal from Y, which often can be written as a low-rank

matrix.

Let us consider the simple situation where Y is an observation of the rank-one

signal xxT corrupted by additive Gaussian noise. Let n be an integer greater than 1

(dimension of the signal) and let - be a positive real number (scaling of the noise).

Definition 1.3. The spiked Wigner model (with Rademacher prior) is a generative

model which outputs an n x n random symmetric matrix Y where

Y = xx ' + O-W,

with a vector x - {kl}' which is chosen uniformly at random and an n x n random

symmetric matrix W whose entries are independent and standard Gaussian variables.

W is also called Wigner matrix.

There are numerous works on the spiked Wigner model in the random matrix

point of view. For instance, the maximum eigenvalue of Y was analyzed in [45] and

it was shown that it starts to deviate from the maximum eigenvalue of W when '

becomes greater than 1. This implies a sharp phase transition for detection2 , which

is the problem of testing whether Y has a spike in it. Such phase transitions for

different priors and noise were further studied in [85].

It is natural to investigate a higher-order generalization of the spiked Wigner

model. Montanari and Richard proposed a statistical model for tensor PCA [75]
2To be precise, this result considers the spiked Wigner model with unit ball prior.

19



and analyzed the signal recovery problem under both statistical and computational

points of view. Later, an approximate message passing (AMP) algorithm for detection

was considered in [681, and an algorithm based on sum-of-squares (SoS) relaxation

for (almost) exact recovery was considered in [58, 26]. Both of the algorithms are

somewhat believed to be unimprovable.

We remark that those results consider a unit ball prior, i.e., x E R' where IxI 2 =

1, hence it requires an extra care for defining exact recovery. Instead, in Chapter 2

we consider the Rademacher prior, i.e., when x is chosen uniformly at random from

the n-dimensional hypercube {-1, +1}".

1.2.3 Other models

It is clear that the stochastic block model, the spiked Wigner model, and their gen-

eralization to higher-order relations fit in the category of graphical channel models.

We describe a few more examples of such models, which might be of independent

interest.

Censored Block Model and other variants

In the binary censored block model (CBM), we observe a random graph G which is

drawn from the Erdos-Renyi ensemble g(n, p) and labels yij of edge ij E E(G). Each

edge-label yij is a noisy measurement of 1{xi = xj}: precisely, we have

1{Xj=Xjj with probability 1 - 0
yij =

1 - 1{,=,j} with probability 0.

In other words, yij is the result of sending 1f,,=xj} through the binary symmetric

channel with error probability 0.

We note that the CBM can be formulated as a graphical channel model by encod-

ing all randomness into y. Precisely, we assign one of the labels in {0, 1, *} to each
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pair {i, j} C V independently with probability

P(yi = )= 1 - p, IP(ys = ,) = p(l - 6), and P(yij = 1 - 1 1) = p.

Phase transition for exact recovery was considered in [2, 3] and the sharp threshold

was shown in [57]. A generalization of the binary CBM for uniform hypergraphs was

considered in [14] and they characterize the threshold for exact recovery, and in a

subsequent publication they propose an efficient algorithr which provably achieves

exact recovery up to statistical threshold [15].

Remark the similarity between the CBM and the stochastic block model. Indeed,

there are many other variants of block models such as labeled SBMs and SBMs

with overlapping communities, and graphical channel models are powerful enough to

express those examples.

Random CSPs with a planted solution

Many problems in computer science have a form of constraint satisfaction: we are

given a collection of predicates each defined on a few number of boolean variables,

and the goal of the constraint satisfaction problem (CSP) is to decide whether there

is an assignment which satisfies all predicates. There are many important examples

of CSPs such as k-satisfiability (k-SAT), k-colorability of graphs, unique games and

many more.

Phase transition phenomena in various types of random CSPs such as k-SATs

were studied in the last decade [47, 10] and planted counterpart of random CSPs

were also considered in the literature [24, 43]. We remark that those random CSPs

with a planted solution can be modeled in a broader context of graphical channel

models (see [5] for more information).

Parity-check Codes

As we discussed previously, graphical channel models are a generic formulation of an

encoding scheme for memoryless channels. Shannon's noisy-channel coding theorem
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tells us that that the rate of such encoding scheme is at most the capacity of the

channel which is given by the mutual information between an random input and the

output. Moreover, Shannon proves that the maximum rate can be achieved by a

random encoding. Subsequently, it was proved in [42] that a random linear encoding

achieves the maximum rate.

Low-density parity check (LDPC) and low-density generating matrix (LDGM)

codes are a type of sparse linear codes which provides an encoding with good rate

which is easy to compute. To understand the phase transition behavior of those codes,

the decoding scheme based on maximum a posteriori estimation was considered in

[74, 63]. Phase transition in the concentration of the mutual information between the

message and the noisy codeword was studied in [64, 191 when the code has constant

sparsity. In a high-level view, their argument can be also thought as a sort of local-to-

global amplification in detection, which is sometimes called the decoupling principle

[551.

1.3 Local-to-global amplification

Recall the example of the stochastic block model with two equal-sized communities,

denoted by SBM(n, p, q).

For exact recovery, right parameter regime to work on is where p and q scale with

"9g. To see this, we are going to argue that if p and q decrease faster than 129n thenn n

the probability that the graph has an isolated vertex converges to one as n grows.

Note that we cannot hope to recover the label of any isolated vertex with an error

probability less than one half.

Let us calculate the probability for the graph having an isolated vertex. Instead of

the SBM, let us first consider the Erd6s-Renyi model g(n, pn) for exposition. Under

9(n, pa), a graph G is sampled in the way that each pair of vertices is connected with

probability p independently. It is clear that when p = q, the ER model coincides with

SBM(n, p, q). For v E V, let Ev be the event that v is isolated, i.e., there is no edge

incident to it. Then, we get P(Ev) = (1 - pn) n-1 ~ e-n by a direct calculation.
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Note that only the dependence of E, and Er, is caused by the presence of edge

joining u and v. We may expect that En's are very close to being independent, and

so

p U E, ~} - 1(l - p(E))~ 1 - ene-Pn

The right-hand side converges to 1 if ne-"P- diverges and to 0 if ne-'P- vanishes.

Indeed, this argument can be made rigorous and we get the following sharp threshold

for the property of having an isolated vertex.

Proposition 1.1. Suppose that p, = clog' for some constant c. Then, the probability

for G having an isolated vertex converges to 1 if c < 1 and it converges to 0 if c > 1.

In 1969, ErdOs and Renyf showed a stronger result: c = 1 is the sharp threshold

for the connectedness of G, i.e., G is disconnected with high probability if c < 1, and

G is connected with high probability if c > 1. Clearly, connectedness implies that G

has no isolated vertices. We would like to emphasize that connectedness is a global

property and the property of having no isolated vertices is a local-like property, in

the sense that it can be decomposed into almost independent local events E,.

Returning to exact recovery in SBM(n, p, q), the sharp threshold lies at (N/fI -

v6b)2 = 2 when p = alogn and q = blogn for some a, b > 0. This was proved in [78]

and independently in [4]. Moreover, in [4] it was shown that an algorithm which is

based on semidefinite programming with an additional refinement step achieves exact

recovery all the way down to the statistical threshold. Subsequently, it was proved

in [56J and independently in [21] that the extra refinement step is not needed, hence

simple semidefinite program readily achieves exact recovery.

For the SBM with multiple communities, the statistical threshold for exact recov-

ery was established in [6], along with an efficient algorithm which provably achieves

the same threshold. Including this result for generic SBMs, many works establish

that sharp threshold is determined by the error probability for local recovery. Such

phenomenon is stated explicitly in [1] and called local-to-global amplification.

Definition 1.4 (informal). For a vertex v, the local recovery at v is the problem

of recovering the label of v when we are given the labels of all vertices except v,
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in addition to the observation of edge-variables. Local-to-global amplification is a

phenomenon that (global) exact recovery is approximately equivalent to the product of

local recoveries.

In the case of SBM(n, p, q), the local recovery at v can be done by counting the

number of edges from v to each communities. Suppose p > q and suppose that the

community membership of all other vertices are told. If v is connected to larger

number of vertices in one community than another, then we would expect that v is

also in that community since p > q. Indeed, local recovery at v only succeeds when

it is connected to more vertices which have the same label as v. Thus the probability

for failing local recovery at v is equal to

P (uEx1{uv E E} - Ev1{uv E} < 0

Note that each sum is a sum of independent, identically distributed Bernoulli vari-

ables, and specifically this probability can be rewritten as P(X - Y < 0) where X and

Y are independent binomial variables with distributions Bin(n - 1, p) and Bin( , q)

respectively.

Lemma 1.2 (141). Assume that a > b > 0. Let X,, and Y be random variables with

binomial distribution Bin(2, a"o'92) and Bin(2, b"n9) respectively. Then,

lim -  log P(Xn - Y < 0) = 1(/a- _ b)2
n-+oo log n 2

The lemma implies that

P(local recovery at v fails) ~n-
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and by local-to-global amplification, we get

P(global recovery fails) 1 - exp - P(local recovery at v fails)

1 - exp (--n -2 -

0 if (Va- _ 4)2 > 2

{ if ( - Vb)2 < 2

hence the threshold is at (x/a - vlb) 2 = 2.

In Section 3.3 and 2.3, We make similar argument for the stochastic block model

for k-uniform hypergraphs and spiked Tensor models (which includes the case of

spiked Wigner model) to characterize the exact recovery threshold. This is further

generalized in Chapter 4 to generic graphical channel models, under some regularity

assumptions.

1.4 Truncate-and-relax algorithm

The semidefinite relaxation technique allows us to consider a relaxed, convex problem

instead of the original highly non-convex optimization. It was extensively used to find

an approximate solution of NP-hard problems such as max-cut, sparsest-cut, min-

bisection, graph coloring, and many more [53, 60]. Usually, this type of approximation

algorithms consist of two steps, (i) first we find a solution from a relaxed problem,

and (ii) since this solution might not be feasible in the original problem, we round up

to get a feasible solution.

Standard semidefinite relaxation techniques were recently applied to statistical

problems. In many models, such semidefinite relaxation algorithms directly achieve

exact recovery down to the statistical threshold without a rounding step, i. e., the

solution which is statistically best is also the optimum solution for the relaxed prob-

lem. This includes many examples such as SBMs with two communities [56, 21],

SBMs with multiple communities [57, 831, SBMs with growing number of symmetric
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communities [111 and spiked Wigner model with Rademacher prior (sometimes called

Z2 -synchronization with Gaussian noises) [21].

Let us conisder the spiked Wigner model for exposition. In the model we observe

a symmetric n x n matrix Y where

Y = xX +x 0 + OH7

such that xO E {Il}I is chosen uniformly at random, - > 0, and W is a symmetric

matrix with independent, standard Gaussian entries.

The maximum likelihood estimator corresponds to the optimal solution of the

following optimization problem

max xTYx.
xe{ 11

Let L be the function which maps x to xTYx. We remark that L(x) is a quadratic

function on { 11 and in general the problem of optimizing a polynomial on { 1}

is NP-hard. A standard way to relax such a problem is by rewriting the problem in

terms of matrix optimization with rank constraints

maximize xi.Yiy

subject to Xii = 1 for all i,

X = XT is positive semidefinite,

rank(X) = 1,

and relaxing the rank constraint. As a result, we obtain the following semidefinite

program:

maximize (XijYi
i~j

subject to Xii = 1 for all i,

X = XT is positive semidefinite.
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Semidefinite programs are convex optimization problems in the form of

maximize tr(CX)

subject to tr(AiX) = bi for i = 1,- , m (1.1)

X = XT is positive semidefinite.

for some symmetric matrices A1 , - - - , Am and C and real numbers bi, - , b,. It has

nice properties that the dual, defined as

rn

minimize biyi
i=1

subject to y, I -- ,ym R (1.2)

yiAi - C is positive semidefinite,
i=1

is also a semidefinite program. Moreover, if the primal and the dual satisfy some mild

regularity assumption, then the strong duality holds: the optimum solution X* of the

primal and the optimum solution y* of the dual exists and their values are identical.

Proposition 1.3 (Complementary slackness). Suppose that the strong duality holds.

Let X* be an optimum solution of (1.1) and y* be an optimum solution of (1.2). Let

S= Z_ 1 y*Ai - C. Then, (S*)TX* = 0. The converse is also true: if X* and y*

are feasible and (S*)TX* = 0, then X* and y* are optimum solutions.

Suppose that the strong duality holds. To show that X = xxT is an optimum

solution of (1.1), we only need to show that there exists a dual feasible solution y*

such that

Ey*Ai-C x=0

by complementary slackness. In the case of the spiked Wigner model, we have that

the relaxed problem solves exact recovery if there exists a diagonal matrix D such

that (D - Y)x = 0 and D - Y is positive semidefinite. By analyzing the spectrum

of random matrix D - Y, we get a threshold for this algorithm which turns out to

coincide with the statistical threshold in spiked Wigner model [21].
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We would like to generalize this algorithm to higher-order models (which corre-

sponds to the case that base hypergraph is k-uniform for k > 3 in graphical channel

models). Let us consider a version of spiked Wigner model for 4-dimensional tensors:

we are given a symmetric tensor Y E (Rn)®4 such that

Y=xO4 + uW

where xO E {Il}' is chosen uniformly at random, - > 0, and W E (Rn)04 is a

random symmetric tensor with independent, standard Gaussian entries. Here, we

call a tensor Y symmetric if it is invariant under any permutation of the indices, for

instance in 4-dimensional case we have

Yijkt = Yijek = Yikji = Yikej = = Y'ki.-

The maximum-likelihood estimator of x in this model would be

argmax E Yik. -XiXXkX.
xE f 11 i,j,k,E EfnJ

We cannot use a naive semidefinite relaxation technique since the objective func-

tion is no longer quadratic. Sum-of-squares (SoS) relaxation scheme provides a sys-

tematic way to obtain a sequence of relaxations for a generic polynomial optimization

problem which are successively refined at the cost of the size of the relaxed problem.

In particular, when the domain of the original problem is { 1}"', this converges to

the original problem at nth level of relaxation (however, this relaxation would be a

semidefinite program with exponential size).

In [75], the statistical threshold of the k-tensor PCA model was characterized.

They also provided an algorithm which uses a spectral method on a flattening of the

data matrix, but it achieves exact recovery only in a suboptimal regime. This was

strengthened in [58] and [26] to the SoS relaxation scheme: They proved that the

spectral method is as good as any constant level relaxation for the SoS approach.

We consider an alternative model in Chapter 2 where the signal xO4 is replaced
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by a rank-two tensor x E4 := ("fo)84 + (1 xo)84. Note that

(X64  {1 if (xo)i = (xo)j = (XO)k = (xo)t
(0 )ijkf =

0 otherwise,

which is motivated by a natural generalization of the SBM to 4-uniform hypergraphs:

a 4-HSBM model such that the probability for an edge to appear only depends on

whether all vertices have the same label or not.

Again, the maximum-likelihood estimator is a solution for an polynomial opti-

mization problem over { l}'. One difference from the previous tensor model is that

the objective function here is not homogeneous and it has a fairly large quadratic

part in it. We propose a strategy called "truncate-and-relax" which consists of the

following two steps:

* We first truncate the high degree part of the objective polynomial and get a

quadratic polynomial as an alternative objective function.

" We further relax this new quadratic optimization problem using a standard

semidefinite relaxation technique and solve the relaxed problem.

Surprisingly, this simple algorithm achieves exact recovery in a parameter regime

which is orderwise optimal. We prove this in Section 2.4 and prove an analogous

result for k-HSBM in Section 3.4. On the other hand, in Section 2.5 we prove that

the SoS relaxation of degree 4 on this tensor model (for 4-tensor case) does not achieve

this orderwise optimal regime, as in the rank-one signal case. It suggests us that a

naive SoS relaxation might not be a "right" way to approach higher-order community

recovery problems.

1.5 Frequently used notation

We close this chapter by providing a list of commonly used notations through this

thesis.
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Notations for the asymptotics of a function

In this thesis, we always consider the sequence of statistical models each of which

depends on an integer parameter n. We often ask the behavior of those models in

the limit of n growing to infinity. For this reason, we are going to rely on Bachmann-

Landau notations to describe the asymptotic growth of functions in n.

Let f and g be positive real-valued functions in n. We write

f(n)
f(n) =O(g(n)) (or f(n) < g(n)) if lim sup < o,

n-+oo g(n)
f(n)

f (n) =o(g(n)) (or f (n) < g(n)) if limsup = 0,
nf-4o0 g(n)

f (n) =Q(g(n)) (or f (n) > g(n)) if lim inf. >0,
n-+oo g(n)

iifj(n)
f (n) =w(g(n)) (or f (n) >>g(n)) if gim n) = .

If f(n) is both O(g(n)) and Q(g(n)), then we write f(n) = e(g(n)) or f(n) g(n).

Moreover, we write f(n) ~ g(n) if limnoo f(n) = 1. Note that f(n) ~ g(n) implies
g(n)

that f(n) - g(n) but the converse is not true.

We write f(n) = o(g(n)) if If(n)I = o(g(n)). Using this notation, f(n) ~z g(n)

is sometimes alternatively denoted f (n) = (1 o(1))g(n).

We often write equations and inequalities with asymptotic notations inside. For

instance, p = n1-0(1) means that p = n1~") for some positive function f such that

f (n) = o(1), or equivalently,
log p_
log n

All asymptotic notations without a subscript tacitly means that it is the asymp-

totics with respect to n -+ oo. If necessary, we will specify the variable of our concern

as a subscript: For example,

f(m, k)
f(m, k) = O,(g(m, k)) < limsup ' < oo for any fixed k.

M-400 g(m, k)
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Notations for graphs and hypergraphs

Let V be a finite set. We denote the collection of subsets of V of size k by (f), hence

=Vk (Il/I

For a positive integer n, we denote {1, 2, ... , n} by [n]. We denote the set of

n-tuples of a set S by S[n] or simply S'. The entries of an n-tuple s E Sn are denoted

by si, - -- , s,. Likewise, we denote the set of tuples of S indexed by the elements in

V by Sv, that is,

SV= {(sV,.1 , SV") : SI E S for i E [n]}

where V = {vi,.-. -

We denote the symmetric group of degree k by 6k, which is the group of all

permutations on [k] = {1, - , k}.

A graph is a pair G = (V(G), E(G)) which consists of a set V(G) of vertices

and a set E(G) of edges, which are elements of (Q). An k-uniform hypergraph is a

pair W = (V(7t), E(-)) which consists of a set V(7) of vertices and a set E(7) of

hyperedges, which are elements of (f). We often use the term "edge" for both an edge

in a graph and a hyperedge in a hypergraph, if it is clear from the context.

The adjacency matrix AG of a graph G is the symmetric IV(G)I x IV(G)I matrix

with entries

(AG)uv 1 if {u, v} E E(G)

0 otherwise.

For a k-uniform hypergraph W, we define the incidence vector AN of '7 to be the

indicator vector of E(W) C (V(N)) i.e., AN is an element of {0, 1}(T)) with entries

(A)e{ if e E E(-)

0 otherwise.

Remark that the definition of 2-uniform hypergraphs exactly coincides with the

definition of graphs. However, the adjacency matrix and the incidence vector of a
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graph are not the same object; here we abuse the notation by referring both objects

as AG.

Vectors, matrices, and tensors

We assume readers' familiarity with the basic linear algebra concepts such as vector

spaces, bases of a vector space, matrices, eigenvalues and eigenvectors, and so on.

In this thesis, all vector spaces under consideration are finite-dimensional and

over the field of real numbers R. In many cases, we consider vectors with real entries

indexed by elements in a finite set V. We denote the space of such vectors by Rv

rather than RVi, to emphasize the indexing. We denote vectors in Rv by bold-faced

lower-case letters such as x, y, - .

The vector whose entries are all equal to zero is denoted 0 or 0 when we need

to specify the dimension. Likewise, the vector whose entries are all equal to one is

denoted 1 or 1.

The restriction of x onto a set S C V of coordinates is

x[S] E RS with entries x[S], = x, for v E S.

We denote matrices by plain upper-case letters such as A, B, --.. Often we regard

matrices as elements of RV X V whose rows are indexed by elements of V and columns

are indexed by elements of V2. We call A G RVXV a V x V matrix, or a square matrix

of size IVj. The transpose of a square matrix A is denoted by AT, and a square matrix

A is said to be symmetric if A = AT.

A square matrix A is called a diagonal matrix if its entry A,, is zero whenever

u # v. The identity matrix of size n is denoted Idn or Id if n is clear from the context.

The square matrix of size n whose entries are all equal to zero is denoted by Onxn or

simply 0. The trace of a square matrix A is denoted by tr(A).

The standard inner product of two vectors x, y E RV is

(x,y) := Z XVYV,
vEV
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which is equal to x 7 y or yTx.

The p-norm of a vector x E RV for p E [1, oc] is denoted by ||xJlp, and defined as

x| = ( 1 /V p
(VEV )/ for p E [1, oo) and x~ll = max xl.

VEV

The 2-norm |1 - |12 is also called the Euclidean norm or just the norm.

xe = sad| |(x, X).

The standard inner product of two matrices A, B C R" ' V2 is

(A, B) := E
uEV1 ,vEV2

Note that

Auv BL.

We note that (A, B) = tr(ATB). The Frobenius norm of a matrix A, denoted ||Al F,

is defined as IIA|IF = /(A,B).

For a symmetric matrix A, we denote its eigenvalues by

A (A) < - < A, (A).

The smallest and the largest eigenvalue are denoted by Amin(A) and Amax(A) respec-

tively. The spectral norm of a matrix A E R x V2 is defined as

||AJJ := V/Amax(AAT).

If A is a square symmetric matrix of size n, then

||AJJ = max Amax(A)f.
iEn

Let A be a symmetric matrix. A is called positive semidefinite if Amin(A) > 0,

or equivalently xTAx > 0 for any x. A is called positive definite if Amin(A) > 0,

or equivalently xTAx > 0 for any nonzero x. We denote A >- 0 if A is positive

semidefinite and A >- 0 if A is positive definite. We denote A >- B if A - B >- 0 and

A > B if A - B >- 0.
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The tensor product of vector spaces U1, --- , UN is denoted by

N

U1 (9 - U = N i-

i=1

The tensor product of vectors u1 E U1 ,-- , UN E UN is denoted

N

U1 .. 0 - uN 0Ui.

i=1

We call a tensor pure if it is a tensor product of vectors.

The k-th tensor power of a vector space U is defined as the tensor product of k

copies of U, and we denoted it by U®k. An element T of U#k is called a k-tensor.

The k-th tensor power of a vector x is the tensor product of k copies of x and we

denote it by u*k.

Suppose that dim(U) = n. Given a basis B= {el,- , el} of U, the basis of b(®k

induced by B is

Bok > {"1 0 - - eVk : (V1j... , Vk) C[n]k

and each k-tensor T C U®k has the unique expression

T = l,",Vk (e-Vi 0 . 0 e V)

with respect to B3 k. Note that this gives an isomorphism between (U)®k and Rnk, as

T - (T vl,...,,k) (?),.--,,) )Enk.

We often work under the setting that U = R" and B is the standard basis of R".

In this case, the corresponding isomorphism between (Rn)®k and R nlk is trivial, and

we refer k-tensor to an element in either of the spaces interchangeably.

We remark that 2-tensors and matrices are equivalent. This equivalence can be

seen by associating each pure 2-tensor u0v with a rank-one matrix uvT. In literature,

uvT (or equivalently u 0 v) is often called the outer product or the exterior product
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of u and v.

We remark the equivalence between 2-tensors in (RV) 2 and matrices in RVXV. In

particular, a pure 2-tensor x 0 y corresponds to the rank-one matrix xyT. In general,

we call a k-tensor T rank-one if T = x1 09 ... 0 Xk for some vectors x1, ... , Xk E RV.

Let 7r E 6 k be a permutation on [k] and let T be a k-tensor in (RV)0k. We define

T' as the k-tensor with entries

T Vk = , V(k) for (vi, - -, Vk) E Vk.

We say T is symmetric if T = Tr for any 7r E 6k. Note that his notion agrees with

the symmetry of a matrix. The symmetrization of a k-tensor T, denoted Sym T, is

defined as the average of T' over 7r E 6 k, i.e.,

Sym T = E T.
7rE~k

Let X be a ki-tensor in Ujk and Y be a k2-tensor in UOk2. The tensor product

of X and Y is denoted by X 0 Y and defined as the (ki + k2)-tensor in UO(k+k2) with

entries

(X O Y)U 1,...,Uk,,V1,, Vk 2 = X U ,.-,2,_, Yvl,...,lk2

The symmetric tensor product of X and Y, denoted X 0 Y, is defined as the sym-

metrization of X 0 Y. This notation extends to products with multiple arguments,

in particular,

xO O Xk =Sym (x1  ... O xk).

The standard inner product of k-tensors X and Y in (RV)Ok is defined as

(X, Y) := 1: XV1,...,7)kY ),...,?).

(71,.' ,k)EVk

The Frobenius norm of a k-tensor T, denoted ||TflF, is defined as JTflF T)
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Probability theory

Let p be a probability measure on the domain X. We always consider the case that

X is a measurable subset of a real finite-dimensional space; hence the corresponding

--algebra is implicitly assumed. We write X ~ M if X is the random variable such

that P(X E A) = p(A) for any (measurable) A C Q. We write

Px~, (or P for separate-line formulas)
x~A

to emphasize that the probability is taken over a random draw of X from the distri-

bution y. If the variable of consideration is clear from the context, we simply write

P,. We denote the corresponding expectation operator by Ex~, or E.

We denote the integral of a measurable function f : Q -+ R with respect to /a by

Jf dp = f (x) dp(x).

If p has the density function p(x) with respect to a reference measure A, then we

have

fdp = f (x)p(x) dA(x).

When the reference measure is clear from the context, we sometimes write X ~ p to

denote X - p. The density function p of pL is also denoted by - which is also known
dA

as the Radon-Nikodym derivative of p with respect to A.
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Chapter 2

Spiked Tensor Models

Principal component analysis (PCA) is a powerful method for recovering a signal from

a noisy observation when the signal has special properties such as being a low-rank

or a sparse matrix. We often achieve recovery by a simple spectral algorithm, which

executes a diagonalization (or more generally, a singular-value decomposition) and

estimates the original signal within the space spanned by the eigenvectors of a few

largest eigenvalues. One of the simplest models for PCA is the spiked Wigner model

in which we observe a random n x n data matrix Y where

Y = 3vvT + W,

such that v is chosen uniformly at random from the unit sphere in R', 3 > 0 (signal-

to-noise ratio), and W is a random symmetric matrix with independent, standard

Gaussian entries.

In many applications, we often observe the data with the elements indicating the

interactions between three or more items. Examples include the problems such as

image segmentation [54], community recovery in hypergraphs [95, 17], topic modeling

[18], hypergraph matching [41] and tensor learning in general [12]. This motivates us

to consider the generalization of PCA to higher-order tensors. However, decomposing

'The contents of this chapter overlaps in significant amount with [61], which is a collaborative
work mainly conducted by the author of this thesis.
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a given tensor into rank-one tensors or even finding the best rank-one approximation

of the given tensor is hard, in contrast to the case of matrices.

Montanari and Richard [75] propose a simple model for tensor PCA which gen-

eralizes the spiked Wigner model. In this model, we observe a random k-tensor

Y E (R')ok where

Y = 3vgk + W,

such that v is a random unit vector in RW, 3 > 0, and W is a symmetric k-tensor with

independent, standard Gaussian entries. The authors prove that there exist constants

ci and c2 (which may depend on k but independent of n) such that

(i) if 3 _ clE- 1 /n, then the maximum-likelihood estimator VMLE achieves

||VMLE - VI2  E

with high probability, and

(ii) if 0 < c2v/n, then for any estimator V, the distance from V to v (or to {+v}

when k is even) is bounded away from zero in expectation.

Those thresholds are sharpened further for various recovery requirements and other

prior distributions in [84].

On the other hand, in [75] the authors also ask whether efficient recovery is pos-

sible. They consider a simple algorithm which performs spectral clustering on the

unfolding of the tensor. They prove that this algorithm returns VaIg which is close to

v (or v), as long as 0 > n Fk/21/2. It is proved in [581 that the sum-of-squares relax-

ation of degree 2[k/2] can find a good solution as long as # > nk/4 which is better

than nFk/21/2 when k is odd. Subsequently, it is proved in [26] that sum-of-squares

technique with higher-degree would not gain much: Essentially, we need ,3> n k/ 4 for

the sum-of-squares relaxation of any constant degree to find a good solution. This

is somewhat believed to be unimprovable, in analogy to the case of weak recovery

where such a gap is present with respect to approximate message passing algorithms

(see [68]).

38



We remark that in those statistical models for PCA or tensor PCA, one can only

formulate the recovery requirement in terms of the distance between the ground truth

v and the estimator Vi, as v is chosen from a continuous prior.

In this chapter, we consider the variants where the spike is chosen from a discrete

set and investigate exact recovery problem in those models. For instance, the spiked

Wigner model with Rademacher prior is defined as follows.

Definition 2.1. The spiked Wigner model with Rademacher prior is a model in

which we observe a random symmetric data matrix Y of size n where

Y = xoxO + -W

for a randomly chosen vector xO E { l}, the noise parameter a > 0, and a random

symmetric matrix W with independent, standard Gaussian entries.

We remark that this model is sometimes called Z2-synchronization model with

Gaussian noise [21, 59]. Let us consider the following generalization of the spiked

Wigner model to k-tensors.

Definition 2.2. The single-spiked k-tensor model with Rademacher prior (or simply

the single-spiked model) is the generative model such that a random k-tensor Y in

(Rn) 9k is generated in the way that

Y = xk + O-W,

where xo E {kl}I is chosen uniformly at random and W is the symmetrization of

the k-tensor G whose entries are independent, standard Gaussian variables.

Note that the spike x Ik in this model has the entries of the form

(x (1k)V1...Vk = (xo)Vl ... (xo)vk.

In other words, each entry of the spike represents the "parity" of the hyperedge

{v1 ,.- , Vk} (assuming that vi, - - , Vk are distinct) when we regard (xo)v E {-1, 1}
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as the community label of the vertex v.

On the other hand, let us consider an alternative way to label the hyperedge

{Vi,** - Vk} by whether the vertices lie in the same community or not. Let x(k be

the k-tensor with entries

@X'qk~vj'_' 1 if (X0 ) 1 
= =(X0)

X0 )k v
0 otherwise,

and let us define the corresponding spiked k-tensor model.

Definition 2.3. The bisection-spiked k-tensor model with Rademacher prior (or

simply the bisection-spiked model) is the generative model such that a random k-tensor

Y in (Rn) ok is generated in the way that

Y = Xk + -W,

where x 0 E { l} is chosen uniformly at random and W is the symmetrization (as

defined in Section 1.5) of the k-tensor G whose entries are independent, standard

Gaussian variables.

We investigate the exact recovery problem in a class of models that includes the

single-spiked model and the bisection-spiked model. Specifically, we consider the

models where the spike can be expressed as a k-tensor s(xo) with entries

s(X0)V,---V = s((xo), , (xo)Vk)

for some symmetric function s : { }k -+ R.

The outline of this chapter is as follows. We briefly discuss the Fourier analysis

of the functions defined on a hypercube, provide the precise definition of the model,

and summarize the main results of this Chapter in Section 2.1. The main results of

this Chapter are summarized in Section 2.2. Section 2.3 is devoted to characterizing

the statistical threshold for exact recovery. We consider the truncate-and-relax al-

gorithm and analyze its performance in Section 2.4. On the other hand, in Section
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2.5 we consider an algorithm based on the sum-of-squares relaxation technique and

argue that it is suboptimal in comparison to the truncate-and-relax algorithm in the

bisection-spiked model.

2.1 Preliminaries

2.1.1 Notations

For simplicity, let us introduce a few notations which will be used throughout this

chapter. We will use a, ,- - - to denote tuples in [n]'. For legibility, we denote the

entries of the tuple ce E [n]k by a (1), . . . , a(k) instead of ai, .- , ak. For I C [k], the

restriction of a on I is denoted by a(I), i.e.,

a(I) = (a(ii), -- - , a(i1 i)) where I = {ii < ... < iir}

We often regard ce as a function from [k] to [n]. In particular, we use the notation

oK1(S) to denote

c-1(S) = {i E [k] : c(i) E S}

where S C [n]. When S = {v}, then we simply write a--1 (v) instead of o- 1({v}).

For a vector x in {t1}n, we use x, to denote HE[k] Xa(i). Moreover, we denote

HEI Xa(i) by Xa(I) for I C [k].

2.1.2 Fourier analysis on the hypercube

In this subsection, we briefly introduce the Fourier analysis of the real-valued functions

on the hypercube { 1}m.

Let f be a real-valued function on the m-dimensional hypercube { }m. One

way to represent this function is that we specify all evaluations of f at each point in

{ 1}m, e.,

f = f(x)1X,
xE{ 1}-
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where 1., is a function which has value 1 at x and 0 elsewhere. This is because

{ 1x},a{i1} forms a basis of the space of real-valued functions on { }m, or equiva-

lently R11.

On the other hand, let us consider the family of functions {Xs}sc[m] where

xs(Y) = Y11Y.
iES

This family forms an orthonormal basis of the space of functions { f {1}m -+ R

with respect to the inner product

( -:(f g) 1 E
XE{ 1}m

f (x)g(x).

Hence, any real-valued function f on {1}m can be uniquely written as

f= f^(S)xs,
SC[m]

where f^(S)

The quantities f^(S) are called the Fourier coefficients of f. The degree of f is

defined as the maximum size of S such that f^(S) # 0, and we denote it by deg(f).

For d < deg(f), we define the truncation of f to degree d as the function f<d on

{i}k with the Fourier expansion

f<d= f (I)x'.
IC[k]:|Il d

For S C [k], we define the restriction of f on the index set S as the function fls(z)

on { 1}s with the Fourier expansion

fIs(z) = f(')xI.
ICs

If f is symmetric, then f^(S) = f^(T) for any S and T with the same size. In such
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cases, we denote f(S) by f(ISI), hence we have

f=Zf(r) xs.
r=O ( S:ISI=r

Let x1, ... , xk E { 1v} and let f : { }k -+ R. We define f (x, , xk) to be a

k-tensor in (Rv)®k with entries

f (X1, * * * , xk)l,...,k= - xi1)V 1, - - - , (xk)Vk).

If xi = x for all i E [k], then we simply write f(x) instead of f(x, - - - , x).

Since f - f(x 1 , - - - , Xk) is linear, we can express f(x1 , - - - , Xk) as

f(xl, - ,xk) = fI)

IC[k]

Note that

XI (Xi , xk) = V1 9 -. -Vk

where vi = xi if i E I and vi = 1 otherwise. For brevity, we denote XI (x1 , - - , Xk)

by (xi,-- , xk)' and XI(x,... ,x) by x'.

If f is symmetric, then f(x) can be expressed as

f(x)
k

= (f(r) x,
r=0 IC[k]:lIl=r

We recall that D denotes the symmetric product (see Section 1.5).

Proposition 2.1. Let x, y E {1} such that (x, 1) = (y, 1) = 0.

real-valued functions on { 1}k. Then,

(s(x), t(y)) = n k S IRI)
IC[k]

( I Y)i
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Proof. By definition,

(s(x),t(y)) = s (I)T(J)x', y') .
I,JC[k]

Since (x, 1) and (y, 1) are equal to zero, x', y J) is nonzero only if I = J and

xi, y') = nk-III (x1 Y) 1 . Thus we get the desired result.

In particular, if s and t are symmetric we get

(s(x), t(y)) = n (k) yr (( )

2.1.3 Description of the model

Let us formally describe the spiked k-tensor model which we consider in this chapter.

Let n and k be integers such that n > k > 2. Let s be a symmetric function on

{1}k which is not identical to the zero function and let - = o (n) > 0.

Definition 2.4. The s-spiked k-tensor model is a generative random k-tensor model

such that Y E (Rn)®k is generative in the way that

Y = s(xo) + UW

where x0 is randomly chosen from {kl} and W is the symmetrization Sym G of a

random k-tensor G with independent, standard Gaussian entries.

Here G is not a symmetric tensor. We chose to define W as the symmetrization

of G for a simpler analysis. One may note that the entries of W do not have the

same variance. For instance, we have

= G,..., ~ N(0, 1) but W 1 ,...,k = W,(1),...7r(k) ~ N(0, 1/k!).
7rEEk

We remark that 1 - o(1) fraction of a's in [n]k has distinct entries a(1), a.. , c(k).

Hence, "typical" entries of W is distributed as N(0, 1/k!) and the effect of other
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entries is negligible.

We remark that the single-spiked model and the bisection-spiked model are equiv-

alent to the si-spiked model and the s2-spiked model respectively, where

k k

81()=Z . kand S2()=2 ill ~ ) .Zi
i=1 i=1

2.2 Main results

Exact recovery in the s-spiked k-tensor model is the problem of recovering xo from

an observation of

Y = s(xo) + aW.

We note that if s(z) = s(-z), then s(x) = s(-x) for any x, so we can only hope to

recover the ground truth xO up to a global sign flip.

Definition 2.5. We say that exact recovery is achievable if there exists an estimator

x such that

P(X( = xo) = 1 - o(l)

if s(z) , s(-z) for some z E { l}k, or

P(' E {xo, -xo}) = 1 - o(1)

if s(z) = s(-z) for any z E {1 }k. We say that exact recovery is impossible if for

any estimator fails to recover x (or up to a global sign flip when s(z) = s(-z) for all

z) with probability 1 - o(1).

From now on, we restrict our focus to the s-spiked k-tensor model where the prior

xO is chosen uniformly at random among the vectors xo E { l}n satisfying

1TxO = 0, as opposed to the uniform prior on { 1}". However, we remark that the

proof technique for the balanced prior easily translates to the case of uniform prior.

We also remark that such results can be explicitly obtained by applying the more

general result which appears in Chapter 4.

45



Regarding the statistical threshold of exact recovery, we get the following result.

Theorem 2.2. Suppose deg(s) > 2. Let 0,(t) be

08 (t) = s (r )2tr,=f

and let -* be the positive real number satisfying

k-1

(0- *)2 0 1q (1) 2log n

Then, exact recovery is achievable if o- < (1 - o-u* for some e > 0, and exact recovery

is impossible if o- > (1 + E)o-* for some c > 0.

We prove this theorem by analyzing the maximum-likelihood estimator xML,

which can be described as the optimal solution for the following maximization prob-

lem:

max
xE{ l}n:lTx=o (Y, s(x))

We analyze the probability that x0 is not the unique optimum of the function x '

(Y, s(x)), which is equal to

PML,fail := P U fI(YPs >

(x:s(x)0s(xo)

The proof can be found in Section 2.3.

On the other hand, we consider an algorithm which is based on the truncate-and-

relax strategy which we have discussed briefly in Section 1.4.

Let us consider the truncation s<d of s to degree d. Let 'ITLdc be the estimator

defined as

Xtrunc argmax (Y, s<d(X)),
XE{I l}:lTx=O

where ties are broken arbitrarily. We are particularly interested in 2 which is
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the maximizer of the function

(Y, s<2(x)) = (s(xo) + AW, s<2 (x))

= (s(xo), s 2(x)) + U (W, s 2 (x))-

Since the entries in s 2 (x) are quadratic polynomials in x, we can write (Y, s 2 (x))

as

(Y, s< 2(x)) = xT] y
x

for some symmetric matrix Y of size (n +1), whose rows and columns are indexed by

0,1, ... , n. Here we may think R n] as the subspace of RfOl'[J which consists of the

vectors whose entry at Oth index is zero.

We consider the standard semidefinite relaxation of the optimization problem

max
xE{ l}n:lITx=o

1 xT] Y

that is,

max

subject to

(Y, X)

I= 1 for i E {0} U [n]

(X, J) = 0 where J =
n0 1n

on 1n1J

X > 0, X = XT E R({O}u[nI)x({O}u[n])

The truncate-and-relax algorithm solves the relaxation and outputs an optimum

solution X*. We say X* recovers x0 if

X*=
xL X

xT

TI'Coxo]
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and we say X* recovers xO up to a global sign flip if

X* = [ *;
L* xox0

We require the algorithm to recover xO when s<2 is not even, or to recover xO up to

a global sign flip when s<2 is even.

Theorem 2.3. Suppose that ?(2) f 0. Let cs,trunc(t) be

O,trunc(t) : = E(r) 2t,

,=O

and let u-,rnc be
* qtstrucnl

nk-1

-s,trunc = ' (1)- 2 log n

The truncate-and-relax algorithm achieves exact recovery if - > (1 + )-*,trunc for

some c > 0. Moreover, this analysis is tight: If U < (1 - )-S*,tunc for some E > 0,

then the truncate-and-relax algorithm fails to recover xO with probability 1 - o(l).

The proof can be found in Section 2.4. We remark that our analysis is only about

the probability for the truncate-and-relax algorithm directly recovering xO. Hence,

there is a possibility for algorithms with an additional rounding step achieving the

statistical threshold, but it is out of scope of this thesis.

2.2.1 Single-spiked model vs Bisection-spiked model

Recall that the single-spiked model and the bisection-spiked model are instances of

s-spiked model, with s = s, and s = S2 respectively where

s 1 (z) = Z. -- Zk = Z[k

I k 
k

S2 (Z) = k ( + zi) + (1-zi) = k1 zI.
i=2ki= I ;[k]

III even
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The Fourier coefficients of si are

I if r=k
s1(r)=

0 otherwise,

and so #, 1(t) = tk.

Corollary 2.4 (Single-spiked model). The statistical threshold for exact recovery in

the single-spiked model is
k-1

-*=v k - n 2-
S1 V 2log n

Remark that the truncate-and-relax algorithm cannot be used for the single-spiked

model since '1(2) = 0. Instead, we consider the sum-of-squares (SoS) algorithm (see

Section 2.5 for the definition).

Theorem 2.5. The SoS algorithm achieves exact recovery in the single-spiked 4-

tensor model if - < . On the other hand, the SoS algorithm fails to recover

xo in the single-spiked 4-tensor model if - > n - polylog(n).

The Fourier coefficients of S2 are

if r is even
S2(r) =

0 otherwise.

We have

1
q#s 2 (t) = 2 2k-1 ((1 - tQk + (1 + tQk) , and

S2,trunc(t) = + 2 2k-2 )t2.

Corollary 2.6 (Bisection-spiked model). The statistical threshold for exact recovery

in the bisection-spiked model is

= k n k
82 2 k V2log n
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Moreover, the threshold for the truncate-and-relax algorithm achieving exact recovery

is

0s 2 ,trunc =

k(k - 1) n

2 2k-2 V2logn

For comparison with the single-spiked model, we also consider the sum-of-squares

algorithm on the bisection-spiked model.

Theorem 2.7. The sum-of-squares algorithm fails to recover xO in the bisection-

spiked 4-tensor model if - > n - polylog(n).

Informally speaking, it suggests us that (at least in the bisection-spiked model) it

is better to "forget" higher moments of the data if we use semidefinite programming

techniques. We note that Lesieur et al. [68] observed a similar phenomenon for the

detection problem and the approximate message passing algorithm.

2.3 Statistical threshold: Proof of Theorem 2.2

Let xO be a vector in { 1} such that 1TxO = 0. For each subset S of [n], let x(s) be

the vector obtained by flipping the sign of (xo), for the indices v E S, i.e.,

if v g S

if v 6 S.

Here x(s) is balanced if EVES(Xo)v = 0. For simplicity, let us call such S also balanced

(with respect to xo).

Note that PML,fail is the probability that x(s) outperforms xO

S, i.e.,

PML,fail = P

( US. Soo0
S balanced

for some balanced

Es)

where Es is the event that (Y, s(x(s))) > (Y, s(xo)) holds.
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Let ts = (s(xo), s(xo) - s(x(s))) and Gs = (W, s(x(S)) - s(xo)). By definition,

Es .# -ts+o-Gs > 0 Gs > ts
'~=~ Cs>

By proposition 2.1, we have

(s(xo), s(xo)) =

(s(xo), s(x(s)))

and so ts =

(k x) -= k(1)

( (s) _ k n - 21SI)

k (#s() - Os (I --

On the other hand,

Gs = (W, s(x(S) S(xo))

= (Sym G, s(x(s)) - s(xo)) = (G, s(x(s) s(x))

This follows from the fact that for any symmetric k-tensor S and a k-tensor T we

have

(S, T)= k!
7rEek

(S ,7Tr) = I T (S, T)
7rE(5k

= (S, Sym T) ,

and that s(x(s)) and s(xo) are symmetric. Thus, Gs is a centered Gaussian variable

with variance

= JIS(XO)12 + - 2 s(Xo), sS(X(S))

= 2nk ((1) - #s (1 )

= 2ts.

Here the second equality follows again from Proposition 2.1.

As a result, we get

P(Es) = P(Gs ts/o-) = 4D FtS 1
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where 4(x) = PIg~N(O,1) (g > x) is the complementary cumulative distribution function

of a standard Gaussian variable.

We provide the complete proof of Theorem 2.2 in the following two subsections.

2.3.1 Proof of the achievability when - < (1 - c)-*

For achievability, our goal is to prove that

PML,fail -+ 0 as n -oo

if - < (1 - E)o,* for some e > 0.

Suppose first that s is even, i.e., s(x) = s(-x) for any x C {1}. In this case,

we have P(Es) = P(E[]\s) and

PML,fail = P X(ML {XO, -XO)D

P U Es
S bal[n] E
( alanced

E
S: S {0,[n]}

S balanced

P(Es) = 2

S: 2
S balanced

Hence, we can easily adapt the proof for the case that s is not even to the case that

s is even. For this reason, in the rest of this subsection we assume that s is not

even, or equivalently, there is an odd r E {0, 1, ... , k} such that s(r) = 0.

We argued in the previous part of this section that

where ts = n k(0(1) -- 0
1S( )

Since ts only depends on the size of S, let us write t, for ts if ISI = r. We get

PML,fail < - #(S : S = r, balanced).
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#(S : IS = r, balanced)
(n/2)2 if r is even

0 otherwise,

since choosing a balanced set S of size r is equivalent to choosing a set S_ of size r/2

from the indices labeled with -1 and a set S+ of size r/2 from the indices labeled

with +1. Thus,

(-1 /2 2 ( trJ2)
We have 4D(x) < e 2 /2 by a Chernoff bound. Hence,

exp

= exp

4j2)

4(

= exp (-r log n -
2

#(n-)))
Osi1 s(I_2

ot () . )b

since (o*)2 = , (1). k-g 6 . When - < (1 - e)o-*, we have (o*/U) 2 > (I _ 6)- 2 > 1 + C

and so

() Ft 2 2)
:!exp -(1 +E)rlogn. (2.1)

Claim. #, is increasing, strictly convex function on (0, 1).

Proof of Claim. Recall that

k

Ost T ='~ )2tr.
=y

By direct calculation, we get 05'(t) > 0 and 0"'(t) > 0 for any t E (0, 1) since 9(r) > 0

for some r > 2. It implies that q, is increasing and strictly convex on (0, 1).

This claim implies that there exists a unique point to E (0, 1) satisfying

#s(1) - Os(1 - to) = (1 - e/2)too',(1),

0

53

Moreover,

F 'u(2)



and we have

for t E [, to]

for t E (to, 1].

Moreover, when t E (1, 2], we have

#S (1) - #s (1 -t) = - t)r)

r=O

S (r)2 (1 + (t -l )r)
r:odd

> 7 (r)9 2

rnodd

which is strictly positive since we assumed that F(r) # 0 for some odd r. Thus,

1 - c/2

C.-"

if2 < to

if I > to
n2

for some constant C > 0 which is independent of n. Plugging it in (2.1), we get

(-(1 + E/2)r log n)

(-Cn log n)

PML,fail r n (n/2 2

r:even

r>2

1-E/2)r + 2 nCe-nlogn

: 

Z(2nE /2)-r + -Cn log n+O(n)

r>2

<n- + o(1),

which converges to 0 as n grows.
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Thus,

if r < Kn

if r > 2n.

OSM -OS(I -

Os (1) - #s (1 - nr)

#'(1) -n

() > (1 /2)t#'(1)

OS(1 -#(I - to)

r()(r)2 (1 - (1

t,
( -2.2



2.3.2 Proof of the impossibility when - > (1 + C)U*

Recall that when ISI = r, we have

P(Es

where

tr = nk

Since 4, is convex on (0, 1), we have

( r2
M(1)

tr < n ,(1) 2r= (-,*) 2 4rlogn

as long as r < i. In particular, when S = {u, v}, we have t2 5 8(u-*) 2 log n and

P(E{U,Vl) > ( 2 () V1ogn).

By a standard tail estimation of standard normal, we have

-2/21

-

x 3

and it implies that when o,* :: o-,

P(Eju,v}) exp (-2 log . - O(log log n) =

2
There are 2- many pairs of vertices ua, v that we can choose. Hence, to have

an event Eu,v, to happen with high probability, we must have P(E{u,v}) = Q(n- 2)

otherwise we will get

P (U ( E{,) n P(E ,1) = o(1).

Indeed, this condition becomes sufficient if the events ELu)} were independent, which
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is unfortunately not the case here. Nevertheless, we would like to argue that those

events are "nearly" independent so that P(E{(,}I) = Q(n- 2+E) for some c > 0 implies

that PML,fail = 1 - o(1).

Let V+ and V_ be the partition of [n] where

V+={vE [n] : (xo)v=1} and V={vE [n] : (xo),=-1}.

For each pair (u, v) E (V+, V_), we will denote Eu,,} by Euv and x({uv}) by x(uv).

Recall the definition of Eu,: E,, is the event that Guv is at least t 2/o-, where

GUV = KG, s(x(uv)) - s(xo)) and t2= n k O(i) - - ))

Let U be a subset of [n] such that IU n V+| = Un V_. We will write (u, v) E U if

u E U n V+ and v E U n V_. Clearly we have

PML,fail !>P U EuV ,
((U,V)EU

and our goal is to prove that the right-hand side converges to 1 if P(Euv) > n-2+c for

some c > 0, under an appropriate choice of U.

Let us first investigate the set of variables which the event E... depends on. Ex-

panding Guv, we have

G = G, (S(X(UV))a - s(xo)Q) .
aEG[n] k

Note that s(x(uv)), = S(xO), if o 1 ({'u, v}) = 0, hence GUV only depends on the

variables G, where a-1 ({u, v}) $ 0.
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We partition the set { :z- 1 ({u, v}) f 0} into the A, A, and A,, where

Al : a Ic: | (u) = 1, ce- 1(U \ {u}) = 0}

A : {a :la-1(V) = 1, ce- 1 (U \ {v}) = 0}

A77 :={a : la-1(U)| ; 2, aY({u, v}) # 0}.

Let Gs, G, and G' be the variables such that

Gu = G, (S(X(u))c, - s(xo)a)

GV = E G, (s(x(v)), - s(xo)a)
aEA,

G'pj E Ga (s(x())) -(xO)

HEAt

Here x(u) is the vector with entries

X(U) {_(XO)u
-(xo),

if w = u

otherwise.

Note that s(X(UV))_ = S(x(u)), if a E Au since in that case we have ac-(v) = 0.

Similarly, we have s(x(uv)), = S(x(v)) if a E A,, so Guy = Gu + Gv + G'uv.

Informal argument. We would like to argue that the effect of G'UV in Guv is negligible.

To see this, note that

|Au| = jAv| = k(n - U)k- 1 ~ knk- 1 - k(k - )|U~n k-2

and

|AuvI <
wE{u,v}

a : a(i) = w, a([k] \ {i}) n U # 0)
k

- 2k (nk- - (n - JUI)k-1)

~ 2k(k - 1)|U~nk-
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Hence |AL| = IAI)I >> jA,,j when |U = o(n) as

|AL | = o(n k-1) and |A| = |AV| = Q(nk-1)

Thus, we expect

max G, + G, + G' ~ max G, + G, = max
(u,v)EU (u,v)EU uEUnV+

Gu + max G,
vEUfV-

and we can bound the last quantity as

Gu + max Gv <
Gv<-- a <; P max Gu <

\\uEuflv+
+ P max

SVEuflv-

= JJ 1P(Gu < t2 /2u) + fJ
uEUnV+ vEUnV-

Together with the approximation E GS ~ r E G 2 = t2 we get

P(Gu >t2/2o-) 2 /- 24),

It implies that

H
uEUnV+

(1- (-*/a)2 ) IUI/2

< expj

which is o(1) if JUI > n(o,/0)2

|UI > n for any c < 1.

This can be achieved by letting JUI = n1-o(l) as

LI

Let us make this argument precise. Let UI = n, where -y(n) will be chosen later

in the proof. Note that

max Gu+G+G' > t2
(u,v)CU U U

(u,v)EU
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(UEUflV+

G < /

P(Gv < t2/2a2 -.

v(o-*)2 log n2_ )
2o, ) n

P(Gu < t2/2o-) ,<

- Uln-(aI/a)2



Since a > (1 + e)o-*, we have

I( U Euv)
(u v)EU

P max G, +G,+G' > t((u,v)EU U- )

_ ( 8(o-*)2 lon>> P max Gu+G+G' > (+)log /
(u,v)EU J- + 6)0-*

> 8o-* login
= ((max Gu + Gv + G'u >

(n,V)EU UV- + 6

Moreover,

max (G + G, +G'v) > max (Gu + G,) - max (-G',)
(U,v)EU (u,v)EU (uv)EU

= max Gu + max Gv - max (-G' LJ.
uEUnV+ vEUnV- (uv)EU

Thus,

8(-* log n
Pfail.M L > P max Gu + max G, - max ( -G' v) >'*.

(uEUnv+ V6UnV- (u,v)EU ' e (2.2)

To estimate this probability, we need to understand the typical values of

max Gu, max Go, and max (- G'v).
uEUnV+ vEUnV- (u,v)EU

The following is a folklore result on the tail bound of the maximum of Gaussian

variables (for instance, see Problem 3.5 in [92]). For completeness, we include the

proof of Lemma 2.8 later in this section.

Lemma 2.8. Let g1, - - - , gN be centered Gaussian variables, which are not necessarily

independent. Suppose that the variances E g? are bounded by some constant M > 0

(which may depend on N). Then for any constant 6 > 0,

P max gi > /2(1 + E)M log N) < N .
Mie[N|

Moreover, if gi are i. i. d. centered Gaussians with variance M, then for any constant
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E > 0,

P max gi < /2(1 - E)M log N)
(iE[N]

< N-6+0()

To apply Lemma 2.8 to our setting, let us compute the variances E G , E G, and

E(G ') 2 . First remark that G,'s and G,'s where u E Un V+ and v E U nV are i.i.d.

Gaussians. Moreover, G' is independent of Gu and G,. Hence,

IEGV=2(IEG2 ) +E(G1 V)2 .

We have already seen that

EGU = |s(x(s)) - s(xo)112 = 2t2 ,

hence

E(G 2 = 2t2 - 2 E GU.

It remains to compute the value of E G2 for some u E U.

Proposition 2.9. For any u E U,

EG2 = 4#'(1)(n - JUI )k-1= 8 (1
1 ) k-1

y(n) (a- *)2 log n.

By Proposition 2.9, we get

= 2t2 - 80/'(1) (n - UI)k-

= 2t2 - 16(1 - 7(n)- )k-1 (*)2 logn

" 16(o-*)2 log (1 (1 -)k-1)

16(k - 1)
'y(n) . g

The second inequality follows from t2 5 8(a* ) 2 log n and the last inequality follows

from (1 - x)k- 1 > 1 - (k - 1)x for any x E [0, 1].
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Let q = -. By Lemma 2.8, with probability 1 - 2 w h

max G, + max G, > 2
uEUnV+ vEUnV- ( 16(1 - TI) (1 (o*) 2 logi

and

max (-Ga) <
(u,V)EU

(2(1+
16(k - 1)

-y(n) (a-*) 2 log n - 2 log -y) 1/2
S 2-y(n))

Letting -y(n) = log3 n, this reduces to

max Gu + max
uEUnV+ v6UnV-

Gv - max (-G'u)
(u,v)EU

> 8o-* log n

Note that
1 c

1 + 2

for sufficiently small c > 0. Together with (2.2), we get

Pfail, ;> 1 - 2 ( n )-6

as desired.

Let us complete the section by presenting the proof of Lemma 2.8 and the proof

of Proposition 2.9 here.

Proof of Lemma 2.8. Since 1D(x) < e-X2 /2,

P(gi > \/2cM log N) <

By union bound, we get

P max gi >
iE[N]

,/2(1 + E)M log N) N - N-(+6) = N-

which converges to 0 as desired.
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= 1 - o(1)

we have

- 1 ) -1

-Y(n)

(,/-I - yt - o (1)) .

exp -2(1 + e)M log N < N~(1+6)



On the other hand, if gi are i.i.d. N(O, M), then

P max gi <
(iE[N]

,2(1 - E)M log N) = fjP (gi < /2(1 - c)M log N)

- [ - <D (2(l - E)log N)]

Since 4D(x) > e-X2 /2(x-1 - X-3)7

- <D (V2(I --c)log N) N (1 - N-(-E)+o())N -NE+o

which is less than N-+o(1) as desired.

Proof of Proposition 2.9. Note that

EG = (s(x()), - s(xo))

E E E (I) ((xlu)),(,)
iE[k] a:a(i)=u, IC[k]

a-1(U)={i}

since G, are i.i.d. standard Gaussians.

Note that

if i 0 I

if i E I.

It implies that

E G2 E(-2

=4
Q:c(i)=u,

4I f
I,J:InJi

EIC[k]:I3i

(I)(XO)a(I))

z
I,J:IflJ~i

(I)s(J)
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(xo)a(I)))

(xo)a(I)

-(xo)a(I)

(X(U))O,(,) =

'('Mj) (xo)c,(I) (X0).(J)

(X0) a(I) (X0) C(J) )-



Note that

S(xo)a(I)(Xo)Q,(J)=
c_(U =

(n -|UI)k-1 -I J\1j
1I E (xO)a

jE(I\J)U(J\I) a(j)E[n]\U

(n - JUI)k~1

0

since EZVE[n]\U(xo) = 0. Hence we get

= 4(n -IUI)k-

= 4(n - UI)-

= 4(n - IUI)k-I

k

IC[k]:IEi

RI2.

IC[k]

k

r= k> r = 4#'(1)(n - IUI)k-1

which is equal to 8 ( 1-
)

(a*) 2 log n. 0

2.4 Truncate-and-Relax algorithm

Let us recall a few definitions we need in this section. The truncation of s to degree

2 is

S<2 =

IQ[k]:|III;2

4I x

and the estimator x(C is an optimum solution to

max
xE{ 1}n:lTx=O

(Y, s<2 (x))

The truncate-and-relax algorithm simply solves the standard semidefinite relax-

ation of the optimization problem (2.3), which we describe in Section 2.4.1.
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2.4.1 Binary quadratic optimization

We give a quick overview on the binary quadratic optimization problems and semidef-

inite relaxation techniques applied to this class of problems.

Binary Quadratic Programs (BQPs) are a class of combinatorial optimization

problems with binary variables, quadratic objective function and linear or quadratic

constraints. Note that (2.3) is an example of BQP since the variables x, take value

in { 1}, the objective function (Y, s<2 (x)) is a quadratic function in x, and the

constraint 1Tx = 0 is linear. It implies that the techniques to solve BQP readily

apply for computing Rx .2) However, in general BQP is NP-hard to solve even when

it is unconstrained, as it includes well-known hard problems such as the problem of

finding the maximum cut or the minimum bisection of a graph.

Alternatively, convex relaxation approaches can be used to find an approximate

solution for a given BQP. In particular, we consider Semidefinite Programs (SDPs)

which are a broad class of convex optimization problems where the variables forms a

symmetric positive semidefinite matrix, the objective function is given as the linear

function in the variables and constraints are given by linear matrix inequalities. We

remark that SDP can be solved up to precision 6 in poly(n, log(1/E)) time.

Let us consider the following unconstrained BQP:

max xTQx + 2eTX. (2.4)
xE{ 1}f

~X 1 T ~ o E
Let X = [ ] and Q = . By definition, the objective function

xTQx + 2eTx can be written as , x). Moreover, the matrix X is positive semidef-

inite and has rank one, and its diagonal entries are equal to one as Xoo = 1 and

Zu = x? = 1. Conversely, if X satisfies those conditions then x is a vector in {+1}".
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Hence, the original BQP (2.4) is equivalent to

maximize Q, X
subject to X = 1 for i = 0, ... , n

S>- 0, rank(Z) = 1.

By removing the rank constraint (rank(X) = 1), we get the following SDP relaxation:

maximize , k)

subject to Xii = 1 for i =,--- , (2.5)

S>- 0.

The dual of (2.5) corresponds to the following semidefinite program:

minimize tr(D)

subject to D - Q > 0, (2.6)

D is a diagonal matrix of size (n + 1).

It is easy to see the weak duality, that is, for any primal feasible X and dual

feasible D,

D - U, > 0

and so

, <; D, = tr(D)

since X(i = 1 for any i = 0,... , n. Hence, the optimum value of the primal (2.5) is

always bounded above by the optimum value of the dual (2.6). For the strong duality,

we may need some constraint qualification to hold, such as Slater's condition.

Proposition 2.10 (Slater's condition). If there is a strictly feasible k for the primal

(i.e., X >- 0), then the optimum values of the primal and dual are equal, and the

optimum is attained in the dual. Similarly, if there is a strictly feasible D for the

dual (i.e., D - Q >- 0), then again the optimum values are equal and the optimum is
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attained in the primal.

We remark that in the primal-dual pair (2.5) and (2.6), the Slater's condition is

satisfied since

X = Id,+1 and D = 2||Q1| - Idn+1

are strictly feasible. Once we have the strong duality, we can classify the primal-dual

solution pairs in terms of complementary slackness.

Proposition 2.11 (Complementary slackness). Suppose that Slater's conditions are

satisfied. Then, X and D are primal and dual optimal solutions if and only if the

Karush-Kuhn- Tucker (KKT) conditions holds: (i) X is primal feasible, (ii) D is dual

feasible, and (iii) Kk, D - ) = 0.

The proof of Proposition 2.10 and Proposition 2.11 is omitted here, as they can

be found in many textbooks on convex optimizations (we refer the interested readers

to a textbook by Boyd and Vandenberghe [28]).

2.4.2 Matrix expression

To formulate the truncate-and-relax algorithm, we would like to first express (Y, s<2 (x))

in the form ofK(? Z whereX= [ fl
Note that

(Y, s< 2 (x)) = (s(xo) + oW, s< 2(x))

= (s(xo), s 2(x)) + -(W, s<2(x)) .

By Proposition 2.1, we have

k

(sXO), s 2 (X)) n nkZ1
r:=O

2

~nkZE
r=O
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Recall the definition

Thus, we have

2 

( 
kps,trunc(t ) = 03., 2 (t ) = z (')(2t.

r=O

(s(xo), s8 2 (x)) = nk #s,trunc x)

Moreover, we can write

#s,trunc (x
/X

and (s(xo),s< 2(x)) =

where

F(O) 2

ks( 1)2

2
xo
n

kg(1) 2 XT

2 n
(2.8)

2() k (2)2

X T
xoxo

On the other hand, since s< 2 (x) is symmetric we have (W, s<2 (x)) = (G, s 2 (x))

and

K G,
YS

IC[k]:1I1<2

(IIDIx') = ECg(ik) ]G, xI) .
IC[k]:|Ill:2

As a quick reminder, x, is defined as the k-tensor XI(x) (See Section 2.1.2).

Let ProjI(.) be the linear operator which maps a k-tensor T to an 1I-tensor

ProjI(T) with entries

[ProjI(T)]0 = for / E [n]',
aE [nl]k:
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(G, s< 2(x)) =

n' , 
( , j



for I = {ii < - -

(G, s< 2 (x)) =

- < } ; [k]. By definition, we get (T, x') - (Proj,(T), xO") and

E (r)
r=O \Ig k]:III=r

F(0) Projo(G)

9( 1)
2

Proj 1(G), x

Proj {I(G) 1 i(2)

Proj j (G)T

S Sym Proj {ig (G)
1 i<j k

Letting

go = Projo(G) = E Ga,
a

G = (Projj j}(G)
1<i<jsk

k

g = Proj{j (G),
+ 1

+ PoSGT

FS)g '(1) gTi
(O)g 2 g

W g 
() 2 ,

L 2 g s(2)GJ

(2.10)

we get (G, s<2 (x)) = Wq

In summary, by putting (2.7), (2.8), (2.9) and (2.10) together, we get

(Y, s< 2(x)) = (nk + ) 

W) .

2.4.3 Standard semidefinite relaxation

Let

where S and W are defined as in (2.7), (2.8), (2.9) and (2.10). We recall that x ,lc

is the optimum solution of the following BQP, which is equivalent to (2.3):

max
xE{+1}n:XTj=O
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Let us introduce a few notations for the ease of reading. Given a vector x E R",
-T

we denote the extended vector [1 XTI in Rn+ 1 by x. We use the convention that

the indices of the vectors in Rn+ 1 are labeled 0, 1, ... , n to emphasize that the zeroth

coordinate is augmented. Likewise, the rows and the columns of the matrices in

R(n+1)x(n+1) are labeled 0, 1, ... , n.

Let M be a symmetric matrix in Rn+1)x(n+1). We often decompose M into blocks

as

~a b T

b C

where a E R, b E R' and C E RlX". We call M block-diagonal if b = 0.

We consider the following SDP relaxation of (BQP) as we discussed in Section

2.4.1:
maximize

subject to Xi = 1 for i = 0, , n, ((SDP)

X- 0.

We remark that here we drop the balance constraint xT1 = 0 in (SDP) for a simpler

analysis, although it is straightforward to obtain a relaxation including the balance

constraint, for example, by adding

0 OT
n ,X =0

On 1nl1_

to (SDP).

We denote the optimal solution of (SDP) by Zsdp. The dual program of (SDP) is

minimize tr(D)

subject to D - 0, (SDP*)

D is a diagonal matrix in R(n+l)x(n+l)

By Slater's condition (Proposition 2.10) and KKT conditions (Proposition 2.11),
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a primal-dual pair (X, D) is optimal if X is primal feasible, D is dual feasible and

D - , = 0, i.e. D, K DJ) = ( , Z).

We would like say that (SDP) succeeds if 0]x is the "unique" solution of (SDP)

with probability 1 - o(1).

Note that when S<2 is even, then xO and -xO are indistinguishable in the SDP

(SDP). Hence, in this case we say that (SDP) achieves exact recovery if all the

optimum solutions are of the form

~ 01 xL 01x

The following proposition tells us that if Y is block-diagonal (which is equivalent

to that S<2 is even), then there must be an optimum solution which is also block-

diagonal.

Proposition 2.12. If s(1) = 0, then there exists an optimum solution X* of (SDP)

~hc* i,
which is block diagonal, i.e., X*=n

0, *

Proof. Let X be a feasible solution of (SDP) which decomposes as X =
x X T

xXJ

Let X'= [XO T
-X X

We claim that X' is feasible. First of all, Xh = 1 is satisfied for all i = 0, , n

by definition. Moreover, note that

Z' = D--lkD where D = diag([1 -1flT) -
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Thus, X' >- 0 if and only if X >- 0.

If i is block diagonal, we get

k) = K ' k') =

Note that X+X' is also feasible by the convexity of SDPs, and2

+ X LO
2 0 X

so it is block-diagonal. As a result, we obtain a block-diagonal optimal solution x+

of (SDP) as desired. El

To be precise, we say the truncate-and-relax algorithm achieves exact recovery if

any optimum solution of (SDP) lies in

. the span of

E
xo

XTi

Txox

if 9(1) $ 0 (i.e., s is not even), or

.the span of

Xk=
xL X

XTixo
TxoxoJ

and Xf =

-xo

XTi-xo

xoxTxox j

if g(1) = 0.

By KKT conditions, Xo is optimal if and only if

KD - i, ZO = 0 or equivalently
(D - i) O = 0
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since Xo = RiORI. For each v E [n], we have

as (io) =1 for all v E [n].

Let Do = diag(io) and F = DoYDo . Then, (2.11) can be rewritten as D =

diag(F1n+1 ) since

(r1n+l) = S vw= 5 vw (Ro)v (Ro)w = Dvv.
wE[n] wE(n]

We define the Laplacian of a symmetric matrix M as the symmetric matrix

Lm = diag (Ml) - M

of the same size. In particular, the Laplacian Lr can be written as

Lr = diag(F1rl+ 1 ) - F = D - DoiDo

= Do(D - T)Do,

hence D -Y = DoLr Do.

Proposition 2.13. The truncate-and-relax algorithm achieves exact recovery if Lr >

0 and

" A 2(Lr) > 0 with probability 1 - o(1), if '(1) # 0, or

" A 3(Lr) > 0 with probability 1 - o(1), if (1) = 0.

Proof. Note that the KKT conditions are satisfied as long as Lr >- 0. We claim that

the extra condition on A2 (or A3 if s is even) implies the uniqueness of the solution.

We first note that Lrln+i = On+1 (immediate from the definition), and if F(1) = 0
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then additionally we have [-1 =
Lr =On+1-

-in

The condition A 2(Lr) > 0 forces that the null-space of Lr is spanned by 1,,+, and

A3 (Lr) > 0 in the case of 9(1) = 0 forces that the null-space of Lr is spanned by 1n+1

and .
-1n

This implies that if kj is an optimal solution of (SDP) then DOX 1 DO must lie

in either the space spanned by 1+,11+, or the space spanned by 1,+,11+ and

n. This implies the achievability of the truncate-and-relax algorithm. El

2.4.4 Proof of Theorem 2.3

Now we are ready to prove Theorem 2.3. Recall that

Os,trunc(t) = #S< 2(t) = j(k)(r)2tr, and

nk-1

-s trune = '~trunc(1) 2 logn'

We first prove that the truncate-and-relax algorithm fails if - > (1 + E)U-strunc

using the result from Section 2.3.

Theorem 2.14. If - > (1 + e)o*,trunc for some e > 0, then

" If 2(1) $0, then

p((2,c = XO) = 1 - o(1).

" If 9(1) = 0, then

XP(irc {xo, -xo}) = 1 - o(1).

Moreover, the truncate-and-relax algorithm fails with probability 1 - o(1).
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Proof. Since (s(xO), s<2 (xO)) = (s 2 (xo), s< 2(xo)), we have

argmax
xE{ 1}n:lTx=o

(s 2(xo) + aw, s 2(x)) ,

which is exactly the ML estimator in the s<2-spiked k-tensor model.

statistical threshold is at

Hence, the

* , 

<() k-1 -*2= 8 ()2lg nlog

In particular, if o- > (1+ 6)O*,rc for some c > 0, then

* -P(2)c 4 xo) = 1 - o(1) when s<2 is not even, and

*IP(Xunc f 7xo, -xo}) = 1 - o(1) when s< 2 is even,

as desired.

Suppose that 8<2 is not even. Suppose that 2 )ruc = x for some x E {Il}" such

that 1Tx = 0 and x # xo. Then, RR' is also a feasible solution for (SDP) and

Hence, XSdp # iZoo. By the same argument,

XO x%]
[1

-XO

XT-x

To~

if S<2 is even.

This implies that if 2) ,c fails to recover x0 with probability 1 - o(1), then the

truncate-and-relax algorithm also fails with probability 1 - o(1), as desired. E

On the other hand, we prove the achievability of the truncate-and-relax algorithm

by arguing that dual solution given by the complementary slackness is with high

probability feasible.
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T heorem 2.15. If u- < (1 - 6)*trunc for some c > 0, then the truncate-and-relax

algorithm achieves exact recovery.

Proof. By Proposition 2.13, it is sufficient to prove that

" Lr is positive semidefinite, and

" its second or third smallest eigenvalue (depending on the parity of s) is strictly

positive.

Without loss of generality, we may assume that s(0) = 0 since it has no effect

on Lr (in fact, any change in the diagonal of F has no effect on Lr). Note that by

linearity of the Laplacian operator L(.), we have

Lr = nk LDo Do + oLDoWDo'

First of all, let us take a look at LD D0 . We get

0

DOSDo =

k?( 1)2

2

in

n
ks(1)2

2

ks( 1)2

2
in

n 2)

-(1)2 1T 1
2 n

. nF(2)

kg(1) 2 1T
2 n

ks(1)2
2

F(2)2 )
Id,,
n 2() F(2)2

F 1

n

in inl n
Ln n2 J

0 n7

On Id -i n
n J

1 (k(1) 2
+ - (n 2 + 9(2)2)

On the other hand,

and so

LD0 D0 =

ks( 1)2

2

in
n2

(2.12)

DoWDo =
0

s(1 Dog
2

9()(Dog)T
2

9(2)D0GD0o
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LDJ~D
o -

X g(

2 --Dog

-(Dog) T

diag(Dog)
(2.13)

LDoGDo 1

U.I
Tin+1 [irJ-T-

and n=
1]

Sn .

Then,

0 -o0

_, Id - 1,1T.
On Idn _

Idn+1 _- T _ -VT =

Hence, any vector z in Rn+ 1 can be written as

z = aii + b +
0

L W,
[w

where a = T b = vTz, and for some w G R" satisfying 1.w =0.

+ where w E Rn with 1Tw = 0.
w

k -( 1)2

2
(n+1 b2 + 1

Then,

2 + 2 2 2 .

Moreover,

zTLDoVDoZ = b2 2
n +1

|F(1) IxT g)> -b2 n +1

+(1) Vn+ (gTDow)b

+WT ( )diag(Dog) + i(2)LDoGDo) w

- Jb lIwHl + I iDog

- IIw1 1) diag(Dog) + 9(2 )LDoGDo-

Lemma 2.16. Lr is positive semidefinite with probability 1 - o(1) if the followings

holds:
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ZTLDOSDoZ
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(i) There exists a constant c > 0 such that

n-i k(1 ) 2

-F ( (2)2) - 0- diag (Dog) + )(2)LDGDO > cnk-1

with probability 1 - o(1),

(ii) |xo g| < nk/- and ||Dog| < nk/ 2 / with probability 1 - o(1).

Indeed, the condition (i) and (ii) implies that A2 (L,,) > 0 when .?(1) $ 0 and A 3 (Lr ) >

0 when 9(1) = 0, with probability 1 - o(1).

Proof. We have argued that for z = ail + byr + E where w
w

E R with 1nw = 0,

zT Lr z > 71b2 + 212 JbI |Iw12 + 773 flw 2

where

k nn+
1= n n

k ( 1) 2

2)
n l

n 2

172 = - (I(i) n l I Dog|

ks(1)2 (2)2 ) - 0- diag(Dog) +
2

Note that if qS - 1_ 3 < 0 and 73 > 0 then zTLr z is always nonnegative.

If condition (i) holds, then 3 > nk~. If condition (ii) holds, then ql x nk and

172| « nk-/ 2 . It implies that

12 < n2k-1 
,

for sufficiently large n and we have Lr > 0.

We remark that if r,2 - 1773 is strictly negative, then A2 (Lr) > 0 and this holds if

(1) $ 0 and the condition (i) and (ii) hold. On the other hand, if 2(1) = 0 then we
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have m = 72 = 20 so - 1773= 0. In this case, the condition (ii) implies that 73 > 0

Eland we have A 3 (Lr) > 0.

It is straightforward to see that with probability 1 - o(1),

X0 g1= O(ni)2 and ||Dog|| = j|g|| = O(ni)

since g is a sum of k Gaussian vectors with i.i.d. entries with variance nk-1. When
k-1

a - n 2 /log'n, we get

n/k-1/2 k2

so the condition (ii) is satisfied.

It remains to show that if - < (1 - e)oc for some e > 0, then the condition

(i) holds, i.e., there exists c > 0 such that

a 2 diag(Dog) + (2)LD0 GD0 < c)nk-1 2 (2)2) (2.14)

with probability 1 - o(1).

We first note that

(1) ?( 1)diag(Dog) + s(2 )LDOGDo < |(2)|||DoGDo||+max (Dog)v
2 ve[n] 2

by the triangle inequality. Recall the definition of G:

G= E SymProj{jj}(G).
1<i<j! k

Here, observe that Proj{ij3 (G) is a matrix with i.i.d. Gaussian entries with variance

nk-2. Hence, I Proj {jI(G)|< Vnk--2 - V/Y and

IDoGDoll = |IG11 < z:1 i<jsk

11 Sym Proj{ij}(G)Jj < n
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On the other hand, we bound

max 2g(1) (Dog) + F(2 )(LD o GDO)m1
vE[n] 2

by using the Lemma 2.8 on the maximum of Gaussian variables. Expanding the v-th

term, we get

(1 (Dog), + F(2 )(LD oGDo )vv =2

= (xo)VK - e",2 g + 9(2)Gxo

where e' is the vth standard unit vector of R . Since

g = Proj{ (G)
iE[k]

and G = E Sym
1<i<j,[k]

Projfj3 (G),

(ev, g) = k (G, 10(k-1 ) 0 ev)

and

(ev ,Gxo) = (k) (G, 1 0(k-2) 0 eV 0 xo).

K G,
k(1)((k-1) 0 ev)

and
E ((Dog)v + (LDOGDO)VV) 2

=(k(1) 2 +

= k +12

(k-1) 0 ev) +

2(2)2

k )1 ) Q( 9 (k -2) 0 eV 0 xo)

n - + 0(k-2)
4
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(lXo) ogv + 9(2) E G. (xo). (xo) V2
ue [n]

we get

Thus,

2 (Dog)v

+ (k) (2 )(19( 0-2 0 Xo))

2

F

,

+ '(2) (LDOGDO)vv =



Here the last equality follows from that

strunc(1) = r --(r)2 = k(1)2 +2 ( (2)2

As a result, with probability 1 - o(1) we get

max () (Dog), + F(2)(LDoGDo)V < (trnc(1) 2nk-1 o, (216)
VE[nj 2 2

for any constant r7 > 0.

Putting (2.15) and (2.16) together, we have

S(l) diag(Dog) + '( 2 )LDoGDo

0 (-n ) + (1 + r) jJ/c,7,/ (1) - 2nk-1 log n

< 0 (nk-1) + 2 ( - E) 2 0trurc(1) k-1

since o- < (1 - 6)-,.c - (1 - 6) s,()2 . Letting q = E, we get

2 diag(Dog) +(2)LDOG Do _ k-1 .-s,trunc

S+= (1k- 6)n_1 (k(1)2 + F(2)2)

which confirms that the condition (i) holds. 0

2.5 Sum-of-Squares relaxation

Let us first briefly discuss Sum-of-Squares based relaxation algorithms. Given a

polynomial p E R[x], consider the problem of finding the maximum of p(x) over

x G R n satisfying polynomial equalities q1(x) = 0, -. - , qm(x) = 0. Most hard com-

binatorial optimization problems can be reduced into this form, including max-cut,

k-colorability, and general constraint satisfaction problems. The Sum-of-Squares hi-

erarchy (SoS) is a systematic way to relax a polynomial optimization problem to a
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sequence of increasingly strong convex programs, each leading to a larger semidefinite

program. See [23] for a good exposition of the topic.

There are many different ways to formulate the SoS hierarchy [89, 82, 79, 65]. Here

we choose to follow the description based on pseudo-expectation functionals 1231.

Suppose that we are interested in maximizing an n-variate polynomial g(x) over

the n-dimensional hypercube {1 }. For instance, consider g(x) = (Y, xo4 ) where

Y = x0 + aW is generated from the single-spiked 4-tensor model. Here maximizing

g(x) corresponds to the problem of computing the maximum-likelihood estimator

under this single-spiked model.

Observe that

max g(x) = max E g(x), (2.17)
xE{ Il} IL X~1.

where p ranges over all probability distributions over all balanced vectors in {1}".

We remark that the space of all probability distributions is convex, but possibly has

an exponentially large dimension. In particular, in this case we have

{E R x{ 1 } (x) = 1, pi(x) 0 for all x E {1}1

which is 2" - 1 dimensional.

A linear functional I on R[x] is called pseudo-expectation functional (p.e.f.) of

degree d = 2f if it satisfies

" E1 =1, and

" E q(x)2 > 0 for any q E R[x] of degree at most [.

Clearly, any "true" expectation functional is also a p.e.f. of any degree, but the

converse is not true. We relax (2.17) as

maximize E g(x)

subject to E is a p.e.f. of degree < 2f.

E[q(x)(x' - 1)] = 0 for any v E [v] and q of degree < 2f - d.
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The space of p.e.f.s of degree at most 2f can be described as an affine section of the

semidefinite cone of dimension O(n V). As f increases, the space gets smaller and it

coincides with the space of true expectations when f = n for the polynomials on the

hypercube {t1} .

2.5.1 Pseudo-expectation Functionals and Moment matrices

We continue to use the Fourier-theoretic notations introduced in Section 2.1.2.

Let V be a finite set. We denote the collection of subsets of V of size at most f

by (v), i.e., (v) = Ui=0 (o). Moreover, we denote the size of (<) by (,). Thus we

have ( 2) = Z . (n).

We denote the space of multilinear polynomials of x by V, and the subspace of

V consisting of multilinear polynomials of degree at most d by Vd. Recall that any

real-valued function f on the hypercube {1}" has the unique Fourier expansion

f(x) = Z f(S)xs,
SC[n]

which is a multilinear polynomial in x. To avoid confusion, here we choose to use

XS = liEs xi directly, instead of the character Xs() : x -+ XS.

Let M be a symmetric matrix of size (ne). We use the convention that the rows

and the columns of M are indexed by the subsets of [n] of size at most f. To avoid

confusion, we use M[S, T] instead of MS,T to denote the entries of M in the remainder

of this section.

Pseudo-expectation functionals

For our purpose, we consider pseudo-expectation functionals defined on the hypercube

{1l}1. See [23] for general definition.

Let f be a positive integer and d = 2. A pseudo-expectation functional (p.e.f.) of

degree d on { } is a linear functional E on the space Vd of multilinear polynomials

of degree at most d such that
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(i) E[1] = 1, and

(ii) E[q 2 ] > 0 for any q with deg(q) < f = d/2.

We say E satisfies the system of equations {pi(X) = 0}I if

E[pq1 + -+ pq.] = 0

for any q1 , - , q. E V such that deg(qi) < d - deg(pi) for all i E [M].

We remark that the followings holds:

* If E is a p.e.f. of degree d, then E is also a p.e.f. of degree d' for any d' < d.

" If FE is a p.e.f. of degree 2n, then FE is a true expectation functional of a proba-

bility distribution which is supported on the variety

P := {x E { 1}n : pi(x) = 0 for all i E [m]}.

The second fact implies that

maxpo(x)
xEP

max E [p]
E:p.e.f. of degree 2n

satisfying {pi(x) = O}iE[m]

Let d be an even integer such that d > max(deg(po), deg(pi), -- - , deg(pm)). We

define the Sum-of-Squares (SoS) relaxation of degree d as the following optimization

problem:

maximize

subject to

Eip ee

2 is ap.e.f. on { 1}' of degree d, (SoSd)

E satisfies {pi(x) = 0}1.

We note that the value of (SoSd) decreases as d grows, and it reaches the optimum

value maxxeP pO(x) of the original problem at d = 2n.
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Moment matrices and SoS-symmetry

We are going to show that (SoSd) can be written as a semidefinite program of size

.2) For this, we introduce a matrix interpretation of the SoS relaxation.

We say M is SoS-symmetric if M[S, T] = M[S', T'] whenever S D T = S' E T',

where S D T denotes the symmetric difference (S \ T) U (T \ S). Note that when

x E { 1} we always have

XSXT =(ux ( x) = Xi = xs,

\iES /\jeT / iESeT

hence the matrix X with entries X[S, T] = XSET is SoS-symmetric.

Given f E V2e, we say M represents f if

f^(U) =M[S, T].
S,TE( O
SeT=U

By definition, if M represents f, then (M, X) = f(x) where X is the SoS-symmetric

matrix with entries X [S, T] = XSeT. We denote the unique SoS-symmetric matrix

representing f by Mf, i.e.,

Mf [ST]= f(S (DT)- ((S', TI): S' ET'=S ET))-.

Let L be a linear functional on V. By linearity, L is determined by the values

(L[xs] : S C [n]) and we often write Ls to denote L[xs]. Let XL be the SoS-

symmetric matrix of size (n) with entries X[S, T] = L[XSET]. The matrix X is

called the moment matrix of L of degree 2f. We remark that the matrix X with

entries X [S, T] = XSeT corresponds to X6 where

J, (-) : p - P (x)

is the evaluation functional at x, or equivalently the expectation functional of the

one-point distribution on {x}.
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By definition, we have

L[f] = f(U)L[xul
UE(['e)

= S M[ST] Xc[ST1] = (XL, M)
S,Te("1)

for any f with deg(f) < 2f.

Let lB be a p.e.f. of degree d = 2f for some integer f > 1, satisfying the system

{pj(X) = 0}n. Let X2 be the moment matrix of 2 of degree 2f (hence X is a

SoS-symmetric matrix of size (",)).

We remark that XE satisfies the followings:

(i) X[0, 0] = 1.

(ii) X is positive semidefinite and SoS-Symmetric.

(iii) (Mf, X=) = 0 for any f E {E'1 pjiq : deg(qi) < d - deg(pi) Vi E [m]}

The converse is also true: If X satisfies (i), (ii) and (iii) then X = Xi for some p.e.f.

FE of degree d satisfying {pi(x) = O}iElmi

Hence, (SoSd) can be written as the following SDP:

maximize

subject to

(MO, X)

XO'O = 1,
(SDPd)

(M, X) = 0 for all q E 13,

X >- 0, and X is SoS-symmetric,

where B = {xspi : i E [in], IS| d - deg(pi)}.
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2.6 Proof of Theorem 2.5

Let us recall the setting of the single-spiked 4-tensor model: We observe a 4-tensor

Y& = x0 4 + O-W

where xO is a vector in {1} satisfying lxo = 0, - > 0 is a noise-scaling factor,

and W = Sym G where G is a 4-tensor with i.i.d. N(0, 1) entries.

Let f (x) = (Y, x®4 ). The maximum-likelihood estimator xML is the optimum

solution of

max f&(x).
xE{f }":1Tx=o

Let us consider the corresponding SoS relaxation of degree 4:

maximize E[fg]

subject to E is a degree 4 p.e.f. on 1}1
n

satisfying xi = 0.
i=1

Let Eu( xo) be the expectation operator of the uniform distribution on { xo}. Note

that EU( xo) = 1(6o + 6_xO) so

Eu( xo)[1xs] = (xo)s if ISI is even

0 if |S| is odd.

If EU( xg) is the optimal solution of the relaxation, then we can recover xO up to

a global sign flip from its quadratic moments. First we give an upper bound on - for

the SoS algorithm to achieve exact recovery, in the case of the single-spiked model.

Theorem 2.17 (Theorem 2.5, Achievablility). If a ;< then FE = EU({ x0 }) is

the optimum solution for (2.6) with probability 1 - o(1).

We can reduce Theorem 2.17 to the matrix version of the problem using a tensor

flattening, as in [751. Given a 4-tensor Y, the canonical flattening of Y is defined as
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n2 x n2 matrix Y with entries Yij),(ke) = Yijke. Note that

Y = vec (xO 2) vec (x0 2)T + -W

where vec (xo 2 ) is the vectorization of x1 2 , and W is the flattening of W. Note that

this is an instance of Z 2-synchronization model with Gaussian noises. It follows that

with high probability the exact recovery is possible when o < g n (see Proposition

2.3 in [21]).

We complement this result by proving that this bound on - is tight up to a

multiple of poly-logarithmic factor.

Theorem 2.18 (Theorem 2.5, Impossibility). Let c > 0 be a small constant. If - >

n(log n)1/ 2 +c, then there exists a pseudo-expectation E of degree 4 on the hypercube

{ k1} satisfying E', xi = 0 such that I [f®] > f®(xo) with probability 1 - o(1).

We ask the performance of the SoS relaxation of degree 4 on the bisection-spiked

4-tensor model. Let us recall the setting of the bisection-spiked model: We observe a

4-tensor YE such that

YE = x0+-W

where x0 is a vector in { } with 1TxO = 0, o- > 0, and W = Sym G where G is a

random 4-tensor with i.i.d. N(0, 1) entries. Let

fg (x) = (YE, xG();

and let us consider the corresponding SoS relaxation of degree 4:

maximize E[fE]

subject to E is a degree 4 p.e.f. on { 1} (2.18)

satisfying xi = 0.
i=1

Theorem 2.19 (Theorem 2.7, rephrased). Let c > 0 be a small constant. If u -
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n(log n)1/2+c, then there exists a pseudo-expectation E of degree 4 on the hypercube

{ 1} satisfying En I xi = 0 such that E[fEl > fE(xo) with probability 1 - o(1).

2.6.1 Proof of Theorem 2.18

Let us define g& and gE be

g®(x) = (G, x14 )

Then,

f® (x) = KX04, x04) + a-go(x)

and ge (x) = (G, x 4) .

and fE (x) = xo 4, xe4) + -g (x).

Let E be a p.e.f. of degree 4 on { 1} satisfying E' xi = 0. Note that

T

(x *4, x 4) = nk( 0 )40 1 n

and
nk

2 2(k-1)
'x) 2+ 6 (x

+ (n

hence E[f ] > o E[g] in either cases. We would like to construct a p.e.f. E depending

on G so that a IE[g] exceeds f(xo) with high probability.

Lemma 2.20. There exists a p.e.f. E of degree 4 on {t1} satisfying X = 0

which only depend on G such that

E9 2 (log n)1/ 2+o(l)

for either g = gE or g = go.

Proof of Theorem 2.18. Note that in either cases g(xo) is a Gaussian random variable

with variance 0(n4 ). So, |g(xo)| < n2 log n with probability 1 - o(1). Let E be the

pseudo-expectation satisfying the conditions in Lemma 2.20. Then, with probability
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1 - o(1) we have

E[fI - f (xo) > - 8(n') + 0 (Elg] - 1g (xo)I)

- ( + - (o nal/ 2 +o(1) - O(n2 log

When o- > n(log n)1/ 2+c for some constant c > 0, we have

(log n) 1/2+o(l)

hence E[f] - f(xo) > 0.

In the remainder of the section, we prove Lemma 2.20.

Outline

We note that our method shares a similar idea which appears in [58] and [26].

Let us consider the case that g = g®, i.e., g(x) = (G, x®4 ) where G has indepen-

dent standard Gaussian entries. We would like to construct E = EG which has large

correlation with G. If we simply let

E[xiXi 2 Xi3 Xi 4J 24 ( ,, ,4,

7rE64

for {ii < i 2 < i3 < i4 } C [n] and E[xT] be zero if TI < 3, then

E[g] = Gi ,i(,>,i 2

1<i1<i2<i3<i4 fn (7rEG4

so the expectation of E[g] over G would be equal to a-) . However, in this case E

does not satisfies the equality Z 1 xi = 0 nor the conditions for pseudo-expectations.

To overcome this, we first project the E constructed above to the space of linear

functionals which satisfy the equality constraints (x? = 1 and 1Tx = 0). Then, we

take a convex combination of the projection and a pseudo-expectation to control the
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spectrum of the functional. More specifically, we take the following steps to construct

a pseudoexpectation functional 2 of degree 4.

(1) Removing degeneracy. We first establish the one-to-one correspondence be-

tween the collection of linear functionals on n-variate even multilinear polynomi-

als of degree at most 4 and the collection of linear functionals on (n - 1)-variate

multilinear polynomials of degree at most 4 by posing x, = 1. We observe that

this correspondence preserves positivity.

(2) Description of the linear constraint 1Tx = 0. Let b be a linear functional

on (n - 1)-variate multilinear polynomials of degree at most 4. We may think

as a vector in R(<4). Then, we can write the condition that the functional

V) satisfies Z - xi + 1 =0 as AO = 0 for some matrix A.

(3) Projection. Let w E IR(') be the coefficient vector of g(x). Let 1I be the

projection matrix to the space {x : Ax = 0}. In other words,

S= Id(n-1) - AT(AA T) tA

where (.)t denotes the pseudo-inverse. Let e be the first column of El and

V = 1. Then (V)1)0 = 1 and A01 = 0 by definition.

(4) Convex combination. Let Oo = ;. We note that 4'o corresponds to the

expectation operator of uniform distribution on {x E { } 1, 1TX = 0}.

We will construct O by

V= (I - 0)00 + E0i

with an appropriate constant c. Equivalently,

( eeT'W
T - 1- lw.eTw eTe

(5) Spectrum analysis. We bound the spectrum of the functional (u - W

to decide the size of e for 4 being positive semidefinite.
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We describe each step in detail in the remainder of this section.

Step 1: Removing degeneracy.

We remark that either g = Observe that g is even, i.e., g(x) = g(-x) for any x E

{ l}. To maximize such an even function, we claim that we may only consider the

pseudo-expectations such that whose odd moments are zero.

Proposition 2.21. Let FE be a pseudo-expectation of degree 4 on hypercube satisfying

xi = 0. Let p be a degree 4 multilinear polynomial which is even. Then, there

exists a pseudo-expectation -' of degree 4 such that E[p] = 2'[p] and E'[xs] = 0 for

any S ; [n] of odd size.

Proof. Let FK be a pseudo-expectation of degree 4 on hypercube satisfying E", xi = 0.

Let us define a linear functional FEO on the space of multilinear polynomials of degree

at most 4 so that EO[xs] = (-1)ISI I[xs] for any S C (['). Then, for any multilinear

polynomial q of degree at most 2, we have

ZEo[q(x) 2] =I[q(-x)
2 ] > 0.

Also, 1Ko satisfies ZFo[l] = 1 and

Eo Xi q(x) = -- xi q(-X) =0

for any q of degree 3. Thus, FEO is a valid pseudo-expectation of degree 4 satisfying

Z'=1 xi = 0.

Let FK = '(FK+1o). This is again a valid pseudo-expectation, since the space of

pseudo-expectations is convex. We have 1K'[p(x)] = I[p(x)] = Io[p(x)] since p is even,

and I[Xs] = (1 + (-1)IsI) I[xs] = 0 for any S of odd size. 0

Let E be the space of all pseudo-expectations of degree 4 on n-dimensional hyper-

cube with zero odd moments. Let S' be the space of all pseudo-expectations of degree
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4 on (n - 1)-dimensional hypercube. We claim that there is a bijection between two

spaces.

Proposition 2.22. Let V) E S. Let us define a linear functional 2/' on the space of

(n - 1)-variate multilinear polynomials of degree at most 4 so that for any T [n - 1]

with |T| < 4

'[XT] {2/[xTuIn} if |T| is odd

[XT] otherwise.

Then, 0 ' is a bijective mapping from 8 to 8'.

Proof. We say linear functional 0 on the space of polynomials of degree at most 2f

is positive semidefinite if 2/[q 2] > 0 for any q of degree F.

Note that the mapping 2 - 2/ where O[xs] = '[xs\{nI] for any S C [n] of

even size is the inverse of ) 0 2'. Hence, it is sufficient to prove that 4 is positive

semidefinite if and only if V/' is positive semidefinite.

(=>) Let q be an n-variate polynomial of degree at most 2. Let qo and qi be polynomials

in x1 , ... , Xn_1 such that

&~1, - - - , x,,) = qo(x1, - --,x_1) + Xnqi(x1,--, x.-1).

We get 0'[q2] = 2'[(qo + xnqi) 2 ] = 2[(qo + q2) + 2xnqoql]. For i = 1, 2, let qjo and qji

be the even part and the odd part of qi, respectively. Then we have

4'[q2  = 2'[(q 0 + q(1 + q10 + q1 1) + 2xn(qooqn + qOiq1o)]

2 2 2= 04(q0 0 + q 1 + q', + q 1) + 2(qooqll + qO1q1O)]

= 0[(qoo + qn) 2 + (qio + qoi) 2] > 0.

The first equality follows from that 4'[q] = 0 for odd q. Hence, 0' is positive semidef-

inite.

(4-) Let q be an (n - 1)-variate polynomial of degree at most 2. Let qO and qi be the
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even part and the odd part of q, respectively. Then,

o[q2 ] = 0[(q' + q') + 2qoq1 ].

Note that q2 + q2 is even and q0qi is odd. So,

0[q 2] = V)[(q2 + q ) + 2xaqoq1] = V/'[(qo + xnq) 2 ] > 0.

Hence V) is positive semidefinite. 0

In addition to the proposition, we note that V) satisfies E' xi = 0 if and only if 0'

satisfies 1+ >f xi = 0. Hence, maximizing I[g] over E G S satisfying En x = 0

is equivalent to

n-i

max 4'[g'] subject to V' satisfies 1 + xi = 0,
i=1

where g'(x 1, .. ,x_1) = g(x 1 ,... xn1,

Step 2: A matrix description of the constraint Ei_- x% + 1 = 0.

Let F be the set of linear functional on the space of (n - 1)-variate multilinear

polynomials of degree at most 4. We often regard a functional 4 E F as a (n1

dimensional vector with entries 0s = O[xs] where S is a subset of [n - 1] of size at

most 4. The space S' of pseudo-expectations of degree 4 (on (n - 1)-variate multilinear

polynomials) is a convex subset of F.

Observe that 0 E F satisfies 1 + E _ xi = 0 if and only if

4( I+
n-1

xi XS= 0

for any S C [n - 1] with |SI < 3.

Let s, t and u be integers such that 0 < s, t < 4 and 0 < u < min(s, t). Let Mt
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be the matrix of size (f4) such that

(Mt)s,T = { I T|

0 otherwise

= t, and iS f TI= u

for S, T E (tn-1]). Then, the condition that V E Y satisfying 1 + xi = 0 can be

written as AO = 0 where

3

A = Moo0 + Moo, 1 + (M AS S + M, 8s + MSS+ 1)-

Before we move onto the projection step, let us take a brief look into the algebra

generated by the matrices M.,t for 0 < s, t < 4 and 0 < u K min(s, t).

Algebra generated by M,",

Let m be a positive integer greater than 8. For nonnegative integers s, t, u, let Meut

be the (") x (") matrix with

(Mt )s,t =
1

0

if |SI = s, |TI = t, and iSnTI = u

otherwise,

for S, T C [m] with SI, TI < 4. Let A be the algebra of matrices

sAt

O<s ,t<4 u=O

with complex numbers x". This algebra A is a C*-algebra: it is a complex algebra

which is closed under taking complex conjugate. A is a subalgebra of the Terwilliger

algebra of the Hamming cube H(m, 2) [90], 187].

Note that A has dimension 55 which is the number of triples (s, t, u) with 0 K

s,t <4and0Ku KsAt.
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sAt

/7 (-
P=O

for 0 < s, t < 4 and 0 < r, u < s A t. The following theorem says that matrices in the

algebra A can be written in a block-diagonal form with small sized blocks.

Theorem 2.23 (187]). There exists an orthogonal (r") x ( ) matrix U such that for

M E A with
4 sAt

M x", t M" 1,

s,t=O u=O

the matrix UTMU is equal to the matrix

0 0 0

0 C1 0 0 0

0 0 C2

0 0 0

0 0 0 C4)

where each C, is a block diagonal matrix with ("r)
of order 5 - r:

Cr

Br

0

0

Br = ( (
s

0

Br

0

2r 1/2 M

r t

- (,_l) repeated, identical blocks

0

0

Br/

.2r -1/2

- r

For brevity, let us denote this block-diagonalization of M by the tuple of matrices

(Bo, B1, B2 , B3 , B4 ) where Br E R(5-r)x( 5-r)
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Step 3: Projection.

Let co be the coefficient vector of g' where

g' (xl, - - - _1) =g 1 - -((l , xn-1,1)

Then, we get

(co)s =

for S E ([n 01) U ([n21]) U ([n41]) and

(ce)s = E
(ii, ,i4)E[n] 4 :

su{n}={i1}E...E{ik}

for S E (If1 ) U (Ifl), where No = 3n2 -2n, N = N2 = 12n -16, and N3 = N4 = 24.

Note that co has independent entries, since

{ (ii, i4) c [n]' : S = {il} ED .. @ - ei4}}

for IS! = 0, 2,4 and

{(ii,- ,i4 ) E [n]4 : SU [n] = {il} (D - - - i4}}

for ISI = 1, 3 forms a partition on [n] 4 and the entries of G are independent. Hence,

the covariance matrix of co is diagonal and invertible.

Let E be the inverse of the covariance matrix E[coc'] of co. We note that Es,s =

Nisi since (c®)s is the average of NIs independent standard Gaussians, so its variance

is equal to N-. Let w = E1 / 2 co. Clearly,
'SI1

E ww T = E EI/C2cEcl/1/=2 1/2E-1/2 = Id.

Hence, w has independent standard Gaussian entries.
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Let H = Id - AT(AAT)tA where (AAT)t is the Moore-Penrose pseudoinverse of

AAT and Id is the identity matrix of size (n&). Then, H is the orthogonal projection

matrix onto the nullspace of A. Since A, AT and Id are all in the algebra A, the

projection matrix H is also in A.

Let e be the first column of H and

e 11w
T: and )1 := eTw

We have A 0 = A01 = 0 by definition of 11, and (4'o)0 = (01)0 = 1 since (Hw)o = eTw.

Let e be a real number with 0 < c < 1 and b = (1 - e)bo + cVi. This functional

still satisfies AO = 0 and 00 = 1, regardless of the choice of c. We would like to

choose c such that 0 is positive semidefinite with high probability.

Step 4: Analysis on the spectrum of 4.

Consider the functional 0o = n. It has entries

if S=0

(0'o)s = if IS =1 or 2

_ 3) if IS= 3 or 4,

for S C [n - 1] of size at most 4. We note that this functional corresponds to the

degree 4 or less moments of the uniform distribution on the set of vectors x E { n1

satisfying xi + 1 = 0.

Proposition 2.24. Let V) be a vector in R Z ) such that AV) = 0 and p be an (n - 1)-

variate multilinear polynomial of degree at most 2. Suppose that 00o[p 2 ] = 0. Then,

V)[p 2 ] =0.

Proof. Let U = {x E { 11}n1 :LE' xi + 1 = 0}. Note that 0o is the expectation

functional of the uniform distribution on U as we seen above. Hence, 40o[p 2 ] = 0 if

and only if p(x) 2 = 0 for any x E U.
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On the other hand, the functional 4 is a linear combination of functionals {p -

p(x) : x c U} since A0 = 0. Hence, if 4'o[p2 ] = 0 then O[p 2 ] = 0 as p(x)2 = 0 for any

x U. El

Recall that 4 = (1 - 6)40o + e4'i where 0 = and 01 = . Let 4 =

eT w( - o). Then,

eeT
= Iw - w

1 k- CeTe) W eT e

and ' = 4o + . We note that Ao" = 0 since ' is a linear combination of V)o

and 41.

Let Xpp and Xpl be the moment matrix of 0o and V/' respectively. Let X, be the

moment matrix of V). Clearly,

Xb = XV)0 + 6 XV).
eTw

Moreover, for any p E R( <) satisfying Xeop = 0, we have Xopp = 0 by the proposi-

tion. Hence, X >- 0 if

ET HX01~ Amin# 0 O(Xpo)
eT w|

where Amin,,o denotes the minimum nonzero eigenvalue.

We note that eTw and IIXpI| are independent random variables. It follows from

that w is a gaussian vector with i.i.d. standard entries, and that e and (1 - are

orthogonal. Hence, we can safely bound eTw and |IXp 11 separately.

To bound I|X, I| we need the following theorem.

Theorem 2.25 (Matrix Gaussian ([91])). Let {Ak} be a finite sequence of fixed,

symmetric matrices with dimension d, and let { } be a finite sequence of independent

standard normal random variables. Then, for any t > 0,

P [ ZtAk > t d.e_/ 2
2 where .2 : A

k .k
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For each U C [n - 1] with size at most 4, let YU be the ("-i) x (T- ) matrix with

entries

(YU)s,T =

0

if SeT= U

otherwise.

Since b'1 = (11 eeT- w, we have

UC[n-1]
|U| 4

= Z wv
V

By Theorem 2.25, flXep, is roughly bounded by (I Ix log n) 1 / 2 where

eeT YEXz:=Ik . - eTeuYU) 2
v U UV )

Proposition 2.26. For each I, J (n1], the (I, J) entry of Ex only depends on

1I|, J| and I n J|, i.e., Ex is in the algebra A.

Proof. Note that

Ex
V U1, U2

U 1 ,U 2

U1,U 2

(rn

((ni

ee T
eTe) YU 1 YU 2

ee T2 UU

eTe) U1U2 U

(H-
U1,U 2
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We can write X, as

X' ( 'O)UYu.
UC[n-1]

IUI 4

VC[n-1]
|VJ 4

ee 
T 

U
eTe)U1 V

wvYU

(U
YU

UV

ee 
T)

eTe

U1,Ve~ V, U2

I YU2

e(



Hence,

(Ex)Ij= 1:( (11

KC (<21
eTe IK,JeK

which is invariant under any permutation 7r on [n - 1] as 1 - T is. It implies thate e

Ex A. El

Since H - = 1, we get |Zxf (n) = (i+ o(1)) n2.

Proposition 2.27. If E < o,, ( , then with probability 1

matrix X.0 is positive-semidefinite.

Proof. By theorem 2.25, we have

- o(1) the moment

P (|XI H t) n 2 1 . 2/2j|8x

Let t = 3nVlogn. Since IjExl 5 (1/2 + o(1))n2, we have lIXpf 3nmlog n with

probability 1 - n-'(1). On the other hand, note that

I sI eTW I < t) ( r

It implies that IeTwj > g(rL) with probability 1 - o(1) for any g(n) =ol(1). Thus,

|eTw '.~

n log n
g(n)

almost asymptotically surely. Together with the fact that Amin, 00(X'o) = 1 - o(1),

we have Xp >- 0 whenever c < g(n) for some g(n) = o(l). E

Step oo: Putting it all together.

We have constructed a linear functional 0 on the space of (n - 1)-variate multilinear

polynomials of degree at most 4, which satisfies (i) 0 [1] = 1, (ii) b satisfies E xi +

1 = 0, and (iii) O[p 2] > 0 for any p of degree 2. It implies that ' is a valid pseudo-

expectation of degree 4.
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Now, let us compute b[g'] and V' [g'] where

and

Recall that c® is the coefficient vector of g'. We also define cE to be the coefficient

vector of g'.

Hence,

= wTI1/ 2 ( + -

wT Z1/2 ( _7 eeT)W

eTw

FEw I/2 ( - eeT K 1/2

= tr (E

( - eT
e TeJ( eeT))

which is at least (v//12 - o(i))n 4. Also, IeTw = 0(1) and eTE1/ 2wI = O(n) with

high probability. Hence, with probability 1 - o(1), we have

(9s] 2 O~ n (log n)1/ 2+0(1) _ (log )1/2+0(1)
n3

We can compute 'V[g'] in the same fashion, as cE can

some matrix B E A. As a result, we get

E)-(log n1/ 2 +o(l)

be expressed as Bw for

as well as )[g's].
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b[g'] =C ee

Note that

e E1/2U,

e e

E[wwT])

/' (X1, -,Xn-1) = go (xi, - - -,Xn -1,

gE' (XI, - - - , x - 1) = 9E) (X1, - - -I ,xn_1, 1).

n 4
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Chapter 3

Stochastic Block Model for k-uniform

Hypergraphs

Identifying clusters from relational data is one of fundamental problems in computer

science. It has many applications such as analyzing social networks [80], detecting

protein-protein interactions [71, 32], finding clusters in Hi-C genomic data [29], image

segmentation [88], recommendation systems [70, 86] and many others. The goal is to

find a community structure from relational measurements between data points.

Although many clustering problems are known to be NP-hard, typical data we

encounter in applications are very different from the worst-case instances. This mo-

tivates us to study probabilistic models and average-case complexity for them. The

stochastic block model (SBM) is one such model that has received much attention in

the past few decades. In the SBM, we observe a random graph on the finite set of

nodes where each pair of nodes is independently joined by an edge with probability

only depending on the community membership of the endpoints.

It is natural to consider the community detection problem for higher-order rela-

tions. A number of authors have already considered problems of learning from com-

plex relational data [13, 54, 12] and it has several applications such as folksonomy

148, 96], computer vision [54], and network alignment problems for protein-protein

'The contents of this chapter overlaps in significant amount with [62], which is a collaborative
work mainly conducted by the author of this thesis.
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interactions [73].

We consider a version of SBM for higher-order relations, which we call the stochas-

tic block model for k-uniform hypergraph (k-HSBM): we observe a random k-uniform

hypergraph such that each set of nodes of size k appears independently as an (hyper-

)edge with probability only depending on the community labels of nodes in it. k-

HSBM was first introduced in [49] and investigated for its statistical limit in terms

of detection [68], the minimax misclassification ratio [69, 34], and as a testbed for

algorithms including naive spectral method [50, 51, 52], spectral method along with

local refinements [1, 34, 15] and approximate-message passing algorithms [20, 68].

We focus on exact recovery, where our goal is to fully recover the community labels

of the nodes from a random k-uniform hypergraph drawn from the model. For exact

recovery, the maximum a posteriori (MAP) estimator always outperforms any other

estimators in the sense that it has the highest probability of correctly recovering

the solution. We prove that for the k-HSBM with two equal-sized and symmetric

communities, exact recovery shows a sharp phase transition behavior, and moreover,

the threshold can be characterized by the success of a certain type of local refinement.

This type of phenomenon was mentioned as "local-to-global amplification" in [1], and

was proved in [4] for the usual SBM with two symmetric communities (corresponds

to 2-HSBM) and more generally in [6] for SBMs with fixed number of communities.

Our result can be regarded as a direct generalization of [6] to k-uniform hypergraphs.

Furthermore, we analyze the truncate-and-relax algorithm on k-HSBM and prove

that it achieves exact recovery in a parameter regime which is orderwise optimal.

We remark that in [1] it was suggested that the local refinement methods together

with an efficient partial recovery algorithm would imply the efficient exact recovery

up to the information-theoretic threshold. An explicit algorithm exploiting this idea

appears in [34, 15] with a provable threshold for their algorithm to be successful. We

note that the threshold of the algorithm of [34] matches with the statistical threshold

we derive, hence there is no gap between statistical and computational thresholds.

On the other hand, we prove that the truncate-and-relax algorithm does not achieve

the exact statistical threshold when k > 4.
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3.1 Introduction

3.1.1 The Stochastic Block Model for graphs: An overview

Before we discuss the main topic of this chapter, let us summarize the previous works

regarding the stochastic block model for graphs.

The stochastic block model (SBM) has been one of the most fruitful research topics

in community detection and clustering. One benefit of it is that, being a generative

model we can formally study the probability of inferring the ground truth. While

data from the real-world can behave differently, the SBM is believed to provide good

insights in the field of community detection and has been studied for its sharp phase

transition behavior [77, 6, 4], computational vs. information-theoretic gaps [33, 8],

and as a test bed for various algorithms such as spectral methods [72, 94], semidefinite

programs [4, 56, 59], belief-propagation methods [38, 7, 9], and approximate message-

passing algorithms [93, 30, 40, 67]. We recommend [1] for a survey of this topic.

For the sake of exposition, let us consider the symmetric SBM with two equal-sized

clusters, also known as the planted bisection model. Let n be a positive integer, and

let p and q be real numbers in [0, 1]. The planted bisection model with parameter n, p

and q is a generative model which outputs a random graph G on n vertices such that

(i) the bipartition (A, B) of V defining two equal-sized clusters is chosen uniformly

at random, and (ii) each pair {u, v} in V is connected independently with probability

p if u and v are in the same cluster, or probability q otherwise. Note that this model

coincides with Erd6s-R6nyi random graph model 9(n, p), when p and q are equal.

The goal is to find the ground truth (A, B) either approximately or exactly, given

a sampled graph G. We may ask the following questions regarding the quality of the

solution.

" (Exact recovery) When can we find (A, B) exactly (up to symmetry) with high

probability?

" (Almost exact recovery) Can we find a bipartition such that the vanishing por-

tion of the vertices are mislabeled?
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* (Detection) Can we find a bipartition such that the portion of mislabeled ver-

tices is less than 1 - e for some positive constant E?
2

There are a number of works regarding these questions in the algorithmic point of

view or in the sense of statistical achievability. The following is a short list of the

states-of-the-art works regarding the model:

" Suppose that p = "'9" and q =b"9 where a and b are positive constants not

depending on n. Then, exact recovery is possible if and only if (v/a - V b)2 > 2.

Moreover, there are efficient algorithms which achieves the information-theoretic

threshold [4, 56].

" Suppose that p = " and q = where a and b are positive constants not
n n

depending on n. Then, the detection is possible if and only if (a-b)2 > 1. More-2(a+b)

over, there are efficient algorithms achieving the information-theoretic threshold

[76, 77, 72].

We further note that those sharp phase transition behaviours and algorithms achiev-

ing the threshold are found for general stochastic block models [8, 1], [68, 67]. This

paper focuses on exact recovery.

3.1.2 The Stochastic Block Model for hypergraphs

The stochastic block model for hypergraphs (HSBM) is a natural generalization of

the SBM for graphs which was first introduced in [49]. Informally, the HSBM can be

thought as a generative model which returns a hypergraph with unknown clusters,

and each hyperedge appears in the hypergraph independently with the probability

depending on the community labels of the vertices involved in the hyperedge.

In [49], the authors consider the HSBM under the setting that the hypergraph

generated by the model is k-uniform and dense. They consider a spectral algorithm

on a version of hypergraph Laplacian, and prove that the algorithm exactly recovers

the partition for k > 3 with probability 1 - o(1). Subsequently, the same authors
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extended their results to sparse, non-uniform (but bounded order) setting, studying

partial recovery [51, 50, 52].

We note that sparsity is an important factor to address in recovery problems of

different types: exact recovery, almost exact recovery, and detection. In the case of

the SBM for graphs, we recall that the average degree must be Q(log n) to assure

exact recovery, and the average degree must be Q(1) to assure detection. Conversely,

the point of the sharp phase transition lies exactly in those regimes. We may expect

similar behaviour for the k-uniform HSBM. For exact recovery, it was confirmed that

the phase transition occurs in the regime of logarithmic average degree, by analyzing

the optimal minimax risk of k-uniform HSBM [69, 34]. For detection, the phase

transition occurs in the regime of constant average degree [20]. The authors of [20]

proposed a conjecture specifying the exact threshold point, based on the performance

of belief-propagation algorithm. Also, such results for the weighted HSBM were

independently proved in [15] and a exact threshold of the censored block model for

uniform hypergraphs was classified in [14].

In this paper, we consider a specific k-uniform HSBM with two equal-sized clusters.

Let us remark that in the SBM case, we had two parameters p and q where the

probability that an edge {i, j} appears in the graph is p or q depending on whether

i and j are in the same cluster or not. For an hyperedge of size greater than 2, there

are different ways to generalize this notion, but we will focus on a simple model that

the probability that a set e of size k appears as a hyperedge depends on whether e is

completely contained in a cluster or not.

Let n be a positive even number and let V = [n] be the set of vertices of the

hypergraph X. Let k > 2 be an integer. Let p and q be numbers between 0 and 1,

possibly depending on n. We denote the collection of size k subsets of V by (V). The

k-HSBM with parameters k, n, p and q, denoted HSBM(n, p, q; k), is a model which

samples a k-uniform hypergraph W on the vertex set V according to following rules.

* xO is a vector in { }v chosen uniformly at random, among those with the

equal number of -I's and l's. We may think -1 and 1 as community labels.
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* Each e = {el, , ek} in (') appears independently as an hyperedge with

probability

P if (Xo)ei = (Xo)e 2 = = (XO)ek

q otherwise.

We say e is in-cluster with respect to x0 for the first case, and cross-cluster

w.r.t. x0 for the other case.

Our goal is to find the clusters from a given hypergraph W generated from the

model. We specially focus on exact recovery, formally defined as follows.

Definition 3.1. We say exact recovery in HSBM(n, p, q; k) is possible if there exists

an estimator 20 which only fails to recover x0 up to a global sign flip with vanishing

probability, i.e.,

P (zo ('H) V {XO, -xo}) = o(1).
(xo,N)~HSBM(n,p,q;k)

On the other hand, we say exact recovery in HSBM(n,p, q; k) is impossible if any

estimator xO fails to recover x0 up to a global sign flip with probability 1 - o(1), i.e.,

P (fO(N) x {o, -xo}) = 1 - o(1) for any x'O.
(xo,W)~HSBM(n,p,q;k)

We remark that W must be connected for exact recovery to be successful. In Erd6s-

Renyi (ER) model for random hypergraphs, it is known that a random hypergraph

from the ER model is connected with high probability only if the expected average

degree is at least (k-1) logn for some c > 12. Together with the works in [15] and [34],
( -1)

this motivates us to work on the parameter regime where

aiogn p8logri
P = alg n and q =

k-1/ (k-1/

2 The proof for this result is a direct adaptation of the proof in [27] for k = 2, i.e., random graph
model. See [35, 25, 361 for phase transitions regarding giant components, which justifies the regime
for partial recovery and detection.
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for some constant a and /.

3.1.3 Main results

We first establish a sharp phase transition behaviour for exact recovery in the stochas-

tic block model for k-uniform hypergraphs. We will assume that the parameter k is

a fixed positive integer not depending on n, and edge probabilities decay as

alogn /3 log n

\k-1/ \k-1/

where ac and / are fixed positive constants. Asymptotics in this paper are based on

n growing to infinity, unless noted otherwise.

Theorem 3.1. Exact recovery in HSBM(n,p,q;k) is possible if I(a,o) > 1, and

impossible if I(ce, /) < 1 where I(a,3) = -kI(V - v') 2 .

In case of exact recovery, the maximum a posteriori (MAP) estimator achieves

the minimum error probability. The MAP estimator corresponds to the maximum-

likelihood (ML) estimator in this model since the partition is chosen from a uniform

distribution. Hence, it is sufficent to analyze the performance of the ML estimator to

prove Theorem 3.1.

On the other hand, we ask whether there exists an efficient algorithm which recover

the hidden partition x0 achieving the information-theoretic threshold. Note that the

ML estimator (which achieves the minimum error probability) is given by

XMLE(H) = argmax P (7 = H xo = x).
xE{ 1}V:lTx=o (xo,'-)~HSBM(n,p,q;k)

This is in general hard to compute. For example, when k = 2 and p > q, it reduces to

find a balanced bipartition with the minimum number of edges crossing given a graph

G, also known as MIN-BISECTION problem which is NP-hard. However, there is a

simple and efficient algorithm which works up to the threshold of the ML estimator

in case of k = 2. This algorithm is based on a standard semidefinite relaxation of

MIN-BISECTION [53].
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For general k-HSBM, we consider the truncate-and-relax algorithm which we

briefly discussed in Section 1.4. Given a k-uniform hypergraph H on the vertex set

V, let us define a weighted graph (GH, w) on the same vertex set where the weights

are given by

Wij = #(e E E(H) : {i,j} C e)

for each {i, j} E (i). Let xtrunc be an optimal solution of

maximize wi 1xix

ijE ( 2)

subject to x E {+l},V lTx = 0,

which is equivalent to finding the min-bisection of the weighted graph (GH, w). Now,

consider the following semidefinite program:

maximize I wijXij
ijE (V2)

subject to Xi = 0, (3.1)
i,jEV

Xii = 1 for all i c V,

X = XT >_ 0.

This program is a relaxation of the min-bisection problem above, since for any feasible

x in the original problem corresponds to a feasible solution X = xxT in the relaxed

problem.

The ML estimator attempts to maximize the function

fH(X) = 1og P (71 = Hlxo = x)
(xo,7W)~HSBM(n,p,q;k)

over the vectors in the hypercube { l}v with equal number of -1's and l's. This

function fH(x) can be written as a multilinear polynomial in x (See Section 2.1.2).

Let f) (x) be the quadratic part of fH(x). Then, maximizing f (x) is equivalent

to find the min-bisection of (GH, w). We note that this algorithm is equivalent to the
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truncate-and-relax algorithm for the spiked tensor models as in Section 2.4.

Now, let E(H) be the solution of (3.1). We prove that this estimator correctly

recovers the hidden partition with high probability up to a threshold which is order-

wise optimal.

Theorem 3.2. Suppose a > 3. Then E(W-) is equal to xoxo with probability 1 - o(1)

if Isd(a,#B) > 1 where

k - I (a/ -) 2

22k k k --)

It is natural to ask whether this analysis is tight. The proof proceeds by construct-

ing a dual solution which certifies that xOx T is the unique optimum of (3.1) with high

probability. Following [21], the dual solution (if exists) is completely determined by

(GH, w) which has the form of a "Laplacian" matrix. Precisely, the major part of the

proof is devoted to prove that the matrix L of size V x V with entries

{ -w (ii) (xo) i(xO)ij if i =J i

Ei'E\JiJw(ii)xO)i(xo)i if i -j

is positive-semidefinite with high probability. We use the Matrix Bernstein inequality

to prove that the fluctuation |IL -E L|l is smaller compared to the minimum eigenvalue

of E L w.h.p., under the assumption Id,(a, 3) > 1. However, we believe that it can

be improved by a direct analysis of ||L - E LH1. Numerical simulations and discussions

which supports our belief can be found in Section 3.5.

Finally, we complement Theorem 3.2 by providing a lower bound of the truncate-

and-relax algorithm. Recall that the algorithm tries to find a solution in the relaxed

problem (3.1). It implies that if the min-bisection of (GH, W) is not the correct

partition xG, then the truncate-and-relax algorithm will also return a solution which

is not equal to xOx T. Hence, we have

(E (W) X0 x 0 > P(xtrunc (W) X0 Ix -X0})
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Figure 3-1: Visualization of I, 12, sdp when k = 6: (a) the solid line represents

I(a, 1) = 1, (b) the circled line represents 12(&, 1) = 1, and (c) the x-marked line

represents Idp(cY, 1) = 1. The dashed black line is the graph of a = 1.

We find a sharp threshold for the estimator Xtrunc('-) recovering xo or -xo success-

fully.

Theorem 3.3. Suppose a > 1. Let 12 (a,1) be defined as following:

1 k-i13 =mx k1 (kl)t) +kZ1 0(k - 1) (1 - e-(k1-2a)t)]

I2(a, #) = max 2k- k~ - 1 (e12-

a=1

If 12 (a,#1) < 1, then xtrunc('H) is not equal to neither x0 nor -xo with probability

1 - o(1). On the other hand, if 12 (a,#0) > 1, then "trunc('W) is either of x0 or -xo

with probability 1 - o(1).

We note that

I(a, 13) = 1(a( - e-(k-1 )t) + e(k-1)t))t >o 2 k-(1

hence I(a, 1) < I2 (a, 1) for any a > 1 > 0. Figure 3-1 shows the relations between

I, 12 and sdp for k = 6.

Theorem 3.3 and the discussion above implies that the truncate-and-relax algo-

rithm fails with probability 1 - o(1) if 12 (a, 1) > 1. We conjecture that this is the

correct threshold of the performance of the algorithm. In future work, we will attempt
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to prove this conjecture by improving the matrix concentration bound as discussed

above.

Conjecture 3.1.1. If 12(a, !) > 1, then Z(7-) = xOx T with probability 1 - o(1).

3.2 Maximum-likelihood estimator

Recall that xMLE(H) is a maximizer of the likelihood probability P(W- = Hlxo = x)

(ties are broken arbitrarily). Let fH (x) = log P('7 = HIxo = x) for x c Il}.

For brevity, let us first introduce a few notations. For a vector x E { 1), let

x~k be a vector in {0, 1}() where

(Xok)e I if X, 1 Xe 2 =e-

0 otherwise,

for each e = {e,... , ek} C V. Here we abuse the notation x9k which was

originally defined as a k-tensor in Chapter 2; one may think this new definition

as the restriction of the k-tensor version onto k-tuples with distinct indices.

Let H be a k-uniform hypergraph on the vertex set V with the edge set E(H).

Let AH be the vector in {O, 1}) such that

(AH)ez {
0

if e E E(H)

otherwise

for each e E (). Note that

(AH,xk) = (AH)e(Xk)e

eE ( k)

= Z 1{e is in-cluster with respect to x}.
eEE(H)

Hence, (AH, xEk) is equal to the number of in-cluster edges in H with respect to the

partition x.
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The ML estimator tries to find the "best" partition x E Il}v with equal number

of l's and -l's. Intuitively, if p > q, i.e., in-cluster edges appears more likely than

cross-cluster edges (assortative), then the best partition will correspond to x such

that the number of in-cluster edges w.r.t. x is maximized. On the other hand, if

p < q (disassortative) then the best partition will corresponds to the minimizer,

respectively. The following proposition confirms this intuition. We defer the proof to

Section 3.7.1.

Proposition 3.4. The ML estimator XMLE(H) is the maximizer (minimizer, respec-

tively) of KAH, Xk) if p > q (if p < q, respectively) over all x G { } such that

1Tx = 0.

3.3 Threshold for exact recovery in k-HSBM

We prove Theorem 3.1 throughout this section. The techniques we use can be seen

as a hypergraph extension of the techniques used in [4].

Informally, we are going to argue that the event for the ground truth xo being

the best guess (i.e. x0 is the global optimum of the likelihood function) can be

approximately decomposed into the events Ev for v E V, where Ev is the vent that

the likelihood function does not increase if we flip the sign of (xo),. In [1], Abbe

call this type of phenomenon local-to-global amplification. In Chapter 4, we argue

that local-to-global amplification is universal: It holds in a broader class of graphical

models including the spiked tensor model and the HSBM.

Let Pfail be the probability that the ML estimator fails to recover the hidden

partition, i.e.,

Pfail = p (RMLE (W) X {X, -X0}-
(xou,)HSBM(n,p,q;k)

As we have seen in the previous section, the ML estimator RMLE()samxizr
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of (AH, xek) over the choices of x E { l}" such that 1Tx = 0. Thus,

Pfail = P (x ' { xo} s.t. 1x = 0 and KAw, xak) KAN, x0k))

3.3.1 Lower bound: Impossibility

We first prove the impossibility part of Theorem 3.1. For concreteness, we focus on the

assortative case, i.e., p > q but the proof can be easily adapted for the disassortative

case.

Before we prove the lower bound, let us consider the usual stochastic block model

for graphs which corresponds to k = 2 in order to explain the intuition of the proof.

Given a sample G, partition x0 and a vertex v E V, let us define the in-degree of v as

indegG,o (v) = #(vw C E(G) (xo)v = (xo)w),

and the out-degree of v as

outdegG,x (v) = #(vw E E(G) (xo)v f (xo)w).

We will omit the subscript G, xo if the context is clear.

Suppose that there are vertices v and w from different clusters such that the

in-degree of each vertex is smaller than the out-degree of each vertex. In this case,

swapping the label of v and w will yield a new balanced partition with greater number

of in-cluster edges, hence the ML estimator will fail to recover x0 . Now, suppose that

P(indeg(v) < outdeg(v)) = w(n- 1)

for all v. If those events were independent, we would get

P (indeg(v) outdeg(v) Vv : (xo)v = 1) = 17 P(indeg(v) > outdeg(v))
v:(xo)v=1

(1 - w(n- 1 ))n/ 2 < -wl)
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and similar for w. It would imply that there is a "bad" pair (v, w) with probability

1 - o(1) hence the ML estimator fails with probability 1 - o(1). We remark that this

argument is not mathematically because the in-degrees of vertex v and w (as well as

out-degrees of them) are not independent as they share a variable indicating whether

{ v, w} is an edge or not. However, we can overcome it by conditioning on highly

probable event which makes those events independent, as in [4].

We extend the definitions of in-degree and out-degree for the k-HSBM as

indegH,,(v) = #(e E E(H) v C e, e is in-cluster w.r.t. xo),

outdeg,,(v) = #(e E E(H) v E e, e is cross-cluster but

e \ {v} is in-cluster w.r.t. xo).

Observe that they coincide with the corresponding definition for the usual SBM (k =

2). We note that the sum of in-degree and out-degree is not equal to the degree of

v, the number of hyperedges in H containing v when k > 3. We extended those

definitions in this way because any edge e which is neither in-cluster nor cross-cluster

but e \ {v} is in-cluster does not contribute on KAw, xek) when we flip the sign of

the label of v.

Now, note that the in-degree and the out-degree of v are independent binomial

random variables with different parameters. To estimate the probability

P (indeg(v) - outdeg(v) < 0) ,

we provide a tight estimate for the tail probability of a weighted sum of independent

binomial variables in Section 3.6. Precisely we prove that

P(indeg(v) - outdeg(v) < -6 log n) =n-I(Q,0)+0(1)

as long as 6 = 6(n) vanishes as n grows, where

I (a,)= 2k-1 (

116



As we discussed, if I(a, /) < 1 then the tail probability is of order w(n 1 ) and it

implies that the ML estimator fails with probability 1 - o(1).

Theorem 3.5. Let I(a, f) = T r(/a- /#)2 If I(a, 0) < 1, then pfail = 1 - o(1).

Proof. Let A = {v E V: (x0 ), = +1} and B V\A. For a E A and bE B, let

us define x "b) to be the vector obtained by flipping the signs of (X0)a and (XO)b. By

definition, x0"b) is balanced. We are going to prove that with high probability there

exist a E A and b E B such that KAN, x0k) A (x< A))k). For simplicity, let

Z 9k anE(ab) - (x~ab)).E = xe and )8k.

Note that

(An, E) - (AH, E (ab)) = (indegw, (a) - outdegw,., (a))

+ (indegn,x (b) - outdegnxo (b)).

For v E V, let E, be the event such that

indeg.,s (v) - outdegn,,s (v) < 0

holds. Then, Ea n Eb implies that (As, E) - (Aw, E(ab)) 0. Hence

Pfail = P (3a E A, b E B : (AR, E) - (An, E(ab))) ;> P ( Ea n U Eb
bEB

Informal overview. We recall that if Ev for v E V were mutually independent, we can

exactly express the right-hand side as

1- l
aE A

P(,iEa) ) 1 - fl
bE B

P(-,Eb))

but unfortunately it is not the case. To see this, let us fix a E A and a' E A. Then,
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we have

indeg(a) - outdeg(a) = (A - S (AW)e, and
eaa:eCA e-a:enA={a}

indeg(a') - outdeg(a') = (A), - E (AjH)e.
e3a':eCA eEa':enA={a'}

They share variables (A-)e for e satisfying {a, a'} C e C A. The expected contribu-

tion of those variables is p('AJ- 2 ) = o(), so we may expect

P(Ea U Ea,) ~-_ I - P(,-Ea) P(,--Ea,).

In the similar spirit, we are going to prove that for an appropriate choice of U C V,

the events {Ea}aEunA and {Eb}eunB are approximately independent, so

Pfail > P U Ea n U Eb
\ aEAnU / bEBnU //

~ 1- P(-,Ea) I - 11 P(-, E,).
a\AnU U/\ bEBnU /

Together with the tight estimate on P(E,), it would give us a good lower bound on

Pf ail-

Let U C V be a set of size -yn where Un Al = U n B1. We will choose y = y(n)

later to be poly-logarithmically decaying function in n. Let S be the set of e G (C)

such that e contains at least two vertices in U. We would like to condition on the

values of {(AW)e}ees, which captures all dependency occurring among Er's for v G U.

Let 6- = 6(n) be a positive number depending on n which we will choose later, and

let F be the event that the inequality

max 5 (A) < 6log n
eES:e~v
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holds. For each a E A n U, let E' be the event that the inequality

E
eCA:eflU={a}

(A-)e - (AW)e < - log n
e:enU={a}
e\{a}CB

is satisfied. We claim that E' n F C Ea. It follows from the direct calculation, as if

we assume E' n F, then

indeg(v) - outdeg(v) (Ae)e -
e-3a:eCA

eCA:enU={a}

E
e~a:eflA={a}

(A-)e -
e:enU={a}
e\{a}CB

(AN)e + (A-)e
eES:e~a

< 5 (A-)e - (A-)e + 6 log n
eCA:enU={a} e:enU={a}

e\{a}CB

< 0.

We get

Pfail > P ( (aAnU Ea n ) Eb > P U

bEBnU (aEAnU

E'ln U ElF P(F)
bEBnU

Note that E,', only depends on the set of variables {(AW)e : e n U = {v}}, which are

mutually disjoint for v E U. Also, {(An)e : e E S} is disjoint with any of those sets

of variables. Hence, events F and {E',}EU are mutually independent, and we get

bamU
bE BfU

E' F
/b

=P U El P U El
(aEAnU /\(bEBnU/

= 1- al P(,E') ( -E'n U
aEAnU bEBnU

We claim that

1-
bEBnU

P(,E') = o(1) and P(-,F) = o(1),
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for appropriate choice of -y and 6. This immediately implies that pfai = 1 - o(1) as

desired.

Let us first prove P(-F) = o(1). Let X, be the random variable defined as

X, := (A-h)e,
eES:eEv

for v E U. We have

P(-,F) = P( lE U: Xv > Jlogn) < ZP(XV
veU

by a union bound. Note that

EX, < max(p,q)#(e:e-v,|efnUj>2)
max(ae,3)log n n - 1 ( n -|IU

n 1) k - 1 k -- 1

$ (1 -(1-- y)k-l) log n = 8( log n).

Using a standard Chernoff bound, we get the following lemma.

Lemma 3.6. Let X be a sum of independent Bernoulli variables such that EX =

6(-y log n) where y = or(log- 1 n). Let 6 be a positive number which decays to 0 as n

grows, with 6 = wn(log-1 n). Then,

P (X > 6 log n) < n- ~o

Proof. See Section 3.6.1.

Letting y = log- 3 n and 6 = (log log n)- 1 , we get

6 log
6 3 log log n - log log log n

log log n
= 3 - o(1)

and so P((,F) = n-3+o(l) o(I).
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Now, we would like to prove that

P(--,E') = o(1) and 17 P (-,E )= o(1)
bEBnU

by showing that

where I(a, )3) = 2 k-1 (V& -
/)2

for any v E U. This implies that

(1 - n-I(,+o(1)y/ 2

1 P(,E')a
aE AnU

< exp -n1-~,)o1

and since we assumed that I(a, /) < l and -y = log- 3 n, we get

n1-I((a,#)1 P(-,E') < e~ 0g3n =

aEAnU

and similarly HbEBnU P(-iEb) = o(1) as desired.

To estimate the probability that E' happens, let Ya and Za be random variables

defined as

Ya = E (A-)e
eCA:enU={a}

and Za = ( ( Au)e.
e:enU={a}
e\{a}CB

Recall that E' is the event that Y - Za -J log n holds.

Lemma 3.7. Let Y be a binomial random variable from Bin(N, p) and Z be a binomial

random variable from Bin(N, q) where N = ( -1 k o(1)) (n-), p = _logn and q=
~~lognT = -17 a

_3 lognLet I(, /3) = -( /- /)2 and let 6 be a positive number vanishing as n

grows. Then,

P(Y - Z < -6 log n) = n-

In fact, we derive a generic tail bound for weighted sum of binomial random
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variables (Theorem 3.17) in Section 3.6 of the appendix. Lemma 3.7 is a direct

corollary of Theorem 3.17 and we defer the proof to Section 3.6.2. E

3.3.2 Upper bound: Achievability

We are going to use a union bound to prove the upper bound. Let x and xO be vectors

in {-1, +l}'. The Hamming distance between x and xO (denoted d(x, xo)) is defined

as the number of v E V such that x, , (xo)v. Note that if x and xO are balanced,

then

d(x, xo) = #(v E V: (xv, (xo)v) = (1, -1)) + #(v E V : (x,, (xo)) = (-1, 1))

= #(v E V :x = 1) + #(v E V : (xo), = 1) - 2#(v E V : xv (xo), = 1)

= n - 2#(v E V : xv = (xo), = 1),

hence d(x, xo) is even.

Let us fix xO and let 7 be a k-uniform random hypergraph generated by the

model under the ground truth xO. We note that the distribution of the random

variable KA-, xEk - XE) is invariant under the permutation of V preserving xo,

hence it only depends on d(x, xo). Hence, there is a quantity p (d) which satisfies

pf = P(KAaxek - xk >0)

for any x with d(x, xo) = d. Moreover, pf = P( since our model is invariant

under a global sign flip.

Recall that the ML estimator fails to recover xO if and only if

(Aw, xk) > KAnx 

for some balanced x E {Il}V which is neither xo nor -xo. We remark that we count
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the equality as a failure, which will only make pfail larger. By union bound, we have

P( A-H, xEkPfail S
x{ Il}V:lTx=O,
1 d(x,xo) n-1

S k)> 0)

< 2 p - #(x E { l}V :Tx = 0, d(x, xo) = d).
d:15d< n

- - 2
d is even

We note that there is a one-to-one correspondence between a balanced x and a pair

of sets (U+, U_) where

U+ = {v :x, = -1, (xo)V = 1} {v :(xo)V = +1}

U_ = {v :x =1,(xo)V = -1} {v :(xo)V =-1},

and we must have d(x, xo) = 21U+I = 21U_I since x is balanced. Hence, the number

of balanced x's with d(x, xo) = d is equal to (2) 2. We have

PEi 2 P ail
d:1<d 2
d is even

Now, let us formally state the main result of this section.

Theorem 3.8. Suppose that I(ce, 8) > 1. Then,

I(aa)-1 +0(1)Pfl < n- 2+o

and it implies that Pfail = 0(1).

Proof. Let d be even number in between 1 and 2.

d(xo, x) = d, and let Xd be

Choose any balanced x with

Xd := KA-, x k -,c / = 5 (VA

ee(O)
(x k - ek)

Let A = {v : (xo), = 1} and A' = {v xv = 1}. We say e crosses A if efn A and e \ A
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are both non-empty (and respectively for A'). Then,

xek - x k

[-1

= 1

0

if e doesn't cross A' but crosses A

if e crosses A' but doesn't cross A

otherwise.

Hence Xd = Yd - Zd where Yd and Zd are binomial variables with Yd~ Bin(N1, p)

and Zd~ Bin(N2, q) where

NV)

N2 = #(e E
k)

: e doesn't cross A' but crosses A)

: e crosses A' but doesn't cross A).

A simple combinatorial argument shows that

N, = #(e : eCA' ande crosses A)+#(e: eC V\A' and ecrossesA)

= ((IA'I) _ (AflA) _ (IA'\AI) +

= 2 ((n/2) _ (d/2) _ ((n-d)/2

and N2 = N by the symmetry. Hence,

(d)
Pf ail - IP

Yd~Bin(N,q)
Zd~Bin(N,p)

(n-IA'l)

(Yd - Zd > 0)

where N = 2 ((n/2)
-logn and q = 3log

TIT -1i3.-

We claim that

C - n-o(I(aO)-1)/2g

n- C2 o og an

if d < n

if d log.

for some positive constants C1 and C2 which does not depend on n or d. Assuming
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that the claim is true, we get

1<d<Iolon

and

log log n<d<!

hence p (d)Pfail as desired.

To complete the proof, we are going to use the tail bound derived in Section 3.6.

Let us first focus on the case that d > nog"gn. We have

Nd > 2
2k.k! ((n-2k+2)k - d

> n 
1

2 k-1 - k!

- (1 + o(1))Tk1

2k-2

~(d) < exp

- (n - d)k)

1

(log log n)k

Q( nlogn
log logn J

which follows from Theorem 3.17. Since (n2 2 < 2 , we get

n/22 (d) < exp
d/2) Pfi (-Q ( nlognlog log n)

which is still e- lo lg)

If d < iO Igthen Nd = (1+o(1))k-' - (-1). Using Theorem 3.17 with h(n) = d,

C=1, c2 = -1, al = a, a2 = , Pi = 1-r and P2 = we get

P(ai < exp (-(1- o(1))I(a, 8) -d log n).
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kd/2)
(d < C1 (n-(I(a,,3)-1)/2)d <n /2

d>1

We get

k)

log log n

+ O(n) )

= O(n -c/2)

- (1
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Since (n/2)2 nd and I(a, 3) > 1, we have

d n/2 \ 2 i-d

n/ 2 ( exp (-(1 - o(1))(I(a, ) -1) -d log n) Cin-E/2

for some constant C1 > 0 which does not depend on n and it concludes the proof.

3.4 Truncate-and-relax algorithm

In this section, we propose an algorithm based on the standard semidefinite relax-

ation of maximization problem of quadratic function on the hypercube { }v. We

also prove that this algorithm achieves the optimal threshold up to a constant mul-

tiplicative factor. We will only focus on the assortative case (i.e. p > q) but the

algorithm could be adapted for disassortative cases with a different threshold which

only depends on a and 3, which we will not derive in this paper.

Let H = (V(H), E(H)) be a k-uniform hypergraph, and recall that we defined

the weighted graph (GH, w) on the vertex set V(H) where weights are given by

w(ij) = #(e E E(H) : {i,j} C e).

We may think GH be a multigraph realization of H, by replacing each hyperedge

e in H by the k-clique on e. For brevity, let us define the adjacency matrix W of

(GH, w) as the symmetric n by n matrix such that its diagonal entries are zero, and

Wij = w(ij) for each pair {i, j} V. We defined the estimator Xtrunc as

Xtrunc := argmax Wi Xi x,.
xE{ 1}V: Tx=O 1 <<<n

On the other hand, recall that the ML estimator XMLE is the maximizer of

(AH , X k (AH)e (Xek )e

eE (V)
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over balanced x's. Note that

( 2k-1
ICe:tI even

as we have seen in Chapter 2.

If we collate the terms by its degrees, then we have

(AH, 1) + 2k1 (AH)e '
1

2 k-1
{ij}ce

+ (higher order terms).

Let gH(x) be the homogeneous multilinear polynomial of degree 2 defined as

YH(X) = (AH)e XiX,

e {i,j}Ce

which is a constant multiple of the degree 2 part of (AH, XEk). Then,

9H(x)= E (AH)eXiXj = E WijX iXj.

e {ij}Ce 1<i<j<n

The truncate-and-relax algorithm tries to solve the standard SDP relaxation of max gH (X),

as described in Section 2.4. We prove that the optimum of the relaxation is achieved

by xOxO with probability 1 - o(1) if ac and 3 satisfies Isd,(a, 3) > 1 where Isdp is

defined as in Section 3.1.3.

3.4.1 Laplacian of the adjacency matrix

Before we delve into the semidefinite relaxation that our algorithm uses, let us take

a detour with a spectral algorithm which can also be thought as a relaxation of

maxgH (X).

Recall that W is the adjacency matrix of a weighted graph. For x C { 1} with
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the corresponding bisection (A, B) where A = {v : x, = 1} and B = [n] \ A, we have

9H(X) = E
1<i<jin

WijXiXj = E1<i<jin

Wij - 2 E

so maximizing gH(x) is equivalent to the minimum bisection problem (MIN-BISECTION):

MIN-BISECTION(W):

The Laplacian of W is a matrix Lw defined as Lw = D - W where D is the

diagonal matrix with entries

DVV= 7 WU/.
uE [n]

Equivalently,

Lw = E
1 i<j<n

Wij (e -- ej)(ei - ej )T

where ej is the vector with the entry (ei)= 1 and zero elsewhere. It implies that

n

X TLwx =ZEwij(Xi _Xj)2 =4S
i,j=1

Wij,
iEA,jEB

hence MIN-BISECTION(W) is equivalent to minimizing xTLwx over balanced x in

B 1 l.

By relaxing the condition x G 1 11n to IXI12 =n, we get

min XTLwx.
x:Ix||2=n,1Tx=O

Note that Lw is positive semidefinite and the minimum eigenvalue of Lw is zero,

since it is diagonally dominant and 1TLw1 = 0. Hence, the optimal solution of the

relaxed problem corresponds to an eigenvector of the second smallest eigenvalue of

Lw, scaled to have norm V/5.

It motivates us to suggest a spectral algorithm with the following two stages:

e (Relaxation) We compute a unit eigenvector of the second smallest eigenvalue
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of Lw.

* (Rounding) We round /i - to the closest point on { 1}, which corresponds

to x with x, = sgn( ,).

We remark that in [49, 51, 52], the authors generalize this idea to the case when

we have three or more clusters. Their algorithm computes eigenvectors of k smallest

eigenvalues to associate each vertex with a vector in Rk, and uses k-means clustering

on them to find the community label of each vertex. Their algorithm has a few

advantages such as that it applies to weak recovery and detection as well as exact

recovery, that it generalizes to non-uniform models, and that it runs in nearly-linear

time in n. However, it only works in a order-wise suboptimal parameter regime,

requiring p and q be at least g for exact recovery.

Subsequently, in [15] and independently in [34], spectral algorithms with an addi-

tional local refinement step were proposed, and it was proved that both algorithms

achieve exact recovery in the regime where p and q are ( Q!), which matches the

statistical limit in terms of order in n. Also, we note that it was mentioned in [1] that

the local refinement technique used for the SBM can be extended to the hypergraph

case, together with a partial recovery algorithm in [20]. Finally, we remark that it

was proved in [34] that their algorithm achieves the statistical limit shown in this

paper. In other words, there is an efficient algorithm which recovers the ground truth

almost asymptotically surely whenever I(a, 3) > 1.

3.4.2 Semidefinite relaxation and its dual

Let X = xxT. Then, the condition that x E { } and 1Tx = 0 is equivalent to that

X is a symmetric n by n positive semidefinite rank-one matrix such that Xii = 1 for

all i E V and 1TX1 = 0. If we relax the rank condition, then we get the following
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semidefinite program equivalent to (3.1) as argued in the introduction:

maximize

subject to

(WX)

Xii = 1 for all i E [n]

(X, 11T) = 0

X > 0.

The dual of (3.2) is

minimize

subject to

tr(D)

D is n x n diagonal matrix, A E R

D + A11T - W > 0.

We recall that E was defined as the optimum solution of the primal program (3.2),

and we say Z recovers the ground truth x0 if Z = x0xT'. In the case of k = 2 (the usual

SBM), it is known that the relaxed SDP achieves exact recovery up to the statistical

threshold even without the local refinement step [56]. We prove that for any k > 2

our algorithm successfully recover the ground truth, as long as ISdp(a, /3) > 1 which

is slightly weaker than the statistical threshold I(a, 0) > 1. On the other hand, we

show that for k > 4 our algorithm fails with probability 1 - o(1) for some (a, 3) even

when exact recovery is statistically posible (see the next section).

Let X be an optimum solution of the primal and let (D, A) be an optimum so-

lution for dual. Then by complementary slackness we get (X, D + A11T - W) = 0.

Conversely, if X is a feasible solution for the primal and (D, A) is a feasible solution

for the dual, then X and (D, A) are optimal if (X, D + A11T - W) = 0. It implies

that X = xoxT is optimal if there exists dual feasible solution (D, A) such that

Kxox , D + A11T -W) =0,
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which is equivalent to

Di = Z Wij(xo)(xo)
jEV

since D + AllT - W is positive semidefinite. Note that D is completely determined

by W and xO.

Let F = diag(xo)Wdiag(xo) and Dr = diag(F1). Note that Dr is equal to D

defined above. Let Lr = Dr - F. Then,

Lr = diag(xo)(Dr - W)diag(xo)

by definition.

Proposition 3.9. Let 11 be the projector matrix onto the orthogonal complement of

the span of {1, xo}, i.e.,
1 T

vi= I- 1 1 T - xox .
n n

If 1LrU is positive semidefinite, then xoxT is an optimal solution for (3.2). Moreover,

if the third smallest eigenvalue of I7Lrf is positive, then x 0x' is the unique optimum.

Proof. First note that (Dr, A) is a feasible solution for the dual if there exists A such

that Dr - W + A1IT is positive semidefinite. By multiplying diag(xo) on the both

side, it is equivalent to that Lr + AxOx T is positive semidefinite for some A. This

condition is satisfied if and only if ULr7 >- 0 and hence xoxr is an optimal solution

for the primal.

Moreover, if A 3 (YJLrY) > 0 then there exists A such that Lr + AxOXT is positive

definite on the orthogonal complement of 1. It immediately implies that xOxT is the

unique optimal solution for the primal. E

In the remainder of this section, we present and prove a sufficient condition for

A 3 (FILrH) > 0. We also present and prove a necessary condition for xtrunc being x0

up to global sign flip with high probability.
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3.4.3 Performance of the algorithm

We first present the main result of this section.

Theorem 3.10. Suppose that a and 0 satisfies

k -1 i(
2k-1 - ) > 4(k k

Then, A3(IILrH) > 0 with probability 1 - o(1).

We remark that Theorem 3.10 implies Theorem 3.2. To prove 3.10, we are going

to use standard concentration result for the norm of the sum of random matrices. We

first note that

HLrH - E 1JILr + (IlLrfl - E fLrH)

= II(E Lr)fl + fl(Lr - E L)II.

We would like to prove that if a and # satisfies the condition in 3.10, then with

probability 1 - o(1),

A3 (fl(E L.)f) > IIH(L. - E Lr)rl

Let 1 e be the vector in RV where (le)i = 1 when i E e and (1,)i = 0 otherwise.

Let (xo)e = diag(xo)le. We note that

Qii = Z(AW)e (1,1T - diag(le)),

and so

F (AL)e ( (X0 ) e(X - diag(l,))ee
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It implies that

Lr = (AW)eL (xo)e(xo)'-diag(1c)
ee

- (AR)e ((1T (xo)e)diag((xo)e) -(xo)e(X)T')

Proposition 3.11.

11(E L.)H =I-p n (n/2 -22

hence A3(fl(E Lr)H) = ( - 3)log n + o(log n).

Proof. Note that E Lr is invariant under the permutation of V which preserves xo.

Hence, we can write E Lr as

ELr = (E Lr , ) H +
n - 2

(E Lr, 11T) 1T
n

+E Lr, xoxo
n2

We have (E Lr, 11T) = 1T(E Lr)1 = 0 by definition of Lr. Also,

(E Lr, xox) = E(An)e (1 (Xo)e - diag((xo)e) - (Xo)e(XO), XOT)

= E(AW)e((' (XO)e)2 - k2 )

k-i

q qE((k -2r)2 -k 2)
r=1

which is equal to -qn2 k2. On the other hand,

tr(E Lr) = E(A )e - tr(1 (XO)e - diag((xo)e) - (XO)e(XO)T)

- E(A) e . ((1 (XO)e)2 - k)

= (k2 - k) (q() +

= 2(p - q)(k2 _ k)( n

2(p - q) n/2)

/2

k )
n r -2).

133

) qr2 (n

n/2 k/2



= tr(E L) - n (E Lr,xox)rn

= 2(p - q)(k2 - k) n 2

p k - 2

11ELrI =
p- qn (n/2-2)

2 k- 2
(E L.r)

n - 2

Now, let us bound the operator norm of FJ(Lr - E Lr)7. We need the following

version of Matrix Bernstein inequality [91].

Theorem 3.12 (Matrix Bernstein inequality). Let {Xk} be a finite sequence of in-

dependent, symmetric random matrices of dimension N. Suppose that E Xk = 0 and

||Xk| M almost surely for all k. Then for all t > 0,

( X > t) < N -exp ~
t2 /M2'3

U2 + Mt/3)
where o- =

Recall that

Lr = Z(AN)e ((1T (xo)e)diag((xo)e) - (XO)e(XO) T)

Hence,

FJ(L. - E Lr)JH = E ((A), - E (AW)e) eH ((1(xo)e)diag((xo)e) - (x0 )e(x 0)[) 1.
e

We note that

LI (1 (xo)e - diag((xo)e) - (xo)e(xo)') I 1 (xo)eI + II(XO)eH 2 < 2k
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for any e E (V). By Matrix Bernstein inequality, we have

P (|HF(Lr - E Lrll > t) < n - exp (-2 2kt/3

where

.2 = E ((A )e - E(A )e) 2  (rI ((1 (xo)e)diag((xo)e) - ( XO ) T) H)2

e

If a-= w,,(1), then we have

P (|IU(Lr - E Lr)H (1 + E)ua 2 10g n) < n - exp (-(1 + E)2 log n + o(log n))

< n -2c+0(1)

by letting t = (1 + c) a-V2log n.

Proposition 3.13.

0.2 < 2(k - (11) k + - k logn+O log n

Proof. Let Ye be

Ye := (1T(xo)e - diag((xo)e) - (x0 )e(x)) i (1 (xo)e - diag((xo)e) - (xo)e(xo)j)

and let E = Ee E(A-)eYe. We have

. fYef2 = I

< E(At)e -
e

HYerH = 11HE|l,

since Ye is positive semidefinite and E ((AR)e - E(A-)e) 2 < E(AR)e. Moreover, we

obtain the exact expression of E in the following lemma.
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Lemma 3.14. E = c - Ixox + c 2 - 1 where

Ci = (k - 1)# logn + 0(

2k

ogn
)

log n + o

The proof of Lemma 3.14 is deferred to Section 3.7.2. As a result, we get HEI =

c 2 7 and o.2 < f1HEII7= C2 as desired. 0

We are now ready to prove Theorem 3.10.

Proof of Theorem 3.10. Let c be an arbitrary positive real number. By Matrix Bern-

stein Inequality and Proposition 3.13, with probability 1 - O(n- 2E+o(l)) we have

11F(Lv - E Lr)IH- < (1 + E) 2c2 log n

where

C2 =(k - 1) (k(1 - 2 + (2 k+1 - k + 2)0) log n + o(log n).

It implies that A(ILrn) > 0 with probability 1 - (n-2c+o()) if

k - I1a
2k-1

3) log n + o(log n) > (1 + e) V2c2 log n.

It holds as long as

k-i

2 k-1 (a - /3) > 4(k -

as desired.
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3.4.4 Limitation of the algorithm

In the previous section, we proved that the truncate-and-relax algorithm successfully

recovers xO with high probability if a and #3 satisfies

4(k - 1) ( ce

It is natural to ask whether this bound is improvable or not. Recall that 'trunc is the

optimum solution for maxxTWx over balanced x's in {1 }. Since our algorithm is

the relaxed version of it, we have

IP -$ xox) P(Rtrunc(H) 0 {O, -xo})

The following theorem gives a condition on a and 3 such that that the probability

that Rtrunc(W) fails to recover xo is 1 - o(1).

Theorem 3.15. Let

- e-(k-1)) + 03
kr - (k-1-2r)t)

r=1

If 12 (a, 3) < 1, then P (Xtrunc(7t) ' {-xo, x 0 }) = 1- o(1). In particular, the truncate-

and-relax algorithm fails to recover xO with probability 1 - o(1).

Proof. The proof is a slight modification of the proof of Theorem 3.1. Essentially it

reduces to prove that

P (Xa < 2 log n >
log log n

where

Xa = E (A)e
e:envf={a}

E (xo) (xo)
{i,j}<;e

- (XO"))(XO"))

and U = UA U UB and a E UA are defined as in the proof of Theorem 3.1, and this

tail bound follows from the Theorem 3.17. Details are deferred to Section 3.6.3. 0
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3.5 Discussion

Let us first recapitulate the main results of this paper. In the stochastic block model

for k-uniform hypergraphs where the (hyper)edge probabilities are given as

alog n a#logn
P= n~g and q= _

kI-1/ k-1/

for some constants a and 3 such that a > / > 0, we observed the following phase

transition behaviours on exact recovery problem:

(i) If I(a, /3) < 1, then exact recovery is not possible. Conversely, if I(a, /) < 1

then the ML estimator recovers the correct partition (up to a global sign flip)

with probability 1 - o(1).

(ii) If Isdp(a, 3) > 1, then the truncate-and-relax algorithm recovers the partition

(up to a global sign flip) with probability 1 - o(1).

(iii) If 12 (cx, /) < 1, then the truncate-and-relax algorithm fails with probability

1 - o(1).

Here I, 12 and Isdp are functions depending on a and / (and implicitly depending on

k, which we assumed to be a constant) defined as

I(a,3) = 2k-i

2(a,3) = max 1 - e(k)t+ ~ ( 2

k- (a--#)2
ISdp(a,/3) = 220

We first note that sharp phase transition occurs at I(a, /) = 1 for exact recovery.

Indeed, it can be efficiently achieved, by spectral algorithms with a local refinement

step as suggested in [341. Specifically authors of [341 prove that their algorithm

achieves exact recovery whenever I(a, /) > 1 and conjectured that I(a, /) = 1 is the

sharp threshold. We confirmed their conjecture in this work. On the other hand, there
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is a gap between the guaranteed performance of the truncate-and-relax algorithm and

the impossibility region of the algorithm as shown in Figure 3-1 and Figure 3-2. We

are yet to show how the algorithm works in between, which is when cz and 0 satisfies

Isdp (a, 3) < 1 but I2(a, 0) > 1. We propose that the line I2(a,!3) 1 is the correct

threshold for the performance guarantee of the algorithm.

Conjecture 3.5.1. If I2(z, 0) > 1, then the truncate-and-relax algorithm successfully

recovers x0 xo with probability 1 - o(1).

There are a few reasons to believe this conjecture. First, if we look deeper into

the proof of Theorem 3.2 then the main obstacle to prove the conjecture arises from

when we use the matrix Bernstein inequality to bound H(Lr - E Lr)H . The matrix

Bernstein inequality gives us that

E |HF(Lr - E Lr)H ,u < logn

where

a2 = ||E(F(Lr - E Lr)J)2

In the case of k = 2, the random matrix F has independent entries and one can

obtain a tighter bound for IIL- - E Lrp1, via combinatorial method [44], stochastic

comparison argument [56], or trace method [22]. Also, in [21] the following bound for

Laplacian random matrices was proved.

Theorem 3.16. Let L be a n x n symmetric random Laplacian matrix (i.e. satisfying

Li = 0) with centered independent off-diagonal entries such that E L is

equal for all i, and

Z E L 2 max |Li||1 2log n.
jE[n]\{i}

Then, with high probability,

|L| < + max L 1
1 < Vl-ogn, n
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Figure 3-2: Result of simulation of the truncate-and-relax algorithm for k = 6 and

n = 500. Each gray-scale block corresponds to a pair (a, i3), and its color denotes

the success rate over 30 trials (black corresponds to 0 success, and brighter color

correspond to higher success rate). The solid line represents I(a, /3) = 1, the circled

line represents 12(a, #) = 1, and the x-marked line represents Isdp(c, 3) = 1.

This bound cannot be used for k > 2 as entries of F are not independent to each

other. We ask whether the bound could be extended to our setting: Can we obtain

a similar bound when L can be expressed as

L = E sL(s),
SC[nI,ISI=k

where L(s) is n x n symmetric Laplacian matrix such that Ls is non-zero only if

i,j S?

We ran a simulation to support our conjecture. For each a and 3, we generated 30

random hypergraphs according to the model, and constructed the dual certificate for

each hypergraph as in the proof of Theorem 3.2. When the constructed dual solution

is positive-semidefinite, it was counted as a success. Figure 3-2 shows the result of

the simulation and it suggests that the true phase transition occurs at I2 (a, /) = 1

as we proposed.
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3.6 Tail probability of weighted sum of binomial vari-

ables

In this section, we investigate the precise asymptotics of the tail probability of

weighted sum of independent binomial variables. Using Theorem 3.17, we derive

the formulas which were used to prove information-theoretic limits in section 3.3 and

3.4.

Theorem 3.17. Let r and s be positive integers. Let c 1 , c2 ,-- , c, be non-zero real

numbers. Let h(n) be a non-decreasing function which is Q(1) and o(ns/ 2 / log n). For

each i C [r], let Y be the random variable distributed as the binomial distribution

Bin(Ni, pi) where

Ni= (I1 o(1))pi. h(n) () and pi - (1i+o())cvi lg
8 p (n)

for some positive constant (not depending on n) pi and aci.

Suppose that (i) not all ci are positive, and (ii) E', cjajpi

6 E (-oc, E cijcipi), we have

Let X = _1 ciYi.

> 0. Then, for any

P(X < (1 + o(1)) - h(n) log n) = exp (-(1 + o(1))I* -h(n) log n),

where

I* = max t +(1 - eC.i))

Remark. The condition h(n) = o(nS/2/ log n) is not required for the upper bound.

Proof. Let us first prove the upper bound on the tail probability. Let x = (1+ o(1))6.
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h(n) log n. Then, by Chebyshev-type inequality, for any t > 0 we have

<E e-
P(X < X) <

\ X ) - e-tx

r
= etxJ I tciy%= e E e- iW

i:=1
r

= etx (1 pi(1
i=1

- e-cit))Ni

< exp (tx

= exp (-(1

Nip(1
i=1

+ o(1))h(n) log n -

Here the fourth inequality follows from 1 - x < e-x. By optimizing over t > 0, we

get the desired bound.

To prove the lower bound, note that

IP(X < x) = yi) = t (
y,)1 i

(1 - p,)Ni-yi

for any positive integers y, , yr satisfying E Ciyi K x.

Let #(t) = --6t + >l a p (l - e-ci') and let t* be the maximizer of 0(t).

that #(t) is strictly convex, as

Note

r

0"(t) = cacipie-cit > 0
i=1

for any t > 0. Moreover, #'(0) = _l c p -6o > 0 and limi-, #'(t) = --oc. Hence,

there exists unique t* satisfying #'(t*) = 0, which is the maximizer of 0(t).

Let Tr = cepie-cit* for i E [r] and let y,- - ,yr be integers such that 2 ciyi < x

and y, = (1 - o(1))rT - h(n) log n. Such yj's exist because

r r

cijT = 3ciaipiecit* =

i=1 i=1
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We are going to use the following bound for the binomial coefficient for f < V/Th

(N> N'

By Stirling's approximation, we have f! < ev7 - ( ) so

Selog ( ) - log(4eVf').

Note that y, < VN since h(n) = o(nS/2 / log n). Hence,

Syi log eNipi ) + Ni
((1 - pOyi )

log(1 - pi) - log(4ev/y).

yj log eNipi)
((1 - pi jy )

Ni log(1 - pi)

log(4e/~yl)

= (1 - o(1))h(n) log n -T log

= -(1 + o(I))ce pj - h(n) log n

= o(h(n) log n).

P(X < x) > exp o(1))h(n) log n - j(Oipi - Ti log

Plugging in Tj = acpie-cit*, we get

(Ceipi - a pi(1 + cit*)e-cit* )

= - t* E c ozp e-"it* + a ip(l - eit*)
i=1 i=1

= - 5t* + ZCepi(1 - e~it*)
i=1

=I*,
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where the third equality follows from that Ej cicpieci* = S. Hence,

P(X < x) > exp (-(1 + o(1))I* -h(n) log n)

as desired.

3.6.1 Proof of Lemma 3.6

Let us restate the lemma for readers.

Lemma 3.18 (Lemma 3.6, restated). Let X be a sum of independent Bernoulli vari-

ables such that E X = e(7log n) where - = on(log- 1 n). Let J be a positive number

which decays to 0 as n grows, with 6 = w,(log- 1 n). Then,

P(X > rlogn) n-s n that

Proof. A standard Chernoff's bound implies that

t-j)EX

for any t >0. Let t= 6 . Then,

P(X > 6 log n) : exp ((t - 1 - t log t) EX)

= exp ( (1- log n
-lEX ) 6 log n - E

J log n - o(1))

= -< log +o(1)

as desired.
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3.6.2 Proof of Lemma 3.7

Let a E UA. Recall that

Xa= ce(Ai)e,
e:enu={a}

where c, = Ze - Ee"' for any b E UB. Concretely, the value of ce for e satisfying

e n U = {a} is determined by the size of intersection of e \ {a} and A \ UA as follows:

+1

Ce -1

0

if e \ {a} C A \ UA

if(e\{a})n(A\UA)=0

otherwise.

Hence, Xa = Y - Y2 where Y and Y2 are independent random variables such that

Y ~ Bin(N1 , p) and Y2 ~ Bin(N2, q) with

n/2 - UA|)N1 = I and N2 = n/2 UB)
k-1I

Using Theorem 3.17 with

Ci = 1, C2 = -1,

1
Pi= P2 =

log n
log log n

h(n) = 1,

= exp (-(1

Ci = a, C2 ),3

and 6 = 0,

+ o(1))I* - log n) ,

I* = maxaipi(1 - e-cit)

max 2 k1 (e( - e-t) + 0(1 - et))

The maximum is attained at t* = (log

I * = ( v
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Hence,

P Xa <
log rn > n--l+E0(l)

log logn) -

as desired.

3.6.3 Proof of the tail bound in Theorem 3.15

We recall that Xa is defined as

Xa = (A)a
e:enU={a}

(xo)(xo) -
\ijge

By definition of (Xo)(a), we have

(Z(xo)(xo)i - (xO")) (Xo")
\ijge

2(XO)a Z (xO)i
iEe\{a}

= 2(k-1-21enBI).

Hence, Xa = CYr where cr = 2(k - 1 - 2r) and Yr - Bin(Npr) with

r r J S(1 + o(1)) 1
2k-1 ( k - 1) n

r (k -1

and Pr = p if r = 0 and pr = q otherwise.

Using Theorem 3.17 with

cr=2(k -1--2r), P 1
dd 2 k=

and h(n) = 1 and J = 0, we have

P Xa <
2 log

log log n}

( k

exp (-(1 + o(1))12 log n)
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-1) if r = 0

otherwise,

a
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k-i

12 = max ECipi(1 - e-4ct)
r=O

1
-a -

(a (1
- C-(k-1)t)

k-1

r=1 ( k 1-(k-1-2r)t)
r

as desired.

3.7 Miscellaneous proofs

3.7.1 Proof of Proposition 3.4

Recall that the maximum-likelihood estimator XMLE(H) is defined as

XMLE(H) = argmax fH(X),
xE{i}V:1TVx=o

where fH(x) = log P(x',H)(W = Hlxo = x). Note that

fH (x) = log P(W = HIxo = x)

= log (
(eE (V )

P(e E E(7)jxo = X)(AH)e P(e -H E() Ix0 = x)1~(AH))

-S (AH)e 10lp + (1 - (AH)e) log(1 - p)
eE( k)

e: in-cl. w.r.t. x

+ S (AH)log q + (1 - (AH)e) lo(1- q)
eE ()

e: cr-cl. w.r.t. x

- C + log (
p

i-P
+ log (

q
- q ) KAH, 1 ~ k
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with

C = log(1 - p) - #(e : in-cl. w.r.t. x) + log(1 - q) - #(e : cr.-cl. w.r.t. x)

= 2n/2)
log(1 - p) + ((n) -2 (n/2)) log(1 - q)

We note that C is a constant not depending on x. Also, (AH, 1) is independent of x.

XMLE(H) = argmax
xE { l}v :Tx=O

log (1-q)
\ q(1 - p)

(A, Xk ) .

It implies that

XMLE(H) = {argmax
xE{ 1}V:-Tx=o

argmin
xE{ 1}V:lTx=o

since log (p(1q) is positive if p > q and itq(1-p) )
is negative if p < q.

3.7.2 Proof of Lemma 3.14

We recall that

Ye = ((X)e - diag((xo)e) - (Xo),(XO)T) II (1T(xo)e - diag((xo),) - (XO)e(XO) T)

where HI = I - _xox - 1 1 T. Also, recall that

E ZE(A-)e . Ye = p
e:e is cross-cl.( e n, Ye )

e:e is in-cl. )

Lemma 3.19 (Lemma 3.14, restated). E = C1. xoxT + c2 -H1I wherenOX0

ci = (k - 1)3log n + (
n )
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if p > q
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C2 = 2(k - 1) (a logn +O .on

We note that

E Ye
is cross-cl.

are invariant under any permutation on V preserving xO. It implies that the both

matrices and E are in span({fl, xOX , 11T}). Moreover,

(1 (XO)e- diag((xo)e) - (XO),(XO) T) 1 (1(XO)e)(XO)e - (1T(XO)e)(XO), = 0

so KYe, 1 1 T) = 0. Hence,

E (E, Hl)f(11=171 + E -XOX T- XOX .

It implies that

C2 = =(q fl)_

n

1
n - 2

1 0

I 
'xo

n /

Now, let us first compute x Exo. For simplicity, let r = }(k - 1T(XO)e). Then,

((k - 2r)diag((xo)e) - (xo)e(xo)[) x = (k - 2r)le - k(xO)e

and
xrYeXO = ((k - 2r)le - k(Xo)e)T H ((k - 2r)le - k(xo)e)

= 1|(k - 2r)1e - k(XO)e| -2 (((k - 2r)1e - k(XO)e)TXO) 2

= (k 3 - k(k - 2r) 2 ) - - ((k - 2r)2 - k2)2
n

= 4kr(k - r) - r2(k - r)2 .

149

and

Ye )
e:eis in-c.

and (e:e

and

c1 = E,

(tTr(E)

k ) '3



In particular, xO Ye x0 = 0 if e is in-cluster with respect to xo. Hence,

x E xo=q S
e:e is cross-cl.

X Ye XO

k-i 16
q E 4kr(k - r) - r2(k -

r=1 2 n

We note that for any s, t E f{1, 2}, we have

- (k

r)2) (n/2)

n/2 n/2 (

n/2 n/2 ( k )
sn , k st) snt)

Hence,

rn (k) 2(n 2 2

( ()k(k - 1),2

k) An(n - 1)

n/2>
r )

k(k - 1)
4

() +O(n k-1).

= Q(n k-1).

( 
In/2

k - r)

= (k - 1)3logn + O
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( /2

s -t

k-r

r)(n/2) k /2>(k - r)

and

n

Hence,

C1=1 X XOn (log ni
ni

-r n/2 k/2

k-1

E r 2 (k - r )2
r=1



On the other hand,

tr(Ye) = tr (((k - 2r)diag((xo)e) - (xo)e(xo) )

= tr (((k - 2r)diag((xo)e) - (xo)e(xo) )

- 1 11((k - 2r)diag((xo)e) - (xo)e(xo)') X 2

= ((k - 2)(k - 2r)2 + k2) - ||(k - 2r)1e - k(xo)e 2

= ((k - 2)(k - 2r)2 + k 2 ) - (k -- k(k - 2,r) 2 )n

= (k 3 - k 2 ) - 4(k - 2 + -)r(k - r),n

so we have

C+ - 0
2k1+

C2 = 2

(k - 1)(k-

- 4q (k

- 2)1 n

-2+ -. 2(n 2)

log n + O(log n).

1xT)

log n + (logn'
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tr(Z) = (k3 -k2) (q

- [(k2 - k) (

and hence

2(k - 1) -Cfk

(2k

()+ 2(p- q) n2

(tr(E) -
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Chapter 4

Statistical Limits of Graphical

Channel Models

We have considered the spiked tensor model generalizing the spiked Wigner model

to k-tensors in Chapter 2, and the stochastic block model for k-uniform hypergraphs

generalizing the stochastic block model for graphs in Chapter 3. In this chapter,

we consider a class of statistical models which are called graphical channel models

which was briefly introduced in Chapter 1. We remark that this class of models

encompasses both the spiked tensor model and the stochastic block model for k-

uniform hypergraphs.

4.1 Exact recovery in Graphical Channel Model

4.1.1 Description of the model

Let us first formally define the graphical channel model. Let n and k be integers

satisfying n > k > 2.

" Let 7 = (V, E) be a k-uniform hypergraph on the vertex set V of size n, i.e.,

the (hyper)edge set E is a collection of size k subsets of V.

" Let X be a finite set and y be a measure space equipped with a reference

measure A. We call X and Y input and output alphabets, respectively.
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" Let p be a probability distribution on X, called prior distribution. We often

regard p as a nonnegative vector whose entries sum to 1, since X is finite.

" Let Q be a probability kernel with source X and target (y, A), i.e., for each

z C Xk the function Q(.z) : y - Q(yjz) is a probability density function with

respect to A. In other words, Q is a stochastic function which gets z E X as

an input and outputs a random value y sampled from Q(.z)1 .

" Let x C Xv and y C YE. Here x and y are called vectors of vertex-variables and

edge-variables respectively. Let us define PM(p,Q) to be a probability measure

on Xv x yE such that

PM(p,Q)(x) = 17 p(x,) and PM (p,Q)(yIx) = Jl Q (yex[e]),
vEV eCE

where x[e] is a shorthand notation for (Xe,. , Xek) when e = {ei < e 2 < ... <

ekj}

We call the generative model obeying PM(p,Q) a graphical channel model (of graph

W) with prior p and kernel Q, denoted M(p, Q). We omitted 7- since it would be

clear throughout the chapter. We will often write (x, y) M M(p, Q) to mean that

(x, y) is a random vector having the model-defining distribution IPM(p,Q).

Throughout the chapter, we will further restrict our focus on the models satisfying

the following.

" We assume that W is the complete k-uniform hypergraph, i.e., the edge set

E(R) is equal to (v), the collection of all size k-subsets of V.

* We assume that |XJ = 2. In block models, it corresponds to the case that there

are only two communities. Without loss of generality, we let X = {0, 1}.

" We assume that the kernel Q is symmetric, i.e., Q(.Iz) is invariant under per-

mutations of the indices of z.

'We often abuse the notation by denoting both the distribution and the density function by
Q(|z).
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For brevity, let us denote the vertex set and the edge set of the complete k-uniform

hypergraph on n vertices by V, and En, respectively. We will often drop the subscripts

when the context is clear.

We remark that indeed both the SBM with two symmetric communities and the

spiked Wigner model are instances of graphical channel models. We discuss further

relations in Section 4.5.

Let us introduce a few more notations for the sake of simplicity. Let z E {0, 1}".

The length of z (denoted F(z)) is defined as E(z) = m. We denote the number of ones

in z by jzj, i.e., |zj = E' zi and call jzj the weight of z.

Note that |zj is invariant under any permutation of the indices of z. Conversely,

if a tuple z' has the same length and the same weight as z, then z' can be obtained

by permuting the indices of z. Since Q is symmetric, we have Q(.z) = Q(.z') if

zI = 1z'j. We denote Q(yjz) by qjzi(y) for the sake of simplicity (note that this

notation is well-defined).

4.1.2 Recovery requirements and exact recovery

Let (x0, y0 ) be a sample from M(p, Q). We will often call x0 prior and y0 posterior

to emphasize that yo is a posterior value which we observe and x0 is a prior latent

parameters which we would like to recover from y0 . Since the model is probabilistic,

we ask whether a recovery can be done with high probability with respect to the

randomness of the sample.

There are three representative notions of recovery regarding the quality of the

solution: exact recovery, almost exact recovery and partial recovery. Informally,

" Exact recovery: We aim to recover the ground truth x0.

" Almost exact recovery: We aim to find a vertex labeling x' which agrees with

the ground truth x0 except in a vanishing fraction of the vertices.

" Partial recovery: We aim to find a labeling x' which is better than a random

guess.
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In some literatures, they are called strong consistency, weak consistency and detection,

respectively. We focus on exact recovery, and recommend [1] for readers who are

interested in other types of recovery.

Let R be an estimator of x0 given yO. We may not expect the estimator to

be perfect because of the intrinsic randomness of probabilistic models. Instead, we

measure the performance of R on exact recovery by the probability that R successfully

recover the ground truth x0, i.e.,

P (i(y)= x0 ).
(x0,yO)~M(pQ)

We are interested in a regime that k is fixed, but n grows to infinity. Specifically, we

consider a sequence of models {M(p, Q,)}n>k where M(p, Qi) is the graphical chan-

nel model with prior distribution p (which does not depend on n) and the symmetric

kernel Qs, such that whose graph is the complete k-uniform hypergraph on n vertices.

For brevity, we will often write M(p, Q) to denote the sequence {M(p, Q,)} of the

models. Under this regime, we formally define the requirements for exact recovery as

follows.

Definition 4.1. For each n > k, let Dn : yEn -- XVn be an estimator of x0 given y 0 .

Let D be the sequence of estimators {Dn},;>. We say that D achieves exact recovery

for M(p, Q) if

P (D,(y 0 ) = x0 ) = 1 - o(1).
(x ,Yo )~M(P,Qn)

We say that exact recovery for M(p, Q) is achievable if there exists D achieving

exact recovery, and otherwise exact recovery is impossible. Moreover, if some D

achieves exact recovery and Dn is computable in polynomial time, then we say that

exact recovery is efficiently achievable.

For example, let us recall the SBM with two symmetric communities, i.e., the

model in which a prior x0 is sampled from {0, 1}' uniformly at random, and a posterior

y {o, 1}2) is sampled in the way that for each {i, j} (2), entry y iJ, is sampled
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independently and

Ber(p) if xi = xj
Y fi,j }"

Ber(q) otherwise.

Now, let us consider a parameter regime that p = log and q = blog" for some a, b >

0. In the language of graphical channel models, this corresponds to M(U({0, 1}), Q)

where U({0, 1}) is the uniform distribution on X = {0, 1} and

QnBer (" ) if i = X2
Qn ('|I, X2) = e

~Ber (b e") otherwise.

We remark that exact recovery shows a sharp phase transition behavior around the

threshold (vs- V)2 = 2, i.e.,

" if (ji - V)2 < 2 then exact recovery is achievable (up to a global switch of

two community labels), and

" if (fa - V)2 > 2 then exact recovery is not achievable.

This is proved in [4]. Moreover, we can efficiently achieve exact recovery up to the

information-theoretic threshold, via semidefinite relaxation technique [56] or via al-

most exact recovery algorithm with additional local refinement steps [4].

We would like to note that exact recovery for the SBM with two symmetric com-

munities is achievable only "up to a global switch of two community labels" which

means that we cannot distinguish x and x' obtained by exchanging labels of two

communities, i.e., x' = 1 - x, for all v E V. It implies that exact recovery is intrin-

sically not achievable if we regard x' as an incorrect solution. However, it is natural

to regard x' as a correct solution since two communities are not distinguishable. For

this reason, we relax the requirement by allowing a global switch of the community

labels in such cases.

Definition 4.2. Let D be defined as in Definition 4.1. We say D achieves exact
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recovery up to a global switch of the community labels if

P (Dn(Y0 )
(x0 ,Y9 M(P,Q.)

E {x0 , 1 - x0}) = 1 - o(1).

Definitions for achievability and non-achievability are extended as well.

4.1.3 Maximum a posteriori estimator

The maximum a posteriori (MAP) estimator for x0 given y0 is defined as the maxi-

mizer of posterior probability over all possible priors, i.e.,

Xmap(y') := argmax P(X0 = Xjy0 )
XEXV ./v'kPI )

where ties are broken arbitrarily. Since P(xjy) = l , we have

Xmap(y) = argmax log P (y0 |x0 = x) P (xO
,EXV \M(p,Q) M(p,Q)

= x))

= argmax E log p(x) + Elog Q (yIx[e]).
,CXV VEV eEE

For the sake of simplicity, let us define

f(x) = y log p(x,)
eVV

and f(ylx) = ElogQ(yex[e]),
eEE

the log-likelihood of x and the log-likelihood of y conditioned on x. With this nota-

tion,

Xmrap(y 0 ) = argmax fe(x) + f (y' Ix).

Proposition 4.1 (folklore). The MAP estimator outperforms all other estimators in

the sense that the probability of returning an incorrect solution is minimized by the

MAP estimator. In other words,

P (rnap(y') # xO) < P (i(y0 ) # xO)
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for any estimator R.

It implies that exact recovery is achievable if only if the MAP estimator achieves

exact recovery. Let

Pfail,gobal = P ( map(y0 ) = X )

the probability that the MAP estimator fails to recover x0 .

Proposition 4.2. Exact recovery is achievable if and only if Pfail,global = 0(1).

4.2 Local recovery: Binary hypothesis testing

4.2.1 Genie-aided local recovery

We note that our argument in this section closely follows and generalizes the genie-

aided approach in 11] to the setting of graphical channel models.

Imagine that in addition to the observation of yO, a magical genie reveals us the

true labels of all vertices except a vertex v. In other words, we are given an extra

observation of

x : {x0 : U E V \ {v}}.

Let us call the problem of recovering xO given y0 and x%, a (genie-aided) local

recovery at v.

Let 'v,map be the MAP estimator for xO given y0 and x%, i.e.,

Xv,map(y 0, X, V) = argmax P(x = x~y 0,x0_)
xE{Oi}

= argmax p(x) P(y x, = x, x_).
V _V,1xE{O'i}

We note that

Pfail,global _ P (3v E V : Xv,map(YO, x0) # xV)

since failing at one of the local recoveries implies that we must fail to recover the

whole x0 .
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Let E, the event that xi,map fails to recover x,. Let x' be a vector in {O, 1}v

where xv = xO for u E V \ {v} and xv = 1 - xO. Then,

Ev happens 4 p(x,) P(y x4) p(x") P(yOIxV)

by definition of the MAP estimator. Taking log on both sides, we get

logp(xV) + e(y0 Ix0) logP(XV) + e(yOIxv),

which is equivalent to

f(x0) + f(y0 Ix0 ) f(x") + (yOIXV).

Let

Pfailjocal = P (U E)
vV

and pfail,v = P(Ev).

We get the following relations between Pfail,globah, Pfail,loca and Pf ail,v

Proposition 4.3. Pfai,global Pfail,local and PfailIocal - EveV Pfail,v-

Remark. We can interpret Pfail,global, Pfail,local and Pfail,v in terms of the type of x0 of

the stochastic function x -+ f(x) + f(y0 x) as follows:

* Pfail,global is the probability that x0 is not the unique global maximum.

* Pfail,local is the probability that x0 is not strictly locally maximal.

* Pfail,v is the probability that x0 is not the unique maximum in the direction of

0xv.

4.2.2 Local-to-global amplification

Roughly speaking, local-to-global amplification is a phenomenon that the success of

global recovery can be approximated by independent successes of all local recoveries.

160



In other words, when local-to-global amplification holds we expect

Pfail,global Pfaillocal 1 - [(1 - Pfail,v)
VEV

in terms Of Pfail,global, Pfail,local and Pfail,v In such cases, achievability of exact recovery

can be reduced to whether Pfail,v is over or below some threshold.

Lemma 4.4 (Informal). If local-to-global amplification holds, then

1 - o(1) if EvEVPfail,v = Wn(1)
Pfai,global -

o(1) if EvEVPfail,v = o(1).

In particular, exact recovery can be achieved when Pfail,v = on(n- 1) for all v C V and

is not achievable when Pfail,v =w(n 1 ) for all v E v.

Informal proof. Since 1 - x < e-x for all x, we have

Pfail,global ~ 1 - H7(I - Pfail,v) > 1 - exp - Pfail,v -
vEV vEV

On the other hand,

Pfail,global Pf ail local < ZPfai,v-
vEV

Hence, Pfail,global can be approximated as

1 - exp - Zpfail,v Pfait,goba E Pfail,v,

\ vEV / vEV

and we get the desired result.

4.2.3 Binary hypothesis testing

Suppose that local-to-global amplification holds. To characterize the threshold for

exact recovery, we now need to analyze pfail,v and understand when this probability

happens to be large. Note that local recovery at v can be treated as a binary hypoth-
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esis testing between two hypotheses HO and H1 given y0 and x0 , where HO and H1

corresponds to xO = 0 and xO = 1, respectively. In the next two sections, we analyze

the optimal error probability in generic binary hypothesis tests, and explain how it

applies to local recovery problems.

In the simplest form, binary hypothesis testing can be thought as the problem of

deciding between two hypotheses

Ho: Y ~ po and H1 : Y - pi,

given a sample Y which is sampled from either po or pi. Suppose that we already

know P(Ho) = 1 - p and P(H1 ) = p for some positive p > 0.

Let H be a decision rule between HO and H1 given Y, and let

A = {y : H(y) = Ho}.

Then, the probability for H making a mistake is

?(error) = P(Ho)P(H(Y) = HilHo) +P(H1)P(H(Y) = HojH1 )

(1 - p)po(AC) + p11 (A)

= (1 - p) + (pp1 (A) - (1 - p)po(A)).

Hence,

min P(error) = (1 - p) + min [pp 1 (A) - (1 - p)po(A)].
H A

The total variation (TV) distance between two (not necessarily probability) mea-

sures vi and v2 is defined as

1
dTv(Vl, 12) := - sup Iv1(A) - v2(A) + v1(A') - v2(AC) 1.

2 A

If vi and v2 have densities and dP2 with respect to a reference measure A, then
dA d
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dTv is equal to half the L 1-norm of the difference 7T7

dTv(vl, V2) = 1

dv2 i.e.

dv1  dv 2

dA dA

Proposition 4.5. The minimum probability for a decision rule making a mistake is

equal to

- dTv (1 - P)PO,Pp) = 1 -pp)=2 2
(1 dpo

P) dl d dA

and the minimum is attained by Hmap defined as

Ho if(1-p)dpo (Y)
Hmap(Y) = dA

H1 otherwise.

di (Y)
dA

We call Hap the MAP decision rule.

Proof. Folklore.

In the context of local recovery, P(E, I x%_) is the probability that Xmap,v making

a mistake (when x0 is fixed), so we have

1
P( E|x_) I = - -dTv((1 - p)1o, p1)2

where p(O) = 1 - p, p(l) = p and

dp o(y) = 11 Q(ye xv[e\{v}],0) dA(ye), and
eCE:eEv

dp1(y) = 1i Q (yeX0 [e \{v}], 1)- dA(ye).
eEE:e:v

Moreover, Pfail,v is the expected value of P(E I x0) over the randomness of x0 v. It

implies that estimating dTy ((1 - p)Po, P11) for "typical" x0% is a crucial step to get a

tight estimate of Pfail,v.
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4.2.4 Chernoff a-divergences

Recall that

P(MAP rule makes a mistake) = - drv((I - p)po, PAi)

1 if dp0  dpu1221 (lp) - p dt dA.=2 2 dA dA

Since po and p 1 are probability distributions, it is equal to

f -pd + p -1 du -p d A
2]k ~d A dP A ~dA~d

= min (1-p ,p d A.

We get

min (( - p) ,p dA min (1 - p)Qp 1-to
~AA aG[0,1d /

since min(a, b) a'bl-' for any a, b > 0 and a E [0, 1.

Definition 4.3. Let po and p1 be probability distributions on the measure space U

equipped with a reference measure A. Suppose that pi has a density d1 with respect

to A for i c {0, 1} and po and p1 are absolutely continuous to each other. For a C R,

let

Dc(po : pi) = -log (~o )c ( d,) 1 cdA.

DQ(po : pli) is called the Chernoff a-divergence.

In summary, P(MAP rule makes a mistake) is at most

exp -- max a log(1 - p)- + (1 - a) log p- 1 + D(po : p) .e aG[0,1][L)

We remark that Da is defined for all a E R not restricted on [0, 1]. Indeed, as

long as [o and pi are absolutely continuous to each other D, is well-defined for all

a, possibly equal to -oc. Chernoff a-divergence has many nice properties such as

concavity, smoothness and additivity.

164



Proposition 4.6. Let /to and p,1 be probability distributions which are absolutely

continuous to each other. Then, D. = DQ(po :i) has the following properties:

(i) Da is concave.

(ii) D, is smooth on the interior of the set {a : D (po : p1) > -co}.

(iii) Do = D1 = 0.

at some a* E

Hence, D. < o everywhere and the maximum of D, is attained

[0, 1].

(iv) D, is strictly concave, unless pio and p1 are almost surely identical.

(v) Suppose that U = U1 9 U2 and po and p1 factorizes as [o = 1'1 9 v2 and

fp1 = /' 9 v' where v, iv,' are probability measures on U, for i C {1, 2}. Then,

Da(v1 0 2 v2) = D,(v1 : ' ) + D,(v2 : v')

for any a.

We omit the proof of Proposition 4.6, as it can be obtained in a general context

of Csiszir f-divergences. We recommend the book by Amari and Nagaoka [16] to

readers who are interested in the notions of a-divergence and its variants.

In summary, we have P(MAP rule makes a mistake) < e-(P) where

1(p) = max a log(1 - p)- 1 + (1 - a) log p- 1 + D (to : pi).
aE[0,1]

Since D, is strictly concave (if po 0 p), the maximum is attained at the unique

a* E (0, 1) satisfying
dDe - log 1 - P

da p

if such an a* exists.
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Binary hypothesis testing given many observations

One may wonder how tight the inequality

P(MAP rule makes a mistake) < -- (

is. This seems somewhat crude as it only exploits the inequality min(a, b) < aab--.

However, this estimate becomes tighter when pi is a product of N i.i.d. distributions,

i. e.,

P0 = VOON and =ON

for some vo and v, not depending on N.

In other words, this corresponds to a binary hypothesis testing problem with

hypotheses H with prior probability 1 - p and H1 with prior probability p where

Ho :Y~voViE [N] and H :Yi-uVi E [N],

given i.i.d. samples Y, -- - , YN.

Theorem 4.7 (Chernoff). Let us consider the binary hypothesis testing problem de-

fined as above. Let PN be the probability for the MAP decision rule making a mistake.

Then,
1

lim log pN = I(0) = max D,(vo :v).
N- oo N aE[0,11

In other words, PN = e-()-N+ON(N)

We refer readers to Chapter 12 in 137] for the proof and further explanations.

Note the similarity between this binary hypothesis testing with N samples and local

recovery problem. In the latter case, we are given a vector {Y',}eEE with independent

entries, and the goal is to decide between two hypotheses Ho and H1 such that

Ho: y~ qx[e o Ve c E s.t. e 3 v,

H: y~ qIxo[e\v]+ Ve E E s.t. e 3 v

and prior is chosen with probability P(HO) = 1 - p and P(H1 ) = p. Here we recall
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that qt is the short-hand notation for Q(. I .zi, , Zk) where ZEk 1 zi = t (See Section

4.1).

As in Theorem 4.7, we might expect that

IP(rrap,v # x|x%_) ~ exp max Da(po:
aE[O,1]

for sufficiently large n. However, there are two main obstacles to generalize Theorem

4.7 to our case:

" yO are independent but not identically distributed.

" More importantly, Q depends on n as opposed to that vo and v, are independent

of N in the binary hypothesis testing problem with N samples.

For this reason, we need a large-deviation type estimate on the triangular array

of random variables to prove an analogous statement. We impose this condition as

an assumption in Section 4.3.

As a final note, we unconditionally have

IP(irnap,v $ XV IX0) <

exp ( max a log p- + (1
(_aE[O,1l

- OZ) log(1 - p)-' + D(pto : [t 1

By additivity of Da, we get

Da (yo : [ti) =

Dc,(po : i) =

k-I

tO

k-\

D.(qt : qt+1) - #(e D v : Jx_,je \ {v}]j = t)

-VI Da(qt : qt+1)-k - i -t )

/11))

Hence,

E
eEE:elv

DQ (qx o [e\v]

(0 V n
t
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Observe that E jx0 j = p(n - 1) for typical x 0 V. So

k-1

t
t=0

k - t

( 1 -p) Daki -t)

1) pt (1

(qt : qt+1)

- _1_t - Dpk(qt : qt+1).
t

Putting all together, if there exists a constant I such that

n k-1

I ~ max F()k-
tE[0,I nz]eOi [og =

k 1

for sufficiently large n, then Pfailv n-1+0)

4.3 Local-to-global amplification

In this section, we present our main result in terms of local-to-global amplification.

Definition 4.4. Local-to-global amplification holds for M(p, Q) if

Pfail,global = (1 O(1))Pfail,ocal

and

Pfal,v
(vEV

< Pfail,local > Pfail,v-

vEV

Recall that in Section 4.2.4 we (informally) proved that PfailV < n-I+0o) where

I > 0 is a constant not depending on n such that

~max G-k1 k -
aE[o,1] log n E ( t

1 pt(l - P)klt - Da(qt : qt+1)

when n is sufficiently large. This motivates us to consider a parameter regime where

DQ(q, : qt) = 0 logn
(k-1J
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for any fixed a and s,t E {,1,.. ,k}.

4.3.1 Weak amplification

Recall that qt is defined as qt(y) = Q(ylz) for any y E Y and z E {0, I}k with Jzj = t.

If necessary, we will write qtfl instead of qt to emphasize the dependence of qt on n.

Formally, we make the following assumption on graphical channel models under

consideration.

Assumption (A 1 ). For any fixed oz e R and s, t E {0, ... , k}, there exists the limit

n-1)
-1D (qfl)ds:t(a) := lim E- e Dtq" :q)n-eoo log n

and ds:t(a) is finite. We further assume that for any A > 0 and n,

(n-1)
sup (ID' (q+ q )I+ D"(q q < o,

aE[-A,A] log n

where D' and D" are the first and second derivative of D, with respect to a. Finally,

we assume that ds:t is not identically zero for some s, t E {0,--- , k} to avoid the

trivial case.

Since ds:t(a) is a scaled limit of Da(qs : qt), we expect that d,:t(a) inherits many

properties of D, such as concavity.

Proposition 4.8. Let r, s, t E {0, 1,.- ,k}. Then,

(i) ds:t(a) is concave, ds:t(0) = ds:t(1) = 0, and ds:t(Oc) = dt:s(I - ce).

(ii) If dr:s and dr:t are identically zero, then ds,:t is identically zero as well. Hence,

ds:t - 0 defines a equivalence relation.

(iii) If ds:t is identically zero, then d,:s = dr:t.

Proof. ds:t is concave since it is a pointwise limit of concave functions. We have

ds:t(0) = ds:t(l) = 0 because Do = Di = 0, and we have ds:t(a) = dt:s(1 - a) since

Dc(pi : p2) = D 1l-(P2 : Y1).
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Before we prove (ii) and (iii), we claim that

1 1
D, (y1 : P2) -DPa(p1 : /3) + -Dq(1_a)(L2 : /13)

p q

for any p, q E (1, oc) satisfying 1 +1=1. This follows from
P q

I( dpy"( dy) c
_<13

= exp (--Dpa(Pi : 13) - -Dq(1_ka) (P2

Here the second inequality follows from H6lder's inequality.

Suppose that d,:s and d,:t are identically zero. For any a, we have

Dc(qs") qtf)) > D 2 (q"): q f)) + D2(1-a) ( ql))- S2 2

and we get

ds:t (a) 1 ds:

1
2 d :s

1
(2a) + dt:r(2(1 - a))

2
1

(1 - 2a) + dr t(2a - 1) = 0.
2

It implies that d,:t is identically zero, since d,: is concave and d,:t(0) = ds:t(l) = 0.

Finally, let us prove (iii). Suppose ds:t is identically zero. Note that

1 1
dr:s(a) = ds:r(1 - a) ds:t(p(1 - a)) + -dr:t(qa)

p q

and
1

dr:t(a) = dt:r(1 - a) > dt:s(p(1
p

1
- a)) + -dr:s(qa)

q

1
= dr:t(qa)
q

1
= -dr:s(qa)
q

for any a E R and p, q E (1, oc) satisfying 1 + 1 = 1. We getq q

dr:s (C) 2-dr:t(qa) Idr:s(q2a)
q q
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for any q E (1, oo). Taking q -+ 1, we have d,:s - dr.t since dr:s and dr:t are continuous.

0

Assuming (A 1 ), we define I(a) as

k-i-

I(a) =Z ( k1- - p) t dt-t+1(a) (4.1)
t=O

and I = max, I(a). Note that the maximum is attained at some a* E (0, 1), since I

is concave and 1(0) = I(1) = 0.

Let us justify that (A 1 ) is a natural assumption to make, from two examples we

discussed in the introduction: the SBM with two symmetric communities and the

spiked Wigner model with Rademacher prior. We remark that (A 1 ) holds in both

examples.

Example 4.1. The SBM with two symmetric communities. Let a and b be

positive constants. The SBM with two symmetric communities (in a parameter regime

that degrees grow logarithmically) is a graphical channel model M(p, Q) with uniform

prior p = U({0, 1}), and kernel Q, where

(n) kBer (alogn) if t = 0 or t = 2
q = Q(.ok-lt) =

Ber(5" ) t-

We have {a + (1 - a)b - a'bl-' if s 1 and t = 1

ds:t(a) = a)a + b - a'-b if s = 1 and t # 1

0 otherwise,

and

1
I(a) = -(do: 1 (a) + di 2 (a))

2

= (a + b - ab-" - a1a a).
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Hence, we get Pfai,v < n-+o() where

1= max I(a) = (2. -
aE[D,1) 2

Example 4.2. Spiked Wigner model with Rademacher prior. Let # be a

positive constant, and let o- = . The spiked Wigner model with Rademacher

prior is a graphical channel model M(p, Q) with uniform prior p = U({0, 1}), and

the kernel Qn where

q(l) = Q(-| 0 kt ) = N(1,o) if t = 0 or t = 2

N(-1, o-') if t = 1.

We have

ds: t(e) = 2a(1 - a)3 if Is - ti = 1

0 otherwise,

and 1(a) = 1(do1(a) + di: 2(a)) = 2a(1 - a)3. Hence, we get Pfail, < n-+0(1) where

I = max I(a) =-
ae[O,1] 2

We prove that the upper bound pfail,, n-Io(1) can be amplified to an upper

bound pfail,global < n -n-, which we call weak amplification.

Theorem 4.9 (Weak amplification). Suppose (A 1 ) holds. Then, Pfail,v < n-1+(1)

and Pfail,global < n~(Il-)+o(l). In particular, exact recovery is achievable whenever

I >1.

4.3.2 Strong amplification

We note that the inequality Pfai,v < n- + () is tight in both examples. See (4]

for the SBM with two symmetric communities, and see [21] and [61] for the spiked

Wigner model. We remark that we implicitly used a Chernoff-type bound to get

Pfail,v < n-I+o(1), and the papers we mentioned above argue that this Chernoff-type

172



However, their approaches rely heavily on the explicit

description of the channel.

Instead, we would like to impose a similar condition on generic graphical channel

models, namely the "tightness of Chernoff-type bounds".

Chernoff-type bounds

Let us derive again Pfail, < n-Io(1) using a Chernoff-type method (which is essen-

tially equivalent to our original derivation, just in different language).

Given a sequence of independent random variables X1,-- , XN, the tail probabil-

ity of the sum jN Xi can be estimated as

<;

N

meAt jE eAX.min e E
A>O

N

max
A>O

At - log E eAXi
i=1 } )

which is often called a Chernoff-type bound. When X1, - , XN are identically dis-

tributed and t = Nx, we get

N

- log P Xi > Nx) > N -max (Ax - log E eAX')

Here ax1 (A) := log E eAX1 is called cumulant-generating function of X1 , and

KX1 (x) max Ax - sx, (A)
A

is called the convex conjugate or Fenchel-Legendre transform of Kx1 . When x > E X 1,

we have

Nx) e-NC 1X

Cram6r's Theorem tells us that this inequality is essentially tight.

Theorem 4.10 (Cram6r's Theorem). Suppose that "x 1 (A) is finite everywhere. Let
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P EXi >
(i=1

= exp (-

N
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us fix x > E X 1. Then,

1 N
lim - log P Xi >

N-+wo N
Nx)

We recommend a book by Dembo and Zeitouni [39] to readers for further infor-

mation on Cramer's theorem and its variants.

Now, let us return to our case of Pfail,v. Let x0 E {0, 1 }V with 1x0 = pn and

x0 = 0. Then, we have

Pfail, ~ P (f(x 0 ) + f(yU Ix) < e(X') + f(yo IxV))

Q(ye0|xv [e])log (0 [) > log
1p(XQ

For e C E, let

Le := log Q(yoIx"[e])
Q(yoIx, [e])

where ye - Q(-x 0 [e]).

Let T = {v C V: x0 = 1}. Then, Ix0 [e]l = le n T and

Ix, [e]| = {enTI
le n T + 1

if e V

if e a V.

We have Le = 0 if e v, and

Le = log qt(y)
qt (y)

where y ~ gt

if v Ee and lenTi =t.

Let Kt be the cumulant-generating function of Le where le n TI = t. By Chernoff-

type bound, we get

-log P ( Le log P ;> nax A log
(eEE P >

i -p Z'CnjTI(A).
ePv
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L KIenT| (A)
e3v

k-1

t=O
k-i

~ k - t=O

We note that

Kt(A) log E exp
y-qt (A

I~TI IV
kt ) (

( k
1)

\ (T U v}
k -I- t

pt( _ p)k--t ()
t

log +(Y))

log E (+Y
y-qt qt(y) )

A

= -D(qt+1 qt).

Thus we have

- log Pfail, ;> (1 - o(1)) log n -max I(A).
1 0 9 f a i l A > O

Since I is concave and 1(0) = I(1) = 0, we recover Pfail,_ < n-I+o(i) where I =

maxaE[0,11 1(a).

Tightness of Chernoff-type bounds and strong amplification

In the previous section, we obtained

I < liminf - log Pfailv
n oo logrn

via a Chernoff-type bound. As in Cramer's Theorem, it would be nice to have

I > lim sup -
n-+oo log n

which means that the Chernoff-type bound we exploited in the previous section is

essentially tight. Formally, we make the following assumption.

Assumption (A 2 ). Fort E {0,.- , k - 1}, let 7/t1i be the distribution of log 4

where Y ~ qt(). Let No,- , N-1 be nonnegative integers such that Nt = ct (-1) +

o(nk-i ) for some constants co, -- , , and let X(' for t = 0, - , k - 1 and i =

1, -.. , Nt be independent random variables where X t ~ r?7ti(. Let L = _-21 E__ XW

175

Moreover,



and let
k-1

I(c) Zcdt+i:t (a) and *(6) = max a6 + I(a).
=0>0

t=o

We assume that for any constant 6 > -$(0) the following large deviation estimate

holds:

P (L > 6 log n) > exp *() - log n - o(log n)).

We further require

lim P(L > (J + 6,) log n)
n-o P(L ;> J log n)

for any sequence e, satisfying limEn e. log n = 0.

Now we are ready to present the main result of this chapter.

Theorem 4.11 (Strong amplification). Local-to-global amplification holds for M (p, Q)
assuming (A 1) and (A 2 ).

Hence, exact recovery in M (p, Q) exhibits a sharp phase transition around I = 1.

Corollary 4.12. Assume (A 1) and (A 2). If I > 1, then exact recovery is achievable.

On the other hand, exact recovery is impossible if I < 1.

As a final remark, we ask whether (A 2) is a necessary assumption to have a strong

amplification. In particular, if (A 2) can be deduced unconditionally (or with milder

set of conditions) from (A1 ), then it would imply that local-to-global amplification

holds for any model in the parameter regime under consideration. For instance,

Gartner-Ellis theorem and its strengthening [31] implies that tight large-deviation

type estimate is possible as long as the scaled cumulant generating function con-

verges nicely (See 139] for more information on large-deviation theory). This may be

applicable to the context of graphical channel model since a-divergence is essentially

the cumulant generating function, but we leave this part for future work.

Nevertheless, we note that the assumption (A 1 ) and (A 2) are both a condition

on the local recovery, hence the exact recovery in graphical channel model can be

characterized solely by the "capacity" of the channel which corresponds to I in the

context of this chapter.
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We note that for detection problem a similar result was obtained under the name

of channel universality [66].

4.3.3 Exact recovery up to a global switch of labels

Recall that exact recovery up to a global switch of labels is an alternative recovery

requirement in which we want to recover either x0 or 1 - x0 from given y0. In

particular, exact recovery is only possible up to a global switch of labels when the

model satisfy qt = qk-t for any t.

Definition 4.5. M(p, Q) is said to be asymptotically symmetric up to a global

switch of labels, or simply symmetric, if p is uniform and dt:k-t_ 0 for all t. We say

M(p, Q) asymmetric if it is not symmetric. Moreover, we say M(p, Q) is strongly

asymmetric if dt:kt 0 0 for some t.

Note that this definition of symmetry allows that M(p, Q,) being almost sym-

metric but not symmetric. For example, let us consider a SBM with uniform prior

x0 E {0, 1}" and posterior

alogn if X=0 - X 0
n i .1

0 b log n ix 0  .q
Yij = if xi x

(a+cn) log n if X0 - X 1.
n 1 3

When en = o(1), this model is not exactly symmetric since P(y0 |x0 ) 0 P(y 0 11 - x0%

but we cannot distinguish x0 and 1- x0 for any instances of a and b. Hence, it makes

sense to call this model symmetric as our definition suggests.

When the model is symmetric, we may want to modify our definition of Pfail,global

accordingly:

Pfail,global = P (Xmap(Y 0 ) 0  X 0

= w(U Es).

We have the corresponding amplification results for symmetric models.
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Theorem 4.13. Suppose that (A 1) holds and the model is symmetric. Then, (i) weak

amplification holds and (ii) strong amplification holds if (A 2) holds. We remark that

amplifications are based on the modified definition Of Pfai,global for symmetric models.

4.3.4 Proof overview

We close this section by outlining the proof of Theorem 4.11 and 4.9.

Weak amplification: Achievability

To prove the weak amplification, we need to analyze Pfail,global which is the probability

for the (global) MAP estimator failing to return the correct prior. For x0 E {O, 1}V

and S C V, let us define xs E {0, 1 }v with entries

xv if v S
V

I - xif v E S.

Let ES be the event defined as

Es := {e(x0 ) + f (y0 lx) f (xs) + f(y 0 Ixs)}.

Then, we can write Pfail,global as the probability that ES happens for some S # 0 (or

S 0 {0, V} in symmetric case). Hence,

Pfail,global = P U Es 5 E P Es \ U Es\v)
S#=A0 Soo \ VES /

= E (E)+ 1: P Es \ U Es\ .
vEV S:|S|>2 VES /

Note that the first sum in the right-hand side is equal to EvE Pfail,v. If we could

prove that

P Es \ U Es\v 71 Pfail,v,
\ VES / vEs
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then it would imply one side of the strong amplification: Pfailglobal < EvEv Pfail,v.

Instead, we prove a weaker bound

P Es\U
VES

Es\v ) < n-(1+o())IISI

which implies that

S
S:ISJ 2

P (Es \ U Es\v)
VES

K

d>2
0) rrdl

d(I-1) = -(I-1)

d>2

Hence,

Pf ailglobal <Y

See Section 4.4.1 for the details.

Strong amplification: Impossibility

We note that our argument is a close generalization of a second-moment method used

in 11]. Recall that Pfail,global Pfaillocal where

Pfail,local = P
(UEv6)

We would like to argue that E,'s have low pairwise correlations, and want that

1 - Pfail,local = P

Let Z = ECV 1 E, where 1 E, is the indicator random variable for the event E,.

By Chebyshev's inequality, we have

1 - Pfail,local = P(Z < 0) <
E(Z - E Z)2

(EZ)2

E Z 2

(EZ)2 -1.
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Hence,
E Z2

Pfail,local > 2 - (E Z)2

Note that E Z = ZvV Pfail,v and

EZ2 = 1 E 1E1E Pfail,v + P((E nEv).
u,VGV vCV uOv

Suppose that for any u f v, we have

P(Eu n E7)_<I+0

P(Eu) P(Ev) -

In other words, events Eu and Ev are almost independent. Then, we get

Pfail,global Pfail,local _ 1 - o(1) - Pfail,v

Moreover, (A 2 ) implies that Pfail,v > n-. Together with the weak amplification, we

get

1 - o(1) - (n-l ;< 1 - o(1) - Pfail,,v
\vV J-

< Pfail,local Pfail,global < n11 Pfail,v
vEV

as desired. See Section 4.4.2 for the details.

4.4 Proofs

In this section, we prove Theorem 4.9 and 4.11. We only focus on strongly asymmetric

models, i.e., dt:k-t 0 0 for some t {0, ... , k}. We remark that the proofs for non-

strongly asymmetric cases or symmetric cases is a simple adaptation of the proof for

the strongly asymmetric cases.

Let us introduce and recall a few notations which are heavily used throughout the

section. First of all, we will omit n in subscripts or superscripts if the context is clear.

In particular, we let V = [n] and E = (v), and all asymptotics are based on n -+ oc.
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We consider M(p, Q) where p = Ber(p) for some p E (0, 1/2] and Q(.z) = ql(-)

for z E {0, 1}k. Here Q and qt depend on n, implicitly.

For S C V and x0 E {0, 1 }v, a vector xs E {0, 1 }V is defined as

x = {1S -
if u ' S

if UE S)

and Es is defined as the event that

f (x 0) + e(y 0 Ix) ( (Xs) + f(y 0 Ix)

happens. We denote Efv} by E, for brevity.

The global and local failure probability Pfail,global and Pfail,ocal can be expressed

as

Pfail,global = P U
(S=/-

Es) and Pfail,ocal = P

where probabilities are taken over (x0 , y 0 ) ~M(p, Q). The probability for failing

local recovery at 2) is equal to Pfail,v = P(E)).

We assume (A 1 ) throughout the section: For any a E R and s, t E {0, ... , k}, the

limit
n-1)

ds:t (a) = lim k-1 D (q, : qt)
n-+oo log n

exists and finite. The goal of this section is to prove the following amplification

results:

e Weak amplification. Pfailv < n-I+o(1) and Pfail,global < n-(I-)+o(1)

e Strong amplifcation. If (A 2) holds, then Pfait,lobaI ;> (1 + O(l))Pfai,local and

-1

Pfail,local 1 - ( >pf ai,v
\VEV )
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4.4.1 Weak amplification: Proof of Theorem 4.9

We would like to focus our attention to the event that Ix0 I is very close to E Ix0 I. We

call such x0 typical. A standard Chernoff's bound gives us the following concentration

result.

Theorem 4.14. Let X1, , XN be i.i.d. distribution with X1 - Ber(p). Let 6 be a

real number such that 0 < 6 < 1. Then,

P IN Xi - p > P)
62pN

< 2e-

Let Typ = {pn - frnlogn < |x0 | 5 pn + V/rilogn}.

IP(Typ) > 1 - -Q(og2 n) by Theorem 4.14. Thus,

P U Es
Soo

" P(Typ) max P U Es

-x0 ETYP 5#0

x0 )

Letting 6= 1, we get

+ P(-Typ)

n (logn)

This implies that it is sufficient to prove that

P U Es xO < ,n(I-)- 0()

for any typical xO, to prove Pfaglobal < n-(,-1)+O(1),

Let

E' = Es\ (U Es\{v)
VEs

By a union bound, we have

P U Es
S#0

x0 ) < E P(EsIx0 ).
S#AO

We are going to argue that when ISI En (where E = o(1) will be chosen later), we

182



have

and so

SE
S:1 ISI~cn

P(E'jx0 ) <

< 7(n-('-1)+o(1))rn -(-<o1

m>1

Lemma 4.15. Let c = (log log n)~ 1 . If ISI < en, then

P(E'lxO) < exp(-IS| . Ilogn + o(IS logn)).

In particular,

P(Evlx0 ) = P(E,'jx0 ) < n-1 +O(1 )

hence Pfail,v < n-I+O(1).

Moreover, we show that if ISI > en then

P(E'gIx0 ) < P(ESIx0 ) < _Q(fkn1ogn),

hence

IP(E'jx0 ) 2e-n(Eknog n)

S:ISI>Efn

The right-hand side is e~w(n) as long as e > (log n)l/k, thus we get

Pfail,global < n-(I-1)+o(1)

as e- (n) and _ g2 n) decays much faster than n-- 1 .

Lemma 4.16. If en < |SI -, then P(Esjx") < e-(Ek"1ogr) If |SI > L and the

model is strongly asymmetric, then P(Esjx0) e-(EknIog")

As we argued above, Lemma 4.15 and Lemma 4.16 together implies the weak

amplification for strongly asymmetric models. We note that similar argument can be
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applied for models which are not strongly asymmetric. For example, in symmetric

models we can estimate P(E' Ix0) as

P(E'sjxO) ~~'_ P(Evgs|0)

when ISI > 11, hence we get

Pfail,global ;< 2 E P(E'sjx0 )
S:1<ISI

and weak amplification as well.

Proof of Lemma 4.15

Note that E' is the event that

max E(x\f VI) + (yo xs\{V} )
yES

< f(xO) + f (y IX0) (Xs) + f(yOIs)

holds. Let Fs,v be the event that

f(xS\fVI) + (yOjxS\{V}) e(xs) + f(yIXS)

happens. Since E' implies les Fs,,, we have

P(E' jx0 ) P
So (n xo).

/

Let us take a look at Fs,v by expanding . We have Fs,, if and only if

log Q(y>xs
Q(yeIxS\{v}[e]) -

log 1-XO

since lxs[e] I | xS\M[e] only if e contains v. Let Fs,, and Ts be subsets of E where

-s'V = {e E E : e n S = {v}} and Fs=f{ee E: jenSi > 2}.

184

eEE:eav



Note that if e E Fs,,,, then we have x, [e] = xV [e]

Fs,, happens then Ls,o + L' > c where

c := log < <
1 - p -

and xS\{v}[e] xO[e]. Hence, if

min log p(x?)
VES 1 -p(x)'

log qJxv[e)1 (ye)
q71xO [e] I(ye)

and L =

eEFS:e3v

Q(yolxs[e ])
log .{e

Q(ye1xs\{V} eD)

Claim. { Ls,v : v G S} is a family of jointly independent random variables, when

conditioned on x0. Two families { Ls,v : v G S} and { L'v : v c S} are independent

of each other when conditioned on x0 .

Proof of Claim. It follows from that Fs,v are mutually disjoint and that Fs,v does

not intersect Fs for any v E S. - I

This implies that

P (jn

\VES

x ) _< {Ls,v + L'v > c} x0)

= E P ( {Ls,v
f7 e,,, - (E

> -L'I, +

- E F P (Ls5 v > -L
{eey

fOe=-S Lye
8

< E
{Y }eo I .S

R exp
_VE

- max o(
aE[0,11

c} x0 , {y} eEFT) ..
+ c x0, {ye}es,v)I

- L's) - log E ,aLsv I
Now, note that

-log E e'Lsv - E
e C-F,v

Da (q1xV[e]J : qlxo[e][) .
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When xO = 0, we have

- log E e'Lsv = D(qt+1 :t) -# (ee \ {v}) n S =0, x0 [e \ {v}]I = t)
t=o
k-i

< D(qt+1 : qt)
t=o

= (1+ o(1))logn k1-'dt+ :t(a)

= log n - (I(oz) + o(1))

since ISI < en = o(n) and jx0 | = (p + o(1))n. Similarly, if xO = 1, then

- log E eLs'V = log n - (1(1 - a) + o(1)).

Let a* E (0, 1) be where the maximum of I(a) is attained. Then, we have

max a(c - L'v) -
aE[0,1 S

log E eLsv > (I+o(1)) log n +
if x0 = 0

if x 0 = 1.

Hence, P (Ves FsI x0 ) is at most

E exp a*Z

x0=0

a*) E(C--
xES:
xO =1

1.
It remains to show that the expected value on the right-hand side is small. We

will use the independence of yr's to break it into the form of

C J QEyo fe (yo),

and prove that

log C = o(IS1log n) and log E fe(yo)
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To see this, first note that C is equal to ec(roa*+rnl(1-*)) where mi = Ix0 [S]I and

MO = |SI - mi. Hence, logC < cjSj = o(ISI logn) as desired. On the other hand, we

claim the following:

Claim. Fix e C F'. Let ro = |e n S| - |x0 [e n S]| and r1 = |x0 [e n S]|, and let

s = |x 0 [e]I and t = |xS[e]|. Then,

fe (Y) = +(Y) )

Moreover, there is a constant M > 0 not depending on n such that

-log E fe(y 0 )> -M log n0, ( -n-

for sufficiently large n.

As a result, we get

C Eyofe,(y0) < exp (SI log n - 0(1) + ( )
e n 

= no(ISI)

since FsJ = O(nS| 2 nk 2 ) and I < e = o(1). It concludes the proof of Lemma 4.15,

as we get

P(Es I x) < P (
(VES

Fs,v x0 <)

= n-(I+o(1))ISI

for any typical x 0 and S with ISI < en.

Proof of Claim. By collecting the terms depending on y' in

exp - EeCF a* EvEs: L'- + (1 - a*) EVES:
\ x,=0 x0 =1
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= exp - vEs

qt+ (y

qt+1 (yeo)

qt(yO) ) ro

(a*(1 - x,)+(- a*)xo) log - --

v 

t-1(jxye4)e-]

qiy0) 0

Let #1 = roa* and 02 = r1 (1 - a*). Then,

Y E qt+1(Y)q-1(Y)32 Y)-01 -02

(Y)
(t-1 (Y))

\ s }

< E ( t~i (Y) ) E qt-
Y-qs qs (Y) IE (qt~i

Y-q, q8~
(Y ) ) -31 32 1/3

by H6lder's inequality. Hence,

- log E fe (ye) > I (D381 (qt+1 : qs) + D302(qt-l qs) + D- 3(01+02 )(qt : qs)) -

Since #1, and 02 lies in [0, k], we have

- log E fe (yO) ;> inf inf D,(q, : qt).
s,tE{O,--- ,k} aE[-3k,3k

Hence, by choosing M satisfying

-M < min min dst(a),
s,tE{O,--- ,k} aE[-3k,3k]

we get - log E fe(yo) > -M for sufficiently large n.
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Proof of Lemma 4.16

By Chernoff-type bound, we have

P(EsIx 0) = P ( log qlxs[e](ye)

(e:efls$0 qjxa [e 1I (Ye)

> Eslog
yes

1P(XO))

< exp max
caE[0,1] [

< exp O(IS)-

a SI log 7
V

max E Da(qixs[e1 : qio e)
aE[O,1] e:enSoo

Let T = {v E V : x0 = 1}. Since x0 is typical, we must have IT = (p o(1))n.

Observe that Ix0 [e]I = e n TI and Ixs[e]I = Ie n (S e T)1. Hence,

SE
s,tE{O,... ,k}

D]s0 : qlxotei)
e:ens#o

N,t D (q, : qt),

where
Ns,t = #(e: |enT =t,len(SeT)|=s)

|SnT| |S\T| |T\S| |V\(S
t-r )s-r )(r )k-s-

UT)I
t+r)

r=O

We are going to show that there are s and t such that d,:t is not identically zero

and N,t > Eknk as long as ISI > cn. This implies Lemma 4.16 as we get

P(EsIx0 ) < exp O(ISI) - max
aE [0, 11

E Ns,tDc(q
s,t

K exp O(ISI) - Q Ekn k
log n

k-1)
= -(Ekn1ogn)

Case 1: When cn < |SI < .

Let

N -(r) (Sn TI ( S\T| (T \ S| IV \ (S U T}
s't t - r s -- r r (k - s - t +r)'
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By definition, N,,t > N(') for any r. In particular we get

No,t >N = ( |SnT I|IV\(SUT)I - ' t k k- t

Nt > N0- =|(S \T|) (IV\(S UT)|

Nk,kt > Nkj = (IS\TI) (IT\SI

Nk-t,k N t = (ISnTI) T S).

Note that we must have

max(|S n T|,|IS \ T|) > Enand max(IT \ S|,|IV \ (S U T)| > n
2 -4

when cn<SI I. Without loss of generality, let us assume that IS n T > M and

IV \ (S U T)I >. For any t E { O,... , k},

No c/) / > Et2 kk - knk

We claim that do:t is not identically zero for some t. Suppose this is not true, i.e.,

do:t - 0 for all t. Then, by Proposition 4.8, we must have ds:t = 0 for all s and t which

contradicts the assumption that the model is not oblivious. This closes the case that

e1 < ISI < n.

Case 2: When ISI > and the model is strongly asymmetric.

We first note that if IS I (1-c)n, then similar argument as in Case 1 shows that there

exists t where do:t is not identically zero and NO,t > 6 kn k. Suppose that ISI > (1- )n.

Then, since |TI = (p o(1))n and e = o(1), we must have

IS \ T = ( - p o(l))n and ISnT = (p o(l))n.
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For any t E {f, ... , k}, we have

Ntkkt > N _) = (|S n
t

T| (S\T|
J k - t)

> lk = Q( 6 k nk),

since p E (0, 1). Furthermore, dt:k-t is not identically zero for some t as desired, since

the model is strongly asymmetric.

4.4.2 Strong amplification: Proof of Theorem 4.11

As we discussed in Section 4.3.4, we are going to exploit a second moment method to

prove strong amplification. Recall that Pfail,global > Pfail,local and note that

Pfail,local = P?
EV

; P(TYP) P U E
\vEV

> max P U Ev
xOETyp (VEV

Ty)

x0 ) - e~Q(og
2 n)

Our goal is to prove that

> 1 - o(1) -
VEV

P(E Ix) -1

for any typical x0. if I > 1, then the inequality trivially holds as P(Ev I x0) = o(n- 1).

For this reason, we are going to assume that I < 1. Here we exclude the borderline

case I = 1 which is out of scope of this thesis.

Together with the bound P(Ev I x0) > n-,-O(') for typical x0 , this implies that

Pfail,local > 1 - o(i) -

since Pfailv = n-I-o(1) - e-(og2 n). On the other hand, by weak amplification we get

Pfail,global n +()
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Hence, Pfail,global , EvV Pfail,v so local-to-global amplification holds.

Lemma 4.17. For any typical x0 and v E V, the inequality P(E, I x0 ) > n--(1)

holds if we assume (A2).

'31Proof. Direct from the assumption (A 2 ).

It remains to show that the inequality (4.2) holds. Note that we have

>1 -(z~E - o)>I1- EP(Ev |x0)

(VEV)

2 ZPu'vje) P(E n E, I x0 )
)2

S vv PCEV | X0 ))2

by the same argument as in Section 4.3.4. Let

M = max
{u,v}E ()

P(E n Ev I x0 )
P(EL I x0 ) P(E, I x1)

2M 1 P(Eu I x0 ) P(Ev I x0)

{u,v}E ( V)
2

< M(ZI P(Ev
\vEV

hence we get

x0 ) P(Ev I x))P U
)EV

If M < 1 + o(1), then we have

P U E,
(V

x0 ) > 1 - o(1)- P(E) I xO)

(V)

as desired.

Lemma 4.18. Let u and v be distinct vertices in V, and let x0 be typical.

P(E n Ev | x0)
P(Eu I x0) P(Ev I x0)

< 1 + o(1).
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Then,

2 P(E nEv I x0) K

{u,V}E (2)

Ixo))

- (M - 1).

Then,

>1 E
VEv



Hence, M < 1 + o(1).

Informally speaking, it means that event E, and E, are very close to being in-

dependent. We conclude the proof of Theorem 4.11 by showing Lemma 4.18 in the

following section.

Proof of Lemma 4.18: Almost independence of E and E,)

Recall that E, is the event that

log Q(o o j
eDuC'I0 e

> log( Ux)
k1-p(xO)

holds, and similar for E,. Let us define Xu, X, Yu and Y be random variables

depending on y0 where

log Q(yexu el)
Q(yefx0 [e])'

log Q (yeIxv [e])

yu = E Q(yI xU[e])
eD{u'v} yI 0l-

Yv = E lgQ (ye IXv [e])

eDfU'V}I Q(e IX e

Let cu = log pXOU) and cv = log p(x). Then, by definitionLet c~ -P(Xo) 1-p(x 0) dfnto

Eu < Xu +Yu > cu and Ev < Xv + Y ;> cv.

Let Fu = {e : en{u,v} = {u}}, F, = {e : en{u,v} = {v}} and Fuv = {e : e ; {u}}.

Clearly Fu, F and Fu, are mutually disjoint and so Xs, X, and {Yu, Y} are mutually

independent (but Yu and Y are not independent).

Since Eu and E are independent when conditioned on the value of y0 [Fuv], we

have

P(E nE, I x0) = E [P (XU + Y > c | y0 [.Fu])
Y 0 [F,]

. P (X= +Yn > c G, yo .N

Let /= and let Good be the event that JYJ r and JYJ :5 r1. Note that if
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|I I7, then

P(XU cIL - ?7) P(XU + Y7L > cL y 0 [FV]) < P(X, > cIL + gj),

and vice versa for v. Hence,

P(Es n E, | Good, x0 ) <5

P(Good) P(Xu > c,, + 71),

P(Ev | _> P(Good) P(Xv > c,

By the assumption (A 2 ), we have

P(Xu > c, + TI) > n--o(l)

and
P(XU > c. - 7)
P(XU > c + r)

since r7 = o((log n)- 1 ). Hence,

= 1 + o(1)

P(Eu nEv I x0 ) <
P(Eu I x0 ) P(Ev I x0 ) -

1+ o(1)
P(Good)

P(Es n E, n -,Good I x0 )
P(Good) 2r- 2I-o(1)

It remains to show that P(Good I x0 ) = 1 - o(1) and

P(Eu n E n -,Good I x0 )
n-

2I+o(l)
= 0(1).

Let a E (0, 1) be a maximizer of I(a). By definition, 1(a) is equal to I. We have

P(Xu + Yu > c I (ye)eez.F) < exp (-a(cu - Yu) + log E cIxu)

= eOYU exp (-ace - I(a) log n + o(log n))

_ e&Yu -I+0(1)

Thus we get
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n- 2 +o(l) E [1{,Good}ea(Y+Y)]
(Y ')ceE.7

IP(E n E, n -,Good I x0 ) <

e 2a(Y+Yv))

where the second inequality follows from Cauchy-Schwarz inequality.

Claim. E(yo)EF e2a(Yu+Y) - 1 + o(1)

Proof. Expanding e 2a(Y.+v), we get

E= 721+ E qlxu[e])

eE ( qjxo[e )

2a 2a
qlxv [e]

(qlxo [e] I )

Note that Cauchy-Schwarz inequality implies that for any r, s and t

2a
q(Y)

qt }

1/2
(qs

(~E
Y~9q

Eq
Y~-q

1/2

(Y))

4a 

)

holds. Moreover, the right-hand side is bounded by

Thus we get

E e2 a(Y +Y) < exp (log n
Cn1k-1D

eC-t for some constant c > 0.

= exp (o (logn))

which is 1 + o(1).

Claim. P(,mGood) = n-1+O(l)

Proof. Note that

P(-iGood) <

S2F- 2 Ey 2 + - 2 y2
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4a

-(Y)
(qt )

= e- D4a (q,:qt) - -1D4. (q.:qt)
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by Markov's inequality. The second moment of Y, can be expressed as

EY= 2 _ log E Oyu

2 Z Da(qxu[e] : qixo[e]) ,
eE Fuv a=O

which is bounded by

(d2 k-2 lo n_ lo n
|Fuv| -max -D, D, (q, : q J) < n

Hence,

P(-Good) < g- 5 n = -+o(l)

as desired. E

In summary, we have

P(Eu n E, n -,Good I x0) <n1O()
n- 2I-o(l)

so together with P(Good) = 1 - o(1) we get

P(Eu Ev xO) < I + 0(1).
P(Eu I x0) P(Ev I x0) -

4.5 Applications

In this section, we apply the strong amplification result (Theorem 4.11) to concrete

examples. As a result, we obtain exact statistical thresholds of exact recovery in

spiked tensor models and k-HSBMs, which includes the results we have presented in

Chapter 2 and Chapter 3. We also apply Theorem 4.11 to the hypergraph version of

binary censored block model and reproduce the result of [14].
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4.5.1 Spiked tensor models

For illustration, we will focus on the single-spiked k-tensor model and the bisection-

spiked k-tensor model in this section (See Section 2.2 for the definition of two models).

In the language of graphical channel, we consider the model with parameters

1
p = and Q(-|zi,- ,Zk)~ N (pitlzi, .2 /k!) ,

where a- = o-, is the noise scaling factor and (pt : t = 0, - , k) is defined as follows

in each model:

* (Single-spiked model) pt = (-1)t

" (Bisection-spiked model) pt = 1 if t E {0, k}, and pt = 0 otherwise.

k-1

We claim that we must have - = 6('g ) for the assumption (AI)to hold. To see

this, we need the following proposition.

Proposition 4.19. Let vi = N( to, o.2 ) and v1 = N(tI, 0-2).

a-divergence D, from vo to v1 is equal to

Da(vi : vo) = a(1 - a)- 2o 2

Proof. Direct computation.

Thus,

and when o- = T

Then, the Chernoff

LI

Da(q, : qt) = a(1 - a)2(ps -

lk-, we getV2logn' w e

n-1)
ds:t (a) = lim (-1 D (qs : qt)

n-+4o log n

= ce(1 - a)(s - [tt) 2 lim
n --+ 00

= ka(1 - a)
T
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Hence, (A 1 )holds assuming that a = 7 2 .

Recall that

1) P k-lt(

k-1

I(a) = E
t=0 t

- p)tdt:t+1(a).

Hence, we get

for the single-spiked model, and

k
Ibisec(a) =k-2 a(

1
a)

k
and Ibisec = 2kT 2

for the bisection-spiked model. Assuming that (A 2)holds as well, we get the following

corollary, which is a restatement of Corollary 2.4 and Corollary 2.6.

Corollary 4.20. The threshold for exact recovery in the single-spiked model is at

nk-1

2 log n

and the threshold for exact recovery in the bisection-spiked model is at

k nk-1
2 2logn

For completeness, let us argue that the assumption (A 2)holds in those two models

(and in general, graphical channel models with Gaussian kernel).

Informal argument. We note that

?7s:t ~ log (q(Y)) where Y ~ qt

is also a Gaussian with the same variance o 2 /k!, as the collection {N(p, U 2 /k!) : p E
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R} forms an exponential family2 . It implies that

k- -1j~k-1 Ct(k-1)

L=Z Z=
t=O i=

X1t )

where X(') ~ rt+i:t will be again a Gaussian distribution with mean 8(log n) and

variance 8(log n). We can directly estimate the tail probability P(L > t) by

P(L > t) = P L>E = ( >(L EBLtD)'
VE( L - E L)2 - E( L - E L)2 E L-E L)2'

which can be tightly estimated as n- with the certain value c > 0 determined by the

parameters. The assumption (A 2) follows from the direct calculation, which we omit

the details here. E

4.5.2 k-HSBMs with two communities

Note that the stochastic block model for k-uniform hypergraph with two communities

can be described as a graphical channel model with the kernel Q where

Q(-I zi...- , Zk) - Ber(pizj)

with parameters po, - - -

model HSBM(n, p, q; k)

, Pk E [0, 1]. For illustration, let us restrict our focus to the

which appears in Chapter 3. In this case, we have

P ndp p if t E f{0, k}p=and Pt{ :x::
q otherwise.

Let us compute the a-divergence between Ber(p) and Ber(q). When p and q are

2 For a nice overview on exponential family distributions, see [811.
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o(1), we have

D(Ber(p) : Ber(q)) = - log (paqla + (1 - p)'(1 - q)1-a)

= -log (1 - ap -(1- )q + pq- + o(p + q))

ap + par- i)q - pqw

In particular, when p =" and q =77 then we get
(,_-l)

Da (Ber(p) : Ber(q)) _log n
k-1)

aa + (1 - ci)b - aabla'

ds:t(c) {(1 - oz)a + ab - al-aba

0

(aa + (1 - a)b - aabl-) .

(s, t) = (0, 1) or (s, t) = (k, k - 1),

(st) = (1,0) or (st) = (k- 1,k),

otherwise.

and the assumption (A 1) holds.

__ 1(a) = 2k-I

1

2 k-1

(di:o (c) + dk:k_1(c))

(a + b - a"b-a - al-"ba)

S max (a + b - aabla - al-aba

I(a + b - 2 Va-)
2 k-1-2k1

Assuming that (A 2) holds, we recover the theorem 3.1.

Corollary 4.21. The threshold for exact recovery in the H SBM(n, p, q; k) where p =

V and q = blogn is at

1 {
2 k-1 \ ) -V b = 1.

Let us justify why the assumption (A 2) holds in graphical channel models with
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We first remark that when q, - Ber(p) and qt - Ber(q), the

distribution

r/s:t ~ log (q() where Y ~ qt

can be written as

=1s-t = log ( I q) + log (-q)

Hence, in the sum
k-1ct(_~)

L=Z E
t=O i=1

each inner sum z$c1 X(k_ is an affine transformation

variables.

of the sum of i.i.d. Bernoulli

Theorem 4.22 (Le Cam's Theorem). Let B1 , B2 ,-- , BN be independent Bernoulli

variables. Let SN =1 B, and let X

E SN. Then,
00

be a Poisson random variable with mean

N

|P (SN= k) - P(X = k)| < ((EBi) 2 .
k=O i=1

In particular, when Xt) - Ber(p) with p = " total variation distance between

the sum
Ct (2-1)

k X t ~ B in ( c(- ) , a lo g n
i=1 (k-1

and the Poisson distribution Poisson(ct a log n) is at most n-(k-1). Then, assump-

tion (A 2 ) follows from direct computation on the tail probability of Poisson random

variables.

4.5.3 Censored block model for k-uniform hypergraphs

Let us consider the binary censored block model for k-uniform hypergraphs (HCBM)

which we briefly discussed in Section 1.2.3. We specifically consider the model sug-

gested in [14].
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An HCBM can be described as a graphical channel model with parameters

1
p2= a 

{
and Q(- I Z1, --- ,zk) = P(Izl)

--P(OzD)

with probability 1 - p

with probability p(l - 0)

with probability p9,

where p E [0, 1] stands for the edge probability, 0 E (0, 1/2] stands for the probabil-

ity that a single measurement is corrupted, and p {0, ... , k} -+ { 1} stands for

the binary measurement for the hyperedges. In particular, we are interested in the

following two types of the measurements:

" Homogeneity measurement. p(t) = l if t E {0, k} and p(t) = -1 otherwise.

* Parity measurement. p(t) = (-1)1.

The terms homogeneity and parity are borrowed from [141.

Suppose that p = c logn for some c > 0.
( _k- 1)

Then, we get the following.

Proposition 4.23. If p(s) = p(t), then Da(qs : qt) = 0. Otherwise,

D, (q, : qt) = log n

(k-1)
c (1 - 010(1 - 0), - (1 - 0)1-a0a) .

Proof. Direct calculation.

For brevity, let f(a) be

f (a) := c (1 - 0(1 -), - (1 - 9)1-aQ0)

Then, we get

ds:t(e) = f(a)

0

Clearly, (A1)holds in this parameter regime.

if t(s) # P(t)

otherwise.
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Now, note that

1
Ihoma) 2k--1 - 2f (a) and Ihon = - -

2 k-2 maxf

in the case of homogeneity measurement, and

Ipar (a) = f(a) and Ipar= max f(ce)
a

in the case of parity measurement. Since f(ce) is maximized at a = 1/2, we get

max f (a) = c(1 - 2 (1- 0)) = c (v/-- 1 )2/ . - .

By assuming that (A 2) holds as well, we get the following corollary.

Corollary 4.24. The threshold for exact recovery in the homogeniety measurement

HCBM model is at

c( v/1 - 0) 2 k-2

The threshold for exact recovery in the parity measurement HCBM model is at

21 0 = 1.
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